WorldWideScience

Sample records for metabolic monitoring signal

  1. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  2. Bystander signaling via oxidative metabolism

    Directory of Open Access Journals (Sweden)

    Sawal HA

    2017-08-01

    Full Text Available Humaira Aziz Sawal,1 Kashif Asghar,2 Matthias Bureik,3 Nasir Jalal4 1Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 2Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan; 3Health Science Platform, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; 4Health Science Platform, Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin, China Abstract: The radiation-induced bystander effect (RIBE is the initiation of biological end points in cells (bystander cells that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to

  3. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  4. Cell signalling and phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  5. Plant monitoring and signal validation at HFIR

    International Nuclear Information System (INIS)

    Mullens, J.A.

    1991-01-01

    This paper describes a monitoring system for the Oak Ridge National Laboratory's (ORNL'S) High Flux Isotope Reactor (HFIR). HFIR is an 85 MW pressurized water reactor designed to produce isotopes and intense neutron beams. The monitoring system is described with respect to plant signals and computer system; monitoring overview; data acquisition, logging and network distribution; signal validation; status displays; reactor condition monitoring; reactor operator aids. Future work will include the addition of more plant signals, more signal validation and diagnostic capabilities, improved status display, integration of the system with the RELAP plant simulation and graphical interface, improved operator aids, and an alarm filtering system. 8 refs., 7 figs. (MB)

  6. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  7. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  8. Metabolic signals in sleep regulation: recent insights

    Directory of Open Access Journals (Sweden)

    Shukla C

    2016-01-01

    Full Text Available Charu Shukla, Radhika Basheer Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA Abstract: Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism. Keywords: sleep, energy balance, hypothalamus, metabolism, homeostasis

  9. Metabolic syndrome: the danger signal in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Patrick Mathieu

    2006-09-01

    Full Text Available Patrick Mathieu1, Philippe Pibarot2, Jean-Pierre Després31Department of Surgery, Centre de Recherche de l’Hôpital Laval/Institut de Cardiologie de Québec, Québec, Canada; 2Department of Medicine, Centre de Recherche de l’Hôpital Laval/Institut de Cardiologie de Québec, Québec, Canada; 3Department of Social and Preventive Medicine, Centre de Recherche de l’Hôpital Laval/Institut de Cardiologie de Québec, Québec, CanadaAbstract: Atherosclerosis is a chronic inflammatory disease characterized by infiltration of blood vessels by lipids and leukocytes. There is a growing body of evidence that among risk factors that promote atherosclerosis, the metabolic syndrome is a powerful and prevalent predictor of cardiovascular events. The systemic inflammatory process associated with the metabolic syndrome has numerous deleterious effects that promote plaque activation, which is responsible for clinical events. Interactions between the innate immune system with lipidderived products seem to play a major role in the pathophysiology of atherosclerosis in relation with the metabolic syndrome. The multiple links among adipose tissue, the vascular wall, and the immune system are the topics of this review, which examines the roles of oxidized low density lipoprotein, inflammatory cytokines, and adipokines in triggering and perpetuating a danger signal response that promotes the development of atherosclerosis. Furthermore, therapeutic options that specifically target the metabolic syndrome components are reviewed in light of recent developments. Keywords: atherosclerosis, inflammation, metabolic syndrome, innate immune system, danger signal theory

  10. Cancer cachexia: mediators, signaling, and metabolic pathways.

    Science.gov (United States)

    Fearon, Kenneth C H; Glass, David J; Guttridge, Denis C

    2012-08-08

    Cancer cachexia is characterized by a significant reduction in body weight resulting predominantly from loss of adipose tissue and skeletal muscle. Cachexia causes reduced cancer treatment tolerance and reduced quality and length of life, and remains an unmet medical need. Therapeutic progress has been impeded, in part, by the marked heterogeneity of mediators, signaling, and metabolic pathways both within and between model systems and the clinical syndrome. Recent progress in understanding conserved, molecular mechanisms of skeletal muscle atrophy/hypertrophy has provided a downstream platform for circumventing the variations and redundancy in upstream mediators and may ultimately translate into new targeted therapies. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Real-Time monitoring of intracellular wax ester metabolism

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-09-01

    Full Text Available Abstract Background Wax esters are industrially relevant molecules exploited in several applications of oleochemistry and food industry. At the moment, the production processes mostly rely on chemical synthesis from rather expensive starting materials, and therefore solutions are sought from biotechnology. Bacterial wax esters are attractive alternatives, and especially the wax ester metabolism of Acinetobacter sp. has been extensively studied. However, the lack of suitable tools for rapid and simple monitoring of wax ester metabolism in vivo has partly restricted the screening and analyses of potential hosts and optimal conditions. Results Based on sensitive and specific detection of intracellular long-chain aldehydes, specific intermediates of wax ester synthesis, bacterial luciferase (LuxAB was exploited in studying the wax ester metabolism in Acinetobacter baylyi ADP1. Luminescence was detected in the cultivation of the strain producing wax esters, and the changes in signal levels could be linked to corresponding cell growth and wax ester synthesis phases. Conclusions The monitoring system showed correlation between wax ester synthesis pattern and luminescent signal. The system shows potential for real-time screening purposes and studies on bacterial wax esters, revealing new aspects to dynamics and role of wax ester metabolism in bacteria.

  12. Bile Acid Signaling in Liver Metabolism and Diseases

    Directory of Open Access Journals (Sweden)

    Tiangang Li

    2012-01-01

    Full Text Available Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.

  13. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  14. Signal Processing for Beam Position Monitors

    CERN Document Server

    Vismara, Giuseppe

    2000-01-01

    At the first sight the problem to determine the beam position from the ratio of the induced charges of the opposite electrodes of a beam monitor seems trivial, but up to now no unique solution has been found that fits the various demands of all particle accelerators. The purpose of this paper is to help "instrumentalists" to choose the best processing system for their particular application, depending on the machine size, the input dynamic range, the required resolution and the acquisition speed. After a general introduction and an analysis of the electrical signals to be treated (frequency and time domain), the definition of the electronic specifications will be reviewed. The tutorial will present the different families in which the processing systems can be grouped. A general description of the operating principles with relative advantages and disadvantages for the most employed processing systems is presented. Special emphasis will be put on recent technological developments based on telecommunication circ...

  15. Sensor/signal monitoring and plant maintenance

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1994-02-01

    Nuclear Power Plant (NPO) availability is determined by the intended functionality of safety related system and components. Therefore, maintenance is an important issue in a power plant connected to the plant's reliability and safety. The traditional maintenance policies proved to be rather costly and even not effectively addressing NPP requirements. Referring to these drawbacks, in the last decade, in the nuclear reliability centered maintenance (RCM) gained substantial interest due to its merits. In the formal implementation of RCM, apparently, predictive maintenance is not considered. However, with the impact of modern real-time and on-line surveillance and monitoring methodologies, the predictive maintenance procedures like sensor/signal verification and validation are to be included into RCM. (orig.)

  16. Cell signalling and phospholipid metabolism. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  17. Endoplasmic reticulum-mitochondria calcium signaling in hepatic metabolic diseases.

    Science.gov (United States)

    Rieusset, Jennifer

    2017-06-01

    The liver plays a central role in glucose homeostasis, and both metabolic inflexibility and insulin resistance predispose to the development of hepatic metabolic diseases. Mitochondria and endoplasmic reticulum (ER), which play a key role in the control of hepatic metabolism, also interact at contact points defined as mitochondria-associated membranes (MAM), in order to exchange metabolites and calcium (Ca 2+ ) and regulate cellular homeostasis and signaling. Here, we overview the role of the liver in the control of glucose homeostasis, mainly focusing on the independent involvement of mitochondria, ER and Ca 2+ signaling in both healthy and pathological contexts. Then we focus on recent data highlighting MAM as important hubs for hormone and nutrient signaling in the liver, thus adapting mitochondria physiology and cellular metabolism to energy availability. Lastly, we discuss how chronic ER-mitochondria miscommunication could participate to hepatic metabolic diseases, pointing MAM interface as a potential therapeutic target for metabolic disorders. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Trehalose Metabolism: From Osmoprotection to Signaling

    Directory of Open Access Journals (Sweden)

    Gabriel Iturriaga

    2009-09-01

    Full Text Available Trehalose is a non-reducing disaccharide formed by two glucose molecules. It is widely distributed in Nature and has been isolated from certain species of bacteria, fungi, invertebrates and plants, which are capable of surviving in a dehydrated state for months or years and subsequently being revived after a few hours of being in contact with water. This disaccharide has many biotechnological applications, as its physicochemical properties allow it to be used to preserve foods, enzymes, vaccines, cells etc., in a dehydrated state at room temperature. One of the most striking findings a decade ago was the discovery of the genes involved in trehalose biosynthesis, present in a great number of organisms that do not accumulate trehalose to significant levels. In plants, this disaccharide has diverse functions and plays an essential role in various stages of development, for example in the formation of the embryo and in flowering. Trehalose also appears to be involved in the regulation of carbon metabolism and photosynthesis. Recently it has been discovered that this sugar plays an important role in plant-microorganism interactions.

  19. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  20. How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion.

    Science.gov (United States)

    Brown, Neil Andrew; Ries, Laure Nicolas Annick; Goldman, Gustavo Henrique

    2014-11-01

    The utilisation of lignocellulosic plant biomass as an abundant, renewable feedstock for green chemistries and biofuel production is inhibited by its recalcitrant nature. In the environment, lignocellulolytic fungi are naturally capable of breaking down plant biomass into utilisable saccharides. Nonetheless, within the industrial context, inefficiencies in the production of lignocellulolytic enzymes impede the implementation of green technologies. One of the primary causes of such inefficiencies is the tight transcriptional control of lignocellulolytic enzymes via carbon catabolite repression. Fungi coordinate metabolism, protein biosynthesis and secretion with cellular energetic status through the detection of intra- and extra-cellular nutritional signals. An enhanced understanding of the signals and signalling pathways involved in regulating the transcription, translation and secretion of lignocellulolytic enzymes is therefore of great biotechnological interest. This comparative review describes how nutrient sensing pathways regulate carbon catabolite repression, metabolism and the utilisation of alternative carbon sources in Saccharomyces cerevisiae and ascomycete fungi. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Interstitial Metabolic Monitoring During Hemorrhagic Shock

    Science.gov (United States)

    2005-11-01

    Mass Spectometry (ICP- MS) ATACCC St. Pete Beach, FL 15 Apr 03 Microdialysis (µD) Measurement Of Interstitial Markers of Hemorrhagic Shock...Jackson Foundation Rockville, MD 20852-1428 REPORT DATE : November 2005 TYPE OF REPORT: Final PREPARED FOR... DATE (DD-MM-YYYY) 01-11-2005 2. REPORT TYPE Final 3. DATES COVERED (From - To) 15 MAR 2004 - 14 OCT 2006 4. TITLE AND SUBTITLE Interstitial Metabolic

  2. Signal Processing Methods Monitor Cranial Pressure

    Science.gov (United States)

    2010-01-01

    Dr. Norden Huang, of Goddard Space Flight Center, invented a set of algorithms (called the Hilbert-Huang Transform, or HHT) for analyzing nonlinear and nonstationary signals that developed into a user-friendly signal processing technology for analyzing time-varying processes. At an auction managed by Ocean Tomo Federal Services LLC, licenses of 10 U.S. patents and 1 domestic patent application related to HHT were sold to DynaDx Corporation, of Mountain View, California. DynaDx is now using the licensed NASA technology for medical diagnosis and prediction of brain blood flow-related problems, such as stroke, dementia, and traumatic brain injury.

  3. Insulin signalling and the regulation of glucose and lipid metabolism

    Science.gov (United States)

    Saltiel, Alan R.; Kahn, C. Ronald

    2001-12-01

    The epidemic of type 2 diabetes and impaired glucose tolerance is one of the main causes of morbidity and mortality worldwide. In both disorders, tissues such as muscle, fat and liver become less responsive or resistant to insulin. This state is also linked to other common health problems, such as obesity, polycystic ovarian disease, hyperlipidaemia, hypertension and atherosclerosis. The pathophysiology of insulin resistance involves a complex network of signalling pathways, activated by the insulin receptor, which regulates intermediary metabolism and its organization in cells. But recent studies have shown that numerous other hormones and signalling events attenuate insulin action, and are important in type 2 diabetes.

  4. Metabolic sensors and their interplay with cell signalling and transcription

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Alena

    2012-01-01

    Roč. 40, č. 2 (2012), s. 311-323 ISSN 0300-5127 R&D Projects: GA ČR(CZ) GAP305/11/0126 Grant - others:EMBO Installation Grant(CZ) 121/2010 Institutional support: RVO:60077344 Keywords : energy status * metabolic sensor * signalling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.587, year: 2012 http://www.biochemsoctrans.org/bst/040/0311/0400311.pdf

  5. NAD+metabolism: Bioenergetics, signaling and manipulation for therapy.

    Science.gov (United States)

    Yang, Yue; Sauve, Anthony A

    2016-12-01

    We survey the historical development of scientific knowledge surrounding Vitamin B3, and describe the active metabolite forms of Vitamin B3, the pyridine dinucleotides NAD + and NADP + which are essential to cellular processes of energy metabolism, cell protection and biosynthesis. The study of NAD + has become reinvigorated by new understandings that dynamics within NAD + metabolism trigger major signaling processes coupled to effectors (sirtuins, PARPs, and CD38) that reprogram cellular metabolism using NAD + as an effector substrate. Cellular adaptations include stimulation of mitochondrial biogenesis, a process fundamental to adjusting cellular and tissue physiology to reduced nutrient availability and/or increased energy demand. Several mammalian metabolic pathways converge to NAD + , including tryptophan-derived de novo pathways, nicotinamide salvage pathways, nicotinic acid salvage and nucleoside salvage pathways incorporating nicotinamide riboside and nicotinic acid riboside. Key discoveries highlight a therapeutic potential for targeting NAD + biosynthetic pathways for treatment of human diseases. A recent emergence of understanding that NAD + homeostasis is vulnerable to aging and disease processes has stimulated testing to determine if replenishment or augmentation of cellular or tissue NAD + can have ameliorative effects on aging or disease phenotypes. This experimental approach has provided several proofs of concept successes demonstrating that replenishment or augmentation of NAD + concentrations can provide ameliorative or curative benefits. Thus NAD + metabolic pathways can provide key biomarkers and parameters for assessing and modulating organism health. Copyright © 2016. Published by Elsevier B.V.

  6. Web monitoring of industrial signals using embedded systems

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Romero-Molano

    2016-01-01

    Full Text Available The paper presents the design of software and hardware for a system of web monitoring of industrial signals. This prototype provides a web interface which can observe in real time the status of four industrial-type signal on-off. MSP432 microcontroller is used for sampling and transmitting monitored signals to a Raspberry PI which receives by a UART link the MSP432 monitored data and presents them immediately in the front-end web application. The prototype design was verified with a pneumatic application that consists of four single-acting cylinders and it was observed an efficient synchronization between the occurrence of the triggering event or change in status of any of the monitored cylinder and web publishing.

  7. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    Science.gov (United States)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  8. Signal processing for fast luminosity monitor of BEPC II

    International Nuclear Information System (INIS)

    Zhang Tao; Wang Yonggang; Li Kai; Yan Tianxin

    2008-01-01

    In order to meet the requirement of the fast luminosity monitor system of Beijing electron-positron collider (BEPC II), a high-speed bunch-by-bunch luminosity signal processing and displaying system was designed. The techniques such as fast signal amplification, discrimination, long-distance signal transmission, anti-coincidence event judgment, counting for each bunch and ping-pang storage were involved effectively. The preliminary test result shows that the system can process and display the luminosity signals for bunches with 4 ns separation. (authors)

  9. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  10. Monitoring tissue metabolism via time-resolved laser fluorescence

    Science.gov (United States)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Marx, Uwe

    1999-05-01

    Most assays for drug screening are monitoring the metabolism of cells by detecting the NADH content, which symbolize its metabolic activity, indirectly. Nowadays, the performance of a LASER enables us to monitor the metabolic state of mammalian cells directly and on-line by using time-resolved autofluorescence detection. Therefore, we developed in combination with tissue engineering, an assay for monitoring minor toxic effects of volatile organic compounds (VOC), which are accused of inducing Sick Building Syndrome (SBS). Furthermore, we used the Laserfluoroscope (LF) for pharmacological studies on human bone marrow in vitro with special interest in chemotherapy simulation. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; up to now without great success. However, it showed among other things that tissue structure plays a vital role. Consequently, we succeeded in simulating a chemotherapy in vitro on human bone marrow. Furthermore, after tumor ektomy we were able to distinguish between tumoric and its surrounding healthy tissue by using the LF. With its sensitive detection of metabolic changes in tissues the LF enables a wide range of applications in biotechnology, e.g. for quality control in artificial organ engineering or biocompatability testing.

  11. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling.

    Science.gov (United States)

    Foyer, Christine H; Bloom, Arnold J; Queval, Guillaume; Noctor, Graham

    2009-01-01

    Photorespiration is a high-flux pathway that operates alongside carbon assimilation in C(3) plants. Because most higher plant species photosynthesize using only the C(3) pathway, photorespiration has a major impact on cellular metabolism, particularly under high light, high temperatures, and CO(2) or water deficits. Although the functions of photorespiration remain controversial, it is widely accepted that this pathway influences a wide range of processes from bioenergetics, photosystem II function, and carbon metabolism to nitrogen assimilation and respiration. Crucially, the photorespiratory pathway is a major source of H(2)O(2) in photosynthetic cells. Through H(2)O(2) production and pyridine nucleotide interactions, photorespiration makes a key contribution to cellular redox homeostasis. In so doing, it influences multiple signaling pathways, particularly those that govern plant hormonal responses controlling growth, environmental and defense responses, and programmed cell death. The potential influence of photorespiration on cell physiology and fate is thus complex and wide ranging. The genes, pathways, and signaling functions of photorespiration are considered here in the context of whole plant biology, with reference to future challenges and human interventions to diminish photorespiratory flux.

  12. Optical Performance Monitoring and Signal Optimization in Optical Networks

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2006-01-01

    The thesis studies performance monitoring for the next generation optical networks. The focus is on all-optical networks with bit-rates of 10 Gb/s or above. Next generation all-optical networks offer large challenges as the optical transmitted distance increases and the occurrence of electrical......-optical-electrical regeneration points decreases. This thesis evaluates the impact of signal degrading effects that are becoming of increasing concern in all-optical high-speed networks due to all-optical switching and higher bit-rates. Especially group-velocity-dispersion (GVD) and a number of nonlinear effects will require...... enhanced attention to avoid signal degradations. The requirements for optical performance monitoring features are discussed, and the thesis evaluates the advantages and necessity of increasing the level of performance monitoring parameters in the physical layer. In particular, methods for optical...

  13. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    Science.gov (United States)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable

  14. Condition monitoring of gearboxes using synchronously averaged electric motor signals

    Science.gov (United States)

    Ottewill, J. R.; Orkisz, M.

    2013-07-01

    Due to their prevalence in rotating machinery, the condition monitoring of gearboxes is extremely important in the minimization of potentially dangerous and expensive failures. Traditionally, gearbox condition monitoring has been conducted using measurements obtained from casing-mounted vibration transducers such as accelerometers. A well-established technique for analyzing such signals is the synchronous signal average, where vibration signals are synchronized to a measured angular position and then averaged from rotation to rotation. Driven, in part, by improvements in control methodologies based upon methods of estimating rotor speed and torque, induction machines are used increasingly in industry to drive rotating machinery. As a result, attempts have been made to diagnose defects using measured terminal currents and voltages. In this paper, the application of the synchronous signal averaging methodology to electric drive signals, by synchronizing stator current signals with a shaft position estimated from current and voltage measurements is proposed. Initially, a test-rig is introduced based on an induction motor driving a two-stage reduction gearbox which is loaded by a DC motor. It is shown that a defect seeded into the gearbox may be located using signals acquired from casing-mounted accelerometers and shaft mounted encoders. Using simple models of an induction motor and a gearbox, it is shown that it should be possible to observe gearbox defects in the measured stator current signal. A robust method of extracting the average speed of a machine from the current frequency spectrum, based on the location of sidebands of the power supply frequency due to rotor eccentricity, is presented. The synchronous signal averaging method is applied to the resulting estimations of rotor position and torsional vibration. Experimental results show that the method is extremely adept at locating gear tooth defects. Further results, considering different loads and different

  15. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance

    DEFF Research Database (Denmark)

    Højlund, Kurt

    2014-01-01

    . These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes...... and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have...... described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance...

  16. Frequency Stability Monitoring Tool: A monitoring tool for the LHC bunch crossing signal

    CERN Document Server

    Hadjiantonis, Marios

    2013-01-01

    One of the basic responsibilities of the ATLAS Level 1 Central Trigger Processor is the distribution of timing signals, for example, the ∼ 40MHz bunch crossing signal from the accelerator, to the various parts of the detector. This is necessary in order to be able to synchronize the different signals coming from all the sub-detectors, so as to be able to reconstruct physical objects, and conduct correct measurements. For this reason, a monitoring tool has been developed, that is able to detect abnormatities in the bunch crossing or any other different timing signal.

  17. Signal transduction by interferon-α through arachidonic acid metabolism

    International Nuclear Information System (INIS)

    Hannigan, G.E.; Williams, B.R.G.

    1991-01-01

    Molecular mechanisms that mediate signal transduction by growth inhibitory cytokines are poorly understood. Type 1 (α and β) interferons (IFNs) are potent growth inhibitory cytokines whose biological activities depend on induced changes in gene expression. IFN-α induced the transient activation of phospholipase A 2 in 3T3 fibroblasts and rapid hydrolysis of [ 3 H]arachidonic acid (AA) from prelabeled phospholipid pools. The phospholipase inhibitor, bromophenacyl bromide (BPB), specifically blocked IFN-induced binding of nuclear factors to a conserved, IFN-regulated enhancer element, the interferon-stimulated response element (ISRE). BPB also caused a dose-dependent inhibition of IFN-α-induced ISRE-dependent transcription in transient transfection assays. Specific inhibition of AA oxygenation by eicosatetraynoic acid prevented IFN-α induction of factor binding to the ISRE. Treatment of intact cells with inhibitors of fatty acid cyclooxygenase or lipoxygenase enzymes resulted in amplification of IFN-α-induced ISRE binding and gene expression. Thus, IFN-α receptor-coupled AA hydrolysis may function in activation of latent transcription factors by IFN-α and provides a system for studying the role of AA metabolism in transduction of growth inhibitory signals

  18. Acoustic monitoring of rotating machine by advanced signal processing technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru

    2010-01-01

    The acoustic data remotely measured by hand held type microphones are investigated for monitoring and diagnosing the rotational machine integrity in nuclear power plants. The plant operator's patrol monitoring is one of the important activities for condition monitoring. However, remotely measured sound has some difficulties to be considered for precise diagnosis or quantitative judgment of rotating machine anomaly, since the measurement sensitivity is different in each measurement, and also, the sensitivity deteriorates in comparison with an attached type sensor. Hence, in the present study, several advanced signal processing methods are examined and compared in order to find optimum anomaly monitoring technology from the viewpoints of both sensitivity and robustness of performance. The dimension of pre-processed signal feature patterns are reduced into two-dimensional space for the visualization by using the standard principal component analysis (PCA) or the kernel based PCA. Then, the normal state is classified by using probabilistic neural network (PNN) or support vector data description (SVDD). By using the mockup test facility of rotating machine, it is shown that the appropriate combination of the above algorithms gives sensitive and robust anomaly monitoring performance. (author)

  19. Signal processing methodologies for an acoustic fetal heart rate monitor

    Science.gov (United States)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  20. Continuous on-line hydrogen ion monitoring to study flow dynamics of perifusion systems and cellular metabolism.

    Science.gov (United States)

    Brand, R M; Ghazzi, M N; Rolfes-Curl, A; Cantor, H C; Midgley, A R

    1994-05-01

    Time-dependent concentration profiles of input signals and feedback of metabolic products can strongly influence cellular responsiveness. To study these parameters, we developed a perifusion system that can deliver biological signals to cells with minimal dispersion, monitor real time responses, and remove waste products continuously. By monitoring pH with miniature hydrogen ion-selective electrodes at intervals of 1 s, effects of dispersion, flow rate, pumping system, and changes in cellular metabolism were demonstrated. Dynamic responses of a human cell line to a series of 10-min pulses of the metabolic uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) were monitored. A rapid 1-min increase in acid release occurred on exposure to CCCP, followed by a decrease in acidification and then a gradual return to a baseline slightly more acidic than before administration of CCCP. These observations demonstrate that this perifusion system can reveal small changes in pH (+/- 0.0005 units) induced by metabolic perturbations and has the potential to reveal the dynamics of cellular responsiveness to a wide range of hormonal, metabolic, and other chemical signals.

  1. Wireless sensor networks for monitoring physiological signals of multiple patients.

    Science.gov (United States)

    Dilmaghani, R S; Bobarshad, H; Ghavami, M; Choobkar, S; Wolfe, C

    2011-08-01

    This paper presents the design of a novel wireless sensor network structure to monitor patients with chronic diseases in their own homes through a remote monitoring system of physiological signals. Currently, most of the monitoring systems send patients' data to a hospital with the aid of personal computers (PC) located in the patients' home. Here, we present a new design which eliminates the need for a PC. The proposed remote monitoring system is a wireless sensor network with the nodes of the network installed in the patients' homes. These nodes are then connected to a central node located at a hospital through an Internet connection. The nodes of the proposed wireless sensor network are created by using a combination of ECG sensors, MSP430 microcontrollers, a CC2500 low-power wireless radio, and a network protocol called the SimpliciTI protocol. ECG signals are first sampled by a small portable device which each patient carries. The captured signals are then wirelessly transmitted to an access point located within the patients' home. This connectivity is based on wireless data transmission at 2.4-GHz frequency. The access point is also a small box attached to the Internet through a home asynchronous digital subscriber line router. Afterwards, the data are sent to the hospital via the Internet in real time for analysis and/or storage. The benefits of this remote monitoring are wide ranging: the patients can continue their normal lives, they do not need a PC all of the time, their risk of infection is reduced, costs significantly decrease for the hospital, and clinicians can check data in a short time.

  2. Signal Processing Device (SPD) for networked radiation monitoring system

    International Nuclear Information System (INIS)

    Dharmapurikar, A.; Bhattacharya, S.; Mukhopadhyay, P.K.; Sawhney, A.; Patil, R.K.

    2010-01-01

    A networked radiation and parameter monitoring system with three tier architecture is being developed. Signal Processing Device (SPD) is a second level sub-system node in the network. SPD is an embedded system which has multiple input channels and output communication interfaces. It acquires and processes data from first level parametric sensor devices, and sends to third level devices in response to request commands received from host. It also performs scheduled diagnostic operations and passes on the information to host. It supports inputs in the form of differential digital signals and analog voltage signals. SPD communicates with higher level devices over RS232/RS422/USB channels. The system has been designed with main requirements of minimal power consumption and harsh environment in radioactive plants. This paper discusses the hardware and software design details of SPD. (author)

  3. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  4. Antitumor mechanisms of metformin: Signaling, metabolism, immunity and beyond

    Directory of Open Access Journals (Sweden)

    Ismael Samudio

    2010-08-01

    Full Text Available Metformin is a synthetic biguanide first described in the 1920´s as a side product of the synthesis of N,N-dimethylguanidine. Like otherrelated biguanides, metformin displays antihyperglycemic properties, and has become the most widely prescribed oral antidiabetic medicinearound the world. Intriguing recent evidence suggests that metformin has chemopreventive and direct antitumor properties, and severalongoing clinical studies around the world are using this agent alone or in combination with chemotherapeutic schemes to determineprospectively its safety and efficacy in the treatment of human cancer. Notably, immune activating effects of metformin have recently beendescribed, and may support a notion put forth in the 1950s that this agent possessed antiviral and antimalarial effects. However, how theseeffects may contribute to its observed antitumor effects in retrospective studies has not been discussed. Mechanistically, metformin has beenshown to activate liver kinase B1 (LKB1 and its downstream target AMP-activated kinase (AMPK. The activation of AMPK has beenproposed to mediate metformin´s glucose lowering effect, although recent evidence suggests that this agent can inhibit electron transport inhepatocyte mitochondria resulting in AMPK-independent inhibition of hepatic gluconeogenesis. Likewise, albeit activation of AMPK andthe resulting inhibition of the mammalian target of rapamycin (mTOR signaling have been suggested to mediate the antitumor effects ofmetformin, AMPK-independent growth inhibitory properties of this agent in tumor cells have also been described. Here we present a briefreview of the signaling, metabolic, and immune effects of metformin and discuss how their interplay may orchestrate the antitumor effectsof this agent. In addition, we provide the rationale for a compassionate use study of metformin in combination with metronomic chemotherapy.

  5. Targeting tissue-specific metabolic signaling pathways in aging: the promise and limitations.

    Science.gov (United States)

    Hu, Fang; Liu, Feng

    2014-01-01

    It has been well established that most of the age-related diseases such as insulin resistance, type 2 diabetes, hypertension, cardiovascular disease, osteoporosis, and atherosclerosis are all closely related to metabolic dysfunction. On the other hand, interventions on metabolism such as calorie restriction or genetic manipulations of key metabolic signaling pathways such as the insulin and mTOR signaling pathways slow down the aging process and improve healthy aging. These findings raise an important question as to whether improving energy homeostasis by targeting certain metabolic signaling pathways in specific tissues could be an effective anti-aging strategy. With a more comprehensive understanding of the tissue-specific roles of distinct metabolic signaling pathways controlling energy homeostasis and the cross-talks between these pathways during aging may lead to the development of more effective therapeutic interventions not only for metabolic dysfunction but also for aging.

  6. Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal.

    Science.gov (United States)

    Lazar, Nathaniel; Fay, Allison; Nandakumar, Madhumitha; Boyle, Kerry E; Xavier, Joao; Rhee, Kyu; Glickman, Michael S

    2017-12-01

    Biotin is an essential cofactor utilized by all domains of life, but only synthesized by bacteria, fungi and plants, making biotin biosynthesis a target for antimicrobial development. To understand biotin biosynthesis in mycobacteria, we executed a genetic screen in Mycobacterium smegmatis for biotin auxotrophs and identified pyruvate carboxylase (Pyc) as required for biotin biosynthesis. The biotin auxotrophy of the pyc::tn strain is due to failure to transcriptionally induce late stage biotin biosynthetic genes in low biotin conditions. Loss of bioQ, the repressor of biotin biosynthesis, in the pyc::tn strain reverted biotin auxotrophy, as did reconstituting the last step of the pathway through heterologous expression of BioB and provision of its substrate DTB. The role of Pyc in biotin regulation required its catalytic activities and could be supported by M. tuberculosis Pyc. Quantitation of the kinetics of depletion of biotinylated proteins after biotin withdrawal revealed that Pyc is the most rapidly depleted biotinylated protein and metabolomics revealed a broad metabolic shift in wild type cells upon biotin withdrawal which was blunted in cell lacking Pyc. Our data indicate that mycobacterial cells monitor biotin sufficiency through a metabolic signal generated by dysfunction of a biotinylated protein of central metabolism. © 2017 John Wiley & Sons Ltd.

  7. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway.

    Science.gov (United States)

    Zhao, Yang; Hu, Xingbin; Liu, Yajing; Dong, Shumin; Wen, Zhaowei; He, Wanming; Zhang, Shuyi; Huang, Qiong; Shi, Min

    2017-04-13

    Cancer cells are frequently confronted with metabolic stress in tumor microenvironments due to their rapid growth and limited nutrient supply. Metabolic stress induces cell death through ROS-induced apoptosis. However, cancer cells can adapt to it by altering the metabolic pathways. AMPK and AKT are two primary effectors in response to metabolic stress: AMPK acts as an energy-sensing factor which rewires metabolism and maintains redox balance. AKT broadly promotes energy production in the nutrient abundance milieu, but the role of AKT under metabolic stress is in dispute. Recent studies show that AMPK and AKT display antagonistic roles under metabolic stress. Metabolic stress-induced ROS signaling lies in the hub between metabolic reprogramming and redox homeostasis. Here, we highlight the cross-talk between AMPK and AKT and their regulation on ROS production and elimination, which summarizes the mechanism of cancer cell adaptability under ROS stress and suggests potential options for cancer therapeutics.

  8. Windrum: a program for monitoring seismic signals in real time

    Science.gov (United States)

    Giudicepietro, Flora

    2017-04-01

    Windrum is a program devote to monitor seismic signals arriving from remote stations in real time. Since 2000, the Osservatorio Vesuviano (INGV) uses the first version of Windrum to monitor the seismic activity of Mt. Vesuvius, Campi Flegrei, Ischia and Stromboli volcano. The program has been also used at the Observatory of Bukittinggi (Indonesia), at the offices of the Italian National Civil Protection, at the COA in Stromboli and at the Civil Protection Center of the municipality of Pozzuoli (Napoli, Italy). In addition, the Osservatorio Vesuviano regularly uses Windrum in educational events such as the Festival of Science in Genova (Italy), FuturoRemoto and other events organized by Città della Scienza in Naples (Italy). The program displays the seismic trace of one station on a monitor, using short packet of data (typically 1 or 2 seconds) received through UTC Internet protocol. The data packets are in Trace_buffer format, a native protocol of Earthworm seismic system that is widely used for the data transmission on Internet. Windrum allows the user to visualize 24 hours of signals, to zoom selected windows of data, in order to estimate the duration Magnitude (Md) of an earthquake, in an intercative way, and to generate graphic images for the web. Moreover, Windrum can exchange Internet messages with other copies of the same program to synchronize actions, such as to zoom the same window of data or mark the beginning of an earthquake on all active monitors simultaneously. Originally, in 2000, Windrum was developed in VB6. I have now developed a new version in VB.net, which goes beyond the obsolescence problems that were appearing. The new version supports the decoding of binary packets received by soket in a more flexible way, allowing the generation of graphic images in different formats. In addition, the new version allows a more flexible layout configuration, suitable for use on large screens with high resolution. Over the past 17 years the use of Windrum

  9. Signal Detection and Monitoring Based on Longitudinal Healthcare Data

    Directory of Open Access Journals (Sweden)

    Iris Pigeot

    2012-12-01

    Full Text Available Post-marketing detection and surveillance of potential safety hazards are crucial tasks in pharmacovigilance. To uncover such safety risks, a wide set of techniques has been developed for spontaneous reporting data and, more recently, for longitudinal data. This paper gives a broad overview of the signal detection process and introduces some types of data sources typically used. The most commonly applied signal detection algorithms are presented, covering simple frequentistic methods like the proportional reporting rate or the reporting odds ratio, more advanced Bayesian techniques for spontaneous and longitudinal data, e.g., the Bayesian Confidence Propagation Neural Network or the Multi-item Gamma-Poisson Shrinker and methods developed for longitudinal data only, like the IC temporal pattern detection. Additionally, the problem of adjustment for underlying confounding is discussed and the most common strategies to automatically identify false-positive signals are addressed. A drug monitoring technique based on Wald’s sequential probability ratio test is presented. For each method, a real-life application is given, and a wide set of literature for further reading is referenced.

  10. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways.

    Science.gov (United States)

    Shenk, Thomas; Alwine, James C

    2014-11-01

    Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.

  11. Signal to noise comparison of metabolic imaging methods on a clinical 3T MRI

    DEFF Research Database (Denmark)

    Müller, C. A.; Hansen, Rie Beck; Skinner, J. G.

    MRI with hyperpolarized tracers has enabled new diagnostic applications, e.g. metabolic imaging in cancer research. However, the acquisition of the transient, hyperpolarized signal with spatial and frequency resolution requires dedicated imaging methods. Here, we compare three promising candidate...

  12. The growing landscape of lysine acetylation links metabolism and cell signalling

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Weinert, Brian Tate; Nishida, Yuya

    2014-01-01

    Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation...

  13. Metabolic monitoring in New Zealand district health board mental health services.

    Science.gov (United States)

    Staveley, Aimee; Soosay, Ian; O'Brien, Anthony J

    2017-11-10

    To audit New Zealand district health boards' (DHBs) metabolic monitoring policies in relation to consumers prescribed second-generation antipsychotic medications using a best practice guideline. Metabolic monitoring policies from DHBs and one private clinic were analysed in relation to a best practice standard developed from the current literature and published guidelines relevant to metabolic syndrome. Fourteen of New Zealand's 20 DHBs currently have metabolic monitoring policies for consumers prescribed antipsychotic medication. Two of those policies are consistent with the literature-based guideline. Eight policies include actions to be taken when consumers meet criteria for metabolic syndrome. Four DHBs have systems for measuring their rates of metabolic monitoring. There is no consensus on who is clinically responsible for metabolic monitoring. Metabolic monitoring by mental health services in New Zealand reflects international experience that current levels of monitoring are low and policies are not always in place. Collaboration across the mental health and primary care sectors together with the adoption of a consensus guideline is needed to improve rates of monitoring and reduce current rates of physical health morbidities.

  14. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases.

    Science.gov (United States)

    Ackers, Ian; Malgor, Ramiro

    2018-01-01

    Chronic diseases account for approximately 45% of all deaths in developed countries and are particularly prevalent in countries with the most sophisticated and robust public health systems. Chronic metabolic diseases, specifically lifestyle-related diseases pertaining to diet and exercise, continue to be difficult to treat clinically. The most prevalent of these chronic metabolic diseases include obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiovascular disease and will be the focus of this review. Wnt proteins are highly conserved glycoproteins best known for their role in development and homeostasis of tissues. Given the importance of Wnt signalling in homeostasis, aberrant Wnt signalling likely regulates metabolic processes and may contribute to the development of chronic metabolic diseases. Expression of Wnt proteins and dysfunctional Wnt signalling has been reported in multiple chronic diseases. It is interesting to speculate about an interrelationship between the Wnt signalling pathways as a potential pathological mechanism in chronic metabolic diseases. The aim of this review is to summarize reported findings on the contrasting roles of Wnt signalling in lifestyle-related chronic metabolic diseases; specifically, the contribution of Wnt signalling to lipid accumulation, fibrosis and chronic low-grade inflammation.

  15. 47 CFR 11.52 - EAS code and Attention Signal Monitoring requirements.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false EAS code and Attention Signal Monitoring... SYSTEM (EAS) Emergency Operations § 11.52 EAS code and Attention Signal Monitoring requirements. (a) EAS Participants must be capable of receiving the Attention Signal required by § 11.32(a)(9) and emergency messages...

  16. Crosstalk of metabolic factors and neurogenic signaling in adult neurogenesis: Implication of metabolic regulation for mental and neurological diseases.

    Science.gov (United States)

    Gao, Chong; Wang, Qi; Chung, Sookja K; Shen, Jiangang

    2017-06-01

    Metabolic disorders like diabetes and obesity are commonly companied with neurological diseases and psychiatric disorders. Accumulating evidences indicated that cellular metabolic factors affect adult neurogenesis and have modulating effects on neurodegenerative disorders and psychiatric diseases. Adult neurogenesis contains multiple steps including proliferation of neural stem cells, lineage commitments of neural progenitor cells, maturation into functional neurons, and integration into neuronal network. Many intrinsic and extrinsic factors produced from neural stem/progenitor cells and their microenvironment or neurogenic niche take roles in modulating neurogenesis and contribute to the brain repair and functional recoveries in many neurological diseases and psychiatric disorders. In this article, we review current progress about how different growth factors, neurotrophin, neurotransmitters and transcriptional factors work on regulating neurogenic process. In particular, we emphasize the roles of the cellular metabolic factors, such as insulin/IGF signaling, incretins, and lipid metabolic signaling molecules in modulating adult neurogenesis, and discuss their impacts on neurological behaviors. We propose that the metabolic factors could be the new therapeutic targets for adult neurogenesis. Plus, the metabolism-regulating drugs have the potentials for treatment of neurodegenerative diseases and mental disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The response to inositol: regulation of glycerolipid metabolism and stress response signaling in yeast

    Science.gov (United States)

    Henry, Susan A.; Gaspar, Maria L.; Jesch, Stephen A.

    2014-01-01

    This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed. PMID:24418527

  18. Glutamate and ATP at the Interface Between Signaling and Metabolism in Astroglia

    DEFF Research Database (Denmark)

    Parpura, Vladimir; Fisher, Elizabeth S; Lechleiter, James D

    2017-01-01

    Glutamate is the main excitatory transmitter in the brain, while ATP represents the most important energy currency in any living cell. Yet, these chemicals play an important role in both processes, enabling them with dual-acting functions in metabolic and intercellular signaling pathways. Glutamate...... can fuel ATP production, while ATP can act as a transmitter in intercellular signaling. We discuss the interface between glutamate and ATP in signaling and metabolism of astrocytes. Not only do glutamate and ATP cross each other's paths in physiology of the brain, but they also do so in its pathology...

  19. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure.

    Science.gov (United States)

    Guo, Cathy A; Guo, Shaodong

    2017-06-01

    The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function. © 2017 Society for Endocrinology.

  20. Metabolic Changes Underlying Bold Signal Variations after Administration of Zolpidem

    International Nuclear Information System (INIS)

    Rodriguez-Rojas, Rafael; Machado, Calixto; Alvarez, Lazaro; Carballo, Maylen; Perez-Nellar, Jesus; Estevez, Mario; Pavon, Nancy; Chinchilla, Mauricio

    2010-12-01

    Zolpidem is a non-benzodiazepine drug belonging to the imidazopiridine class, which has selectivity for stimulating the effect of gamma aminobutyric acid [GABA] and is used for the therapy of insomnia. Nonetheless, several reports have been published over recent years about a paradoxical arousing effect of Zolpidem in patients with severe brain damage. We studied a PVS case using 1 H-MRS and BOLD signal, before and after Zolpidem administration. Significantly increased BOLD signal was localized in left frontal superior cortex, bilateral cingulated areas, left thalamus and right head of the caudate nucleus. A transient activation was observed in frontal cortex, comprising portions of anterior cingulate, medial, and orbito-frontal cortices. Additionally, significant pharmacological activation in sensory-motor cortex is observed 1 hour after Zolpidem intake. Significant linear correlations of BOLD signal changes were found with primary concentrations of NAA, Glx and Lac in the right frontal cortex. We discussed that when Zolpidem attaches to the modified GABA receptors of the neurodormant cells, dormancy is switched off, inducing brain activation. This might explain the significant correlations of BOLD signal changes and 1 H-MRS metabolites in our patient. We concluded that 1 H-MRS and BOLD signal assessment might contribute to study neurovascular coupling in PVS cases after Zolpidem administration. Although this is a report of a single case, considering our results we recommend to apply this methodology in series of PVS and MCS patients. (author)

  1. Global Positioning System (GPS) civil signal monitoring (CSM) trade study report

    Science.gov (United States)

    2014-03-07

    This GPS Civil Signal Monitoring (CSM) Trade Study has been performed at the direction of DOT/FAA Navigation Programs as the agency of reference for consolidating civil monitoring requirements on the Global Positioning System (GPS). The objective of ...

  2. Lipid signaling in adipose tissue: Connecting inflammation & metabolism

    Czech Academy of Sciences Publication Activity Database

    Masoodi, M.; Kuda, Ondřej; Rossmeisl, Martin; Flachs, Pavel; Kopecký, Jan

    2015-01-01

    Roč. 1851, č. 4 (2015), s. 503-518 ISSN 1388-1981 R&D Projects: GA ČR(CZ) GA13-00871S; GA MŠk(CZ) 7E12073; GA MŠk(CZ) LH14040 Institutional support: RVO:67985823 Keywords : adipocyte * futile substrate cycle * macrophage Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.779, year: 2015

  3. Monitoring and prevalence rates of metabolic syndrome in military veterans with serious mental illness.

    Directory of Open Access Journals (Sweden)

    Sameed Ahmed M Khatana

    Full Text Available BACKGROUND: Cardiovascular disease is the leading cause of mortality among patients with serious mental illness (SMI and the prevalence of metabolic syndrome--a constellation of cardiovascular risk factors--is significantly higher in these patients than in the general population. Metabolic monitoring among patients using second generation antipsychotics (SGAs--a risk factor for metabolic syndrome--has been shown to be inadequate despite the release of several guidelines. However, patients with SMI have several factors independent of medication use that predispose them to a higher prevalence of metabolic syndrome. Our study therefore examines monitoring and prevalence of metabolic syndrome in patients with SMI, including those not using SGAs. METHODS AND FINDINGS: We retrospectively identified all patients treated at a Veterans Affairs Medical Center with diagnoses of schizophrenia, schizoaffective disorder or bipolar disorder during 2005-2006 and obtained demographic and clinical data. Incomplete monitoring of metabolic syndrome was defined as being unable to determine the status of at least one of the syndrome components. Of the 1,401 patients included (bipolar disorder: 822; schizophrenia: 222; and schizoaffective disorder: 357, 21.4% were incompletely monitored. Only 54.8% of patients who were not prescribed SGAs and did not have previous diagnoses of hypertension or hypercholesterolemia were monitored for all metabolic syndrome components compared to 92.4% of patients who had all three of these characteristics. Among patients monitored for metabolic syndrome completely, age-adjusted prevalence of the syndrome was 48.4%, with no significant difference between the three psychiatric groups. CONCLUSIONS: Only one half of patients with SMI not using SGAs or previously diagnosed with hypertension and hypercholesterolemia were completely monitored for metabolic syndrome components compared to greater than 90% of those with these characteristics

  4. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    Science.gov (United States)

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-04

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  5. Asynchronous monitoring of the quality of multilevel optical PAM signals

    Science.gov (United States)

    Siuzdak, J.

    2017-08-01

    In the paper, there is analyzed the signal quality assessment method based on delay tap asynchronous sampling, both for binary and multilevel PAM signals. The obtained multilevel phase diagrams are far more complicated than binary ones. The phase diagrams are affected by the signal distortions but it is difficult to relate reliably the phase diagram form to the distortion type and its influence on the signal quality.

  6. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms

    Science.gov (United States)

    Guo, Shaodong

    2014-01-01

    Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies demonstrate that insulin and its signaling cascade normally control cell growth, metabolism and survival through activation of mitogen-activated protein kinases (MAPKs) and phosphotidylinositide-3-kinase (PI3K), of which activation of PI-3K-associated with insulin receptor substrate-1 and -2 (IRS1, 2) and subsequent Akt→Foxo1 phosphorylation cascade has a central role in control of nutrient homeostasis and organ survival. Inactivation of Akt and activation of Foxo1, through suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and over nutrition may provide the underlying mechanisms for metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will likely provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the feature of the metabolic syndrome. Emphasis will be placed on the role of IRS1, IRS2, and associated signaling pathways that couple to Akt and the forkhead/winged helix transcription factor Foxo1. PMID:24281010

  7. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis.

    Science.gov (United States)

    Domínguez-Andrés, Jorge; Arts, Rob J W; Ter Horst, Rob; Gresnigt, Mark S; Smeekens, Sanne P; Ratter, Jacqueline M; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L; Joosten, Leo A B; Notebaart, Richard A; Ardavín, Carlos; Netea, Mihai G

    2017-09-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.

  8. Screening for and monitoring of cardio-metabolic risk factors in ...

    African Journals Online (AJOL)

    Objective: Recent findings suggest that premature death in patients with severe mental illness (SMI) can be attributed to the high comorbidity of cardio-metabolic disorders. This study investigated the prevalence and monitoring of some risk factors for cardio-metabolic disease in a cohort with SMI, compared to the general ...

  9. Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila

    Science.gov (United States)

    Wang, Bin; Chen, Nan; Wei, Yingliang; Li, Jiang; Sun, Li; Wu, Jiarui; Huang, Qing; Liu, Chang; Fan, Chunhai; Song, Haiyun

    2012-08-01

    Gold nanoparticles (AuNPs) are often used as vehicles to deliver drugs or biomolecules, due to their mild effect on cell survival and proliferation. However, little is known about their effect on cellular metabolism. Here we examine the in vivo effect of AuNPs on metabolism using Drosophila as a model. Drosophila and vertebrates possess similar basic metabolic functions, and a highly conserved PI3K/Akt/mTOR signaling pathway plays a central role in the regulation of energy metabolism in both organisms. We show that dietary AuNPs enter the fat body, a key metabolic tissue in Drosophila larvae. Significantly, larvae fed with AuNP show increased lipid levels without triggering stress responses. In addition, activities of the PI3K/Akt/mTOR signaling pathway and fatty acids synthesis are increased in these larvae. This study thus reveals a novel function of AuNPs in influencing animal metabolism and suggests its potential therapeutic applications for metabolic disorders.

  10. PRMT5 modulates the metabolic response to fasting signals.

    Science.gov (United States)

    Tsai, Wen-Wei; Niessen, Sherry; Goebel, Naomi; Yates, John R; Guccione, Ernesto; Montminy, Marc

    2013-05-28

    Under fasting conditions, increases in circulating glucagon maintain glucose balance by promoting hepatic gluconeogenesis. Triggering of the cAMP pathway stimulates gluconeogenic gene expression through the PKA-mediated phosphorylation of the cAMP response element binding (CREB) protein and via the dephosphorylation of the latent cytoplasmic CREB regulated transcriptional coactivator 2 (CRTC2). CREB and CRTC2 activities are increased in insulin resistance, in which they promote hyperglycemia because of constitutive induction of the gluconeogenic program. The extent to which CREB and CRTC2 are coordinately up-regulated in response to glucagon, however, remains unclear. Here we show that, following its activation, CRTC2 enhances CREB phosphorylation through an association with the protein arginine methyltransferase 5 (PRMT5). In turn, PRMT5 was found to stimulate CREB phosphorylation via increases in histone H3 Arg2 methylation that enhanced chromatin accessibility at gluconeogenic promoters. Because depletion of PRMT5 lowers hepatic glucose production and gluconeogenic gene expression, these results demonstrate how a chromatin-modifying enzyme regulates a metabolic program through epigenetic changes that impact the phosphorylation of a transcription factor in response to hormonal stimuli.

  11. Regulation of PP2A by Sphingolipid Metabolism and Signaling

    Directory of Open Access Journals (Sweden)

    Joshua eOaks

    2015-01-01

    Full Text Available Protein phosphatase 2A (PP2A is a serine/threonine phosphatase that is a primary regulator of cellular proliferation through targeting of proliferative kinases, cell cycle regulators, and apoptosis inhibitors. It is through the regulation of these regulatory elements that gives PP2A tumor suppressor functions. In addition to mutations on the regulatory subunits, the phosphatase/tumor suppressing activity of PP2A is also inhibited in several cancer types due to overexpression or modification of the endogenous PP2A inhibitors such as SET/I2PP2A. This review focuses on the current literature regarding the interactions between the lipid signaling molecules, selectively sphingolipids, and the PP2A inhibitor SET for the regulation of PP2A, and the therapeutic potential of sphingolipids as PP2A activators for tumor suppression via targeting SET oncoprotein.

  12. Metabolic networks: a signal-oriented approach to cellular models.

    Science.gov (United States)

    Lengeler, J W

    2000-01-01

    Complete genomes, far advanced proteomes, and even 'metabolomes' are available for at least a few organisms, e.g., Escherichia coli. Systematic functional analyses of such complete data sets will produce a wealth of information and promise an understanding of the dynamics of complex biological networks and perhaps even of entire living organisms. Such complete and holistic descriptions of biological systems, however, will increasingly require a quantitative analysis and the help of mathematical models for simulating whole systems. In particular, new procedures are required that allow a meaningful reduction of the information derived from complex systems that will consequently be used in the modeling process. In this review the biological elements of such a modeling procedure will be described. In a first step, complex living systems must be structured into well-defined and clearly delimited functional units, the elements of which have a common physiological goal, belong to a single genetic unit, and respond to the signals of a signal transduction system that senses changes in physiological states of the organism. These functional units occur at each level of complexity and more complex units originate by grouping several lower level elements into a single, more complex unit. To each complexity level corresponds a global regulator that is epistatic over lower level regulators. After its structuring into modules (functional units), a biological system is converted in a second step into mathematical submodels that by progressive combination can also be assembled into more aggregated model structures. Such a simplification of a cell (an organism) reduces its complexity to a level amenable to present modeling capacities. The universal biochemistry, however, promises a set of rules valid for modeling biological systems, from unicellular microorganisms and cells, to multicellular organisms and to populations.

  13. Maternal Chromium Restriction Leads to Glucose Metabolism Imbalance in Mice Offspring through Insulin Signaling and Wnt Signaling Pathways

    Science.gov (United States)

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2016-01-01

    An adverse intrauterine environment, induced by a chromium-restricted diet, is a potential cause of metabolic disease in adult life. Up to now, the relative mechanism has not been clear. C57BL female mice were time-mated and fed either a control diet (CD), or a chromium-restricted diet (CR) throughout pregnancy and the lactation period. After weaning, some offspring continued the diet diagram (CD-CD or CR-CR), while other offspring were transferred to another diet diagram (CD-CR or CR-CD). At 32 weeks of age, glucose metabolism parameters were measured, and the liver from CR-CD group and CD-CD group was analyzed using a gene array. Quantitative real-time polymerase chain reaction (qPCR) and Western blot were used to verify the result of the gene array. A maternal chromium-restricted diet resulted in obesity, hyperglycemia, hyperinsulinemia, increased area under the curve (AUC) of glucose in oral glucose tolerance testing and homeostasis model assessment of insulin resistance (HOMA-IR). There were 463 genes that differed significantly (>1.5-fold change, p chromium deficiency influences glucose metabolism in pups through the regulation of insulin signaling and Wnt signaling pathways. PMID:27782077

  14. LKB1 and AMPK Family Signaling: The Intimate Link Between Cell Polarity and Energy Metabolism

    NARCIS (Netherlands)

    Jansen, Marnix; ten Klooster, Jean Paul; Offerhaus, G. Johan; Clevers, Hans

    2009-01-01

    Jansen M, ten Klooster JP, Offerhaus GJ, Clevers H. LKB1 and AMPK Family Signaling: The Intimate Link Between Cell Polarity and Energy Metabolism. Physiol Rev 89: 777-798, 2009; doi:10.1152/physrev.00026.2008. Research on the LKB1 tumor suppressor protein mutated in cancer-prone Peutz-Jeghers

  15. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription

    Czech Academy of Sciences Publication Activity Database

    Wasternack, Claus; Song, S.

    2017-01-01

    Roč. 68, č. 6 (2017), s. 1303-1321 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Activators * Amino acid conjugates * Biosynthesis * Jasmonic acid * Metabolism * Perception * Repressors * SCFJAZ co-receptor complex COI1 * Signaling Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  16. The PPARα - FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway

    Science.gov (United States)

    Vernia, Santiago; Cavanagh-Kyros, Julie; Garcia-Haro, Luisa; Sabio, Guadalupe; Barrett, Tamera; Jung, Dae Young; Kim, Jason K.; Xu, Jia; Shulha, Hennady P.; Garber, Manuel; Gao, Guangping; Davis, Roger J.

    2014-01-01

    The cJun NH2-terminal kinase (JNK) stress signaling pathway is implicated in the metabolic response to the consumption of a high fat diet, including the development of obesity and insulin resistance. These metabolic adaptations involve altered liver function. Here we demonstrate that hepatic JNK potently represses the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). JNK therefore causes decreased expression of PPARα target genes that increase fatty acid oxidation / ketogenesis and promote the development of insulin resistance. We show that the PPARα target gene fibroblast growth factor 21 (Fgf21) plays a key role in this response because disruption of the hepatic PPARα - FGF21 hormone axis suppresses the metabolic effects of JNK-deficiency. This analysis identifies the hepatokine FGF21 as a critical mediator of JNK signaling in the liver. PMID:25043817

  17. Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis

    Science.gov (United States)

    Lee, Sunjae; Mardinoglu, Adil; Zhang, Cheng; Lee, Doheon; Nielsen, Jens

    2016-01-01

    Hepatocellular carcinoma (HCC) has a high mortality rate and early detection of HCC is crucial for the application of effective treatment strategies. HCC is typically caused by either viral hepatitis infection or by fatty liver disease. To diagnose and treat HCC it is necessary to elucidate the underlying molecular mechanisms. As a major cause for development of HCC is fatty liver disease, we here investigated anomalies in regulation of lipid metabolism in the liver. We applied a tailored network-based approach to identify signaling hubs associated with regulation of this part of metabolism. Using transcriptomics data of HCC patients, we identified significant dysregulated expressions of lipid-regulated genes, across many different lipid metabolic pathways. Our findings, however, show that viral hepatitis causes HCC by a distinct mechanism, less likely involving lipid anomalies. Based on our analysis we suggest signaling hub genes governing overall catabolic or anabolic pathways, as novel drug targets for treatment of HCC that involves lipid anomalies. PMID:27216817

  18. Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling.

    Science.gov (United States)

    Shears, Stephen B

    2018-03-01

    Inositol pyrophosphates are small, diffusible signaling molecules that possess the most concentrated three-dimensional array of phosphate groups in Nature; up to eight phosphates are crammed around a six-carbon inositol ring. This review discusses the physico-chemical properties of these unique molecules, and their mechanisms of action. Also provided is information on the enzymes that regulate the levels and hence the signaling properties of these molecules. This review pursues the idea that many of the biological effects of inositol pyrophosphates can be rationalized by their actions at the interface of cell signaling and metabolism that is essential to cellular and organismal homeostasis. © 2017 Wiley Periodicals, Inc.

  19. Improving metabolic monitoring in patients maintained on antipsychotics in Penang, Malaysia.

    Science.gov (United States)

    Hor, Esther Sl; Subramaniam, Sivasangari; Koay, Jun Min; Bharathy, Arokiamary; Vasudevan, Umadevi; Panickulam, Joseph J; Ng, InnTiong; Arif, Nor Hayati; Russell, Vincent

    2016-02-01

    To evaluate the monitoring of metabolic parameters among outpatients maintained on antipsychotic medications in a general hospital setting in Malaysia and to assess the impact of a local monitoring protocol. By performing a baseline audit of files from a random sample of 300 patients prescribed antipsychotic medications for at least 1 year; we determined the frequency of metabolic monitoring. The findings informed the design of a new local protocol, on which clinical staff was briefed. We re-evaluated metabolic monitoring immediately after implementation, in a small sample of new referrals and current patients. We explored staff perceptions of the initiative with a follow-up focus group, 6 months post-implementation. The baseline audit revealed a sub-optimal frequency of metabolic parameter recording. Re-audit, following implementation of the new protocol, revealed improved monitoring but persisting deficits. Dialogue with the clinical staff led to further protocol modification, clearer definition of staff roles and use of a standard recording template. Focus group findings revealed positive perceptions of the initiative, but persisting implementation barriers, including cultural issues surrounding waist circumference measurement. Responding to challenges in achieving improved routine metabolic monitoring of patients maintained on antipsychotics required on-going dialogue with the clinical staff, in order to address both service pressures and cultural concerns. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  20. Metabolic syndrome alters expression of insulin signaling-related genes in swine mesenchymal stem cells.

    Science.gov (United States)

    Conley, Sabena M; Zhu, Xiang-Yang; Eirin, Alfonso; Tang, Hui; Lerman, Amir; van Wijnen, Andre J; Lerman, Lilach O

    2018-02-20

    Metabolic syndrome (MetS) is associated with insulin resistance (IR) and impaired glucose metabolism in muscle, fat, and other cells, and may induce inflammation and vascular remodeling. Endogenous reparative systems, including adipose tissue-derived mesenchymal stem/stromal cells (MSC), are responsible for repair of damaged tissue. MSC have also been proposed as an exogenous therapeutic intervention in patients with cardiovascular and chronic kidney disease (CKD). The feasibility of using autologous cells depends on their integrity, but whether in MetS IR involves adipose tissue-derived MSC remains unknown. The aim of this study was to examine the expression of mRNA involved in insulin signaling in MSC from subjects with MetS. Domestic pigs consumed a lean or obese diet (n=6 each) for 16weeks. MSC were collected from subcutaneous abdominal fat and analyzed using high-throughput RNA-sequencing for expression of genes involved in insulin signaling. Expression profiles for enriched (fold change>1.4, pinsulin signaling. Enriched mRNAs were implicated in biological pathways including hepatic glucose metabolism, adipocyte differentiation, and transcription regulation, and down-regulated mRNAs in intracellular calcium signaling and cleaving peptides. Functional analysis suggested that overall these alterations could increase IR. MetS alters mRNA expression related to insulin signaling in adipose tissue-derived MSC. These observations mandate caution during administration of autologous MSC in subjects with MetS. Copyright © 2017. Published by Elsevier B.V.

  1. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death

    Science.gov (United States)

    Graham, Nicholas A; Tahmasian, Martik; Kohli, Bitika; Komisopoulou, Evangelia; Zhu, Maggie; Vivanco, Igor; Teitell, Michael A; Wu, Hong; Ribas, Antoni; Lo, Roger S; Mellinghoff, Ingo K; Mischel, Paul S; Graeber, Thomas G

    2012-01-01

    The altered metabolism of cancer can render cells dependent on the availability of metabolic substrates for viability. Investigating the signaling mechanisms underlying cell death in cells dependent upon glucose for survival, we demonstrate that glucose withdrawal rapidly induces supra-physiological levels of phospho-tyrosine signaling, even in cells expressing constitutively active tyrosine kinases. Using unbiased mass spectrometry-based phospho-proteomics, we show that glucose withdrawal initiates a unique signature of phospho-tyrosine activation that is associated with focal adhesions. Building upon this observation, we demonstrate that glucose withdrawal activates a positive feedback loop involving generation of reactive oxygen species (ROS) by NADPH oxidase and mitochondria, inhibition of protein tyrosine phosphatases by oxidation, and increased tyrosine kinase signaling. In cells dependent on glucose for survival, glucose withdrawal-induced ROS generation and tyrosine kinase signaling synergize to amplify ROS levels, ultimately resulting in ROS-mediated cell death. Taken together, these findings illustrate the systems-level cross-talk between metabolism and signaling in the maintenance of cancer cell homeostasis. PMID:22735335

  2. Signal processing for solar array monitoring, fault detection, and optimization

    CERN Document Server

    Braun, Henry; Spanias, Andreas

    2012-01-01

    Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open problem. As sensing and monitoring technology continues to improve, there is an opportunity to deploy sensors in PV arrays in order to improve their management. In this book, we examine the potential role of sensing and monitoring technology in a PV context, focusing on the areas of fault detection, topology optimization, and performance evaluation/data visualization. First, several types of commonly occurring PV array faults are considered and detection algorithms are described. Next, the potential for dynamic optimization of an array's topology is discussed, with a focus on mitigation of fault conditions and optimization of power output under non-fault conditions. Finally, monitoring system design considerations such as type and accuracy of measurements, sampling rate, and communication protocols are considered. It is our hope that the benefits of monitoring presen...

  3. Real Time Monitoring of Signaling Pathways in Biological Cells

    National Research Council Canada - National Science Library

    Brogan, Louise J; Cohen, Brian D

    2005-01-01

    .... The experimental design used a fluorescence resonance energy transfer (FRET)-based approach to show how EviTags can monitor real-time cellular events, in particular, cell surface receptor trafficking and mRNA stability...

  4. Macrophages and Mitochondria: A Critical Interplay Between Metabolism, Signaling, and the Functional Activity.

    Science.gov (United States)

    Tur, J; Vico, T; Lloberas, J; Zorzano, A; Celada, A

    2017-01-01

    Macrophages are phagocytic cells that participate in a broad range of cellular functions and they are key regulators of innate immune responses and inflammation. Mitochondria are highly dynamic endosymbiotic organelles that play key roles in cellular metabolism and apoptosis. Mounting evidence suggests that mitochondria are involved in the interplay between metabolism and innate immune responses. The ability of these organelles to alter the metabolic profile of a cell, thereby allowing an appropriate response to each situation, is crucial for the correct establishment of immune responses. Furthermore, mitochondria act as scaffolds for many proteins involved in immune signaling pathways and as such they are able to modulate the function of these proteins. Finally, mitochondria release molecules, such as reactive oxygen species, which directly regulate the immune response. In summary, mitochondria can be considered as core components in the regulation of innate immune signaling. Here we discuss the intricate relationship between mitochondria, metabolism, intracellular signaling, and innate immune responses in macrophages. © 2017 Elsevier Inc. All rights reserved.

  5. Branched-chain amino acids in metabolic signalling and insulin resistance.

    Science.gov (United States)

    Lynch, Christopher J; Adams, Sean H

    2014-12-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM.

  6. An innovative non-intrusive driver assistance system for vital signal monitoring.

    NARCIS (Netherlands)

    Sun, Y. & Yu, X.

    2016-01-01

    This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary

  7. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance

    DEFF Research Database (Denmark)

    Højlund, Kurt

    2014-01-01

    . These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes...... described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance....... Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin...

  8. Starvation signals in yeast are integrated to coordinate metabolic reprogramming and stress response to ensure longevity.

    Science.gov (United States)

    Zhang, Nianshu; Cao, Lu

    2017-10-01

    Studies on replicative and chronological aging in Saccharomyces cerevisiae have greatly advanced our understanding of how longevity is regulated in all eukaryotes. Chronological lifespan (CLS) of yeast is defined as the age-dependent viability of non-dividing cell populations. A number of nutrient sensing and signal transduction pathways (mainly TOR and PKA) have been shown to regulate CLS, yet it is poorly understood how the starvation signals transduced via these pathways lead to CLS extension. Using reporters whose expressions are induced by glucose starvation, we have screened the majority of the 'signaling' mutants in the yeast genome and identified many genes that are necessary for stress response. Subsequent analyses of the 'signaling' mutants not only revealed novel regulators of CLS, such as the GSK-3 ortholog Mck1, but also demonstrated that starvation signals transmitted by SNF1/AMPK, PKC1 and those negatively regulated by TOR/PKA, including Rim15, Yak1 and Mck1 kinases, are integrated to enable metabolic reprogramming and the acquisition of stress resistance. Coordinated metabolic reprogramming ensures the accumulation of storage carbohydrates for quiescent cells to maintain viability. We provide new evidence that Yak1, Rim15 and Mck1 kinases cooperate to activate H 2 O 2 -scanvenging activities, thus limiting the levels of ROS in cells entering quiescence. These findings support the recent advances in higher organisms that the flexibility of metabolic reprogramming and the balance between energetics and stress resistance are the unifying principles of lifespan extension. Future work to reveal how the metabolic switch and stress response is coordinated will help delineate the molecular mechanisms of aging in yeast and shed novel insight into aging/anti-aging principles in higher organisms.

  9. Energy metabolism and the metabolic syndrome: does a lower basal metabolic rate signal recovery following weight loss?

    Science.gov (United States)

    Soares, Mario J; Cummings, Nicola K; Ping-Delfos, Wendy L Chan She

    2011-01-01

    To determine whether basal metabolic rate (BMR) was causally related to MetS, and to study the role of gender in this relationship. Seventy-two Caucasian subjects (43 women, 29 men) had changes in basal metabolic rate (BMR), carbohydrate oxidation rate (COR), fat oxidation rate (FOR) and prevalence of the metabolic syndrome (MetS) assessed in response to weight loss. There was a significant gender×MetS interaction in BMR at the start. Women with MetS had higher adjusted BMR, whilst men with MetS had lower adjusted BMR than their respective counterparts. Weight loss resulted in a significant decrease in fat mass (-5.2±0.31 kg, p=0.001), fat free mass (-2.3±0.27 kg, p=0.001), BMR (-549±58 kJ/d, p=0.001) and a decreased proportion of MetS (22/72, χ(2)=0.005). Subjects who recovered from MetS after weight loss (RMS) had ∼250 kJ/d significantly lower adjusted BMR compared to those who were never MetS (NMS, p=0.046) and those who still had MetS (MetS+, p=0.047). Regression analysis showed that change (Δ) in BMR was best determined by Δglucose×gender interaction (r(2)=23%), ΔFOR (r(2)=20.3%), ΔCOR (r(2)=19.4%) and Δtriglycerides (r(2)=7.8%). There is a sexual dimorphism of BMR in MetS. Overall, the data support the notion that alterations in BMR may be central to the etiopathogenesis of MetS. Copyright © 2012 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  10. Classification of composite damage from FBG load monitoring signals

    NARCIS (Netherlands)

    Rajabzadehdizaji, Aydin; Hendriks, R.C.; Heusdens, R.; Groves, R.M.

    2017-01-01

    This paper describes a new method for the classification and identification of two major types of defects in composites, namely delamination and matrix cracks, by classification of the spectral features of fibre Bragg grating (FBG) signals. In aeronautical applications of composites, after a

  11. A Low-Power Signal Processing Unit for in vivo Monitoring and Transmission of Sensor Signals

    Directory of Open Access Journals (Sweden)

    M. R. HAIDER

    2007-10-01

    Full Text Available A low-power signal processing and telemetry circuit for any generic biosensor applications has been presented. The complete system manifests a potentiostat, a signal processing block and a modulator block. The on-chip potentiostat biases the sensor electrodes for proper extraction of the sensor signals. The signal processing block integrates and buffers the sensor signal to make it a data signal and finally a simple modulator block converts this data signal to an on-off-keying (OOK signal with a high frequency carrier. Package pin of the fabricated circuit is used as an antenna and measurement results demonstrate the successful signal transmission from the chip within a few cm ranges. The entire system has been realized using 0.35 μm CMOS technology that consumes only 400 μW of power and occupies an area of 0.66 mm2. Test results show that this scheme is an effective candidate for low-power sensor applications.

  12. Traffic data for local emissions monitoring at a signalized intersection

    NARCIS (Netherlands)

    Bigazzi, A.; Lint, J.W.C. van; Klunder, G.; Stelwagen, U.; Ligterink, N.E.

    2010-01-01

    In order to assist planning efforts for air pollution-responsive dynamic traffic management (DTM) systems, this research assesses the accuracy of local emissions monitoring based on traffic data and models. The study quantifies the benefits of increased data resolution for short-term emissions

  13. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells.

    Science.gov (United States)

    Armitage, Emily G; Kotze, Helen L; Allwood, J William; Dunn, Warwick B; Goodacre, Royston; Williams, Kaye J

    2015-10-28

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments.

  14. Thioflavin T as a fluorescence probe for monitoring RNA metabolism at molecular and cellular levels

    OpenAIRE

    Sugimoto, Shinya; Arita-Morioka, Ken-ichi; Mizunoe, Yoshimitsu; Yamanaka, Kunitoshi; Ogura, Teru

    2015-01-01

    The intrinsically stochastic dynamics of mRNA metabolism have important consequences on gene regulation and non-genetic cell-to-cell variability; however, no generally applicable methods exist for studying such stochastic processes quantitatively. Here, we describe the use of the amyloid-binding probe Thioflavin T (ThT) for monitoring RNA metabolism in vitro and in vivo. ThT fluoresced strongly in complex with bacterial total RNA than with genomic DNA. ThT bound purine oligoribonucleotides pr...

  15. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...... analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal...

  16. Combining discrepancy analysis with sensorless signal resampling for condition monitoring of rotating machines under fluctuating operations

    CSIR Research Space (South Africa)

    Heyns, T

    2012-12-01

    Full Text Available methodology aims to simplify the task of monitoring a time-varying vibration signal by using a neural network to filter out the normal vibration components that generally tend to dominate the signal. The neural network may be optimised without the need...

  17. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    International Nuclear Information System (INIS)

    Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-01-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ( 18 F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm 3 ) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ((micro)mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 (micro)mol/100 g per minute; mean difference, 2.4 (95% confidence interval, 0.67-4.2); P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone

  18. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-03-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no

  19. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  20. Lactate in the brain: from metabolic end-product to signalling molecule

    KAUST Repository

    Magistretti, Pierre J.

    2018-03-08

    Lactate in the brain has long been associated with ischaemia; however, more recent evidence shows that it can be found there under physiological conditions. In the brain, lactate is formed predominantly in astrocytes from glucose or glycogen in response to neuronal activity signals. Thus, neurons and astrocytes show tight metabolic coupling. Lactate is transferred from astrocytes to neurons to match the neuronal energetic needs, and to provide signals that modulate neuronal functions, including excitability, plasticity and memory consolidation. In addition, lactate affects several homeostatic functions. Overall, lactate ensures adequate energy supply, modulates neuronal excitability levels and regulates adaptive functions in order to set the \\'homeostatic tone\\' of the nervous system.

  1. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals.

    Science.gov (United States)

    Altarejos, Judith Y; Montminy, Marc

    2011-03-01

    The cyclic AMP-responsive element-binding protein (CREB) is phosphorylated in response to a wide variety of signals, yet target gene transcription is only increased in a subset of cases. Recent studies indicate that CREB functions in concert with a family of latent cytoplasmic co-activators called cAMP-regulated transcriptional co-activators (CRTCs), which are activated through dephosphorylation. A dual requirement for CREB phosphorylation and CRTC dephosphorylation is likely to explain how these activator-co-activator cognates discriminate between different stimuli. Following their activation, CREB and CRTCs mediate the effects of fasting and feeding signals on the expression of metabolic programmes in insulin-sensitive tissues.

  2. Long-chain acyl-CoA esters in metabolism and signaling

    DEFF Research Database (Denmark)

    Neess, Ditte; Sørensen, Signe Bek; Engelsby, Hanne

    2015-01-01

    Long-chain fatty acyl-CoA esters are key intermediates in numerous lipid metabolic pathways, and recognized as important cellular signaling molecules. The intracellular flux and regulatory properties of acyl-CoA esters have been proposed to be coordinated by acyl-CoA-binding domain containing...... studies have gained further insights into their in vivo functions and provided further evidence for ACBD-specific functions in cellular signaling and lipid metabolic pathways. This review summarizes the structural and functional properties of the various ACBDs, with special emphasis on the function...... proteins (ACBDs). The ACBDs, which comprise a highly conserved multigene family of intracellular lipid-binding proteins, are found in all eukaryotes and ubiquitously expressed in all metazoan tissues, with distinct expression patterns for individual ACBDs. The ACBDs are involved in numerous intracellular...

  3. Branched-chain amino acids in metabolic signalling and insulin resistance

    OpenAIRE

    Lynch, Christopher J.; Adams, Sean H.

    2014-01-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated a...

  4. Endocannabinoid signals in the developmental programming of delayed-onset neuropsychiatric and metabolic illnesses.

    Science.gov (United States)

    Keimpema, Erik; Calvigioni, Daniela; Harkany, Tibor

    2013-12-01

    It is increasingly recognized that maternal exposure to metabolic (nutritional) stimuli, infections, illicit or prescription drugs and environmental stressors during pregnancy can predispose affected offspring to developing devastating postnatal illnesses. If detrimental maternal stimuli coincide with critical periods of tissue production and organogenesis then they can permanently derail key cellular differentiation programs. Maternal programming can thus either provoke developmental failure directly ('direct hit') or introduce latent developmental errors that enable otherwise sub-threshold secondary stressors to manifest as disease ('double hit') postnatally. Accumulating evidence suggests that nervous system development is tightly controlled by maternal metabolic stimuli, and whose synaptic wiring and integrative capacity are adversely affected by dietary and hormonal challenges, infections or episodes of illicit drug use. Endocannabinoids, a family of signal lipids derived from polyunsaturated fatty acids, have been implicated in neuronal fate determination, the control of axonal growth, synaptogenesis and synaptic neurotransmission. Therefore the continuum and interdependence of endocannabinoid actions during the formation and function of synapses together with dynamic changes in focal and circulating endocannabinoid levels upon maternal nutritional imbalance suggest that endocannabinoids can execute the 'reprogramming' of specific neuronal networks. In the present paper, we review molecular evidence suggesting that maternal nutrition and metabolism during pregnancy can affect the formation and function of the hippocampus and hypothalamus by altering endocannabinoid signalling such that neuropsychiatric diseases and obesity respectively ensue in affected offspring. Moreover, we propose that the placenta, fetal adipose and nervous tissues interact via endocannabinoid signals. Thus endocannabinoids are hypothesized to act as a molecular substrate of maternal

  5. Astaxanthin prevents loss of insulin signaling and improves glucose metabolism in liver of insulin resistant mice.

    Science.gov (United States)

    Bhuvaneswari, Saravanan; Anuradha, Carani Venkatraman

    2012-11-01

    This study investigates the effects of astaxanthin (ASX) on insulin signaling and glucose metabolism in the liver of mice fed a high fat and high fructose diet (HFFD). Adult male Mus musculus mice of body mass 25-30 g were fed either normal chow or the HFFD. After 15 days, mice in each group were subdivided among 2 smaller groups and treated with ASX (2 mg·(kg body mass)⁻¹) in olive oil for 45 days. At the end of 60 days, HFFD-fed mice displayed insulin resistance while ASX-treated HFFD animals showed marked improvement in insulin sensitivity parameters. ASX treatment normalized the activities of hexokinase, pyruvate kinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, glycogen phosphorylase, and increased glycogen reserves in the liver. Liver tissue from ASX-treated HFFD-fed animals showed increased tyrosine phosphorylation and decreased serine phosphorylation of insulin receptor substrates (IRS)-1 and -2. ASX increased IRS 1/2 and phosphatidylinositol 3-kinase (PI3K) association and serine phosphorylation of Akt. In addition, ASX decreased HFFD-induced serine kinases (c-jun N-terminal kinase-1 and extracellular signal-regulated kinase-1). The results suggest that ASX treatment promotes the IRS-PI3K-Akt pathway of insulin signaling by decreasing serine phosphorylation of IRS proteins, and improves glucose metabolism by modulating metabolic enzymes.

  6. Interplay between Dioxin-Mediated Signaling and Circadian Clock: A Possible Determinant in Metabolic Homeostasis

    Directory of Open Access Journals (Sweden)

    Chun Wang

    2014-07-01

    Full Text Available The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function.

  7. Inexpensive Digital Monitoring of Signals from a Spectronic-20 Spectrophotometer

    Science.gov (United States)

    Amend, John R.; Morgan, Matthew E.; Whitla, Alex

    2000-02-01

    Obsolete analog-readout vacuum-tube and solid-state Spectronic-20 family spectrophotometers can be found in most college and university chemistry laboratories. While optically these are good single-beam instruments, their electronics package does not permit attachment of recorders or digital displays. This article describes a simple modification that costs less than $10.00 for parts and will permit direct digital readout of the Spectronic-20 signal with a digital voltmeter or a laboratory interface and a computer. When the external plug is removed, the Spectronic-20 reverts to its normal operating mode.

  8. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Rauf Baig, A.

    1998-01-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important reactor parameters of the Pakistan Research Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis, and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety points-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author)

  9. Processing of Internal and External Signals for Performance Monitoring in the Context of Emotional Faces.

    Science.gov (United States)

    Christian Valt, Christian; Palazova, Marina; Stürmer, Birgit

    2017-01-01

    Performance monitoring can be based on internal or external signals. We recorded event-related potentials (ERPs) to investigate whether relating performance to external signals affects internal performance monitoring. Thirty participants performed a task in which responses were followed by faces whose expressions were partially contingent upon performance. Instructions given to half of the participants mentioned a link between task performance and the upcoming face expression. Instructed participants showed smaller error-related negativity (Ne/ERN) to erroneous responses and larger N170 to faces as compared to participants in the not-instructed group. In addition, we observed a correlation between ΔNe/ERN and P1-latency benefit for angry faces after errors. Taken together, processing of internally generated signals for performance monitoring is reduced by instructions referring to an emotional face. Furthermore, we relate the correlation between the magnitude of internal monitoring and facilitation in processing angry faces to priming induced by the negative affective meaning of errors.

  10. Technologies for Metabolic Monitoring Military Section Editorials in Diabetes Technologies and Therapeutics

    Science.gov (United States)

    2004-12-01

    lated in part to higher gluconeogenesis in what we can learn now about monitoring phys- trained individuals. Bruce Gladden reviewed iology. the data that...Institute of Medicine: Monitoring Metabolic Status-- months in a dog model. Diabetes Care 1994; Predicting Decrements in Physiological and Cogni- 17...glucose sensors in dogs : the ef- fect of surrounding fluid masses. ASALO J 1999; Address reprint requests to: 45:555-561. 5. Christenson t

  11. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism

    Science.gov (United States)

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S.; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher

    2011-01-01

    Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P cell phone exposure was associated with increased brain glucose metabolism in the region closest to the antenna. This finding is of unknown clinical significance. PMID:21343580

  12. Optimization of signal processing algorithm for digital beam position monitor

    International Nuclear Information System (INIS)

    Lai Longwei; Yi Xing; Leng Yongbin; Yan Yingbing; Chen Zhichu

    2013-01-01

    Based on turn-by-turn (TBT) signal processing, the paper emphasizes on the optimization of system timing and implementation of digital automatic gain control, slow application (SA) modules. Beam position including TBT, fast application (FA) and SA data can be acquired. On-line evaluation on Shanghai Synchrotron Radiation Facility (SSRF) shows that the processor is able to get the multi-rate position data which contain true beam movements. When the storage ring is 174 mA and 500 bunches filled, the resolutions of TBT data, FA data and SA data achieve 0.84, 0.44 and 0.23 μm respectively. The above results prove that the design could meet the performance requirements. (authors)

  13. Signal denoising using stochastic resonance and bistable circuit for acoustic emission-based structural health monitoring

    Science.gov (United States)

    Kim, Jinki; Harne, Ryan L.; Wang, K. W.

    2017-04-01

    Noise is unavoidable and ever-present in measurements. As a result, signal denoising is a necessity for many scientific and engineering disciplines. In particular, structural health monitoring applications aim to detect often weak anomaly responses generated by incipient damage (such as acoustic emission signals) from background noise that contaminates the signals. Among various approaches, stochastic resonance has been widely studied and adopted for denoising and weak signal detection to enhance the reliability of structural heath monitoring. On the other hand, many of the advancements have been focused on detecting useful information from the frequency domain generally in a postprocessing environment, such as identifying damage-induced frequency changes that become more prominent by utilizing stochastic resonance in bistable systems, rather than recovering the original time domain responses. In this study, a new adaptive signal conditioning strategy is presented for on-line signal denoising and recovery, via utilizing the stochastic resonance in a bistable circuit sensor. The input amplitude to the bistable system is adaptively adjusted to favorably activate the stochastic resonance based on the noise level of the given signal, which is one of the few quantities that can be readily assessed from noise contaminated signals in practical situations. Numerical investigations conducted by employing a theoretical model of a double-well Duffing analog circuit demonstrate the operational principle and confirm the denoising performance of the new method. This study exemplifies the promising potential of implementing the new denoising strategy for enhancing on-line acoustic emission-based structural health monitoring.

  14. Liquid intake monitoring through breathing signal using machine learning

    Science.gov (United States)

    Dong, Bo; Biswas, Subir

    2013-05-01

    This paper presents the design, system structure and performance for a wireless and wearable diet monitoring system. Food and drink intake can be detected by the way of detecting a person's swallow events. The system works based on the key observation that a person's otherwise continuous breathing process is interrupted by a short apnea when she or he swallows as a part of solid or liquid intake process. We detect the swallows through the difference between normal breathing cycle and breathing cycle with swallows using a wearable chest-belt. Three popular machine learning algorithms have been applied on both time and frequency domain features. Discrimination power of features is then analyzed for applications where only small number of features is allowed. It is shown that high detection performance can be achieved with only few features.

  15. Application of Trend Detection Methods in Monitoring Physiological Signals

    Directory of Open Access Journals (Sweden)

    William W. Melek

    2004-12-01

    Full Text Available This paper presents a comparative study of various trend detection methods developed using fuzzy logic, statistical, and regression techniques. A new method that uses noise rejection fuzzy clustering is also proposed in the paper to enhance the performance of trend detection methodologies. The comparative investigation has produced systematic guidelines for the selection of a proper trend detection method for different application requirements. This paper has resulted from work on military applications of on-line trend analysis, such as monitoring of wounded soldiers by first-response medical staff at the battlefield and high-acceleration protection of fighter jet pilots. Efficient trend detection methods can provide early warnings, severity assessments of a subject's physiological state, and decision support for firstresponse medical attendants. Representative physiological variables such as blood pressure, heartbeat rate, and ear opacity are considered in this paper.

  16. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.

    Science.gov (United States)

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L; Kanekiyo, Takahisa; Bu, Guojun

    2015-04-08

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. Copyright © 2015 the authors 0270-6474/15/355851-09$15.00/0.

  17. Antipsychotic Use and Metabolic Monitoring in Individuals with Developmental Disabilities Served in a Medicaid Medical Home

    Science.gov (United States)

    Ruiz, Lisa M.; Damron, Mackenzie; Jones, Kyle B.; Weedon, Dean; Carbone, Paul S.; Bakian, Amanda V.; Bilder, Deborah A.

    2016-01-01

    This study describes antipsychotic use and metabolic monitoring rates among individuals with developmental disabilities enrolled in a subspecialty medical home (N = 826). Four hundred ninety-nine participants (60.4%) were taking antipsychotics, which was associated with male gender (p = 0.01), intellectual disability with and without autism…

  18. An improved sample loading technique for cellular metabolic response monitoring under pressure

    Science.gov (United States)

    Gikunda, Millicent Nkirote

    To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.

  19. A wearable healthcare system for cardiac signal monitoring using conductive textile electrodes.

    Science.gov (United States)

    Lim, Chae Young; Jang, Kuk Jin; Kim, Hyun-Woo; Kim, Young Hwan

    2013-01-01

    Accurate cardiac signal monitoring feasible for long-term monitoring is important for a practical, cost-effective health monitoring system. In this study, we propose a wearable healthcare system based on conductive fabric-based electrodes allowing monitoring of electrocardiogram (ECG) waveforms and demonstrated the potential for arrhythmia detection using the system. The measurement system uses conductive fabric-based electrodes arranged in a modified bipolar electrode configuration on the chest area of the patient. An adaptive impulse correlation filter (AICF) algorithm and a band pass filter to enable accurate R-peak detection in noisy environments.

  20. A novel lab-on-a-chip platform for spheroid metabolism monitoring.

    Science.gov (United States)

    Alexander, Frank; Eggert, Sebastian; Wiest, Joachim

    2018-02-01

    Sensor-based cellular microphysiometry is a technique that allows non-invasive, label-free, real-time monitoring of living cells that can greatly improve the predictability of toxicology testing by removing the influence of biochemical labels. In this work, the Intelligent Mobile Lab for In Vitro Diagnostics (IMOLA-IVD) was utilized to perform cellular microphysiometry on 3D multicellular spheroids. Using a commercial 3D printer, 3 × 3 microwell arrays were fabricated to maintain nine previously cultured HepG2 spheroids on a single BioChip. Integrated layers above and under the spheroids allowed fluidic contact between spheroids in microwells and BioChip sensors while preventing wash out from medium perfusion. Spheroid culturing protocols were optimized to grow spheroids to a diameter of around 620 μm prior to transfer onto BioChips. An ON/OFF pump cycling protocol was developed to optimize spheroid culture within the designed microwells, intermittently perfuse spheroids with fresh culture medium, and measure the extracellular acidification rate (EAR) and oxygen uptake rate (OUR) with the BioChips of the IMOLA-IVD platform. In a proof-of-concept experiment, spheroids were perfused for 36 h with cell culture medium before being exposed to medium with 1% sodium dodecyl sulphate (SDS) to lyse cells as a positive control. These microphysiometry studies revealed a repeatable pattern of extracellular acidification throughout the experiment, indicating the ability to monitor real-time metabolic activity of spheroids embedded in the newly designed tissue encapsulation. After perfusion for 36 h with medium, SDS exposure resulted in an instant decrease in EAR and OUR signals from 37 mV/h (± 5) to 8 mV/h (± 8) and from 308 mV/h (± 21) to -2 mV/h (± 13), respectively. The presented spheroid monitoring system holds great potential as a method to automate screening and analysis of pharmaceutical agents using 3D multicellular spheroid models.

  1. Quality Monitoring of Infrared Optics Using Ultrasound Signals

    Science.gov (United States)

    Neumeier, Benedikt; Schmitt-Landsiedel, Doris

    During laser processing with beam powers in the multi-kilowatt range a fraction of the emission is absorbed in optical elements, leading to thermal loading on the optics. This temperature rise of the optics results in thermal lensing, impairing the power density at the processing location. In a number of niche applications, the CO2 laser still is preferred over solid-state lasers due to its unrivaled features in processing materials like fused silica, glasses, wood, ceramics or plastics. Applying existing techniques to monitor the temperature of CO2 laser optics using pyrometers prove to be unreliable due to the transmissivity in the infrared of the optical materials used. The object of this study is experimental identification of temperature increase of ZnSe optics during use for processing in a laser cutting machine, and development of a method utilizing ultrasound to measure the temperature of the infrared optics. The method enables the testing of the absorption properties of infrared optics as well as solid-state laser optics.

  2. Dysregulated signaling hubs of liver lipid metabolism reveal hepatocellular carcinoma pathogenesis.

    Science.gov (United States)

    Lee, Sunjae; Mardinoglu, Adil; Zhang, Cheng; Lee, Doheon; Nielsen, Jens

    2016-07-08

    Hepatocellular carcinoma (HCC) has a high mortality rate and early detection of HCC is crucial for the application of effective treatment strategies. HCC is typically caused by either viral hepatitis infection or by fatty liver disease. To diagnose and treat HCC it is necessary to elucidate the underlying molecular mechanisms. As a major cause for development of HCC is fatty liver disease, we here investigated anomalies in regulation of lipid metabolism in the liver. We applied a tailored network-based approach to identify signaling hubs associated with regulation of this part of metabolism. Using transcriptomics data of HCC patients, we identified significant dysregulated expressions of lipid-regulated genes, across many different lipid metabolic pathways. Our findings, however, show that viral hepatitis causes HCC by a distinct mechanism, less likely involving lipid anomalies. Based on our analysis we suggest signaling hub genes governing overall catabolic or anabolic pathways, as novel drug targets for treatment of HCC that involves lipid anomalies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Acetic Acid Influences BRL-3A Cell Lipid Metabolism via the AMPK Signalling Pathway.

    Science.gov (United States)

    Li, Lin; He, Meilin; Xiao, Hang; Liu, Xiaoqian; Wang, Kai; Zhang, Yuanshu

    2018-01-01

    Acetic acid (AcOH), a short-chain fatty acid, is reported to have some beneficial effects on metabolism. Therefore, the aim of this study was to investigate the regulatory mechanism of acetic acid on hepatic lipid metabolism in BRL-3A cells. We cultured and treated BRL-3A cells with different concentrations of sodium acetate (neutralized acetic acid) and BML-275 (an AMPKα inhibitor). The total lipid droplet area was measured by oil red O staining, and the triglyceride content was determined by a triglyceride detection kit. We detected mRNA and protein levels of lipid metabolism-related signalling molecules by RT-PCR and Western blot. Acetic acid treatment increased AMPKα phosphorylation, which subsequently increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α and upregulated the expression of lipid oxidation genes. These changes ultimate led to increasing levels of lipid oxidation in BRL-3A cells. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in BRL-3A cells. Consequently, triglyceride content in acetate-treated BRL-3A cells was significantly decreased. These results indicate that acetic acid activates the AMPKα signalling pathway, leading to increased lipid oxidation and decreased lipid synthesis in BRL-3A cells, thereby reducing liver fat accumulation in vitro. © 2018 The Author(s). Published by S. Karger AG, Basel.

  4. Behavioral changes in fasting emperor penguins: evidence for a "refeeding signal" linked to a metabolic shift.

    Science.gov (United States)

    Robin, J P; Boucontet, L; Chillet, P; Groscolas, R

    1998-03-01

    This study examines the relationships between metabolic status and behavior in spontaneously fasting birds in the context of long-term regulation of body mass and feeding. Locomotor activity, escape behavior, display songs, body mass, and metabolic and endocrine status of captive male emperor penguins were recorded during a breeding fast. We also examined whether body mass at the end of the fast affected further survival. The major part of the fast (phase II) was characterized by the maintenance of a very low level of locomotor activity, with almost no attempt to escape, by an almost constant rate of body mass loss, and by steady plasma levels of uric acid, beta-hydroxybutyrate, and corticosterone. This indicates behavioral and metabolic adjustments directed toward sparing energy and body protein. Below a body mass of approximately 24 kg (phase III), spontaneous locomotor activity and attempts to escape increased by up to 8- and 15-fold, respectively, and display songs were resumed. This probably reflected an increase in the drive to refeed. Simultaneously, daily body mass loss and plasma levels of uric acid and corticosterone increased, whereas plasma levels of beta-hydroxybutyrate decreased. Some experimental birds were seen again in following years. These findings suggest that at a threshold of body mass, a metabolic and endocrine shift, possibly related to a limited availability of fat stores, acts as a "refeeding signal" that improves the survival of penguins to fasting.

  5. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Waters, Alicia H.C. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Golubeva, Anna V. [Alimentary Pharmabiotic Centre, University College Cork, Bioscience Institute, Western Road, Cork (Ireland); Papkovsky, Dmitri B. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland)

    2015-01-01

    Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.

  6. Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy.

    Science.gov (United States)

    Weijer, Ruud; Clavier, Séverine; Zaal, Esther A; Pijls, Maud M E; van Kooten, Robert T; Vermaas, Klaas; Leen, René; Jongejan, Aldo; Moerland, Perry D; van Kampen, Antoine H C; van Kuilenburg, André B P; Berkers, Celia R; Lemeer, Simone; Heger, Michal

    2017-03-01

    Photodynamic therapy (PDT) is an established palliative treatment for perihilar cholangiocarcinoma that is clinically promising. However, tumors tend to regrow after PDT, which may result from the PDT-induced activation of survival pathways in sublethally afflicted tumor cells. In this study, tumor-comprising cells (i.e., vascular endothelial cells, macrophages, perihilar cholangiocarcinoma cells, and EGFR-overexpressing epidermoid cancer cells) were treated with the photosensitizer zinc phthalocyanine that was encapsulated in cationic liposomes (ZPCLs). The post-PDT survival pathways and metabolism were studied following sublethal (LC 50 ) and supralethal (LC 90 ) PDT. Sublethal PDT induced survival signaling in perihilar cholangiocarcinoma (SK-ChA-1) cells via mainly HIF-1-, NF-кB-, AP-1-, and heat shock factor (HSF)-mediated pathways. In contrast, supralethal PDT damage was associated with a dampened survival response. PDT-subjected SK-ChA-1 cells downregulated proteins associated with EGFR signaling, particularly at LC 90 . PDT also affected various components of glycolysis and the tricarboxylic acid cycle as well as metabolites involved in redox signaling. In conclusion, sublethal PDT activates multiple pathways in tumor-associated cell types that transcriptionally regulate cell survival, proliferation, energy metabolism, detoxification, inflammation/angiogenesis, and metastasis. Accordingly, tumor cells sublethally afflicted by PDT are a major therapeutic culprit. Our multi-omic analysis further unveiled multiple druggable targets for pharmacological co-intervention.

  7. Leptin signal transduction underlies the differential metabolic response of LEW and WKY rats to cafeteria diet.

    Science.gov (United States)

    Martínez-Micaelo, N; González-Abuín, N; Ardévol, A; Pinent, M; Petretto, E; Behmoaras, J; Blay, M

    2016-01-01

    Although the effect of genetic background on obesity-related phenotypes is well established, the main objective of this study is to determine the phenotypic responses to cafeteria diet (CAF) of two genetically distinct inbred rat strains and give insight into the molecular mechanisms that might be underlying. Lewis (LEW) and Wistar-Kyoto (WKY) rats were fed with either a standard or a CAF diet. The effects of the diet and the strain in the body weight gain, food intake, respiratory quotient, biochemical parameters in plasma as well as in the expression of genes that regulate leptin signalling were determined. Whereas CAF diet promoted weight gain in LEW and WKY rats, as consequence of increased energy intake, metabolic management of this energy surplus was significantly affected by genetic background. LEW and WKY showed a different metabolic profile, LEW rats showed hyperglycaemia, hypertriglyceridemia and high FFA levels, ketogenesis, high adiposity index and inflammation, but WKY did not. Leptin signalling, and specifically the LepRb-mediated regulation of STAT3 activation and Socs3 gene expression in the hypothalamus were inversely modulated by the CAF diet in LEW (upregulated) and WKY rats (downregulated). In the present study, we show evidence of gene-environment interactions in obesity exerted by differential phenotypic responses to CAF diet between LEW and WKY rats. Specifically, we found the leptin-signalling pathway as a divergent point between the strain-specific adaptations to diet. © 2016 Society for Endocrinology.

  8. Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses.

    Science.gov (United States)

    Wingler, A; Roitsch, T

    2008-09-01

    Sugars are important signals in the regulation of plant metabolism and development. During stress and in senescing leaves, sugars often accumulate. In addition, both sugar accumulation and stress can induce leaf senescence. Infection by bacterial and fungal pathogens and attack by herbivores and gall-forming insects may influence leaf senescence via modulation of the sugar status, either by directly affecting primary carbon metabolism or by regulating steady state levels of plant hormones. Many types of biotic interactions involve the induction of extracellular invertase as the key enzyme of an apoplasmic phloem unloading pathway, resulting in a source-sink transition and an increased hexose/sucrose ratio. Induction of the levels of the phytohormones ethylene and jasmonate in biotic interactions results in accelerated senescence, whereas an increase in plant- or pathogen-derived cytokinins delays senescence and results in the formation of green islands within senescing leaves. Interactions between sugar and hormone signalling also play a role in response to abiotic stress. For example, interactions between sugar and abscisic acid (ABA) signalling may be responsible for the induction of senescence during drought stress. Cold treatment, on the other hand, can result in delayed senescence, despite sugar and ABA accumulation. Moreover, natural variation can be found in senescence regulation by sugars and in response to stress: in response to drought stress, both drought escape and dehydration avoidance strategies have been described in different Arabidopsis accessions. The regulation of senescence by sugars may be key to these different strategies in response to stress.

  9. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    Science.gov (United States)

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  10. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration.

    Science.gov (United States)

    Berdeaux, Rebecca; Stewart, Randi

    2012-07-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3',5'-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets.

  11. Running and Metabolic Demands of Elite Rugby Union Assessed Using Traditional, Metabolic Power, and Heart Rate Monitoring Methods

    Directory of Open Access Journals (Sweden)

    Romain Dubois, Thierry Paillard, Mark Lyons, David McGrath, Olivier Maurelli, Jacques Prioux

    2017-03-01

    Full Text Available The aims of this study were (1 to analyze elite rugby union game demands using 3 different approaches: traditional, metabolic and heart rate-based methods (2 to explore the relationship between these methods and (3 to explore positional differences between the backs and forwards players. Time motion analysis and game demands of fourteen professional players (24.1 ± 3.4 y, over 5 European challenge cup games, were analyzed. Thresholds of 14.4 km·h-1, 20 W.kg-1 and 85% of maximal heart rate (HRmax were set for high-intensity efforts across the three methods. The mean % of HRmax was 80.6 ± 4.3 % while 42.2 ± 16.5% of game time was spent above 85% of HRmax with no significant differences between the forwards and the backs. Our findings also show that the backs cover greater distances at high-speed than forwards (% difference: +35.2 ± 6.6%; p<0.01 while the forwards cover more distance than the backs (+26.8 ± 5.7%; p<0.05 in moderate-speed zone (10-14.4 km·h-1. However, no significant difference in high-metabolic power distance was found between the backs and forwards. Indeed, the high-metabolic power distances were greater than high-speed running distances of 24.8 ± 17.1% for the backs, and 53.4 ± 16.0% for the forwards with a significant difference (+29.6 ± 6.0% for the forwards; p<0.001 between the two groups. Nevertheless, nearly perfect correlations were found between the total distance assessed using the traditional approach and the metabolic power approach (r = 0.98. Furthermore, there is a strong association (r = 0.93 between the high-speed running distance (assessed using the traditional approach and the high-metabolic power distance. The HR monitoring methods demonstrate clearly the high physiological demands of professional rugby games. The traditional and the metabolic-power approaches shows a close correlation concerning their relative values, nevertheless the difference in absolute values especially for the high

  12. Noise and DC balanced outlet temperature signals for monitoring coolant flow in LMFBR fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1977-01-01

    Local cooling disturbances in LMFBR fuel elements may have serious safety implications for the whole reactor core. They have to be detected reliably in an early stage of their formation therefore. This can be accomplished in principle by individual monitoring of the coolant flow rate or the coolant outlet temperature of the sub-assemblies with high precision. In this paper a method is proposed to increase the sensitivity of outlet temperature signals to cooling disturbances. Using balanced temperature signals provides a means for eliminating the normal variations from the original signals which limit the sensitivity and speed of response to cooling disturbances. It is shown that a balanced signal can be derived easily from the original temperature signal by subtracting an inlet temperature and a neutron detector signal with appropriate time shift. The method was tested with tape-recorded noise signals of the KNK I reactor at Karlsruhe. The experimental results confirm the theoretical predictions. A significant reduction of the uncertainty of measured outlet temperatures was achieved. This enables very sensitive and fast response monitoring of coolant flow. Furthermore, it was found that minimizing the variance of the balanced signal offers the possibility for a rough determination of the heat transfer coefficient of the fuel rods during normal reactor operation at power. (author)

  13. Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium.

    Science.gov (United States)

    Elmadhun, Nassrene Y; Sabe, Ashraf A; Lassaletta, Antonio D; Chu, Louis M; Kondra, Katelyn; Sturek, Michael; Sellke, Frank W

    2014-09-01

    Impaired angiogenesis is a known consequence of metabolic syndrome (MetS); however, the mechanism is not fully understood. Recent studies have shown that the notch signaling pathway is an integral component of cardiac angiogenesis. We tested, in a clinically relevant swine model, the effects of MetS on notch and apoptosis signaling in chronically ischemic myocardium. Ossabaw swine were fed either a regular diet (control [CTL], n = 8) or a high-cholesterol diet (MetS, n = 8) to induce MetS. An ameroid constrictor was placed to induce chronic myocardial ischemia. Eleven weeks later, the wine underwent cardiac harvest of the ischemic myocardium. Downregulation of pro-angiogenesis proteins notch2, notch4, jagged2, angiopoietin 1, and endothelial nitric oxide synthase were found in the MetS group compared with the CTL group. Also, upregulation of pro-apoptosis protein caspase 8 and downregulation of anti-angiogenesis protein phosphorylated forkhead box transcription factor 03 and pro-survival proteins phosphorylated P38 and heat shock protein 90 were present in the MetS group. Cell death was increased in the MetS group compared with the CTL group. Both CTL and MetS groups had a similar arteriolar count and capillary density, and notch3 and jagged1 were both similarly concentrated in the smooth muscle wall. MetS in chronic myocardial ischemia significantly impairs notch signaling by downregulating notch receptors, ligands, and pro-angiogenesis proteins. MetS also increases apoptosis signaling, decreases survival signaling, and increases cell death in chronically ischemic myocardium. Although short-term angiogenesis appears unaffected in this model of early MetS, the molecular signals for angiogenesis are impaired, suggesting that inhibition of notch signaling might underlie the decreased angiogenesis in later stages of MetS. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  14. Monitoring Streambed Scour/Deposition Under Nonideal Temperature Signal and Flood Conditions

    Science.gov (United States)

    DeWeese, Timothy; Tonina, Daniele; Luce, Charles

    2017-12-01

    Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including nonideal temperature variations (low-amplitude, nonsinusoidal signal, and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of nonideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), nonideal signal shape (sawtooth shape), and strong and changing vertical thermal gradients (4°C/m). Root-mean-square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.

  15. Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease.

    Science.gov (United States)

    Gangoiti, Patricia; Camacho, Luz; Arana, Lide; Ouro, Alberto; Granado, Maria H; Brizuela, Leyre; Casas, Josefina; Fabriás, Gemma; Abad, José Luis; Delgado, Antonio; Gómez-Muñoz, Antonio

    2010-10-01

    Simple bioactive sphingolipids include ceramide, sphingosine and their phosphorylated forms sphingosine 1-phosphate and ceramide 1-phosphate. These molecules are crucial regulators of cell functions. In particular, they play important roles in the regulation of angiogenesis, apoptosis, cell proliferation, differentiation, migration, and inflammation. Decoding the mechanisms by which these cellular functions are regulated requires detailed understanding of the signaling pathways that are implicated in these processes. Most importantly, the development of inhibitors of the enzymes involved in their metabolism may be crucial for establishing new therapeutic strategies for treatment of disease. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. The characterization of NMR signal for blood pressure monitoring system and its testing

    Directory of Open Access Journals (Sweden)

    Bambang Murdaka Eka Jati

    2016-02-01

    Full Text Available ABSTRACT A blood monitoring system based on NMR method has been designed on constructed. This set-up of equipment used magnetic permanent, radio frequency (RF, receiver coil (RC, function generator (FG, amplifier which included the filter, as well as the oscilloscope digital storage. The background of this research was based on the sensitivity of NMR signal. The signal must be separated from signals background. This method was done by adjusting the frequency on FG, which was connected to radio frequency (RF coil, on empty sample. Subsequently, NMR signal was received by RC, and that signal could be shown on oscilloscope at resonance condition. The true frequency on NMR signal was Larmor frequency, and the other was background. The two variables of this experiment were the position of RF coil and the location temperature (20 up to 30oC. In conclusion, the resonance frequency of NMR signal (as Larmor frequency was 4.7 MHz (at static magnetic field of 1,600 gauss and it could be separated from background signals (3.4 and 6.2 MHz, and that signal was almost constant to room temperature. The equipment was used for sample testing. It gave systole/diastole data of 110/70 mmHg (on sphygmomanometer that was similar to 17/9 mV (on NMR signal. ABSTRAK Telah dikembangkan alat pemantauan tekanan darah berdasar prinsip NMR.

  17. Accessing 3D microtissue metabolism: Lactate and oxygen monitoring in hepatocyte spheroids.

    Science.gov (United States)

    Weltin, Andreas; Hammer, Steffen; Noor, Fozia; Kaminski, Yeda; Kieninger, Jochen; Urban, Gerald A

    2017-01-15

    3D hepatic microtissues, unlike 2D cell cultures, retain many of the in-vivo-like functionalities even after long-term cultivation. Such 3D cultures are increasingly applied to investigate liver damage due to drug exposure in toxicology. However, there is a need for thorough metabolic characterization of these microtissues for mechanistic understanding of effects on culture behaviour. We measured metabolic parameters from single human HepaRG hepatocyte spheroids online and continuously with electrochemical microsensors. A microsensor platform for lactate and oxygen was integrated in a standard 96-well plate. Electrochemical microsensors for lactate and oxygen allow fast, precise and continuous long-term measurement of metabolic parameters directly in the microwell. The demonstrated capability to precisely detect small concentration changes by single spheroids is the key to access their metabolism. Lactate levels in the culture medium starting from 50µM with production rates of 5µMh -1 were monitored and precisely quantified over three days. Parallel long-term oxygen measurements showed no oxygen depletion or hypoxic conditions in the microwell. Increased lactate production by spheroids upon suppression of the aerobic metabolism was observed. The dose-dependent decrease in lactate production caused by the addition of the hepatotoxic drug Bosentan was determined. We showed that in a toxicological application, metabolic monitoring yields quantitative, online information on cell viability, which complements and supports other methods such as microscopy. The demonstrated continuous access to 3D cell culture metabolism within a standard setup improves in vitro toxicology models in replacement strategies of animal experiments. Controlling the microenvironment of such organotypic cultures has impact in tissue engineering, cancer therapy and personalized medicine. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Synergism between inositol polyphosphates and TOR kinase signaling in nutrient sensing, growth control, and lipid metabolism in Chlamydomonas

    Science.gov (United States)

    The networks that govern carbon metabolism and control intracellular carbon partitioning in photosynthetic cells are poorly understood. Target of rapamycin (TOR) kinase is a conserved growth regulator that integrates nutrient signals and modulates cell growth in eukaryotes, though the TOR signaling ...

  19. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells.

    Science.gov (United States)

    Simmons, Aaron D; Sikavitsas, Vassilios I

    2018-01-01

    Ever-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts. To that end, rat MSCs seeded on 85% porous spunbonded poly(L-lactic acid) scaffolds were cultured in flow perfusion bioreactors with baseline or osteoinductive media, and levels of key physio-metabolic markers (oxygen, glucose, osteoprotegerin, and osteocalcin) were monitored throughout culture. Comparison of these non-destructively obtained values and current standard destructive analyses demonstrated key trends useful for the concurrent real-time monitoring of construct cellularity and maturation. Principle among these is the elucidation of the ratio of the rates of oxygen uptake to glucose consumption as a powerful quality marker. This ratio, supported on a physiological basis, has been shown herein to be reliable in the determination of both construct maturation (defined as osteoblastic differentiation and accompanying mineralization) and construct cellularity. Supplementary monitoring of OPG and OCN are shown to provide further validation of such metrics.

  20. The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism.

    Science.gov (United States)

    Hang, Saiyu; Purdy, Alexandra E; Robins, William P; Wang, Zhipeng; Mandal, Manabendra; Chang, Sarah; Mekalanos, John J; Watnick, Paula I

    2014-11-12

    Vibrio cholerae is lethal to the model host Drosophila melanogaster through mechanisms not solely attributable to cholera toxin. To examine additional virulence determinants, we performed a genetic screen in V. cholerae-infected Drosophila and identified the two-component system CrbRS. CrbRS controls transcriptional activation of acetyl-CoA synthase-1 (ACS-1) and thus regulates the acetate switch, in which bacteria transition from excretion to assimilation of environmental acetate. The resultant loss of intestinal acetate leads to deactivation of host insulin signaling and lipid accumulation in enterocytes, resulting in host lethality. These metabolic effects are not observed upon infection with ΔcrbS or Δacs1 V. cholerae mutants. Additionally, uninfected flies lacking intestinal commensals, which supply short chain fatty acids (SCFAs) such as acetate, also exhibit altered insulin signaling and intestinal steatosis, which is reversed upon acetate supplementation. Thus, acetate consumption by V. cholerae alters host metabolism, and dietary acetate supplementation may ameliorate some sequelae of cholera. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. [Research on signal processing for water quality monitoring based on continuous spectral analysis].

    Science.gov (United States)

    Wei, Kang-lin; Chen, Ming; Wen, Zhi-yu; Xie, Yin-ke

    2014-12-01

    Based on continuous spectrum analysis, the mathematical model for spectrum signal was established. And the spectrum signal's systematic error processing method based on the invariance of the ratio of the light intensities at any two wavelengths in the range of continuous spectrum was put forward. Combined with wavelet multi-resolution filtering noise processing techniques, the background interference processing method was established based on the spectral characteristics of the measured water quality parameter. These signal processing methods were applied to our independently developed multi-parameter water quality monitoring instrument to on-line measure COD (chemical oxygen demand), six valence chromium and anionic surfactant in the normative and actual environmental water samples, and the monitoring instrument had good repeatability (10%) and high accuracy (±10%) to meet the technical requirements of national environmental protection standards, which was verified by the contrast experiment with China national standard analysis method for determination of the three water quality parameter. The results showed that the researched signal processing methods were able to effectively reduce the spectrum signal's systematic error and the interference from noise and background, which was very important to improve the water quality monitoring instrument's technical function.

  2. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring

    Directory of Open Access Journals (Sweden)

    Yiwei Sun

    2018-04-01

    Full Text Available Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C and forearm temperature (35.3 °C are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  3. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring.

    Science.gov (United States)

    Sun, Yiwei; Ren, Lei; Jiang, Lelun; Tang, Yong; Liu, Bin

    2018-04-13

    Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  4. Positron emission tomography probe to monitor selected sugar metabolism in vivo

    Science.gov (United States)

    Witte, Owen; Clark, Peter M.; Castillo, Blanca Graciela Flores; Jung, Michael E.; Evdokimov, Nikolai M.

    2017-03-14

    The invention disclosed herein discloses selected ribose isomers that are useful as PET probes (e.g. [18F]-2-fluoro-2-deoxy-arabinose). These PET probes are useful, for example, in methods designed to monitor physiological processes including ribose metabolism and/or to selectively observe certain tissue/organs in vivo. The invention disclosed herein further provides methods for making and using such probes.

  5. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  6. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  7. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    International Nuclear Information System (INIS)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay

    2017-01-01

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  8. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay [Indian Institute of Technology Guwahati, Assam (India)

    2017-05-15

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  9. RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals.

    Science.gov (United States)

    Volk, Tobias; Gorbey, Stefan; Bhattacharyya, Mayukh; Gruenwald, Waldemar; Lemmer, Björn; Reindl, Leonhard M; Stieglitz, Thomas; Jansen, Dirk

    2015-02-01

    Telemetry systems enable researchers to continuously monitor physiological signals in unrestrained, freely moving small rodents. Drawbacks of common systems are limited operation time, the need to house the animals separately, and the necessity of a stable communication link. Furthermore, the costs of the typically proprietary telemetry systems reduce the acceptance. The aim of this paper is to introduce a low-cost telemetry system based on common radio frequency identification technology optimized for battery-independent operational time, good reusability, and flexibility. The presented implant is equipped with sensors to measure electrocardiogram, arterial blood pressure, and body temperature. The biological signals are transmitted as digital data streams. The device is able of monitoring several freely moving animals housed in groups with a single reader station. The modular concept of the system significantly reduces the costs to monitor multiple physiological functions and refining procedures in preclinical research.

  10. Online Monitoring System for Patients with Coronary Heart Disease Using ST Elevation Signal Identification

    Directory of Open Access Journals (Sweden)

    Ratna Adil

    2009-12-01

    Full Text Available The coronary heart disease is one of desease leading to the sudden death. This is the reason why online monitoring system is urgently needed to monitor the patients with coronary heart disease. This paper proposse the system with an algorithm which is developed from signal identification of ST elevation. The medical record in this system is measured by a new wireless ECG development and followed Zigbee standard. If the system detects the possibility of disturbance in cardiac function, then soon, an alarm signal is send to the server at the hospital, in order that an intensive first aid can be given immediately. Based on the testing results, the level of success of an online monitoring system is possible to reach 100% if the patient does not make any moving around. It is expected that the application of this system will reduce the sudden death for patients at hospital with coronary heart disease.

  11. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  12. Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter

    International Nuclear Information System (INIS)

    Son, Junbo; Zhou, Shiyu; Sankavaram, Chaitanya; Du, Xinyu; Zhang, Yilu

    2016-01-01

    In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries. - Highlights: • A computationally efficient constrained Kalman filter is proposed. • Proposed filter is integrated into an online failure prognosis framework. • A set of proper constraints significantly improves the failure prediction accuracy. • Promising results are reported in the application of battery failure prognosis.

  13. Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring

    Directory of Open Access Journals (Sweden)

    Amarnath eChallapalli

    2016-02-01

    Full Text Available Cancer cells do reprogramme their energy metabolism to enable several functions such as generation of biomass including membrane biosynthesis, and overcoming bioenergetic and redox stress. In this article we review both established and evolving radioprobes developed in association with positron emission tomography (PET to detect tumor cell metabolism and effect of treatment. Measurement of enhanced tumor cell glycolysis using 2-deoxy-2-[18F]-fluoro-D-glucose is well established in the clinic. Analogues of choline including [11C]-choline and various fluorinated derivatives are being tested in several cancer types clinically with PET. In addition to these, there is an evolving array of metabolic tracers for measuring intracellular transport of glutamine and other amino acids or for measuring glycogenesis, as well as probes used as surrogates for fatty acid synthesis or precursors for fatty acid oxidation. In addition to providing us with opportunities for examining the complex regulation of reprogrammed energy metabolism in living subjects, the PET methods open up opportunities for monitoring pharmacological activity of new therapies that directly or indirectly inhibit tumor cell metabolism.

  14. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Directory of Open Access Journals (Sweden)

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  15. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    Science.gov (United States)

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  16. Pharmacotherapeutic targeting of the endocannabinoid signaling system: drugs for obesity and the metabolic syndrome.

    Science.gov (United States)

    Vemuri, V Kiran; Janero, David R; Makriyannis, Alexandros

    2008-03-18

    Endogenous signaling lipids ("endocannabinoids") functionally related to Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana (Cannabis), are important biomediators and metabolic regulators critical to mammalian (patho)physiology. The growing family of endocannabinoids, along with endocannabinoid biosynthetic and inactivating enzymes, transporters, and at least two membrane-bound, G-protein coupled receptors, comprise collectively the mammalian endocannabinoid signaling system. The ubiquitous and diverse regulatory actions of the endocannabinoid system in health and disease have supported the regulatory approval of natural products and synthetic agents as drugs that alter endocannabinoid-system activity. More recent data support the concept that the endocananbinoid system may be modulated for therapeutic gain at discrete pharmacological targets with safety and efficacy. Potential medications based on the endocannabinoid system have thus become a central focus of contemporary translational research for varied indications with important unmet medical needs. One such indication, obesity, is a global pandemic whose etiology has a pathogenic component of endocannabinoid-system hyperactivity and for which current pharmacological treatment is severely limited. Application of high-affinity, selective CB1 cannabinoid receptor ligands to attenuate endocannabinoid signaling represents a state-of-the-art approach for improving obesity pharmacotherapy. To this intent, several selective CB1 receptor antagonists with varied chemical structures are currently in advanced preclinical or clinical trials, and one (rimonabant) has been approved as a weight-management drug in some markets. Emerging preclinical data suggest that CB1 receptor neutral antagonists may represent breakthrough medications superior to antagonists/inverse agonists such as rimonabant for therapeutic attenuation of CB1 receptor transmission. Since obesity is a predisposing condition for the

  17. Time Domain Near Infrared Spectroscopy Device for Monitoring Muscle Oxidative Metabolism: Custom Probe and In Vivo Applications.

    Science.gov (United States)

    Re, Rebecca; Pirovano, Ileana; Contini, Davide; Spinelli, Lorenzo; Torricelli, Alessandro

    2018-01-17

    Measurement of muscle oxidative metabolism is of interest for monitoring the training status in athletes and the rehabilitation process in patients. Time domain near infrared spectroscopy (TD NIRS) is an optical technique that allows the non-invasive measurement of the hemodynamic parameters in muscular tissue: concentrations of oxy- and deoxy-hemoglobin, total hemoglobin content, and tissue oxygen saturation. In this paper, we present a novel TD NIRS medical device for muscle oxidative metabolism. A custom-printed 3D probe, able to host optical elements for signal acquisition from muscle, was develop for TD NIRS in vivo measurements. The system was widely characterized on solid phantoms and during in vivo protocols on healthy subjects. In particular, we tested the in vivo repeatability of the measurements to quantify the error that we can have by repositioning the probe. Furthermore, we considered a series of acquisitions on different muscles that were not yet previously performed with this custom probe: a venous-arterial cuff occlusion of the arm muscle, a cycling exercise, and an isometric contraction of the vastus lateralis.

  18. Time Domain Near Infrared Spectroscopy Device for Monitoring Muscle Oxidative Metabolism: Custom Probe and In Vivo Applications

    Directory of Open Access Journals (Sweden)

    Rebecca Re

    2018-01-01

    Full Text Available Measurement of muscle oxidative metabolism is of interest for monitoring the training status in athletes and the rehabilitation process in patients. Time domain near infrared spectroscopy (TD NIRS is an optical technique that allows the non-invasive measurement of the hemodynamic parameters in muscular tissue: concentrations of oxy- and deoxy-hemoglobin, total hemoglobin content, and tissue oxygen saturation. In this paper, we present a novel TD NIRS medical device for muscle oxidative metabolism. A custom-printed 3D probe, able to host optical elements for signal acquisition from muscle, was develop for TD NIRS in vivo measurements. The system was widely characterized on solid phantoms and during in vivo protocols on healthy subjects. In particular, we tested the in vivo repeatability of the measurements to quantify the error that we can have by repositioning the probe. Furthermore, we considered a series of acquisitions on different muscles that were not yet previously performed with this custom probe: a venous-arterial cuff occlusion of the arm muscle, a cycling exercise, and an isometric contraction of the vastus lateralis.

  19. [Monitor of ECG signal and heart rate using a mobile phone with Bluetooth communication protocol].

    Science.gov (United States)

    Becerra-Luna, Brayans; Dávila-García, Rodrigo; Salgado-Rodríguez, Paola; Martínez-Memije, Raúl; Infante-Vázquez, Oscar

    2012-01-01

    To develop a portable signal monitoring equipment for electrocardiography (ECG) and heart rate (HR), communicated with a mobile phone using the Bluetooth (BT) communication protocol for display of the signal on screen. A monitoring system was designed in which the electronic section performs the ECG signal acquisition, as well as amplification, filtering, analog to digital conversion and transmission of the ECG and HR using BT. Two programs were developed for the system. The first one calculates HR through QRS identification and sends the ECG signals and HR to the mobile, and the second program is an application to acquire and display them on the mobile screen. We developed a portable electronic system powered by a 9 volt battery, with amplification and bandwidth meeting the international standards for ECG monitoring. The QRS complex identification was performed using the second derivative algorithm, while the programs allow sending and receiving information from the ECG and HR via BT, and viewing it on the mobile screen. The monitoring is feasible within distances of 15 m and it has been tested in various mobiles telephones of brands Nokia®, Sony Ericsson® and Samsung®. This system shows an alternative for mobile monitoring using BT and Java 2 Micro Edition (J2ME) programming. It allows the register of the ECG trace and HR, and it can be implemented in different phones. Copyright © 2011 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  20. Construction of a Vibration Monitoring System for HANARO's Rotating Machinery and Analysis of Pump Vibration Signals

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2005-01-01

    HANARO is an open-tank-in-pool type research reactor with a thermal power of 30MW. In order to remove the heat generated by the reactor core and the reflector vessel, primary cooling pumps and reflector cooling pumps circulate coolant. These pumps are installed at the RCI(Reactor Concrete Island) which is covered by heavy concrete hatches. For the prevention of an abnormal operation of these pumps in the RCI, it is necessary to construct a vibration monitoring system that provides an alarm signal to the reactor control room when the rotating speed or the vibration level exceeds the allowable limit. The first objective of this work is to construct a vibration monitoring system for HANARO's rotating machinery. The second objective is to verify the possibility of condition monitoring of the rotating machinery. To construct a vibration monitoring system, as a first step, the standards and references related to the vibration monitoring system were investigated. In addition, to determine the number and the location of sensors that can effectively characterize the overall vibration of a pump, the vibration of the primary cooling pumps and the reflector cooling pumps were measured. Based on these results, detailed construction plans for the vibration monitoring system for HANARO were established. Then, in accordance with the construction plans, the vibration monitoring system for HANARO's rotating machinery was manufactured and installed at HANARO. To achieve the second objective, FFT analysis and bearing fault detection of the measured vibration signals were performed. The analysis results demonstrate that the accelerometers mounted at the bearing locations of the pumps can effectively monitor the pump condition

  1. Metabolism of fatty acids and lipid hydroperoxides in human body monitoring with Fourier transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhang Qin-Zeng

    2009-07-01

    Full Text Available Abstract Background The metabolism of dietary fatty acids in human has been measured so far using human blood cells and stable-isotope labeled fatty acids, however, no direct data was available for human peripheral tissues and other major organs. To realize the role of dietary fatty acids in human health and diseases, it would be eager to develop convenient and suitable method to monitor fatty acid metabolism in human. Results We have developed the measurement system in situ for human lip surface lipids using the Fourier transform infrared spectroscopy (FTIR – attenuated total reflection (ATR detection system with special adaptor to monitor metabolic changes of lipids in human body. As human lip surface lipids may not be much affected by skin sebum constituents and may be affected directly by the lipid constituents of diet, we could detect changes of FTIR-ATR spectra, especially at 3005~3015 cm-1, of lip surface polyunsaturated fatty acids in a duration time-dependent manner after intake of the docosahexaenoic acid (DHA-containing triglyceride diet. The ingested DHA appeared on the lip surface and was detected by FTIR-ATR directly and non-invasively. It was found that the metabolic rates of DHA for male volunteer subjects with age 60s were much lower than those with age 20s. Lipid hydroperoxides were found in lip lipids which were extracted from the lip surface using a mixture of ethanol/ethylpropionate/iso-octane solvents, and were the highest in the content just before noon. The changes of lipid hydroperoxides were detected also in situ with FTIR-ATR at 968 cm-1. Conclusion The measurements of lip surface lipids with FTIR-ATR technique may advance the investigation of human lipid metabolism in situ non-invasively.

  2. Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling

    Directory of Open Access Journals (Sweden)

    Manuel A. Fernández-Rojo

    2013-07-01

    Full Text Available Caveolae and caveolin-1 (CAV1 have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1−/− mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1−/− mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1 hepatic lipid homeostasis and (2 nuclear hormone receptor (PPARα, FXRα, and SHP and bile acid signaling.

  3. Metabolic alterations triggered by silicon nutrition: is there a signaling role for silicon?

    Science.gov (United States)

    Detmann, Kelly C; Araújo, Wagner L; Martins, Samuel C V; Fernie, Alisdair R; Damatta, Fábio M

    2013-01-01

    Although the beneficial role of silicon (Si) in stimulating the growth and development of many plants is generally accepted, our knowledge concerning the physiological and molecular mechanisms underlying this response remains far from comprehensive. Considerable effort has been invested in understanding the role of Si on plant disease, which has led to several new and compelling hypotheses; in unstressed plants, however, Si is believed to have no molecular or metabolic effects. Recently, we have demonstrated that Si nutrition can modulate the carbon/nitrogen balance in unstressed rice plants. Our findings point to an important role of Si as a signaling metabolite able to promote amino acid remobilization. In this article we additionally discuss the agronomic significance of these novel observations and suggest Si nutrition as an important target in future attempts to improve yields of agronomic crops.

  4. An improved method for reactor coolant pump abnormality monitoring using power line signal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jae Cheon [Korea Power Engineering Company, Korea Advanced Institute of Science and Technology, 150 deokjin-dong, Yuseong-ku, Daejeon (Korea, Republic of)]. E-mail jcjung@kopec.co.kr; Seong, Poong Hyun [Korea Power Engineering Company, Korea Advanced Institute of Science and Technology, 150 deokjin-dong, Yuseong-ku, Daejeon (Korea, Republic of)

    2006-01-15

    An improved method to detect the reactor coolant pump (RCP) abnormality is suggested in this work. The monitoring parameters that are acquired from power line signal analysis are motor torque, motor speed and characteristic harmonic frequencies. The combination of Wigner-Ville Distribution (WVD) and feature area matrix comparison method is used for abnormality diagnosis. For validation of the proposed method, the test was performed during cool-down phase and heat-up phase in nuclear power plant (NPP) by cross-comparison with RCP vibration monitoring system (VMS). Using pump internal inspection results, the diagnosis prediction is verified.

  5. Effects of phoxim on nutrient metabolism and insulin signaling pathway in silkworm midgut.

    Science.gov (United States)

    Li, Fanchi; Hu, Jingsheng; Tian, Jianghai; Xu, Kaizun; Ni, Min; Wang, Binbin; Shen, Weide; Li, Bing

    2016-03-01

    Silkworm (Bombyx mori) is an important economic insect. Each year, poisoning caused by phoxim pesticide leads to huge economic losses in sericulture in China. Silkworm midgut is the major organ for food digestion and nutrient absorption. In this study, we found that the activity and expression of nutrition metabolism-related enzymes were dysregulated in midgut by phoxim exposure. DGE analysis revealed that 40 nutrition metabolism-related genes were differentially expressed. qRT-PCR results indicated that the expression levels of insulin/insulin growth factor signaling (IIS) pathway genes Akt, PI3K, PI3K60, PI3K110, IRS and PDK were reduced, whereas PTEN's expression was significantly increased in the midgut at 24 h after phoxim treatment. However, the transcription levels of Akt, PI3K60, PI3K110, IRS, InR and PDK were elevated and reached the peaks at 48 h, which were 1.48-, 1.35-, 1.21-, 2.24-, 2.89-, and 1.44-fold of those of the control, respectively. At 72 h, the transcription of these genes was reduced. Akt phosphorylation level was increasing along with the growth of silkworms in the control group. However, phoxim treatment led to increased Akt phosphorylation that surged at 24 h but gradually decreased at 48 h and 72 h. The results indicated that phoxim dysregulated the expression of IIS pathway genes and induced abnormal nutrient metabolism in silkworm midgut, which may be the reason of the slow growth of silkworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism.

    Science.gov (United States)

    Rodríguez, Amaia; Ezquerro, Silvia; Méndez-Giménez, Leire; Becerril, Sara; Frühbeck, Gema

    2015-10-15

    Adipose tissue constitutes an extremely active endocrine organ with a network of signaling pathways enabling the organism to adapt to a wide range of different metabolic challenges, such as starvation, stress, infection, and short periods of gross energy excess. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a huge variety of hormones, cytokines, complement and growth factors, extracellular matrix proteins, and vasoactive factors, collectively termed adipokines. Obesity is associated with adipose tissue dysfunction leading to the onset of several pathologies including type 2 diabetes, dyslipidemia, nonalcoholic fatty liver, or hypertension, among others. The mechanisms underlying the development of obesity and its associated comorbidities include the hypertrophy and/or hyperplasia of adipocytes, adipose tissue inflammation, impaired extracellular matrix remodeling, and fibrosis together with an altered secretion of adipokines. Recently, the potential role of brown and beige adipose tissue in the protection against obesity has been also recognized. In contrast to white adipocytes, which store energy in the form of fat, brown and beige fat cells display energy-dissipating capacity through the promotion of triacylglycerol clearance, glucose disposal, and generation of heat for thermogenesis. Identification of the morphological and molecular changes in white, beige, and brown adipose tissue during weight gain is of utmost relevance for the identification of pharmacological targets for the treatment of obesity and its associated metabolic diseases. Copyright © 2015 the American Physiological Society.

  7. The glycogen metabolism via Akt signaling is important for the secretion of enamel matrix in tooth development.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Otsu, Keishi; Ohshima, Hayato; Harada, Hidemitsu

    2016-02-01

    Cells alter their energy metabolism depending on the stage of differentiation or various environments. In the ameloblast differentiation of continuous growing mouse incisors, we found temporary glycogen storage in preameloblasts before the start of enamel matrix secretion and investigated the relationship between enamel matrix secretion and glycogen metabolism. Immunohistochemistry showed that in the transitional stage from preameloblasts to secretory ameloblasts, the glycogen synthase changed from the inactive form to the active form, the expression of glycogen phosphorylase increased, and further, the levels of IGF-1, IGF-1 receptor and activated Akt increased. These results suggested that the activation of Akt signaling via IGF is linked to the onset of both glycogen metabolism and enamel matrix deposition. In the experiments using organ culture and ameloblast cell line, the activation of Akt signaling by IGF-1 stimulated glycogen metabolism through the up-regulation of Glut-1,-4 and Gsk-3β and the dephosphorylation of glycogen synthase. Subsequently, they resulted in increased enamel matrix secretion. In contrast, some inhibitors of Akt signals and glycogen synthesis/degradation down-regulated enamel matrix secretion. Taking these findings together, glycogen metabolism via Akt signaling is an essential system for the secretion of enamel matrix in ameloblast differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Fetal Heart Rate Monitoring from Phonocardiograph Signal Using Repetition Frequency of Heart Sounds

    Directory of Open Access Journals (Sweden)

    Hong Tang

    2016-01-01

    Full Text Available As a passive, harmless, and low-cost diagnosis tool, fetal heart rate (FHR monitoring based on fetal phonocardiography (fPCG signal is alternative to ultrasonographic cardiotocography. Previous fPCG-based methods commonly relied on the time difference of detected heart sound bursts. However, the performance is unavoidable to degrade due to missed heart sounds in very low signal-to-noise ratio environments. This paper proposes a FHR monitoring method using repetition frequency of heart sounds. The proposed method can track time-varying heart rate without both heart sound burst identification and denoising. The average accuracy rate comparison to benchmark is 88.3% as the SNR ranges from −4.4 dB to −26.7 dB.

  9. Cardiorespiratory Frequency Monitoring Using the Principal Component Analysis Technique on UWB Radar Signal

    Directory of Open Access Journals (Sweden)

    Erika Pittella

    2017-01-01

    Full Text Available In this paper, Principal Component Analysis technique is applied on the signal measured by an ultra wide-band radar to compute the breath and heart rate of volunteers. The measurement set-up is based on an indirect time domain reflectometry technique, using an ultra wide-band antenna in contact with the subject’s thorax, at the heart height, and a vector network analyzer. The Principal Component Analysis is applied on the signal reflected by the thorax and the obtained breath frequencies are compared against measures acquired by a piezoelectric belt, a widely used commercial system for respiratory activity monitoring. Breath frequency results show that the proposed approach is suitable for breath activity monitoring. Moreover, the wearable ultra wide-band radar gives also promising results for heart activity frequency detection.

  10. Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.

    Science.gov (United States)

    Zhang, Ying; Xiao, Hannan

    2009-11-01

    Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.

  11. Effects of CD44 Ligation on Signaling and Metabolic Pathways in Acute Myeloid Leukemia

    KAUST Repository

    Madhoun, Nour Y.

    2017-04-01

    Acute myeloid leukemia (AML) is characterized by a blockage in the differentiation of myeloid cells at different stages. CD44-ligation using anti-CD44 monoclonal antibodies (mAbs) has been shown to reverse the blockage of differentiation and to inhibit the proliferation of blasts in most AML-subtypes. However, the molecular mechanisms underlying this property have not been fully elucidated. Here, we sought to I) analyze the effects of anti-CD44 mAbs on downstream signaling pathways, including the ERK1/2 (extracellular signal-regulated kinase 1 and 2) and mTOR (mammalian target of rapamycin) pathways and II) use state-of-the-art Nuclear Magnetic Resonance (NMR) technology to determine the global metabolic changes during differentiation induction of AML cells using anti-CD44 mAbs and other two previously reported differentiation agents. In the first objective (Chapter 4), our studies provide evidence that CD44-ligation with specific mAbs in AML cells induced an increase in ERK1/2 phosphorylation. The use of the MEK inhibitor (U0126) significantly inhibited the CD44-induced differentiation of HL60 cells, suggesting that ERK1/2 is critical for the CD44-triggered differentiation in AML. In addition, this was accompanied by a marked decrease in the phosphorylation of the mTORC1 and mTORC2 complexes, which are strongly correlated with the inhibition of the PI3K/Akt pathway. In the second objective (Chapter 5), 1H NMR experiments demonstrated that considerable changes in the metabolic profiles of HL60 cells were induced in response to each differentiation agent. These most notable metabolites that significantly changed upon CD44 ligation were involved in the tricarboxylic acid (TCA) cycle and glycolysis such as, succinate, fumarate and lactate. Therefore, we sought to analyze the mechanisms underlying their alterations. Our results revealed that anti-CD44 mAbs treatment induced upregulation in fumarate hydratase (FH) expression and its activity which was accompanied by a

  12. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  13. Cell fate decisions: emerging roles for metabolic signals and cell morphology.

    Science.gov (United States)

    Tatapudy, Sumitra; Aloisio, Francesca; Barber, Diane; Nystul, Todd

    2017-12-01

    Understanding how cell fate decisions are regulated is a fundamental goal of developmental and stem cell biology. Most studies on the control of cell fate decisions address the contributions of changes in transcriptional programming, epigenetic modifications, and biochemical differentiation cues. However, recent studies have found that other aspects of cell biology also make important contributions to regulating cell fate decisions. These cues can have a permissive or instructive role and are integrated into the larger network of signaling, functioning both upstream and downstream of developmental signaling pathways. Here, we summarize recent insights into how cell fate decisions are influenced by four aspects of cell biology: metabolism, reactive oxygen species (ROS), intracellular pH (pHi), and cell morphology. For each topic, we discuss how these cell biological cues interact with each other and with protein-based mechanisms for changing gene transcription. In addition, we highlight several questions that remain unanswered in these exciting and relatively new areas of the field. © 2017 The Authors.

  14. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  15. Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells.

    Science.gov (United States)

    Kawalekar, Omkar U; O'Connor, Roddy S; Fraietta, Joseph A; Guo, Lili; McGettigan, Shannon E; Posey, Avery D; Patel, Prachi R; Guedan, Sonia; Scholler, John; Keith, Brian; Snyder, Nathaniel W; Snyder, Nathaniel; Blair, Ian A; Blair, Ian; Milone, Michael C; June, Carl H

    2016-02-16

    Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Property-Based Monitoring of Analog and Mixed-Signal Systems

    Science.gov (United States)

    Havlicek, John; Little, Scott; Maler, Oded; Nickovic, Dejan

    In the recent past, there has been a steady growth of the market for consumer embedded devices such as cell phones, GPS and portable multimedia systems. In embedded systems, digital, analog and software components are combined on a single chip, resulting in increasingly complex designs that introduce richer functionality on smaller devices. As a consequence, the potential insertion of errors into a design becomes higher, yielding an increasing need for automated analog and mixed-signal validation tools. In the purely digital setting, formal verification based on properties expressed in industrial specification languages such as PSL and SVA is nowadays successfully integrated in the design flow. On the other hand, the validation of analog and mixed-signal systems still largely depends on simulation-based, ad-hoc methods. In this tutorial, we consider some ingredients of the standard verification methodology that can be successfully exported from digital to analog and mixed-signal setting, in particular property-based monitoring techniques. Property-based monitoring is a lighter approach to the formal verification, where the system is seen as a "black-box" that generates sets of traces, whose correctness is checked against a property, that is its high-level specification. Although incomplete, monitoring is effectively used to catch faults in systems, without guaranteeing their full correctness.

  17. New Train Run Monitoring system: Getting the most out of an ERTMS level 2 Signalling system

    DEFF Research Database (Denmark)

    Richter, Troels; Landex, Alex; Andersen, Jonas Lohmann Elkjær

    The present Punctuality Monitoring and Reporting System (RDS) of Rail Net Denmark uses occupation of main track circuits as source for arrival and departure times on the most intensively used parts of the Danish rail network. On the rest of the network, these times are manually registered....... Rail Net Denmark is currently implementing ERTMS Level 2 signalling systems on the entire long distance network and a CBTC signalling system on the Copenhagen Suburban network. It is unlikely, that the current RDS will be able to function in this environment and especially be capable of taking...... advantage of the additional data delivered by the new systems. The conceptual design of a new RDS has consequently been underway since the start of the signalling program. The vision is to create an automatic system that delivers “perfect train run histories” with a cause for every time loss. The future...

  18. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  19. Statistical analysis on the signals monitoring multiphase flow patterns in pipeline-riser system

    Science.gov (United States)

    Ye, Jing; Guo, Liejin

    2013-07-01

    The signals monitoring petroleum transmission pipeline in offshore oil industry usually contain abundant information about the multiphase flow on flow assurance which includes the avoidance of most undesirable flow pattern. Therefore, extracting reliable features form these signals to analyze is an alternative way to examine the potential risks to oil platform. This paper is focused on characterizing multiphase flow patterns in pipeline-riser system that is often appeared in offshore oil industry and finding an objective criterion to describe the transition of flow patterns. Statistical analysis on pressure signal at the riser top is proposed, instead of normal prediction method based on inlet and outlet flow conditions which could not be easily determined during most situations. Besides, machine learning method (least square supported vector machine) is also performed to classify automatically the different flow patterns. The experiment results from a small-scale loop show that the proposed method is effective for analyzing the multiphase flow pattern.

  20. Monitoring geomagnetic signals of groundwater movement using multiple underground SQUID magnetometers

    Directory of Open Access Journals (Sweden)

    Henry S.

    2014-01-01

    Full Text Available Groundwater can influence the geomagnetic field measured underground in at least two key ways. The water levels in rock will determine its electrical conductivity, and thus change the magnitude of the telluric currents induced in the rock by changing magnetic fields generated in the ionosphere. This can be studied by using multiple magnetometers at different underground locations. Secondly the flow of water through rock will generate a small magnetic signal, of unknown magnitude, through the electrokinetic effect. SQUID magnetometry has the potential to allow passive studies of groundwater changes in complex systems such as karst. We have monitored geomagnetic signals using two SQUID magnetometers at the LSBB underground laboratory, and set an initial limit on the magnitude of the electrokinetic signal. We now plan to carry out a longer term measurement using three SQUID systems as well as fluxgate sensors to track changes in the gradient of the magnetic field across the underground complex.

  1. Characterization of Signal Quality Monitoring Techniques for Multipath Detection in GNSS Applications.

    Science.gov (United States)

    Pirsiavash, Ali; Broumandan, Ali; Lachapelle, Gérard

    2017-07-05

    The performance of Signal Quality Monitoring (SQM) techniques under different multipath scenarios is analyzed. First, SQM variation profiles are investigated as critical requirements in evaluating the theoretical performance of SQM metrics. The sensitivity and effectiveness of SQM approaches for multipath detection and mitigation are then defined and analyzed by comparing SQM profiles and multipath error envelopes for different discriminators. Analytical discussions includes two discriminator strategies, namely narrow and high resolution correlator techniques for BPSK(1), and BOC(1,1) signaling schemes. Data analysis is also carried out for static and kinematic scenarios to validate the SQM profiles and examine SQM performance in actual multipath environments. Results show that although SQM is sensitive to medium and long-delay multipath, its effectiveness in mitigating these ranges of multipath errors varies based on tracking strategy and signaling scheme. For short-delay multipath scenarios, the multipath effect on pseudorange measurements remains mostly undetected due to the low sensitivity of SQM metrics.

  2. Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis

    OpenAIRE

    Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, A. Claude

    2016-01-01

    We developed a new endogenous approach to reveal subcellular metabolic contrast in fresh ex vivo tissues taking advantage of the time dependence of the full field optical coherence tomography interferometric signals. This method reveals signals linked with local activity of the endogenous scattering elements which can reveal cells where other OCT-based techniques fail or need exogenous contrast agents. We benefit from the micrometric transverse resolution of full field OCT to image intracellu...

  3. Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by temporal analysis of interferometric signals

    OpenAIRE

    Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, A. Claude

    2016-01-01

    We developed a new endogenous approach to reveal subcellular metabolic contrast in fresh ex vivo tissues taking advantage of the time dependence of the full field optical coherence tomography interferometric signals. This method reveals signals linked with local activity of the endogenous scattering elements which can reveal cells where other imaging techniques fail or need exogenous contrast agents. We benefit from the micrometric transverse resolution of full field OCT to image intracellula...

  4. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2016-06-01

    Full Text Available A novel micro-needle array electrode (MAE fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid (PLGA into a micro-needle array (MA by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG, electrocardiography (ECG, and electroencephalograph (EEG were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  5. Autofluorescent gelatin nanoparticles as imaging probes to monitor matrix metalloproteinase metabolism of cancer cells.

    Science.gov (United States)

    Cai, Bo; Rao, Lang; Ji, Xinghu; Bu, Lin-Lin; He, Zhaobo; Wan, Da; Yang, Yi; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong

    2016-11-01

    In this paper, autofluorescent gelatin nanoparticles were synthesized as matrix metalloproteinase (MMP) responsive probes for cancer cell imaging. A modified two-step desolvation method was employed to generate these nanoparticles whose size was controllable and had stable autofluorescence. As glutaraldehyde was introduced as the crosslinking agent, the generation of Schiff base (CN) and double carbon bond (CC) between glutaraldehyde and gelatin endowed these gelatin nanoparticles distinct autofluorescence. Considering MMPs were usually overexpressed on the surface of cancer cells and they had degradation ability toward gelatin, we utilized these nanoparticles as imaging probes to responsively monitor the MMP metabolism of cancer cells according to the luminance change. As fluorescent probes, these nanoparticles had facile synthesis procedure and good biocompatibility, and provided a smart strategy to monitor cancer cell behaviors. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2854-2860, 2016. © 2016 Wiley Periodicals, Inc.

  6. Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism.

    Science.gov (United States)

    Davidson, J; Rotondo, D; Rizzo, M T; Leaver, H A

    2012-06-01

    Disruptions of cell death signalling occur in pathological processes, such as cancer and degenerative disease. Increased knowledge of cell death signalling has opened new areas of therapeutic research, and identifying key mediators of cell death has become increasingly important. Early triggering events in cell death may provide potential therapeutic targets, whereas agents affecting later signals may be more palliative in nature. A group of primary mediators are derivatives of the highly unsaturated fatty acids (HUFAs), particularly oxygenated metabolites such as prostaglandins. HUFAs, esterified in cell membranes, act as critical signalling molecules in many pathological processes. Currently, agents affecting HUFA metabolism are widely prescribed in diseases involving disordered cell death signalling. However, partly due to rapid metabolism, their role in cell death signalling pathways is poorly characterized. Recently, HUFA-derived mediators, the resolvins/protectins and endocannabinoids, have added opportunities to target selective signals and pathways. This review will focus on the control of cell death by HUFA, eicosanoid (C20 fatty acid metabolites) and docosanoid (C22 metabolites), HUFA-derived lipid mediators, signalling elements in the micro-environment and their potential therapeutic applications. Further therapeutic approaches will involve cell and molecular biology, the multiple hit theory of disease progression and analysis of system plasticity. Advances in the cell biology of eicosanoid and docosanoid metabolism, together with structure/function analysis of HUFA-derived mediators, will be useful in developing therapeutic agents in pathologies characterized by alterations in cell death signalling. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  7. ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway

    OpenAIRE

    Zhao, Yang; Hu, Xingbin; Liu, Yajing; Dong, Shumin; Wen, Zhaowei; He, Wanming; Zhang, Shuyi; Huang, Qiong; Shi, Min

    2017-01-01

    Cancer cells are frequently confronted with metabolic stress in tumor microenvironments due to their rapid growth and limited nutrient supply. Metabolic stress induces cell death through ROS-induced apoptosis. However, cancer cells can adapt to it by altering the metabolic pathways. AMPK and AKT are two primary effectors in response to metabolic stress: AMPK acts as an energy-sensing factor which rewires metabolism and maintains redox balance. AKT broadly promotes energy production in the nut...

  8. Manipulation of metabolic pathways controlled by signaling molecules, inducers of antibiotic production, for genome mining in Streptomyces spp.

    Science.gov (United States)

    Arakawa, Kenji

    2018-02-23

    Streptomyces is well characterized by an ability to produce a wide variety of secondary metabolites including antibiotics, whose expression is strictly controlled by small diffusible signaling molecules at nano-molar concentrations. The signaling molecules identified to date are classified into three skeletons; γ-butyrolactones, furans, and γ-butenolides. Accumulated data suggest the structural diversity of the signaling molecules in Streptomyces species and their potential in activating cryptic secondary metabolite biosynthetic pathways. Several genome mining approaches to activate silent biosynthetic gene clusters have been reported for natural product discovery. This review updates recent examples on genetic manipulation including blockage of metabolic pathways together with inactivation of transcriptional repressor genes.

  9. Cutis laxa: intersection of elastic fiber biogenesis, TGFβ signaling, the secretory pathway and metabolism.

    Science.gov (United States)

    Urban, Zsolt; Davis, Elaine C

    2014-01-01

    Cutis laxa (CL), a disease characterized by redundant and inelastic skin, displays extensive locus heterogeneity. Together with geroderma osteodysplasticum and arterial tortuosity syndrome, which show phenotypic overlap with CL, eleven CL-related genes have been identified to date, which encode proteins within 3 groups. Elastin, fibulin-4, fibulin-5 and latent transforming growth factor-β-binding protein 4 are secreted proteins which form elastic fibers and are involved in the sequestration and subsequent activation of transforming growth factor-β (TGFβ). Proteins within the second group, localized to the secretory pathway, perform transport and membrane trafficking functions necessary for the modification and secretion of elastic fiber components. Key proteins include a subunit of the vacuolar-type proton pump, which ensures the efficient secretion of tropoelastin, the precursor or elastin. A copper transporter is required for the activity of lysyl oxidases, which crosslink collagen and elastin. A Rab6-interacting goglin recruits kinesin motors to Golgi-vesicles facilitating the transport from the Golgi to the plasma membrane. The Rab and Ras interactor 2 regulates the activity of Rab5, a small guanosine triphosphatase essential for the endocytosis of various cell surface receptors, including integrins. Proteins of the third group related to CL perform metabolic functions within the mitochondria, inhibiting the accumulation of reactive oxygen species. Two of these proteins catalyze subsequent steps in the conversion of glutamate to proline. The third transports dehydroascorbate into mitochondria. Recent studies on CL-related proteins highlight the intricate connections among membrane trafficking, metabolism, extracellular matrix assembly, and TGFβ signaling. © 2013 Elsevier B.V. All rights reserved.

  10. In vitro metabolic and mitogenic signaling of insulin glargine and its metabolites.

    Directory of Open Access Journals (Sweden)

    Mark R Sommerfeld

    Full Text Available BACKGROUND: Insulin glargine (Lantus is a long-acting basal insulin analog that demonstrates effective day-long glycemic control and a lower incidence of hypoglycemia than NPH insulin. After subcutaneous injection insulin glargine is partly converted into the two main metabolites M1 ([Gly(A21]insulin and M2 ([Gly(A21,des-Thr(B30]insulin. The aim of this study was to characterize the glargine metabolites in vitro with regard to their insulin receptor (IR and IGF-1 receptor (IGF1R binding and signaling properties as well as their metabolic and mitogenic activities. METHODS: The affinity of human insulin, insulin glargine and its metabolites to the IR isoforms A and B or IGF1R was analyzed in a competitive binding assay using SPA technology. Receptor autophosphorylation activities were studied via In-Cell Western in CHO and MEF cells overexpressing human IR-A and IR-B or IGF1R, respectively. The metabolic response of the insulins was studied as stimulation of lipid synthesis using primary rat adipocytes. Thymidine incorporation in Saos-2 cells was used to characterize the mitogenic activity. CONCLUSIONS: The binding of insulin glargine and its metabolites M1 and M2 to the IR were similar and correlated well with their corresponding autophosphorylation and metabolic activities in vitro. No differences were found towards the two IR isoforms A or B. Insulin glargine showed a higher affinity for IGF1R than insulin, resulting in a lower EC(50 value for autophosphorylation of the receptor and a more potent stimulation of thymidine incorporation in Saos-2 cells. In contrast, the metabolites M1 and M2 were significantly less active in binding to and activation of the IGF1R and their mitogenicity in Saos-2 cells was equal to human insulin. These findings strongly support the idea that insulin glargine metabolites contribute with the same potency as insulin glargine to blood glucose control but lead to significantly reduced growth-promoting activity.

  11. Effects of insulin and its related signaling pathways on lipid metabolism in the yellow catfish Pelteobagrus fulvidraco.

    Science.gov (United States)

    Zhuo, Mei-Qin; Luo, Zhi; Pan, Ya-Xiong; Wu, Kun; Fan, Yao-Fang; Zhang, Li-Han; Song, Yu-Feng

    2015-10-01

    The influence of insulin on hepatic metabolism in fish is not well understood. The present study was therefore conducted to investigate the effects of insulin on lipid metabolism, and the related signaling pathways, in the yellow catfish Pelteobagrus fulvidraco. Hepatic lipid and intracellular triglyceride (TG) content, the activity and expression levels of several enzymes and the mRNA expression of transcription factors (PPARα and PPARγ) involved in lipid metabolism were determined. Troglitazone, GW6471, fenofibrate and wortmannin were used to explore the signaling pathways by which insulin influences lipid metabolism. Insulin tended to increase hepatic lipid accumulation, the activity of lipogenic enzymes (6PGD, G6PD, ME, ICDH and FAS) and mRNA levels of FAS, G6PD, 6PGD, CPT IA and PPARγ, but down-regulated PPARα mRNA level. The insulin-induced effect could be stimulated by the specific PPARγ activator troglitazone or reversed by the PI3 kinase/Akt inhibitor wortmannin, demonstrating that signaling pathways of PPARγ and PI3 kinase/Akt were involved in the insulin-induced alteration of lipid metabolism. The specific PPARα pathway activator fenofibrate reduced insulin-induced TG accumulation, down-regulated the mRNA levels of FAS, G6PD and 6PGD, and up-regulated mRNA levels of CPT IA, PPARα and PPARγ. The specific PPARα pathway inhibitor GW6471 reduced insulin-induced changes in the expression of all the tested genes, indicating that PPARα mediated the insulin-induced changes of lipid metabolism. The present results contribute new knowledge on the regulatory role of insulin in hepatic metabolism in fish. © 2015. Published by The Company of Biologists Ltd.

  12. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  13. Impaired rapid error monitoring but intact error signaling following rostral anterior cingulate cortex lesions in humans.

    Science.gov (United States)

    Maier, Martin E; Di Gregorio, Francesco; Muricchio, Teresa; Di Pellegrino, Giuseppe

    2015-01-01

    Detecting one's own errors and appropriately correcting behavior are crucial for efficient goal-directed performance. A correlate of rapid evaluation of behavioral outcomes is the error-related negativity (Ne/ERN) which emerges at the time of the erroneous response over frontal brain areas. However, whether the error monitoring system's ability to distinguish between errors and correct responses at this early time point is a necessary precondition for the subsequent emergence of error awareness remains unclear. The present study investigated this question using error-related brain activity and vocal error signaling responses in seven human patients with lesions in the rostral anterior cingulate cortex (rACC) and adjoining ventromedial prefrontal cortex, while they performed a flanker task. The difference between errors and correct responses was severely attenuated in these patients indicating impaired rapid error monitong, but they showed no impairment in error signaling. However, impaired rapid error monitoring coincided with a failure to increase response accuracy on trials following errors. These results demonstrate that the error monitoring system's ability to distinguish between errors and correct responses at the time of the response is crucial for adaptive post-error adjustments, but not a necessary precondition for error awareness.

  14. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Qi, Hairong [ORNL; Fugate, David L [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumption of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.

  15. Composite Plate Phased Array Structural Health Monitoring Signal Reconstruction Based on Orthogonal Matching Pursuit Algorithm

    Directory of Open Access Journals (Sweden)

    Yajie Sun

    2017-01-01

    Full Text Available In order to ensure the safety of composite components, structural health monitoring is needed to detect structural performance in real-time at the early stage of damage occurred. This is difficult to detect complex components with single sensor detection technology, so that ultrasonic phased array technology using multisensor detection will be selected. Ultrasonic phased array technology can scan the structure in all directions and angles without moving or less moving the probe and becomes the first choice of structural health monitoring. However, a large amount of data will be generated when using ultrasonic phased array with Nyquist sampling theorem for structural health monitoring and is difficult to storage, transmission, and processing. Besides, traditional Nyquist sampling cannot satisfy the sampling of large amounts of data without distortion, so a more efficient acquisition technique must be chosen. Compressive sensing theory can ensure that if the signal is sparse, it can be sampled in low sampling rate which is much less than two times of the sampling rate as defined by Nyquist sampling theorem for a large number of data and reconstructed in high probability. Then, the experiment result indicated that the orthogonal matching pursuit algorithm can reconstruct the signal completely and accurately.

  16. Test-retest reliability of portable metabolic monitoring after disabling stroke.

    Science.gov (United States)

    Stookey, Alyssa D; McCusker, Michael G; Sorkin, John D; Katzel, Leslie I; Shaughnessy, Marianne; Macko, Richard F; Ivey, Frederick M

    2013-01-01

    Impaired economy of gait, prevalent in chronic stroke secondary to residual gait deficits, is associated with intolerance for performing activities of daily living. Gait economy/efficiency is traditionally assessed by determining the rate of oxygen consumption during submaximal treadmill walking. However, the mechanics and energetics of treadmill versus overground walking are very different in stroke survivors with ambulatory deficits. Clearly, overground cardiopulmonary measures are needed to accurately profile movement economy after stroke. An obstacle to obtaining such measures after stroke has been the absence of reliable portable metabolic monitoring equipment. The purpose of this study was to establish the test-retest reliability of a portable metabolic monitoring device during overground walking in hemiparetic stroke survivors. Twenty-three chronic hemiparetic stroke survivors underwent two 6-minute walk tests while wearing a COSMED K4b(2) portable metabolic measurement system. Intraclass correlations coefficients (ICC) were calculated for both cardiopulmonary parameters and distance covered to determine test-retest reliability. An ICC of ≥ 0.85 was considered reliable. ICCs for relative Vo2 (0.90), absolute Vo2 (0.93), Vco2 (0.93), and minute ventilation (0.95) demonstrated high reliability, but not for heart rate (0.76) or respiratory exchange ratio (0.64). There was no significant difference in the distance each participant walked between the first and second tests, eliminating distance as a potential confounder of our analyses (ICC = 0.99). Our results strongly support the reliability of the K4b(2) for quantifying overground gait efficiency after stroke. Use of this device may enable researchers to study how varying poststroke rehabilitation interventions affect this central measure of health and function.

  17. Impaired cross-talk between mesolimbic food reward processing and metabolic signaling predicts body mass index

    Directory of Open Access Journals (Sweden)

    Joe J Simon

    2014-10-01

    Full Text Available The anticipation of the pleasure derived from food intake drives the motivation to eat, and hence facilitate overconsumption of food which ultimately results in obesity. Brain imaging studies provide evidence that mesolimbic brain regions underlie both general as well as food related anticipatory reward processing. In light of this knowledge, the present study examined the neural responsiveness of the ventral striatum in participants with a broad BMI spectrum. The study differentiated between general (i.e. monetary and food related anticipatory reward processing. We recruited a sample of volunteers with greatly varying body weights, ranging from a low BMI (below 20 kg/m² over a normal (20 to 25 kg/m² and overweight (25 to 30 kg/m² BMI, to class I (30 to 35 kg/m² and class II (35 to 40 kg/m² obesity. A total of 24 participants underwent functional magnetic resonance imaging whilst performing both a food and monetary incentive delay task, which allows to measure neural activation during the anticipation of rewards. After the presentation of a cue indicating the amount of food or money to be won, participants had to react correctly in order to earn snack points or money coins which could then be exchanged for real food or money, respectively, at the end of the experiment. During the anticipation of both types of rewards, participants displayed activity in the ventral striatum, a region that plays a pivotal role in the anticipation of rewards. Additionally, we observed that specifically anticipatory food reward processing predicted the individual BMI (current and maximum lifetime. This relation was found to be mediated by impaired hormonal satiety signaling, i.e. increased leptin levels and insulin resistance. These findings suggest that heightened food reward motivation contributes to obesity through impaired metabolic signaling.

  18. Integration of AI-2 Based Cell-Cell Signaling with Metabolic Cues in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Arindam Mitra

    Full Text Available The quorum sensing molecule Autoinducer-2 (AI-2 is generated as a byproduct of activated methyl cycle by the action of LuxS in Escherichia coli. AI-2 is synthesized, released and later internalized in a cell-density dependent manner. Here, by mutational analysis of the genes, uvrY and csrA, we describe a regulatory circuit of accumulation and uptake of AI-2. We constructed a single-copy chromosomal luxS-lacZ fusion in a luxS + merodiploid strain and evaluated its relative expression in uvrY and csrA mutants. At the entry of stationary phase, the expression of the fusion and AI-2 accumulation was positively regulated by uvrY and negatively regulated by csrA respectively. A deletion of csrA altered message stability of the luxS transcript and CsrA protein exhibited weak binding to 5' luxS regulatory region. DNA protein interaction and chromatin immunoprecipitation analysis confirmed direct interaction of UvrY with the luxS promoter. Additionally, reduced expression of the fusion in hfq deletion mutant suggested involvement of small RNA interactions in luxS regulation. In contrast, the expression of lsrA operon involved in AI-2 uptake, is negatively regulated by uvrY and positively by csrA in a cell-density dependent manner. The dual role of csrA in AI-2 synthesis and uptake suggested a regulatory crosstalk of cell signaling with carbon regulation in Escherichia coli. We found that the cAMP-CRP mediated catabolite repression of luxS expression was uvrY dependent. This study suggests that luxS expression is complex and regulated at the level of transcription and translation. The multifactorial regulation supports the notion that cell-cell communication requires interaction and integration of multiple metabolic signals.

  19. An Internet of Things based physiological signal monitoring and receiving system for virtual enhanced health care network.

    Science.gov (United States)

    Rajan, J Pandia; Rajan, S Edward

    2018-01-01

    Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.

  20. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism

    Directory of Open Access Journals (Sweden)

    Dietmar Fuchs

    2010-08-01

    Full Text Available Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects. Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC and the non-psychotropic cannabidiol (CBD modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC. The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO, suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system. Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling. We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.

  1. DeSUMOylation Controls Insulin Exocytosis in Response to Metabolic Signals

    Directory of Open Access Journals (Sweden)

    Patrick E. MacDonald

    2012-05-01

    Full Text Available The secretion of insulin by pancreatic islet β-cells plays a pivotal role in glucose homeostasis and diabetes. Recent work suggests an important role for SUMOylation in the control of insulin secretion from β-cells. In this paper we discuss mechanisms whereby (deSUMOylation may control insulin release by modulating β-cell function at one or more key points; and particularly through the acute and reversible regulation of the exocytotic machinery. Furthermore, we postulate that the SUMO-specific protease SENP1 is an important mediator of insulin exocytosis in response to NADPH, a metabolic secretory signal and major determinant of β-cell redox state. Dialysis of mouse β-cells with NADPH efficiently amplifies β-cell exocytosis even when extracellular glucose is low; an effect that is lost upon knockdown of SENP1. Conversely, over-expression of SENP1 itself augments β-cell exocytosis in a redox-dependent manner. Taken together, we suggest that (deSUMOylation represents an important mechanism that acutely regulates insulin secretion and that SENP1 can act as an amplifier of insulin exocytosis.

  2. Non-destructive monitoring of rolling element bearing components using audio acoustics signals

    International Nuclear Information System (INIS)

    Mohd Jailani Mohd Nor; Nordin Jarnaluddin

    2003-01-01

    The main objective of this paper is to develop a non-destructive machine-component monitoring system, which is non-intrusive and non-contact in nature. Moreover, the system to be developed must be robust enough for it to be implemented in an industrial environment. The application of a desirable non-intrusive and non-contact in nature of sound pressure measurement method is difficult to carry out if the background noise level is high. This is because sound pressure measurement is dependent on the characteristics of the sound field where a measurement is carried out. For this reason, air-particle acceleration signal is introduced and utilized in this study. Air-particle acceleration is a vector quantity. Measurement of vector property will improve signal-to-noise ratio of the measured signal, even in a noisy environment. A dedicated test rig was constructed to carry out the experiments and to test the hypothesis.. Rolling element bearings were used for the experiment because of the many different types of defect that can develo p in them, such as inner race, rolling element and outer race defects. Moreover, the dynamic behavior of bearings is well understood and can be compared with experimental results obtained from the study. The results from using air-particle acceleration signals were compared with results obtained from utilising sound pressure and vibration signals. These results show that the performance of air-particle acceleration method is superior to the performance of sound pressure method. Results from the analysis of air-particle acceleration signal can clearly indicate the presence of a defective component in the test-bearing. This is so even when the overall background noise was 14dB higher than the overall noise level emitted by the defective bearing. Moreover, the sensitivity of the measurement of air-particle acceleration method to indicate the presence of a defective bearing is similar to the sensitivity when using conventional vibration equipment

  3. Novel textile systems for the continuous monitoring of vital signals: design and characterization.

    Science.gov (United States)

    Trindade, Isabel G; Martins, Frederico; Dias, Rúben; Oliveira, Cristina; Machado da Silva, José

    2015-08-01

    In this article we present a smart textile system for the continuous monitoring of cardiorespiratory signals, produced and integrated with an industrial embroidery unit. The design of a T-shirt system, having embedded textile sensors and interconnects and custom designed circuit for data collection and Bluetooth transmission is presented. The performance of skin-contact textile electrodes, having distinctive electrical characteristics and surface morphologies, was characterized by measurements of signal to noise ratio, under dry and moisture conditions. The influence of the electrodes size and the wear resistance were addressed. Results of an electrocardiogram acquisition with a subject wearing the T-shirt and display on a smartphone are also shown. The presented smart textile systems exhibit good performance and versatility for custom demand production.

  4. Scanning electron microscope image signal-to-noise ratio monitoring for micro-nanomanipulation.

    Science.gov (United States)

    Marturi, Naresh; Dembélé, Sounkalo; Piat, Nadine

    2014-01-01

    As an imaging system, scanning electron microscope (SEM) performs an important role in autonomous micro-nanomanipulation applications. When it comes to the sub micrometer range and at high scanning speeds, the images produced by the SEM are noisy and need to be evaluated or corrected beforehand. In this article, the quality of images produced by a tungsten gun SEM has been evaluated by quantifying the level of image signal-to-noise ratio (SNR). In order to determine the SNR, an efficient and online monitoring method is developed based on the nonlinear filtering using a single image. Using this method, the quality of images produced by a tungsten gun SEM is monitored at different experimental conditions. The derived results demonstrate the developed method's efficiency in SNR quantification and illustrate the imaging quality evolution in SEM. © 2014 Wiley Periodicals, Inc.

  5. Frequency Analysis of Acoustic Emission Signal to Monitor Damage Evolution in Masonry Structures

    International Nuclear Information System (INIS)

    Masera, D; Bocca, P; Grazzini, A

    2011-01-01

    A crucial aspect in damage evaluation of masonry structures is the analysis of long-term behaviour and for this reason fatigue analysis has a great influence on safety assessment of this structures. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced and unreinforced masonry walls under variable amplitude and static loading has been carried out. During these tests, the AE signals were recorded. The AE signals were analysed using Fast Fourier Transform (FFT) to examine the frequency distribution of the micro and macro cracking. It possible to evaluate the evolution of the wavelength of the AE signal through the two characteristic peak in the AE spectrum signals and the wave speed of the P or S waves. This wavelength evolution can be represent the microcrak and macrocrack evolution in masonry walls. This procedure permits to estimate the fracture dimension characteristic in several loading condition and for several masonry reinforced condition.

  6. Structural Health Monitoring of Steel Pipes under Different Boundary Conditions and Choice of Signal Processing Techniques

    Directory of Open Access Journals (Sweden)

    Rais Ahmad

    2012-01-01

    Full Text Available Guided wave technique is an efficient method for monitoring structural integrity by detecting and forecasting possible damages in distributed pipe networks. Efficient detection depends on appropriate selection of guided wave modes as well as signal processing techniques. Fourier analysis and wavelet analysis are two popular signal processing techniques that provide a flexible set of tools for solving various fundamental problems in science and engineering. In this paper, effective ways of using Fourier and Wavelet analyses on guided wave signals for detecting defects in steel pipes are discussed for different boundary conditions. This research investigates the effectiveness of Fourier transforms and Wavelet analysis in detecting defects in steel pipes. Cylindrical Guided waves are generated by piezo-electric transducers and propagated through the pipe wall boundaries in a pitch-catch system. Fourier transforms of received signals give information regarding the propagating guided wave modes which helps in detecting defects by selecting appropriate modes that are affected by the presence of defects. Continuous wavelet coefficients are found to be sensitive to defects. Several types of mother wavelet functions such as Daubechies, Symlet, and Meyer have been used for the continuous wavelet transform to investigate the most suitable wavelet function for defect detection. This research also investigates the effect of different boundary conditions on wavelet transforms for different mother wavelet functions.

  7. Monitoring of Global Acoustic Transmissions: Signal Processing and Preliminary Data Analysis

    Science.gov (United States)

    1991-09-01

    AD-A246 572 NAVAL POSTGRADUATE SCHOOL Monterey, California 0’ ff - CTE 8 FE8 2 819921 THESIS MONITORING OF GLOBAL ACOUSTIC TRANSMISSIONS: SIGNAL...balanced by the buoyancy from a main subsurface float and approximately half of the 30 " football " floats, spaced 2 meters apart, which isolated the array...from the surface gravity wave field. The main subsurface float was a 37" sphere with 475 lbs. of buoyancy. The football floats measured 7.5" x 15" and

  8. Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Elizabeth Allen

    2016-05-01

    Full Text Available Therapeutic targeting of tumor angiogenesis with VEGF inhibitors results in demonstrable, but transitory efficacy in certain human tumors and mouse models of cancer, limited by unconventional forms of adaptive/evasive resistance. In one such mouse model, potent angiogenesis inhibitors elicit compartmental reorganization of cancer cells around remaining blood vessels. The glucose and lactate transporters GLUT1 and MCT4 are induced in distal hypoxic cells in a HIF1α-dependent fashion, indicative of glycolysis. Tumor cells proximal to blood vessels instead express the lactate transporter MCT1, and p-S6, the latter reflecting mTOR signaling. Normoxic cancer cells import and metabolize lactate, resulting in upregulation of mTOR signaling via glutamine metabolism enhanced by lactate catabolism. Thus, metabolic symbiosis is established in the face of angiogenesis inhibition, whereby hypoxic cancer cells import glucose and export lactate, while normoxic cells import and catabolize lactate. mTOR signaling inhibition disrupts this metabolic symbiosis, associated with upregulation of the glucose transporter GLUT2.

  9. Novel electrochemical sensor system for monitoring metabolic activity during the growth and cultivation of prokaryotic and eukaryotic cells.

    Science.gov (United States)

    Pescheck, M; Schrader, J; Sell, D

    2005-09-01

    A novel amperometric sensor system is presented which directly reflects the metabolic activity of prokaryotic and eukaryotic cells during cultivation. The principle of an externally mounted sensor is current measurement using a three-electrode system. Only living cells are detected since the current signal is based on a redox mediator. Added to a culture sample in its oxidized form, the mediator is reduced by cellular metabolism and subsequently re-oxidized at the anode. The spontaneous immobilisation of the cells in the reaction vessel of the sensor by swelling dextrane polymers (Sephadex) prior to measurement is the key to a fast, consistent signal. Even metabolically less active mammalian cells produce a reliable signal within a few minutes; this may open up future applications of the electrochemical sensor in closed loop process control not only for bacterial and fungal bioprocesses, but also in cell culture technology.

  10. The Role of Reactive Oxygen Species in β-Adrenergic Signaling in Cardiomyocytes from Mice with the Metabolic Syndrome.

    Directory of Open Access Journals (Sweden)

    Monica Llano-Diez

    Full Text Available The metabolic syndrome is associated with prolonged stress and hyperactivity of the sympathetic nervous system and afflicted subjects are prone to develop cardiovascular disease. Under normal conditions, the cardiomyocyte response to acute β-adrenergic stimulation partly depends on increased production of reactive oxygen species (ROS. Here we investigated the interplay between beta-adrenergic signaling, ROS and cardiac contractility using freshly isolated cardiomyocytes and whole hearts from two mouse models with the metabolic syndrome (high-fat diet and ob/ob mice. We hypothesized that cardiomyocytes of mice with the metabolic syndrome would experience excessive ROS levels that trigger cellular dysfunctions. Fluorescent dyes and confocal microscopy were used to assess mitochondrial ROS production, cellular Ca2+ handling and contractile function in freshly isolated adult cardiomyocytes. Immunofluorescence, western blot and enzyme assay were used to study protein biochemistry. Unexpectedly, our results point towards decreased cardiac ROS signaling in a stable, chronic phase of the metabolic syndrome because: β-adrenergic-induced increases in the amplitude of intracellular Ca2+ signals were insensitive to antioxidant treatment; mitochondrial ROS production showed decreased basal rate and smaller response to β-adrenergic stimulation. Moreover, control hearts and hearts with the metabolic syndrome showed similar basal levels of ROS-mediated protein modification, but only control hearts showed increases after β-adrenergic stimulation. In conclusion, in contrast to the situation in control hearts, the cardiomyocyte response to acute β-adrenergic stimulation does not involve increased mitochondrial ROS production in a stable, chronic phase of the metabolic syndrome. This can be seen as a beneficial adaptation to prevent excessive ROS levels.

  11. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway.

    Science.gov (United States)

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M; Waraich, Rizwana Sanaullah

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic syndrome (MetS). CuE also ameliorated adipose tissue dysfunction by reducing hyperleptinemia and TNF-alpha levels and enhancing hypoadiponectinemia. Results show that CuE mediated these effects by attenuating Jenus kinase- Signal transducer and activator of transcription 5 (JAK- STAT5) signaling in visceral fat tissue. As a result, CuE treatment also reduced PPAR gamma expression. Glucose uptake enhanced in adipocytes after stimulation with CuE and insulin resistance diminished in mice treated with CuE, as reflected by reduced glucose intolerance and glucose stimulated insulin secretion. CuE restored insulin sensitivity indirectly by inhibiting JAK phosphorylation and improving AMPK activity. Consequently, insulin signaling was up-regulated in mice muscle. As CuE positively regulated adipose tissue function and suppressed visceral obesity, dyslipedemia, hyperglycemia and insulin resistance in mice model of MetS, we suggest that CuE can be used as novel approach to treat metabolic diseases.

  12. Quantitative Raman Spectroscopy to monitor microbial metabolism in situ under pressure

    Science.gov (United States)

    Picard, A.; Daniel, I.; Oger, P.

    2006-12-01

    Although high hydrostatic pressure (HHP) biotopes are ubiquitous on Earth, little is known about the metabolism of piezophile organisms. Cell culture under HHP can be technically challenging, and equipment- dependent. In addition, the depressurization step required for analysis can lead to erroneous data. Therefore, to understand how piezophile organisms react to pressure, it is crucial to be able to monitor their activity in situ under HHP. We developed the use of Quantitative Raman Spectroscopy (QRS, 1) to monitor in situ the metabolism of organic molecules. This technique is based on the specific spectral signature of an analyte from which its concentration can be deduced. An application of this technique to the monitoring of alcoholic fermentation by the piezotolerant micro-eucaryote Saccharomyces cerevisiae is presented. Ethanol fermentation from glucose was monitored during 24h from ambient P up to 100 MPa in the low- pressure Diamond Anvil Cell (lpDAC, 2). The experimental compression chamber consisted in a 300 μm-thick Ni gasket in which a 500 μm-diameter hole was drilled. Early-stationnary yeast cells were inoculated into fresh low-fluorescence medium containing 0.15 M of glucose. Ethanol concentration was determined in situ by QRS using the symmetric C-C stretching mode of ethanol at 878 cm-1 normalizing the data to the intensity of the sulfate S-O stretching mode at 980 cm-1. In our setup, the detection limit of ethanol is lower than 0.05 mM with a precision below 1%. At ambient P, ethanol production in the lpDAC and in control experiments proceeds with the same kinetics. Thus, yeast is not affected by its confinement. This is further confirmed by its ability to bud with a generation time similar to control experiments performed in glass tubes at ambient pressure inside the lpDAC. Ethanol production by yeast occurs to at least 65 MPa (3). At 10 MPa, fermentation proceeds 3 times faster than at ambient P. Fermentation rates decrease linearly from 20 to

  13. Information selection and signal probability in multisource monitoring under the influence of centrally active drugs : Phentermine versus pentobarbital

    NARCIS (Netherlands)

    Volkerts, E.R; van Laar, M.W; Verbaten, M.N; Mulder, G.; Maes, R.A A

    1996-01-01

    The present study is concerned with the relationship between drug-induced arousal shifts and sampling [(monitoring)] behaviour in a three-source task with an a priori signal occurrence probability of 0.6, 0.3, and 0.1. The multisource monitoring task and procedure was adopted from Hockey (1973) who

  14. An in-vacuum wall current monitor and low cost signal sampling system

    International Nuclear Information System (INIS)

    Yin, Y.; Rawnsley, W.R.; Mackenzie, G.H.

    1993-11-01

    The beam bunches extracted from the TRIUMF cyclotron are usually about 4 ns long, contain ∼ 4 x 10 7 protons, and are spaced at 43 ns. A wall current monitor capable of giving the charge distribution within a bunch, on a bunch by bunch basis, has recently been installed together with a sampling system for routine display in the control room. The wall current monitor is enclosed in a vacuum vessel and no ceramic spacer is required. This enhances the response to high frequencies, ferrite rings extend the low frequency response. Bench measurements show a flat response between a few hundred kilohertz and 4.6 GHz. For a permanent display in the control room the oscilloscope will be replaced by a Stanford Research Systems fast sampler module, a scanner module, and an interface module made at TRIUMF. The time to acquire one 10 ns distribution encompassing the beam bunch is 30 ms with a sample width of 100 ps and an average sample spacing of 13 ps. The scan, sample, and retrace signals are buffered carried on 70 m differential lines to the control room. An analog scope in XYZ mode provides a real time display. Signal averaging can be performed by using a digital oscilloscope in YT mode. (author). 6 refs., 2 tabs., 7 figs

  15. Monitoring of seismoelectric signal in homogeneous sand as a function of water saturation

    Science.gov (United States)

    Sénéchal, P.; Barrière, J.; Bordes, C.

    2010-12-01

    The seismo-electromagnetic method consists to measure the electrical field induced by seismic wave propagation. The electrokinetic coupling between seismic waves and electrical fields is sensitive to the pore fluid properties and fluid flow permeability which are significant hydrogeological properties. The role of water content on electrokinetic coupling is generally studied for low frequency phenomena (electrofiltration) but is unknown for seismoelectric effect. Indeed the role of water-content is very important for hydrologic and reservoir geophysical applications. Then, we propose to monitor seismoelectric signals as a function of water saturation in homogeneous unconsolidated sand (99% silica). Experimental data are obtained in the laboratory with a specifically experimental device including acoustic source (0- 20 Khz), 10 accelerometers (0.0001-17 Khz), 9 dipoles, 6 soil moisture sensors placed in a container full of sand (107 cm x 34 cm x 35 cm). Three cycles of imbibition-drainage are operated in a water saturation range from 0% to 95%. Injection and pumping of water are operated through three piezometers located in the container. The water content is measured continuously during the monitoring, porosity and permeability of medium and fluid conductivity are also determined. We present the characteristics of seismo-electric signal as a function of water content and we analyse the transfert function from seismic to seismoelectric energy.

  16. Subcellular compartmentation of sugar signalling: Links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning

    Directory of Open Access Journals (Sweden)

    Axel eTiessen

    2013-01-01

    Full Text Available Recent findings suggest that both subcellular compartmentation and route of sucrolysis are important for plant development, growth, and yield. Signalling effects are dependent on the tissue, cell type and stage of development. Downstream effects also depend on the amount and localisation of hexoses and disaccharides. All enzymes of sucrose metabolism (e.g. invertase, hexokinase, fructokinase, sucrose synthase, and sucrose 6-phosphate synthase are not produced from single genes, but from paralogue families in plant genomes. Each paralogue has unique expression across plant organs and developmental stages. Multiple isoforms can be targeted to different cellular compartments (e.g. plastids, mitochondria, nuclei, and cytosol. Many of the key enzymes are regulated by post-transcriptional modifications and associate in multimeric protein complexes. Some isoforms have regulatory functions, either in addition to or in replacement of their catalytic activity. This explains why some isozymes are not redundant, but also complicates elucidation of their specific involvement in sugar signalling. The subcellular compartmentation of sucrose metabolism forces refinement of some of the paradigms of sugar signalling during physiological processes. For example, the catalytic and signalling functions of diverse paralogues needs to be more carefully analysed in the context of post-genomic biology. It is important to note that it is the differential localization of both the sugars themselves as well as the sugar-metabolizing enzymes that ultimately led to sugar signalling. We conclude that a combination of subcellular complexity and gene duplication/subfunctionalization gave rise to sugar signalling as a regulatory mechanism in plant cells.

  17. Metabolic gene-targeted monitoring of non-starter lactic acid bacteria during cheese ripening.

    Science.gov (United States)

    Levante, Alessia; De Filippis, Francesca; La Storia, Antonietta; Gatti, Monica; Neviani, Erasmo; Ercolini, Danilo; Lazzi, Camilla

    2017-09-18

    Long ripened cheeses, such as Grana Padano (GP), a Protected Designation of Origin (PDO) Italian cheese, harbor a viable microbiota mainly composed of non-starter lactic acid bacteria (NSLAB), which contribute to the final characteristics of cheese. The NSLAB species Lactobacillus rhamnosus, Lb. casei and Lb. paracasei are frequently found in GP, and form a closely related taxonomic group (Lb. casei group), making it difficult to distinguish the three species through 16S rRNA sequencing. SpxB, a metabolic gene coding for pyruvate oxidase in Lb. casei group, was recently used to distinguish the species within this bacterial group, both in pure cultures and in cheese, where it could provide an alternative energy source through the conversion of pyruvate to acetate. The aim of this work was to study the evolution of the metabolically active microbiota during different stages of GP ripening, targeting 16S rRNA to describe the whole microbiota composition, and spxB gene to monitor the biodiversity within the Lb. casei group. Furthermore, activation of pyruvate oxidase pathway was measured directly in cheese by reverse transcription real time PCR (RT-qPCR). The results showed that Lb. casei group dominates throughout the ripening and high-throughput sequencing of spxB allowed to identify four clusters inside the Lb. casei group. The dynamics of the sequence types forming the clusters were followed during ripening. Pyruvate oxidase pathway was expressed in cheese, showing a decreasing trend over ripening time. This work highlights how the composition of the microbiota in the early manufacturing stages influences the microbial dynamics throughout ripening, and how targeting of a metabolic gene can provide an insight into the activity of strains relevant for dairy products. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Endocultivation: metabolism during heterotopic osteoinduction in vivo--monitoring with fiber optic detection devices.

    Science.gov (United States)

    Beck-Broichsitter, Benedicta Elisabeth; Christofzik, David W; Daschner, Frank; Knöchel, Reinhard; Smeets, Ralf; Warnke, Patrick; Wiltfang, Jörg; Becker, Stephan T

    2012-10-01

    Reconstructions of facial bone defects are one of the most challenging aspects in surgical treatment of malignant diseases, large facial traumata, or congenital anomalies. High-level reconstruction techniques are often associated with an elevated morbidity by the harvest of autologous bone grafts from the patient. Tissue engineering techniques may help to solve this problem. The aim of this study was to monitor metabolic processes during cellular colonization of matrices in vivo in an established rat model for endocultivation. After implantation of computer-designed hydroxyapatite scaffolds into the latissimus dorsi muscle of six rats, 100 μg bone morphogenetic protein-2 (BMP-2) was injected twice, in week 1 and 2, directly into the center of the matrices. The development of pH value and oxygen (O₂) saturation inside the matrix was followed by fiber optic detection technique over 8 weeks and analyzed by variance analyses. Bone density measurements were performed by computed tomography as well as histological evaluations. Two weeks after implantation, oxygen supply and pH value measurements had decreased significantly. In the following weeks both parameters increased and stabilized on higher levels. This is the first study reporting a reproducible method to follow metabolic processes during heterotopic osteoinduction in vivo. It was shown that in the beginning of the study pH value and O₂ saturation decreased and it took several weeks to regain physiological levels. This is an important step to further understand the physiological process of bone induction.

  19. Drosophila proteins involved in metabolism of uracil-DNA possess different types of nuclear localization signals.

    Science.gov (United States)

    Merényi, Gábor; Kónya, Emese; Vértessy, Beáta G

    2010-05-01

    Adequate transport of large proteins that function in the nucleus is indispensable for cognate molecular events within this organelle. Selective protein import into the nucleus requires nuclear localization signals (NLS) that are recognized by importin receptors in the cytoplasm. Here we investigated the sequence requirements for nuclear targeting of Drosophila proteins involved in the metabolism of uracil-substituted DNA: the recently identified uracil-DNA degrading factor, dUTPase, and the two uracil-DNA glycosylases present in Drosophila. For the uracil-DNA degrading factor, NLS prediction identified two putative NLS sequences [PEKRKQE(320-326) and PKRKKKR(347-353)]. Truncation and site-directed mutagenesis using YFP reporter constructs showed that only one of these basic stretches is critically required for efficient nuclear localization in insect cells. This segment corresponds to the well-known prototypic NLS of SV40 T-antigen. An almost identical NLS segment is also present in the Drosophila thymine-DNA glycosylase, but no NLS elements were predicted in the single-strand-specific monofunctional uracil-DNA glycosylase homolog protein. This latter protein has a molecular mass of 31 kDa, which may allow NLS-independent transport. For Drosophila dUTPase, two isoforms with distinct features regarding molecular mass and subcellular distribution were recently described. In this study, we characterized the basic PAAKKMKID(10-18) segment of dUTPase, which has been predicted to be a putative NLS by in silico analysis. Deletion studies, using YFP reporter constructs expressed in insect cells, revealed the importance of the PAA(10-12) tripeptide and the ID(17-18) dipeptide, as well as the role of the PAAK(10-13) segment in nuclear localization of dUTPase. We constructed a structural model that shows the molecular basis of such recognition in three dimensions.

  20. Three-Dimensional EEG Signal Tracking for Reproducible Monitoring of Self-Contemplating Imagination

    Directory of Open Access Journals (Sweden)

    Qinglei Meng

    2017-08-01

    Full Text Available Electroencephalography (EEG can globally monitor neural activity in millisecond scale, which is critical for identifying causality of human brain functions and mechanisms. However, to obtain accurate EEG stimulation-response relationship one usually needs to repeat multiple-ten times of stimulation-response recording to average out background signals of other irreverent brain activities, making real-time monitoring difficult to be accomplished. In this study, we explored new approaches which don’t require repeats. EEG signals were recorded from subjects doing mind tasks including image formation of motor functions or emotional subjects and mathematical calculations in mind. Time stamps in EEG recording were used to mark task completion time. Signals within 300ms or 1,000ms before task completions were analyzed. Using sLoreta 3-D tracking we found that delta-wave activities were mostly located at frontal lobe or visual cortex, isolated with each other. Theta-wave activity tended to rotate around cortex with low spatial correlation. Beta-wave behaved like inquiry types of oscillations between any two regions across cortex and was consistently correlated with each other over different areas. Alpha-wave activity looked like mixture of theta and beta activities. Together with sliding window dynamic connectivity method we confirmed beta waves play key roles in linking different brain areas together for information inquiry. Theta and low Alpha are more likely playing the role of information control, integration, and image formation. With the proposed new method we demonstrated reproducible linkages of subject behaviors with 3-D tracing characteristics along the 3 categories: emotion, math calculation, and motor functions without using event repeats.

  1. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring

    Directory of Open Access Journals (Sweden)

    Alexander Caicedo

    2016-11-01

    Full Text Available Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP, assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + _. SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first three days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen

  2. Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis.

    Science.gov (United States)

    Apelian, Clement; Harms, Fabrice; Thouvenin, Olivier; Boccara, A Claude

    2016-04-01

    We developed a new endogenous approach to reveal subcellular metabolic contrast in fresh ex vivo tissues taking advantage of the time dependence of the full field optical coherence tomography interferometric signals. This method reveals signals linked with local activity of the endogenous scattering elements which can reveal cells where other OCT-based techniques fail or need exogenous contrast agents. We benefit from the micrometric transverse resolution of full field OCT to image intracellular features. We used this time dependence to identify different dynamics at the millisecond scale on a wide range of organs in normal or pathological conditions.

  3. Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle.

    Science.gov (United States)

    Al-Naji, Ali; Perera, Asanka G; Chahl, Javaan

    2017-08-08

    Remote physiological measurement might be very useful for biomedical diagnostics and monitoring. This study presents an efficient method for remotely measuring heart rate and respiratory rate from video captured by a hovering unmanned aerial vehicle (UVA). The proposed method estimates heart rate and respiratory rate based on the acquired signals obtained from video-photoplethysmography that are synchronous with cardiorespiratory activity. Since the PPG signal is highly affected by the noise variations (illumination variations, subject's motions and camera movement), we have used advanced signal processing techniques, including complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and canonical correlation analysis (CCA) to remove noise under these assumptions. To evaluate the performance and effectiveness of the proposed method, a set of experiments were performed on 15 healthy volunteers in a front-facing position involving motion resulting from both the subject and the UAV under different scenarios and different lighting conditions. The experimental results demonstrated that the proposed system with and without the magnification process achieves robust and accurate readings and have significant correlations compared to a standard pulse oximeter and Piezo respiratory belt. Also, the squared correlation coefficient, root mean square error, and mean error rate yielded by the proposed method with and without the magnification process were significantly better than the state-of-the-art methodologies, including independent component analysis (ICA) and principal component analysis (PCA).

  4. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling.

    Science.gov (United States)

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-05-06

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. Copyright © 2017. Published by Elsevier Inc.

  5. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System.

    Science.gov (United States)

    Ye, Xiao-Wei; Su, You-Hua; Xi, Pei-Sen

    2018-02-07

    In this paper, a fiber Bragg grating (FBG)-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA)-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC). Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW). The stochastic characteristic of stress concentration factor (SCF) of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges.

  6. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ye

    2018-02-01

    Full Text Available In this paper, a fiber Bragg grating (FBG-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC. Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW. The stochastic characteristic of stress concentration factor (SCF of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges.

  7. Monitoring of Bio-signal of People on Flooring, Tatami and in Bathtub, Toilet

    Science.gov (United States)

    Kurihara, Yosuke; Kawanishi, Yoshihiro; Watanabe, Kajiro; Kobayashi, Kazuyuki; Tanaka, Hiroshi

    In the graying Japanese society, monitoring health-related human data with sensors embedded in the living environment is quite meaningful in terms of emergency response and of long-term health management. In using the body data monitoring system daily at home, the lack of invasiveness during the monitoring and the maintenance of the system are of great importance. We have proposed the method to surmise the sleep stages of sleeping subjects by measuring the heartbeats and the respirations without invasiveness using the pneumatic method with an air mattress. This method, however, has a problem in the maintenance, since it requires periodic refilling of the air into the mattress. In this paper, another pneumatic method, which applies silicon tubes instead of the air mattress, is proposed. The change of S/N ratio in heartbeat and respiration signals, while having the environmental noises increased, are compared among a room with wooden flooring, another with tatami mats, a bath tub, and a toilet room. The result shows that both the pulse waves and the breaths can be measured with the accuracy of around 30dB, and the identification of each pulse from among the pulse waves is also feasible, under the condition that the environmental noises in the room with wooden flooring, that with tatami mats, the bath tub, and the rest room are 0.01G, 0.09G, 100ml, and 0.01G respectively.

  8. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms

    OpenAIRE

    Guo, Shaodong

    2014-01-01

    Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal stud...

  9. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    International Nuclear Information System (INIS)

    Buchanan, M.V.

    2000-01-01

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis

  10. Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling.

    Science.gov (United States)

    Kang, Hee-Bum; Fan, Jun; Lin, Ruiting; Elf, Shannon; Ji, Quanjiang; Zhao, Liang; Jin, Lingtao; Seo, Jae Ho; Shan, Changliang; Arbiser, Jack L; Cohen, Cynthia; Brat, Daniel; Miziorko, Henry M; Kim, Eunhee; Abdel-Wahab, Omar; Merghoub, Taha; Fröhling, Stefan; Scholl, Claudia; Tamayo, Pablo; Barbie, David A; Zhou, Lu; Pollack, Brian P; Fisher, Kevin; Kudchadkar, Ragini R; Lawson, David H; Sica, Gabriel; Rossi, Michael; Lonial, Sagar; Khoury, Hanna J; Khuri, Fadlo R; Lee, Benjamin H; Boggon, Titus J; He, Chuan; Kang, Sumin; Chen, Jing

    2015-08-06

    Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires" metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. MONITORING HIGH-FREQUENCY OCEAN SIGNALS USING LOW-COST GNSS/IMU BUOYS

    Directory of Open Access Journals (Sweden)

    Y.-L. Huang

    2016-06-01

    Full Text Available In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS or Precise Point Positioning (PPP solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  12. Persistence of metabolic monitoring for psychiatry inpatients treated with second-generation antipsychotics utilizing a computer-based intervention.

    Science.gov (United States)

    Lee, J; Dalack, G W; Casher, M I; Eappen, S A; Bostwick, J R

    2016-04-01

    Monitoring and intervention for metabolic abnormalities secondary to second-generation antipsychotics (SGAs) remain weak areas of performance in mental health care. This study evaluated the sustained impact of a computerized physician order entry (CPOE) pop-up alert designed to improve rates of laboratory metabolic monitoring of patients treated with SGAs in an inpatient psychiatry unit. Interventions carried out by the psychiatry team to manage metabolic abnormalities found on screening were also identified. A retrospective chart review of patients treated with scheduled SGAs at a large Midwestern academic medical centre's inpatient adult psychiatry unit was conducted nearly 4 years after the initial implementation of a pop-up alert. Rates of laboratory monitoring (blood glucose level, haemoglobin A1C [HbA1c], lipid panel) were compared to those following the initial implementation. Medical charts of patients with abnormal laboratory results were also reviewed to summarize interventions made by the psychiatry team to manage identified abnormalities. Patient demographics in the current study population (n = 129) were similar to those in the initial test cohort (n = 157). There was no significant decrease in monitoring of glucose levels and lipid panels (fasting or random). Nine patients with abnormally elevated laboratories were identified. Interventions by the psychiatry team included referrals to appropriate healthcare professionals and initiation of medication. The rate of metabolic monitoring for inpatients on SGA therapy did not significantly change over time with the continued use of the CPOE pop-up alert. Optimal monitoring utilizing a CPOE pop-up alert may allow the psychiatry team, including psychiatric pharmacists, to better manage metabolic conditions. © 2016 John Wiley & Sons Ltd.

  13. Temperature dataloggers as stove use monitors (SUMs): Field methods and signal analysis

    Science.gov (United States)

    Ruiz-Mercado, Ilse; Canuz, Eduardo; Smith, Kirk R.

    2013-01-01

    We report the field methodology of a 32-month monitoring study with temperature dataloggers as Stove Use Monitors (SUMs) to quantify usage of biomass cookstoves in 80 households of rural Guatemala. The SUMs were deployed in two stoves types: a well-operating chimney cookstove and the traditional open-cookfire. We recorded a total of 31,112 days from all chimney cookstoves, with a 10% data loss rate. To count meals and determine daily use of the stoves we implemented a peak selection algorithm based on the instantaneous derivatives and the statistical long-term behavior of the stove and ambient temperature signals. Positive peaks with onset and decay slopes exceeding predefined thresholds were identified as “fueling events”, the minimum unit of stove use. Adjacent fueling events detected within a fixed-time window were clustered in single “cooking events” or “meals”. The observed means of the population usage were: 89.4% days in use from all cookstoves and days monitored, 2.44 meals per day and 2.98 fueling events. We found that at this study site a single temperature threshold from the annual distribution of daily ambient temperatures was sufficient to differentiate days of use with 0.97 sensitivity and 0.95 specificity compared to the peak selection algorithm. With adequate placement, standardized data collection protocols and careful data management the SUMs can provide objective stove-use data with resolution, accuracy and level of detail not possible before. The SUMs enable unobtrusive monitoring of stove-use behavior and its systematic evaluation with stove performance parameters of air pollution, fuel consumption and climate-altering emissions. PMID:25225456

  14. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes.

    Directory of Open Access Journals (Sweden)

    Kenkichi Takase

    Full Text Available The demand for meta-analyses in basic biomedical research has been increasing because the phenotyping of genetically modified mice does not always produce consistent results. Melanin-concentrating hormone (MCH has been reported to be involved in a variety of behaviors that include feeding, body-weight regulation, anxiety, sleep, and reward behavior. However, the reported behavioral and metabolic characteristics of MCH signaling-deficient mice, such as MCH-deficient mice and MCH receptor 1 (MCHR1-deficient mice, are not consistent with each other. In the present study, we performed a meta-analysis of the published data related to MCH-deficient and MCHR1-deficient mice to obtain robust conclusions about the role of MCH signaling. Overall, the meta-analysis revealed that the deletion of MCH signaling enhanced wakefulness, locomotor activity, aggression, and male sexual behavior and that MCH signaling deficiency suppressed non-REM sleep, anxiety, responses to novelty, startle responses, and conditioned place preferences. In contrast to the acute orexigenic effect of MCH, MCH signaling deficiency significantly increased food intake. Overall, the meta-analysis also revealed that the deletion of MCH signaling suppressed the body weight, fat mass, and plasma leptin, while MCH signaling deficiency increased the body temperature, oxygen consumption, heart rate, and mean arterial pressure. The lean phenotype of the MCH signaling-deficient mice was also confirmed in separate meta-analyses that were specific to sex and background strain (i.e., C57BL/6 and 129Sv. MCH signaling deficiency caused a weak anxiolytic effect as assessed with the elevated plus maze and the open field test but also caused a weak anxiogenic effect as assessed with the emergence test. MCH signaling-deficient mice also exhibited increased plasma corticosterone under non-stressed conditions, which suggests enhanced activity of the hypothalamic-pituitary-adrenal axis. To the best of our

  15. Rewiring AMPK and Mitochondrial Retrograde Signaling for Metabolic Control of Aging and Histone Acetylation in Respiratory-Defective Cells

    Directory of Open Access Journals (Sweden)

    R. Magnus N. Friis

    2014-04-01

    Full Text Available Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ0 yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA availability, we sought interventions that suppress this ρ0 phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG response and the AMPK (Snf1 pathway prevents abnormal histone deacetylation in ρ0 cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ0 cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ0 cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions.

  16. BMP4 Cross-talks With Estrogen/ERα Signaling to Regulate Adiposity and Glucose Metabolism in Females

    Directory of Open Access Journals (Sweden)

    Shu-wen Qian

    2016-09-01

    Full Text Available Similar to estrogens, bone morphogenetic protein 4 (BMP4 promotes the accumulation of more metabolically active subcutaneous fat and reduction of visceral fat. However, whether there is a cross-talk between BMP4 and estrogen signaling remained unknown. Herein, we found that BMP4 deficiency in white adipose tissue (WAT increased the estrogen receptor α (ERα level and its signaling, which prevented adult female mice from developing high fat diet (HFD-induced obesity and insulin resistance; estrogens depletion up regulated BMP4 expression to overcome overt adiposity and impaired insulin sensitivity with aging, and failure of BMP4 regulation due to genetic knockout led to more fat gain in aged female mice. This mutual regulation between BMP4 and estrogen/ERα signaling may also happen in adipose tissue of women, since the BMP4 level significantly increased after menopause, and was inversely correlated with body mass index (BMI. These findings suggest a counterbalance between BMP4 and estrogen/ERα signaling in the regulation of adiposity and relative metabolism in females.

  17. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring.

    Science.gov (United States)

    Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman

    2017-07-13

    Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.

  18. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lin, Wen-Yen; Chang, Po-Cheng; Lee, Ming-Yih

    2018-01-28

    Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the

  19. A Versatile Vector for In Vivo Monitoring of Type I Interferon Induction and Signaling.

    Directory of Open Access Journals (Sweden)

    Estanislao Nistal-Villan

    Full Text Available Development of reporter systems for in vivo examination of IFN-β induction or signaling of type I interferon (IFN-I pathways is of great interest in order to characterize biological responses to different inducers such as viral infections. Several reporter mice have been developed to monitor the induction of both pathways in response to different agonists. However, alternative strategies that do not require transgenic mice breeding have to date not been reported. In addition, detection of these pathways in vivo in animal species other than mice has not yet been addressed. Herein we describe a simple method based on the use of an adeno-associated viral vector (AAV8-3xIRF-ISRE-Luc containing an IFN-β induction and signaling-sensitive promoter sequence controlling the expression of the reporter gene luciferase. This vector is valid for monitoring IFN-I responses in vivo elicited by diverse stimuli in different organs. Intravenous administration of the vector in C57BL/6 mice and Syrian hamsters was able to detect activation of the IFN pathway in the liver upon systemic treatment with different pro-inflammatory agents and infection with Newcastle disease virus (NDV. In addition, intranasal instillation of AAV8-3xIRF-ISRE-Luc showed a rapid and transient IFN-I response in the respiratory tract of mice infected with the influenza A/PR8/34 virus lacking the NS1 protein. In comparison, this response was delayed and exacerbated in mice infected with influenza A/PR/8 wild type virus. In conclusion, the AAV8-3xIRF-ISRE-Luc vector offers the possibility of detecting IFN-I activation in response to different stimuli and in different animal models with no need for reporter transgenic animals.

  20. Automatic Change Detection for Real-Time Monitoring of EEG Signals

    Directory of Open Access Journals (Sweden)

    Zhen Gao

    2018-04-01

    Full Text Available In recent years, automatic change detection for real-time monitoring of electroencephalogram (EEG signals has attracted widespread interest with a large number of clinical applications. However, it is still a challenging problem. This paper presents a novel framework for this task where joint time-domain features are firstly computed to extract temporal fluctuations of a given EEG data stream; and then, an auto-regressive (AR linear model is adopted to model the data and temporal anomalies are subsequently calculated from that model to reflect the possibilities that a change occurs; a non-parametric statistical test based on Randomized Power Martingale (RPM is last performed for making change decision from the resulting anomaly scores. We conducted experiments on the publicly-available Bern-Barcelona EEG database where promising results for terms of detection precision (96.97%, detection recall (97.66% as well as computational efficiency have been achieved. Meanwhile, we also evaluated the proposed method for real detection of seizures occurrence for a monitoring epilepsy patient. The results of experiments by using both the testing database and real application demonstrated the effectiveness and feasibility of the method for the purpose of change detection in EEG signals. The proposed framework has two additional properties: (1 it uses a pre-defined AR model for modeling of the past observed data so that it can be operated in an unsupervised manner, and (2 it uses an adjustable threshold to achieve a scalable decision making so that a coarse-to-fine detection strategy can be developed for quick detection or further analysis purposes.

  1. Metabolic fate of glucose and candidate signaling and excess-fuel detoxification pathways in pancreatic β-cells.

    Science.gov (United States)

    Mugabo, Yves; Zhao, Shangang; Lamontagne, Julien; Al-Mass, Anfal; Peyot, Marie-Line; Corkey, Barbara E; Joly, Erik; Madiraju, S R Murthy; Prentki, Marc

    2017-05-05

    Glucose metabolism promotes insulin secretion in β-cells via metabolic coupling factors that are incompletely defined. Moreover, chronically elevated glucose causes β-cell dysfunction, but little is known about how cells handle excess fuels to avoid toxicity. Here we sought to determine which among the candidate pathways and coupling factors best correlates with glucose-stimulated insulin secretion (GSIS), define the fate of glucose in the β-cell, and identify pathways possibly involved in excess-fuel detoxification. We exposed isolated rat islets for 1 h to increasing glucose concentrations and measured various pathways and metabolites. Glucose oxidation, oxygen consumption, and ATP production correlated well with GSIS and saturated at 16 mm glucose. However, glucose utilization, glycerol release, triglyceride and glycogen contents, free fatty acid (FFA) content and release, and cholesterol and cholesterol esters increased linearly up to 25 mm glucose. Besides being oxidized, glucose was mainly metabolized via glycerol production and release and lipid synthesis (particularly FFA, triglycerides, and cholesterol), whereas glycogen production was comparatively low. Using targeted metabolomics in INS-1(832/13) cells, we found that several metabolites correlated well with GSIS, in particular some Krebs cycle intermediates, malonyl-CoA, and lower ADP levels. Glucose dose-dependently increased the dihydroxyacetone phosphate/glycerol 3-phosphate ratio in INS-1(832/13) cells, indicating a more oxidized state of NAD in the cytosol upon glucose stimulation. Overall, the data support a role for accelerated oxidative mitochondrial metabolism, anaplerosis, and malonyl-CoA/lipid signaling in β-cell metabolic signaling and suggest that a decrease in ADP levels is important in GSIS. The results also suggest that excess-fuel detoxification pathways in β-cells possibly comprise glycerol and FFA formation and release extracellularly and the diversion of glucose carbons to

  2. Combination of digital signal processing methods towards an improved analysis algorithm for structural health monitoring.

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Makris, John P.

    2013-04-01

    In Structural Health Monitoring (SHM) is of great importance to reveal valuable information from the recorded SHM data that could be used to predict or indicate structural fault or damage in a building. In this work a combination of digital signal processing methods, namely FFT along with Wavelet Transform is applied, together with a proposed algorithm to study frequency dispersion, in order to depict non-linear characteristics of SHM data collected in two university buildings under natural or anthropogenic excitation. The selected buildings are of great importance from civil protection point of view, as there are the premises of a public higher education institute, undergoing high use, stress, visit from academic staff and students. The SHM data are collected from two neighboring buildings that have different age (4 and 18 years old respectively). Proposed digital signal processing methods are applied to the data, presenting a comparison of the structural behavior of both buildings in response to seismic activity, weather conditions and man-made activity. Acknowledgments This work was supported in part by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) » and is co-financed by the European Union (European Social Fund) and Greek National Fund.

  3. Development of an induction motor abnormality monitoring system(IMAMS) using power line signal analysis

    International Nuclear Information System (INIS)

    Jung, Jae Cheon

    1997-02-01

    An induction motor abnormality monitoring system using power line signal analysis is developed in this work. Various studies have focused their attention on the detection of particular harmonic frequencies produced from each defect mode of motors. However, these harmonic frequencies are valuable only when the motor has a continuous slip frequency and operate in constant torque/load condition. The basic concept of the system developed in this work is to detect the characteristic harmonic frequencies occurred when the motor is in abnormal state and to compare it with a predetermined setpoint. Based on these analyses, the place and degree of defect can be easily identified. The experimental results under test bench simulation are also introduced. To find out an alternative way to obtain a threshold level independent of slip/torque, with the rotating field theory, the ratio between harmonic current and total current was calculated with the simplified circuit that is equivalent to two abnormal cases, such as the spatial rotor resistance variation and the symmetrical components changes with field. Also, the threshold level calculation was done with performed the rotating field theory. The results show that they are in good agreement with a experimental results. Further studies are undertaken to extend this work to the on-line monitoring and diagnostic system with a likelihood ratio test method for field application

  4. TLP Structural Health Monitoring Based on Vibration Signal of Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Vahid Jahangiri

    Full Text Available Abstract Structural Health Monitoring (SHM of Tension Leg Platform (TLP is very crucial for preventing catastrophic and sudden collapse of the structures. One of the methods of monitoring these structures is implementing SHM sensors. Supplying energy for these sensors for a long period is a challenging problem. So, one of the new methods of supplying energy for SHM, is usage of mechanical energy. In this method, the piezoelectric material is employed to convert the mechanical energy which is resulted from vibration of structure, to electrical energy. The advantage of this method is based on not implementing the battery charging system. Therefore, in this paper, after modeling TLP structure, energy supplying of these sensors with piezoelectric converters is studied. Furthermore, fault diagnosis of these structures in the presence of different uncertainties is proposed by the features of voltage signal, produced from piezoelectric patches and fuzzy classification method. Results show that this method can diagnose faults of the structure with an acceptable success rate.

  5. Design, development and test of the gearbox condition monitoring system using sound signal processing

    Directory of Open Access Journals (Sweden)

    M Zamani

    2016-09-01

    Full Text Available Introduction One of the ways used for minimizing the cost of maintenance and repairs of rotating industrial equipment is condition monitoring using acoustic analysis. One of the most important problems which always have been under consideration in industrial equipment application is confidence possibility. Each dynamic, electrical, hydraulic or thermal system has certain characteristics which show the normal condition of the machine during function. Any changes of the characteristics can be a signal of a problem in the machine. The aim of condition monitoring is system condition determination using measurements of the signals of characteristics and using this information for system impairment prognostication. There are a lot of ways for condition monitoring of different systems, but sound analysis is accepted and used extensively as a method for condition investigation of rotating machines. The aim of this research is the design and construction of considered gearbox and using of obtaining data in frequency and time spectrum in order to analyze the sound and diagnosis. Materials and Methods This research was conducted at the department of mechanical biosystem workshop at Aboureihan College at Tehran University in February 15th.2015. In this research, in order to investigate the trend of diagnosis and gearbox condition, a system was designed and then constructed. The sound of correct and damaged gearbox was investigated by audiometer and stored in computer for data analysis. Sound measurement was done in three pinions speed of 749, 1050 and 1496 rpm and for correct gearboxes, damage of the fracture of a tooth and a tooth wear. Gearbox design and construction: In order to conduct the research, a gearbox with simple gearwheels was designed according to current needs. Then mentioned gearbox and its accessories were modeled in CATIA V5-R20 software and then the system was constructed. Gearbox is a machine that is used for mechanical power transition

  6. Metabolism

    Science.gov (United States)

    ... functions: Anabolism (uh-NAB-uh-liz-um), or constructive metabolism, is all about building and storing. It ... in infants and young children. Hypothyroidism slows body processes and causes fatigue (tiredness), slow heart rate, excessive ...

  7. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  8. Endothelial cell-derived matrix promotes the metabolic functional maturation of hepatocyte via integrin-Src signalling.

    Science.gov (United States)

    Guo, Xinyue; Li, Weihong; Ma, Minghui; Lu, Xin; Zhang, Haiyan

    2017-11-01

    The extracellular matrix (ECM) microenvironment is involved in the regulation of hepatocyte phenotype and function. Recently, the cell-derived extracellular matrix has been proposed to represent the bioactive and biocompatible materials of the native ECM. Here, we show that the endothelial cell-derived matrix (EC matrix) promotes the metabolic maturation of human adipose stem cell-derived hepatocyte-like cells (hASC-HLCs) through the activation of the transcription factor forkhead box protein A2 (FOXA2) and the nuclear receptors hepatocyte nuclear factor 4 alpha (HNF4α) and pregnane X receptor (PXR). Reducing the fibronectin content in the EC matrix or silencing the expression of α5 integrin in the hASC-HLCs inhibited the effect of the EC matrix on Src phosphorylation and hepatocyte maturation. The inhibition of Src phosphorylation using the inhibitor PP2 or silencing the expression of Src in hASC-HLCs also attenuated the up-regulation of the metabolic function of hASC-HLCs in a nuclear receptor-dependent manner. These data elucidate integrin-Src signalling linking the extrinsic EC matrix signals and metabolic functional maturation of hepatocyte. This study provides a model for studying the interaction between hepatocytes and non-parenchymal cell-derived matrix. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  10. Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring.

    Science.gov (United States)

    Castro, Ivan D; Varon, Carolina; Torfs, Tom; Van Huffel, Sabine; Puers, Robert; Van Hoof, Chris

    2018-02-13

    Sleep-related conditions require high-cost and low-comfort diagnosis at the hospital during one night or longer. To overcome this situation, this work aims to evaluate an unobtrusive monitoring technique for sleep apnea. This paper presents, for the first time, the evaluation of contactless capacitively-coupled electrocardiography (ccECG) signals for the extraction of sleep apnea features, together with a comparison of different signal quality indicators. A multichannel ccECG system is used to collect signals from 15 subjects in a sleep environment from different positions. Reference quality labels were assigned for every 30-s segment. Quality indicators were calculated, and their signal classification performance was evaluated. Features for the detection of sleep apnea were extracted from capacitive and reference signals. Sleep apnea features related to heart rate and heart rate variability achieved high similarity to the reference values, with p -values of 0.94 and 0.98, which is in line with the more than 95% beat-matching obtained. Features related to signal morphology presented lower similarity with the reference, although signal similarity metrics of correlation and coherence were relatively high. Quality-based automatic classification of the signals had a maximum accuracy of 91%. Best-performing quality indicators were based on template correlation and beat-detection. Results suggest that using unobtrusive cardiac signals for the automatic detection of sleep apnea can achieve similar performance as contact signals, and indicates clinical value of ccECG. Moreover, signal segments can automatically be classified by the proposed quality metrics as a pre-processing step. Including contactless respiration signals is likely to improve the performance and provide a complete unobtrusive cardiorespiratory monitoring solution; this is a promising alternative that will allow the screening of more patients with higher comfort, for a longer time, and at a reduced cost.

  11. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.

  12. A signal processing application for evaluating self-monitoring blood glucose strategies in a software agent model.

    Science.gov (United States)

    Wang, Zhanle; Paranjape, Raman

    2015-07-01

    We propose the signal processing technique of calculating a cross-correlation function and an average deviation between the continuous blood glucose and the interpolation of limited blood glucose samples to evaluate blood glucose monitoring frequency in a self-aware patient software agent model. The diabetic patient software agent model [1] is a 24-h circadian, self-aware, stochastic model of a diabetic patient's blood glucose levels in a software agent environment. The purpose of this work is to apply a signal processing technique to assist patients and physicians in understanding the extent of a patient's illness using a limited number of blood glucose samples. A second purpose of this work is to determine an appropriate blood glucose monitoring frequency in order to have a minimum number of samples taken that still provide a good understanding of the patient's blood glucose levels. For society in general, the monitoring cost of diabetes is an extremely important issue, and these costs can vary tremendously depending on monitoring approaches and monitoring frequencies. Due to the cost and discomfort associated with blood glucose monitoring, today, patients expect monitoring frequencies specific to their health profile. The proposed method quantitatively assesses various monitoring protocols (from 6 times per day to 1 time per week) in nine predefined categories of patient agents in terms of risk factors of health status and age. Simulation results show that sampling 6 times per day is excessive, and not necessary for understanding the dynamics of the continuous signal in the experiments. In addition, patient agents in certain conditions only need to sample their blood glucose 1 time per week to have a good understanding of the characteristics of their blood glucose. Finally, an evaluation scenario is developed to visualize this concept, in which appropriate monitoring frequencies are shown based on the particular conditions of patient agents. This base line can

  13. Real-time monitoring of intracellular signal transduction in PC12 cells by non-adiabatic tapered optical fiber biosensor

    Science.gov (United States)

    Zibaii, M. I.; Latifi, H.; Asadollahi, A.; Noraeipoor, Z.; Dargahi, L.

    2014-05-01

    Real-time observation of intracellular process of signal transduction is very useful for biomedical and pharmaceutical applications as well as for basic research work of cell biology. For feasible and reagentless observation of intracellular alterations in real time, we examined the use of a nonadiabatic tapered optical fiber (NATOF) biosensor for monitoring of intracellular signal transduction that was mainly translocation of protein kinase C via refractive index change in PC12 cells adhered on tapered fiber sensor without any indicator reagent. PC12 cells were stimulated with KCl . Our results suggest that complex intracellular reactions could be real-time monitored and characterized by NATOF biosensor.

  14. Integration of Metabolic and Quorum Sensing Signals Governing the Decision to Cooperate in a Bacterial Social Trait

    Science.gov (United States)

    Boyle, Kerry E.; Monaco, Hilary; van Ditmarsch, Dave; Deforet, Maxime; Xavier, Joao B.

    2015-01-01

    Many unicellular organisms live in multicellular communities that rely on cooperation between cells. However, cooperative traits are vulnerable to exploitation by non-cooperators (cheaters). We expand our understanding of the molecular mechanisms that allow multicellular systems to remain robust in the face of cheating by dissecting the dynamic regulation of cooperative rhamnolipids required for swarming in Pseudomonas aeruginosa. We combine mathematical modeling and experiments to quantitatively characterize the integration of metabolic and population density signals (quorum sensing) governing expression of the rhamnolipid synthesis operon rhlAB. The combined computational/experimental analysis reveals that when nutrients are abundant, rhlAB promoter activity increases gradually in a density dependent way. When growth slows down due to nutrient limitation, rhlAB promoter activity can stop abruptly, decrease gradually or even increase depending on whether the growth-limiting nutrient is the carbon source, nitrogen source or iron. Starvation by specific nutrients drives growth on intracellular nutrient pools as well as the qualitative rhlAB promoter response, which itself is modulated by quorum sensing. Our quantitative analysis suggests a supply-driven activation that integrates metabolic prudence with quorum sensing in a non-digital manner and allows P. aeruginosa cells to invest in cooperation only when the population size is large enough (quorum sensing) and individual cells have enough metabolic resources to do so (metabolic prudence). Thus, the quantitative description of rhlAB regulatory dynamics brings a greater understating to the regulation required to make swarming cooperation stable. PMID:26102206

  15. DEPTOR-mTOR Signaling Is Critical for Lipid Metabolism and Inflammation Homeostasis of Lymphocytes in Human PBMC Culture

    Directory of Open Access Journals (Sweden)

    Qi-bing Xie

    2017-01-01

    Full Text Available Abnormal immune response of the body against substances and tissues causes autoimmune diseases, such as polymyositis, dermatomyositis, and rheumatoid arthritis. Irregular lipid metabolism and inflammation may be a significant cause of autoimmune diseases. Although much progress has been made, mechanisms of initiation and proceeding of metabolic and inflammatory regulation in autoimmune disease have not been well-defined. And novel markers for the detection and therapy of autoimmune disease are urgent. mTOR signaling is a central regulator of extracellular metabolic and inflammatory processes, while DEP domain-containing mTOR-interacting protein (DEPTOR is a natural inhibitor of mTOR. Here, we report that overexpression of DEPTOR reduces mTORC1 activity in lymphocytes of human peripheral blood mononuclear cells (PBMCs. Combination of DEPTOR overexpression and mTORC2/AKT inhibitors effectively inhibits lipogenesis and inflammation in lymphocytes of PBMC culture. Moreover, DEPTOR knockdown activates mTORC1 and increases lipogenesis and inflammations. Our findings provide a deep insight into the relationship between lipid metabolism and inflammations via DEPTOR-mTOR pathway and imply that DEPTOR-mTOR in lymphocytes of PBMC culture has the potential to be as biomarkers for the detection and therapies of autoimmune diseases.

  16. Noninvasive Monitoring of Training Induced Muscle Adaptation with -MRS: Fibre Type Shifts Correlate with Metabolic Changes

    Directory of Open Access Journals (Sweden)

    Eike Hoff

    2013-01-01

    Full Text Available Purpose. To evaluate training induced metabolic changes noninvasively with magnetic resonance spectroscopy (-MRS for measuring muscle fibre type adaptation. Methods. Eleven volunteers underwent a 24-week training, consisting of speed-strength, endurance, and detraining (each 8 weeks. Prior to and following each training period, needle biopsies and -MRS of the resting gastrocnemius muscle were performed. Fibre type distribution was analyzed histologically and tested for correlation with the ratios of high energy phosphates ([PCr]/[], [PCr]/[βATP] and [PCr + ]/[βATP]. The correlation between the changes of the -MRS parameters during training and the resulting changes in fibre composition were also analysed. Results. We observed an increased type-II-fibre proportion after speed-strength and detraining. After endurance training the percentage of fast-twitch fibres was reduced. The progression of the [PCr]/[]-ratio was similar to that of the fast-twitch fibres during the training. We found a correlation between the type-II-fibre proportion and [PCr]/[] (, or [PCr]/[βATP] (, ; the correlations between its changes (delta and the fibre-shift were significant as well (delta[PCr]/[] , delta[PCr]/[βATP] , . Conclusion. Shifts in fibre type composition and high energy phosphate metabolite content covary in human gastrocnemius muscle. Therefore -MRS might be a feasible method for noninvasive monitoring of exercise-induced fibre type transformation.

  17. Comparison of EMG signals recorded by surface electrodes on endotracheal tube and thyroid cartilage during monitored thyroidectomy

    Directory of Open Access Journals (Sweden)

    Feng-Yu Chiang

    2017-10-01

    Full Text Available A variety of electromyography (EMG recording methods were reported during intraoperative neural monitoring (IONM of recurrent laryngeal nerve (RLN in thyroid surgery. This study compared two surface recording methods that were obtained by electrodes on endotracheal tube (ET and thyroid cartilage (TC. This study analyzed 205 RLNs at risk in 110 patients undergoing monitored thyroidectomy. Each patient was intubated with an EMG ET during general anesthesia. A pair of single needle electrode was inserted obliquely into the TC lamina on each side. Standard IONM procedure was routinely followed, and EMG signals recorded by the ET and TC electrodes at each step were compared. In all nerves, evoked laryngeal EMG signals were reliably recorded by the ET and TC electrodes, and showed the same typical waveform and latency. The EMG signals recorded by the TC electrodes showed significantly higher amplitudes and stability compared to those by the ET electrodes. Both recording methods accurately detected 7 partial loss of signal (LOS and 2 complete LOS events caused by traction stress, but only the ET electrodes falsely detected 3 LOS events caused by ET displacement during surgical manipulation. Two patients with true complete LOS experienced temporary RLN palsy postoperatively. Neither permanent RLN palsy, nor complications from ET or TC electrodes were encountered in this study. Both electrodes are effective and reliable for recording laryngeal EMG signals during monitored thyroidectomy. Compared to ET electrodes, TC electrodes obtain higher and more stable EMG signals as well as fewer false EMG results during IONM.

  18. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov [Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Osorio, Cristina [Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States); Royland, Joyce E.; Ramabhadran, Ram [Genetic and Cellular Toxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Alzate, Oscar [Department of Cellular and Developmental Biology, University of North Carolina at Chapel Hill, North Carolina (United States); Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States)

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the neurotoxicant

  19. The acute inhibition of enteric glial metabolism with fluoroacetate alters calcium signaling, hemichannel function, and the expression of key proteins

    Science.gov (United States)

    McClain, Jonathon L.

    2016-01-01

    Glia play key roles in the regulation of neurotransmission in the nervous system. Fluoroacetate (FA) is a metabolic poison widely used to study glial functions by disrupting the tricarboxylic acid cycle enzyme aconitase. Despite the widespread use of FA, the effects of FA on essential glial functions such as calcium (Ca2+) signaling and hemichannel function remain unknown. Therefore, our goal was to assess specifically the impact of FA on essential glial cell functions that are involved with neurotransmission in the enteric nervous system. To this end, we generated a new optogenetic mouse model to study specifically the effects of FA on enteric glial Ca2+ signaling by crossing PC::G5-tdTomato mice with Sox10::creERT2 mice. FA did not change the peak glial Ca2+ response when averaged across all glia within a ganglion. However, FA decreased the percent of responding glia by 30% (P glial cells that still exhibited a response by 26% (P glial or neurodegeneration, but glial cells significantly increased glial fibrillary acid protein by 56% (P glial metabolism with FA causes key changes in glial functions associated with their roles in neurotransmission and phenotypic changes indicative of reactive gliosis. NEW & NOTEWORTHY Our study shows that the acute impairment of enteric glial metabolism with fluoroacetate (FA) alters specific glial functions that are associated with the modification of neurotransmission in the gut. These include subtle changes to glial agonist-evoked calcium signaling, the subsequent disruption of connexin-43 hemichannels, and changes in protein expression that are consistent with a transition to reactive glia. These changes in glial function offer a mechanistic explanation for the effects of FA on peripheral neuronal networks. PMID:27784805

  20. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Cornelius, Nanna; Gregersen, Niels

    2015-01-01

    chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism......Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences...... in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory...

  1. GPR Image and Signal Processing for Pavement and Road Monitoring on Android Smartphones and Tablets

    Science.gov (United States)

    Benedetto, Francesco; Benedetto, Andrea; Tedeschi, Antonio

    2014-05-01

    Ground Penetrating Radar (GPR) is a geophysical method that uses radar pulses to image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. It can detect objects, changes in material, and voids and cracks. GPR has many applications in a number of fields. In the field of civil engineering one of the most advanced technologies used for road pavement monitoring is based on the deployment of advanced GPR systems. One of the most relevant causes of road pavement damage is often referable to water intrusion in structural layers. In this context, GPR has been recently proposed as a method to estimate moisture content in a porous medium without preventive calibration. Hence, the development of methods to obtain an estimate of the moisture content is a crucial research field involving economic, social and strategic aspects in road safety for a great number of public and private Agencies. In particular, a recent new approach was proposed to estimate moisture content in a porous medium basing on the theory of Rayleigh scattering, showing a shift of the frequency peak of the GPR spectrum towards lower frequencies as the moisture content increases in the soil. Addressing some of these issues, this work proposes a mobile application, for smartphones and tablets, for GPR image and signal processing. Our application has been designed for the Android mobile operating system, since it is open source and android mobile platforms are selling the most smartphones in the world (2013). The GPR map can be displayed in black/white or color and the user can zoom and navigate into the image. The map can be loaded in two different ways: from the local memory of the portable device or from a remote server. This latter possibility can be very useful for real-time and mobile monitoring of road and pavement inspection. In addition, the application allows analyzing the GPR data also in the frequency domain. It is

  2. The glucose ketone index calculator: a simple tool to monitor therapeutic efficacy for metabolic management of brain cancer.

    Science.gov (United States)

    Meidenbauer, Joshua J; Mukherjee, Purna; Seyfried, Thomas N

    2015-01-01

    Metabolic therapy using ketogenic diets (KD) is emerging as an alternative or complementary approach to the current standard of care for brain cancer management. This therapeutic strategy targets the aerobic fermentation of glucose (Warburg effect), which is the common metabolic malady of most cancers including brain tumors. The KD targets tumor energy metabolism by lowering blood glucose and elevating blood ketones (β-hydroxybutyrate). Brain tumor cells, unlike normal brain cells, cannot use ketone bodies effectively for energy when glucose becomes limiting. Although plasma levels of glucose and ketone bodies have been used separately to predict the therapeutic success of metabolic therapy, daily glucose levels can fluctuate widely in brain cancer patients. This can create difficulty in linking changes in blood glucose and ketones to efficacy of metabolic therapy. A program was developed (Glucose Ketone Index Calculator, GKIC) that tracks the ratio of blood glucose to ketones as a single value. We have termed this ratio the Glucose Ketone Index (GKI). The GKIC was used to compute the GKI for data published on blood glucose and ketone levels in humans and mice with brain tumors. The results showed a clear relationship between the GKI and therapeutic efficacy using ketogenic diets and calorie restriction. The GKIC is a simple tool that can help monitor the efficacy of metabolic therapy in preclinical animal models and in clinical trials for malignant brain cancer and possibly other cancers that express aerobic fermentation.

  3. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    Science.gov (United States)

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism

  4. BPNN based MECG elimination from the abdominal signal to extract fetal signal for continuous fetal monitoring - doi: 10.4025/actascitechnol.v35i2.15361

    Directory of Open Access Journals (Sweden)

    Muhammad Asraful Hasan

    2013-04-01

    Full Text Available Fetal monitoring may help with possible recognition of problems in the fetus. This research work focuses on the design of the Back-propagation Neural Network (BPNN and Adaptive Linear Neural Network (ADALINE to extract the Fetal Electrocardiogram (FECG from the Abdominal ECG (AECG. FECG is extracted to assess the fetus well-being during the pregnancy period of a mother to overcome some existing difficulties regarding the fetal heart rate (FHR monitoring system. Different sets of ECG signal has been tested to validate the algorithm performance. The accuracy of the QRS detection using the designed algorithm is 99%. This research work further made a comparison study between various methods' performance and accuracy and found that the developed algorithm gives the highest accuracy. This paper opens up a passage to biomedical scientists, researchers, and end users to advocate to extract the FECG signal from the AECG signal for FHR monitoring system by providing valuable information to help them for developing more dominant, flexible and resourceful applications.  

  5. Toll- like receptors expressed on embryonic macrophages couple inflammatory signals to iron metabolism during early ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Balounová, Jana; Vavrochová, Tereza; Benešová, Martina; Ballek, Ondřej; Kolář, Michal; Filipp, Dominik

    2014-01-01

    Roč. 44, č. 5 (2014), s. 1491-1502 ISSN 0014-2980 R&D Projects: GA AV ČR IAA500520707 Institutional support: RVO:68378050 Keywords : Embryonic macrophages * Ferroportin * Gene expression microarray * Iron metabolism * TLR stimulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.034, year: 2014

  6. Toll- like receptors expressed on embryonic macrophages couple inflammatory signals to iron metabolism during early ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Balounová, Jana; Vavrochová, Tereza; Benešová, Martina; Ballek, Ondřej; Kolář, Michal; Filipp, Dominik

    2014-01-01

    Roč. 44, č. 5 (2014), s. 1491-1502 ISSN 0014-2980 R&D Projects: GA AV ČR IAA500520707 Institutional support: RVO:68378050 Keywords : Embryo nic macrophages * Ferroportin * Gene expression microarray * Iron metabolism * TLR stimulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.034, year: 2014

  7. Muscle glycogen resynthesis, signalling and metabolic responses following acute exercise in exercise-trained pigs carrying the PRKAG3 mutation.

    Science.gov (United States)

    Essén-Gustavsson, Birgitta; Granlund, Anna; Benziane, Boubacar; Jensen-Waern, Marianne; Chibalin, Alexander V

    2011-09-01

    Hampshire pigs carrying the PRKAG3 mutation in the AMP-activated protein kinase (AMPK) γ3 subunit exhibit excessive skeletal muscle glycogen storage and an altered glycogen synthesis signalling response following exercise. AMPK plays an important role as a regulator of carbohydrate and fat metabolism in mammalian cells. Exercise-trained muscles are repeatedly exposed to glycogen degradation and resynthesis, to which the signalling pathways adapt. The aim of this study was to examine the effect of acute exercise on glycogen synthesis signalling pathways, and the levels of insulin and other substrates in blood in exercise-trained pigs with and without the PRKAG3 mutation. After 5 weeks of training, pigs performed two standardized treadmill exercise tests, and skeletal muscle biopsies were obtained immediately after exercise and 3 h postexercise in the first test, and 6 h postexercise in the second test. The PRKAG3 mutation carriers had higher glycogen storage, and resynthesis of glycogen was faster after 3 h but not after 6 h of recovery. Alterations in the concentrations of insulin, glucose, lactate and free fatty acids after exercise did not differ between the genotypes. The carriers showed a lower expression of AMPK and increased phosphorylation of Akt Ser(473) after exercise, compared with non-carriers. Acute exercise stimulated the phosphorylation of AS160 in both genotypes, and the phosphorylation of GSK3α Ser(21) and ACC Ser(79) in the non-carriers. In conclusion, exercise-trained pigs carrying the PRKAG3 mutation show an altered Akt and AMPK signalling response to acute exercise, indicating that glucose metabolism is associated with faster resynthesis of muscle glycogen in this group.

  8. A wireless capsule system with ASIC for monitoring the physiological signals of the human gastrointestinal tract.

    Science.gov (United States)

    Xu, Fei; Yan, Guozheng; Zhao, Kai; Lu, Li; Gao, Jinyang; Liu, Gang

    2014-12-01

    This paper presents the design of a wireless capsule system for monitoring the physiological signals of the human gastrointestinal (GI) tract. The primary components of the system include a wireless capsule, a portable data recorder, and a workstation. Temperature, pH, and pressure sensors; an RF transceiver; a controlling and processing application specific integrated circuit (ASIC); and batteries were applied in a wireless capsule. Decreasing capsule size, improving sensor precision, and reducing power needs were the primary challenges; these were resolved by employing micro sensors, optimized architecture, and an ASIC design that include power management, clock management, a programmable gain amplifier (PGA), an A/D converter (ADC), and a serial peripheral interface (SPI) communication unit. The ASIC has been fabricated in 0.18- μm CMOS technology with a die area of 5.0 mm × 5.0 mm. The wireless capsule integrating the ASIC controller measures Φ 11 mm × 26 mm. A data recorder and a workstation were developed, and 20 cases of human experiments were conducted in hospitals. Preprocessing in the workstation can significantly improve the quality of the data, and 76 original features were determined by mathematical statistics. Based on the 13 optimal features achieved in the evaluation of the features, the clustering algorithm can identify the patients who lack GI motility with a recognition rate reaching 83.3%.

  9. The Regulatory Role of MeAIB in Protein Metabolism and the mTOR Signaling Pathway in Porcine Enterocytes

    Directory of Open Access Journals (Sweden)

    Yulong Tang

    2018-03-01

    Full Text Available Amino acid transporters play an important role in cell growth and metabolism. MeAIB, a transporter-selective substrate, often represses the adaptive regulation of sodium-coupled neutral amino acid transporter 2 (SNAT2, which may act as a receptor and regulate cellular amino acid contents, therefore modulating cellular downstream signaling. The aim of this study was to investigate the effects of MeAIB to SNAT2 on cell proliferation, protein turnover, and the mammalian target of rapamycin (mTOR signaling pathway in porcine enterocytes. Intestinal porcine epithelial cells (IPEC-J2 cells were cultured in a high-glucose Dulbecco’s modified Eagle’s (DMEM-H medium with 0 or 5 mmoL/L System A amino acid analogue (MeAIB for 48 h. Cells were collected for analysis of proliferation, cell cycle, protein synthesis and degradation, intracellular free amino acids, and the expression of key genes involved in the mTOR signaling pathway. The results showed that SNAT2 inhibition by MeAIB depleted intracellular concentrations of not only SNAT2 amino acid substrates but also of indispensable amino acids (methionine and leucine, and suppressed cell proliferation and impaired protein synthesis. MeAIB inhibited mTOR phosphorylation, which might be involved in three translation regulators, EIF4EBP1, IGFBP3, and DDIT4 from PCR array analysis of the 84 genes related to the mTOR signaling pathway. These results suggest that SNAT2 inhibition treated with MeAIB plays an important role in regulating protein synthesis and mTOR signaling, and provide some information to further clarify its roles in the absorption of amino acids and signal transduction in the porcine small intestine.

  10. Cardiovascular and metabolic monitoring of children and adolescents on antipsychotic treatment: A cross-sectional descriptive study.

    Science.gov (United States)

    de la Torre Villalobos, Miquel; Martin-López, Luis Miguel; Fernández Sanmartín, María Isabel; Pujals Altes, Elena; Gasque Llopis, Silvia; Batlle Vila, Santiago; Pérez-Solá, Victor; Novo Navarro, Patricia; Gómez Simón, Isabel; Fresno González, Cristina; Camprodon Rosanas, Ester; Bulbena Vilarrasa, Antonio

    Cardiovascular and metabolic monitoring of patients on antipsychotic medication is essential. This becomes more important in those of paediatric age, as they are more vulnerable, and also because prescriptions of this kind of drugs are still increasing. To evaluate the monitoring of cardiovascular and metabolic risk factors in a group of children and young people on antipsychotic medication. A descriptive cross-sectional study was conducted in which a group of 220 patients aged 8-17 years, diagnosed with a mental disorder and on antipsychotic treatment. They were compared to a control group of 199 asthmatic patients not exposed to antipsychotic drugs. Data was extracted from the computerised clinical history ECAP in 2013. The mean age of the children was 12 years (8-17). Risperidone (67%) was the most frequent treatment. The recording of Body Mass Index (BMI) and blood pressure (AP) was 50% in Mental Disorder (MD) patients. A higher number of cardiovascular monitoring physical parameters (weight, height, BMI and BP) were observed in the MD group compared to the control Asthma control group. Altogether, more physical parameters than biochemistry parameters were recorded. This study shows that the recording of cardiovascular parameters and metabolic studies needs to be improved in children and adolescents on treatment with antipsychotics. Copyright © 2016 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Procedures and techniques for monitoring the radiation detection, signalization and alarm systems in the centralized ambience monitoring systems of the basic nuclear facilities of the CEN Saclay

    International Nuclear Information System (INIS)

    Andre, J.-J.; Drouet, J.; Leblanc, P.

    1979-01-01

    After referring to the regulations governing the 'systematic ambience monitoring' in the basic nuclear facilities, the main radiation detection, signalization and alarm devices existing at present in these facilities of the Saclay Nuclear Study Centre are described. The analysis of the operating defects of the measuring channels and detection possibilities leads to the anomalies being classified in two separate groups: the anomalies of the logical 'all or nothing' type of which all the possible origins are integrated into a so-called 'continuity' line and the evolutive anomalies of various origins corresponding to poor functioning extending possibly to a complete absence of signal. The techniques for testing the detection devices of the radiation monitoring board set up in the 'Departement de Rayonnements' at the Saclay Nuclear Study Centre are also described [fr

  12. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    Full Text Available Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts, inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14 as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase. In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2 and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7 in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  13. Cre-Mediated Stress Affects Sirtuin Expression Levels, Peroxisome Biogenesis and Metabolism, Antioxidant and Proinflammatory Signaling Pathways

    Science.gov (United States)

    Xiao, Yu; Karnati, Srikanth; Qian, Guofeng; Nenicu, Anca; Fan, Wei; Tchatalbachev, Svetlin; Höland, Anita; Hossain, Hamid; Guillou, Florian; Lüers, Georg H.; Baumgart-Vogt, Eveline

    2012-01-01

    Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  14. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    Directory of Open Access Journals (Sweden)

    Yusuke Nakatsu

    2016-09-01

    Full Text Available Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14. Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  15. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations.

    Science.gov (United States)

    Nakatsu, Yusuke; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mori, Keiichi; Sakoda, Hideyuki; Fujishiro, Midori; Ono, Hiraku; Kushiyama, Akifumi; Asano, Tomoichiro

    2016-09-07

    Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer's disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  16. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury.

    Science.gov (United States)

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W; Flanders, Kathleen C; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M; Gonzalez, Frank J

    2012-12-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury.

  17. The Anticancer Plant Triterpenoid, Avicin D, Regulates Glucocorticoid Receptor Signaling: Implications for Cellular Metabolism

    Science.gov (United States)

    Haridas, Valsala; Xu, Zhi-Xiang; Kitchen, Doug; Jiang, Anna; Michels, Peter; Gutterman, Jordan U.

    2011-01-01

    Avicins, a family of apoptotic triterpene electrophiles, are known to regulate cellular metabolism and energy homeostasis, by targeting the mitochondria. Having evolved from “ancient hopanoids,” avicins bear a structural resemblance with glucocorticoids (GCs), which are the endogenous regulators of metabolism and energy balance. These structural and functional similarities prompted us to compare the mode of action of avicin D with dexamethasone (Dex), a prototypical GC. Using cold competition assay, we show that Avicin D competes with Dex for binding to the GC receptor (GR), leading to its nuclear translocation. In contrast to Dex, avicin-induced nuclear translocation of GR does not result in transcriptional activation of GC-dependent genes. Instead we observe a decrease in the expression of GC-dependent metabolic proteins such as PEPCK and FASN. However, like Dex, avicin D treatment does induce a transrepressive effect on the pro-inflammatory transcription factor NF-κB. While avicin's ability to inhibit NF-κB and its downstream targets appear to be GR-dependent, its pro-apoptotic effects were independent of GR expression. Using various deletion mutants of GR, we demonstrate the requirement of both the DNA and ligand binding domains of GR in mediating avicin D's transrepressive effects. Modeling of avicin-GR interaction revealed that avicin molecule binds only to the antagonist confirmation of GR. These findings suggest that avicin D has properties of being a selective GR modulator that separates transactivation from transrepression. Since the gene-activating properties of GR are mainly linked to its metabolic effects, and the negative interference with the activity of transcription factors to its anti-inflammatory and immune suppressive effects, the identification of such a dissociated GR ligand could have great potential for therapeutic use. PMID:22132201

  18. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity

    Science.gov (United States)

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets. PMID:29287121

  19. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling.

    Science.gov (United States)

    Pasoreck, Elise K; Su, Jin; Silverman, Ian M; Gosai, Sager J; Gregory, Brian D; Yuan, Joshua S; Daniell, Henry

    2016-09-01

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. β-arrestin-2 is involved in irisin induced glucose metabolism in type 2 diabetes via p38 MAPK signaling.

    Science.gov (United States)

    Pang, Yaling; Zhu, Haihui; Xu, Jianqin; Yang, Lihua; Liu, Lingjiao; Li, Jing

    2017-11-15

    Type 2 diabetes mellitus (T2DM) is a common metabolic disease worldwide. It has been reported that irisin play regulatory role in glucose metabolism in T2DM. However, the underlying mechanism involved in that is not completely known. Herein, we determined the novel role of β-arrestin-2 in irisin-induced glucose utilization in diabetes. Effects of irisin and β-arrestin-2 on glucose utilization were investigated in a rat model of diabetes and in diabetic C2C12 cells in vitro. Results showed that irisin had positive role in glucose metabolism via regulating glucose tolerance as well as uptake in cardiac and skeletal muscle tissues, as evidenced by IPGTT, 2-deoxyglucose uptake and plasma membrane GLUT-4 assay. β-arrestin-2 also improved glucose utilization in diabetes by increasing the glucose uptake and insulin sensitivity, as shown in mice overexpressing β-arrestin-2. In diabetic C2C12 myocytes, irisin-induced GLUT4 and glucose uptake were restrained by β-arrestin-2 inhibition, but was enhanced by β-arrestin-2 overexpression. Additionally, irisin and β-arrestin-2 increased the activation of p38 MAPK in diabetic C2C12 cells, and the repression of p38 MAPK activation decreased the glucose uptake and plasma membrane GLUT-4 was enhanced by irisin and β-arrestin-2 overexpression in diabetic C2C12 cells. In conclusion, we demonstrated that β-arrestin-2 has a crucial role in irisin induced glucose metabolism in T2DM by regulating the p38 MAPK signaling. This might present a novel therapeutic target of treatment for human diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in Arabidopsis thaliana.

    Science.gov (United States)

    Castro, Pedro Humberto; Verde, Nuno; Lourenço, Tiago; Magalhães, Alexandre Papadopoulos; Tavares, Rui Manuel; Bejarano, Eduardo Rodríguez; Azevedo, Herlânder

    2015-12-01

    Post-translational modification mechanisms function as switches that mediate the balance between optimum growth and the response to environmental stimuli, by regulating the activity of key proteins. SUMO (small ubiquitin-like modifier) attachment, or sumoylation, is a post-translational modification that is essential for the plant stress response, also modulating hormonal circuits to co-ordinate developmental processes. The Arabidopsis SUMO E3 ligase SAP and Miz 1 (SIZ1) is the major SUMO conjugation enhancer in response to stress, and is implicated in several aspects of plant development. Here we report that known SUMO targets are over-represented in multiple carbohydrate-related proteins, suggesting a functional link between sumoylation and sugar metabolism and signaling in plants. We subsequently observed that SUMO-conjugated proteins accumulate in response to high doses of sugar in a SIZ1-dependent manner, and that the null siz1 mutant displays increased expression of sucrose and starch catabolic genes and shows reduced starch levels. We demonstrated that SIZ1 controls germination time and post-germination growth via osmotic and sugar-dependent signaling, respectively. Glucose was specifically linked to SUMO-sugar interplay, with high levels inducing root growth inhibition and aberrant root hair morphology in siz1. The use of sugar analogs and sugar marker gene expression analysis allowed us to implicate SIZ1 in a signaling pathway dependent on glucose metabolism, probably involving modulation of SNF1-related kinase 1 (SnRK1) activity. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    2017-12-01

    Full Text Available Black rice (Oryza sativa L. is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF. The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%, signal transduction (16.7% and developmental regulation and hormone-like proteins (12.5%. The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  3. Targeting glucagon receptor signalling in treating metabolic syndrome and renal injury in Type 2 diabetes: theory versus promise.

    Science.gov (United States)

    Li, Xiao C; Zhuo, Jia L

    2007-08-01

    Pancreatic bi-hormones insulin and glucagon are the Yin and Yang in the regulation of glucose metabolism and homoeostasis. Insulin is synthesized primarily by pancreatic beta-cells and is released in response to an increase in blood glucose levels (hyperglycaemia). By contrast, glucagon is synthesized by pancreatic alpha-cells and is released in response to a decrease in blood glucose (hypoglycaemia). The principal role of glucagon is to counter the actions of insulin on blood glucose homoeostasis, but it also has diverse non-hyperglycaemic actions. Although Type 1 diabetes is caused by insulin deficiency (insulin-dependent) and can be corrected by insulin replacement, Type 2 diabetes is a multifactorial disease and its treatment is not dependent on insulin therapy alone. Type 2 diabetes in humans is characterized by increased insulin resistance, increased fasting blood glucose, impaired glucose tolerance and the development of glomerular hyperfiltration and microalbuminuria, ultimately leading to diabetic nephropathy and end-stage renal disease. Clinical studies have suggested that an inappropriate increase in hyperglycaemic glucagon (hyperglucagonaemia) over hypoglycaemic insulin (not insulin deficiency until advanced stages) plays an important role in the pathogenesis of Type 2 diabetes. However, for decades, research efforts and resources have been devoted overwhelmingly to studying the role of insulin and insulin-replacement therapy. By contrast, the implication of glucagon and its receptor signalling in the development of Type 2 diabetic metabolic syndromes and end-organ injury has received little attention. The aim of this review is to examine the evidence as to whether glucagon and its receptor signalling play any role(s) in the pathogenesis of Type 2 diabetic renal injury, and to explore whether targeting glucagon receptor signalling remains only a theoretical antidiabetic strategy in Type 2 diabetes or may realize its promise in the future.

  4. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants.

    Science.gov (United States)

    Gupta, Anil K; Kaur, Narinder

    2005-12-01

    Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor proteins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein kinases, protein phosphatases, Ca 2+ and calmodulins, results in appropriate gene expression. A variety of genes are either induced or repressed depending upon the status of soluble sugars. Abiotic stresses to plants result in major alterations in sugar status and hence affect the expression of various genes by down- and up-regulating their expression. Hexokinase-dependent and hexokinase-independent pathways are involved in sugar sensing. Sucrose also acts as a signal molecule as it affects the activity of a proton-sucrose symporter. The sucrose trans-porter acts as a sucrose sensor and is involved in phloem loading. Fructokinase may represent an additional sensor that bypasses hexokinase phosphorylation especially when sucrose synthase is dominant. Mutants isolated on the basis of response of germination and seedling growth to sugars and reporter-based screening protocols are being used to study the response of altered sugar status on gene expression. Common cis-acting elements in sugar signalling pathways have been identified. Transgenic plants with elevated levels of sugars/sugar alcohols like fructans, raffinose series oligosaccharides, trehalose and mannitol are tolerant to different stresses but have usually impaired growth. Efforts need to be made to have transgenic plants in which abiotic stress responsive genes are expressed only at the time of adverse environmental conditions instead of being constitutively synthesized.

  5. Central and peripheral effects of thyroid hormone signalling in the control of energy metabolism

    NARCIS (Netherlands)

    Alkemade, A.

    2010-01-01

    Increasing evidence points towards a role for thyroid hormone signalling in the central nervous system with respect to the development of symptoms of thyroid disease, in addition to the well-known peripheral effects of thyroid hormone. Thyroid hormone affects target tissues directly via thyroid

  6. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling

    Czech Academy of Sciences Publication Activity Database

    Shahnejat-Bushehri, S.; Tarkowská, Danuše; Sakuraba, Y.; Balazadeh, S.

    2016-01-01

    Roč. 2, č. 3 (2016), č. článku 16013. ISSN 2055-026X R&D Projects: GA MŠk LK21306; GA MŠk(CZ) LO1204; GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : gibberellins * brassinosteroids * signalling Subject RIV: EF - Botanics Impact factor: 10.300, year: 2016

  7. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage

    DEFF Research Database (Denmark)

    Borisova, Marina E; Voigt, Andrea; Tollenaere, Maxim A X

    2018-01-01

    quantitative phosphoproteomics and protein kinase inhibition to provide a systems view on protein phosphorylation patterns induced by UV light and uncover the dependencies of phosphorylation events on the canonical DNA damage signaling by ATM/ATR and the p38 MAP kinase pathway. We identify RNA-binding proteins...

  8. Machine Learning Techniques for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Thrane, Jakob; Wass, Jesper; Piels, Molly

    2017-01-01

    Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal...... detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical...

  9. A robust signal processing method for quantitative high-cycle fatigue crack monitoring using soft elastomeric capacitor sensors

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-04-01

    A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.

  10. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples.

    Directory of Open Access Journals (Sweden)

    Sune Agersnap

    Full Text Available For several hundred years freshwater crayfish (Crustacea-Decapoda-Astacidea have played an important ecological, cultural and culinary role in Scandinavia. However, many native populations of noble crayfish Astacus astacus have faced major declines during the last century, largely resulting from human assisted expansion of non-indigenous signal crayfish Pacifastacus leniusculus that carry and transmit the crayfish plague pathogen. In Denmark, also the non-indigenous narrow-clawed crayfish Astacus leptodactylus has expanded due to anthropogenic activities. Knowledge about crayfish distribution and early detection of non-indigenous and invasive species are crucial elements in successful conservation of indigenous crayfish. The use of environmental DNA (eDNA extracted from water samples is a promising new tool for early and non-invasive detection of species in aquatic environments. In the present study, we have developed and tested quantitative PCR (qPCR assays for species-specific detection and quantification of the three above mentioned crayfish species on the basis of mitochondrial cytochrome oxidase 1 (mtDNA-CO1, including separate assays for two clades of A. leptodactylus. The limit of detection (LOD was experimentally established as 5 copies/PCR with two different approaches, and the limit of quantification (LOQ were determined to 5 and 10 copies/PCR, respectively, depending on chosen approach. The assays detected crayfish in natural freshwater ecosystems with known populations of all three species, and show promising potentials for future monitoring of A. astacus, P. leniusculus and A. leptodactylus. However, the assays need further validation with data 1 comparing traditional and eDNA based estimates of abundance, and 2 representing a broader geographical range for the involved crayfish species.

  11. Design of excitation signals for active system monitoring in a performance assessment setup

    DEFF Research Database (Denmark)

    Green, Torben; Izadi-Zamanabadi, Roozbeh; Niemann, Hans Henrik

    2011-01-01

    This paper investigates how the excitation signal should be chosen for a active performance setup. The signal is used in a setup where the main purpose is to detect whether a parameter change of the controller has changed the global performance significantly. The signal has to be able to excite t...

  12. Isomer-specific regulation of metabolism and PPARgamma signaling by CLA in human preadipocytes

    DEFF Research Database (Denmark)

    Brown, J Mark; Boysen, Maria Sandberg; Jensen, Søren Skov

    2003-01-01

    Trans-10,cis-12 conjugated linoleic acid (CLA) has previously been shown to be the CLA isomer responsible for CLA-induced reductions in body fat in animal models, and we have shown that this isomer, but not the cis-9,trans-11 CLA isomer, specifically decreased triglyceride (TG) accumulation...... transporter 4 gene expression. Furthermore, trans-10,cis-12 CLA reduced oleic acid uptake and oxidation when compared with all other treatments. In parallel to CLA's effects on metabolism, trans-10,cis-12 CLA decreased, whereas cis-9,trans-11 CLA increased, the expression of peroxisome proliferator...

  13. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice.

    Directory of Open Access Journals (Sweden)

    Bert Avau

    Full Text Available Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/- mice became less obese than wild type (WT mice when fed a high-fat diet (HFD. White adipose tissue (WAT mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB or quinine (Q during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB, but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.

  14. Differential regulation of c-di-GMP metabolic enzymes by environmental signals modulates biofilm formation in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Gai-Xian eRen

    2016-06-01

    Full Text Available Cyclic diguanylate (c-di-GMP is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs, HmsT and HmsD and one phosphodiesterase (PDE, HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD and HmsP in Y. pestis. Biofilm formation was higher in the presence of nonlethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfonate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulates their DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  15. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    Science.gov (United States)

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  16. Sustained Attention in Auditory and Visual Monitoring Tasks: Evaluation of the Administration of a Rest Break or Exogenous Vibrotactile Signals.

    Science.gov (United States)

    Arrabito, G Robert; Ho, Geoffrey; Aghaei, Behzad; Burns, Catherine; Hou, Ming

    2015-12-01

    Performance and mental workload were observed for the administration of a rest break or exogenous vibrotactile signals in auditory and visual monitoring tasks. Sustained attention is mentally demanding. Techniques are required to improve observer performance in vigilance tasks. Participants (N = 150) monitored an auditory or a visual display for changes in signal duration in a 40-min watch. During the watch, participants were administered a rest break or exogenous vibrotactile signals. Detection accuracy was significantly greater in the auditory than in the visual modality. A short rest break restored detection accuracy in both sensory modalities following deterioration in performance. Participants experienced significantly lower mental workload when monitoring auditory than visual signals, and a rest break significantly reduced mental workload in both sensory modalities. Exogenous vibrotactile signals had no beneficial effects on performance, or mental workload. A rest break can restore performance in auditory and visual vigilance tasks. Although sensory differences in vigilance tasks have been studied, this study is the initial effort to investigate the effects of a rest break countermeasure in both auditory and visual vigilance tasks, and it is also the initial effort to explore the effects of the intervention of a rest break on the perceived mental workload of auditory and visual vigilance tasks. Further research is warranted to determine exact characteristics of effective exogenous vibrotactile signals in vigilance tasks. Potential applications of this research include procedures for decreasing the temporal decline in observer performance and the high mental workload imposed by vigilance tasks. © 2015, Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence.

  17. Effects of Wnt signaling on brown adipocyte differentiation and metabolism mediated by PGC-1alpha

    DEFF Research Database (Denmark)

    Kang, Sona; Bajnok, Laszlo; Longo, Kenneth A

    2005-01-01

    Activation of canonical Wnt signaling inhibits brown adipogenesis of cultured cells by impeding induction of PPARgamma and C/EBPalpha. Although enforced expression of these adipogenic transcription factors restores lipid accumulation and expression of FABP4 in Wnt-expressing cells, additional...... expression of PGC-1alpha is required for activation of uncoupling protein 1 (UCP1). Wnt10b blocks brown adipose tissue development and expression of UCP1 when expressed from the fatty acid binding protein 4 promoter, even when mice are administered a beta3-agonist. In differentiated brown adipocytes......, activation of Wnt signaling suppresses expression of UCP1 through repression of PGC-1alpha. Consistent with these in vitro observations, UCP1-Wnt10b transgenic mice, which express Wnt10b in interscapular tissue, lack functional brown adipose tissue. While interscapular tissue of UCP1-Wnt10b mice lacks...

  18. Wearable blood flowmeter appcessory with low-power laser Doppler signal processing for daily-life healthcare monitoring.

    Science.gov (United States)

    Kuwabara, K; Higuchi, Y; Ogasawara, T; Koizumi, H; Haga, T

    2014-01-01

    A new appcessory for monitoring peripheral blood flow in daily life consists of a wearable laser Doppler sensor device and a cooperating smart phone application. Bluetooth Low Energy connects them wirelessly. The sensor device features ultralight weight of 15 g and an intermittent signal processing technique that reduces power consumption to only 7 mW at measurement intervals of 0.1 s. These features enable more than 24-h continuous monitoring of peripheral blood flow in daily life, which can provide valuable vital-sign information for healthcare services.

  19. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism

    Directory of Open Access Journals (Sweden)

    Capilla Mata-Pérez

    2017-04-01

    Full Text Available Recent studies in animal systems have shown that NO can interact with fatty acids to generate nitro-fatty acids (NO2-FAs. They are the product of the reaction between reactive nitrogen species and unsaturated fatty acids, and are considered novel mediators of cell signaling based mainly on a proven anti-inflammatory response. Although these signaling mediators have been described widely in animal systems, NO2-FAs have scarcely been studied in plants. Preliminary data have revealed the endogenous presence of free and protein-adducted NO2-FAs in extra-virgin olive oil (EVOO, which appear to be contributing to the cardiovascular benefits associated with the Mediterranean diet. Importantly, new findings have displayed the endogenous occurrence of nitro-linolenic acid (NO2-Ln in the model plant Arabidopsis thaliana and the modulation of NO2-Ln levels throughout this plant's development. Furthermore, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant-defense response against different abiotic-stress conditions, mainly by inducing the chaperone network and supporting a conserved mechanism of action in both animal and plant defense processes. Thus, NO2-Ln levels significantly rose under several abiotic-stress conditions, highlighting the strong signaling role of these molecules in the plant-protection mechanism. Finally, the potential of NO2-Ln as a NO donor has recently been described both in vitro and in vivo. Jointly, this ability gives NO2-Ln the potential to act as a signaling molecule by the direct release of NO, due to its capacity to induce different changes mediated by NO or NO-related molecules such as nitration and S-nitrosylation, or by the electrophilic capacity of these molecules through a nitroalkylation mechanism. Here, we describe the current state of the art regarding the advances performed in the field of NO2-FAs in plants and their

  20. The role of phosphoinositide metabolism in Ca2+ signalling of skeletal muscle cells.

    Science.gov (United States)

    Foster, P S

    1994-04-01

    1. The mobilization of Ca2+ from intracellular stores by D-myo-inositol 1,4,5-triphosphate[Ins(1,4,5)P3] is now widely accepted as the primary link between plasma membrane receptors that stimulate phospholipase C and the subsequent increase in intracellular free Ca2+ that occurs when such receptors are activated (Berridge, 1993). Since the observations of Volpe et al. (1985) which showed that Ins(1,4,5)P3 could induce Ca2+ release from isolated terminal cisternae membranes and elicit contracture of chemically skinned muscle fibres, research has focused on the role of Ins(1,4,5)P3 in the generation of SR Ca2+ transients and in the mechanism of excitation-contraction coupling (EC-coupling). 2. The mechanism of signal transduction at the triadic junction during EC-coupling is unknown. Asymmetric charge movement and mechanical coupling between highly specialized triadic proteins has been proposed as the primary mechanism for voltage-activated generation of SR Ca2+ signals and subsequent contraction. Ins(1,4,5)P3 has also been proposed as the major signal transduction molecule for the generation of the primary Ca2+ transient produced during EC-coupling. 3. Investigations on the generation of Ca2+ transients by Ins(1,4,5)P3 have been conducted on ion channels incorporated into lipid bilayers, skinned and intact fibres and isolated membrane vesicles. Ins(1,4,5)P3 induces SR Ca2+ release and the enzymes responsible for its synthesis and degradation are present in muscle tissue. However, the sensitivity of the Ca2+ release mechanism to Ins(1,4,5)P3 is highly dependent on experimental conditions and on membrane potential. 4. While Ins(1,4,5)P3 may not be the major signal transduction molecule for the generation of the primary Ca2+ signal produced during voltage-activated contraction, this inositol polyphosphate may play a functional role as a modulator of EC-coupling and/or of the processes of myoplasmic Ca2+ regulation occurring on a time scale of seconds, during the events

  1. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay.

    Science.gov (United States)

    Drabovich, Andrei P; Pavlou, Maria P; Dimitromanolakis, Apostolos; Diamandis, Eleftherios P

    2012-08-01

    To investigate the quantitative response of energy metabolic pathways in human MCF-7 breast cancer cells to hypoxia, glucose deprivation, and estradiol stimulation, we developed a targeted proteomics assay for accurate quantification of protein expression in glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate pathways. Cell growth conditions were selected to roughly mimic the exposure of cells in the cancer tissue to the intermittent hypoxia, glucose deprivation, and hormonal stimulation. Targeted proteomics assay allowed for reproducible quantification of 76 proteins in four different growth conditions after 24 and 48 h of perturbation. Differential expression of a number of control and metabolic pathway proteins in response to the change of growth conditions was found. Elevated expression of the majority of glycolytic enzymes was observed in hypoxia. Cancer cells, as opposed to near-normal MCF-10A cells, exhibited significantly increased expression of key energy metabolic pathway enzymes (FBP1, IDH2, and G6PD) that are known to redirect cellular metabolism and increase carbon flux through the pentose phosphate pathway. Our quantitative proteomic protocol is based on a mass spectrometry-compatible acid-labile detergent and is described in detail. Optimized parameters of a multiplex selected reaction monitoring (SRM) assay for 76 proteins, 134 proteotypic peptides, and 401 transitions are included and can be downloaded and used with any SRM-compatible mass spectrometer. The presented workflow is an integrated tool for hypothesis-driven studies of mammalian cells as well as functional studies of proteins, and can greatly complement experimental methods in systems biology, metabolic engineering, and metabolic transformation of cancer cells.

  2. Altered Mitochondrial Metabolism and Mechanosensation in the Failing Heart: Focus on Intracellular Calcium Signaling

    Directory of Open Access Journals (Sweden)

    Aderville Cabassi

    2017-07-01

    Full Text Available The heart consists of millions of cells, namely cardiomyocytes, which are highly organized in terms of structure and function, at both macroscale and microscale levels. Such meticulous organization is imperative for assuring the physiological pump-function of the heart. One of the key players for the electrical and mechanical synchronization and contraction is the calcium ion via the well-known calcium-induced calcium release process. In cardiovascular diseases, the structural organization is lost, resulting in morphological, electrical, and metabolic remodeling owing the imbalance of the calcium handling and promoting heart failure and arrhythmias. Recently, attention has been focused on the role of mitochondria, which seem to jeopardize these events by misbalancing the calcium processes. In this review, we highlight our recent findings, especially the role of mitochondria (dysfunction in failing cardiomyocytes with respect to the calcium machinery.

  3. The role of glucose metabolism and glucose-associated signalling in cancer.

    Science.gov (United States)

    Wittig, Rainer; Coy, Johannes F

    2008-01-18

    Aggressive carcinomas ferment glucose to lactate even in the presence of oxygen. This particular metabolism, termed aerobic glycolysis, the glycolytic phenotype, or the Warburg effect, was discovered by Nobel laureate Otto Warburg in the 1920s. Since these times, controversial discussions about the relevance of the fermentation of glucose by tumours took place; however, a majority of cancer researchers considered the Warburg effect as a non-causative epiphenomenon. Recent research demonstrated, that several common oncogenic events favour the expression of the glycolytic phenotype. Moreover, a suppression of the phenotypic features by either substrate limitation, pharmacological intervention, or genetic manipulation was found to mediate potent tumour-suppressive effects. The discovery of the transketolase-like 1 (TKTL1) enzyme in aggressive cancers may deliver a missing link in the interpretation of the Warburg effect. TKTL1-activity could be the basis for a rapid fermentation of glucose in aggressive carcinoma cells via the pentose phosphate pathway, which leads to matrix acidification, invasive growth, and ultimately metastasis. TKTL1 expression in certain non-cancerous tissues correlates with aerobic formation of lactate and rapid fermentation of glucose, which may be required for the prevention of advanced glycation end products and the suppression of reactive oxygen species. There is evidence, that the activity of this enzyme and the Warburg effect can be both protective or destructive for the organism. These results place glucose metabolism to the centre of pathogenesis of several civilisation related diseases and raise concerns about the high glycaemic index of various food components commonly consumed in western diets.

  4. Comparative transcriptome analysis of Arabidopsis thaliana infested by diamond back moth (Plutella xylostella larvae reveals signatures of stress response, secondary metabolism, and signalling

    Directory of Open Access Journals (Sweden)

    Aeschliman Dana S

    2008-04-01

    Full Text Available Abstract Background Plants are exposed to attack from a large variety of herbivores. Feeding insects can induce substantial changes of the host plant transcriptome. Arabidopsis thaliana has been established as a relevant system for the discovery of genes associated with response to herbivory, including genes for specialized (i.e. secondary metabolism as well as genes involved in plant-insect defence signalling. Results Using a 70-mer oligonulceotide microarray covering 26,090 gene-specific elements, we monitored changes of the Arabidopsis leaf transcriptome in response to feeding by diamond back moth (DBM; Plutella xylostella larvae. Analysis of samples from a time course of one hour to 24 hours following onset of DBM feeding revealed almost three thousand (2,881 array elements (including 2,671 genes with AGI annotations that were differentially expressed (>2-fold; p[t-test] Pieris rapae, Frankliniella occidentalis, Bemisia tabaci,Myzus persicae, and Brevicoryne brassicae. Conclusion Arabidopsis responds to feeding DBM larvae with a drastic reprogramming of the transcriptome, which has considerable overlap with the response induced by other insect herbivores. Based on a meta-analysis of microarray data we identified groups of transcription factors that are either affected by multiple forms of biotic or abiotic stress including DBM feeding or, alternatively, were responsive to DBM herbivory but not to most other forms of stress.

  5. Genetic Polymorphisms in Vitamin D Metabolism and Signaling Genes and Risk of Breast Cancer: A Nested Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Tess V Clendenen

    Full Text Available Genetic polymorphisms in vitamin D metabolism and signaling genes have been inconsistently associated with risk of breast cancer, though few studies have examined SNPs in vitamin D-related genes other than the vitamin D receptor (VDR gene and particularly have not examined the association with the retinoid X receptor alpha (RXRA gene which may be a key vitamin D pathway gene. We conducted a nested case-control study of 734 cases and 1435 individually matched controls from a population-based prospective cohort study, the Northern Sweden Mammary Screening Cohort. Tag and functional SNPs were genotyped for the VDR, cytochrome p450 24A1 (CYP24A1, and RXRA genes. We also genotyped specific SNPs in four other genes related to vitamin D metabolism and signaling (GC/VDBP, CYP2R1, DHCR7, and CYP27B1. SNPs in the CYP2R1, DHCR7, and VDBP gene regions that were associated with circulating 25(OHD concentration in GWAS were also associated with plasma 25(OHD in our study (p-trend <0.005. After taking into account the false discovery rate, these SNPs were not significantly associated with breast cancer risk, nor were any of the other SNPs or haplotypes in VDR, RXRA, and CYP24A1. We observed no statistically significant associations between polymorphisms or haplotypes in key vitamin D-related genes and risk of breast cancer. These results, combined with the observation in this cohort and most other prospective studies of no association of circulating 25(OHD with breast cancer risk, do not support an association between vitamin D and breast cancer risk.

  6. Note: Signal conditioning of a hot-film anemometer for a periodic flow rate monitoring system.

    Science.gov (United States)

    Mantovani, Federico; Tagliaferri, Cristian

    2011-12-01

    A flow monitoring system based on a constant temperature hot-film anemometer is presented. The device has been designed to monitor a dispensing process of extremely low quantities of adhesive material. The monitoring device presented in this paper is useful in industrial applications where exact flow speed tracking is not needed, but reliability and tolerance to parameters variability are essential. During the design of the device, problems related to the physical characteristic of the calorimetric sensor, in particular its thermal capacitance, and to the periodic nature of the monitored flow have been taken into account and suitable solutions have been implemented. The schematic representation of the monitoring device together with the experimental results obtained by monitoring fluids with different physical characteristics are presented.

  7. QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells.

    Science.gov (United States)

    Fisher, Ciarán P; Plant, Nicholas J; Moore, J Bernadette; Kierzek, Andrzej M

    2013-12-15

    Dynamic simulation of genome-scale molecular interaction networks will enable the mechanistic prediction of genotype-phenotype relationships. Despite advances in quantitative biology, full parameterization of whole-cell models is not yet possible. Simulation methods capable of using available qualitative data are required to develop dynamic whole-cell models through an iterative process of modelling and experimental validation. We formulate quasi-steady state Petri nets (QSSPN), a novel method integrating Petri nets and constraint-based analysis to predict the feasibility of qualitative dynamic behaviours in qualitative models of gene regulation, signalling and whole-cell metabolism. We present the first dynamic simulations including regulatory mechanisms and a genome-scale metabolic network in human cell, using bile acid homeostasis in human hepatocytes as a case study. QSSPN simulations reproduce experimentally determined qualitative dynamic behaviours and permit mechanistic analysis of genotype-phenotype relationships. The model and simulation software implemented in C++ are available in supplementary material and at http://sysbio3.fhms.surrey.ac.uk/qsspn/.

  8. Wearing red for signaling: the heme-bach axis in heme metabolism, oxidative stress response and iron immunology.

    Science.gov (United States)

    Igarashi, Kazuhiko; Watanabe-Matsui, Miki

    2014-04-01

    The connection between gene regulation and metabolism is an old issue that warrants revisiting in order to understand both normal as well as pathogenic processes in higher eukaryotes. Metabolites affect the gene expression by either binding to transcription factors or serving as donors for post-translational modification, such as that involving acetylation and methylation. The focus of this review is heme, a prosthetic group of proteins that includes hemoglobin and cytochromes. Heme has been shown to bind to several transcription factors, including Bach1 and Bach2, in higher eukaryotes. Heme inhibits the transcriptional repressor activity of Bach1, resulting in the derepression of its target genes, such as globin in erythroid cells and heme oxygenase-1 in diverse cell types. Since Bach2 is important for class switch recombination and somatic hypermutation of immunoglobulin genes as well as regulatory and effector T cell differentiation and the macrophage function, the heme-Bach2 axis may regulate the immune response as a signaling cascade. We discuss future issues regarding the topic of the iron/heme-gene regulation network based on current understanding of the heme-Bach axis, including the concept of "iron immunology" as the synthesis of the iron metabolism and the immune response.

  9. The critical roles of activated stellate cells-mediated paracrine signaling, metabolism and onco-immunology in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Fu, Yaojie; Liu, Shanshan; Zeng, Shan; Shen, Hong

    2018-02-19

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant diseases worldwide. It is refractory to conventional treatments, and consequently has a documented 5-year survival rate as low as 7%. Increasing evidence indicates that activated pancreatic stellate cells (PSCs), one of the stromal components in tumor microenvironment (TME), play a crucial part in the desmoplasia, carcinogenesis, aggressiveness, metastasis associated with PDAC. Despite the current understanding of PSCs as a "partner in crime" to PDAC, detailed regulatory roles of PSCs and related microenvironment remain obscure. In addition to multiple paracrine signaling pathways, recent research has confirmed that PSCs-mediated tumor microenvironment may influence behaviors of PDAC via diverse mechanisms, such as rewiring metabolic networks, suppressing immune responses. These new activities are closely linked with treatment and prognosis of PDAC. In this review, we discuss the recent advances regarding new functions of activated PSCs, including PSCs-cancer cells interaction, mechanisms involved in immunosuppressive regulation, and metabolic reprogramming. It's clear that these updated experimental or clinical studies of PSCs may provide a promising approach for PDAC treatment in the near future.

  10. Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling

    Directory of Open Access Journals (Sweden)

    Mina eAziz

    2016-04-01

    Full Text Available Sulfur is an element necessary for the life cycle of higher plants. Its assimilation and reduction into essential biomolecules are pivotal factors determining a plant’s growth and vigor as well as resistance to environmental stress. While certain soil microbes can enhance ion solubility via chelating agents or oxidation, microbial regulation of plant-sulfur assimilation has not been reported. With an increasing understanding that soil microbes can activate growth and stress tolerance in plants via chemical signaling, the question arises as to whether such beneficial bacteria also regulate sulfur assimilation. Here we report a previously unidentified mechanism by which the growth-promoting rhizobacterium Bacillus amyloliquefaciens (GB03 transcriptionally activates genes responsible for sulfur assimilation, increasing sulfur uptake and accumulation in Arabidopsis. Transcripts encoding for sulfur-rich aliphatic and indolic glucosinolates are also GB03 induced. As a result, GB03-exposed plants with elevated glucosinolates exhibit greater protection against the generalist herbivore, Spodoptera exigua (beet armyworm. In contrast, a previously-characterized glucosinolate mutant compromised in the production of both aliphatic and indolic glucosinolates is also compromised in terms of GB03-induced protection against insect herbivory. As with in vitro studies, soil-grown plants show enhanced glucosinolate accumulation and protection against beet armyworm feeding with GB03 exposure. These results demonstrate the potential of microbes to enhance plant sulfur assimilation and emphasize the sophisticated integration of microbial signaling in plant defense.

  11. Comparative effectiveness of guided weight loss and physical activity monitoring for weight loss and metabolic risks: A pilot study

    OpenAIRE

    Peyer, Karissa L.; Ellingson, Laura D.; Bus, Kathryn; Walsh, Sarah A.; Franke, Warren D.; Welk, Gregory J.

    2017-01-01

    Many consumer-based physical activity monitors (PAMs) are available but it is not clear how to use them to most effectively promote weight loss. The purpose of this pilot study was to compare the effectiveness of a personal PAM, a guided weight loss program (GWL), and the combination of these approaches on weight loss and metabolic risk. Participants completed the study in two cohorts: Fall 2010 and Spring 2011. A sample of 72 obese individuals in the Ames, IA area were randomized to one of 3...

  12. Energy-efficient on-node signal processing for vibration monitoring

    NARCIS (Netherlands)

    Ramachandran, Vignesh Raja Karuppiah; Sanchez Ramirez, Andrea; van der Zwaag, B.J.; Meratnia, Nirvana; Havinga, Paul J.M.

    In recent years, the use of wireless sensor networks for vibration monitoring is emphasized, because of its capability to continuously monitor at hard-to-reach locations of complex machines. Low power consumption is one of the main requirements for the sensor nodes in continuous and long-term

  13. Adjustment of the Arabidopsis circadian oscillator by sugar signalling dictates the regulation of starch metabolism.

    Science.gov (United States)

    Seki, Motohide; Ohara, Takayuki; Hearn, Timothy J; Frank, Alexander; da Silva, Viviane C H; Caldana, Camila; Webb, Alex A R; Satake, Akiko

    2017-08-16

    Arabidopsis plants store part of the carbon fixed by photosynthesis as starch to sustain growth at night. Two competing hypotheses have been proposed to explain this diel starch turnover based on either the measurement of starch abundance with respect to circadian time, or the sensing of sugars to feedback to the circadian oscillator to dynamically adjust the timing of starch turnover. We report a phase oscillator model that permitted derivation of the ideal responses of the circadian regulation of starch breakdown to maintain sucrose homeostasis. Testing the model predictions using a sugar-unresponsive mutant of Arabidopsis demonstrated that the dynamics of starch turnover arise from the circadian clock measuring and responding to the rate of change of cellular sucrose. Our theory and experiments suggest that starch turnover is controlled by the circadian clock acting as a dynamic homeostat responding to sucrose signals to maintain carbon homeostasis.

  14. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A.

    Science.gov (United States)

    Somanna, Naveen K; Mani, Indra; Tripathi, Satyabha; Pandey, Kailash N

    2018-04-01

    Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125 I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.

  15. Connecting salt stress signalling pathways with salinity-induced changes in mitochondrial metabolic processes in C3 plants.

    Science.gov (United States)

    Che-Othman, M Hafiz; Millar, A Harvey; Taylor, Nicolas L

    2017-12-01

    Salinity exerts a severe detrimental effect on crop yields globally. Growth of plants in saline soils results in physiological stress, which disrupts the essential biochemical processes of respiration, photosynthesis, and transpiration. Understanding the molecular responses of plants exposed to salinity stress can inform future strategies to reduce agricultural losses due to salinity; however, it is imperative that signalling and functional response processes are connected to tailor these strategies. Previous research has revealed the important role that plant mitochondria play in the salinity response of plants. Review of this literature shows that 2 biochemical processes required for respiratory function are affected under salinity stress: the tricarboxylic acid cycle and the transport of metabolites across the inner mitochondrial membrane. However, the mechanisms by which components of these processes are affected or react to salinity stress are still far from understood. Here, we examine recent findings on the signal transduction pathways that lead to adaptive responses of plants to salinity and discuss how they can be involved in and be affected by modulation of the machinery of energy metabolism with attention to the role of the tricarboxylic acid cycle enzymes and mitochondrial membrane transporters in this process. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  16. Studies in iodine metabolism: Monitoring of animal thyroids: Final progress report, April 1983 through March 1987

    International Nuclear Information System (INIS)

    Van Middlesworth, L.

    1987-01-01

    This report contains the results of monitoring radioiodine and radiocesium levels in both domestic and wild animals. Included are thyroids of cattle and sheep before and after the Chernobyl accident, monitoring of thyroids from deer kills on the Oak Ridge Plantation and the Savannah River Reserve. (DT)

  17. Enhancement of the anti-tumor activity of FGFR1 inhibition in squamous cell lung cancer by targeting downstream signaling involved in glucose metabolism

    Science.gov (United States)

    Fumarola, Claudia; Cretella, Daniele; La Monica, Silvia; Bonelli, Mara A.; Alfieri, Roberta; Caffarra, Cristina; Quaini, Federico; Madeddu, Denise; Falco, Angela; Cavazzoni, Andrea; Digiacomo, Graziana; Mazzaschi, Giulia; Vivo, Valentina; Barocelli, Elisabetta; Tiseo, Marcello; Petronini, Pier Giorgio; Ardizzoni, Andrea

    2017-01-01

    Fibroblast Growth Factor Receptor (FGFR) signaling is a complex pathway which controls several processes, including cell proliferation, survival, migration, and metabolism. FGFR1 signaling is frequently deregulated via amplification/over-expression in NSCLC of squamous histotype (SQCLC), however its inhibition has not been successfully translated in clinical setting. We determined whether targeting downstream signaling implicated in FGFR1 effects on glucose metabolism potentiates the anti-tumor activity of FGFR1 inhibition in SQCLC. In FGFR1 amplified/over-expressing SQCLC cell lines, FGF2-mediated stimulation of FGFR1 under serum-deprivation activated both MAPK and AKT/mTOR pathways and increased glucose uptake, glycolysis, and lactate production, through AKT/mTOR-dependent HIF-1α accumulation and up-regulation of GLUT-1 glucose transporter. These effects were hindered by PD173074 and NVP-BGJ398, selective FGFR inhibitors, as well as by dovitinib, a multi-kinase inhibitor. Glucose metabolism was hampered by the FGFR inhibitors also under hypoxic conditions, with consequent inhibition of cell proliferation and viability. In presence of serum, glucose metabolism was impaired only in cell models in which FGFR1 inhibition was associated with AKT/mTOR down-regulation. When the activation of the AKT/mTOR pathway persisted despite FGFR1 down-regulation, the efficacy of NVP-BGJ398 could be significantly improved by the combination with NVP-BEZ235 or other inhibitors of this signaling cascade, both in vitro and in xenotransplanted nude mice. Collectively our results indicate that inhibition of FGFR1 signaling impacts on cancer cell growth also by affecting glucose energy metabolism. In addition, this study strongly suggests that the therapeutic efficacy of FGFR1 targeting molecules in SQCLC may be implemented by combined treatments tackling on glucose metabolism. PMID:29190880

  18. Ghrelin is an orexigenic and metabolic signaling peptide in the arcuate and paraventricular nuclei.

    Science.gov (United States)

    Currie, Paul J; Mirza, Aaisha; Fuld, Rebecca; Park, Diana; Vasselli, Joseph R

    2005-08-01

    Ghrelin is a 28-amino acid acylated peptide and is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The GHS-R is expressed in hypothalamic nuclei, including the arcuate nucleus (Arc) where it is colocalized with neuropeptide Y (NPY) neurons. In the present study, we examined the effects of ghrelin on feeding and energy substrate utilization (respiratory quotient; RQ) following direct injections into either the arcuate or the paraventricular nucleus (PVN) of the hypothalamus. Ghrelin was administered at the beginning of the dark cycle at doses of 15-60 pmol to male and female rats. In feeding studies, food intake was measured 2 and 4 h postinjection. Separate groups of rats were injected with ghrelin, and the RQ (VCO(2)/VO(2)) was measured using an open circuit calorimeter over a 4-h period. Both Arc and PVN injections of ghrelin increased food intake in male and female rats. Ghrelin also increased RQ, reflecting a shift in energy substrate utilization in favor of carbohydrate oxidation. Because these effects are similar to those observed after PVN injection of NPY, we then assessed the impact of coinjecting ghrelin with NPY into the PVN. When rats were pretreated with very low doses of ghrelin (2.5-10 pmol), NPY's (50 pmol) effects on eating and RQ were potentiated. Overall, these data are in agreement with evidence suggesting that ghrelin functions as a gut-brain endocrine hormone implicated in the regulation of food intake and energy metabolism. Our findings are also consistent with a possible interactive role of hypothalamic ghrelin and NPY systems.

  19. Estimation of geometric properties of three-component signals for system monitoring

    Science.gov (United States)

    Granjon, Pierre; Phua, Gailene Shih Lyn

    2017-12-01

    Most methods for condition monitoring are based on the analysis and characterization of physical quantities that are three-dimensional in nature. Plotted in a three-dimensional Euclidian space as a function of time, such quantities follow a trajectory whose geometric characteristics are representative of the state of the monitored system. Usual condition monitoring techniques often study the measured quantities component by component, without taking into account their three-dimensional nature and the geometric properties of their trajectory. A significant part of the information is thus ignored. This article details a method dedicated to the analysis and processing of three-component quantities, capable of highlighting the special geometric features of such data and providing complementary information for condition monitoring. The proposed method is applied to two experimental cases: bearing fault monitoring in rotating machines, and voltage dips monitoring in three-phase power networks. In this two cases, the obtained results are promising and show that the estimated geometric indicators lead to complementary information that can be useful for condition monitoring.

  20. Classification of Parameters Extracted from Cardiotocographic Signals for Early Detection of Metabolic Acidemia in Newborns

    Directory of Open Access Journals (Sweden)

    ROTARIU, C.

    2015-08-01

    Full Text Available Fetal acidosis is reflected by the values of umbilical cord pH and base deficit (BDecf: normal recordings (pH over 7.2 and BDecf under 8 mmol/l and abnormal recordings (pH under 7.2 and BDecf over 8 mmol/l. The purpose of this paper is to present the implementation of an automated system for detecting fetal acidosis in cardiotocographic recordings. The method uses spectral analysis of medium (0.07-0.13 Hz and high (0.13-1 Hz frequency spectrum. We implement the algorithm for segments of the recordings without signal loss for better classification. We determined the normalized medium and high frequency components and mid to high frequency ratio. The recordings in the database are divided into a control group (100 normal recordings and a test group (431 normal or abnormal recordings. A t-test with the p value under 0.05 between the two groups is used to classify the test group. The classification is improved by including the presence of late and prolonged decelerations in the classification process, obtaining the final results, which are comparable to the best ones in current literature.

  1. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    Energy Technology Data Exchange (ETDEWEB)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l' Exercice en conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171 Aubière cedex (France); Fabre, O.; Bordenave, S. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Hillaire-Buys, D. [CHRU Montpellier, 34295 Montpellier (France); Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France)

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  2. Depression and the role of genes involved in dopamine metabolism and signalling.

    Science.gov (United States)

    Opmeer, Esther M; Kortekaas, Rudie; Aleman, André

    2010-10-01

    Major depressive disorder (MDD) is a common psychiatric disorder and leading cause of disability worldwide. It is associated with increased mortality, especially from suicide. Heritability of MDD is estimated around 40%, suggesting that genotyping is a promising field for research into the development of MDD. According to the dopamine theory of affective disorders, a deficiency in dopaminergic neurotransmission may play a role in the major symptoms of MDD. Specific polymorphisms in genes that affect dopamine transmission could increase susceptibility to MDD. To determine the extent to which these genes influence vulnerability to MDD, we discuss genes for crucial steps in dopamine neurotransmission: synthesis, signalling and inactivation. The val158met polymorphism of the COMT gene exemplifies the lack of consensus in the literature: although it is one of the most reported polymorphisms that relates to MDD vulnerability, its role is not corroborated by meta-analysis. Gene-gene interactions and gene-environment interactions provide more explanatory potential than single gene associations. Two notable exceptions are the DRD4 and DAT gene: both have variable tandem repeat polymorphisms which may have a "single gene" influence on susceptibility to MDD. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Machine Learning for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Wass, J.; Thrane, Jakob; Piels, Molly

    2016-01-01

    Supervised machine learning methods are applied and demonstrated experimentally for inband OSNR estimation and modulation format classification in optical communication systems. The proposed methods accurately evaluate coherent signals up to 64QAM using only intensity information....

  4. Steekmuggen (Culicidae) in de Engbertsdijksvenen: Monitoring en signalering 1990-1992

    NARCIS (Netherlands)

    Schot, J.A.; Verdonschot, P.F.M.

    1993-01-01

    Dit rapport behandelt de verschillende aspecten van de signalering zoals die in de jaren 1990,1991 en 1992 is uitgevoerd. Tevens wordt het verloop van de culicidenpopulatie vanaf de zomer 1987 tot en met 1992 beproken.

  5. Metabolic monitoring of postischemic myocardium during intermittent warm-blood cardioplegic administration

    NARCIS (Netherlands)

    Borowski, Andreas; Kurt, Muhammed; Calvo, Sanchez; Paprotny, Gerrit; Godehardt, Erhard; Fraessdorf, Jan; Ghodsizad, Ali

    2010-01-01

    In 12 patients undergoing elective myocardial revascularization with intermittent administration of warm-blood cardioplegic solution for myocardial protection, we analyzed metabolic changes by assay of global ischemia indicators (pH, lactate, glucose, and potassium), which we measured in the

  6. Metabolic Monitoring of Postischemic Myocardium during Intermittent Warm-Blood Cardioplegic Administration

    NARCIS (Netherlands)

    Borowski, A.; Kurt, M.; Calvo, S.; Paprotny, G.; Godehardt, E.; Fraessdorf, J.; Ghodsizad, A.

    2010-01-01

    In 12 patients undergoing elective myocardial revascularization with intermittent administration of warm-blood cardioplegic solution for myocardial protection, we analyzed metabolic changes by assay of global ischemia indicators (pH, lactate, glucose, and potassium), which we measured in the

  7. Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network

    Science.gov (United States)

    Lu, Siliang; Zhou, Peng; Wang, Xiaoxian; Liu, Yongbin; Liu, Fang; Zhao, Jiwen

    2018-02-01

    Wireless sensor networks (WSNs) which consist of miscellaneous sensors are used frequently in monitoring vital equipment. Benefiting from the development of data mining technologies, the massive data generated by sensors facilitate condition monitoring and fault diagnosis. However, too much data increase storage space, energy consumption, and computing resource, which can be considered fatal weaknesses for a WSN with limited resources. This study investigates a new method for motor bearings condition monitoring and fault diagnosis using the undersampled vibration signals acquired from a WSN. The proposed method, which is a fusion of the kurtogram, analog domain bandpass filtering, bandpass sampling, and demodulated resonance technique, can reduce the sampled data length while retaining the monitoring and diagnosis performance. A WSN prototype was designed, and simulations and experiments were conducted to evaluate the effectiveness and efficiency of the proposed method. Experimental results indicated that the sampled data length and transmission time of the proposed method result in a decrease of over 80% in comparison with that of the traditional method. Therefore, the proposed method indicates potential applications on condition monitoring and fault diagnosis of motor bearings installed in remote areas, such as wind farms and offshore platforms.

  8. IL-6 and IGF-1 signaling within and between muscle and bone: how important is the mTOR pathway for bone metabolism?

    NARCIS (Netherlands)

    Bakker, A.D.; Jaspers, R.T.

    2015-01-01

    Insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6) play an important role in the adaptation of both muscle and bone to mechanical stimuli. Here, we provide an overview of the functions of IL-6 and IGF-1 in bone and muscle metabolism, and the intracellular signaling pathways that are well

  9. Expert system for the automatic analysis of the Eddy current signals from the monitoring of vapor generators of a PWR, type reactor

    International Nuclear Information System (INIS)

    Lefevre, F.; Baumaire, A.; Comby, R.; Benas, J.C.

    1990-01-01

    The automatization of the monitoring of the steam generator tubes required some developments in the field of data processing. The monitoring is performed by means of Eddy current tests. Improvements in signal processing and in pattern recognition associated to the artificial intelligence techniques induced EDF (French Electricity Company) to develop an automatic signal processing system. The system, named EXTRACSION (French acronym for Expert System for the Processing and classification of Signals of Nuclear Nature), insures the coherence between the different fields of knowledge (metallurgy, measurement, signals) during data processing by applying an object oriented representation [fr

  10. Development of capacitive beam position, beam current and Schottky-signal monitors for the Cryogenic Storage Ring (CSR)

    International Nuclear Information System (INIS)

    Laux, Felix

    2011-01-01

    In this thesis novel techniques based on capacitive pickups for the determination of the beam current, the beam position and the Schottky-signal in storage rings have been developed. Beam current measurements at the heavy ion storage ring TSR with a capacitive pickup have been found in very good agreement with the theory. Using this device the accurate measurement of beam currents at the TSR far below 1 μA is now possible. This method will also be used at the Cryogenic Storage Ring (CSR) at which beam currents in the range of 1 nA-1 μA are expected. For the first time, position measurements with a resonant amplifier system for capacitive pickups have been examined at the TSR for later use of this technique in the CSR. With this method an increased signal-to-noise ratio can be achieved using a parallel inductance. A comparison with measurements using the rest gas beam profile monitor has shown very good agreement even at very low intensities. Experiments with the cryo-capable electronics for the CSR beam position monitors have shown an achievable quality factor of Q=500, resulting in the prospect of precise position measurements at the CSR even at very low beam currents. The CSR Schottky-Pickup will also be equipped with a resonant amplifier system with a comparable quality factor. An estimation of the signal-to-noise ratio suggests a detection limit of a few protons. (orig.)

  11. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes

    Directory of Open Access Journals (Sweden)

    Sreemathi Logan

    2018-03-01

    Full Text Available Objective: A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1 that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. Methods: Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f. The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. Results: Our results indicate that a reduction in IGF-1 receptor (IGFR expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30–50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aβ uptake, both critical functions of astrocytes in the brain. Conclusions: Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal

  12. Dietary pattern associated with selenoprotein P and MRI-derived body fat volumes, liver signal intensity, and metabolic disorders.

    Science.gov (United States)

    di Giuseppe, Romina; Plachta-Danielzik, Sandra; Koch, Manja; Nöthlings, Ute; Schlesinger, Sabrina; Borggrefe, Jan; Both, Marcus; Müller, Hans-Peter; Kassubek, Jan; Jacobs, Gunnar; Lieb, Wolfgang

    2018-02-14

    The association of complex dietary patterns with circulating selenoprotein P (SELENOP) levels in humans is unknown. In a general population sample, we aimed to identify a dietary pattern explaining inter-individual variation in circulating SELENOP concentrations and to study this pattern in relation to prevalent diabetes, metabolic syndrome (MetS), MRI-determined total volumes of visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, and liver signal intensity/fatty liver disease. In this cross-sectional study, serum SELENOP levels were measured in 853 individuals. In a subsample of 553 participants, whole-body MRI was performed to assess body fat distribution and liver fat. Dietary intake was assessed by a self-administered food frequency questionnaire and the dietary pattern identified using reduced-rank regression (RRR). Multivariable linear and logistic regressions were used to investigate associations between dietary pattern score and metabolic traits. Characterized by high intake of fruit, vegetables and antioxidant beverages, the RRR-derived dietary pattern displayed inverse associations with VAT, SAT, MetS, and prevalent diabetes in multivariable-adjusted restricted cubic splines. Each unit increase in dietary pattern score was associated with 31% higher SELENOP levels, 12% lower VAT (95% CI: - 19%; - 5%), 13% (95% CI: - 20%; - 6%) lower SAT values and 46% (95% CI: 27%; 60%) and 53% (95% CI: 22%; 72%) lower odds of having MetS or diabetes, respectively. No meaningful relations were observed between the dietary pattern and liver traits. Our observations propose diet-related regulation in SELENOP levels and that the identified dietary pattern is inversely related to VAT, SAT, MetS, and prevalent diabetes.

  13. GLP-1 Elicits an Intrinsic Gut-Liver Metabolic Signal to Ameliorate Diet-Induced VLDL Overproduction and Insulin Resistance.

    Science.gov (United States)

    Khound, Rituraj; Taher, Jennifer; Baker, Christopher; Adeli, Khosrow; Su, Qiaozhu

    2017-12-01

    Perturbations in hepatic lipid and very-low-density lipoprotein (VLDL) metabolism are involved in the pathogenesis of obesity and hepatic insulin resistance. The objective of this study is to delineate the mechanism of subdiaphragmatic vagotomy in preventing obesity, hyperlipidemia, and insulin resistance. By subjecting the complete subdiaphragmatic vagotomized mice to various nutritional conditions and investigating hepatic de novo lipogenesis pathway, we found that complete disruption of subdiaphragmatic vagal signaling resulted in a significant decrease of circulating VLDL-triglyceride compared with the mice obtained sham procedure. Vagotomy further prevented overproduction of VLDL-triglyceride induced by an acute fat load and a high-fat diet-induced obesity, hyperlipidemia, hepatic steatosis, and glucose intolerance. Mechanistic studies revealed that plasma glucagon-like peptide-1 was significantly raised in the vagotomized mice, which was associated with significant reductions in mRNA and protein expression of SREBP-1c (sterol regulatory element-binding protein 1c), SCD-1 (stearoyl-CoA desaturase-1), and FASN (fatty acid synthase), as well as enhanced hepatic insulin sensitivity. In vitro, treating mouse primary hepatocytes with a glucagon-like peptide-1 receptor agonist, exendin-4, for 48 hours inhibited free fatty acid, palmitic acid treatment induced de novo lipid synthesis, and VLDL secretion from hepatocytes. Elevation of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. These novel findings, for the first time, delineate an intrinsic gut-liver regulatory circuit that is mediated by glucagon-like peptide-1 in regulating hepatic energy metabolism. © 2017 American Heart Association, Inc.

  14. Identification of the signals for glucose-induced insulin secretion in INS1 (832/13) β-cells using metformin-induced metabolic deceleration as a model.

    Science.gov (United States)

    Lamontagne, Julien; Al-Mass, Anfal; Nolan, Christopher J; Corkey, Barbara E; Madiraju, S R Murthy; Joly, Erik; Prentki, Marc

    2017-11-24

    Metabolic deceleration in pancreatic β-cells is associated with inhibition of glucose-induced insulin secretion (GIIS), but only in the presence of intermediate/submaximal glucose concentrations. Here, we used acute metformin treatment as a tool to induce metabolic deceleration in INS1 (832/13) β-cells, with the goal of identifying key pathways and metabolites involved in GIIS. Metabolites and pathways previously implicated as signals for GIIS were measured in the cells at 2-25 mm glucose, with or without 5 mm metformin. We defined three criteria to identify candidate signals: 1) glucose-responsiveness, 2) sensitivity to metformin-induced inhibition of the glucose effect at intermediate glucose concentrations, and 3) alleviation of metformin inhibition by elevated glucose concentrations. Despite the lack of recovery from metformin-induced impairment of mitochondrial energy metabolism (glucose oxidation, O 2 consumption, and ATP production), insulin secretion was almost completely restored at elevated glucose concentrations. Meeting the criteria for candidates involved in promoting GIIS were the following metabolic indicators and metabolites: cytosolic NAD + /NADH ratio (inferred from the dihydroxyacetone phosphate:glycerol-3-phosphate ratio), mitochondrial membrane potential, ADP, Ca 2+ , 1-monoacylglycerol, diacylglycerol, malonyl-CoA, and HMG-CoA. On the contrary, most of the purine and nicotinamide nucleotides, acetoacetyl-CoA, H 2 O 2 , reduced glutathione, and 2-monoacylglycerol were not glucose-responsive. Overall these results underscore the significance of mitochondrial energy metabolism-independent signals in GIIS regulation; in particular, the candidate lipid signaling molecules 1-monoacylglycerol, diacylglycerol, and malonyl-CoA; the predominance of K ATP /Ca 2+ signaling control by low ADP·Mg 2+ rather than by high ATP levels; and a role for a more oxidized state (NAD + /NADH) in the cytosol during GIIS that favors high glycolysis rates. © 2017 by

  15. Regularized non-stationary morphological reconstruction algorithm for weak signal detection in micro-seismic monitoring: Methodology

    Science.gov (United States)

    Huang, Weilin; Wang, Runqiu; Chen, Yangkang

    2018-02-01

    Micro-seismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in micro-seismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multi-scale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multi-scale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by twelve three-component (3-C) geophones in a monitoring well. The result demonstrates that the regularized non-stationary morphological reconstruction can improve the detectability of the weak micro-seismic signals. Using the processed data, the short-term-average over long-term average (STA/LTA) picking algorithm and Geiger's method are applied to obtain new locations of micro-seismic events. In addition, we show that the proposed RNMR method can be used not only in micro-seismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1D to 2D or a higher dimensional version.

  16. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Karl A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Candy, Jim V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guss, Gabe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  17. A signal pre-processing algorithm designed for the needs of hardware implementation of neural classifiers used in condition monitoring

    DEFF Research Database (Denmark)

    Dabrowski, Dariusz; Hashemiyan, Zahra; Adamczyk, Jan

    2015-01-01

    Gearboxes have a significant influence on the durability and reliability of a power transmission system. Currently, extensive research studies are being carried out to increase the reliability of gearboxes working in the energy industry, especially with a focus on planetary gears in wind turbines...... and bucket wheel excavators. In this paper, a signal pre-processing algorithm designed for condition monitoring of planetary gears working in non-stationary operation is presented. The algorithm is dedicated for hardware implementation on Field Programmable Gate Arrays (FPGAs). The purpose of the algorithm...

  18. A Wireless Real-Time Monitoring Node of the Physiological Signals for Unrestrained Dairy Cattle Using Wireless Sensor Network

    OpenAIRE

    Zhang , Xihai; Zhang , Changli; Fang , Junlong; Fan , Yongcun

    2009-01-01

    International audience; A newly developed smart sensor node that can monitor physiological signals for unrestrained dairy cattle is designed through modular design and its advantages are compact structure and small volume. This sensor node is based on a MSP430F133 micro-controller; the digital sensor includes temperature sensor (DS18B20-America) and vibration-displacement sensor (DN series China); transmission of the digital data uses the nRF903. The results show that this node can collect ph...

  19. The metabolic costs of sexual signalling in the chirping katydidPlangia graminea(Serville) (Orthoptera: Tettigoniidae) are context dependent: cumulative costs add up fast.

    Science.gov (United States)

    Doubell, Marcé; Grant, Paul B C; Esterhuizen, Nanike; Bazelet, Corinna S; Addison, Pia; Terblanche, John S

    2017-12-01

    Katydids produce acoustic signals via stridulation, which they use to attract conspecific females for mating. However, direct estimates of the metabolic costs of calling to date have produced diverse cost estimates and are limited to only a handful of insect species. Therefore, in this study, we investigated the metabolic cost of calling in an unstudied sub-Saharan katydid, Plangia graminea Using wild-caught animals, we measured katydid metabolic rate using standard flow-through respirometry while simultaneously recording the number of calls produced. Overall, the metabolic rate during calling in P. graminea males was 60% higher than the resting metabolic rate (0.443±0.056 versus 0.279±0.028 ml CO 2  h -1 g -1 ), although this was highly variable among individuals. Although individual call costs were relatively inexpensive (ranging from 0.02 to 5.4% increase in metabolic rate per call), the individuals with cheaper calls called more often and for longer than those with expensive calls, resulting in the former group having significantly greater cumulative costs over a standard amount of time (9.5 h). However, the metabolic costs of calling are context dependent because the amount of time spent calling greatly influenced these costs in our trials. A power law function described this relationship between cumulative cost ( y ) and percentage increase per call ( x ) ( y =130.21 x -1.068 , R 2 =0.858). The choice of metric employed for estimating energy costs (i.e. how costs are expressed) also affects the outcome and any interpretation of costs of sexual signalling. For example, the absolute, relative and cumulative metabolic costs of calling yielded strongly divergent estimates, and any fitness implications depend on the organism's energy budget and the potential trade-offs in allocation of resources that are made as a direct consequence of increased calling effort. © 2017. Published by The Company of Biologists Ltd.

  20. Improved Fuzzy Logic System to Evaluate Milk Electrical Conductivity Signals from On-Line Sensors to Monitor Dairy Goat Mastitis.

    Science.gov (United States)

    Zaninelli, Mauro; Tangorra, Francesco Maria; Costa, Annamaria; Rossi, Luciana; Dell'Orto, Vittorio; Savoini, Giovanni

    2016-07-13

    The aim of this study was to develop and test a new fuzzy logic model for monitoring the udder health status (HS) of goats. The model evaluated, as input variables, the milk electrical conductivity (EC) signal, acquired on-line for each gland by a dedicated sensor, the bandwidth length and the frequency and amplitude of the first main peak of the Fourier frequency spectrum of the recorded milk EC signal. Two foremilk gland samples were collected from eight Saanen goats for six months at morning milking (lactation stages (LS): 0-60 Days In Milking (DIM); 61-120 DIM; 121-180 DIM), for a total of 5592 samples. Bacteriological analyses and somatic cell counts (SCC) were used to define the HS of the glands. With negative bacteriological analyses and SCC 1,000,000 cells/mL, glands were classified as not healthy (NH). For each EC signal, an estimated EC value was calculated and a relative deviation was obtained. Furthermore, the Fourier frequency spectrum was evaluated and bandwidth length, frequency and amplitude of the first main peak were identified. Before using these indexes as input variables of the fuzzy logic model a linear mixed-effects model was developed to evaluate the acquired data considering the HS, LS and LS × HS as explanatory variables. Results showed that performance of a fuzzy logic model, in the monitoring of mammary gland HS, could be improved by the use of EC indexes derived from the Fourier frequency spectra of gland milk EC signals recorded by on-line EC sensors.

  1. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals

    Directory of Open Access Journals (Sweden)

    Junkyeong Kim

    2017-06-01

    Full Text Available Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  2. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples

    DEFF Research Database (Denmark)

    Agersnap, Sune; Larsen, William Brenner; Knudsen, Steen Wilhelm

    2017-01-01

    human assisted expansion of non-indigenous signal crayfish Pacifastacus leniusculus that carry and transmit the crayfish plague pathogen. In Denmark, also the non-indigenous narrow-clawed crayfish Astacus leptodactylus has expanded due to anthropogenic activities. Knowledge about crayfish distribution...

  3. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    Science.gov (United States)

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  4. Continuous CO2 gas monitoring to clarify natural pattern and artificial leakage signals

    Science.gov (United States)

    Joun, W.; Ha, S. W.; Joo, Y. J.; Lee, S. S.; Lee, K. K.

    2017-12-01

    Continuous CO2 gas monitoring at shallow aquifer is significant for early detection and immediate handling of an aquifer impacted by leaking CO2 gas from the sequestration reservoir. However, it is difficult to decide the origin of CO2 gas because detected CO2 includes not only leaked CO2 but also naturally emitted CO2. We performed CO2 injection and monitoring tests in a shallow aquifer. Before the injection of CO2 infused water, we have conducted continuous monitoring of multi-level soil CO2 gas concentration and physical parameters such as temperature, humidity, pressure, wind speed and direction, and precipitation. The monitoring data represented that CO2 gas concentrations in unsaturated soil zone borehole showed differences at depths and daily variation (360 to 6980 ppm volume). Based on the observed data at 5 m and 8 m depths, vertical flux of gas was calculated as 0.471 L/min (LPM) for inflow from 5 m to 8 m and 9.42E-2 LPM for outflow from 8 m to 5 m. The numerical and analytical models were used to calculate the vertical flux of gas and to compare with observations. The results showed that pressure-based modeling could not explain the rapid change of CO2 gas concentration in borehole. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  5. Hibiscus rosa sinensis Linn. Petals Modulates Glycogen Metabolism and Glucose Homeostasis Signalling Pathway in Streptozotocin-Induced Experimental Diabetes.

    Science.gov (United States)

    Pillai, Sneha S; Mini, S

    2016-03-01

    The prevalence of diabetes mellitus is becoming more and more serious and reaches epidemic proportions worldwide. Scientific research is constantly looking for new agents that could be used as dietary functional ingredients in the fight against diabetes. The objective of the present study was to evaluate the effect of ethyl acetate fraction of Hibiscus rosa sinensis Linn. petals on experimental diabetes at a dose of 25 mg/kg body weight and it was compared with standard anti-diabetic drug metformin. The elevated levels of serum glucose (398.56 ± 35.78) and glycated haemoglobin (12.89 ± 1.89) in diabetic rats were significantly decreased (156.89 ± 14.45 and 6.12 ± 0.49, respectively) by Hibiscus rosa sinensis petals (EHRS) administration. Hepatotoxicity marker enzyme levels in serum were normalized. The fraction supplementation restored the glycogen content by regulating the activities of glycogen metabolizing enzymes. It significantly modulated the expressions of marker genes involved in glucose homeostasis signalling pathway. Histopathological analysis of liver and pancreas supported our findings. The overall effect was comparable with metformin. Hence, our study reveals the role of hibiscus petals for alleviation of diabetes complications, thus it can be propagated as a nutraceutical agent.

  6. Captopril Normalizes Insulin Signaling and Insulin-Regulated Substrate Metabolism in Obese (ob/ob) Mouse Hearts

    Science.gov (United States)

    Tabbi-Anneni, Imene; Buchanan, Jonathan; Cooksey, Robert C.; Abel, E. Dale

    2008-01-01

    The goal of this study was to determine whether inhibiting the renin-angiotensin system would restore insulin signaling and normalize substrate use in hearts from obese ob/ob mice. Mice were treated for 4 wk with Captopril (4 mg/kg·d). Circulating levels of free fatty acids, triglycerides, and insulin were measured and glucose tolerance tests performed. Rates of palmitate oxidation and glycolysis, oxygen consumption, and cardiac power were determined in isolated working hearts in the presence and absence of insulin, along with levels of phosphorylation of Akt and AMP-activated protein kinase (AMPK). Captopril treatment did not correct the hyperinsulinemia or impaired glucose tolerance in ob/ob mice. Rates of fatty acid oxidation were increased and glycolysis decreased in ob/ob hearts, and insulin did not modulate substrate use in hearts of ob/ob mice and did not increase Akt phosphorylation. Captopril restored the ability of insulin to regulate fatty acid oxidation and glycolysis in hearts of ob/ob mice, possibly by increasing Akt phosphorylation. Moreover, AMPK phosphorylation, which was increased in hearts of ob/ob mice, was normalized by Captopril treatment, suggesting that in addition to restoring insulin sensitivity, Captopril treatment improved myocardial energetics. Thus, angiotensin-converting enzyme inhibitors restore the responsiveness of ob/ob mouse hearts to insulin and normalizes AMPK activity independently of effects on systemic metabolic homeostasis. PMID:18450963

  7. Monitoring fluoropyrimidine metabolism in solid tumors with in vivo (19)F magnetic resonance spectroscopy

    NARCIS (Netherlands)

    van Laarhoven, Hanneke W. M.; Punt, Cornelis J. A.; Kamm, Yvonne J. L.; Heerschap, Arend

    2005-01-01

    (19)Fluorine magnetic resonance spectroscopy ((19)F MRS) offers unique possibilities for monitoring the pharmacokinetics of fluoropyrimidines in vivo in tumors and normal tissue in a non-invasive way, both in animals and in patients. This method may therefore be useful for predicting response to

  8. Monitoring fluoropyrimidine metabolism in solid tumors with in vivo (19)F magnetic resonance spectroscopy.

    NARCIS (Netherlands)

    Laarhoven, H.W.M. van; Punt, C.J.A.; Kamm, Y.J.L.; Heerschap, A.

    2005-01-01

    (19)Fluorine magnetic resonance spectroscopy ((19)F MRS) offers unique possibilities for monitoring the pharmacokinetics of fluoropyrimidines in vivo in tumors and normal tissue in a non-invasive way, both in animals and in patients. This method may therefore be useful for predicting response to

  9. Screening for and monitoring of cardio-metabolic risk factors in ...

    African Journals Online (AJOL)

    Abstract. Objective: Recent findings suggest that premature death in patients with severe mental illness (SMI) can be attributed to the ... patients with SMI received poorer health monitoring than other patients attending a primary care clinic and that both healthcare .... other tests, such as fasting glucose and fasting serum.

  10. Effects of reactive oxygen species on metabolism monitored by longitudinal 1H single voxel MRS follow-up in patients with mitochondrial disease or cerebral tumors

    International Nuclear Information System (INIS)

    Constans, J M; Collet, S; Hossu, G; Courtheoux, P; Guillamo, J S; Lechapt-Zalcman, E; Valable, S; Lacombe, S; Houee Levin, C; Gauduel, Y A; Dou, W; Ruan, S; Barre, L; Rioult, F; Derlon, J M; Chapon, F; Fong, V; Kauffmann, F

    2011-01-01

    Free radicals, or Reactive Oxygen Species (ROS), have an effect on energy and glycolytic metabolism, mitochondrial function, lipid metabolism, necrosis and apoptosis, cell proliferation, and infiltration. These changes could be monitored longitudinally (every 4 months over 6 years) in humans with glial brain tumors (low and high grade) after therapy, using conventional magnetic resonance imaging (MRI) and spectroscopy (MRS) and MR perfusion. Some examples of early clinical data from longitudinal follow-up monitoring in humans of energy and glycolytic metabolism, lipid metabolism, necrosis, proliferation, and infiltration measured by conventional MRI, MRS and perfusion, and positron emission tomography (PET) are shown in glial brain tumors after therapy. Despite the difficulty, the variability and unknown factors, these repeated measurements give us a better insight into the nature of the different processes, tumor progression and therapeutic response.

  11. P-RANSAC: An Integrity Monitoring Approach for GNSS Signal Degraded Scenario

    Directory of Open Access Journals (Sweden)

    Gaetano Castaldo

    2014-01-01

    Full Text Available Satellite navigation is critical in signal-degraded environments where signals are corrupted and GNSS systems do not guarantee an accurate and continuous positioning. In particular measurements in urban scenario are strongly affected by gross errors, degrading navigation solution; hence a quality check on the measurements, defined as RAIM, is important. Classical RAIM techniques work properly in case of single outlier but have to be modified to take into account the simultaneous presence of multiple outliers. This work is focused on the implementation of random sample consensus (RANSAC algorithm, developed for computer vision tasks, in the GNSS context. This method is capable of detecting multiple satellite failures; it calculates position solutions based on subsets of four satellites and compares them with the pseudoranges of all the satellites not contributing to the solution. In this work, a modification to the original RANSAC method is proposed and an analysis of its performance is conducted, processing data collected in a static test.

  12. Metabolic Discrimination of Select List Agents by Monitoring Cellular Responses in a Multianalyte Microphysiometer

    Directory of Open Access Journals (Sweden)

    John Wikswo

    2009-03-01

    Full Text Available Harnessing the potential of cells as complex biosensors promises the potential to create sensitive and selective detectors for discrimination of biodefense agents. Here we present toxin detection and suggest discrimination using cells in a multianalyte microphysiometer (MMP that is capable of simultaneously measuring flux changes in four extracellular analytes (acidification rate, glucose uptake, oxygen uptake, and lactate production in real-time. Differential short-term cellular responses were observed between botulinum neurotoxin A and ricin toxin with neuroblastoma cells, alamethicin and anthrax protective antigen with RAW macrophages, and cholera toxin, muscarine, 2,4-dinitro-phenol, and NaF with CHO cells. These results and the post exposure dynamics and metabolic recovery observed in each case suggest the usefulness of cell-based detectors to discriminate between specific analytes and classes of compounds in a complex matrix, and furthermore to make metabolic inferences on the cellular effects of the agents. This may be particularly valuable for classifying unknown toxins.

  13. Acoustic Emission Signal Classification in Condition Monitoring Using the Kolmogorov-Smirnov Statistic.

    OpenAIRE

    Hall, L. D.; Mba, David; Bannister, R. H.

    2001-01-01

    Acoustic emission (AE) measurement at the bearings of rotating machinery has become a useful tool for diagnosing incipient fault conditions. In particular, AE can be used to detect unwanted intermittent or partial rubbing between a rotating central shaft and surrounding stationary components. This is a particular problem encountered in gas turbines used for power generation. For successful fault diagnosis, it is important to adopt AE signal analysis techniques capable of dis...

  14. Improved data acquisition methods for uninterrupted signal monitoring and ultra-fast plasma diagnostics in LHD

    International Nuclear Information System (INIS)

    Nakanishi, Hideya; Imazu, Setsuo; Ohsuna, Masaki

    2012-01-01

    To deal with endless data streams acquired in LHD steady-state experiments, the LHD data acquisition system was designed with a simple concept that divides a long pulse into a consecutive series of 10-s “subshots”. Latest digitizers applying high-speed PCI-Express technology, however, output nonstop gigabyte per second data streams whose subshot intervals would be extremely long if 10-s rule was applied. These digitizers need shorter subshot intervals, less than 10-s long. In contrast, steady-state fusion plants need uninterrupted monitoring of the environment and device soundness. They adopt longer subshot lengths of either 10 min or 1 day. To cope with both uninterrupted monitoring and ultra-fast diagnostics, the ability to vary the subshot length according to the type of operation is required. In this study, a design modification that enables variable subshot lengths was implemented and its practical effectiveness in LHD was verified. (author)

  15. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2015-09-01

    Full Text Available There are a limited number of studies on heat stress dynamics during exercise using the photoplethysmogram (PPG and its second derivative (APG. However, we investigate the most suitable index from short PPG signal recordings for heat stress assessment. The APG waveform consists of a, b, c and d waves in systole and an e wave in diastole. Our preliminary results indicate that the use of the energy of aa area, derived from PPG signals measured from emergency responders in tropical conditions, is promising in determining the heat stress level using 20-s recordings. After examining 14 time domain features using leave-one-out cross-validation, we found that the aa energy extracted from PPG signals is the most informative feature for classifying heat-stressed subjects, with an overall accuracy of 79%. Moreover, the combination of the aa energy with the traditional heart rate variability index of heat stress (i.e., the square root of the mean of the squares of the successive aa intervals improved the heat stress detection to an overall accuracy of 83%.

  16. High resolution temperature monitoring in a borehole, detection of the deterministic signals in noisy environment

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Šafanda, Jan; Krešl, Milan

    2008-01-01

    Roč. 52, č. 3 (2008), s. 413-437 ISSN 0039-3169 R&D Projects: GA AV ČR(CZ) IAA300120603; GA ČR(CZ) GA205/06/1181 Institutional research plan: CEZ:AV0Z30120515 Keywords : borehole correction * recurrence analysis * temperature monitoring Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.770, year: 2008

  17. EEG Signals Analysis Using Multiscale Entropy for Depth of Anesthesia Monitoring during Surgery through Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2015-01-01

    Full Text Available In order to build a reliable index to monitor the depth of anesthesia (DOA, many algorithms have been proposed in recent years, one of which is sample entropy (SampEn, a commonly used and important tool to measure the regularity of data series. However, SampEn only estimates the complexity of signals on one time scale. In this study, a new approach is introduced using multiscale entropy (MSE considering the structure information over different time scales. The entropy values over different time scales calculated through MSE are applied as the input data to train an artificial neural network (ANN model using bispectral index (BIS or expert assessment of conscious level (EACL as the target. To test the performance of the new index’s sensitivity to artifacts, we compared the results before and after filtration by multivariate empirical mode decomposition (MEMD. The new approach via ANN is utilized in real EEG signals collected from 26 patients before and after filtering by MEMD, respectively; the results show that is a higher correlation between index from the proposed approach and the gold standard compared with SampEn. Moreover, the proposed approach is more structurally robust to noise and artifacts which indicates that it can be used for monitoring the DOA more accurately.

  18. PROBING THE IMPACT OF GAMMA-IRRADIATION ON THE METABOLIC STATE OF NEURAL STEM AND PRECURSOR CELLS USING DUAL-WAVELENGTH INTRINSIC SIGNAL TWO-PHOTON EXCITED FLUORESCENCE.

    Science.gov (United States)

    Krasieva, Tatiana B; Giedzinski, Erich; Tran, Katherine; Lan, Mary; Limoli, Charles L; Tromberg, Bruce J

    2011-07-01

    Two-photon excited fluorescence (TPEF) spectroscopy and imaging were used to investigate the effects of gamma-irradiation on neural stem and precursor cells (NSPCs). While the observed signal from reduced nicotinamide adenine dinucleotide (NADH) was localized to the mitochondria, the signal typically associated with oxidized flavoproteins (Fp) was distributed diffusely throughout the cell. The measured TPEF emission and excitation spectra were similar to the established spectra of NAD(P)H and Fp. Fp fluorescence intensity was markedly increased by addition of the electron transport chain (ETC) modulator menadione to the medium, along with a concomitant decrease in the NAD(P)H signal. Three-dimensional (3D) neurospheres were imaged to obtain the cellular metabolic index (CMI), calculated as the ratio of Fp to NAD(P)H fluorescence intensity. Radiation effects were found to differ between low-dose (≤ 50 cGy) and high-dose (≥ 50 cGy) exposures. Low-dose irradiation caused a marked drop in CMI values accompanied by increased cellular proliferation. At higher doses, both NAD(P)H and Fp signals increased, leading to an overall elevation in CMI values. These findings underscore the complex relationship between radiation dose, metabolic state, and proliferation status in NSPCs and highlight the ability of TPEF spectroscopy and imaging to characterize metabolism in 3D spheroids.

  19. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  20. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    International Nuclear Information System (INIS)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-01-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  1. Monitoring tyrosine kinase inhibitor therapeutic responses with a panel of metabolic biomarkers in chronic myeloid leukemia patients.

    Science.gov (United States)

    Yang, Bingyu; Wang, Chang; Xie, Yiyu; Xu, Liangjing; Wu, Xiaojin; Wu, Depei

    2018-03-01

    The aim of this study is to investigate the potential biomarkers associated with chronic myeloid leukemia (CML), reveal the metabolite changes related to the continuous phases of tyrosine kinase inhibitors (TKIs), and find the potential biomarkers associated with treatment effects. Fifty-two patients with CML and 26 matched healthy people were enrolled as the discovery set. Another 194 randomly selected CML patients treated with TKI were chosen as the external validation set. Plasma samples from the patients and controls were profiled using the gas chromatography-mass spectrometry-based metabonomic approach. Multivariate and univariate statistical analyses were combined to select the differential metabolic features. The gas chromatography-mass spectrometry-based metabolomics showed a clear clustering and separation of metabolic patterns from healthy controls and pre- and post-TKI treatment CML patients in the discovery set. We identified 9 metabolites that differentiated CML patients from healthy controls, including lactic acid, isoleucine, glycerol, glycine, myristic acid, d-sorbitol, d-galactose, d-glucose, and myo-inositol. Among the 9 markers, glycerol and myristic acid had the most significant association with TKI treatment effects in both discovery and external validation sets. In the receiver operating characteristic analysis, the combination of glycerol and myristic acid showed a better discrimination performance compared to a single biomarker. The results indicated that metabolic profiling has the potential for diagnosis of CML and the panel of biomarkers including myristic acid and glycerol could be useful in monitoring TKI therapeutic responses. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Extensive intestinal first-pass metabolism of arctigenin: evidenced by simultaneous monitoring of both parent drug and its major metabolites.

    Science.gov (United States)

    Gao, Qiong; Zhang, Yufeng; Wo, Siukwan; Zuo, Zhong

    2014-03-01

    The current study aims to investigate intestinal absorption and metabolism of arctigenin (AR) through simultaneous monitoring of AR and its major metabolites in rat plasma. An UPLC/MS/MS assay was developed with chromatographic separation of all analytes achieved by a C18 Column (3.9mm×150mm, 3.5μm) and a gradient elution with acetonitrile and 0.1% formic acid within 9min. Sample extraction with acetonitrile was optimized to achieve satisfactory recovery for both AR and its major metabolites. The lower limit of quantification (LLOQ) for all analytes was 25ng/ml. The intra-day and inter-day precision and accuracy of each analyte at LLOQ and three quality control (QC) concentrations (low, middle and high) in rat plasma was within 15.0% RSD and 15.0% bias. The extraction recoveries were within the range of 83.8-94.0% for all analytes. The developed and validated assay was then applied to the absorption study of AR in both Caco-2 cell monolayer model and in situ single-pass rat intestinal perfusion model. High absorption permeability of AR was demonstrated in both models with Papp of (1.76±0.48)×10(-5) (A→B) (Caco-2) and Pblood of (8.6±3.0)×10(-6)cm/s (intestinal perfusion). Extensive first-pass metabolism of AR to arctigenic acid (AA) and arctigenin-4'-O-glucuronide (AG) was identified in rat intestinal perfusion study with Cummins's extraction ratios of 0.458±0.012 and 0.085±0.013, respectively. The current assay method demonstrated to be a practical tool for pharmacokinetics investigation of AR with complicated metabolism pathways and multiple metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Melatonin as a Signaling Molecule for Metabolism Regulation in Response to Hypoxia in the Crab Neohelice granulata

    Directory of Open Access Journals (Sweden)

    Fábio Everton Maciel

    2014-12-01

    Full Text Available Melatonin has been identified in a variety of crustacean species, but its function is not as well understood as in vertebrates. The present study investigates whether melatonin has an effect on crustacean hyperglycemic hormone (CHH gene expression, oxygen consumption (VO2 and circulating glucose and lactate levels, in response to different dissolved-oxygen concentrations, in the crab Neohelice granulata, as well as whether these possible effects are eyestalk- or receptor-dependent. Melatonin decreased CHH expression in crabs exposed for 45 min to 6 (2, 200 or 20,000 pmol·crab−1 or 2 mgO2·L−1 (200 pmol·crab−1. Since luzindole (200 nmol·crab−1 did not significantly (p > 0.05 alter the melatonin effect, its action does not seem to be mediated by vertebrate-typical MT1 and MT2 receptors. Melatonin (200 pmol·crab−1 increased the levels of glucose and lactate in crabs exposed to 6 mgO2·L−1, and luzindole (200 nmol·crab−1 decreased this effect, indicating that melatonin receptors are involved in hyperglycemia and lactemia. Melatonin showed no effect on VO2. Interestingly, in vitro incubation of eyestalk ganglia for 45 min at 0.7 mgO2·L−1 significantly (p < 0.05 increased melatonin production in this organ. In addition, injections of melatonin significantly increased the levels of circulating melatonin in crabs exposed for 45 min to 6 (200 or 20,000 pmol·crab−1, 2 (200 and 20,000 pmol·crab−1 and 0.7 (200 or 20,000 pmol·crab−1 mgO2·L−1. Therefore, melatonin seems to have an effect on the metabolism of N. granulata. This molecule inhibited the gene expression of CHH and caused an eyestalk- and receptor-dependent hyperglycemia, which suggests that melatonin may have a signaling role in metabolic regulation in this crab.

  4. Understanding reflection behavior as a key for interpreting complex signals in FBRM monitoring of microparticle preparation processes.

    Science.gov (United States)

    Vay, Kerstin; Friess, Wolfgang; Scheler, Stefan

    2012-11-01

    The application of focused beam reflectance measurement (FBRM) was studied in a larger scale PLGA microparticle preparation process for monitoring changes of the particle size and the particles' surface properties. Further understanding how these parameters determine the chord length distribution (CLD) was gained by means of single object measurements and data of monodisperse microparticles. It was evaluated how the FBRM signal is influenced by the surface characteristics of the tested materials and the measuring conditions. Particles with good scattering properties provided comparable values for the CLD and the particle size distribution. Translucent particles caused an overestimation of the particle size by FBRM, whereas the values for transparent emulsion droplets were too low. Despite a strong dependence of FBRM results on the optical properties of the samples, it is a beneficial technique for online monitoring of microparticle preparation processes. The study demonstrated how changing reflection properties can be used to monitor structural changes during the solidification of emulsion droplets and to detect process instabilities by FBRM. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Design, development and implementation of the IR signaling techniques for monitoring ambient and body temperature

    International Nuclear Information System (INIS)

    Baqai, A.

    2014-01-01

    Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks). This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red) communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes), TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags. (author)

  6. Different exogenous sugars affect the hormone signal pathway and sugar metabolism in "Red Globe" (Vitis vinifera L.) plantlets grown in vitro as shown by transcriptomic analysis.

    Science.gov (United States)

    Mao, Juan; Li, Wenfang; Mi, Baoqin; Dawuda, Mohammed Mujitaba; Calderón-Urrea, Alejandro; Ma, Zonghuan; Zhang, Yongmei; Chen, Baihong

    2017-09-01

    Exogenously applied 2% fructose is the most appropriate carbon source that enhances photosynthesis and growth of grape plantlets compared with the same concentrations of sucrose and glucose. The role of the sugars was regulated by the expression of key candidate genes related to hormones, key metabolic enzymes, and sugar metabolism of grape plantlets ( Vitis vinifera L.) grown in vitro. The addition of sugars including sucrose, glucose, and fructose is known to be very helpful for the development of grape (V. vinifera L.) plantlets in vitro. However, the mechanisms by which these sugars regulate plant development and sugar metabolism are poorly understood. In grape plantlets, sugar metabolism and hormone synthesis undergo special regulation. In the present study, transcriptomic analyses were performed on grape (V. vinifera L., cv. Red Globe) plantlets in an in vitro system, in which the plantlets were grown in 2% each of sucrose (S20), glucose (G20), and fructose (F20). The sugar metabolism and hormone synthesis of the plantlets were analyzed. In addition, 95.72-97.29% high-quality 125 bp reads were further analyzed out of which 52.65-60.80% were mapped to exonic regions, 13.13-28.38% to intronic regions, and 11.59-28.99% to intergenic regions. The F20, G20, and S20 displayed elevated sucrose synthase (SS) activities; relative chlorophyll contents; Rubisco activity; and IAA and zeatin (ZT) contents. We found F20 improved the growth and development of the plantlets better than G20 and S20. Sugar metabolism was a complex process, which depended on the balanced expression of key potential candidate genes related to hormones (TCP15, LOG3, IPT3, ETR1, HK2, HK3, CKX7, SPY, GH3s, MYBH, AGB1, MKK2, PP2C, PYL, ABF, SnRK, etc.), key metabolic enzymes (SUS, SPS, A/V-INV, and G6PDH), and sugar metabolism (BETAFRUCT4 and AMY). Moreover, sugar and starch metabolism controls the generation of plant hormone transduction pathway signaling molecules. Our dataset advances our

  7. Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys.

    Directory of Open Access Journals (Sweden)

    Laura Campello

    Full Text Available Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ± 1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to

  8. Alterations in Energy Metabolism, Neuroprotection and Visual Signal Transduction in the Retina of Parkinsonian, MPTP-Treated Monkeys

    Science.gov (United States)

    Bru-Martínez, Roque; Herrero, María Trinidad; Fernández-Villalba, Emiliano; Cuenca, Nicolás; Martín-Nieto, José

    2013-01-01

    Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ±1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to mechanisms thought to

  9. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression.

    Science.gov (United States)

    Dienel, Gerald A

    2017-01-10

    Glucose, glycogen, and lactate are traditionally identified with brain energetics, ATP turnover, and pathophysiology. However, recent studies extend their roles to include involvement in astrocytic signaling, memory consolidation, and gene expression. Emerging roles for these brain fuels and a readily-diffusible by-product are linked to differential fluxes in glycolytic and oxidative pathways, astrocytic glycogen dynamics, redox shifts, neuron-astrocyte interactions, and regulation of astrocytic activities by noradrenaline released from the locus coeruleus. Disproportionate utilization of carbohydrate compared with oxygen during brain activation is influenced by catecholamines, but its physiological basis is not understood and its magnitude may be affected by technical aspects of metabolite assays. Memory consolidation and gene expression are impaired by glycogenolysis blockade, and prevention of these deficits by injection of abnormally-high concentrations of lactate was interpreted as a requirement for astrocyte-to-neuron lactate shuttling in memory and gene expression. However, lactate transport was not measured and evidence for presumed shuttling is not compelling. In fact, high levels of lactate used to preserve memory consolidation and induce gene expression are sufficient to shut down neuronal firing via the HCAR1 receptor. In contrast, low lactate levels activate a receptor in locus coeruleus that stimulates noradrenaline release that may activate astrocytes throughout brain. Physiological relevance of exogenous concentrations of lactate used to mimic and evaluate metabolic, molecular, and behavioral effects of lactate requires close correspondence with the normal lactate levels, the biochemical and cellular sources and sinks, and specificity of lactate delivery to target cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Early B-cell factor-1 (EBF1) is a key regulator of metabolic and inflammatory signaling pathways in mature adipocytes.

    Science.gov (United States)

    Griffin, Michael J; Zhou, Yiming; Kang, Sona; Zhang, Xiaolan; Mikkelsen, Tarjei S; Rosen, Evan D

    2013-12-13

    EBF1 plays a crucial role in early adipogenesis; however, despite high expression in mature adipocytes, its function in these cells is currently unknown. To identify direct and indirect EBF1 targets in fat, we undertook a combination of transcriptional profiling of EBF1-deficient adipocytes and genome-wide EBF1 location analysis. Our results indicate that many components of metabolic and inflammatory pathways are positively and directly regulated by EBF1, including PI3K/AKT, MAPK, and STAT1 signaling. Accordingly, we observed significant reduction of multiple signaling events in EBF1 knockdown cells as well as a reduction in insulin-stimulated glucose uptake and lipogenesis. Inflammatory signaling, gene expression, and secretion of inflammatory cytokines were also significantly affected by loss of EBF1 in adipocytes, although ChIP-sequencing results suggest that these actions are indirect. We also found that EBF1 occupies some 35,000 sites in adipocytes, most of which occur in enhancers. Significantly, comparison with three other published EBF1 ChIP-sequencing data sets in B-cells reveals both gene- and cell type-specific patterns of EBF1 binding. These results advance our understanding of the transcriptional mechanisms regulating signaling pathways in mature fat cells and indicate that EBF1 functions as a key integrator of signal transduction, inflammation, and metabolism.

  11. Early B-cell Factor-1 (EBF1) Is a Key Regulator of Metabolic and Inflammatory Signaling Pathways in Mature Adipocytes*

    Science.gov (United States)

    Griffin, Michael J.; Zhou, Yiming; Kang, Sona; Zhang, Xiaolan; Mikkelsen, Tarjei S.; Rosen, Evan D.

    2013-01-01

    EBF1 plays a crucial role in early adipogenesis; however, despite high expression in mature adipocytes, its function in these cells is currently unknown. To identify direct and indirect EBF1 targets in fat, we undertook a combination of transcriptional profiling of EBF1-deficient adipocytes and genome-wide EBF1 location analysis. Our results indicate that many components of metabolic and inflammatory pathways are positively and directly regulated by EBF1, including PI3K/AKT, MAPK, and STAT1 signaling. Accordingly, we observed significant reduction of multiple signaling events in EBF1 knockdown cells as well as a reduction in insulin-stimulated glucose uptake and lipogenesis. Inflammatory signaling, gene expression, and secretion of inflammatory cytokines were also significantly affected by loss of EBF1 in adipocytes, although ChIP-sequencing results suggest that these actions are indirect. We also found that EBF1 occupies some 35,000 sites in adipocytes, most of which occur in enhancers. Significantly, comparison with three other published EBF1 ChIP-sequencing data sets in B-cells reveals both gene- and cell type-specific patterns of EBF1 binding. These results advance our understanding of the transcriptional mechanisms regulating signaling pathways in mature fat cells and indicate that EBF1 functions as a key integrator of signal transduction, inflammation, and metabolism. PMID:24174531

  12. Regulation of the reserve carbohydrate metabolism by alkaline pH and calcium in Neurospora crassa reveals a possible cross-regulation of both signaling pathways.

    Science.gov (United States)

    Virgilio, Stela; Cupertino, Fernanda Barbosa; Ambrosio, Daniela Luz; Bertolini, Maria Célia

    2017-06-09

    Glycogen and trehalose are storage carbohydrates and their levels in microorganisms vary according to environmental conditions. In Neurospora crassa, alkaline pH stress highly influences glycogen levels, and in Saccharomyces cerevisiae, the response to pH stress also involves the calcineurin signaling pathway mediated by the Crz1 transcription factor. Recently, in yeast, pH stress response genes were identified as targets of Crz1 including genes involved in glycogen and trehalose metabolism. In this work, we present evidence that in N. crassa the glycogen and trehalose metabolism is modulated by alkaline pH and calcium stresses. We demonstrated that the pH signaling pathway in N. crassa controls the accumulation of the reserve carbohydrates glycogen and trehalose via the PAC-3 transcription factor, which is the central regulator of the signaling pathway. The protein binds to the promoters of most of the genes encoding enzymes of glycogen and trehalose metabolism and regulates their expression. We also demonstrated that the reserve carbohydrate levels and gene expression are both modulated under calcium stress and that the response to calcium stress may involve the concerted action of PAC-3. Calcium activates growth of the Δpac-3 strain and influences its glycogen and trehalose accumulation. In addition, calcium stress differently regulates glycogen and trehalose metabolism in the mutant strain compared to the wild-type strain. While glycogen levels are decreased in both strains, the trehalose levels are significantly increased in the wild-type strain and not affected by calcium in the mutant strain when compared to mycelium not exposed to calcium. We previously reported the role of PAC-3 as a transcription factor involved in glycogen metabolism regulation by controlling the expression of the gsn gene, which encodes an enzyme of glycogen synthesis. In this work, we extended the investigation by studying in greater detail the effects of pH on the metabolism of the

  13. Leak monitoring technique of NPP pipe system by using image signal

    International Nuclear Information System (INIS)

    Choi, Youngchul; Kook, Donghak; Lee, Changsu

    2013-01-01

    There are many pipes in the secondary cooling systems of nuclear power plants and coal-fired power plants. In these pipes, high-pressure fluids are moving at high velocity, which can cause steam leakage from pipe thinning. A steam leak is one of the major issues in the structural fracture of pipes. Therefore, a method for inspecting a large area of piping systems quickly and accurately is needed. Steam leakage is almost invisible, as the flow has a very high velocity and pressure. Therefore, it is very difficult to detect a steam leakage. In this paper, we proposed a method for detecting a steam leak using image signal processing. Our basic idea comes from a heat shimmer, which shines with a soft light that looks as if it is being shaken slightly. To test the performance of this technique, experiments have been performed for a steam generator. The results show that the proposed technique is quite powerful for steam leak detection

  14. Monitoring of home safety issues in children on enteral feeds with inherited metabolic disorders.

    Science.gov (United States)

    Evans, S; Shelton, F; Holden, C; Daly, A; Hopkins, V; MacDonald, A

    2010-09-01

    To assess the safety aspects of carers' enteral feeding technique when home enteral tube feeding children with inherited metabolic disorders (IMD). 40 patients (median age, 5.1 years; range, 0.3-13.6 years) with IMD requiring pump tube feeding were recruited. 12 patients had glycogen storage disease, 11 organic acidemias, 8 fatty acid oxidation disorders, 4 urea cycle disorders, and 5 had other conditions. 50% of the patients were fed by gastrostomy and 50% nasogastric tube. A questionnaire and practical assessment of feeding process was completed with carers by a dietician and nurse in the child's home. Areas investigated included carer hygiene, feed preparation, tube care, tube changing, use of feeding pumps and equipment, and storage of enteral feeding equipment. The main issues identified were poor hygiene practices (78% unclean work surfaces; 25% no hand washing); inaccurate ingredient measuring (40%); irregular checking of tube position (40%); inadequate tube flushing (50%); poor knowledge of how to clear tube blockages (80%); incorrect priming of pump sets (50%); incorrect position of child for night feeding (63%); untrained secondary carers (43%); and poor knowledge of pump alarms, battery life, and charging time. Children commonly slept in parent's room as a safety precaution (58%). Long term follow-up of children with IMD on home enteral tube feeding suggests that regular updates on knowledge and technique for carers may be necessary to reduce risk.

  15. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats.

    Science.gov (United States)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)-cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ-Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ-Cd induced diabetic nephrotoxic rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring

    Science.gov (United States)

    Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

    2014-06-01

    The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), β-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while β-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological

  17. Evaluation of Facebook and Twitter Monitoring to Detect Safety Signals for Medical Products: An Analysis of Recent FDA Safety Alerts.

    Science.gov (United States)

    Pierce, Carrie E; Bouri, Khaled; Pamer, Carol; Proestel, Scott; Rodriguez, Harold W; Van Le, Hoa; Freifeld, Clark C; Brownstein, John S; Walderhaug, Mark; Edwards, I Ralph; Dasgupta, Nabarun

    2017-04-01

    The rapid expansion of the Internet and computing power in recent years has opened up the possibility of using social media for pharmacovigilance. While this general concept has been proposed by many, central questions remain as to whether social media can provide earlier warnings for rare and serious events than traditional signal detection from spontaneous report data. Our objective was to examine whether specific product-adverse event pairs were reported via social media before being reported to the US FDA Adverse Event Reporting System (FAERS). A retrospective analysis of public Facebook and Twitter data was conducted for 10 recent FDA postmarketing safety signals at the drug-event pair level with six negative controls. Social media data corresponding to two years prior to signal detection of each product-event pair were compiled. Automated classifiers were used to identify each 'post with resemblance to an adverse event' (Proto-AE), among English language posts. A custom dictionary was used to translate Internet vernacular into Medical Dictionary for Regulatory Activities (MedDRA ® ) Preferred Terms. Drug safety physicians conducted a manual review to determine causality using World Health Organization-Uppsala Monitoring Centre (WHO-UMC) assessment criteria. Cases were also compared with those reported in FAERS. A total of 935,246 posts were harvested from Facebook and Twitter, from March 2009 through October 2014. The automated classifier identified 98,252 Proto-AEs. Of these, 13 posts were selected for causality assessment of product-event pairs. Clinical assessment revealed that posts had sufficient information to warrant further investigation for two possible product-event associations: dronedarone-vasculitis and Banana Boat Sunscreen--skin burns. No product-event associations were found among the negative controls. In one of the positive cases, the first report occurred in social media prior to signal detection from FAERS, whereas the other case

  18. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reto Müller

    Full Text Available The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation.

  19. Pregnancy detection and monitoring in cattle via combined foetus electrocardiogram and phonocardiogram signal processing

    Directory of Open Access Journals (Sweden)

    Gargiulo Gaetano D

    2012-09-01

    Full Text Available Abstract Background Pregnancy testing in cattle is commonly invasive requiring manual rectal palpation of the reproductive tract that presents risks to the operator and pregnancy. Alternative non-invasive tests have been developed but have not gained popularity due to poor specificity, sensitivity and the inconvenience of sample handling. Our aim is to present the pilot study and proof of concept of a new non invasive technique to sense the presence and age (limited to the closest trimester of pregnancy of the foetus by recording the electrical and audio signals produced by the foetus heartbeat using an array of specialized sensors embedded in a stand alone handheld prototype device. The device was applied to the right flank (approximately at the intercept of a horizontal line drawn through the right mid femur region of the cow and a vertical line drawn anywhere between lumbar vertebrae 3 to 5 of more than 2000 cattle from 13 different farms, including pregnant and not pregnant, a diversity of breeds, and both dairy and beef herds. Pregnancy status response is given “on the spot” from an optimized machine learning algorithm running on the device within seconds after data collection. Results Using combined electrical and audio foetal signals we detected pregnancy with a sensitivity of 87.6% and a specificity of 74.6% for all recorded data. Those values increase to 91% and 81% respectively by removing files with excessive noise (19%. Foetus ageing was achieved by comparing the detected foetus heart-rate with published tables. However, given the challenging farm environment of a restless cow, correct foetus ageing was achieved for only 21% of the correctly diagnosed pregnant cows. Conclusions In conclusion we have found that combining ECG and PCG measurements on the right flank of cattle provides a reliable and rapid method of pregnancy testing. The device has potential to be applied by unskilled operators. This will generate more efficient and

  20. Monitoring and managing metabolic effects of antipsychotics: a cluster randomized trial of an intervention combining evidence-based quality improvement and external facilitation.

    Science.gov (United States)

    Owen, Richard R; Drummond, Karen L; Viverito, Kristen M; Marchant, Kathy; Pope, Sandra K; Smith, Jeffrey L; Landes, Reid D

    2013-10-08

    Treatment of psychotic disorders consists primarily of second generation antipsychotics, which are associated with metabolic side effects such as overweight/obesity, diabetes, and dyslipidemia. Evidence-based clinical practice guidelines recommend timely assessment and management of these conditions; however, research studies show deficits and delays in metabolic monitoring and management for these patients. This protocol article describes the project 'Monitoring and Management for Metabolic Side Effects of Antipsychotics,' which is testing an approach to implement recommendations for these practices. This project employs a cluster randomized clinical trial design to test effectiveness of an evidence-based quality improvement plus facilitation intervention. Eligible study sites were VA Medical Centers with ≥300 patients started on a new antipsychotic prescription in a six-month period. A total of 12 sites, matched in pairs based on scores on an organizational practice survey, were then randomized within pairs to intervention or control conditions.Study participants include VA employees involved in metabolic monitoring and management of patients treated with antipsychotics at participating sites. The intervention involves researchers partnering with clinical stakeholders to facilitate tailoring of local implementation strategies to address barriers to metabolic side-effect monitoring and management. The intervention includes a Design Phase (initial site visit and subsequent development of a local implementation plan); Implementation Phase (guided by an experienced external facilitator); and a Sustainability Phase. Evaluation includes developmental, implementation-focused, progress-focused and interpretative formative evaluation components, as well as summative evaluation. Evaluation methods include surveys, qualitative data collection from provider participants, and quantitative data analysis of data for all patients prescribed a new antipsychotic medication at a

  1. Monitoring Notch Signaling-Associated Activation of Stem Cell Niches within Injured Dental Pulp

    Directory of Open Access Journals (Sweden)

    Thimios A. Mitsiadis

    2017-05-01

    Full Text Available Dental pulp stem/progenitor cells guarantee tooth homeostasis, repair and regeneration throughout life. The decision between renewal and differentiation of these cells is influenced by physical and molecular interactions with stromal cells and extracellular matrix molecules forming the specialized microenvironment of dental pulp stem cell niches. Here we study the activation of putative pulp niches after tooth injury through the upregulation of Notch signaling pathway. Notch1, Notch2, and Notch3 molecules were used as markers of dental pulp stem/progenitor cells. Upon dental injury, Notch1 and Notch3 are detected in cells related to vascular structures suggesting a role of these proteins in the activation of specific pulpal perivascular niches. In contrast, a population of Notch2-positive cells that are actively proliferative is observed in the apical part of the pulp. Kinetics of these cells is followed up with a lipophilic DiI labeling, showing that apical pulp cells migrate toward the injury site where dynamic regenerative/repair events occur. The knowledge of the activation and regulation of dental pulp stem/progenitor cells within their niches in pathologic conditions may be helpful for the realization of innovative dental treatments in the near future.

  2. Low Cost Plastic Optical Fiber Pressure Sensor Embedded in Mattress for Vital Signal Monitoring.

    Science.gov (United States)

    Sartiano, Demetrio; Sales, Salvador

    2017-12-13

    The aim of this paper is to report the design of a low-cost plastic optical fiber (POF) pressure sensor, embedded in a mattress. We report the design of a multipoint sensor, a cheap alternative to the most common fiber sensors. The sensor is implemented using Arduino board, standard LEDs for optical communication in POF (λ = 645 nm) and a silicon light sensor. The Super ESKA ® plastic fibers were used to implement the fiber intensity sensor, arranged in a 4 × 4 matrix. During the breathing cycles, the force transmitted from the lungs to the thorax is in the order of tens of Newtons, and the respiration rate is of one breath every 2-5 s (0.2-0.5 Hz). The sensor has a resolution of force applied on a single point of 2.2-4.5%/N on the normalized voltage output, and a bandwidth of 10 Hz, it is then suitable to monitor the respiration movements. Another issue to be addressed is the presence of hysteresis over load cycles. The sensor was loaded cyclically to estimate the drift of the system, and the hysteresis was found to be negligible.

  3. A novel approach to monitor glucose metabolism using stable isotopically labelled glucose in longitudinal studies in mice.

    Science.gov (United States)

    van Dijk, T H; Laskewitz, A J; Grefhorst, A; Boer, T S; Bloks, V W; Kuipers, F; Groen, A K; Reijngoud, D J

    2013-04-01

    The aetiology of insulin resistance is still an enigma. Mouse models are frequently employed to study the underlying pathology. The most commonly used methods to monitor insulin resistance are the HOMA-IR, glucose or insulin tolerance tests and the hyperinsulinemic euglycaemic clamp (HIEC). Unfortunately, these tests disturb steady state glucose metabolism. Here we describe a method in which blood glucose kinetics can be determined in fasted mice without noticeably perturbing glucose homeostasis. The method involves an intraperitoneal injection of a trace amount of [6,6-(2)H2]glucose and can be performed repeatedly in individual mice. The validity and performance of this novel method was tested in mice fed on chow or high-fat diet for a period of five weeks. After administering the mice with [6,6-(2)H2]glucose, decay of the glucose label was followed in small volumes of blood collected by tail tip bleeding during a 90-minute period. The total amount of blood collected was less than 120 μL. This novel approach confirmed in detail the well-known increase in insulin resistance induced by a high-fat diet. The mice showed reduced glucose clearance rate, and reduced hepatic and peripheral insulin sensitivity. To compensate for this insulin resistance, β-cell function was slightly increased. We conclude that this refinement of existing methods enables detailed information of glucose homeostasis in mice. Insulin resistance can be accurately determined while mechanistic insight is obtained in underlying pathology. In addition, this novel approach reduces the number of mice needed for longitudinal studies of insulin sensitivity and glucose metabolism.

  4. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    He JL

    2014-12-01

    increase in the intracellular level of glutathione and total glutathione S-transferase content. SCE significantly elevated the messenger ribonucleic acid and protein levels of P-glycoprotein and multidrug resistance-associated protein 2 and 4, whereas the expression of organic anion transporting peptide 1A2 and 1B1 was significantly downregulated by SCE. Knockdown of Nrf2 by small interfering ribonucleic acid attenuated the regulatory effect of SCE on these DMEs and drug transporters. SCE significantly upregulated Nrf2 and promoted the translocation of Nrf2 from cytoplasm to the nuclei. Additionally, SCE significantly suppressed the expression of cytosolic Kelch-like ECH-associated protein 1 (the repressor of Nrf2 and remarkably increased Nrf2 stability in HepG2 cells. Taken together, our findings suggest that the hepatoprotective effects of SCE may be partially ascribed to the modulation of DMEs and drug transporters via Nrf2-mediated signaling pathway. SCE may alter the pharmacokinetics of other coadministered drugs that are substrates of these DMEs and transporters and thus cause unfavorable herb–drug interactions. Keywords: Nrf2, Keap1, HepG2 cell, drug metabolizing enzyme, drug transporter, P-gp, MRP, OATP, Schisandra chinensis

  5. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  6. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    Science.gov (United States)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  7. Assessment of a flow cytometry technique for studying signaling pathways in platelets: Monitoring of VASP phosphorylation in clinical samples

    Directory of Open Access Journals (Sweden)

    N. Mallouk

    2018-07-01

    Full Text Available A recently released kit (PerFix EXPOSE was reported to improve the measurement of the degree of phosphorylation of proteins in leukocytes by flow cytometry. We tested its adaptation for platelets to monitor vasodilator-stimulated phosphoprotein (VASP phosphorylation, which is the basis of a currently used test for the assessment of the pharmacological response to P2Y12 antagonists (PLT VASP/P2Y12. The PerFix EXPOSE kit was compared to the PLT VASP/P2Y12 kit by using blood samples drawn at 24 h post clopidogrel dose from 19 patients hospitalized for a non-cardio-embolic ischemic stroke and treated with clopidogrel monotherapy for at least five days in an observational study. The platelet PerFix method was based on adaptation of the volume of the sample, the centrifugation speed and the incubation temperature. Poor agreement between prevention by adenosine diphosphate (ADP of PGE1-induced cAMP-mediated VASP phosphorylation and ADP induced aggregation assessed by Light Transmittance Aggregometry was found. We found a significant correlation between the PLT VASP/P2Y12 kit and the PerFix EXPOSE kit. The PerFix EXPOSE kit may also be helpful to monitor adverse effects of second-generation tyrosine kinase inhibitors on platelets. Keywords: Platelet signaling, VASP, Flow cytometry, Clopidogrel

  8. Signals use by leaders in Macaca tonkeana and Macaca mulatta: group-mate recruitment and behaviour monitoring.

    Science.gov (United States)

    Sueur, Cédric; Petit, Odile

    2010-03-01

    Animals living in groups have to make consensus decisions and communicate with each other about the time, or the direction, in which to move. In some species, the process relies on the proposition of a single individual, i.e. a first individual suggests a movement and the other group members decide whether or not to join this individual. In Tonkean (Macaca tonkeana) and rhesus macaques (Macaca mulatta), it has been observed that this first individual displays specific signals at departure. In this paper, we aimed to explore the function of such behaviours, i.e. if these behaviours were recruitment signals or only cues about the motivation of the first departed individual. We carried out temporal analyses and studied the latencies of the first departed individual's behaviours and of the joining of other group members. We also assessed whether the social style of a species in terms of dominance and kinship relationships influenced the patterns of signal emissions. We then analyzed how the first departed individual decided to make a pause or to stop it according to the identities of group members that joined the collective movement. Results showed that Tonkean macaques and rhesus macaques seemed to use back-glances to monitor the joining of other group members and pauses to recruit such individuals. This was especially the case for highly socially affiliated individuals in Tonkean macaques and kin-related individuals in rhesus macaques. Moreover, back-glances and pauses disappeared when such individuals joined the first departed individual. From these results, we suggested that such behaviour could be considered intentional. Such findings could not be highlighted without temporal analyses and accurate observations on primate groups in semi-free ranging conditions.

  9. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.

    Science.gov (United States)

    Zhang, Qingxue; Zhou, Dian; Zeng, Xuan

    2017-02-06

    Long-term continuous systolic blood pressure (SBP) and heart rate (HR) monitors are of tremendous value to medical (cardiovascular, circulatory and cerebrovascular management), wellness (emotional and stress tracking) and fitness (performance monitoring) applications, but face several major impediments, such as poor wearability, lack of widely accepted robust SBP models and insufficient proofing of the generalization ability of calibrated models. This paper proposes a wearable cuff-less electrocardiography (ECG) and photoplethysmogram (PPG)-based SBP and HR monitoring system and many efforts are made focusing on above challenges. Firstly, both ECG/PPG sensors are integrated into a single-arm band to provide a super wearability. A highly convenient but challenging single-lead configuration is proposed for weak single-arm-ECG acquisition, instead of placing the electrodes on the chest, or two wrists. Secondly, to identify heartbeats and estimate HR from the motion artifacts-sensitive weak arm-ECG, a machine learning-enabled framework is applied. Then ECG-PPG heartbeat pairs are determined for pulse transit time (PTT) measurement. Thirdly, a PTT&HR-SBP model is applied for SBP estimation, which is also compared with many PTT-SBP models to demonstrate the necessity to introduce HR information in model establishment. Fourthly, the fitted SBP models are further evaluated on the unseen data to illustrate the generalization ability. A customized hardware prototype was established and a dataset collected from ten volunteers was acquired to evaluate the proof-of-concept system. The semi-customized prototype successfully acquired from the left upper arm the PPG signal, and the weak ECG signal, the amplitude of which is only around 10% of that of the chest-ECG. The HR estimation has a mean absolute error (MAE) and a root mean square error (RMSE) of only 0.21 and 1.20 beats per min, respectively. Through the comparative analysis, the PTT&HR-SBP models significantly outperform

  10. Metabolic status of 1088 patients after renal transplantation: assessment of twelve years monitoring in Algiers Mustapha Hospital.

    Science.gov (United States)

    Yargui, Lyece; Chettouh, Houria; Boukni, Hamama; Mokhtari, Nassima; Berhoune, Arezki

    2014-01-01

    Since the introduction of monitoring levels of immunosuppressive medications in our service in July 2000, 1088 kidney transplant patients were received for therapeutic drug monitoring and regular follow-up. The aim of this study was to retrospectively analyze the data on these renal graft patients in Algeria and correlate with our 12 years' experience with calcineurin inhibitor (CNI) measurements. In addition, during this period, we also examined other bioche-mical parameters. The analysis was focused on the difference of effect of cyclosporin A (CsA; 623 patients) and Tacrolimus (Tac; 465 patients) on lipid and glucose metabolism and their side-effects, if any, on the renal function. The mean age at the time of transplantation was 36.1 years. A great majority of the transplanted kidneys had been taken from living related donors (88.6%). Three-quarters of all grafts were transplanted in our country (79.5%). Dyslipidemia and renal dysfunction were the most common adverse effects of CsA and Tac exposure, with a frequency of 21.4% and 10.3%, respectively. Both the CNIs had a similar effect on the lipid levels. The highest incidence occurred at 3-12 months after renal graft. Tac seemed to have more side-effects on glycemia, causing the onset of diabetes mellitus more than two-fold than CsA (6.9% vs. 3.1%). A significant difference was observed during 12-24 months after transplantation. However, Tac was associated with the most favorable effects on renal function estimated with the Modification of Diet in Renal Disease (MDRD) formula.

  11. The redox-sensitive module of cyclophilin 20-3, 2-cysteine peroxiredoxin and cysteine synthase integrates sulfur metabolism and oxylipin signaling in the high light acclimation response.

    Science.gov (United States)

    Müller, Sara M; Wang, Shanshan; Telman, Wilena; Liebthal, Michael; Schnitzer, Helena; Viehhauser, Andrea; Sticht, Carsten; Delatorre, Carolina; Wirtz, Markus; Hell, Rüdiger; Dietz, Karl-Josef

    2017-09-01

    The integration of redox- and reactive oxygen species-dependent signaling and metabolic activities is fundamental to plant acclimation to biotic and abiotic stresses. Previous data suggest the existence of a dynamically interacting module in the chloroplast stroma consisting of cyclophilin 20-3 (Cyp20-3), O-acetylserine(thiol)lyase B (OASTL-B), 2-cysteine peroxiredoxins A/B (2-CysPrx) and serine acetyltransferase 2;1 (SERAT2;1). The functionality of this COPS module is influenced by redox stimuli and oxophytodienoic acid (OPDA), which is the precursor for jasmonic acid. The concept of an integrating function of these proteins in stress signaling was challenged by combining transcriptome and biochemical analyses in Arabidopsis mutants devoid of oastlB, serat2;1, cyp20-3 and 2-cysprxA/B, and wild-type (WT). Leaf transcriptomes were analyzed 6 h after transfer to light intensity 10-fold in excess of growth light or under growth light. The survey of KEGG-based gene ontology groups showed common upregulation of translation- and protein homeostasis-associated transcripts under control conditions in all mutants compared with WT. The results revealed that the interference of the module was accompanied with disturbance of carbohydrate, sulfur and nitrogen metabolism, and also citric acid cycle intermediates. Apart from common regulation, specific responses at the transcriptome and metabolite level linked Cyp20-3 to cell wall-bound carbohydrates and oxylipin signaling, and 2-CysPrx to photosynthesis, sugar and amino acid metabolism. Deletion of either OASTL-B or SERAT2;1 frequently induced antagonistic changes in biochemical or molecular features. Enhanced sensitivity of mutant seedlings to OPDA and leaf discs to NaHS-administration confirmed the presumed functional interference of the COPS module in redox and oxylipin signaling. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Regulation of jasmonate metabolism and activation of systemic signaling in Solanum nigrum: COI1 and JAR4 play overlapping yet distinct roles.

    Science.gov (United States)

    VanDoorn, Arjen; Bonaventure, Gustavo; Schmidt, Dominik D; Baldwin, Ian T

    2011-05-01

    • Jasmonates are ubiquitous messengers in land plants essential for the activation of defense responses. However, their signaling properties, accumulation and metabolism vary substantially among species. Solanum nigrum is a wild Solanaceous species developed as a model to study defense responses. • Solanum nigrum plants transformed to silence the expression of key genes in jasmonate production (SnLOX3), conjugation (SnJAR4) and perception (SnCOI1) were generated to analyze the function of these genes in jasmonate accumulation and metabolism (studied by a combination of LC-MS/MS and (13) C-isotope labeling methods) and in signaling [studied by the systemic elicitation of leucine aminopeptidase (LAP) activity]. • In contrast with the early single jasmonic acid (JA) burst induced by wounding in wild-type (WT) plants, elicitation with insect oral secretions induced a later, second burst that was essential for the induction of systemic LAP activity, as demonstrated by ablation experiments. This induction was dependent on SnLOX3 and SnCOI1, but not on SnJAR4. In addition, the local accumulation of JA-glucose and JA-isoleucine was dependent on SnCOI1, whereas the accumulation of hydroxylated jasmonates was dependent on both SnCOI1 and SnJAR4. • The results demonstrate that SnLOX3, SnCOI1 and SnJAR4 have overlapping yet distinct roles in jasmonate signaling, differentially controlling jasmonate metabolism and the production of a systemic signal. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  13. New Nordic Diet induced weight loss is accompanied by changes in metabolism and AMPK signalling in adipose tissue

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Lundsgaard, Annemarie; Jordy, Andreas Børsting

    2015-01-01

    CONTEXT: The molecular mechanisms behind diet-induced metabolic improvements remain to be studied. The Objective was to investigate whether expression of proteins in skeletal muscle or adipose tissue could explain improvements in glucose and lipid homeostasis after weight loss. DESIGN: Volunteers...... muscle. NND induced greater reduction in fat mass than ADD (-6±1 kg and -2±1 kg, p... regulation of key glucose and lipid handling proteins suggests an improved metabolic capacity in adipose tissue after weight loss....

  14. Activation of the Tor/Myc signaling axis in intestinal stem and progenitor cells affects longevity, stress resistance and metabolism in drosophila.

    Science.gov (United States)

    Strilbytska, Olha M; Semaniuk, Uliana V; Storey, Kenneth B; Edgar, Bruce A; Lushchak, Oleh V

    2017-01-01

    The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies. TOR activation caused higher survival under malnutrition conditions. Furthermore, we demonstrate gut-specific activation of JAK/STAT and insulin signaling pathways to control gut integrity. Both genetic manipulations had an impact on carbohydrate metabolism and transcriptional levels of metabolic genes. Our findings indicate that activation of the TOR-Myc axis in midgut stem and progenitor cells influences a variety of traits in Drosophila. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2016-01-01

    Full Text Available Pulsed electromagnetic field (PEMF has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP, but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation.

  16. Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway

    Science.gov (United States)

    Jiang, Yuan; Gou, Hui; Wang, Sanrong; Zhu, Jiang; Tian, Si; Yu, Lehua

    2016-01-01

    Pulsed electromagnetic field (PEMF) has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP), but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD) level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation. PMID:26941827

  17. Vodka and wine consumption in a swine model of metabolic syndrome alters insulin signaling pathways in the liver and skeletal muscle.

    Science.gov (United States)

    Elmadhun, Nassrene Y; Lassaletta, Antonio D; Chu, Louis M; Bianchi, Cesario; Sellke, Frank W

    2012-09-01

    The purpose of this study was to examine the effects of alcohol in the context of metabolic syndrome on insulin signaling pathways in the liver and skeletal muscle. Twenty-six Yorkshire swine were fed a hypercaloric, high-fat diet for 4 weeks then split into 3 groups: hypercholesterolemic diet alone (HCC, n = 9), hypercholesterolemic diet with vodka (HCVOD, n = 9), and hypercholesterolemic diet with wine (HCW, n = 8) for 7 weeks. Animals underwent intravenous dextrose challenge before euthanasia and tissue collection. HCC, HCVOD, and HCW groups had similar blood fasting glucose levels, liver function test, and body mass index. Thirty and 60 minutes after dextrose infusion, HCVOD and HCW groups had significantly increased blood glucose levels compared with the HCC group. The HCW group had significantly increased levels of insulin compared with the HCC group. Immunoblotting in skeletal muscle demonstrated that alcohol up-regulates p-IRS1, IRS2, AKT, AMPKα, PPARα, Fox01, and GLUT4. In the liver, HCW had up-regulation of AKT, AMPKα, and GLUT4 compared with HCC. Skeletal muscle immunohistochemistry demonstrated increased sarcolemmal expression of GLUT4 in both alcohol groups compared with HCC. Moderate alcohol consumption in a swine model of metabolic syndrome worsens glucose metabolism by altering activation of the insulin signaling pathway in the liver and skeletal muscle. Copyright © 2012 Mosby, Inc. All rights reserved.

  18. On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Petersen, Nickolaj J.; Pedersen, Jacob Sønderby; Poulsen, Nicklas Nørgård

    2012-01-01

    the in vitro metabolism of amitriptyline in real time. There was no need to stop the metabolisms by protein precipitation as in conventional metabolic studies, since the EME selectively extracted the drug and metabolites from the reaction solution comprised of rat liver microsomes in buffer. Compositional...

  19. Relationship between metabolic control and self-monitoring of blood glucose in insulin-treated patients with diabetes mellitus.

    Science.gov (United States)

    Soto González, Alfonso; Quintela Fernández, Niurka; Pumar López, Alfonso; Darias Garzón, Ricardo; Rivas Fernández, Margarita; Barberá Comes, Gloria

    2015-05-01

    To assess the relationship between metabolic control (MC) and frequency of self-monitoring of blood glucose (SMBG) in insulin-treated patients with type 1 (T1DM) and type 2 (T2DM) diabetes mellitus, and to analyze the factors associated to MC. A multicenter, cross-sectional, observational study was conducted in which endocrinologists enrolled diabetic patients treated with insulin who used a glucometer. The cut-off value for MC was HbA1c ≤ 7%. Grade of acceptance of the glucometer was assessed using a visual analogue scale (VAS). A total of 341 patients (53.5% males) with a mean age (SD) 52.8 (16.3) years, mean HbA1c of 7.69% (1.25) and 128 (37.5%) with T1DM and 211 (61.9%) with T2DM were evaluable. SMBG was done by 86.1% at least once weekly. No relationship was seen between MC and SMBG (P=.678) in the overall sample or in the T1DM (P=.940) or T2DM (P=.343) subgroups. In the logistic regression model, hyperglycemic episodes (Exp-b [risk] 1.794, P=0.022), falsely elevated HbA1c values (Exp-b 3.182, P=.005), and VAS (Exp-b 1.269, P=.008) were associated to poor MC in the total sample. Hyperglycemic episodes (Exp-b 2.538, P=.004), falsely elevated HbA1c values (Exp-b 3.125, P=.012), and VAS (Exp-b 1.316, P=.026) were associated to poor MC in the T2DM subgroup, while body mass index (Exp-b 1.143, P=.046) was associated to poor MC in the T1DM subgroup. In this retrospective, non-controlled study on patients with DM treated with insulin who used a glucometer, no relationship was seen between the degree of metabolic control and frequency of use of the glucometer. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  20. Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism

    International Nuclear Information System (INIS)

    Liu Jie; Xie Yaxiong; Cooper, Ryan; Ducharme, Danica M.K.; Tennant, Raymond; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2007-01-01

    Exposure to inorganic arsenic in utero in C3H mice produces hepatocellular carcinoma in male offspring when they reach adulthood. To help define the molecular events associated with the fetal onset of arsenic hepatocarcinogenesis, pregnant C3H mice were given drinking water containing 0 (control) or 85 ppm arsenic from day 8 to 18 of gestation. At the end of the arsenic exposure period, male fetal livers were removed and RNA isolated for microarray analysis using 22K oligo chips. Arsenic exposure in utero produced significant (p < 0.001) alterations in expression of 187 genes, with approximately 25% of aberrantly expressed genes related to either estrogen signaling or steroid metabolism. Real-time RT-PCR on selected genes confirmed these changes. Various genes controlled by estrogen, including X-inactive-specific transcript, anterior gradient-2, trefoil factor-1, CRP-ductin, ghrelin, and small proline-rich protein-2A, were dramatically over-expressed. Estrogen-regulated genes including cytokeratin 1-19 and Cyp2a4 were over-expressed, although Cyp3a25 was suppressed. Several genes involved with steroid metabolism also showed remarkable expression changes, including increased expression of 17β-hydroxysteroid dehydrogenase-7 (HSD17β7; involved in estradiol production) and decreased expression of HSD17β5 (involved in testosterone production). The expression of key genes important in methionine metabolism, such as methionine adenosyltransferase-1a, betaine-homocysteine methyltransferase and thioether S-methyltransferase, were suppressed. Thus, exposure of mouse fetus to inorganic arsenic during a critical period in development significantly alters the expression of various genes encoding estrogen signaling and steroid or methionine metabolism. These alterations could disrupt genetic programming at the very early life stage, which could impact tumor formation much later in adulthood

  1. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada); Faure, Robert [Département de Pédiatrie, Université Laval and Centre de recherche du CHUQ (Centre Mère-Enfant), Québec, Qc, Canada G1V 4G2 (Canada); Marceau, Normand, E-mail: normand.marceau@crhdq.ulaval.ca [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada)

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  2. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; Gunnarsson, Thomas Gunnar Petursson; Hostrup, Morten

    2016-01-01

    This study tested the hypothesis that elevated plasma adrenaline or metabolic stress enhances exercise-induced PGC-1α mRNA and intracellular signaling in human muscle. Trained (VO2-max: 53.8 ± 1.8 mL min(-1) kg(-1)) male subjects completed four different exercise protocols (work load of the legs...... exercise than at rest in all protocols, and higher (P stress determines the magnitude of PGC-1α mRNA response in human muscle. Furthermore, higher exercise-induced changes in AMPK, p38, and CREB...

  3. The proximal pathway of metabolism of the chlorinated signal molecule differentiation-inducing factor-1 (DIF-1) in the cellular slime mould Dictyostelium.

    OpenAIRE

    Morandini, P; Offer, J; Traynor, D; Nayler, O; Neuhaus, D; Taylor, G W; Kay, R R

    1995-01-01

    Stalk cell differentiation during development of the slime mould Dictyostelium is induced by a chlorinated alkyl phenone called differentiation-inducing factor-1 (DIF-1). Inactivation of DIF-1 is likely to be a key element in the DIF-1 signalling system, and we have shown previously that this is accomplished by a dedicated metabolic pathway involving up to 12 unidentified metabolites. We report here the structure of the first four metabolites produced from DIF-1, as deduced by m.s., n.m.r. an...

  4. Challenges of arbitrary waveform signal detection by Silicon Photomultipliers as readout for Cherenkov fibre based beam loss monitoring systems

    CERN Document Server

    Vinogradov, Sergey; Nebot del Busto, Eduardo; Kastriotou, Maria; Welsch, Carsten P

    2016-01-01

    Silicon Photomultipliers (SiPMs) are well recognised as very competitive photodetectors due to their exceptional photon number and time resolution, room-temperature low-voltage operation, insensitivity to magnetic fields, compactness, and robustness. Detection of weak light pulses of nanosecond time scale appears to be the best area for SiPM applications because in this case most of the SiPM drawbacks have a rather limited effect on its performance. In contrast to the more typical scintillation and Cherenkov detection applications, which demand information on the number of photons and/or the arrival time of the light pulse only, beam loss monitoring (BLM) systems utilising Cherenkov fibres with photodetector readout have to precisely reconstruct the temporal profile of the light pulse. This is a rather challenging task for any photon detector especially taking into account the high dynamic range of incident signals (100K – 1M) from a few photons to a few percents of destructive losses in a beam line and pre...

  5. The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques.

    Science.gov (United States)

    Vistejnova, Lucie; Dvorakova, Jana; Hasova, Martina; Muthny, Tomas; Velebny, Vladimir; Soucek, Karel; Kubala, Lukas

    2009-01-01

    Determination of cell numbers is a crucial step in studies focused on cytokinetics and cell toxicity. The impedance-based analysis employing electronic sensor array system xCELLigence System allowing label-free dynamic monitoring of relative viable adherent cell amounts was compared with the most utilized methods for relative quantification of viable cell numbers based on a determination of cellular metabolism. Colorimetric assay based on reduction of tetrazolium salt (MTT) by mitochondrial enzymes and chemiluminiscent assay based on intracellular adenosine triphosphate (ATP) determination were compared with the impedance-based system. Cell morphology was compared by microscopic evaluation. Normal human epidermal keratinocytes (NHEK) and normal human dermal fibroblasts (NHDF), together with 3T3 mouse fibroblast and HaCaT keratinocyte cell lines were employed. The progress of cell growth curves obtained by different methods during 72 hours reflected cell type and cell seeding densities. The impedance-based method was found to be applicable for the determination of the cell proliferation of 3T3 fibroblasts, HaCaT and NHDF, since the comparison of this method with ATP and MTT determinations showed a comparable results. In contrast, the proliferation of NHEK measured by the impedance-based method did not correlate with other methodological approaches. This could be accounted to the specific morphological appearance of these cells. The study shows the impedance-based detection of viable adherent cells is a valuable approach for cytokinetics and pharmacological studies. However, the specific morphological characteristics of cell lines have to be considered employing this method for determination of cell proliferation without using other reference methods.

  6. High-fat diet feeding alters metabolic response to fasting/non fasting conditions. Effect on caveolin expression and insulin signalling.

    Science.gov (United States)

    Gómez-Ruiz, Ana; Milagro, Fermín I; Campión, Javier; Martínez, J Alfredo; de Miguel, Carlos

    2011-04-13

    The effect of food intake on caveolin expression in relation to insulin signalling was studied in skeletal muscle and adipocytes from retroperitoneal (RP) and subcutaneous (SC) adipose tissue, comparing fasted (F) to not fasted (NF) rats that had been fed a control or high-fat (HF) diet for 72 days. Serum glucose was analysed enzymatically and insulin and leptin by ELISA. Caveolins and insulin signalling intermediaries (IR, IRS-1 and 2 and GLUT4) were determined by RT-PCR and western blotting. Caveolin and IR phosphorylation was measured by immunoprecipitation. Data were analysed with Mann-Whitney U test. High-fat fed animals showed metabolic alterations and developed obesity and insulin resistance. In skeletal muscle, food intake (NF) induced activation of IR and increased expression of IRS-2 in control animals with normal metabolic response. HF animals became overweight, hyperglycaemic, hyperinsulinemic, hyperleptinemic and showed insulin resistance. In skeletal muscle of these animals, food intake (NF) also induced IRS-2 expression together with IR, although this was not active. Caveolin 3 expression in this tissue was increased by food intake (NF) in animals fed either diet. In RP adipocytes of control animals, food intake (NF) decreased IR and IRS-2 expression but increased that of GLUT4. A similar but less intense response was found in SC adipocytes. Food intake (NF) did not change caveolin expression in RP adipocytes with either diet, but in SC adipocytes of HF animals a reduction was observed. Food intake (NF) decreased caveolin-1 phosphorylation in RP but increased it in SC adipocytes of control animals, whereas it increased caveolin-2 phosphorylation in both types of adipocytes independently of the diet. Animals fed a control-diet show a normal response to food intake (NF), with activation of the insulin signalling pathway but without appreciable changes in caveolin expression, except a small increase of caveolin-3 in muscle. Animals fed a high-fat diet

  7. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Chan, Jessica S K; Sjøberg, Kim Anker

    2017-01-01

    OBJECTIVE: Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether di...

  8. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K

    1999-01-01

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport...

  9. Central ghrelin signaling mediates the metabolic response of C57BL/6 male mice to chronic social defeat stress.

    Science.gov (United States)

    Patterson, Z R; Khazall, R; Mackay, H; Anisman, H; Abizaid, A

    2013-03-01

    Chronic stressors promote metabolic disturbances, including obesity and metabolic syndrome. Ghrelin, a peptide that promotes appetite and the accumulation of adipose tissue, is also secreted in response to stressors to protect the brain and peripheral tissues from the effects of these stressors. Here we demonstrate that elevated ghrelin levels produced by chronic exposure to social stress are associated with increased caloric intake and body weight gain in male C57BL mice. In contrast, stressed mice lacking ghrelin receptors (GHSR KO mice) or C57BL mice receiving chronic intracerebroventricular delivery of the ghrelin receptor antagonist [d-Lys(3)]-GHRP-6 show attenuated weight gain and feeding responses under the same social stress paradigm. Interestingly, stressed GHSR KO mice showed depleted sc and intrascapular brown fat depots, whereas stressed young wild-type mice did not. In old wild-type mice, chronic social defeat increased visceral and intrascapular brown fat depots in association with increases in obesity markers like hyperleptinemia and hyperinsulinemia along with increased hypothalamic expression of neuropeptide Y and Agouti related peptide. Importantly, the elevated expression of these peptides persisted least for 2 weeks after cessation of the stressor regimen. In contrast, old GHSR KO mice did not show these alterations after chronic social defeat. These results suggest that ghrelin plays an important role in the metabolic adaptations necessary to meet the energetic demands posed by stressors, but chronic exposure to stress-induced ghrelin elevations ultimately could lead to long lasting metabolic dysfunctions.

  10. Metabolic changes and associated cytokinin signals in response to nitrate assimilation in roots and shoots of Lolium perenne

    Czech Academy of Sciences Publication Activity Database

    Roche, J.; Love, J.; Guo, Q.; Song, J.C.; Cao, M.; Fraser, K.; Huege, J.; Jones, C.; Novák, Ondřej; Turnbull, M.; Jameson, P. E.

    2016-01-01

    Roč. 156, č. 4 (2016), s. 497-511 ISSN 0031-9317 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : ZEATIN-TYPE CYTOKININS * FRUCTAN METABOLISM * USE EFFICIENCY Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.330, year: 2016

  11. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury[S

    Science.gov (United States)

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W.; Flanders, Kathleen C.; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M.; Gonzalez, Frank J.

    2012-01-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury. PMID:23034213

  12. Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis.

    Science.gov (United States)

    Chen, Yanmei; Hoehenwarter, Wolfgang

    2015-12-01

    Salinity and oxidative stress are major factors affecting and limiting the productivity of agricultural crops. The molecular and biochemical processes governing the plant response to abiotic stress have often been researched in a reductionist manner. Here, we report a systemic approach combining metabolic labeling and phosphoproteomics to capture early signaling events with quantitative metabolome analysis and enzyme activity assays to determine the effects of salt and oxidative stress on plant physiology. K(+) and Na(+) transporters showed coordinated changes in their phosphorylation pattern, indicating the importance of dynamic ion homeostasis for adaptation to salt stress. Unique phosphorylation sites were found for Arabidopsis (Arabidopsis thaliana) SNF1 kinase homolog10 and 11, indicating their central roles in the stress-regulated responses. Seven Sucrose Non-fermenting1-Related Protein Kinase2 kinases showed varying levels of phosphorylation at multiple serine/threonine residues in their kinase domain upon stress, showing temporally distinct modulation of the various isoforms. Salinity and oxidative stress also lead to changes in protein phosphorylation of proteins central to photosynthesis, in particular the kinase State Transition Protein7 required for state transition and light-harvesting II complex proteins. Furthermore, stress-induced changes of the phosphorylation of enzymes of central metabolism were observed. The phosphorylation patterns of these proteins were concurrent with changes in enzyme activity. This was reflected by altered levels of metabolites, such as the sugars sucrose and fructose, glycolysis intermediates, and amino acids. Together, our study provides evidence for a link between early signaling in the salt and oxidative stress response that regulates the state transition of photosynthesis and the rearrangement of primary metabolism. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Transcriptome analysis reveals the effects of sugar metabolism and auxin and cytokinin signaling pathways on root growth and development of grafted apple.

    Science.gov (United States)

    Li, Guofang; Ma, Juanjuan; Tan, Ming; Mao, Jiangping; An, Na; Sha, Guangli; Zhang, Dong; Zhao, Caiping; Han, Mingyu

    2016-02-29

    The root architecture of grafted apple (Malus spp.) is affected by various characteristics of the scions. To provide information on the molecular mechanisms underlying this influence, we examined root transcriptomes of M. robusta rootstock grafted with scions of wild-type (WT) apple (M. spectabilis) and a more-branching (MB) mutant at the branching stage. The growth rate of rootstock grafted MB was repressed significantly, especially the primary root length and diameter, and root weight. Biological function categories of differentially expressed genes were significantly enriched in processes associated with hormone signal transduction and intracellular activity, with processes related to the cell cycle especially down-regulated. Roots of rootstock grafted with MB scions displayed elevated auxin and cytokinin contents and reduced expression of MrPIN1, MrARF, MrAHP, most MrCRE1 genes, and cell growth-related genes MrGH3, MrSAUR and MrTCH4. Although auxin accumulation and transcription of MrPIN3, MrALF1 and MrALF4 tended to induce lateral root formation in MB-grafted rootstock, the number of lateral roots was not significantly changed. Sucrose, fructose and glucose contents were not decreased in MB-grafted roots compared with those bearing WT scions, but glycolysis and tricarboxylic acid cycle metabolic activities were repressed. Root resistance and nitrogen metabolism were reduced in MB-grafted roots as well. Our findings suggest that root growth and development of rootstock are mainly influenced by sugar metabolism and auxin and cytokinin signaling pathways. This study provides a basis that the characteristics of scions are related to root growth and development, resistance and activity of rootstocks.

  14. Effects of olive leave extract on metabolic disorders and oxidative stress induced by 2.45 GHz WIFI signals.

    Science.gov (United States)

    Salah, Myriam Ben; Abdelmelek, Hafedh; Abderraba, Manef

    2013-11-01

    We investigated the effect of olive leaves extract administration on glucose metabolism and oxidative response in liver and kidneys of rats exposed to radio frequency (RF). The exposure of rats to RF (2.45 GHz, 1h/day during 21 consecutive days) induced a diabetes-like status. Moreover, RF decreased the activities of glutathione peroxidase (GPx, -33.33% and -49.40%) catalase (CAT, -43.39% and -39.62%) and the superoxide dismutase (SOD, -59.29% and -68.53%) and groups thiol amount (-62.68% and -34.85%), respectively in liver and kidneys. Indeed, exposure to RF increased the malondialdehyde (MDA, 29.69% and 51.35%) concentration respectively in liver and kidneys. Olive leaves extract administration (100 mg/kg, ip) in RF-exposed rats prevented glucose metabolism disruption and restored the activities of GPx, CAT and SOD and thiol group amount in liver and kidneys. Moreover, olive leave extract administration was able to bring down the elevated levels of MDA in liver but not in kidneys. Our investigations suggested that RF exposure induced a diabetes-like status through alteration of oxidative response. Olive leaves extract was able to correct glucose metabolism disorder by minimizing oxidative stress induced by RF in rat tissues. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, Maria C. [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Amero, Paola; Santoro, Anna [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Monnolo, Anna [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Simeoli, Raffaele; Di Guida, Francesca [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Mattace Raso, Giuseppina, E-mail: mattace@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Meli, Rosaria, E-mail: meli@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy)

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  16. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-01-01

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  17. A motion-tolerant approach for monitoring SpO2 and heart rate using photoplethysmography signal with dual frame length processing and multi-classifier fusion.

    Science.gov (United States)

    Fan, Feiyi; Yan, Yuepeng; Tang, Yongzhong; Zhang, Hao

    2017-12-01

    Monitoring pulse oxygen saturation (SpO 2 ) and heart rate (HR) using photoplethysmography (PPG) signal contaminated by a motion artifact (MA) remains a difficult problem, especially when the oximeter is not equipped with a 3-axis accelerometer for adaptive noise cancellation. In this paper, we report a pioneering investigation on the impact of altering the frame length of Molgedey and Schuster independent component analysis (ICAMS) on performance, design a multi-classifier fusion strategy for selecting the PPG correlated signal component, and propose a novel approach to extract SpO 2 and HR readings from PPG signal contaminated by strong MA interference. The algorithm comprises multiple stages, including dual frame length ICAMS, a multi-classifier-based PPG correlated component selector, line spectral analysis, tree-based HR monitoring, and post-processing. Our approach is evaluated by multi-subject tests. The root mean square error (RMSE) is calculated for each trial. Three statistical metrics are selected as performance evaluation criteria: mean RMSE, median RMSE and the standard deviation (SD) of RMSE. The experimental results demonstrate that a shorter ICAMS analysis window probably results in better performance in SpO 2 estimation. Notably, the designed multi-classifier signal component selector achieved satisfactory performance. The subject tests indicate that our algorithm outperforms other baseline methods regarding accuracy under most criteria. The proposed work can contribute to improving the performance of current pulse oximetry and personal wearable monitoring devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Science.gov (United States)

    Eslami, J; Ghafaripour, F; Mortazavi, S A R; Mortazavi, S M J; Shojaei-Fard, M B

    2015-12-01

    People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched-on mobile phone with no signal strength. The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  19. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals By Using Microsoft Visual C Sharp

    Directory of Open Access Journals (Sweden)

    Younessi Heravi M. A.

    2014-03-01

    Full Text Available Background: One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP by sphygmomanometer cuff. Objective: In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Methods: Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device was inserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. Results: In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. Conclusion: By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  20. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals ByUsing Microsoft Visual C Sharp.

    Science.gov (United States)

    Younessi Heravi, M A; Khalilzadeh, M A; Joharinia, S

    2014-03-01

    One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP) by sphygmomanometer cuff. Objective :In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device wasinserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET ) was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  1. Twist promotes reprogramming of glucose metabolism in breast cancer cells through PI3K/AKT and p53 signaling pathways

    Science.gov (United States)

    Yuan, Jie; Tang, Shifu; Zhang, Hailong; Zhu, Qing; Du, Yan-e; Zhou, Mingli; Wen, Siyang; Xu, Liyun; Tang, Xi; Cui, Xiaojiang; Liu, Manran

    2015-01-01

    Twist, a key regulator of epithelial-mesenchymal transition (EMT), plays an important role in the development of a tumorigenic phenotype. Energy metabolism reprogramming (EMR), a newly discovered hallmark of cancer cells, potentiates cancer cell proliferation, survival, and invasion. Currently little is known about the effects of Twist on tumor EMR. In this study, we found that glucose consumption and lactate production were increased and mitochondrial mass was decreased in Twist-overexpressing MCF10A mammary epithelial cells compared with vector-expressing MCF10A cells. Moreover, these Twist-induced phenotypic changes were augmented by hypoxia. The expression of some glucose metabolism-related genes such as PKM2, LDHA, and G6PD was also found to be upregulated. Mechanistically, activated β1-integrin/FAK/PI3K/AKT/mTOR and suppressed P53 signaling were responsible for the observed EMR. Knockdown of Twist reversed the effects of Twist on EMR in Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Furthermore, blockage of the β1-integrin/FAK/PI3K/AKT/mTOR pathway by siRNA or specific chemical inhibitors, or rescue of p53 activation can partially reverse the switch of glucose metabolism and inhibit the migration of Twist-overexpressing MCF10A cells and Twist-positive breast cancer cells. Thus, our data suggest that Twist promotes reprogramming of glucose metabolism in MCF10A-Twist cells and Twist-positive breast cancer cells via activation of the β1-integrin/FAK/PI3K/AKT/mTOR pathway and inhibition of the p53 pathway. Our study provides new insight into EMR. PMID:26342198

  2. ApoB100-LDL acts as a metabolic signal from liver to peripheral fat causing inhibition of lipolysis in adipocytes.

    Directory of Open Access Journals (Sweden)

    Josefin Skogsberg

    Full Text Available BACKGROUND: Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown. METHODS AND FINDINGS: We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr(-/-Apob(100/100. CONCLUSIONS: Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome.

  3. Changes and significance of oxygen-metabolism and SHH signal pathway in soldiers trained in high altitude after returning to plains

    Directory of Open Access Journals (Sweden)

    Li LIU

    2012-11-01

    Full Text Available Objective  To observe the changes in oxygen metabolism and sonic hedgehog (SHH signaling pathway in soldiers returning to plains after being stationed and trained for 6 months in a plateau. Methods  Eighty male officers and soldiers, aged 20-30 (22.3±2.9 years, after being stationed and trained on plateau (altitude 3960m for 6 months and returned to plain region (altitude 200m, were selected as subjects. Before their returning to plateau, 6 months after their station and training in plateau, and 2 days after their returning to plain, fasting venous blood samples were collected, the serum levels of superoxide dismutase (SOD, malondialdehyde (MDA and Sonic Hedgehog (SHH were determined by ELISA, the transcription of SHH mRNA was assayed by RT-PCR, and the expressions of SMO and nucleoprotein GLI2 were detected by Western blotting. All the data mentioned above were collected for statistical analysis. Results  As the subjects entered and garrisoned in plateau for 6 months, the activity of SOD decreased and the content of MDA increased significantly (P < 0.05. Both the protein expression and mRNA transcription of SHH were significantly higher after staying in plateau than in plain. When they returned to plain, both parameters decreased significantly, but were still higher than that when they lived in plain (P < 0.01. The expressions of SMO and nucleoprotein GLI2 showed a same tendency of changes. Conclusion  High altitude environment may have a great influence on oxygen metabolism of organism and SHH signal pathway, and the hypoxic environment of high altitude region is one of the conditions in activating the SHH signal pathway.

  4. Role of acylCoA binding protein in acylCoA transport, metabolism and cell signaling

    DEFF Research Database (Denmark)

    Knudsen, J; Jensen, M V; Hansen, J K

    1999-01-01

    Long chain acylCoA esters (LCAs) act both as substrates and intermediates in intermediary metabolism and as regulators in various intracellular functions. AcylCoA binding protein (ACBP) binds LCAs with high affinity and is believed to play an important role in intracellular acylCoA transport...... and pool formation and therefore also for the function of LCAs as metabolites and regulators of cellular functions [1]. The major factors controlling the free concentration of cytosol long chain acylCoA ester (LCA) include ACBP [2], sterol carrier protein 2 (SCP2) [3] and fatty acid binding protein (FABP...

  5. Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling

    Directory of Open Access Journals (Sweden)

    Imhof Axel

    2007-07-01

    Full Text Available Abstract Background 14-3-3 proteins have been implicated in many signalling mechanisms due to their interaction with Ser/Thr phosphorylated target proteins. They are evolutionarily well conserved in eukaryotic organisms from single celled protozoans and unicellular algae to plants and humans. A diverse array of target proteins has been found in higher plants and in human cell lines including proteins involved in cellular metabolism, apoptosis, cytoskeletal organisation, secretion and Ca2+ signalling. Results We found that the simple metazoan Hydra has four 14-3-3 isoforms. In order to investigate whether the diversity of 14-3-3 target proteins is also conserved over the whole animal kingdom we isolated 14-3-3 binding proteins from Hydra vulgaris using a 14-3-3-affinity column. We identified 23 proteins that covered most of the above-mentioned groups. We also isolated several novel 14-3-3 binding proteins and the Hydra specific secreted fascin-domain-containing protein PPOD. In addition, we demonstrated that one of the 14-3-3 isoforms, 14-3-3 HyA, interacts with one Hydra-Bcl-2 like protein in vitro. Conclusion Our results indicate that 14-3-3 proteins have been ubiquitous signalling components since the start of metazoan evolution. We also discuss the possibility that they are involved in the regulation of cell numbers in response to food supply in Hydra.

  6. Self-monitoring of blood glucose in non-insulin-treated diabetic patients: a longitudinal evaluation of its impact on metabolic control.

    Science.gov (United States)

    Franciosi, M; Pellegrini, F; De Berardis, G; Belfiglio, M; Di Nardo, B; Greenfield, S; Kaplan, S H; Rossi, M C E; Sacco, M; Tognoni, G; Valentini, M; Nicolucci, A

    2005-07-01

    In the framework of a nationwide outcomes research programme, we assessed the impact of self-monitoring of blood glucose (SMBG) on metabolic control over 3 years in patients with Type 2 diabetes mellitus (DM2) not treated with insulin. The study involved 1896 patients who completed, at 6-month intervals for 3 years, a questionnaire investigating SMBG practice. Clinical information was collected by participating clinicians at the same time intervals. The predictive value of SMBG frequency on long-term metabolic control was estimated using multilevel analysis. The impact of SMBG on metabolic control was also evaluated in distinct and homogeneous subgroups of patients showing different likelihood of performing SMBG, identified using a tree-growing technique (RECPAM). Overall, 22% of the patients were on diet alone and 78% were treated with oral agents; 41% practiced SMBG > or = 1/week (10.3% > or = 1/day). The analysis of metabolic control according to the frequency of SMBG failed to show any significant impact of this practice on HbA1c levels over 3 years. Similarly, changes in SMBG frequency during the study were not related to significant changes in HbA1c levels. RECPAM analysis led to the identification of eight classes, characterized by substantial differences in the likelihood of performing SMBG with a frequency of at least 1/week. Nevertheless, in none of the RECPAM classes identified, did SMBG predict a better metabolic control over 3 years of follow-up. In those RECPAM classes indicating that SMBG was mainly performed to avoid hypoglycaemic episodes, SMBG was associated with a decrease in the frequency of hypoglycaemic episodes during the study. In a large sample of non-insulin-treated Type 2 diabetic patients, the performance and frequency of SMBG did not predict better metabolic control over 3 years. We could not identify any specific subgroups of patients for whom SMBG practice was associated with lower HbA1c levels during the study.

  7. Identifying crop specific signals for global agricultural monitoring based on the stability of daily multi-angular MODIS reflectance time series

    Science.gov (United States)

    Duveiller, G.; Lopez-Lozano, R.

    2013-12-01

    Global agricultural monitoring requires satellite Earth Observation systems that maximize the observation revisit frequency over the largest possible geographical coverage. Such compromise has thus far resulted in using a spatial resolution that is often coarser than desired. As a consequence, for many agricultural landscapes across the world, crop status can only be inferred from a mixed signal of the landscape (with a pixel size typically close to 1 km), composed of reflectance from neighbouring fields with potentially different crops, variable phenological behaviours and distinct management practices. MODIS has been providing, since 2000, a higher spatial resolution (~250m) that is closer to the size of individual fields in many agro-ecological landscapes. However, the challenge for operational crop specific monitoring remains to identify in time where a given crop has been sown during the current growing season. An innovative use of MODIS daily data is proposed for crop identification based on the stability of the multi-angular signal. MODIS is a whiskbroom sensor with a large swath. For any given place, consecutive MODIS observations are made with considerably different viewing angles according to the daily change in orbit. Consequently, the footprint of the observation varies considerably, thereby sampling the vicinity around the centre of the grid cell in which the time series is ultimately recorded in. If the consecutive observations that have sampled the vicinity provide similar NDVI values (for which BRDF effects are reduced), the resulting temporal signal is relatively stable. This stability indicated that the signal comes from a spatially homogeneous surface, such as a single large field covered by the same crop with similar agro-management practices. If the resulting temporal signal is noisy, it is probable that the consecutive daily observations have sampled different land uses, thus contaminating the signal. Such time series can therefore be

  8. Strategies for the Assessment of Metabolic Profiles of Steroid Hormones in View of Diagnostics and Drug Monitoring: Analytical Problems and Challenges.

    Science.gov (United States)

    Plenis, Alina; Oledzka, Ilona; Kowalski, Piotr; Baczek, Tomasz

    2016-01-01

    During the last few years there has been a growing interest in research focused on the metabolism of steroid hormones despite that the study of metabolic hormone pathways is still a difficult and demanding task because of low steroid concentrations and a complexity of the analysed matrices. Thus, there has been an increasing interest in the development of new, more selective and sensitive methods for monitoring these compounds in biological samples. A lot of bibliographic databases for world research literature were structurally searched using selected review question and inclusion/exclusion criteria. Next, the reports of the highest quality were selected using standard tools (181) and they were described to evaluate the advantages and limitations of different approaches in the measurements of the steroids and their metabolites. The overview of the analytical challenges, development of methods used in the assessment of the metabolic pathways of steroid hormones, and the priorities for future research with a special consideration for liquid chromatography (LC) and capillary electrophoresis (CE) techniques have been presented. Moreover, many LC and CE applications in pharmacological and psychological studies as well as endocrinology and sports medicine, taking into account the recent progress in the area of the metabolic profiling of steroids, have been critically discussed. The latest reports show that LC systems coupled with mass spectrometry have the predominant position in the research of steroid profiles. Moreover, CE techniques are going to gain a prominent position in the diagnosis of hormone levels in the near future.

  9. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling

    KAUST Repository

    Zeis, T.

    2015-04-01

    Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte–neuron lactate shuttle (ANLS) and the glutamate–glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others

  10. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling.

    Science.gov (United States)

    Doody, Erin E; Groebner, Jennifer L; Walker, Jetta R; Frizol, Brittnee M; Tuma, Dean J; Fernandez, David J; Tuma, Pamela L

    2017-12-01

    The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P 450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N -acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity. NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol

  11. Metabolic demand stimulates CREB signaling in the limbic cortex: implication for the induction of hippocampal synaptic plasticity by intrinsic stimulus for survival

    Directory of Open Access Journals (Sweden)

    Nelly M Estrada

    2009-06-01

    Full Text Available Caloric restriction by fasting has been implicated to facilitate synaptic plasticity and promote contextual learning. However, cellular and molecular mechanisms underlying the effect of fasting on memory consolidation are not completely understood. We hypothesized that fasting-induced enhancement of synaptic plasticity was mediated by the increased signaling mediated by CREB (c-AMP response element binding protein, an important nuclear protein and the transcription factor that is involved in the consolidation of memories in the hippocampus. In the in vivo rat model of 18 h fasting, the expression of phosphorylated CREB (pCREB was examined using anti-phospho-CREB (Ser133 in cardially-perfused and cryo-sectioned rat brain specimens. When compared with control animals, the hippocampus exhibited up to a two-fold of increase in pCREB expression in fasted animals. The piriform cortex, the entorhinal cortex, and the cortico-amygdala transitional zone also significantly increased immunoreactivities to pCREB. In contrast, the amygdala did not show any change in the magnitude of pCREB expression in response to fasting. The arcuate nucleus in the medial hypothalamus, which was previously reported to up-regulate CREB phosphorylation during fasting of up to 48 h, was also strongly immunoreactive and provided a positive control in the present study. Our findings demonstrate a metabolic demand not only stimulates cAMP-dependent signaling cascades in the hypothalamus, but also signals to various limbic brain regions including the hippocampus by activating the CREB signaling mechanism. The hippocampus is a primary brain structure for learning and memory. It receives hypothalamic and arcuate projections directly from the fornix. The hippocampus is also situated centrally for functional interactions with other limbic cortexes by establishing reciprocal synaptic connections. We suggest that hippocampal neurons and those in the surrounding limbic cortexes are

  12. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Science.gov (United States)

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras G12D/+ /Trp53 R172H/+ /Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels

  13. The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators.

    Science.gov (United States)

    Borghi, Monica; Fernie, Alisdair R; Schiestl, Florian P; Bouwmeester, Harro J

    2017-04-01

    A striking feature of the angiosperms that use animals as pollen carriers to sexually reproduce is the great diversity of their flowers with regard to morphology and traits such as color, odor, and nectar. These traits are underpinned by the synthesis of secondary metabolites such as pigments and volatiles, as well as carbohydrates and amino acids, which are used by plants to lure and reward animal pollinators. We review here the knowledge of the metabolic network that supports the biosynthesis of these compounds and the behavioral responses that these molecules elicit in the animal pollinators. Such knowledge provides us with a deeper insight into the ecology and evolution of plant-pollinator interactions, and should help us to better manage these ecologically essential interactions in agricultural ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  15. Influence of antihypertensive therapy on cerebral perfusion in patients with metabolic syndrome: relationship with cognitive function and 24-h arterial blood pressure monitoring.

    Science.gov (United States)

    Efimova, Nataliya Y; Chernov, Vladimir I; Efimova, Irina Y; Lishmanov, Yuri B

    2015-08-01

    To investigate the regional cerebral blood flow, cognitive function, and parameters of 24-h arterial blood pressure monitoring in patients with metabolic syndrome before and after combination antihypertensive therapy. The study involved 54 patients with metabolic syndrome (MetS) investigated by brain single-photon emission computed tomography, 24-h blood pressure monitoring (ABPM), and comprehensive neuropsychological testing before and after 24 weeks of combination antihypertensive therapy. Patients with metabolic syndrome had significantly poorer regional cerebral blood flow compared with control group: by 7% (P = 0.003) in right anterior parietal cortex, by 6% (P = 0.028) in left anterior parietal cortex, by 8% (P = 0.007) in right superior frontal lobe, and by 10% (P = 0.00002) and 7% (P = 0.006) in right and left temporal brain regions, correspondingly. The results of neuropsychological testing showed 11% decrease in mentation (P = 0.002), and 19% (P = 0.011) and 20% (P = 0.009) decrease in immediate verbal and visual memory in patients with MetS as compared with control group. Relationships between the indices of ABPM, cerebral perfusion, and cognitive function were found. Data showed an improvement of regional cerebral blood flow, ABPM parameters, and indicators of cognitive functions after 6 months of antihypertensive therapy in patients with MetS. The study showed the presence of diffuse disturbances in cerebral perfusion is associated with cognitive disorders in patients with metabolic syndrome. Combination antihypertensive treatment exerts beneficial effects on the 24-h blood pressure profile, increases cerebral blood flow, and improves cognitive function in patients with MetS. © 2015 John Wiley & Sons Ltd.

  16. Biochemical and Molecular-Genetic Characterization of SFD1’s Involvement in Lipid Metabolism and Defense Signaling

    OpenAIRE

    Lorenc-Kukula, Katarzyna; Chaturvedi, Ratnesh; Roth, Mary; Welti, Ruth; Shah, Jyoti

    2012-01-01

    The Arabidopsis thaliana SFD1 (suppressor of fatty acid desaturase deficiency1) gene (also known as GLY1) is required for accumulation of 34:6 (i.e., 18:3–16:3) monogalactosyldiacylglycerol (MGDG) and for the activation of systemic acquired resistance (SAR), an inducible defense mechanism that confers resistance against a broad spectrum of pathogens. SFD1, which has been suggested to be involved in lipid-based signaling in SAR, contains a putative chloroplast transit peptide and has glycerol-...

  17. Multi-Phenomenology Explosion Monitoring (Multi-PEM). Signal Detection. Research to target smaller sources for tomorrow’s missions

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-12

    This a guide on how to detect and identify explosions from various sources. For example, nuclear explosions produce acoustic, optical, and EMP outputs. Each signal can be buried in noise, but fusing detection statistics from seismic, acoustic, and electromagnetic signals results in clear detection otherwise unobtainable.

  18. Human peripheral late/exhausted memory B cells express a senescent-associated secretory phenotype and preferentially utilize metabolic signaling pathways.

    Science.gov (United States)

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Blomberg, Bonnie B

    2017-01-01

    The percentage of late/exhausted memory (LM) B cells increases with age and we show here that this is associated with a lower influenza vaccine response. To identify novel contributors to the phenotypic and functional changes observed in aged B cells, we sorted the major peripheral B cell subsets [naïve, IgM memory, switched memory (swIg) and late/exhausted memory (LM)] and determined their percentages in the peripheral blood as well as their level of immune activation by measuring basal levels of expression of multiple senescence-associated secretory phenotype (SASP) markers, such as pro-inflammatory cytokines (TNF-α/IL-6/IL-8), inflammatory micro-RNAs (miRs, miR-155/16/93), cell cycle regulators (p16 INK4 ). We found that only memory B cells express SASP markers, and especially the LM B cell subset, which is also showing spontaneous activation of AMP-activated protein kinase (AMPK), the energy sensing enzyme which is ubiquitously expressed in mammalian cells. LM B cells, but not IgM memory B cells, activate a p38MAPK signaling pathway, downstream of AMPK, leading to the expression of SASP mediators, while class switch recombination is downregulated. These data show that some B cell subsets are more inflammatory than others, that they are pre-activated and that this signaling through metabolic pathways is associated with a senescence phenotype, demonstrating for the first time in human B lymphocytes the link between aging, cellular senescence, SASP and metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Design and development of an automated, portable and handheld tablet personal computer-based data acquisition system for monitoring electromyography signals during rehabilitation.

    Science.gov (United States)

    Ahamed, Nizam U; Sundaraj, Kenneth; Poo, Tarn S

    2013-03-01

    This article describes the design of a robust, inexpensive, easy-to-use, small, and portable online electromyography acquisition system for monitoring electromyography signals during rehabilitation. This single-channel (one-muscle) system was connected via the universal serial bus port to a programmable Windows operating system handheld tablet personal computer for storage and analysis of the data by the end user. The raw electromyography signals were amplified in order to convert them to an observable scale. The inherent noise of 50 Hz (Malaysia) from power lines electromagnetic interference was then eliminated using a single-hybrid IC notch filter. These signals were sampled by a signal processing module and converted into 24-bit digital data. An algorithm was developed and programmed to transmit the digital data to the computer, where it was reassembled and displayed in the computer using software. Finally, the following device was furnished with the graphical user interface to display the online muscle strength streaming signal in a handheld tablet personal computer. This battery-operated system was tested on the biceps brachii muscles of 20 healthy subjects, and the results were compared to those obtained with a commercial single-channel (one-muscle) electromyography acquisition system. The results obtained using the developed device when compared to those obtained from a commercially available physiological signal monitoring system for activities involving muscle contractions were found to be comparable (the comparison of various statistical parameters) between male and female subjects. In addition, the key advantage of this developed system over the conventional desktop personal computer-based acquisition systems is its portability due to the use of a tablet personal computer in which the results are accessible graphically as well as stored in text (comma-separated value) form.

  20. Phosphoinositide signaling.

    Science.gov (United States)

    Boss, Wendy F; Im, Yang Ju

    2012-01-01

    "All things flow and change…even in the stillest matter there is unseen flux and movement." Attributed to Heraclitus (530-470 BC), from The Story of Philosophy by Will Durant. Heraclitus, a Greek philosopher, was thinking on a much larger scale than molecular signaling; however, his visionary comments are an important reminder for those studying signaling today. Even in unstimulated cells, signaling pathways are in constant metabolic flux and provide basal signals that travel throughout the organism. In addition, negatively charged phospholipids, such as the polyphosphorylated inositol phospholipids, provide a circuit board of on/off switches for attracting or repelling proteins that define the membranes of the cell. This template of charged phospholipids is sensitive to discrete changes and metabolic fluxes-e.g., in pH and cations-which contribute to the oscillating signals in the cell. The inherent complexities of a constantly fluctuating system make understanding how plants integrate and process signals challenging. In this review we discuss one aspect of lipid signaling: the inositol family of negatively charged phospholipids and their functions as molecular sensors and regulators of metabolic flux in plants.

  1. The pre-clinical absorption, distribution, metabolism and excretion properties of IPI-926, an orally bioavailable antagonist of the hedgehog signal transduction pathway.

    Science.gov (United States)

    Smith, Sherri; Hoyt, Jennifer; Whitebread, Nigel; Manna, Joseph; Peluso, Marisa; Faia, Kerrie; Campbell, Veronica; Tremblay, Martin; Nair, Somarajan; Grogan, Michael; Castro, Alfredo; Campbell, Matthew; Ferguson, Jeanne; Arsenault, Brendan; Nevejans, Jylle; Carter, Bennett; Lee, John; Dunbar, Joi; McGovern, Karen; Read, Margaret; Adams, Julian; Constan, Alexander; Loewen, Gordon; Sydor, Jens; Palombella, Vito; Soglia, John

    2013-10-01

    1. IPI-926 is a novel semisynthetic cyclopamine derivative that is a potent and selective Smoothened inhibitor that blocks the hedgehog signal transduction pathway. 2. The in vivo clearance of IPI-926 is low in mouse and dog and moderate in monkey. The volume of distribution is high across species. Oral bioavailability ranges from moderate in monkey to high in mouse and dog. Predicted human clearance using simple allometry is low (24 L h(-1)), predicted volume of distribution is high (469 L) and predicted half-life is long (20 h). 3. IPI-926 is highly bound to plasma proteins and has minimal interaction with human α-1-acid glycoprotein. 4. In vitro metabolic stability ranges from stable to moderately stable. Twelve oxidative metabolites were detected in mouse, rat, dog, monkey and human liver microsome incubations and none were unique to human. 5. IPI-926 is not a potent reversible inhibitor of CYP1A2, 2C8, 2C9 or 3A4 (testosterone). IPI-926 is a moderate inhibitor of CYP2C19, 2D6 and 3A4 (midazolam) with KI values of 19, 16 and 4.5 µM, respectively. IPI-926 is both a substrate and inhibitor (IC50 = 1.9 µM) of P-glycoprotein. 6. In summary, IPI-926 has desirable pre-clinical absorption, distribution, metabolism and excretion properties.

  2. Aesculin modulates bone metabolism by suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and transduction signals.

    Science.gov (United States)

    Zhao, Xiao-Li; Chen, Lin-Feng; Wang, Zhen

    2017-06-17

    Aesculin (AES), a coumarin compound derived from Aesculus hippocasanum L, is reported to exert protective role against inflammatory diseases, gastric disease and cancer. However, direct effect of AES in bone metabolism is deficient. In this study, we examined the effects of AES on osteoclast (OC) differentiation in receptor activator of NF-κB ligand (RANKL)-induced RAW264.7 cells. AES inhibits the OC differentiation in both dose- and time-dependent manner within non-toxic concentrations, as analyzed by Tartrate Resistant Acid Phosphatase (TRAP) staining. The actin ring formation manifesting OC function is also decreased by AES. Moreover, expressions of osteoclastogenesis related genes Trap, Atp6v0d2, Cathepsin K and Mmp-9 are decreased upon AES treatment. Mechanistically, AES attenuates the activation of MAPKs and NF-κB activity upon RANKL induction, thus leading to the reduction of Nfatc1 mRNA expression. Moreover, AES inhibits Rank expression, and RANK overexpression markedly decreases AES's effect on OC differentiation and NF-κB activity. Consistently, AES protects against bone mass loss in the ovariectomized and dexamethasone treated rat osteoporosis model. Taken together, our data demonstrate that AES can modulate bone metabolism by suppressing osteoclastogenesis and related transduction signals. AES therefore could be a promising agent for the treatment of osteoporosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism.

    Science.gov (United States)

    Xiao, Guiqing; Qin, Hua; Zhou, Jiahao; Quan, Ruidang; Lu, Xiangyang; Huang, Rongfeng; Zhang, Haiwen

    2016-02-01

    Root determines plant distribution, development progresses, stress response, as well as crop qualities and yields, which is under the tight control of genetic programs and environmental stimuli. Ethylene responsive factor proteins (ERFs) play important roles in plant growth and development. Here, the regulatory function of OsERF2 involved in root growth was investigated using the gain-function mutant of OsERF2 (nsf2857) and the artificial microRNA-mediated silenced lines of OsERF2 (Ami-OsERF2). nsf2857 showed short primary roots compared with the wild type (WT), while the primary roots of Ami-OsERF2 lines were longer than those of WT. Consistent with this phenotype, several auxin/cytokinin responsive genes involved in root growth were downregulated in nsf2857, but upregulated in Ami-OsERF2. Then, we found that nsf2857 seedlings exhibited decreased ABA accumulation and sensitivity to ABA and reduced ethylene-mediated root inhibition, while those were the opposite in Ami-ERF2 plants. Moreover, several key genes involved in ABA synthesis were downregulated in nsf2857, but unregulated in Ami-ERF2 lines. In addition, OsERF2 affected the accumulation of sucrose and UDPG by mediating expression of key genes involved in sucrose metabolism. These results indicate that OsERF2 is required for the control of root architecture and ABA- and ethylene-response by tuning expression of series genes involved in sugar metabolism and hormone signaling pathways.

  4. Vitamin D Signaling Through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models

    Directory of Open Access Journals (Sweden)

    Danmei Su

    2016-11-01

    Full Text Available Metabolic syndrome (MetS, characterized as obesity, insulin resistance, and non-alcoholic fatty liver diseases (NAFLD,is associated with vitamin D insufficiency/deficiency in epidemiological studies, while the underlying mechanism is poorly addressed. On the other hand, disorder of gut microbiota, namely dysbiosis, is known to cause MetS and NAFLD. It is also known that systemic inflammation blocks insulin signaling pathways, leading to insulin resistance and glucose intolerance, which are the driving force for hepatic steatosis. Vitamin D receptor (VDR is highly expressed in the ileum of the small intestine,which prompted us to test a hypothesis that vitamin D signaling may determine the enterotype of gut microbiota through regulating the intestinal interface. Here, we demonstrate that high-fat-diet feeding (HFD is necessary but not sufficient, while additional vitamin D deficiency (VDD as a second hit is needed, to induce robust insulin resistance and fatty liver. Under the two hits (HFD+VDD, the Paneth cell-specific alpha-defensins including α-defensin 5 (DEFA5, MMP7 which activates the pro-defensins, as well as tight junction genes, and MUC2 are all suppressed in the ileum, resulting in mucosal collapse, increased gut permeability, dysbiosis, endotoxemia, systemic inflammation which underlie insulin resistance and hepatic steatosis. Moreover, under the vitamin D deficient high fat feeding (HFD+VDD, Helicobacter hepaticus, a known murine hepatic-pathogen, is substantially amplified in the ileum, while Akkermansia muciniphila, a beneficial symbiotic, is diminished. Likewise, the VD receptor (VDR knockout mice exhibit similar phenotypes, showing down regulation of alpha-defensins and MMP7 in the ileum, increased Helicobacter hepaticus and suppressed Akkermansia muciniphila. Remarkably, oral administration of DEFA5 restored eubiosys, showing suppression of Helicobacter hepaticus and increase of Akkermansia muciniphila in association with

  5. Rutin as a Mediator of Lipid Metabolism and Cellular Signaling Pathways Interactions in Fibroblasts Altered by UVA and UVB Radiation

    Directory of Open Access Journals (Sweden)

    Agnieszka Gęgotek

    2017-01-01

    Full Text Available Background. Rutin is a natural nutraceutical that is a promising compound for the prevention of UV-induced metabolic changes in skin cells. The aim of this study was to examine the effects of rutin on redox and endocannabinoid systems, as well as proinflammatory and proapoptotic processes, in UV-irradiated fibroblasts. Methods. Fibroblasts exposed to UVA and UVB radiation were treated with rutin. The activities and levels of oxidants/antioxidants and endocannabinoid system components, as well as lipid, DNA, and protein oxidation products, and the proinflammatory and pro/antiapoptotic proteins expression were measured. Results. Rutin reduced UV-induced proinflammatory response and ROS generation and enhanced the activity/levels of antioxidants (SOD, GSH-Px, vitamin E, GSH, and Trx. Rutin also normalized UV-induced Nrf2 expression. Its biological activity prevented changes in the levels of the lipid mediators: MDA, 4-HNE, and endocannabinoids, as well as the endocannabinoid receptors CB1/2, VR1, and GPR55 expression. Furthermore, rutin prevented the protein modifications (tyrosine derivatives formation in particular and decreased the levels of the proapoptotic markers—caspase-3 and cytochrome c. Conclusion. Rutin prevents UV-induced inflammation and redox imbalance at protein and transcriptional level which favors lipid, protein, and DNA protection. In consequence rutin regulates endocannabinoid system and apoptotic balance.

  6. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake

    Science.gov (United States)

    Delgado, María J.; Cerdá-Reverter, José M.; Soengas, José L.

    2017-01-01

    The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model. PMID:28694769

  7. Comparative proteomics of oxalate downregulated tomatoes points towards cross talk of signal components and metabolic consequences during post-harvest storage

    Directory of Open Access Journals (Sweden)

    Kanika Narula

    2016-08-01

    Full Text Available Fruits of angiosperms evolved intricate regulatory machinery for sensorial attributes and storage quality after harvesting. Organic acid composition of storage organs forms the molecular and biochemical basis of organoleptic and nutritional qualities with metabolic specialization. Of these, oxalic acid (OA, determines the post-harvest quality in fruits. Tomato (Solanum lycopersicum fruit have distinctive feature to undergo a shift from heterotrophic metabolism to carbon assimilation partitioning during storage. We have earlier shown that decarboxylative degradation of OA by FvOXDC leads to acid homeostasis besides increased fungal tolerance in E8.2-OXDC tomato. Here, we elucidate the metabolic consequences of oxalate down-regulation and molecular mechanisms that determine organoleptic features, signaling and hormonal regulation in E8.2-OXDC fruit during post-harvest storage. A comparative proteomics approach has been applied between wild-type and E8.2-OXDC tomato in temporal manner. The MS/MS analyses led to the identification of 32 and 39 differentially abundant proteins associated with primary and secondary metabolism, assimilation, biogenesis, and development in wild-type and E8.2-OXDC tomatoes, respectively. Next, we interrogated the proteome data using correlation network analysis that identified significant functional hubs pointing toward storage related coinciding processes through a common mechanism of function and modulation. Furthermore, physiochemical analyses exhibited reduced oxalic acid content with concomitant increase in citric acid, lycopene and marginal decrease in malic acid in E8.2-OXDC fruit. Nevertheless, E8.2-OXDC fruit maintained an optimal pH and a steady state acid pool. These might contribute to reorganization of pectin constituent, reduced membrane leakage and improved fruit firmness in E8.2-OXDC fruit with that of wild-type tomato during storage. Collectively, our study provides insights into kinetically controlled

  8. Verification of the Viability of Equipotential Switching Direct Current Potential Drop Method for Piping Wall Loss Monitoring with Signal Sensitivity Analysis

    International Nuclear Information System (INIS)

    Ryu, Kyung Ha; Hwang, Il Soon; Kim, Ji Hyun

    2008-01-01

    Flow accelerated corrosion (FAC) phenomenon of low alloy carbon steels in nuclear power plant has been known as one of major degradation mechanisms. It has a potential to cause nuclear pipe rupture accident which may directly impact on the plant reliability and safety. Recently, the equipotential switching direct current potential drop (ES-DCPD) method has been developed, by the present authors, as a method to monitor wall loss in a piping. This method can rapidly monitor the thinning of piping, utilizing either the wide range monitoring (WiRM) or the narrow range monitoring (NaRM) technique. WiRM is a method to monitor wide range of straight piping, whereas NaRM focuses significantly on a narrow range such as an elbow. WiRM and NaRM can improve the reliability of the current FAC screening method that is based on computer modeling on fluid flow conditions. In this paper, the measurements by ES-DCPD are performed with signal sensitivity analyses in the laboratory environment for extended period and showed the viability of ES-DCPD for real plant applications.

  9. Development and characterization of a small electromembrane extraction probe coupled with mass spectrometry for real-time and online monitoring of in vitro drug metabolism

    DEFF Research Database (Denmark)

    Dugstad, Helene Bonkerud; Petersen, Nickolaj J.; Jensen, Henrik

    2014-01-01

    A small and very simple electromembrane extraction probe (EME-probe) was developed and coupled directly to electrospray ionization mass spectrometry (ESI-MS), and this system was used to monitor in real time in vitro metabolism by rat liver microsomes of drug substances from a small reaction...... (incubation) chamber (37 °C). The drug-related substances were continuously extracted from the 1.0 mL metabolic reaction mixture and into the EME-probe by an electrical potential of 2.5 V. The extraction probe consisted of a 1-mm long and 350-μm ID thin supported liquid membrane (SLM) of 2-nitrophenyl octyl...... ether. The drugs and formed metabolites where extracted through the SLM and directly into a 3 μL min(-1) flow of 60 mM HCOOH inside the probe serving as the acceptor solution. The acceptor solution was directed into the ESI-MS-system, and the MS continuously monitored the drug-related substances...

  10. Comparison of clinical-metabolic monitoring and outcomes and coronary risk status in people with type 2 diabetes from Australia, France and Latin America.

    Science.gov (United States)

    Gagliardino, Juan J; Kleinebreil, Line; Colagiuri, Stephen; Flack, Jeff; Caporale, Joaquín E; Siri, Fernando; Clark, Charles

    2010-04-01

    To compare clinical-metabolic monitoring and coronary risk status in people with type 2 diabetes from Australia, France and Latin America. Retrospective analysis of data collected at primary care (except ANDIAB--secondary care) [corrected] matched for age, gender and disease duration. Measurements included participants' characteristics, performance frequency of clinical-metabolic process indicators, and percentage of clinical-metabolic outcomes at recommended target values. The weighted mean of the percentage of process performance was within 68 to 81%; that of outcomes at target dropped to 29 to 45%. Although statistically significant, differences among groups were far from those in healthcare budgets, and probably only of marginal clinical impact. The percentage of patients with low, slight or high coronary risk was similar in the three groups, with most people at high or very high risk. Despite the high difference in health per capita investment and system characteristics among countries, the study populations had striking similarities regarding the low percentage of participants who achieved cardiovascular risk factor and diabetes treatment goals. Therefore, differences in health budget and system characteristics would not be the main drivers in care quality. Diabetes education at every level and quality care registries would contribute to improve this situation and assess such improvement.

  11. Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method

    Science.gov (United States)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2011-10-01

    The article presents a novel non-linear multivariate and multiscale statistical process monitoring and signal denoising method which combines the strengths of the Kernel Principal Component Analysis (KPCA) non-linear multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD) to handle multiscale system dynamics. The proposed method which enables us to cope with complex even severe non-linear systems with a wide dynamic range was named the EEMD-based multiscale KPCA (EEMD-MSKPCA). The method is quite general in nature and could be used in different areas for various tasks even without any really deep understanding of the nature of the system under consideration. Its efficiency was first demonstrated by an illustrative example, after which the applicability for the task of bearing fault detection, diagnosis and signal denosing was tested on simulated as well as actual vibration and acoustic emission (AE) signals measured on purpose-built large-size low-speed bearing test stand. The positive results obtained indicate that the proposed EEMD-MSKPCA method provides a promising tool for tackling non-linear multiscale data which present a convolved picture of many events occupying different regions in the time-frequency plane.

  12. Results of the Ongoing Monitoring of the Position of a Geostationary Telecommunication Satellite by the Method of Spatially Separated Basis Receiving of Digital Satellite Television Signals

    Science.gov (United States)

    Bushuev, F.; Kaliuzhnyi, M.; Sybiryakova, Y.; Shulga, O.; Moskalenko, S.; Balagura, O.; Kulishenko, V.

    2016-10-01

    The results of the ongoing monitoring of the position of geostationary telecommunication satellite Eutelsat-13B (13° East) are presented in the article. The results were obtained using a radio engineering complex (RC) of four stations receiving digital satellite television and a data processing centre. The stations are located in Kyiv, Mukachevo, Kharkiv and Mykolaiv. The equipment of each station allows synchronous recording (by the GPS) of fragments of DVB-S signal from the quadrature detector output of the satellite television receiver. Samples of the complex signal are archived and sent to the data processing center through the Internet. Here three linearly independent slant range differences (Δr) for three pairs of the stations are determined as a result of correlation processing of received signals. Every second measured values of Δr are used to calculate Cartesian coordinates (XYZ) of the satellite in the coordinate system WGS84 by multilateration method. The time series of Δr, X, Y and Z obtained during continuous observations from March to May 2015 are presented in the article. Single-measurement errors of Δr, X, Y and Z are equal to 2.6 m, 3540 m, 705 m and 455 m, respectively. The complex is compared with known analogues. Ways of reduction of measurement errors of satellite coordinates are considered. The radio engineering complex could be considered a prototype of a system of independent ongoing monitoring of the position of geostationary telecommunication satellites.

  13. The Development and Implementation of an Electronic Health Record Tool for Monitoring Metabolic Syndrome Indices in Patients with Serious Mental Illness.

    Science.gov (United States)

    Nash, Ken; Ghinassi, Frank; Brar, Jaspreet S; Alam, Abdulkader; Bohan, Mary Catherine; Gopalan, Kalyani; Carter, Amie; Chengappa, K N Roy

    1. A quality performance improvement (QI) project to implement an electronic screening and monitoring tool to record components of the metabolic syndrome (e-MSD) during clinic visits by persons with serious mental illness (SMI). 2. To encourage psychiatrists to use this tool in their documentation. Working with the information technology staff, five psychiatrists developed, tested, revised and embedded the e-MSD tool into the medication management document within the electronic health record. A continuing medical education program on metabolic syndrome was developed and released to psychiatrists and mental health clinicians. Psychiatrist offices at one clinic were equipped with weighing scales, sphygmomanometers, waist circumference tapes, and a QI project was initiated. At one month, 9 to 12% of the anthropometric measures (height, weight, body mass index, waist circumference, and blood pressure) were recorded in 974 unique patient encounters, and one year later the numbers moved upward from 15 to 41%. Toward the end of Year 1, a Patient Care Associate was hired to measure the anthropometric measures and, one year later, the documented rates increased to 75-80%. Laboratory recordings (glucose and lipids) remained ≤8% throughout the first year, but moved upward to 25% in Year 2. Notwithstanding significant administrative and technical support for this QI project, changing clinician practice to screen, monitor and document metabolic indices in persons with SMI in the ambulatory setting changed significantly after the hiring of a Patient Care Associate. Efforts to obtain laboratory measures in real time remain a challenge. Next steps include interventions to promote weight loss and smoking cessation in SMI patients, and effective communication with their primary care doctors.

  14. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling.

    Science.gov (United States)

    Fumarola, Claudia; Caffarra, Cristina; La Monica, Silvia; Galetti, Maricla; Alfieri, Roberta R; Cavazzoni, Andrea; Galvani, Elena; Generali, Daniele; Petronini, Pier Giorgio; Bonelli, Mara A

    2013-08-01

    In this study, we investigated the effects and the underlying molecular mechanisms of the multi-kinase inhibitor sorafenib in a panel of breast cancer cell lines. Sorafenib inhibited cell proliferation and induced apoptosis through the mitochondrial pathway. These effects were neither correlated with modulation of MAPK and AKT pathways nor dependent on the ERα status. Sorafenib promoted an early perturbation of mitochondrial function, inducing a deep depolarization of mitochondrial membrane, associated with drop of intracellular ATP levels and increase of ROS generation. As a response to this stress condition, the energy sensor AMPK was rapidly activated in all the cell lines analyzed. In MCF-7 and SKBR3 cells, AMPK enhanced glucose uptake by up-regulating the expression of GLUT-1 glucose transporter, as also demonstrated by AMPKα1 RNA interference, and stimulated aerobic glycolysis thus increasing lactate production. Moreover, the GLUT-1 inhibitor fasentin blocked sorafenib-induced glucose uptake and potentiated its cytotoxic activity in SKBR3 cells. Persistent activation of AMPK by sorafenib finally led to the impairment of glucose metabolism both in MCF-7 and SKBR3 cells as well as in the highly glycolytic MDA-MB-231 cells, resulting in cell death. This previously unrecognized long-term effect of sorafenib was mediated by AMPK-dependent inhibition of the mTORC1 pathway. Suppression of mTORC1 activity was sufficient for sorafenib to hinder glucose utilization in breast cancer cells, as demonstrated by the observation that the mTORC1 inhibitor rapamycin induced a comparable down-regulation of GLUT-1 expression and glucose uptake. The key role of AMPK-dependent inhibition of mTORC1 in sorafenib mechanisms of action was confirmed by AMPKα1 silencing, which restored mTORC1 activity conferring a significant protection from cell death. This study provides insights into the molecular mechanisms driving sorafenib anti-tumoral activity in breast cancer, and supports

  15. Application of pattern recognition technique on randon signals for automatic monitoring of dynamic systems with emphasis on nuclear reactors

    International Nuclear Information System (INIS)

    Nascimento, J.A. do.

    1981-01-01

    The time varying or noise component of dynamic system parameters contains information on the system state. Pattern recognition analysis of noise signals for such systems is a powerful technique for assessing 'system normality' or 'correct operation'. Data analysis with modern small computers enables the otherwise unmanageable volumes of data to be processed on line and the results presented in a meaningful form. These informations provide necessary data for maintaining the system at optimum operating conditions. An automatic pattern recognition program, PSDREC, developmed for the surveillance of nuclear reactor and rotating machinery is described, and the relevant theory is outlined. This program, which applies 8 statistical tests to calculated power spectral density (PSD) distributions, was earlier installed in a PDP-11/45 computer at IPEN. In this work it has been used to separately analyse recorded signals from three systems, namely an operational BWR power reactor (neutron signals), a water pump and a diesel motor (vibration signals). The latter two were, respectively, operated over a wide-range of flow and load conditions. The statistical tests were applied to frequency bands of (0,1-40) Hz, (0-1000) Hz and (0,20000) Hz. for the BWR, pump and diesel signal data, respectively. Operation and analysis conditions are given together with representative graphs of the analysed PSD distributions. Results of the tests - discussed in some detail - are considered to be satisfactory. (Author) [pt

  16. Optimizing usability and signal capture: a proactive risk assessment for the implementation of a wireless vital sign monitoring system.

    Science.gov (United States)

    Kowalski, Rebecca; Capan, Muge; Lodato, Peter; Mosby, Danielle; Thomas, Tamekia; Arnold, Ryan; Miller, Kristen

    2017-11-01

    Wearable vital sign monitors are a promising step towards optimal patient surveillance, providing continuous data to allow for early detection and treatment of patient deterioration. However, as wearable monitors become more widely adopted in healthcare, there is a corresponding need to carefully design the implementation of these tools to promote their integration into clinical workflows and defend against potential misuse and patient harm. Prior to the roll-out of these monitors, our multidisciplinary team of clinicians, clinical engineers, information technologists and research investigators conducted a modified Healthcare Failure Mode and Effect Analysis (HFMEA), a proactive evaluation of potential problems which could be encountered in the use of a wireless vital signs monitoring system. This evaluation was accomplished by focussing on the identification of procedures and actions that would be required during the devices' regular usage, as well as the implementation of the system as a comprehensive process. Using this method, the team identified challenges that would arise throughout the lifecycle of the device and developed recommendations to address them. This proactive risk assessment can guide the implementation of wearable patient monitors, optimising the use of innovative health information technology.

  17. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Science.gov (United States)

    Pavlova, Viola; Nabe-Nielsen, Jacob; Dietz, Rune; Svenning, Jens-Christian; Vorkamp, Katrin; Rigét, Frank Farsø; Sonne, Christian; Letcher, Robert J; Grimm, Volker

    2014-01-01

    Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus). Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB) congener, 2,2',4,4',55-hexaCB (CB153) in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR) and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  18. Field metabolic rate and PCB adipose tissue deposition efficiency in East Greenland polar bears derived from contaminant monitoring data.

    Directory of Open Access Journals (Sweden)

    Viola Pavlova

    Full Text Available Climate change will increasingly affect the natural habitat and diet of polar bears (Ursus maritimus. Understanding the energetic needs of polar bears is therefore important. We developed a theoretical method for estimating polar bear food consumption based on using the highly recalcitrant polychlorinated biphenyl (PCB congener, 2,2',4,4',55-hexaCB (CB153 in bear adipose tissue as an indicator of food intake. By comparing the CB153 tissue concentrations in wild polar bears with estimates from a purposely designed individual-based model, we identified the possible combinations of field metabolic rates (FMR and CB153 deposition efficiencies in East Greenland polar bears. Our simulations indicate that if 30% of the CB153 consumed by polar bear individuals were deposited into their adipose tissue, the corresponding FMR would be only two times the basal metabolic rate. In contrast, if the modelled CB153 deposition efficiency were 10%, adult polar bears would require six times more energy than that needed to cover basal metabolism. This is considerably higher than what has been assumed for polar bears in previous studies though it is similar to FMRs found in other marine mammals. An implication of this result is that even relatively small reductions in future feeding opportunities could impact the survival of East Greenland polar bears.

  19. The heme-regulatory motif of nuclear receptor Rev-erbβ is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism.

    Science.gov (United States)

    Carter, Eric L; Ramirez, Yanil; Ragsdale, Stephen W

    2017-07-07

    Rev-erbβ is a heme-responsive transcription factor that regulates genes involved in circadian rhythm maintenance and metabolism, effectively bridging these critical cellular processes. Heme binding to Rev-erbβ indirectly facilitates its interaction with the nuclear receptor co-repressor (NCoR1), resulting in repression of Rev-erbβ target genes. Fe 3+ -heme binds in a 6-coordinate complex with axial His and Cys ligands, the latter provided by a heme-regulatory motif (HRM). Rev-erbβ was thought to be a heme sensor based on a weak K d value for the Rev-erbβ·heme complex of 2 μm determined with isothermal titration calorimetry. However, our group demonstrated with UV-visible difference titrations that the K d value is in the low nanomolar range, and the Fe 3+ -heme off-rate is on the order of 10 -6 s -1 making Rev-erbβ ineffective as a sensor of Fe 3+ -heme. In this study, we dissected the kinetics of heme binding to Rev-erbβ and provided a K d for Fe 3+ -heme of ∼0.1 nm Loss of the HRM axial thiolate via redox processes, including oxidation to a disulfide with a neighboring cysteine or dissociation upon reduction of Fe 3+ - to Fe 2+ -heme, decreased binding affinity by >20-fold. Furthermore, as measured in a co-immunoprecipitation assay, substitution of the His or Cys heme ligands in Rev-erbβ was accompanied by a significant loss of NCoR1 binding. These results demonstrate the importance of the Rev-erbβ HRM in regulating interactions with heme and NCoR1 and advance our understanding of how signaling through HRMs affects the major cellular processes of circadian rhythm maintenance and metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Cyclic AMP-dependent signaling system is a primary metabolic target for non-thermal effect of microwaves on heart muscle hydration.

    Science.gov (United States)

    Narinyan, Lilia; Ayrapetyan, Sinerik

    2017-01-01

    Previously, we have suggested that cell hydration is a universal and extra-sensitive sensor for the structural changes of cell aqua medium caused by the impact of weak chemical and physical factors. The aim of present work is to elucidate the nature of the metabolic messenger through which physiological solution (PS) treated by non-thermal (NT) microwaves (MW) could modulate heart muscle hydration of rats. For this purpose, the effects of NT MW-treated PS on heart muscle hydration, [ 3 H]-ouabain binding with cell membrane, 45 Ca 2+ uptake and intracellular cyclic nucleotides contents in vivo and in vitro experiments were studied. It is shown that intraperitoneal injections of both Sham-treated PS and NT MW-treated PS elevate heart muscle hydration. However, the effect of NT MW-treated PS on muscle hydration is more pronounced than the effect of Sham-treated PS. In vitro experiments NT MW-treated PS has dehydration effect on muscle, which is not changed by decreasing Na + gradients on membrane. Intraperitoneal injection of Sham- and NT MW-treated PS containing 45 Ca 2+ have similar dehydration effect on muscle, while NT MW-treated PS has activation effect on Na + /Ca 2+ exchange in reverse mode. The intraperitoneal injection of NT MW-treated PS depresses [ 3 H]-ouabain binding with its high-affinity membrane receptors, elevates intracellular cAMP and decreases cGMP contents. Based on the obtained data, it is suggested that cAMP-dependent signaling system serves as a primary metabolic target for NT MW effect on heart muscle hydration.

  1. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle.

    Science.gov (United States)

    Brandt, Nina; Gunnarsson, Thomas P; Hostrup, Morten; Tybirk, Jonas; Nybo, Lars; Pilegaard, Henriette; Bangsbo, Jens

    2016-07-01

    This study tested the hypothesis that elevated plasma adrenaline or metabolic stress enhances exercise-induced PGC-1α mRNA and intracellular signaling in human muscle. Trained (VO2-max: 53.8 ± 1.8 mL min(-1) kg(-1)) male subjects completed four different exercise protocols (work load of the legs was matched): C - cycling at 171 ± 6 W for 60 min (control); A - cycling at 171 ± 6 W for 60 min, with addition of intermittent arm exercise (98 ± 4 W). DS - cycling at 171 ± 6 W interspersed by 30 sec sprints (513 ± 19 W) every 10 min (distributed sprints); and CS - cycling at 171 ± 6 W for 40 min followed by 20 min of six 30 sec sprints (clustered sprints). Sprints were followed by 3:24 min:sec at 111 ± 4 W. A biopsy was obtained from m. vastus lateralis at rest and immediately, and 2 and 5 h after exercise. Muscle PGC-1α mRNA content was elevated (P metabolic stress determines the magnitude of PGC-1α mRNA response in human muscle. Furthermore, higher exercise-induced changes in AMPK, p38, and CREB phosphorylation are not associated with differences in the PGC-1α mRNA response. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  2. Improving Systems Dynamics by Means of Advanced Signal Processing – Mathematical, Laboratorial and Clinical Evaluation of Propofol Monitoring in Breathing Gas

    Directory of Open Access Journals (Sweden)

    Dammon ZIAIAN

    2015-10-01

    Full Text Available Electrochemical sensors are used in various gas measurement applications and are available for different gases. Depending on the application, the sensor might need to be installed far away from the actual measurement site, requiring the use of long sampling lines. Examples are portable gas measurement devices in which remote locations like tanks and chemical reactors need to be monitored. But also medical applications, where the sensors cannot be positioned in close vicinity to the patient, are common like, e.g., the side-stream measurement of breathing gas. Due to the characteristics of electrochemical sensors and to the adsorption and desorption behavior of sampling lines for different gases, the electrical sensor signal may indicate long response times. In this paper, we propose an on-line signal processing algorithm which is capable to significantly improve the performance. After characterizing the dynamic behavior of the sensor system, a properly designed deconvolution filter is used to reduce response time and signal noise. Within this article, we also provide an example of this algorithm for a novel electrochemical sensor for the measurement of the anesthetic agent propofol in exhaled air. For this application, the acceleration is prerequisite for the measurement chain to be of practical use in a clinical setting. Our goals, to establish measurement dynamics to record the physiologic parameter and to reduce non-physiological disturbances, were achieved with additional reserves. This article is based on 1 and is extended by original clinical data. As an example, we present propofol monitoring in breath of one patient in order to demonstrate the performance of the introduced algorithm in a real clinical application. We proved that the electrochemical sensor, associated with the provided algorithm, is capable for real-time monitoring in a clinical setting.

  3. Effect of a high dose of simvastatin on muscle mitochondrial metabolism and calcium signaling in healthy volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Galtier, F., E-mail: f-galtier@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); CPID, Faculté de Pharmacie, 15 Av. Charles Flahault, BP 14491, 34093 Montpellier Cedex 5, Montpellier (France); Mura, T., E-mail: t-mura@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Raynaud de Mauverger, E., E-mail: eric.raynaud-de-mauverger@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); Université Montpellier 1, 5 bd Henri IV CS 19044, 34967 Montpellier Cedex 2 (France); Université Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5 (France); INSERM, U1046, 371 Avenue du Doyen G. Giraud, CHU Arnaud de Villeneuve, Bâtiment INSERM Crastes de Paulet, 34295 Montpellier Cedex 5 (France); Chevassus, H., E-mail: h-chevassus@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Farret, A., E-mail: a-farret@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Gagnol, J.-P., E-mail: jp-gagnol@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Costa, F., E-mail: francoisecosta@sfr.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); INSERM, CIC 1001, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5 (France); Dupuy, A., E-mail: am-dupuy@chu-montpellier.fr [CHRU Montpellier, 34295 Montpellier Cedex 5 (France); and others

    2012-09-15

    Statin use may be limited by muscle side effects. Although incompletely understood to date, their pathophysiology may involve oxidative stress and impairments of mitochondrial function and of muscle Ca{sup 2+} homeostasis. In order to simultaneously assess these mechanisms, 24 male healthy volunteers were randomized to receive either simvastatin for 80 mg daily or placebo for 8 weeks. Blood and urine samples and a stress test were performed at baseline and at follow-up, and mitochondrial respiration and Ca{sup 2+} spark properties were evaluated on a muscle biopsy 4 days before the second stress test. Simvastatin-treated subjects were separated according to their median creatine kinase (CK) increase. Simvastatin treatment induced a significant elevation of aspartate amino transferase (3.38 ± 5.68 vs − 1.15 ± 4.32 UI/L, P < 0.001) and CK (− 24.3 ± 99.1 ± 189.3vs 48.3 UI/L, P = 0.01) and a trend to an elevation of isoprostanes (193 ± 408 vs12 ± 53 pmol/mmol creatinine, P = 0.09) with no global change in mitochondrial respiration, lactate/pyruvate ratio or Ca{sup 2+} sparks. However, among statin-treated subjects, those with the highest CK increase displayed a significantly lower Vmax rotenone succinate and an increase in Ca{sup 2+} spark amplitude vs both subjects with the lowest CK increase and placebo-treated subjects. Moreover, Ca{sup 2+} spark amplitude was positively correlated with treatment-induced CK increase in the whole group (r = 0.71, P = 0.0045). In conclusion, this study further supports that statin induced muscular toxicity may be related to alterations in mitochondrial respiration and muscle calcium homeostasis independently of underlying disease or concomitant medication. -- Highlights: ► Statin use may be limited by side effects, particularly myopathy. ► Statins might impair mitochondrial function and muscle Ca2+ signaling in muscle. ► This was tested among healthy volunteers receiving simvastatin 80 mg daily for 8 weeks. ► CK

  4. Noninvasive monitoring of treatment response in a rabbit cyanide toxicity model reveals differences in brain and muscle metabolism

    Science.gov (United States)

    Kim, Jae G.; Lee, Jangwoen; Mahon, Sari B.; Mukai, David; Patterson, Steven E.; Boss, Gerry R.; Tromberg, Bruce J.; Brenner, Matthew

    2012-10-01

    Noninvasive near infrared spectroscopy measurements were performed to monitor cyanide (CN) poisoning and recovery in the brain region and in foreleg muscle simultaneously, and the effects of a novel CN antidote, sulfanegen sodium, on tissue hemoglobin oxygenation changes were compared using a sub-lethal rabbit model. The results demonstrated that the brain region is more susceptible to CN poisoning and slower in endogenous CN detoxification following exposure than peripheral muscles. However, sulfanegen sodium rapidly reversed CN toxicity, with brain region effects reversing more quickly than muscle. In vivo monitoring of multiple organs may provide important clinical information regarding the extent of CN toxicity and subsequent recovery, and facilitate antidote drug development.

  5. Neural network approach to the prediction of seismic events based on low-frequency signal monitoring of the Kuril-Kamchatka and Japanese regions

    Directory of Open Access Journals (Sweden)

    Irina Popova

    2013-08-01

    Full Text Available Very-low-frequency/ low-frequency (VLF/LF sub-ionospheric radiowave monitoring has been widely used in recent years to analyze earthquake preparatory processes. The connection between earthquakes with M ≥5.5 and nighttime disturbances of signal amplitude and phase has been established. Thus, it is possible to use nighttime anomalies of VLF/LF signals as earthquake precursors. Here, we propose a method for estimation of the VLF/LF signal sensitivity to seismic processes using a neural network approach. We apply the error back-propagation technique based on a three-level perceptron to predict a seismic event. The back-propagation technique involves two main stages to solve the problem; namely, network training, and recognition (the prediction itself. To train a neural network, we first create a so-called ‘training set’. The ‘teacher’ specifies the correspondence between the chosen input and the output data. In the present case, a representative database includes both the LF data received over three years of monitoring at the station in Petropavlovsk-Kamchatsky (2005-2007, and the seismicity parameters of the Kuril-Kamchatka and Japanese regions. At the first stage, the neural network established the relationship between the characteristic features of the LF signal (the mean and dispersion of a phase and an amplitude at nighttime for a few days before a seismic event and the corresponding level of correlation with a seismic event, or the absence of a seismic event. For the second stage, the trained neural network was applied to predict seismic events from the LF data using twelve time intervals in 2004, 2005, 2006 and 2007. The results of the prediction are discussed.

  6. Persistent Monitoring of Urban Infrasound Phenomenology-Report 2: Investigation of Structural Infrasound Signals in an Urban Environment

    Science.gov (United States)

    2016-11-01

    including the blocking of signals under some conditions (Ketcham et al. 2005; Wilson and Liu 2004; Pace et al. 2015). Numerical modeling methods were...scientific issues, Journal of Geophysical Research: Space Physics 107, - 1468. Rost, S., and C. Thomas. 2002. Array seismology : Methods and...structural sources; these sources were verified through direct measurement followed by structural numerical modeling. Wave propagation modeling was

  7. Effect of dynamic controlled atmosphere monitored by respiratory quotient and 1-methylcyclopropene on the metabolism and quality of 'Galaxy' apple harvested at three maturity stages.

    Science.gov (United States)

    Thewes, Fabio Rodrigo; Brackmann, Auri; Anese, Rogerio de Oliveira; Ludwig, Vagner; Schultz, Erani Eliseu; Dos Santos, Luana Ferreira; Wendt, Lucas Mallmann

    2017-05-01

    The objective of this study was to evaluate the interaction between controlled atmosphere (CA), CA+1-methylcyclopropene (1-MCP) and dynamic controlled atmosphere monitored by respiratory quotient (DCA-RQ) with three fruit maturity stages at harvest (early harvest date, optimal harvest date and late harvest date) on 'Galaxy' apple metabolism and quality after harvest and 9months storage plus 7days of shelf life at 20°C. Fruit stored under dynamic controlled atmosphere monitored by respiratory quotient 1.3 (DCA-RQ 1.3) showed lower ethylene production, respiration rate, mealiness and higher flesh firmness in comparison to CA stored fruit, but did not differ from those treated with 1-MCP. The dynamic controlled atmosphere monitored by respiratory quotient 1.5 (DCA-RQ 1.5) increased the acetaldehyde, ethanol and ethyl acetate concentration, regardless of the fruit maturity at harvest. The storage of 'Galaxy' apple under DCA-RQ 1.3 is efficient in keeping quality regardless of the maturity stage at harvest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A novel approach to monitor glucose metabolism using stable isotopically labelled glucose in longitudinal studies in mice

    NARCIS (Netherlands)

    van Dijk, T. H.; Laskewitz, A. J.; Grefhorst, A.; Boer, T. S.; Bloks, V. W.; Kuipers, F.; Groen, A. K.; Reijngoud, D. J.

    The aetiology of insulin resistance is still an enigma. Mouse models are frequently employed to study the underlying pathology. The most commonly used methods to monitor insulin resistance are the HOMA-IR, glucose or insulin tolerance tests and the hyperinsulinemic euglycaemic clamp (HIEC).

  9. Central nervous system neuropeptide Y signaling via the Y1 receptor partially dissociates feeding behavior from lipoprotein metabolism in lean rats.

    Science.gov (United States)

    Rojas, Jennifer M; Stafford, John M; Saadat, Sanaz; Printz, Richard L; Beck-Sickinger, Annette G; Niswender, Kevin D

    2012-12-15

    Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.

  10. Effects of Dietary Restriction on the Expression of Lipid Metabolism and Growth Hormone Signaling Genes in the Muscle of Korean Cattle Steers

    Directory of Open Access Journals (Sweden)

    H. J. Kang

    2015-08-01

    Full Text Available This study determined the effects of dietary restriction on growth and the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle (LM of Korean cattle. Thirty-one Korean cattle steers (average age 10.5 months were allocated to normal (N; n = 16 or dietary restriction (DR; n = 15