WorldWideScience

Sample records for metabolic monitoring signal

  1. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  2. Bile Acid Metabolism and Signaling

    Science.gov (United States)

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  3. Bystander signaling via oxidative metabolism.

    Science.gov (United States)

    Sawal, Humaira Aziz; Asghar, Kashif; Bureik, Matthias; Jalal, Nasir

    2017-01-01

    The radiation-induced bystander effect (RIBE) is the initiation of biological end points in cells (bystander cells) that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS) act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to pursue this field of science.

  4. Bystander signaling via oxidative metabolism

    Directory of Open Access Journals (Sweden)

    Sawal HA

    2017-08-01

    Full Text Available Humaira Aziz Sawal,1 Kashif Asghar,2 Matthias Bureik,3 Nasir Jalal4 1Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 2Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan; 3Health Science Platform, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; 4Health Science Platform, Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin, China Abstract: The radiation-induced bystander effect (RIBE is the initiation of biological end points in cells (bystander cells that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to

  5. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  6. Cell signalling and phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  7. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  8. Ras signaling in aging and metabolic regulation.

    Science.gov (United States)

    Slack, Cathy

    2017-12-07

    Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining age-related health may have important implications for the development of interventions that could not only increase lifespan but also delay the onset and/or progression of age-related functional decline.

  9. Plant monitoring and signal validation at HFIR

    International Nuclear Information System (INIS)

    Mullens, J.A.

    1991-01-01

    This paper describes a monitoring system for the Oak Ridge National Laboratory's (ORNL'S) High Flux Isotope Reactor (HFIR). HFIR is an 85 MW pressurized water reactor designed to produce isotopes and intense neutron beams. The monitoring system is described with respect to plant signals and computer system; monitoring overview; data acquisition, logging and network distribution; signal validation; status displays; reactor condition monitoring; reactor operator aids. Future work will include the addition of more plant signals, more signal validation and diagnostic capabilities, improved status display, integration of the system with the RELAP plant simulation and graphical interface, improved operator aids, and an alarm filtering system. 8 refs., 7 figs. (MB)

  10. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves; Magistretti, Pierre J.; Barros, L. Felipe

    2016-01-01

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  11. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  12. Metabolic Signaling and Therapy of Lung Cancer

    Science.gov (United States)

    2013-09-01

    report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by...which makes them attractive therapeutic targets. However, the development of targeted agents in lung cancer is still in its infancy, despite the...notion that metabolites can act as signaling molecules in distant metabolic pathways is gaining significant attentionand support (Figure 1A). Some of the

  13. Metabolic signals in sleep regulation: recent insights

    Directory of Open Access Journals (Sweden)

    Shukla C

    2016-01-01

    Full Text Available Charu Shukla, Radhika Basheer Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA Abstract: Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism. Keywords: sleep, energy balance, hypothalamus, metabolism, homeostasis

  14. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT

    OpenAIRE

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelli...

  15. Bile Acid Signaling in Liver Metabolism and Diseases

    Directory of Open Access Journals (Sweden)

    Tiangang Li

    2012-01-01

    Full Text Available Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.

  16. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  17. Helmet-based physiological signal monitoring system.

    Science.gov (United States)

    Kim, Youn Sung; Baek, Hyun Jae; Kim, Jung Soo; Lee, Haet Bit; Choi, Jong Min; Park, Kwang Suk

    2009-02-01

    A helmet-based system that was able to monitor the drowsiness of a soldier was developed. The helmet system monitored the electrocardiogram, electrooculogram and electroencephalogram (alpha waves) without constraints. Six dry electrodes were mounted at five locations on the helmet: both temporal sides, forehead region and upper and lower jaw strips. The electrodes were connected to an amplifier that transferred signals to a laptop computer via Bluetooth wireless communication. The system was validated by comparing the signal quality with conventional recording methods. Data were acquired from three healthy male volunteers for 12 min twice a day whilst they were sitting in a chair wearing the sensor-installed helmet. Experimental results showed that physiological signals for the helmet user were measured with acceptable quality without any intrusions on physical activities. The helmet system discriminated between the alert and drowsiness states by detecting blinking and heart rate variability (HRV) parameters extracted from ECG. Blinking duration and eye reopening time were increased during the sleepiness state compared to the alert state. Also, positive peak values of the sleepiness state were much higher, and the negative peaks were much lower than that of the alert state. The LF/HF ratio also decreased during drowsiness. This study shows the feasibility for using this helmet system: the subjects' health status and mental states could be monitored without constraints whilst they were working.

  18. Error monitoring issues for common channel signaling

    Science.gov (United States)

    Hou, Victor T.; Kant, Krishna; Ramaswami, V.; Wang, Jonathan L.

    1994-04-01

    Motivated by field data which showed a large number of link changeovers and incidences of link oscillations between in-service and out-of-service states in common channel signaling (CCS) networks, a number of analyses of the link error monitoring procedures in the SS7 protocol were performed by the authors. This paper summarizes the results obtained thus far and include the following: (1) results of an exact analysis of the performance of the error monitoring procedures under both random and bursty errors; (2) a demonstration that there exists a range of error rates within which the error monitoring procedures of SS7 may induce frequent changeovers and changebacks; (3) an analysis of the performance ofthe SS7 level-2 transmission protocol to determine the tolerable error rates within which the delay requirements can be met; (4) a demonstration that the tolerable error rate depends strongly on various link and traffic characteristics, thereby implying that a single set of error monitor parameters will not work well in all situations; (5) some recommendations on a customizable/adaptable scheme of error monitoring with a discussion on their implementability. These issues may be particularly relevant in the presence of anticipated increases in SS7 traffic due to widespread deployment of Advanced Intelligent Network (AIN) and Personal Communications Service (PCS) as well as for developing procedures for high-speed SS7 links currently under consideration by standards bodies.

  19. Environmental Monitoring of Microbe Metabolic Transformation

    Science.gov (United States)

    Bebout, Brad (Inventor); Fleming, Erich (Inventor); Piccini, Matthew (Inventor); Beasley, Christopher (Inventor); Bebout, Leslie (Inventor)

    2013-01-01

    Mobile system and method for monitoring environmental parameters involved in growth or metabolic transformation of algae in a liquid. Each of one or more mobile apparati, suspended or partly or wholly submerged in the liquid, includes at least first and second environmental sensors that sense and transmit distinct first and second environmental, growth or transformation parameter values, such as liquid temperature, temperature of gas adjacent to and above the exposed surface, liquid pH, liquid salinity, liquid turbidity, O.sub.2 dissolved in the liquid, CO.sub.2 contained in the liquid, oxidization and reduction potential of the liquid, nutrient concentrations in the liquid, nitrate concentration in the liquid, ammonium concentration in the liquid, bicarbonate concentration in the liquid, phosphate concentration in the liquid, light intensity at the liquid surface, electrical conductivity of the liquid, and a parameter.alpha.(alga) associated with growth stage of the alga, using PAM fluorometry or other suitable parameter measurements.

  20. Robust GPS autonomous signal quality monitoring

    Science.gov (United States)

    Ndili, Awele Nnaemeka

    The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and

  1. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Directory of Open Access Journals (Sweden)

    Kumari Sonal Choudhary

    2016-06-01

    Full Text Available Epithelial to mesenchymal transition (EMT is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR, are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E and mesenchymal (EGFR_M networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  2. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Science.gov (United States)

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-06-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  3. Signaling Pathways Regulating Redox Balance in Cancer Metabolism.

    Science.gov (United States)

    De Santis, Maria Chiara; Porporato, Paolo Ettore; Martini, Miriam; Morandi, Andrea

    2018-01-01

    The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells' demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions.

  4. Sensor/signal monitoring and plant maintenance

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.; Tuerkcan, E.

    1994-02-01

    Nuclear Power Plant (NPO) availability is determined by the intended functionality of safety related system and components. Therefore, maintenance is an important issue in a power plant connected to the plant's reliability and safety. The traditional maintenance policies proved to be rather costly and even not effectively addressing NPP requirements. Referring to these drawbacks, in the last decade, in the nuclear reliability centered maintenance (RCM) gained substantial interest due to its merits. In the formal implementation of RCM, apparently, predictive maintenance is not considered. However, with the impact of modern real-time and on-line surveillance and monitoring methodologies, the predictive maintenance procedures like sensor/signal verification and validation are to be included into RCM. (orig.)

  5. Cell signalling and phospholipid metabolism. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  6. The UPR reduces glucose metabolism via IRE1 signaling.

    Science.gov (United States)

    van der Harg, Judith M; van Heest, Jessica C; Bangel, Fabian N; Patiwael, Sanne; van Weering, Jan R T; Scheper, Wiep

    2017-04-01

    Neurons are highly dependent on glucose. A disturbance in glucose homeostasis therefore poses a severe risk that is counteracted by activation of stress responses to limit damage and restore the energy balance. A major stress response that is activated under conditions of glucose deprivation is the unfolded protein response (UPR) that is aimed to restore proteostasis in the endoplasmic reticulum. The key signaling of the UPR involves the transient activation of a transcriptional program and an overall reduction of protein synthesis. Since the UPR is strategically positioned to sense and integrate metabolic stress signals, it is likely that - apart from its adaptive response to restore proteostasis - it also directly affects metabolic pathways. Here we investigate the direct role of the UPR in glucose homeostasis. O-GlcNAc is a post-translational modification that is highly responsive to glucose fluctuations. We find that UPR activation results in decreased O-GlcNAc modification, in line with reduced glucose metabolism. Our data indicate that UPR activation has no direct impact on the upstream processes in glucose metabolism; glucose transporter expression, glucose uptake and hexokinase activity. In contrast, prolonged UPR activation decreases glycolysis and mitochondrial metabolism. Decreased mitochondrial respiration is not accompanied by apoptosis or a structural change in mitochondria indicating that the reduction in metabolic rate upon UPR activation is a physiological non-apoptotic response. Metabolic decrease is prevented if the IRE1 pathway of the UPR is inhibited. This indicates that activation of IRE1 signaling induces a reduction in glucose metabolism, as part of an adaptive response. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  8. Subfornical organ neurons integrate cardiovascular and metabolic signals.

    Science.gov (United States)

    Cancelliere, Nicole M; Ferguson, Alastair V

    2017-02-01

    The subfornical organ (SFO) is a critical circumventricular organ involved in the control of cardiovascular and metabolic homeostasis. Despite the plethora of circulating signals continuously sensed by the SFO, studies investigating how these signals are integrated are lacking. In this study, we use patch-clamp techniques to investigate how the traditionally classified "cardiovascular" hormone ANG II, "metabolic" hormone CCK and "metabolic" signal glucose interact and are integrated in the SFO. Sequential bath application of CCK (10 nM) and ANG (10 nM) onto dissociated SFO neurons revealed that 63% of responsive SFO neurons depolarized to both CCK and ANG; 25% depolarized to ANG only; and 12% hyperpolarized to CCK only. We next investigated the effects of glucose by incubating and recording neurons in either hypoglycemic, normoglycemic, or hyperglycemic conditions and comparing the proportions of responses to ANG ( n = 55) or CCK ( n = 83) application in each condition. A hyperglycemic environment was associated with a larger proportion of depolarizing responses to ANG ( χ 2 , P neurons excited by CCK are also excited by ANG and that glucose environment affects the responsiveness of neurons to both of these hormones, highlighting the ability of SFO neurons to integrate multiple metabolic and cardiovascular signals. These findings have important implications for this structure's role in the control of various autonomic functions during hyperglycemia. Copyright © 2017 the American Physiological Society.

  9. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    Science.gov (United States)

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  10. Monitoring Healthy Metabolic Trajectories with Nutritional Metabonomics

    Directory of Open Access Journals (Sweden)

    Sebastiano Collino

    2009-09-01

    Full Text Available Metabonomics is a well established analytical approach for the analysis of physiological regulatory processes via the metabolic profiling of biofluids and tissues in living organisms. Its potential is fully exploited in the field of “nutrimetabonomics” that aims at assessing the metabolic effects of active ingredients and foods in individuals. Yet, one of the greatest challenges in nutrition research is to decipher the critical interactions between mammalian organisms and environmental factors, including the gut microbiota. “Nutrimetabonomics” is today foreseen as a powerful approach for future nutritional programs tailored at health maintenance and disease prevention.

  11. Monitoring Healthy Metabolic Trajectories with Nutritional Metabonomics

    Science.gov (United States)

    Collino, Sebastiano; Martin, François-Pierre J.; Kochhar, Sunil; Rezzi, Serge

    2009-01-01

    Metabonomics is a well established analytical approach for the analysis of physiological regulatory processes via the metabolic profiling of biofluids and tissues in living organisms. Its potential is fully exploited in the field of “nutrimetabonomics” that aims at assessing the metabolic effects of active ingredients and foods in individuals. Yet, one of the greatest challenges in nutrition research is to decipher the critical interactions between mammalian organisms and environmental factors, including the gut microbiota. “Nutrimetabonomics” is today foreseen as a powerful approach for future nutritional programs tailored at health maintenance and disease prevention. PMID:22253970

  12. Detection and Processing Techniques of FECG Signal for Fetal Monitoring

    Directory of Open Access Journals (Sweden)

    Hasan MA

    2009-03-01

    Full Text Available Abstract Fetal electrocardiogram (FECG signal contains potentially precise information that could assist clinicians in making more appropriate and timely decisions during labor. The ultimate reason for the interest in FECG signal analysis is in clinical diagnosis and biomedical applications. The extraction and detection of the FECG signal from composite abdominal signals with powerful and advance methodologies are becoming very important requirements in fetal monitoring. The purpose of this review paper is to illustrate the various methodologies and developed algorithms on FECG signal detection and analysis to provide efficient and effective ways of understanding the FECG signal and its nature for fetal monitoring. A comparative study has been carried out to show the performance and accuracy of various methods of FECG signal analysis for fetal monitoring. Finally, this paper further focused some of the hardware implementations using electrical signals for monitoring the fetal heart rate. This paper opens up a passage for researchers, physicians, and end users to advocate an excellent understanding of FECG signal and its analysis procedures for fetal heart rate monitoring system.

  13. Signal Processing Methods Monitor Cranial Pressure

    Science.gov (United States)

    2010-01-01

    Dr. Norden Huang, of Goddard Space Flight Center, invented a set of algorithms (called the Hilbert-Huang Transform, or HHT) for analyzing nonlinear and nonstationary signals that developed into a user-friendly signal processing technology for analyzing time-varying processes. At an auction managed by Ocean Tomo Federal Services LLC, licenses of 10 U.S. patents and 1 domestic patent application related to HHT were sold to DynaDx Corporation, of Mountain View, California. DynaDx is now using the licensed NASA technology for medical diagnosis and prediction of brain blood flow-related problems, such as stroke, dementia, and traumatic brain injury.

  14. A soft sensor for bioprocess control based on sequential filtering of metabolic heat signals.

    Science.gov (United States)

    Paulsson, Dan; Gustavsson, Robert; Mandenius, Carl-Fredrik

    2014-09-26

    Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel.

  15. A Soft Sensor for Bioprocess Control Based on Sequential Filtering of Metabolic Heat Signals

    Directory of Open Access Journals (Sweden)

    Dan Paulsson

    2014-09-01

    Full Text Available Soft sensors are the combination of robust on-line sensor signals with mathematical models for deriving additional process information. Here, we apply this principle to a microbial recombinant protein production process in a bioreactor by exploiting bio-calorimetric methodology. Temperature sensor signals from the cooling system of the bioreactor were used for estimating the metabolic heat of the microbial culture and from that the specific growth rate and active biomass concentration were derived. By applying sequential digital signal filtering, the soft sensor was made more robust for industrial practice with cultures generating low metabolic heat in environments with high noise level. The estimated specific growth rate signal obtained from the three stage sequential filter allowed controlled feeding of substrate during the fed-batch phase of the production process. The biomass and growth rate estimates from the soft sensor were also compared with an alternative sensor probe and a capacitance on-line sensor, for the same variables. The comparison showed similar or better sensitivity and lower variability for the metabolic heat soft sensor suggesting that using permanent temperature sensors of a bioreactor is a realistic and inexpensive alternative for monitoring and control. However, both alternatives are easy to implement in a soft sensor, alone or in parallel.

  16. Isolation of key retinoid signalling and metabolic modules in invertebrates

    Directory of Open Access Journals (Sweden)

    Ana André

    2014-05-01

    Full Text Available Retinoids are a class of molecules related to vitamin A (Retinol that are required for regulation of critical chordate ndocrine-mediated process, such as embryonic development, reproduction, and vision. To maintain such physiological process, chordates have a complex mechanism to regulate the spatial and temporal distribution of retinoids that includes metabolic and signalling modules. Initially, retinoid modules were seen as a chordate novelty. However, emerging biochemical and genomic evidences have challenged this view, clearly pointing to a more basal ancestry than previously thought. However, for the majority of non-chordate invertebrate lineages a clearly characterization of the main enzymatic/molecular players is still missing. Despite limited, the available evidence supports the presence of biologically active retinoid pathways in invertebrates. In order to enhance our insights on retinoid biology, evolution, and its putative disruption by environmental chemicals, the isolation and functional characterization of key retinoid metabolic players in marine invertebrates has been carried out.

  17. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    Science.gov (United States)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  18. Regulation of brown adipocyte metabolism by myostatin/follistatin signaling

    Directory of Open Access Journals (Sweden)

    Rajan eSingh

    2014-10-01

    Full Text Available Obesity develops from perturbations of cellular bioenergetics, when energy uptake exceeds energy expenditure, and represents a major risk factor for the development of type 2 diabetes, dyslipidemia, cardiovascular disease, cancer, and other conditions. Brown adipose tissue (BAT has long been known to dissipate energy as heat and contribute to energy expenditure, but its presence and physiological role in adult human physiology has been questioned for years. Recent demonstrations of metabolically active brown fat depots in adult humans have revolutionized current therapeutic approaches for obesity-related diseases. The balance between white adipose tissue (WAT and BAT affects the systemic energy balance and is widely believed to be the key determinant in the development of obesity and related metabolic diseases. Members of the transforming growth factor-beta (TGF-β superfamily play an important role in regulating overall energy homeostasis by modulation of brown adipocyte characteristics. Inactivation of TGF-β/Smad3/myostatin (Mst signaling promotes browning of white adipocytes, increases mitochondrial biogenesis and protects mice from diet-induced obesity, suggesting the need for development of a novel class of TGF-β/Mst antagonists for the treatment of obesity and related metabolic diseases. We recently described an important role of follistatin (Fst, a soluble glycoprotein that is known to bind and antagonize Mst actions, during brown fat differentiation and the regulation of cellular metabolism. Here we highlight various investigations performed using different in vitro and in vivo models to support the contention that targeting TGF-β/Mst signaling enhances brown adipocyte functions and regulates energy balance, reducing insulin resistance and curbing the development of obesity and diabetes.

  19. Web monitoring of industrial signals using embedded systems

    Directory of Open Access Journals (Sweden)

    Cesar Augusto Romero-Molano

    2016-01-01

    Full Text Available The paper presents the design of software and hardware for a system of web monitoring of industrial signals. This prototype provides a web interface which can observe in real time the status of four industrial-type signal on-off. MSP432 microcontroller is used for sampling and transmitting monitored signals to a Raspberry PI which receives by a UART link the MSP432 monitored data and presents them immediately in the front-end web application. The prototype design was verified with a pneumatic application that consists of four single-acting cylinders and it was observed an efficient synchronization between the occurrence of the triggering event or change in status of any of the monitored cylinder and web publishing.

  20. Metabolic signals and innate immune activation in obesity and exercise.

    Science.gov (United States)

    Ringseis, Robert; Eder, Klaus; Mooren, Frank C; Krüger, Karsten

    2015-01-01

    The combination of a sedentary lifestyle and excess energy intake has led to an increased prevalence of obesity which constitutes a major risk factor for several co-morbidities including type 2 diabetes and cardiovascular diseases. Intensive research during the last two decades has revealed that a characteristic feature of obesity linking it to insulin resistance is the presence of chronic low-grade inflammation being indicative of activation of the innate immune system. Recent evidence suggests that activation of the innate immune system in the course of obesity is mediated by metabolic signals, such as free fatty acids (FFAs), being elevated in many obese subjects, through activation of pattern recognition receptors thereby leading to stimulation of critical inflammatory signaling cascades, like IκBα kinase/nuclear factor-κB (IKK/NF- κB), endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and NOD-like receptor P3 (NLRP3) inflammasome pathway, that interfere with insulin signaling. Exercise is one of the main prescribed interventions in obesity management improving insulin sensitivity and reducing obesity- induced chronic inflammation. This review summarizes current knowledge of the cellular recognition mechanisms for FFAs, the inflammatory signaling pathways triggered by excess FFAs in obesity and the counteractive effects of both acute and chronic exercise on obesity-induced activation of inflammatory signaling pathways. A deeper understanding of the effects of exercise on inflammatory signaling pathways in obesity is useful to optimize preventive and therapeutic strategies to combat the increasing incidence of obesity and its comorbidities. Copyright © 2015 International Society of Exercise and Immunology. All rights reserved.

  1. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling.

    Science.gov (United States)

    Foyer, Christine H; Bloom, Arnold J; Queval, Guillaume; Noctor, Graham

    2009-01-01

    Photorespiration is a high-flux pathway that operates alongside carbon assimilation in C(3) plants. Because most higher plant species photosynthesize using only the C(3) pathway, photorespiration has a major impact on cellular metabolism, particularly under high light, high temperatures, and CO(2) or water deficits. Although the functions of photorespiration remain controversial, it is widely accepted that this pathway influences a wide range of processes from bioenergetics, photosystem II function, and carbon metabolism to nitrogen assimilation and respiration. Crucially, the photorespiratory pathway is a major source of H(2)O(2) in photosynthetic cells. Through H(2)O(2) production and pyridine nucleotide interactions, photorespiration makes a key contribution to cellular redox homeostasis. In so doing, it influences multiple signaling pathways, particularly those that govern plant hormonal responses controlling growth, environmental and defense responses, and programmed cell death. The potential influence of photorespiration on cell physiology and fate is thus complex and wide ranging. The genes, pathways, and signaling functions of photorespiration are considered here in the context of whole plant biology, with reference to future challenges and human interventions to diminish photorespiratory flux.

  2. Wearable physiological systems and technologies for metabolic monitoring.

    Science.gov (United States)

    Gao, Wei; Brooks, George A; Klonoff, David C

    2018-03-01

    Wearable sensors allow continuous monitoring of metabolites for diabetes, sports medicine, exercise science, and physiology research. These sensors can continuously detect target analytes in skin interstitial fluid (ISF), tears, saliva, and sweat. In this review, we will summarize developments on wearable devices and their potential applications in research, clinical practice, and recreational and sporting activities. Sampling skin ISF can require insertion of a needle into the skin, whereas sweat, tears, and saliva can be sampled by devices worn outside the body. The most widely sampled metabolite from a wearable device is glucose in skin ISF for monitoring diabetes patients. Continuous ISF glucose monitoring allows estimation of the glucose concentration in blood without the pain, inconvenience, and blood waste of fingerstick capillary blood glucose testing. This tool is currently used by diabetes patients to provide information for dosing insulin and determining a diet and exercise plan. Similar technologies for measuring concentrations of other analytes in skin ISF could be used to monitor athletes, emergency responders, warfighters, and others in states of extreme physiological stress. Sweat is a potentially useful substrate for sampling analytes for metabolic monitoring during exercise. Lactate, sodium, potassium, and hydrogen ions can be measured in sweat. Tools for converting the concentrations of these analytes sampled from sweat, tears, and saliva into blood concentrations are being developed. As an understanding of the relationships between the concentrations of analytes in blood and easily sampled body fluid increases, then the benefits of new wearable devices for metabolic monitoring will also increase.

  3. Bayesian Inference for Signal-Based Seismic Monitoring

    Science.gov (United States)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  4. SIG-VISA: Signal-based Vertically Integrated Seismic Monitoring

    Science.gov (United States)

    Moore, D.; Mayeda, K. M.; Myers, S. C.; Russell, S.

    2013-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software; however, while such detections may constitute a useful summary of station activity, they discard large amounts of information present in the original recorded signal. We present SIG-VISA (Signal-based Vertically Integrated Seismic Analysis), a system for seismic monitoring through Bayesian inference on seismic signals. By directly modeling the recorded signal, our approach incorporates additional information unavailable to detection-based methods, enabling higher sensitivity and more accurate localization using techniques such as waveform matching. SIG-VISA's Bayesian forward model of seismic signal envelopes includes physically-derived models of travel times and source characteristics as well as Gaussian process (kriging) statistical models of signal properties that combine interpolation of historical data with extrapolation of learned physical trends. Applying Bayesian inference, we evaluate the model on earthquakes as well as the 2009 DPRK test event, demonstrating a waveform matching effect as part of the probabilistic inference, along with results on event localization and sensitivity. In particular, we demonstrate increased sensitivity from signal-based modeling, in which the SIGVISA signal model finds statistical evidence for arrivals even at stations for which the IMS station processing failed to register any detection.

  5. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  6. Signal and image processing for monitoring and testing at EDF

    International Nuclear Information System (INIS)

    Georgel, B.; Garreau, D.

    1992-04-01

    The quality of monitoring and non destructive testing devices in plants and utilities today greatly depends on the efficient processing of signal and image data. In this context, signal or image processing techniques, such as adaptive filtering or detection or 3D reconstruction, are required whenever manufacturing nonconformances or faulty operation have to be recognized and identified. This paper reviews the issues of industrial image and signal processing, by briefly considering the relevant studies and projects under way at EDF. (authors). 1 fig., 11 refs

  7. Monitoring of electric-cardio signals based on DSP

    Science.gov (United States)

    Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang

    2008-10-01

    Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.

  8. Optical Performance Monitoring and Signal Optimization in Optical Networks

    DEFF Research Database (Denmark)

    Petersen, Martin Nordal

    2006-01-01

    The thesis studies performance monitoring for the next generation optical networks. The focus is on all-optical networks with bit-rates of 10 Gb/s or above. Next generation all-optical networks offer large challenges as the optical transmitted distance increases and the occurrence of electrical-optical......-electrical regeneration points decreases. This thesis evaluates the impact of signal degrading effects that are becoming of increasing concern in all-optical high-speed networks due to all-optical switching and higher bit-rates. Especially group-velocity-dispersion (GVD) and a number of nonlinear effects will require...... enhanced attention to avoid signal degradations. The requirements for optical performance monitoring features are discussed, and the thesis evaluates the advantages and necessity of increasing the level of performance monitoring parameters in the physical layer. In particular, methods for optical...

  9. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    Science.gov (United States)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable

  10. Bile acid metabolism and signaling in cholestasis, inflammation and cancer

    Science.gov (United States)

    Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910

  11. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance.

    Science.gov (United States)

    Højlund, Kurt

    2014-07-01

    Type 2 diabetes, obesity and polycystic ovary syndrome (PCOS) are common metabolic disorders which are observed with increasing prevalences, and which are caused by a complex interplay between genetic and environmental factors, including increased calorie intake and physical inactivity. These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes and cardiovascular disease. In several studies, we have investigated insulin action on glucose and lipid metabolism, and at the molecular level, insulin signaling to glucose transport and glycogen synthesis in skeletal muscle from healthy individuals and in obesity, PCOS and type 2 diabetes. Moreover, we have described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance. Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin action on glucose uptake and glycogen synthesis is impaired. This suggests that the defects in glucose and lipid oxidation in the common metabolic disorders are secondary to other factors. In young women with PCOS, the degree of insulin resistance was similar to that seen in middle-aged patients with type 2 diabetes. This supports the hypothesis of an unique pathogenesis of insulin resistance in PCOS. Insulin in physiological concentrations stimulates glucose uptake in human skeletal

  12. RAS signalling in energy metabolism and rare human diseases.

    Science.gov (United States)

    Dard, L; Bellance, N; Lacombe, D; Rossignol, R

    2018-05-08

    The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Acoustic monitoring of rotating machine by advanced signal processing technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru

    2010-01-01

    The acoustic data remotely measured by hand held type microphones are investigated for monitoring and diagnosing the rotational machine integrity in nuclear power plants. The plant operator's patrol monitoring is one of the important activities for condition monitoring. However, remotely measured sound has some difficulties to be considered for precise diagnosis or quantitative judgment of rotating machine anomaly, since the measurement sensitivity is different in each measurement, and also, the sensitivity deteriorates in comparison with an attached type sensor. Hence, in the present study, several advanced signal processing methods are examined and compared in order to find optimum anomaly monitoring technology from the viewpoints of both sensitivity and robustness of performance. The dimension of pre-processed signal feature patterns are reduced into two-dimensional space for the visualization by using the standard principal component analysis (PCA) or the kernel based PCA. Then, the normal state is classified by using probabilistic neural network (PNN) or support vector data description (SVDD). By using the mockup test facility of rotating machine, it is shown that the appropriate combination of the above algorithms gives sensitive and robust anomaly monitoring performance. (author)

  14. Signal processing methods for in-situ creep specimen monitoring

    Science.gov (United States)

    Guers, Manton J.; Tittmann, Bernhard R.

    2018-04-01

    Previous work investigated using guided waves for monitoring creep deformation during accelerated life testing. The basic objective was to relate observed changes in the time-of-flight to changes in the environmental temperature and specimen gage length. The work presented in this paper investigated several signal processing strategies for possible application in the in-situ monitoring system. Signal processing methods for both group velocity (wave-packet envelope) and phase velocity (peak tracking) time-of-flight were considered. Although the Analytic Envelope found via the Hilbert transform is commonly applied for group velocity measurements, erratic behavior in the indicated time-of-flight was observed when this technique was applied to the in-situ data. The peak tracking strategies tested had generally linear trends, and tracking local minima in the raw waveform ultimately showed the most consistent results.

  15. Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal.

    Science.gov (United States)

    Lazar, Nathaniel; Fay, Allison; Nandakumar, Madhumitha; Boyle, Kerry E; Xavier, Joao; Rhee, Kyu; Glickman, Michael S

    2017-12-01

    Biotin is an essential cofactor utilized by all domains of life, but only synthesized by bacteria, fungi and plants, making biotin biosynthesis a target for antimicrobial development. To understand biotin biosynthesis in mycobacteria, we executed a genetic screen in Mycobacterium smegmatis for biotin auxotrophs and identified pyruvate carboxylase (Pyc) as required for biotin biosynthesis. The biotin auxotrophy of the pyc::tn strain is due to failure to transcriptionally induce late stage biotin biosynthetic genes in low biotin conditions. Loss of bioQ, the repressor of biotin biosynthesis, in the pyc::tn strain reverted biotin auxotrophy, as did reconstituting the last step of the pathway through heterologous expression of BioB and provision of its substrate DTB. The role of Pyc in biotin regulation required its catalytic activities and could be supported by M. tuberculosis Pyc. Quantitation of the kinetics of depletion of biotinylated proteins after biotin withdrawal revealed that Pyc is the most rapidly depleted biotinylated protein and metabolomics revealed a broad metabolic shift in wild type cells upon biotin withdrawal which was blunted in cell lacking Pyc. Our data indicate that mycobacterial cells monitor biotin sufficiency through a metabolic signal generated by dysfunction of a biotinylated protein of central metabolism. © 2017 John Wiley & Sons Ltd.

  16. Monitoring metabolic health of dairy cattle in the transition period.

    Science.gov (United States)

    LeBlanc, Stephen

    2010-01-01

    This paper reviews the importance of energy metabolism in transition dairy cows, its associations with disease and reproduction, and strategies for monitoring cows under field conditions during this critical time. Essentially all dairy cattle experience a period of insulin resistance, reduced feed intake, negative energy balance, hypocalcemia, reduced immune function, and bacterial contamination of the uterus soon before, or in the weeks after calving. One-third of dairy cows may be affected by some form of metabolic or infectious disease in early lactation. Routine, proactive actions, observations, or analysis are intended to accurately and efficiently provide early detection of problems, to provide an opportunity for investigation and intervention in order to limit the consequences and costs of health problems and reduced animal performance or welfare. Methods of early detection include monitoring of disease and culling records, feed intake, milk production, body condition, and simple metabolic tests. Methods, strategies, and interpretation of measurement of peripartum concentrations of non-esterified fatty acids (NEFA) and beta-hydroxybutyrate (BHB) as indicators of aspects of energy status and disease risk are reviewed. High NEFA (> 0.4 mmol/l) in the last 7 to 10 days before expected calving is associated with increased risk of displaced abomasum (DA), retained placenta, culling before 60 days in milk, and less milk production in the first 4 months of lactation. Subclinical ketosis (serum BHB >1200 to 1400 micromol/l) in the first or second week after calving is associated with increased risk of DA, metritis, clinical ketosis, endometritis, prolonged postpartum anovulation, increased severity of mastitis, and lower milk production in early lactation. There are several validated and practical tools for cow-side measurement of ketosis.

  17. Signal Processing Device (SPD) for networked radiation monitoring system

    International Nuclear Information System (INIS)

    Dharmapurikar, A.; Bhattacharya, S.; Mukhopadhyay, P.K.; Sawhney, A.; Patil, R.K.

    2010-01-01

    A networked radiation and parameter monitoring system with three tier architecture is being developed. Signal Processing Device (SPD) is a second level sub-system node in the network. SPD is an embedded system which has multiple input channels and output communication interfaces. It acquires and processes data from first level parametric sensor devices, and sends to third level devices in response to request commands received from host. It also performs scheduled diagnostic operations and passes on the information to host. It supports inputs in the form of differential digital signals and analog voltage signals. SPD communicates with higher level devices over RS232/RS422/USB channels. The system has been designed with main requirements of minimal power consumption and harsh environment in radioactive plants. This paper discusses the hardware and software design details of SPD. (author)

  18. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  19. Cardio-metabolic Diseases Prevention by Self-monitoring the Breath

    Directory of Open Access Journals (Sweden)

    Danila GERMANESE

    2017-08-01

    Full Text Available As new as very promising technique, breath analysis allows for monitoring the biochemical processes that occur in human body in a non-invasive way. Nevertheless, the high costs for standard analytical instrumentation (i.e., gas chromatograph, mass spectrometer, the need for specialized personnel able to read the results and the lack of protocols to collect breath samples, set limit to the exploitation of breath analysis in clinical practice. Here, we describe the development of a device, named Wize Sniffer, which is portable and entirely based on low cost technology: it uses an array of commercial, semiconductor gas sensors and a widely employed open source controller, an Arduino Mega2560 with Ethernet module. In addition, it is very easy-to-use also for non-specialized personnel and able to analyze in real time the composition of the breath. The Wize Sniffer is composed of three modules: signal measurement module, signal conditioning module and signal processing module. The idea was born in the framework of European SEMEiotic Oriented Technology for Individual's CardiOmetabolic risk self-assessmeNt and Self-monitoring (SEMEOTICONS Project, in order to monitor individual's lifestyle by detecting in the breath those molecules related to the noxious habits for cardio-metabolic risk (alcohol intake, smoking, wrong diet. Nonetheless, the modular configuration of the device allows for changing the sensors according to the molecules to be detected, thus fully exploiting the potential of breath analysis.

  20. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  1. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling

    Directory of Open Access Journals (Sweden)

    Joshua M. Corbin

    2016-07-01

    Full Text Available Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR plays an essential role in the establishment and progression of prostate cancer (PCa, and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context.

  2. One-Carbon Metabolism in Prostate Cancer: The Role of Androgen Signaling

    Science.gov (United States)

    Corbin, Joshua M.; Ruiz-Echevarría, Maria J.

    2016-01-01

    Cancer cell metabolism differs significantly from the metabolism of non-transformed cells. This altered metabolic reprogramming mediates changes in the uptake and use of nutrients that permit high rates of proliferation, growth, and survival. The androgen receptor (AR) plays an essential role in the establishment and progression of prostate cancer (PCa), and in the metabolic adaptation that takes place during this progression. In its role as a transcription factor, the AR directly affects the expression of several effectors and regulators of essential catabolic and biosynthetic pathways. Indirectly, as a modulator of the one-carbon metabolism, the AR can affect epigenetic processes, DNA metabolism, and redox balance, all of which are important factors in tumorigenesis. In this review, we focus on the role of AR-signaling on one-carbon metabolism in tumorigenesis. Clinical implications of one-carbon metabolism and AR-targeted therapies for PCa are discussed in this context. PMID:27472325

  3. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways.

    Science.gov (United States)

    Shenk, Thomas; Alwine, James C

    2014-11-01

    Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.

  4. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling.

    Science.gov (United States)

    Eichmann, Thomas Oliver; Lass, Achim

    2015-10-01

    The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.

  5. Monitoring of drilling process with the application of acoustic signal

    Directory of Open Access Journals (Sweden)

    Labaš Milan

    2000-09-01

    Full Text Available Monitoring of rock disintegration process at drilling, scanning of input quantities: thrust F, revolution n and the course of some output quantities: the drilling rate v and the power input P are needed for the control of this process. We can calculate the specific volume work of rock disintegration w and ϕ - quotient of drilling rate v and the specific volume work of disintegration w from the presented quantities.Works on an expertimental stand showed that the correlation relationships between the input and output quantities can be found by scanning the accompanying sound of the drilling proces.Research of the rock disintegration with small-diameter diamond drill tools and different rock types is done at the Institute of Geotechnics. The aim of this research is the possibility of monitoring and controlling the rock disintegration process with the application of acoustic signal. The acoustic vibrations accompanying the drilling process are recorded by a microphone placed in a defined position in the acoustic space. The drilling device (drilling stand, the drilling tool and the rock are the source of sound. Two basic sound states exist in the drilling stand research : the noise at no-load running and the noise at the rotary drilling of rock. Suitable quantities for optimizing the rock disintegration process are searched by the study of the acoustic signal. The dominant frequencies that characterize the disintegration process for the given rock and tool are searched by the analysis of the acoustic signal. The analysis of dominant frequencies indicates the possibility of determining an optimal regime for the maximal drilling rate. Extreme of the specific disintegration energy is determinated by the dispersion of the dominant frequency.The scanned acoustic signal is processed by the Fourier transformation. The Fourier transformation facilitates the distribution of the general non-harmonic periodic process into harmonic components. The harmonic

  6. The growing landscape of lysine acetylation links metabolism and cell signalling

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Weinert, Brian Tate; Nishida, Yuya

    2014-01-01

    Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation...

  7. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases.

    Science.gov (United States)

    Ackers, Ian; Malgor, Ramiro

    2018-01-01

    Chronic diseases account for approximately 45% of all deaths in developed countries and are particularly prevalent in countries with the most sophisticated and robust public health systems. Chronic metabolic diseases, specifically lifestyle-related diseases pertaining to diet and exercise, continue to be difficult to treat clinically. The most prevalent of these chronic metabolic diseases include obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiovascular disease and will be the focus of this review. Wnt proteins are highly conserved glycoproteins best known for their role in development and homeostasis of tissues. Given the importance of Wnt signalling in homeostasis, aberrant Wnt signalling likely regulates metabolic processes and may contribute to the development of chronic metabolic diseases. Expression of Wnt proteins and dysfunctional Wnt signalling has been reported in multiple chronic diseases. It is interesting to speculate about an interrelationship between the Wnt signalling pathways as a potential pathological mechanism in chronic metabolic diseases. The aim of this review is to summarize reported findings on the contrasting roles of Wnt signalling in lifestyle-related chronic metabolic diseases; specifically, the contribution of Wnt signalling to lipid accumulation, fibrosis and chronic low-grade inflammation.

  8. A SIGNAL ENHANCED PORTABLE RAMAN PROBE FOR ANESTHETIC GAS MONITORING

    Directory of Open Access Journals (Sweden)

    S. Schlüter

    2015-03-01

    Full Text Available The spontaneous Raman scattering technique is an excellent tool for a quantitative analysis of multi-species gas mixtures. It is a noninvasive optical method for species identification and gas phase concentration measurement of all Raman active molecules, since the intensity of the species specific Raman signal is linearly dependent on the concentration. Applying a continuous wave (CW laser it typically takes a few seconds to capture a gas phase Raman spectrum at room temperature. Nevertheless in contrast to these advantages the weak Raman signal intensity is a major drawback. Thus, it is still challenging to detect gas phase Raman spectra in alow-pressure regime with a temporal resolution of only a few 100 ms. In this work a fully functional gas phase Raman system for measurements in the low-pressure regime (p ≥ 980 hPa (absolute is presented. It overcomes the drawback of a weak Raman signal by using a multipass cavity. A description of the sensor setup and of the multipass arrangement will be presented. Moreover the complete functionality of the sensor system will be demonstrated by measurements at an anesthesia simulator under clinical relevant conditions and in comparison to a conventional gas monitor.

  9. Metabolic monitoring in New Zealand district health board mental health services.

    Science.gov (United States)

    Staveley, Aimee; Soosay, Ian; O'Brien, Anthony J

    2017-11-10

    To audit New Zealand district health boards' (DHBs) metabolic monitoring policies in relation to consumers prescribed second-generation antipsychotic medications using a best practice guideline. Metabolic monitoring policies from DHBs and one private clinic were analysed in relation to a best practice standard developed from the current literature and published guidelines relevant to metabolic syndrome. Fourteen of New Zealand's 20 DHBs currently have metabolic monitoring policies for consumers prescribed antipsychotic medication. Two of those policies are consistent with the literature-based guideline. Eight policies include actions to be taken when consumers meet criteria for metabolic syndrome. Four DHBs have systems for measuring their rates of metabolic monitoring. There is no consensus on who is clinically responsible for metabolic monitoring. Metabolic monitoring by mental health services in New Zealand reflects international experience that current levels of monitoring are low and policies are not always in place. Collaboration across the mental health and primary care sectors together with the adoption of a consensus guideline is needed to improve rates of monitoring and reduce current rates of physical health morbidities.

  10. Use of intrinsic fluorescent signals for characterizing tissue metabolic states in health and disease

    Science.gov (United States)

    Chance, Britton

    1996-04-01

    The large content of mitochondria in metabolizing cells, coupled with intrinsic NADH and flavoprotein signals makes these signals ideal for characterizing tissue metabolic states in health and disease. The first few millimeters of tissue are reached by the fluorescence excitation in the exposed surfaces of the cervix, bladder, rectum and esophagus, etc. Thus, extensive use has been made of fluorescent signals by a large number of investigators for tumor diagnosis from an empirical standpoint where the fluorescent signals are generally diminished in precancerous and cancerous tissue. This article reviews the biochemical basis for the fluorescent signals and points to a 'gold standard' for fluorescent signal examination involving freeze trapping and low temperature two- or three-dimensional high resolution fluorescence spectroscopy.

  11. Lipid signaling in adipose tissue: Connecting inflammation & metabolism

    Czech Academy of Sciences Publication Activity Database

    Masoodi, M.; Kuda, Ondřej; Rossmeisl, Martin; Flachs, Pavel; Kopecký, Jan

    2015-01-01

    Roč. 1851, č. 4 (2015), s. 503-518 ISSN 1388-1981 R&D Projects: GA ČR(CZ) GA13-00871S; GA MŠk(CZ) 7E12073; GA MŠk(CZ) LH14040 Institutional support: RVO:67985823 Keywords : adipocyte * futile substrate cycle * macrophage Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.779, year: 2015

  12. Metabolic Changes Underlying Bold Signal Variations after Administration of Zolpidem

    International Nuclear Information System (INIS)

    Rodriguez-Rojas, Rafael; Machado, Calixto; Alvarez, Lazaro; Carballo, Maylen; Perez-Nellar, Jesus; Estevez, Mario; Pavon, Nancy; Chinchilla, Mauricio

    2010-12-01

    Zolpidem is a non-benzodiazepine drug belonging to the imidazopiridine class, which has selectivity for stimulating the effect of gamma aminobutyric acid [GABA] and is used for the therapy of insomnia. Nonetheless, several reports have been published over recent years about a paradoxical arousing effect of Zolpidem in patients with severe brain damage. We studied a PVS case using 1 H-MRS and BOLD signal, before and after Zolpidem administration. Significantly increased BOLD signal was localized in left frontal superior cortex, bilateral cingulated areas, left thalamus and right head of the caudate nucleus. A transient activation was observed in frontal cortex, comprising portions of anterior cingulate, medial, and orbito-frontal cortices. Additionally, significant pharmacological activation in sensory-motor cortex is observed 1 hour after Zolpidem intake. Significant linear correlations of BOLD signal changes were found with primary concentrations of NAA, Glx and Lac in the right frontal cortex. We discussed that when Zolpidem attaches to the modified GABA receptors of the neurodormant cells, dormancy is switched off, inducing brain activation. This might explain the significant correlations of BOLD signal changes and 1 H-MRS metabolites in our patient. We concluded that 1 H-MRS and BOLD signal assessment might contribute to study neurovascular coupling in PVS cases after Zolpidem administration. Although this is a report of a single case, considering our results we recommend to apply this methodology in series of PVS and MCS patients. (author)

  13. Prescription-event monitoring: developments in signal detection.

    Science.gov (United States)

    Ferreira, Germano

    2007-01-01

    Prescription-event monitoring (PEM) is a non-interventional intensive method for post-marketing drug safety monitoring of newly licensed medicines. PEM studies are cohort studies where exposure is obtained from a centralised service and outcomes from simple questionnaires completed by general practitioners. Follow-up forms are sent for selected events. Because PEM captures all events and not only the suspected adverse drug reactions, PEM cohorts potentially differ in respect to the distribution of number of events per person depending on the nature of the drug under study. This variance can be related either with the condition for which the drug is prescribed (e.g. a condition causing high morbidity will have, in average, a higher number of events per person compared with a condition with lower morbidity) or with the drug effect itself. This paper describes an exploratory investigation of the distortion caused by product-related variations of the number of events to the interpretation of the proportional reporting ratio (PRR) values ("the higher the PRR, the greater the strength of the signal") computed using drug-cohort data. We studied this effect by assessing the agreement between the PRR based on events (event of interest vs all other events) and PRR based on cases (cases with the event of interest vs cases with any other events). PRR were calculated for all combinations reported to ten selected drugs against a comparator of 81 other drugs. Three of the ten drugs had a cohort with an apparent higher proportion of patients with lower number of events. The PRRs based on events were systematically higher than the PRR based on cases for the combinations reported to these three drugs. Additionally, when applying the threshold criteria for signal screening (n > or =3, PRR > or =1.5 and Chi-squared > or =4), the binary agreement was generally high but apparently lower for these three drugs. In conclusion, the distribution of events per patient in drug cohorts shall be

  14. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    Science.gov (United States)

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-04

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  15. Monitoring and prevalence rates of metabolic syndrome in military veterans with serious mental illness.

    Directory of Open Access Journals (Sweden)

    Sameed Ahmed M Khatana

    Full Text Available BACKGROUND: Cardiovascular disease is the leading cause of mortality among patients with serious mental illness (SMI and the prevalence of metabolic syndrome--a constellation of cardiovascular risk factors--is significantly higher in these patients than in the general population. Metabolic monitoring among patients using second generation antipsychotics (SGAs--a risk factor for metabolic syndrome--has been shown to be inadequate despite the release of several guidelines. However, patients with SMI have several factors independent of medication use that predispose them to a higher prevalence of metabolic syndrome. Our study therefore examines monitoring and prevalence of metabolic syndrome in patients with SMI, including those not using SGAs. METHODS AND FINDINGS: We retrospectively identified all patients treated at a Veterans Affairs Medical Center with diagnoses of schizophrenia, schizoaffective disorder or bipolar disorder during 2005-2006 and obtained demographic and clinical data. Incomplete monitoring of metabolic syndrome was defined as being unable to determine the status of at least one of the syndrome components. Of the 1,401 patients included (bipolar disorder: 822; schizophrenia: 222; and schizoaffective disorder: 357, 21.4% were incompletely monitored. Only 54.8% of patients who were not prescribed SGAs and did not have previous diagnoses of hypertension or hypercholesterolemia were monitored for all metabolic syndrome components compared to 92.4% of patients who had all three of these characteristics. Among patients monitored for metabolic syndrome completely, age-adjusted prevalence of the syndrome was 48.4%, with no significant difference between the three psychiatric groups. CONCLUSIONS: Only one half of patients with SMI not using SGAs or previously diagnosed with hypertension and hypercholesterolemia were completely monitored for metabolic syndrome components compared to greater than 90% of those with these characteristics

  16. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability.

    Directory of Open Access Journals (Sweden)

    Sarah M Short

    2017-07-01

    Full Text Available The mosquito midgut microbiota has been shown to influence vector competence for multiple human pathogens. The microbiota is highly variable in the field, and the sources of this variability are not well understood, which limits our ability to understand or predict its effects on pathogen transmission. In this work, we report significant variation in female adult midgut bacterial load between strains of A. aegypti which vary in their susceptibility to dengue virus. Composition of the midgut microbiome was similar overall between the strains, with 81-92% of reads coming from the same five bacterial families, though we did detect differences in the presence of some bacterial families including Flavobacteriaceae and Entobacteriaceae. We conducted transcriptomic analysis on the two mosquito strains that showed the greatest difference in bacterial load, and found that they differ in transcript abundance of many genes implicated in amino acid metabolism, in particular the branched chain amino acid degradation pathway. We then silenced this pathway by targeting multiple genes using RNA interference, which resulted in strain-specific bacterial proliferation, thereby eliminating the difference in midgut bacterial load between the strains. This suggests that the branched chain amino acid (BCAA degradation pathway controls midgut bacterial load, though the mechanism underlying this remains unclear. Overall, our results indicate that amino acid metabolism can act to influence the midgut microbiota. Moreover, they suggest that genetic or physiological variation in BCAA degradation pathway activity may in part explain midgut microbiota variation in the field.

  17. A New Digital Signal Processing Method for Spectrum Interference Monitoring

    Science.gov (United States)

    Angrisani, L.; Capriglione, D.; Ferrigno, L.; Miele, G.

    2011-01-01

    Frequency spectrum is a limited shared resource, nowadays interested by an ever growing number of different applications. Generally, the companies providing such services pay to the governments the right of using a limited portion of the spectrum, consequently they would be assured that the licensed radio spectrum resource is not interested by significant external interferences. At the same time, they have to guarantee that their devices make an efficient use of the spectrum and meet the electromagnetic compatibility regulations. Therefore the competent authorities are called to control the access to the spectrum adopting suitable management and monitoring policies, as well as the manufacturers have to periodically verify the correct working of their apparatuses. Several measurement solutions are present on the market. They generally refer to real-time spectrum analyzers and measurement receivers. Both of them are characterized by good metrological accuracies but show costs, dimensions and weights that make no possible a use "on the field". The paper presents a first step in realizing a digital signal processing based measurement instrument able to suitably accomplish for the above mentioned needs. In particular the attention has been given to the DSP based measurement section of the instrument. To these aims an innovative measurement method for spectrum monitoring and management is proposed in this paper. It performs an efficient sequential analysis based on a sample by sample digital processing. Three main issues are in particular pursued: (i) measurement performance comparable to that exhibited by other methods proposed in literature; (ii) fast measurement time, (iii) easy implementation on cost-effective measurement hardware.

  18. Astrocytes take the stage in a tale of signaling-metabolism coupling

    DEFF Research Database (Denmark)

    Bak, Lasse K

    2017-01-01

    Astrocytes are crucial cells in the brain that are intimately coupled with neuronal metabolism. A new paper from San Martín et al. provides evidence that physiological levels of the gaseous signal molecule NO can rapidly and reversibly increase astrocyte metabolism of glucose and production...... of lactate. A proposed neurological coupling-from the potential source of NO, endothelial cells, to the potential beneficiary from the lactate, neurons-prompts new questions regarding the controversial role of lactate in the brain....

  19. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms

    Science.gov (United States)

    Guo, Shaodong

    2014-01-01

    Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies demonstrate that insulin and its signaling cascade normally control cell growth, metabolism and survival through activation of mitogen-activated protein kinases (MAPKs) and phosphotidylinositide-3-kinase (PI3K), of which activation of PI-3K-associated with insulin receptor substrate-1 and -2 (IRS1, 2) and subsequent Akt→Foxo1 phosphorylation cascade has a central role in control of nutrient homeostasis and organ survival. Inactivation of Akt and activation of Foxo1, through suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and over nutrition may provide the underlying mechanisms for metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will likely provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the feature of the metabolic syndrome. Emphasis will be placed on the role of IRS1, IRS2, and associated signaling pathways that couple to Akt and the forkhead/winged helix transcription factor Foxo1. PMID:24281010

  20. Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Fazal Wahab

    2018-03-01

    Full Text Available A large body of data has established the hypothalamic kisspeptin (KP and its receptor, KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as well as of circadian and seasonal variation-related information on the reproductive axis. Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the current metabolic status of the body. In conditions of energy imbalance, either positive or negative, a number of alterations in the hypothalamic KP signaling pathway have been documented in different mammalian models including nonhuman primates and human. Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene transcript levels in the hypothalamus and, hence, decreases the output of KP-containing neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, alterations in Kiss1 expression have also been reported in other situations of energy imbalance like diabetes and obesity. Information related to the body’s current metabolic status reaches to KP neurons both directly as well as indirectly via a complex network of other neurons. In this review article, we have provided an updated summary of the available literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic KP-Kiss1r signaling, in light of available evidence, are discussed.

  1. Mitofusin 2 as a driver that controls energy metabolism and insulin signaling.

    Science.gov (United States)

    Zorzano, Antonio; Hernández-Alvarez, María Isabel; Sebastián, David; Muñoz, Juan Pablo

    2015-04-20

    Mitochondrial dynamics is a complex process that impacts on mitochondrial biology. Recent evidence indicates that proteins participating in mitochondrial dynamics have additional cellular roles. Mitofusin 2 (Mfn2) is a potent modulator of mitochondrial metabolism with an impact on energy metabolism in muscle, liver, and hypothalamic neurons. In addition, Mfn2 is subjected to tight regulation. Hence, factors such as proinflammatory cytokines, lipid availability, or glucocorticoids block its expression, whereas exercise and increased energy expenditure promote its upregulation. Importantly, Mfn2 controls cell metabolism and insulin signaling by limiting reactive oxygen species production and by modulation of endoplasmic reticulum stress. In this connection, it is critical to understand precisely the molecular mechanisms involved in the global actions of Mfn2. Future directions should concentrate into the analysis of those mechanisms, and to fully demonstrate that Mfn2 represents a cellular hub that senses the metabolic and hormonal milieu and drives the control of metabolic homeostasis.

  2. Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis.

    Science.gov (United States)

    Domínguez-Andrés, Jorge; Arts, Rob J W; Ter Horst, Rob; Gresnigt, Mark S; Smeekens, Sanne P; Ratter, Jacqueline M; Lachmandas, Ekta; Boutens, Lily; van de Veerdonk, Frank L; Joosten, Leo A B; Notebaart, Richard A; Ardavín, Carlos; Netea, Mihai G

    2017-09-01

    Monocytes are innate immune cells that play a pivotal role in antifungal immunity, but little is known regarding the cellular metabolic events that regulate their function during infection. Using complementary transcriptomic and immunological studies in human primary monocytes, we show that activation of monocytes by Candida albicans yeast and hyphae was accompanied by metabolic rewiring induced through C-type lectin-signaling pathways. We describe that the innate immune responses against Candida yeast are energy-demanding processes that lead to the mobilization of intracellular metabolite pools and require induction of glucose metabolism, oxidative phosphorylation and glutaminolysis, while responses to hyphae primarily rely on glycolysis. Experimental models of systemic candidiasis models validated a central role for glucose metabolism in anti-Candida immunity, as the impairment of glycolysis led to increased susceptibility in mice. Collectively, these data highlight the importance of understanding the complex network of metabolic responses triggered during infections, and unveil new potential targets for therapeutic approaches against fungal diseases.

  3. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism.

    Science.gov (United States)

    Rodrigues, Dario B; Maccarini, Paolo F; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J S; Limão-Vieira, Paulo; Stauffer, Paul R

    2013-02-26

    Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm 3 ) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm 3 ) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

  4. Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila

    Science.gov (United States)

    Wang, Bin; Chen, Nan; Wei, Yingliang; Li, Jiang; Sun, Li; Wu, Jiarui; Huang, Qing; Liu, Chang; Fan, Chunhai; Song, Haiyun

    2012-08-01

    Gold nanoparticles (AuNPs) are often used as vehicles to deliver drugs or biomolecules, due to their mild effect on cell survival and proliferation. However, little is known about their effect on cellular metabolism. Here we examine the in vivo effect of AuNPs on metabolism using Drosophila as a model. Drosophila and vertebrates possess similar basic metabolic functions, and a highly conserved PI3K/Akt/mTOR signaling pathway plays a central role in the regulation of energy metabolism in both organisms. We show that dietary AuNPs enter the fat body, a key metabolic tissue in Drosophila larvae. Significantly, larvae fed with AuNP show increased lipid levels without triggering stress responses. In addition, activities of the PI3K/Akt/mTOR signaling pathway and fatty acids synthesis are increased in these larvae. This study thus reveals a novel function of AuNPs in influencing animal metabolism and suggests its potential therapeutic applications for metabolic disorders.

  5. A prospective study of monitoring practices for metabolic disease in antipsychotic-treated community psychiatric patients

    Directory of Open Access Journals (Sweden)

    Watkinson Helen MO

    2007-06-01

    Full Text Available Abstract Background Patients with severe mental illness are at increased risk for metabolic and cardiovascular disease. A number of recent guidelines and consensus statements recommend stringent monitoring of metabolic function in individuals receiving antipsychotic drugs. Methods We conducted a prospective cohort study of 106 community-treated psychiatric patients from across the diagnostic spectrum from the Northeast of England to investigate changes in metabolic status and monitoring practices for metabolic and cardiovascular disease. We undertook detailed anthropometric and metabolic assessment at baseline and follow-up, and examined clinical notes and hospital laboratory records to ascertain monitoring practices. Results A high prevalence of undiagnosed and untreated metabolic disease was present at baseline assessment. Mean follow-up time was 599.3 (SD ± 235.4 days. Body mass index (p 50% of subjects had neither blood glucose nor lipids monitored during the follow-up period. Conclusion This cohort has a high prevalence of metabolic disease and heightened cardiovascular risk. Despite the publication of a number of recommendations regarding physical health screening in this population, monitoring rates are poor, and physical health worsened during the follow-up period.

  6. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    Science.gov (United States)

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  7. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-01-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different

  8. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-11-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates

  9. Monitoring the metabolic state of fungal hyphae and the presence of melanin by nonlinear spectral imaging.

    Science.gov (United States)

    Knaus, Helene; Blab, Gerhard A; Agronskaia, Alexandra V; van den Heuvel, Dave J; Gerritsen, Hans C; Wösten, Han A B

    2013-10-01

    Label-free nonlinear spectral imaging microscopy (NLSM) records two-photon-excited fluorescence emission spectra of endogenous fluorophores within the specimen. Here, NLSM is introduced as a novel, minimally invasive method to analyze the metabolic state of fungal hyphae by monitoring the autofluorescence of NAD(P)H and flavin adenine dinucleotide (FAD). Moreover, the presence of melanin was analyzed by NLSM. NAD(P)H, FAD, and melanin were used as biomarkers for freshness of mushrooms of Agaricus bisporus (white button mushroom) that had been stored at 4°C for 0 to 17 days. During this period, the mushrooms did not show changes in morphology or color detectable by eye. In contrast, FAD/NAD(P)H and melanin/NAD(P)H ratios increased over time. For instance, these ratios increased from 0.92 to 2.02 and from 0.76 to 1.53, respectively, at the surface of mushroom caps that had been harvested by cutting the stem. These ratios were lower under the skin than at the surface of fresh mushrooms (0.78 versus 0.92 and 0.41 versus 0.76, respectively), indicative of higher metabolism and lower pigment formation within the fruiting body. Signals were different not only between tissues of the mushroom but also between neighboring hyphae. These data show that NLSM can be used to determine the freshness of mushrooms and to monitor the postharvest browning process at an early stage. Moreover, these data demonstrate the potential of NLSM to address a broad range of fundamental and applied microbiological processes.

  10. Asynchronous monitoring of the quality of multilevel optical PAM signals

    Science.gov (United States)

    Siuzdak, J.

    2017-08-01

    In the paper, there is analyzed the signal quality assessment method based on delay tap asynchronous sampling, both for binary and multilevel PAM signals. The obtained multilevel phase diagrams are far more complicated than binary ones. The phase diagrams are affected by the signal distortions but it is difficult to relate reliably the phase diagram form to the distortion type and its influence on the signal quality.

  11. Female sex hormones are necessary for the metabolic effects mediated by loss of Interleukin 18 signaling

    DEFF Research Database (Denmark)

    Lindegaard, Birgitte; Abildgaard, Julie; Heywood, Sarah E

    2018-01-01

    OBJECTIVE: Interleukin (IL)-18 plays a crucial role in maintaining metabolic homeostasis and levels of this cytokine are influenced by gender, age, and sex hormones. The role of gender on IL-18 signaling, however, is unclear. We hypothesized that the presence of female sex hormone could preserve...

  12. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transcription

    Czech Academy of Sciences Publication Activity Database

    Wasternack, Claus; Song, S.

    2017-01-01

    Roč. 68, č. 6 (2017), s. 1303-1321 ISSN 0022-0957 Institutional support: RVO:61389030 Keywords : Activators * Amino acid conjugates * Biosynthesis * Jasmonic acid * Metabolism * Perception * Repressors * SCFJAZ co-receptor complex COI1 * Signaling Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  13. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds

    Directory of Open Access Journals (Sweden)

    Zhenguo Ma

    2017-12-01

    Full Text Available During germination of barley (Hordeum vulgare L. seeds, important morphological and physiological changes take place, including development of organs and tissues and activation of metabolic pathways. Germination and dormancy of seeds are regulated by abscisic acid, gibberellins, reactive oxygen species (ROS, reactive nitrogen species (RNS and several other factors. Activities of ascorbate–glutathione cycle enzymes, responsible for scavenging ROS, strongly increase. Catalase and superoxide dismutase activities, also scavenging ROS, decrease at the onset of seed germination and then increase. With the increase in aerobic metabolism after radicle protrusion, the activities of the fermentation enzymes lactate and alcohol dehydrogenase decline rapidly. The RNS-scavenging activity of S-nitrosoglutathione reductase decreases in the course of seed germination, in concert with elevation of nitric oxide production and protein nitrosylation. This activity supports the role of RNS in regulating seed germination. Transcription of various genes at different phases of seed germination exhibits phase-specific changes. During imbibition, genes involved in cell wall metabolism are highly expressed; in the middle phase of seed germination before radicle protrusion, genes involved in amino acid synthesis, protein synthesis, and transport and nucleic acid synthesis are upregulated significantly, and after radicle protrusion, genes involved in photosynthetic metabolism are induced. In summary, signal transduction and metabolic regulation of seed germination involve diverse reactions and complex regulation at different levels of metabolic organization. Keywords: Seed germination, Reactive oxygen species, Reactive nitrogen species, Signal transduction, Gene expression

  14. Maternal Chromium Restriction Leads to Glucose Metabolism Imbalance in Mice Offspring through Insulin Signaling and Wnt Signaling Pathways

    Science.gov (United States)

    Zhang, Qian; Sun, Xiaofang; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2016-01-01

    An adverse intrauterine environment, induced by a chromium-restricted diet, is a potential cause of metabolic disease in adult life. Up to now, the relative mechanism has not been clear. C57BL female mice were time-mated and fed either a control diet (CD), or a chromium-restricted diet (CR) throughout pregnancy and the lactation period. After weaning, some offspring continued the diet diagram (CD-CD or CR-CR), while other offspring were transferred to another diet diagram (CD-CR or CR-CD). At 32 weeks of age, glucose metabolism parameters were measured, and the liver from CR-CD group and CD-CD group was analyzed using a gene array. Quantitative real-time polymerase chain reaction (qPCR) and Western blot were used to verify the result of the gene array. A maternal chromium-restricted diet resulted in obesity, hyperglycemia, hyperinsulinemia, increased area under the curve (AUC) of glucose in oral glucose tolerance testing and homeostasis model assessment of insulin resistance (HOMA-IR). There were 463 genes that differed significantly (>1.5-fold change, p chromium deficiency influences glucose metabolism in pups through the regulation of insulin signaling and Wnt signaling pathways. PMID:27782077

  15. Non-Neuronal Cells in the Hypothalamic Adaptation to Metabolic Signals

    Science.gov (United States)

    Freire-Regatillo, Alejandra; Argente-Arizón, Pilar; Argente, Jesús; García-Segura, Luis Miguel; Chowen, Julie A.

    2017-01-01

    Although the brain is composed of numerous cell types, neurons have received the vast majority of attention in the attempt to understand how this organ functions. Neurons are indeed fundamental but, in order for them to function correctly, they rely on the surrounding “non-neuronal” cells. These different cell types, which include glia, epithelial cells, pericytes, and endothelia, supply essential substances to neurons, in addition to protecting them from dangerous substances and situations. Moreover, it is now clear that non-neuronal cells can also actively participate in determining neuronal signaling outcomes. Due to the increasing problem of obesity in industrialized countries, investigation of the central control of energy balance has greatly increased in attempts to identify new therapeutic targets. This has led to interesting advances in our understanding of how appetite and systemic metabolism are modulated by non-neuronal cells. For example, not only are nutrients and hormones transported into the brain by non-neuronal cells, but these cells can also metabolize these metabolic factors, thus modifying the signals reaching the neurons. The hypothalamus is the main integrating center of incoming metabolic and hormonal signals and interprets this information in order to control appetite and systemic metabolism. Hence, the factors transported and released from surrounding non-neuronal cells will undoubtedly influence metabolic homeostasis. This review focuses on what is known to date regarding the involvement of different cell types in the transport and metabolism of nutrients and hormones in the hypothalamus. The possible involvement of non-neuronal cells, in particular glial cells, in physiopathological outcomes of poor dietary habits and excess weight gain are also discussed. PMID:28377744

  16. Ties that bind: the integration of plastid signalling pathways in plant cell metabolism.

    Science.gov (United States)

    Brunkard, Jacob O; Burch-Smith, Tessa M

    2018-04-13

    Plastids are critical organelles in plant cells that perform diverse functions and are central to many metabolic pathways. Beyond their major roles in primary metabolism, of which their role in photosynthesis is perhaps best known, plastids contribute to the biosynthesis of phytohormones and other secondary metabolites, store critical biomolecules, and sense a range of environmental stresses. Accordingly, plastid-derived signals coordinate a host of physiological and developmental processes, often by emitting signalling molecules that regulate the expression of nuclear genes. Several excellent recent reviews have provided broad perspectives on plastid signalling pathways. In this review, we will highlight recent advances in our understanding of chloroplast signalling pathways. Our discussion focuses on new discoveries illuminating how chloroplasts determine life and death decisions in cells and on studies elucidating tetrapyrrole biosynthesis signal transduction networks. We will also examine the role of a plastid RNA helicase, ISE2, in chloroplast signalling, and scrutinize intriguing results investigating the potential role of stromules in conducting signals from the chloroplast to other cellular locations. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Crosstalk between insulin and dopamine signaling: A basis for the metabolic effects of antipsychotic drugs.

    Science.gov (United States)

    Nash, Abigail I

    2017-10-01

    In the setting of rising rates of obesity and metabolic syndrome, characterized in part by hyperinsulinemia, it is increasingly important to understand the mechanisms that contribute to insulin dysregulation. The higher risk for metabolic syndrome imparted by antipsychotic medication use highlights one such mechanism. Though there is great variation in the number and types of signaling pathways targeted by these medications, the one common mechanism of action is through dopamine. Dopamine's effects on insulin signaling begin at the level of insulin secretion from the pancreas and continue through the central nervous system. In a reciprocal fashion, insulin also affects dopamine signaling, with specific effects on dopamine reuptake from the synapse. This review probes the dopamine-insulin connection to provide a comprehensive examination of how antipsychotics may contribute towards insulin resistance. Published by Elsevier B.V.

  18. Improving metabolic monitoring in patients maintained on antipsychotics in Penang, Malaysia.

    Science.gov (United States)

    Hor, Esther Sl; Subramaniam, Sivasangari; Koay, Jun Min; Bharathy, Arokiamary; Vasudevan, Umadevi; Panickulam, Joseph J; Ng, InnTiong; Arif, Nor Hayati; Russell, Vincent

    2016-02-01

    To evaluate the monitoring of metabolic parameters among outpatients maintained on antipsychotic medications in a general hospital setting in Malaysia and to assess the impact of a local monitoring protocol. By performing a baseline audit of files from a random sample of 300 patients prescribed antipsychotic medications for at least 1 year; we determined the frequency of metabolic monitoring. The findings informed the design of a new local protocol, on which clinical staff was briefed. We re-evaluated metabolic monitoring immediately after implementation, in a small sample of new referrals and current patients. We explored staff perceptions of the initiative with a follow-up focus group, 6 months post-implementation. The baseline audit revealed a sub-optimal frequency of metabolic parameter recording. Re-audit, following implementation of the new protocol, revealed improved monitoring but persisting deficits. Dialogue with the clinical staff led to further protocol modification, clearer definition of staff roles and use of a standard recording template. Focus group findings revealed positive perceptions of the initiative, but persisting implementation barriers, including cultural issues surrounding waist circumference measurement. Responding to challenges in achieving improved routine metabolic monitoring of patients maintained on antipsychotics required on-going dialogue with the clinical staff, in order to address both service pressures and cultural concerns. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  19. Branched-chain amino acids in metabolic signalling and insulin resistance

    Science.gov (United States)

    Lynch, Christopher J.; Adams, Sean H.

    2015-01-01

    Branched-chain amino acids (BCAAs) are important nutrient signals that have direct and indirect effects. Frequently, BCAAs have been reported to mediate antiobesity effects, especially in rodent models. However, circulating levels of BCAAs tend to be increased in individuals with obesity and are associated with worse metabolic health and future insulin resistance or type 2 diabetes mellitus (T2DM). A hypothesized mechanism linking increased levels of BCAAs and T2DM involves leucine-mediated activation of the mammalian target of rapamycin complex 1 (mTORC1), which results in uncoupling of insulin signalling at an early stage. A BCAA dysmetabolism model proposes that the accumulation of mitotoxic metabolites (and not BCAAs per se) promotes β-cell mitochondrial dysfunction, stress signalling and apoptosis associated with T2DM. Alternatively, insulin resistance might promote aminoacidaemia by increasing the protein degradation that insulin normally suppresses, and/or by eliciting an impairment of efficient BCAA oxidative metabolism in some tissues. Whether and how impaired BCAA metabolism might occur in obesity is discussed in this Review. Research on the role of individual and model-dependent differences in BCAA metabolism is needed, as several genes (BCKDHA, PPM1K, IVD and KLF15) have been designated as candidate genes for obesity and/or T2DM in humans, and distinct phenotypes of tissue-specific branched chain ketoacid dehydrogenase complex activity have been detected in animal models of obesity and T2DM. PMID:25287287

  20. Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance

    DEFF Research Database (Denmark)

    Højlund, Kurt

    2014-01-01

    . These metabolic disorders are all characterized by reduced plasma adiponectin and insulin resistance in peripheral tissues. Quantitatively skeletal muscle is the major site of insulin resistance. Both low plasma adiponectin and insulin resistance contribute to an increased risk of type 2 diabetes...... described a novel syndrome characterized by postprandial hyperinsulinemic hypoglycemia and insulin resistance. This syndrome is caused by a mutation in the tyrosine kinase domain of the insulin receptor gene (INSR). We have studied individuals with this mutation as a model of inherited insulin resistance....... Type 2 diabetes, obesity and PCOS are characterized by pronounced defects in the insulin-stimulated glucose uptake, in particular glycogen synthesis and to a lesser extent glucose oxidation, and the ability of insulin to suppress lipid oxidation. In inherited insulin resistance, however, only insulin...

  1. The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Dianaly T. Au

    2017-01-01

    Full Text Available The metabolic syndrome is an escalating worldwide public health concern. Defined by a combination of physiological, metabolic, and biochemical factors, the metabolic syndrome is used as a clinical guideline to identify individuals with a higher risk for type 2 diabetes and cardiovascular disease. Although risk factors for type 2 diabetes and cardiovascular disease have been known for decades, the molecular mechanisms involved in the pathophysiology of these diseases and their interrelationship remain unclear. The LDL receptor-related protein 1 (LRP1 is a large endocytic and signaling receptor that is widely expressed in several tissues. As a member of the LDL receptor family, LRP1 is involved in the clearance of chylomicron remnants from the circulation and has been demonstrated to be atheroprotective. Recently, studies have shown that LRP1 is involved in insulin receptor trafficking and regulation and glucose metabolism. This review summarizes the role of tissue-specific LRP1 in insulin signaling and its potential role as a link between lipoprotein and glucose metabolism in diabetes.

  2. Energy metabolism and the metabolic syndrome: does a lower basal metabolic rate signal recovery following weight loss?

    Science.gov (United States)

    Soares, Mario J; Cummings, Nicola K; Ping-Delfos, Wendy L Chan She

    2011-01-01

    To determine whether basal metabolic rate (BMR) was causally related to MetS, and to study the role of gender in this relationship. Seventy-two Caucasian subjects (43 women, 29 men) had changes in basal metabolic rate (BMR), carbohydrate oxidation rate (COR), fat oxidation rate (FOR) and prevalence of the metabolic syndrome (MetS) assessed in response to weight loss. There was a significant gender×MetS interaction in BMR at the start. Women with MetS had higher adjusted BMR, whilst men with MetS had lower adjusted BMR than their respective counterparts. Weight loss resulted in a significant decrease in fat mass (-5.2±0.31 kg, p=0.001), fat free mass (-2.3±0.27 kg, p=0.001), BMR (-549±58 kJ/d, p=0.001) and a decreased proportion of MetS (22/72, χ(2)=0.005). Subjects who recovered from MetS after weight loss (RMS) had ∼250 kJ/d significantly lower adjusted BMR compared to those who were never MetS (NMS, p=0.046) and those who still had MetS (MetS+, p=0.047). Regression analysis showed that change (Δ) in BMR was best determined by Δglucose×gender interaction (r(2)=23%), ΔFOR (r(2)=20.3%), ΔCOR (r(2)=19.4%) and Δtriglycerides (r(2)=7.8%). There is a sexual dimorphism of BMR in MetS. Overall, the data support the notion that alterations in BMR may be central to the etiopathogenesis of MetS. Copyright © 2012 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  3. Robust signal extraction for on-line monitoring data

    NARCIS (Netherlands)

    Davies, P.L.; Fried, R.; Gather, U.

    2004-01-01

    Data from the automatic monitoring of intensive care patients exhibits trends, outliers, and level changes as well as periods of relative constancy. All this is overlaid with a high level of noise and there are dependencies between the different items measured. Current monitoring systems tend to

  4. Cura Annonae-Chemically Boosting Crop Yields Through Metabolic Feeding of a Plant Signaling Precursor.

    Science.gov (United States)

    Vocadlo, David J

    2017-05-22

    The cream of the crop: With the world facing a projected shortfall of crops by 2050, new approaches are needed to boost crop yields. Metabolic feeding of plants with photocaged trehalose-6-phosphate (Tre6P) can increase levels of the signaling metabolite Tre6P in the plant. Reprogramming of cellular metabolism by Tre6P stimulates a program of plant growth and enhanced crop yields, while boosting starch content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Variants of Insulin-Signaling Inhibitor Genes in Type 2 Diabetes and Related Metabolic Abnormalities

    Directory of Open Access Journals (Sweden)

    Carlo de Lorenzo

    2013-01-01

    Full Text Available Insulin resistance has a central role in the pathogenesis of several metabolic diseases, including type 2 diabetes, obesity, glucose intolerance, metabolic syndrome, atherosclerosis, and cardiovascular diseases. Insulin resistance and related traits are likely to be caused by abnormalities in the genes encoding for proteins involved in the composite network of insulin-signaling; in this review we have focused our attention on genetic variants of insulin-signaling inhibitor molecules. These proteins interfere with different steps in insulin-signaling: ENPP1/PC-1 and the phosphatases PTP1B and PTPRF/LAR inhibit the insulin receptor activation; INPPL1/SHIP-2 hydrolyzes PI3-kinase products, hampering the phosphoinositide-mediated downstream signaling; and TRIB3 binds the serine-threonine kinase Akt, reducing its phosphorylation levels. While several variants have been described over the years for all these genes, solid evidence of an association with type 2 diabetes and related diseases seems to exist only for rs1044498 of the ENPP1 gene and for rs2295490 of the TRIB3 gene. However, overall the data recapitulated in this Review article may supply useful elements to interpret the results of novel, more technically advanced genetic studies; indeed it is becoming increasingly evident that genetic information on metabolic diseases should be interpreted taking into account the complex biological pathways underlying their pathogenesis.

  6. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells.

    Science.gov (United States)

    Armitage, Emily G; Kotze, Helen L; Allwood, J William; Dunn, Warwick B; Goodacre, Royston; Williams, Kaye J

    2015-10-28

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments.

  7. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism

    Science.gov (United States)

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S.; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher

    2011-01-01

    Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P < .05 (corrected for multiple comparisons) were considered significant. Main Outcome Measure Brain glucose metabolism computed as absolute metabolism (µmol/100 g per minute) and as normalized metabolism (region/whole brain). Results Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 µmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67–4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001

  8. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    International Nuclear Information System (INIS)

    Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-01-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ( 18 F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm 3 ) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ((micro)mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 (micro)mol/100 g per minute; mean difference, 2.4 (95% confidence interval, 0.67-4.2); P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute cell phone

  9. Signal processing for solar array monitoring, fault detection, and optimization

    CERN Document Server

    Braun, Henry; Spanias, Andreas

    2012-01-01

    Although the solar energy industry has experienced rapid growth recently, high-level management of photovoltaic (PV) arrays has remained an open problem. As sensing and monitoring technology continues to improve, there is an opportunity to deploy sensors in PV arrays in order to improve their management. In this book, we examine the potential role of sensing and monitoring technology in a PV context, focusing on the areas of fault detection, topology optimization, and performance evaluation/data visualization. First, several types of commonly occurring PV array faults are considered and detection algorithms are described. Next, the potential for dynamic optimization of an array's topology is discussed, with a focus on mitigation of fault conditions and optimization of power output under non-fault conditions. Finally, monitoring system design considerations such as type and accuracy of measurements, sampling rate, and communication protocols are considered. It is our hope that the benefits of monitoring presen...

  10. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage

    DEFF Research Database (Denmark)

    Borisova, Marina E; Voigt, Andrea; Tollenaere, Maxim A X

    2018-01-01

    quantitative phosphoproteomics and protein kinase inhibition to provide a systems view on protein phosphorylation patterns induced by UV light and uncover the dependencies of phosphorylation events on the canonical DNA damage signaling by ATM/ATR and the p38 MAP kinase pathway. We identify RNA-binding proteins......Ultraviolet (UV) light radiation induces the formation of bulky photoproducts in the DNA that globally affect transcription and splicing. However, the signaling pathways and mechanisms that link UV-light-induced DNA damage to changes in RNA metabolism remain poorly understood. Here we employ...

  11. Lactate in the brain: from metabolic end-product to signalling molecule

    KAUST Repository

    Magistretti, Pierre J.

    2018-03-08

    Lactate in the brain has long been associated with ischaemia; however, more recent evidence shows that it can be found there under physiological conditions. In the brain, lactate is formed predominantly in astrocytes from glucose or glycogen in response to neuronal activity signals. Thus, neurons and astrocytes show tight metabolic coupling. Lactate is transferred from astrocytes to neurons to match the neuronal energetic needs, and to provide signals that modulate neuronal functions, including excitability, plasticity and memory consolidation. In addition, lactate affects several homeostatic functions. Overall, lactate ensures adequate energy supply, modulates neuronal excitability levels and regulates adaptive functions in order to set the \\'homeostatic tone\\' of the nervous system.

  12. Signal to noise comparison of metabolic imaging methods on a clinical 3T MRI

    DEFF Research Database (Denmark)

    Müller, C. A.; Hansen, Rie Beck; Skinner, J. G.

    MRI with hyperpolarized tracers has enabled new diagnostic applications, e.g. metabolic imaging in cancer research. However, the acquisition of the transient, hyperpolarized signal with spatial and frequency resolution requires dedicated imaging methods. Here, we compare three promising candidate...... for 2D MR spectroscopic imaging (MRSI): (i) multi-echo balanced steady-state free precession (me-bSSFP), 1,2 (ii) echo planar spectroscopic imaging (EPSI) sequence and (iii) phase-encoded, pulseacquisition chemical-shift imaging (CSI)...

  13. Interplay between Dioxin-Mediated Signaling and Circadian Clock: A Possible Determinant in Metabolic Homeostasis

    Directory of Open Access Journals (Sweden)

    Chun Wang

    2014-07-01

    Full Text Available The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function.

  14. Independent AMP and NAD signaling regulates C2C12 differentiation and metabolic adaptation.

    Science.gov (United States)

    Hsu, Chia George; Burkholder, Thomas J

    2016-12-01

    The balance of ATP production and consumption is reflected in adenosine monophosphate (AMP) and nicotinamide adenine dinucleotide (NAD) content and has been associated with phenotypic plasticity in striated muscle. Some studies have suggested that AMPK-dependent plasticity may be an indirect consequence of increased NAD synthesis and SIRT1 activity. The primary goal of this study was to assess the interaction of AMP- and NAD-dependent signaling in adaptation of C2C12 myotubes. Changes in myotube developmental and metabolic gene expression were compared following incubation with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and nicotinamide mononucleotide (NMN) to activate AMPK- and NAD-related signaling. AICAR showed no effect on NAD pool or nampt expression but significantly reduced histone H3 acetylation and GLUT1, cytochrome C oxidase subunit 2 (COX2), and MYH3 expression. In contrast, NMN supplementation for 24 h increased NAD pool by 45 % but did not reduce histone H3 acetylation nor promote mitochondrial gene expression. The combination of AMP and NAD signaling did not induce further metabolic adaptation, but NMN ameliorated AICAR-induced myotube reduction. We interpret these results as indication that AMP and NAD contribute to C2C12 differentiation and metabolic adaptation independently.

  15. Wearable System for Acquisition and Monitoring of Biological Signals

    Science.gov (United States)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  16. An innovative non-intrusive driver assistance system for vital signal monitoring.

    NARCIS (Netherlands)

    Sun, Y. & Yu, X.

    2016-01-01

    This paper describes an in-vehicle nonintrusive biopotential measurement system for driver health monitoring and fatigue detection. Previous research has found that the physiological signals including eye features, electrocardiography (ECG), electroencephalography (EEG) and their secondary

  17. Traffic data for local emissions monitoring at a signalized intersection

    NARCIS (Netherlands)

    Bigazzi, A.; Lint, J.W.C. van; Klunder, G.; Stelwagen, U.; Ligterink, N.E.

    2010-01-01

    In order to assist planning efforts for air pollution-responsive dynamic traffic management (DTM) systems, this research assesses the accuracy of local emissions monitoring based on traffic data and models. The study quantifies the benefits of increased data resolution for short-term emissions

  18. Cytolytic T lymphocyte responses to metabolically inactivated stimulator cells. I. Metabolic inactivation impairs both CD and LD antigen signals

    International Nuclear Information System (INIS)

    Kelso, A.; Boyle, W.

    1982-01-01

    The effects of metabolic inactivation of spleen cells on antigen presentation to precursors of alloreactive cytolytic T lymphocytes (T/sub c/) were examined. By serological methods, populations inactivated by ultraviolet irradiation, glutaraldehyde fixation or plasma membrane isolation were found to retain normal levels of H-2K/D and Ia antigens. However, comparison of the antigen doses required to stimulate secondary T/sub c/ responses in mixed leukocyte culture showed that the inactivated preparations were approximately 10-fold less immunogenic than X-irradiated spleen cells. Their total inability to stimulate primary cytolytic responses pointed to at least a 100-fold impairment of immunogenicity for unprimed T/sub c/ precursors in the case of uv-irradiated and glutaraldehyde-treated stimulator cells, and at least a 10-fold impairment for membrane fragments. Experiments showing that the capacity of cell monolayers to absorb precursor T/sub c/ from unprimed spleen populations was reduced following uv-irradiation or glutaraldehyde treatment provided direct evidence that this loss of immunogenicity was due in part to suboptimal antigen presentation to precursor T/sub c/. It is concluded that, in addition to the traditional view that these treatments damage the ''LD'' signal to helper T lymphocytes, metabolic inactivation also impairs recognition of ''CD'' determinants by precursor T/sub c/

  19. Running and Metabolic Demands of Elite Rugby Union Assessed Using Traditional, Metabolic Power, and Heart Rate Monitoring Methods

    Science.gov (United States)

    Dubois, Romain; Paillard, Thierry; Lyons, Mark; McGrath, David; Maurelli, Olivier; Prioux, Jacques

    2017-01-01

    The aims of this study were (1) to analyze elite rugby union game demands using 3 different approaches: traditional, metabolic and heart rate-based methods (2) to explore the relationship between these methods and (3) to explore positional differences between the backs and forwards players. Time motion analysis and game demands of fourteen professional players (24.1 ± 3.4 y), over 5 European challenge cup games, were analyzed. Thresholds of 14.4 km·h-1, 20 W.kg-1 and 85% of maximal heart rate (HRmax) were set for high-intensity efforts across the three methods. The mean % of HRmax was 80.6 ± 4.3 % while 42.2 ± 16.5% of game time was spent above 85% of HRmax with no significant differences between the forwards and the backs. Our findings also show that the backs cover greater distances at high-speed than forwards (% difference: +35.2 ± 6.6%; pdemands of professional rugby games. The traditional and the metabolic-power approaches shows a close correlation concerning their relative values, nevertheless the difference in absolute values especially for the high-intensity thresholds demonstrates that the metabolic power approach may represent an interesting alternative to the traditional approaches used in evaluating the high-intensity running efforts required in rugby union games. Key points Elite/professional rugby union players Heart rate monitoring during official games Metabolic power approach PMID:28344455

  20. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain.

    Science.gov (United States)

    Liu, Chia-Chen; Hu, Jin; Tsai, Chih-Wei; Yue, Mei; Melrose, Heather L; Kanekiyo, Takahisa; Bu, Guojun

    2015-04-08

    Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy. Copyright © 2015 the authors 0270-6474/15/355851-09$15.00/0.

  1. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...... analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal...

  2. Low-complexity R-peak detection in ECG signals : a preliminary step towards ambulatory fetal monitoring

    NARCIS (Netherlands)

    Rooijakkers, M.J.; Rabotti, C.; Bennebroek, M.; Meerbergen, van J.; Mischi, M.

    2011-01-01

    Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however

  3. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  4. TCPTP Regulates Insulin Signalling in AgRP Neurons to Coordinate Glucose Metabolism with Feeding.

    Science.gov (United States)

    Dodd, Garron T; Lee-Young, Robert S; Brüning, Jens C; Tiganis, Tony

    2018-04-30

    Insulin regulates glucose metabolism by eliciting effects on peripheral tissues as well as the brain. Insulin receptor (IR) signalling inhibits AgRP-expressing neurons in the hypothalamus to contribute to the suppression of hepatic glucose production (HGP) by insulin, whereas AgRP neuronal activation attenuates brown adipose tissue (BAT) glucose uptake. The tyrosine phosphatase TCPTP suppresses IR signalling in AgRP neurons. Hypothalamic TCPTP is induced by fasting and degraded after feeding. Here we assessed the influence of TCPTP in AgRP neurons in the control of glucose metabolism. TCPTP deletion in AgRP neurons ( Agrp -Cre; Ptpn2 fl/fl ) enhanced insulin sensitivity as assessed by the increased glucose infusion rates and reduced HGP during hyperinsulinemic-euglycemic clamps, accompanied by increased [ 14 C]-2-deoxy-D-glucose uptake in BAT and browned white adipose tissue. TCPTP deficiency in AgRP neurons promoted the intracerebroventricular insulin-induced repression of hepatic gluconeogenesis in otherwise unresponsive food-restricted mice yet had no effect in fed/satiated mice where hypothalamic TCPTP levels are reduced. The improvement in glucose homeostasis in Agrp -Cre; Ptpn2 fl/fl mice was corrected by IR heterozygosity ( Agrp -Cre; Ptpn2 fl/fl ; Insr fl/+ ), causally linking the effects on glucose metabolism with the IR signalling in AgRP neurons. Our findings demonstrate that TCPTP controls IR signalling in AgRP neurons to coordinate HGP and brown/beige adipocyte glucose uptake in response to feeding/fasting. © 2018 by the American Diabetes Association.

  5. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Baig, A.R.

    1996-05-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important parameters of the Pakistan Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety point-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author) 12 figs

  6. Development of a central PC-based system for reactor signal monitoring and analysis

    International Nuclear Information System (INIS)

    Karim, A.; Ansari, S.A.; Rauf Baig, A.

    1998-01-01

    A personal computer based system was developed for on-line monitoring, signal processing and display of important reactor parameters of the Pakistan Research Reactor-1. The system was designed for assistance to both reactor operator and users. It performs three main functions. The first is the centralized radiation monitoring in and around the reactor building. The computer acquires signals from radiation monitoring channels and continuously displays them on distributed monitors. Trend monitoring and alarm generation is also done. In case of any abnormal condition the radiation level data is automatically stored in computer memory for detailed off-line analysis. In the second part the computer does the performance testing of nuclear instrumentation channels by signal statistical analysis, and generates alarm in case the channel standard deviation error exceeds the permissible error. Mean values of important nuclear signals are also displayed on distributed monitors as a part of reactor safety parameters display system. The third function is on-line computation of reactor physics parameters of the core which are important from operational and safety points-of-view. The signals from radiation protection system and nuclear instrumentation channels in the reactor were interfaced with the computer for this purpose. The development work was done under an IAEA research contract as a part of coordinated research programme. (author)

  7. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.

    Science.gov (United States)

    Jayakumar, Siddharth; Hasan, Gaiti

    2018-01-01

    All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.

  8. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Waters, Alicia H.C. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Golubeva, Anna V. [Alimentary Pharmabiotic Centre, University College Cork, Bioscience Institute, Western Road, Cork (Ireland); Papkovsky, Dmitri B. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland)

    2015-01-01

    Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.

  9. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    International Nuclear Information System (INIS)

    Zhdanov, Alexander V.; Waters, Alicia H.C.; Golubeva, Anna V.; Papkovsky, Dmitri B.

    2015-01-01

    Changes in availability and utilisation of O 2 and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O 2 . Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O 2 and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O 2 and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O 2 and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells

  10. False alarm reduction in BSN-based cardiac monitoring using signal quality and activity type information.

    Science.gov (United States)

    Tanantong, Tanatorn; Nantajeewarawat, Ekawit; Thiemjarus, Surapa

    2015-02-09

    False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs), the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs) can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.

  11. False Alarm Reduction in BSN-Based Cardiac Monitoring Using Signal Quality and Activity Type Information

    Directory of Open Access Journals (Sweden)

    Tanatorn Tanantong

    2015-02-01

    Full Text Available False alarms in cardiac monitoring affect the quality of medical care, impacting on both patients and healthcare providers. In continuous cardiac monitoring using wireless Body Sensor Networks (BSNs, the quality of ECG signals can be deteriorated owing to several factors, e.g., noises, low battery power, and network transmission problems, often resulting in high false alarm rates. In addition, body movements occurring from activities of daily living (ADLs can also create false alarms. This paper presents a two-phase framework for false arrhythmia alarm reduction in continuous cardiac monitoring, using signals from an ECG sensor and a 3D accelerometer. In the first phase, classification models constructed using machine learning algorithms are used for labeling input signals. ECG signals are labeled with heartbeat types and signal quality levels, while 3D acceleration signals are labeled with ADL types. In the second phase, a rule-based expert system is used for combining classification results in order to determine whether arrhythmia alarms should be accepted or suppressed. The proposed framework was validated on datasets acquired using BSNs and the MIT-BIH arrhythmia database. For the BSN dataset, acceleration and ECG signals were collected from 10 young and 10 elderly subjects while they were performing ADLs. The framework reduced the false alarm rate from 9.58% to 1.43% in our experimental study, showing that it can potentially assist physicians in diagnosing a vast amount of data acquired from wireless sensors and enhance the performance of continuous cardiac monitoring.

  12. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration

    Science.gov (United States)

    Stewart, Randi

    2012-01-01

    Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3′,5′-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets. PMID:22354781

  13. Running and Metabolic Demands of Elite Rugby Union Assessed Using Traditional, Metabolic Power, and Heart Rate Monitoring Methods

    Directory of Open Access Journals (Sweden)

    Romain Dubois, Thierry Paillard, Mark Lyons, David McGrath, Olivier Maurelli, Jacques Prioux

    2017-03-01

    Full Text Available The aims of this study were (1 to analyze elite rugby union game demands using 3 different approaches: traditional, metabolic and heart rate-based methods (2 to explore the relationship between these methods and (3 to explore positional differences between the backs and forwards players. Time motion analysis and game demands of fourteen professional players (24.1 ± 3.4 y, over 5 European challenge cup games, were analyzed. Thresholds of 14.4 km·h-1, 20 W.kg-1 and 85% of maximal heart rate (HRmax were set for high-intensity efforts across the three methods. The mean % of HRmax was 80.6 ± 4.3 % while 42.2 ± 16.5% of game time was spent above 85% of HRmax with no significant differences between the forwards and the backs. Our findings also show that the backs cover greater distances at high-speed than forwards (% difference: +35.2 ± 6.6%; p<0.01 while the forwards cover more distance than the backs (+26.8 ± 5.7%; p<0.05 in moderate-speed zone (10-14.4 km·h-1. However, no significant difference in high-metabolic power distance was found between the backs and forwards. Indeed, the high-metabolic power distances were greater than high-speed running distances of 24.8 ± 17.1% for the backs, and 53.4 ± 16.0% for the forwards with a significant difference (+29.6 ± 6.0% for the forwards; p<0.001 between the two groups. Nevertheless, nearly perfect correlations were found between the total distance assessed using the traditional approach and the metabolic power approach (r = 0.98. Furthermore, there is a strong association (r = 0.93 between the high-speed running distance (assessed using the traditional approach and the high-metabolic power distance. The HR monitoring methods demonstrate clearly the high physiological demands of professional rugby games. The traditional and the metabolic-power approaches shows a close correlation concerning their relative values, nevertheless the difference in absolute values especially for the high

  14. Liver Inflammation and Metabolic Signaling in ApcMin/+ Mice: The Role of Cachexia Progression

    Science.gov (United States)

    Narsale, Aditi A.; Enos, Reilly T.; Puppa, Melissa J.; Chatterjee, Saurabh; Murphy, E. Angela; Fayad, Raja; Pena, Majorette O’; Durstine, J. Larry; Carson, James A.

    2015-01-01

    The ApcMin/+ mouse exhibits an intestinal tumor associated loss of muscle and fat that is accompanied by chronic inflammation, insulin resistance and hyperlipidemia. Since the liver governs systemic energy demands through regulation of glucose and lipid metabolism, it is likely that the liver is a pathological target of cachexia progression in the ApcMin/+ mouse. The purpose of this study was to determine if cancer and the progression of cachexia affected liver endoplasmic reticulum (ER)-stress, inflammation, metabolism, and protein synthesis signaling. The effect of cancer (without cachexia) was examined in wild-type and weight-stable ApcMin/+ mice. Cachexia progression was examined in weight-stable, pre-cachectic, and severely-cachectic ApcMin/+ mice. Livers were analyzed for morphology, glycogen content, ER-stress, inflammation, and metabolic changes. Cancer induced hepatic expression of ER-stress markers BiP (binding immunoglobulin protein), IRE-1α (endoplasmic reticulum to nucleus signaling 1), and inflammatory intermediate STAT-3 (signal transducer and activator of transcription 3). While gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression was suppressed by cancer, glycogen content or protein synthesis signaling remained unaffected. Cachexia progression depleted liver glycogen content and increased mRNA expression of glycolytic enzyme PFK (phosphofrucktokinase) and gluconeogenic enzyme PEPCK. Cachexia progression further increased pSTAT-3 but suppressed p-65 and JNK (c-Jun NH2-terminal kinase) activation. Interestingly, progression of cachexia suppressed upstream ER-stress markers BiP and IRE-1α, while inducing its downstream target CHOP (DNA-damage inducible transcript 3). Cachectic mice exhibited a dysregulation of protein synthesis signaling, with an induction of p-mTOR (mechanistic target of rapamycin), despite a suppression of Akt (thymoma viral proto-oncogene 1) and S6 (ribosomal protein S6) phosphorylation. Thus, cancer

  15. Liver inflammation and metabolic signaling in ApcMin/+ mice: the role of cachexia progression.

    Directory of Open Access Journals (Sweden)

    Aditi A Narsale

    Full Text Available The ApcMin/+ mouse exhibits an intestinal tumor associated loss of muscle and fat that is accompanied by chronic inflammation, insulin resistance and hyperlipidemia. Since the liver governs systemic energy demands through regulation of glucose and lipid metabolism, it is likely that the liver is a pathological target of cachexia progression in the ApcMin/+ mouse. The purpose of this study was to determine if cancer and the progression of cachexia affected liver endoplasmic reticulum (ER-stress, inflammation, metabolism, and protein synthesis signaling. The effect of cancer (without cachexia was examined in wild-type and weight-stable ApcMin/+ mice. Cachexia progression was examined in weight-stable, pre-cachectic, and severely-cachectic ApcMin/+ mice. Livers were analyzed for morphology, glycogen content, ER-stress, inflammation, and metabolic changes. Cancer induced hepatic expression of ER-stress markers BiP (binding immunoglobulin protein, IRE-1α (endoplasmic reticulum to nucleus signaling 1, and inflammatory intermediate STAT-3 (signal transducer and activator of transcription 3. While gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK mRNA expression was suppressed by cancer, glycogen content or protein synthesis signaling remained unaffected. Cachexia progression depleted liver glycogen content and increased mRNA expression of glycolytic enzyme PFK (phosphofrucktokinase and gluconeogenic enzyme PEPCK. Cachexia progression further increased pSTAT-3 but suppressed p-65 and JNK (c-Jun NH2-terminal kinase activation. Interestingly, progression of cachexia suppressed upstream ER-stress markers BiP and IRE-1α, while inducing its downstream target CHOP (DNA-damage inducible transcript 3. Cachectic mice exhibited a dysregulation of protein synthesis signaling, with an induction of p-mTOR (mechanistic target of rapamycin, despite a suppression of Akt (thymoma viral proto-oncogene 1 and S6 (ribosomal protein S6 phosphorylation. Thus

  16. Optimization of signal processing algorithm for digital beam position monitor

    International Nuclear Information System (INIS)

    Lai Longwei; Yi Xing; Leng Yongbin; Yan Yingbing; Chen Zhichu

    2013-01-01

    Based on turn-by-turn (TBT) signal processing, the paper emphasizes on the optimization of system timing and implementation of digital automatic gain control, slow application (SA) modules. Beam position including TBT, fast application (FA) and SA data can be acquired. On-line evaluation on Shanghai Synchrotron Radiation Facility (SSRF) shows that the processor is able to get the multi-rate position data which contain true beam movements. When the storage ring is 174 mA and 500 bunches filled, the resolutions of TBT data, FA data and SA data achieve 0.84, 0.44 and 0.23 μm respectively. The above results prove that the design could meet the performance requirements. (authors)

  17. Systematic survey for monitor signals to reduce fake burst events in a gravitational-wave detector

    International Nuclear Information System (INIS)

    Ishidoshiro, Koji; Ando, Masaki; Tsubono, Kimio

    2006-01-01

    We present methods and results to reduce fake burst events induced by nonstationary noises. To reduce these fake events, we systematically surveyed monitor signals recorded with a main (or gravitational-wave) signal of a gravitational-wave detector so as to watch the detector. Our survey was to check whether or not there was a coincidence between the main and monitor signals when we found a burst event from the main signal. If there was a coincidence, we rejected this event as a fake event induced by nonstationary noises, regarding the main signal as being dominated by nonstationary noises. As a result, we succeeded to reject about 90% of the burst events of which the SNR values were larger than 10 as fake events, with an accidental probability of about 5% to reject burst-gravitational-wave candidates

  18. Metabolic syndrome impairs notch signaling and promotes apoptosis in chronically ischemic myocardium.

    Science.gov (United States)

    Elmadhun, Nassrene Y; Sabe, Ashraf A; Lassaletta, Antonio D; Chu, Louis M; Kondra, Katelyn; Sturek, Michael; Sellke, Frank W

    2014-09-01

    Impaired angiogenesis is a known consequence of metabolic syndrome (MetS); however, the mechanism is not fully understood. Recent studies have shown that the notch signaling pathway is an integral component of cardiac angiogenesis. We tested, in a clinically relevant swine model, the effects of MetS on notch and apoptosis signaling in chronically ischemic myocardium. Ossabaw swine were fed either a regular diet (control [CTL], n = 8) or a high-cholesterol diet (MetS, n = 8) to induce MetS. An ameroid constrictor was placed to induce chronic myocardial ischemia. Eleven weeks later, the wine underwent cardiac harvest of the ischemic myocardium. Downregulation of pro-angiogenesis proteins notch2, notch4, jagged2, angiopoietin 1, and endothelial nitric oxide synthase were found in the MetS group compared with the CTL group. Also, upregulation of pro-apoptosis protein caspase 8 and downregulation of anti-angiogenesis protein phosphorylated forkhead box transcription factor 03 and pro-survival proteins phosphorylated P38 and heat shock protein 90 were present in the MetS group. Cell death was increased in the MetS group compared with the CTL group. Both CTL and MetS groups had a similar arteriolar count and capillary density, and notch3 and jagged1 were both similarly concentrated in the smooth muscle wall. MetS in chronic myocardial ischemia significantly impairs notch signaling by downregulating notch receptors, ligands, and pro-angiogenesis proteins. MetS also increases apoptosis signaling, decreases survival signaling, and increases cell death in chronically ischemic myocardium. Although short-term angiogenesis appears unaffected in this model of early MetS, the molecular signals for angiogenesis are impaired, suggesting that inhibition of notch signaling might underlie the decreased angiogenesis in later stages of MetS. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  19. Cryogenic loss monitors with FPGA TDC signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Warner, A.; Wu, J.; /Fermilab

    2011-09-01

    Radiation hard helium gas ionization chambers capable of operating in vacuum at temperatures ranging from 5K to 350K have been designed, fabricated and tested and will be used inside the cryostats at Fermilab's Superconducting Radiofrequency beam test facility. The chamber vessels are made of stainless steel and all materials used including seals are known to be radiation hard and suitable for operation at 5K. The chambers are designed to measure radiation up to 30 kRad/hr with sensitivity of approximately 1.9 pA/(Rad/hr). The signal current is measured with a recycling integrator current-to-frequency converter to achieve a required measurement capability for low current and a wide dynamic range. A novel scheme of using an FPGA-based time-to-digital converter (TDC) to measure time intervals between pulses output from the recycling integrator is employed to ensure a fast beam loss response along with a current measurement resolution better than 10-bit. This paper will describe the results obtained and highlight the processing techniques used.

  20. Monitoring of Defects in a Pipe Weld by a Comparison of Magnetostrictive Guided Wave Signals

    International Nuclear Information System (INIS)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun

    2016-01-01

    In this study a computer program for an accurate comparison and subtraction of guided wave signals were developed. The program contains an algorithm for calibration with the flight time and phases of ultrasonic signals in the time domain. Once the reference signals were acquired at the beginning of the monitoring, the signals can be compared to the reference. The signals due to the geometry can be eliminated clearly and an evolution of defect in a pipe can be monitored accurately. In order to improve the detectability and solve the problems of the guided wave methods, a magnetostrictive guided wave sensor technique was proposed. Because the waveforms by the magnetostrictive sensors are quite clear and repeatable, it is possible to detect the defects at the weld regions or even monitor the small variations of the defects after a permanent installation of the magnetostrictive strip sensors. In order to eliminate the signals from the geometry, such as weld, pipe support, branch connection, a computer algorithm and program were developed. A notch with 1.5% of CSA of the pipe can be detected with increased accuracy. The guided wave monitoring technique developed in this study can be a promising tool for inspection of the pipe with limited accessibility, such as insulated or buried pipe

  1. Monitoring of Defects in a Pipe Weld by a Comparison of Magnetostrictive Guided Wave Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study a computer program for an accurate comparison and subtraction of guided wave signals were developed. The program contains an algorithm for calibration with the flight time and phases of ultrasonic signals in the time domain. Once the reference signals were acquired at the beginning of the monitoring, the signals can be compared to the reference. The signals due to the geometry can be eliminated clearly and an evolution of defect in a pipe can be monitored accurately. In order to improve the detectability and solve the problems of the guided wave methods, a magnetostrictive guided wave sensor technique was proposed. Because the waveforms by the magnetostrictive sensors are quite clear and repeatable, it is possible to detect the defects at the weld regions or even monitor the small variations of the defects after a permanent installation of the magnetostrictive strip sensors. In order to eliminate the signals from the geometry, such as weld, pipe support, branch connection, a computer algorithm and program were developed. A notch with 1.5% of CSA of the pipe can be detected with increased accuracy. The guided wave monitoring technique developed in this study can be a promising tool for inspection of the pipe with limited accessibility, such as insulated or buried pipe.

  2. Metabolic 19F MRI an dynamic 18F PET for chemotherapy monitoring in experimental tumors

    International Nuclear Information System (INIS)

    Brix, G.; Haberkorn, U.; Bellemann, M.E.

    1999-01-01

    The efficient clinical use of chemotherapeutic agents requires the assessment of the uptake and metabolism of the drugs in the tumor as well as in the various organs of the body by using noninvasive imaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET). In this overview, we present different metabolic 19 F MRI and dynamic 18 F PET techniques for noninvasive monitoring of fluorine-containing anticancer drugs and evaluate their potentials and limitations within the framework of experimental animal studies. (orig.) [de

  3. Arcuate NPY neurons sense and integrate peripheral metabolic signals to control feeding.

    Science.gov (United States)

    Kohno, Daisuke; Yada, Toshihiko

    2012-12-01

    NPY neuron in the hypothalamic arcuate nucleus is a key feeding center. Studies have shown that NPY neuron in the arcuate nucleus has a role to induce food intake. The arcuate nucleus is structurally unique with lacking blood brain barrier. Peripheral energy signals including hormones and nutrition can reach the arcuate nucleus. In this review, we discuss sensing and integrating peripheral signals in NPY neurons. In the arcuate nucleus, ghrelin mainly activates NPY neurons. Leptin and insulin suppress the ghrelin-induced activation in 30-40% of the ghrelin-activated NPY neurons. Lowering glucose concentration activates 40% of NPY neurons. These results indicate that NPY neuron in the arcuate nucleus is a feeding center in which major peripheral energy signals are directly sensed and integrated. Furthermore, there are subpopulations of NPY neurons in regard to their responsiveness to peripheral signals. These findings suggest that NPY neuron in the arcuate nucleus is an essential feeding center to induce food intake in response to peripheral metabolic state. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism.

    Science.gov (United States)

    Hang, Saiyu; Purdy, Alexandra E; Robins, William P; Wang, Zhipeng; Mandal, Manabendra; Chang, Sarah; Mekalanos, John J; Watnick, Paula I

    2014-11-12

    Vibrio cholerae is lethal to the model host Drosophila melanogaster through mechanisms not solely attributable to cholera toxin. To examine additional virulence determinants, we performed a genetic screen in V. cholerae-infected Drosophila and identified the two-component system CrbRS. CrbRS controls transcriptional activation of acetyl-CoA synthase-1 (ACS-1) and thus regulates the acetate switch, in which bacteria transition from excretion to assimilation of environmental acetate. The resultant loss of intestinal acetate leads to deactivation of host insulin signaling and lipid accumulation in enterocytes, resulting in host lethality. These metabolic effects are not observed upon infection with ΔcrbS or Δacs1 V. cholerae mutants. Additionally, uninfected flies lacking intestinal commensals, which supply short chain fatty acids (SCFAs) such as acetate, also exhibit altered insulin signaling and intestinal steatosis, which is reversed upon acetate supplementation. Thus, acetate consumption by V. cholerae alters host metabolism, and dietary acetate supplementation may ameliorate some sequelae of cholera. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Adiponectin activates the AMPK signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Science.gov (United States)

    Chen, Hui; Zhang, Liang; Li, Xinwei; Li, Xiaobing; Sun, Guoquan; Yuan, Xue; Lei, Liancheng; Liu, Juxiong; Yin, Liheng; Deng, Qinghua; Wang, Jianguo; Liu, Zhaoxi; Yang, Wentao; Wang, Zhe; Zhang, Hui; Liu, Guowen

    2013-11-01

    Adiponectin (Ad) plays a crucial role in hepatic lipid metabolism. However, the regulating mechanism of hepatic lipid metabolism by Ad in dairy cows is unclear. Hepatocytes from a newborn female calf were cultured in vitro and treated with different concentrations of Ad and BML-275 (an AMPKα inhibitor). The results showed that Ad significantly increased the expression of two Ad receptors. Furthermore, the phosphorylation and activity of AMPKα, as well as the expression levels and transcriptional activity of peroxisome proliferator activated receptor-α (PPARα) and its target genes involved in lipid oxidation, showed a corresponding trend of upregulation. However, the expression levels and transcriptional activity of sterol regulatory element binding protein 1c (SREBP-1c) and carbohydrate-responsive element-binding protein (ChREBP) decreased in a similar manner. When BML-275 was added, the p-AMPKα level as well as the expression and activity of PPARα and its target genes were significantly decreased. However, the expression levels of SREBP-1c, ChREBP and their target genes showed a trend of upregulation. Furthermore, the triglyceride (TG) content was significantly decreased in the Ad-treated groups. These results indicate that Ad activates the AMPK signaling pathway and mediates lipid metabolism in bovine hepatocytes cultured in vitro by promoting lipid oxidation, suppressing lipid synthesis and reducing hepatic lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Nonintrusive biological signal monitoring in a car to evaluate a driver's stress and health state.

    Science.gov (United States)

    Baek, Hyun Jae; Lee, Haet Bit; Kim, Jung Soo; Choi, Jong Min; Kim, Ko Keun; Park, Kwang Suk

    2009-03-01

    Nonintrusive monitoring of a driver's physiological signals was introduced and evaluated in a car as a test of extending the concept of ubiquitous healthcare to vehicles. Electrocardiogram, photoplethysmogram, galvanic skin response, and respiration were measured in the ubiquitous healthcare car (U-car) using nonintrusively installed sensors on the steering wheel, driver's seat, and seat belt. Measured signals were transmitted to the embedded computer via Bluetooth(R) communication and processed. We collected and analyzed physiological signals during driving in order to estimate a driver's stress state while using this system. In order to compare the effect of stress on physical and mental conditions, two categories of stresses were defined. Experimental results show that a driver's physiological signals were measured with acceptable quality for analysis without interrupting driving, and they were changed meaningfully due to elicited stress. This nonintrusive monitoring can be used to evaluate a driver's state of health and stress.

  7. Noise and DC balanced outlet temperature signals for monitoring coolant flow in LMFBR fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1977-01-01

    Local cooling disturbances in LMFBR fuel elements may have serious safety implications for the whole reactor core. They have to be detected reliably in an early stage of their formation therefore. This can be accomplished in principle by individual monitoring of the coolant flow rate or the coolant outlet temperature of the sub-assemblies with high precision. In this paper a method is proposed to increase the sensitivity of outlet temperature signals to cooling disturbances. Using balanced temperature signals provides a means for eliminating the normal variations from the original signals which limit the sensitivity and speed of response to cooling disturbances. It is shown that a balanced signal can be derived easily from the original temperature signal by subtracting an inlet temperature and a neutron detector signal with appropriate time shift. The method was tested with tape-recorded noise signals of the KNK I reactor at Karlsruhe. The experimental results confirm the theoretical predictions. A significant reduction of the uncertainty of measured outlet temperatures was achieved. This enables very sensitive and fast response monitoring of coolant flow. Furthermore, it was found that minimizing the variance of the balanced signal offers the possibility for a rough determination of the heat transfer coefficient of the fuel rods during normal reactor operation at power. (author)

  8. Application of a Magnetostrictive Guided wave Technique to Monitor the Evolution of Defect Signals

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong-Moo; Oh, Se-Beom; Lee, Duck-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that wave patterns are clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaw. Of course, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Therefore, the different frequency components of the guided waves will travel at different speeds and the shape of the received signal will changed as it propagates along the pipe. Once the magnetostrictive sensors are attached in the pipe permanently and the signal shape and phase can be compared to the signals before and after, we can monitor the evolution of the flow for the given period. We developed a program to subtract the guided wave signal. The program has a capability of adjusting the time scale and can minimize the noise level after subtraction. By applying the newly developed program, a notch with 2% of CSA can be detected with increased accuracy with noise reduction.

  9. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells.

    Science.gov (United States)

    Simmons, Aaron D; Sikavitsas, Vassilios I

    2018-01-01

    Ever-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts. To that end, rat MSCs seeded on 85% porous spunbonded poly(L-lactic acid) scaffolds were cultured in flow perfusion bioreactors with baseline or osteoinductive media, and levels of key physio-metabolic markers (oxygen, glucose, osteoprotegerin, and osteocalcin) were monitored throughout culture. Comparison of these non-destructively obtained values and current standard destructive analyses demonstrated key trends useful for the concurrent real-time monitoring of construct cellularity and maturation. Principle among these is the elucidation of the ratio of the rates of oxygen uptake to glucose consumption as a powerful quality marker. This ratio, supported on a physiological basis, has been shown herein to be reliable in the determination of both construct maturation (defined as osteoblastic differentiation and accompanying mineralization) and construct cellularity. Supplementary monitoring of OPG and OCN are shown to provide further validation of such metrics.

  10. Positron emission tomography probe to monitor selected sugar metabolism in vivo

    Science.gov (United States)

    Witte, Owen; Clark, Peter M.; Castillo, Blanca Graciela Flores; Jung, Michael E.; Evdokimov, Nikolai M.

    2017-03-14

    The invention disclosed herein discloses selected ribose isomers that are useful as PET probes (e.g. [18F]-2-fluoro-2-deoxy-arabinose). These PET probes are useful, for example, in methods designed to monitor physiological processes including ribose metabolism and/or to selectively observe certain tissue/organs in vivo. The invention disclosed herein further provides methods for making and using such probes.

  11. Monitoring Streambed Scour/Deposition Under Nonideal Temperature Signal and Flood Conditions

    Science.gov (United States)

    DeWeese, Timothy; Tonina, Daniele; Luce, Charles

    2017-12-01

    Streambed erosion and deposition are fundamental geomorphic processes in riverbeds, and monitoring their evolution is important for ecological system management and in-stream infrastructure stability. Previous research showed proof of concept that analysis of paired temperature signals of stream and pore waters can simultaneously provide monitoring scour and deposition, stream sediment thermal regime, and seepage velocity information. However, it did not address challenges often associated with natural systems, including nonideal temperature variations (low-amplitude, nonsinusoidal signal, and vertical thermal gradients) and natural flooding conditions on monitoring scour and deposition processes over time. Here we addressed this knowledge gap by testing the proposed thermal scour-deposition chain (TSDC) methodology, with laboratory experiments to test the impact of nonideal temperature signals under a range of seepage velocities and with a field application during a pulse flood. Both analyses showed excellent match between surveyed and temperature-derived bed elevation changes even under very low temperature signal amplitudes (less than 1°C), nonideal signal shape (sawtooth shape), and strong and changing vertical thermal gradients (4°C/m). Root-mean-square errors on predicting the change in streambed elevations were comparable with the median grain size of the streambed sediment. Future research should focus on improved techniques for temperature signal phase and amplitude extractions, as well as TSDC applications over long periods spanning entire hydrographs.

  12. Quantitative Validation of the Presto Blue Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System.

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P; Schrooten, Jan Ir

    2015-06-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required.

  13. Quantitative Validation of the Presto Blue™ Metabolic Assay for Online Monitoring of Cell Proliferation in a 3D Perfusion Bioreactor System

    Science.gov (United States)

    Sonnaert, Maarten; Papantoniou, Ioannis; Luyten, Frank P.

    2015-01-01

    As the fields of tissue engineering and regenerative medicine mature toward clinical applications, the need for online monitoring both for quantitative and qualitative use becomes essential. Resazurin-based metabolic assays are frequently applied for determining cytotoxicity and have shown great potential for monitoring 3D bioreactor-facilitated cell culture. However, no quantitative correlation between the metabolic conversion rate of resazurin and cell number has been defined yet. In this work, we determined conversion rates of Presto Blue™, a resazurin-based metabolic assay, for human periosteal cells during 2D and 3D static and 3D perfusion cultures. Our results showed that for the evaluated culture systems there is a quantitative correlation between the Presto Blue conversion rate and the cell number during the expansion phase with no influence of the perfusion-related parameters, that is, flow rate and shear stress. The correlation between the cell number and Presto Blue conversion subsequently enabled the definition of operating windows for optimal signal readouts. In conclusion, our data showed that the conversion of the resazurin-based Presto Blue metabolic assay can be used as a quantitative readout for online monitoring of cell proliferation in a 3D perfusion bioreactor system, although a system-specific validation is required. PMID:25336207

  14. The characterization of NMR signal for blood pressure monitoring system and its testing

    Directory of Open Access Journals (Sweden)

    Bambang Murdaka Eka Jati

    2016-02-01

    Full Text Available ABSTRACT A blood monitoring system based on NMR method has been designed on constructed. This set-up of equipment used magnetic permanent, radio frequency (RF, receiver coil (RC, function generator (FG, amplifier which included the filter, as well as the oscilloscope digital storage. The background of this research was based on the sensitivity of NMR signal. The signal must be separated from signals background. This method was done by adjusting the frequency on FG, which was connected to radio frequency (RF coil, on empty sample. Subsequently, NMR signal was received by RC, and that signal could be shown on oscilloscope at resonance condition. The true frequency on NMR signal was Larmor frequency, and the other was background. The two variables of this experiment were the position of RF coil and the location temperature (20 up to 30oC. In conclusion, the resonance frequency of NMR signal (as Larmor frequency was 4.7 MHz (at static magnetic field of 1,600 gauss and it could be separated from background signals (3.4 and 6.2 MHz, and that signal was almost constant to room temperature. The equipment was used for sample testing. It gave systole/diastole data of 110/70 mmHg (on sphygmomanometer that was similar to 17/9 mV (on NMR signal. ABSTRAK Telah dikembangkan alat pemantauan tekanan darah berdasar prinsip NMR.

  15. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-10-01

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017 the American Physiological Society.

  16. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    Directory of Open Access Journals (Sweden)

    Greg C. Vanlerberghe

    2013-03-01

    Full Text Available Alternative oxidase (AOX is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance.

  17. Monoglyceride lipase as a drug target: At the crossroads of arachidonic acid metabolism and endocannabinoid signaling.

    Science.gov (United States)

    Grabner, Gernot F; Zimmermann, Robert; Schicho, Rudolf; Taschler, Ulrike

    2017-07-01

    Monoglyerides (MGs) are short-lived, intermediary lipids deriving from the degradation of phospho- and neutral lipids, and monoglyceride lipase (MGL), also designated as monoacylglycerol lipase (MAGL), is the major enzyme catalyzing the hydrolysis of MGs into glycerol and fatty acids. This distinct function enables MGL to regulate a number of physiological and pathophysiological processes since both MGs and fatty acids can act as signaling lipids or precursors thereof. The most prominent MG species acting as signaling lipid is 2-arachidonoyl glycerol (2-AG) which is the most abundant endogenous agonist of cannabinoid receptors in the body. Importantly, recent observations demonstrate that 2-AG represents a quantitatively important source for arachidonic acid, the precursor of prostaglandins and other inflammatory mediators. Accordingly, MGL-mediated 2-AG degradation affects lipid signaling by cannabinoid receptor-dependent and independent mechanisms. Recent genetic and pharmacological studies gave important insights into MGL's role in (patho-)physiological processes, and the enzyme is now considered as a promising drug target for a number of disorders including cancer, neurodegenerative and inflammatory diseases. This review summarizes the basics of MG (2-AG) metabolism and provides an overview on the therapeutic potential of MGL. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Finding Multiple Peaks Signal in Fast Beam Conditions Monitor (BCM1F)

    CERN Document Server

    Bin Ab Maalek, Abu Ubaidah Amir; CERN. Geneva. EP Department

    2017-01-01

    Fast Beam Conditions Monitor (BCM1F) is diamond and silicon sensors based luminometer of CMS detector. The methods of finding multiple peaks signal in BCM1F is shown. Multiple peaks signal found at signal with width between 60 ns - 300 ns. Double peaks are counted as single hit in the constant threshold analysis and leads to underestimation in the luminosity. Therefore it should be estimated for different filling schemes and sensor types. The percentage of long width pulse in different sensor for different fill are calculated. About 30 \\% long width pulse found in sCVD sensor, 12 \\% in pCVD and no more than 1 \\% for silicon sensor.

  19. Design and measurement of signal processing system for cavity beam position monitor

    International Nuclear Information System (INIS)

    Wang Baopeng; Leng Yongbin; Yu Luyang; Zhou Weimin; Yuan Renxian; Chen Zhichu

    2013-01-01

    In this paper, in order to achieve the output signal processing of cavity beam position monitor (CBPM), we develop a digital intermediate frequency receiver architecture based signal processing system, which consists of radio frequency (RF) front end and high speed data acquisition board. The beam position resolution in the CBPM signal processing system is superior to 1 μm. Two signal processing algorithms, fast Fourier transform (FFT) and digital down converter (DDC), are evaluated offline using MATLAB platform, and both can be used to achieve, the CW input signal, position resolutions of 0.31 μm and 0.10 μm at -16 dBm. The DDC algorithm for its good compatibility is downloaded into the FPGA to realize online measurement, reaching the position resolution of 0.49 μm due to truncation error. The whole system works well and the performance meets design target. (authors)

  20. Smart driver monitoring : when signal processing meets human factors : in the driver's seat

    NARCIS (Netherlands)

    Aghaei, A.S.; Donmez, B.; Liu, C.C.; He, D.; Liu, G.; Plataniotis, K.N.; Chen, H.Y.W.; Sojoudi, Z.

    2016-01-01

    This article provides an interdisciplinary perspective on driver monitoring systems by discussing state-of-the-art signal processing solutions in the context of road safety issues identified in human factors research. Recently, the human factors community has made significant progress in

  1. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring.

    Science.gov (United States)

    Sun, Yiwei; Ren, Lei; Jiang, Lelun; Tang, Yong; Liu, Bin

    2018-04-13

    Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  2. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring

    Directory of Open Access Journals (Sweden)

    Yiwei Sun

    2018-04-01

    Full Text Available Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C and forearm temperature (35.3 °C are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  3. Checking the Pulse of Vitamin A Metabolism and Signaling during Mammalian Spermatogenesis

    Directory of Open Access Journals (Sweden)

    Travis Kent

    2014-03-01

    Full Text Available Vitamin A has been shown to be essential for a multitude of biological processes vital for mammalian development and homeostasis. Its active metabolite, retinoic acid (RA, is important for establishing and maintaining proper germ cell development. During spermatogenesis, the germ cells orient themselves in very distinct patterns, which have been organized into stages. There is evidence to show that, in the mouse, RA is needed for many steps during germ cell development. Interestingly, RA has been implicated as playing a role within the same two Stages: VII and VIII, where meiosis is initiated and spermiation occurs. The goal of this review is to outline this evidence, exploring the relevant players in retinoid metabolism, storage, transport, and signaling. Finally, this review will provide a potential model for how RA activity is organized across the murine stages of the spermatogenic cycle.

  4. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway

    OpenAIRE

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M.; Waraich, Rizwana Sanaullah

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic s...

  5. Toward Wireless Health Monitoring via an Analog Signal Compression-Based Biosensing Platform.

    Science.gov (United States)

    Zhao, Xueyuan; Sadhu, Vidyasagar; Le, Tuan; Pompili, Dario; Javanmard, Mehdi

    2018-06-01

    Wireless all-analog biosensor design for the concurrent microfluidic and physiological signal monitoring is presented in this paper. The key component is an all-analog circuit capable of compressing two analog sources into one analog signal by the analog joint source-channel coding (AJSCC). Two circuit designs are discussed, including the stacked-voltage-controlled voltage source (VCVS) design with the fixed number of levels, and an improved design, which supports a flexible number of AJSCC levels. Experimental results are presented on the wireless biosensor prototype, composed of printed circuit board realizations of the stacked-VCVS design. Furthermore, circuit simulation and wireless link simulation results are presented on the improved design. Results indicate that the proposed wireless biosensor is well suited for sensing two biological signals simultaneously with high accuracy, and can be applied to a wide variety of low-power and low-cost wireless continuous health monitoring applications.

  6. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay [Indian Institute of Technology Guwahati, Assam (India)

    2017-05-15

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  7. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    International Nuclear Information System (INIS)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay

    2017-01-01

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  8. RFID Technology for Continuous Monitoring of Physiological Signals in Small Animals.

    Science.gov (United States)

    Volk, Tobias; Gorbey, Stefan; Bhattacharyya, Mayukh; Gruenwald, Waldemar; Lemmer, Björn; Reindl, Leonhard M; Stieglitz, Thomas; Jansen, Dirk

    2015-02-01

    Telemetry systems enable researchers to continuously monitor physiological signals in unrestrained, freely moving small rodents. Drawbacks of common systems are limited operation time, the need to house the animals separately, and the necessity of a stable communication link. Furthermore, the costs of the typically proprietary telemetry systems reduce the acceptance. The aim of this paper is to introduce a low-cost telemetry system based on common radio frequency identification technology optimized for battery-independent operational time, good reusability, and flexibility. The presented implant is equipped with sensors to measure electrocardiogram, arterial blood pressure, and body temperature. The biological signals are transmitted as digital data streams. The device is able of monitoring several freely moving animals housed in groups with a single reader station. The modular concept of the system significantly reduces the costs to monitor multiple physiological functions and refining procedures in preclinical research.

  9. Epistasis Analysis for Estrogen Metabolic and Signaling Pathway Genes on Young Ischemic Stroke Patients

    Science.gov (United States)

    Hsieh, Yi-Chen; Jeng, Jiann-Shing; Lin, Huey-Juan; Hu, Chaur-Jong; Yu, Chia-Chen; Lien, Li-Ming; Peng, Giia-Sheun; Chen, Chin-I; Tang, Sung-Chun; Chi, Nai-Fang; Tseng, Hung-Pin; Chern, Chang-Ming; Hsieh, Fang-I; Bai, Chyi-Huey; Chen, Yi-Rhu; Chiou, Hung-Yi; Jeng, Jiann-Shing; Tang, Sung-Chun; Yeh, Shin-Joe; Tsai, Li-Kai; Kong, Shin; Lien, Li-Ming; Chiu, Hou-Chang; Chen, Wei-Hung; Bai, Chyi-Huey; Huang, Tzu-Hsuan; Chi-Ieong, Lau; Wu, Ya-Ying; Yuan, Rey-Yue; Hu, Chaur-Jong; Sheu, Jau- Jiuan; Yu, Jia-Ming; Ho, Chun-Sum; Chen, Chin-I; Sung, Jia-Ying; Weng, Hsing-Yu; Han, Yu-Hsuan; Huang, Chun-Ping; Chung, Wen-Ting; Ke, Der-Shin; Lin, Huey-Juan; Chang, Chia-Yu; Yeh, Poh-Shiow; Lin, Kao-Chang; Cheng, Tain-Junn; Chou, Chih-Ho; Yang, Chun-Ming; Peng, Giia-Sheun; Lin, Jiann-Chyun; Hsu, Yaw-Don; Denq, Jong-Chyou; Lee, Jiunn-Tay; Hsu, Chang-Hung; Lin, Chun-Chieh; Yen, Che-Hung; Cheng, Chun-An; Sung, Yueh-Feng; Chen, Yuan-Liang; Lien, Ming-Tung; Chou, Chung-Hsing; Liu, Chia-Chen; Yang, Fu-Chi; Wu, Yi-Chung; Tso, An-Chen; Lai, Yu- Hua; Chiang, Chun-I; Tsai, Chia-Kuang; Liu, Meng-Ta; Lin, Ying-Che; Hsu, Yu-Chuan; Chen, Chih-Hung; Sung, Pi-Shan; Chern, Chang-Ming; Hu, Han-Hwa; Wong, Wen-Jang; Luk, Yun-On; Hsu, Li-Chi; Chung, Chih-Ping; Tseng, Hung-Pin; Liu, Chin-Hsiung; Lin, Chun-Liang; Lin, Hung-Chih; Hu, Chaur-Jong

    2012-01-01

    Background Endogenous estrogens play an important role in the overall cardiocirculatory system. However, there are no studies exploring the hormone metabolism and signaling pathway genes together on ischemic stroke, including sulfotransferase family 1E (SULT1E1), catechol-O-methyl-transferase (COMT), and estrogen receptor α (ESR1). Methods A case-control study was conducted on 305 young ischemic stroke subjects aged ≦ 50 years and 309 age-matched healthy controls. SULT1E1 -64G/A, COMT Val158Met, ESR1 c.454−397 T/C and c.454−351 A/G genes were genotyped and compared between cases and controls to identify single nucleotide polymorphisms associated with ischemic stroke susceptibility. Gene-gene interaction effects were analyzed using entropy-based multifactor dimensionality reduction (MDR), classification and regression tree (CART), and traditional multiple regression models. Results COMT Val158Met polymorphism showed a significant association with susceptibility of young ischemic stroke among females. There was a two-way interaction between SULT1E1 -64G/A and COMT Val158Met in both MDR and CART analysis. The logistic regression model also showed there was a significant interaction effect between SULT1E1 -64G/A and COMT Val158Met on ischemic stroke of the young (P for interaction = 0.0171). We further found that lower estradiol level could increase the risk of young ischemic stroke for those who carry either SULT1E1 or COMT risk genotypes, showing a significant interaction effect (P for interaction = 0.0174). Conclusions Our findings support that a significant epistasis effect exists among estrogen metabolic and signaling pathway genes and gene-environment interactions on young ischemic stroke subjects. PMID:23112845

  10. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    Science.gov (United States)

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  11. The diel imprint of leaf metabolism on the δ13 C signal of soil respiration under control and drought conditions.

    Science.gov (United States)

    Barthel, Matthias; Hammerle, Albin; Sturm, Patrick; Baur, Thomas; Gentsch, Lydia; Knohl, Alexander

    2011-12-01

    Recent (13) CO(2) canopy pulse chase labeling studies revealed that photosynthesis influences the carbon isotopic composition of soil respired CO(2) (δ(13) C(SR)) even on a diel timescale. However, the driving mechanisms underlying these short-term responses remain unclear, in particular under drought conditions. The gas exchange of CO(2) isotopes of canopy and soil was monitored in drought/nondrought-stressed beech (Fagus sylvatica) saplings after (13) CO(2) canopy pulse labeling. A combined canopy/soil chamber system with gas-tight separated soil and canopy compartments was coupled to a laser spectrometer measuring mixing ratios and isotopic composition of CO(2) in air at high temporal resolution. The measured δ(13) C(SR) signal was then explained and substantiated by a mechanistic carbon allocation model. Leaf metabolism had a strong imprint on diel cycles in control plants, as a result of an alternating substrate supply switching between sugar and transient starch. By contrast, diel cycles in drought-stressed plants were determined by the relative contributions of autotrophic and heterotrophic respiration throughout the day. Drought reduced the speed of the link between photosynthesis and soil respiration by a factor of c. 2.5, depending on the photosynthetic rate. Drought slows the coupling between photosynthesis and soil respiration and alters the underlying mechanism causing diel variations of δ(13) C(SR). © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  12. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    On-line monitoring of surface finish in machining processes has proven to be a substantial advancement over traditional post-process quality control techniques by reducing inspection times and costs and by avoiding the manufacture of defective products. This study applied techniques for processing cutting force signals based on the wavelet packet transform (WPT) method for the monitoring of surface finish in computer numerical control (CNC) turning operations. The behaviour of 40 mother wavelets was analysed using three techniques: global packet analysis (G-WPT), and the application of two packet reduction criteria: maximum energy (E-WPT) and maximum entropy (SE-WPT). The optimum signal decomposition level (Lj) was determined to eliminate noise and to obtain information correlated to surface finish. The results obtained with the G-WPT method provided an in-depth analysis of cutting force signals, and frequency ranges and signal characteristics were correlated to surface finish with excellent results in the accuracy and reliability of the predictive models. The radial and tangential cutting force components at low frequency provided most of the information for the monitoring of surface finish. The E-WPT and SE-WPT packet reduction criteria substantially reduced signal processing time, but at the expense of discarding packets with relevant information, which impoverished the results. The G-WPT method was observed to be an ideal procedure for processing cutting force signals applied to the real-time monitoring of surface finish, and was estimated to be highly accurate and reliable at a low analytical-computational cost.

  13. The glycogen metabolism via Akt signaling is important for the secretion of enamel matrix in tooth development.

    Science.gov (United States)

    Ida-Yonemochi, Hiroko; Otsu, Keishi; Ohshima, Hayato; Harada, Hidemitsu

    2016-02-01

    Cells alter their energy metabolism depending on the stage of differentiation or various environments. In the ameloblast differentiation of continuous growing mouse incisors, we found temporary glycogen storage in preameloblasts before the start of enamel matrix secretion and investigated the relationship between enamel matrix secretion and glycogen metabolism. Immunohistochemistry showed that in the transitional stage from preameloblasts to secretory ameloblasts, the glycogen synthase changed from the inactive form to the active form, the expression of glycogen phosphorylase increased, and further, the levels of IGF-1, IGF-1 receptor and activated Akt increased. These results suggested that the activation of Akt signaling via IGF is linked to the onset of both glycogen metabolism and enamel matrix deposition. In the experiments using organ culture and ameloblast cell line, the activation of Akt signaling by IGF-1 stimulated glycogen metabolism through the up-regulation of Glut-1,-4 and Gsk-3β and the dephosphorylation of glycogen synthase. Subsequently, they resulted in increased enamel matrix secretion. In contrast, some inhibitors of Akt signals and glycogen synthesis/degradation down-regulated enamel matrix secretion. Taking these findings together, glycogen metabolism via Akt signaling is an essential system for the secretion of enamel matrix in ameloblast differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. CIRCADIAN REGULATION METABOLIC SIGNALING MECHANISMS OF HUMAN BREAST CANCER GROWTH BY THE NOCTURNAL MELATONIN SIGNAL AND THE CONSEQUENCES OF ITS DISRUPTION BY LIGHT AT NIGHT

    Science.gov (United States)

    Blask, David E.; Hill, Steven M.; Dauchy, Robert T.; Xiang, Shulin; Yuan, Lin; Duplessis, Tamika; Mao, Lulu; Dauchy, Erin; Sauer, Leonard A.

    2011-01-01

    This review article discusses recent work on the melatonin-mediated circadian regulation and integration of molecular, dietary and metabolic signaling mechanisms involved in human breast cancer growth and the consequences of circadian disruption by exposure to light-at-night (LAN). The antiproliferative effects of the circadian melatonin signal are mediated through a major mechanism involving the activation of MT1 melatonin receptors expressed in human breast cancer cell lines and xenografts. In estrogen receptor (ERα+) human breast cancer cells, melatonin suppresses both ERα mRNA expression and estrogen-induced transcriptional activity of the ERα via MT1-induced activation of Gαi2 signaling and reduction of cAMP levels. Melatonin also regulates the transactivation of additional members of the steroid hormone/nuclear receptor super-family, enzymes involved in estrogen metabolism, expression/activation of telomerase and the expression of core clock and clock-related genes. The anti-invasive/anti-metastatic actions of melatonin involve the blockade of p38 phosphorylation and the expression of matrix metalloproteinases. Melatonin also inhibits the growth of human breast cancer xenografts via another critical pathway involving MT1-mediated suppression of cAMP leading to blockade of linoleic acid (LA) uptake and its metabolism to the mitogenic signaling molecule 13-hydroxyoctadecadienoic acid (13-HODE). Down-regulation of 13-HODE reduces the activation of growth factor pathways supporting cell proliferation and survival. Experimental evidence in rats and humans indicating that LAN-induced circadian disruption of the nocturnal melatonin signal activates human breast cancer growth, metabolism and signaling provides the strongest mechanistic support, thus far, for population and ecological studies demonstrating elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LAN. PMID:21605163

  15. Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter

    International Nuclear Information System (INIS)

    Son, Junbo; Zhou, Shiyu; Sankavaram, Chaitanya; Du, Xinyu; Zhang, Yilu

    2016-01-01

    In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries. - Highlights: • A computationally efficient constrained Kalman filter is proposed. • Proposed filter is integrated into an online failure prognosis framework. • A set of proper constraints significantly improves the failure prediction accuracy. • Promising results are reported in the application of battery failure prognosis.

  16. Effects of CD44 Ligation on Signaling and Metabolic Pathways in Acute Myeloid Leukemia

    KAUST Repository

    Madhoun, Nour Y.

    2017-04-01

    Acute myeloid leukemia (AML) is characterized by a blockage in the differentiation of myeloid cells at different stages. CD44-ligation using anti-CD44 monoclonal antibodies (mAbs) has been shown to reverse the blockage of differentiation and to inhibit the proliferation of blasts in most AML-subtypes. However, the molecular mechanisms underlying this property have not been fully elucidated. Here, we sought to I) analyze the effects of anti-CD44 mAbs on downstream signaling pathways, including the ERK1/2 (extracellular signal-regulated kinase 1 and 2) and mTOR (mammalian target of rapamycin) pathways and II) use state-of-the-art Nuclear Magnetic Resonance (NMR) technology to determine the global metabolic changes during differentiation induction of AML cells using anti-CD44 mAbs and other two previously reported differentiation agents. In the first objective (Chapter 4), our studies provide evidence that CD44-ligation with specific mAbs in AML cells induced an increase in ERK1/2 phosphorylation. The use of the MEK inhibitor (U0126) significantly inhibited the CD44-induced differentiation of HL60 cells, suggesting that ERK1/2 is critical for the CD44-triggered differentiation in AML. In addition, this was accompanied by a marked decrease in the phosphorylation of the mTORC1 and mTORC2 complexes, which are strongly correlated with the inhibition of the PI3K/Akt pathway. In the second objective (Chapter 5), 1H NMR experiments demonstrated that considerable changes in the metabolic profiles of HL60 cells were induced in response to each differentiation agent. These most notable metabolites that significantly changed upon CD44 ligation were involved in the tricarboxylic acid (TCA) cycle and glycolysis such as, succinate, fumarate and lactate. Therefore, we sought to analyze the mechanisms underlying their alterations. Our results revealed that anti-CD44 mAbs treatment induced upregulation in fumarate hydratase (FH) expression and its activity which was accompanied by a

  17. Intrahippocampal Administration of Amyloid-β1–42 Oligomers Acutely Impairs Spatial Working Memory, Insulin Signaling, and Hippocampal Metabolism

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C.

    2017-01-01

    Increasing evidence suggests that abnormal brain accumulation of amyloid-β1–42 (Aβ1–42) oligomers plays a causal role in Alzheimer’s disease (AD), and in particular may cause the cognitive deficits that are the hallmark of AD. In vitro, Aβ1–42 oligomers impair insulin signaling and suppress neural functioning. We previously showed that endogenous insulin signaling is an obligatory component of normal hippocampal function, and that disrupting this signaling led to a rapid impairment of spatial working memory, while delivery of exogenous insulin to the hippocampus enhanced both memory and metabolism; diet-induced insulin resistance both impaired spatial memory and prevented insulin from increasing metabolism or cognitive function. Hence, we tested the hypothesis that Aβ1–42 oligomers could acutely impair hippocampal metabolic and cognitive processes in vivo in the rat. Our findings support this hypothesis: Aβ1–42 oligomers impaired spontaneous alternation behavior while preventing the task-associated dip in hippocampal ECF glucose observed in control animals. In addition, Aβ1–42 oligomers decreased plasma membrane translocation of the insulin-sensitive glucose transporter 4 (GluT4), and impaired insulin signaling as measured by phosphorylation of Akt. These data show in vivo that Aβ1–42 oligomers can rapidly impair hippocampal cognitive and metabolic processes, and provide support for the hypothesis that elevated Aβ1–42 leads to cognitive impairment via interference with hippocampal insulin signaling. PMID:22430529

  18. An Enhanced Empirical Wavelet Transform for Features Extraction from Wind Turbine Condition Monitoring Signals

    Directory of Open Access Journals (Sweden)

    Pu Shi

    2017-07-01

    Full Text Available Feature extraction from nonlinear and non-stationary (NNS wind turbine (WT condition monitoring (CM signals is challenging. Previously, much effort has been spent to develop advanced signal processing techniques for dealing with CM signals of this kind. The Empirical Wavelet Transform (EWT is one of the achievements attributed to these efforts. The EWT takes advantage of Empirical Mode Decomposition (EMD in dealing with NNS signals but is superior to the EMD in mode decomposition and robustness against noise. However, the conventional EWT meets difficulty in properly segmenting the frequency spectrum of the signal, especially when lacking pre-knowledge of the signal. The inappropriate segmentation of the signal spectrum will inevitably lower the accuracy of the EWT result and thus raise the difficulty of WT CM. To address this issue, an enhanced EWT is proposed in this paper by developing a feasible and efficient spectrum segmentation method. The effectiveness of the proposed method has been verified by using the bearing and gearbox CM data that are open to the public for the purpose of research. The experiment has shown that, after adopting the proposed method, it becomes much easier and more reliable to segment the frequency spectrum of the signal. Moreover, benefitting from the correct segmentation of the signal spectrum, the fault-related features of the CM signals are presented more explicitly in the time-frequency map of the enhanced EWT, despite the considerable noise contained in the signal and the shortage of pre-knowledge about the machine being investigated.

  19. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  20. Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells.

    Science.gov (United States)

    Kawalekar, Omkar U; O'Connor, Roddy S; Fraietta, Joseph A; Guo, Lili; McGettigan, Shannon E; Posey, Avery D; Patel, Prachi R; Guedan, Sonia; Scholler, John; Keith, Brian; Snyder, Nathaniel W; Snyder, Nathaniel; Blair, Ian A; Blair, Ian; Milone, Michael C; June, Carl H

    2016-02-16

    Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Metformin Effects on Biochemical Recurrence and Metabolic Signaling in the Prostate

    Science.gov (United States)

    Winters, Brian; Plymate, Stephen; Zeliadt, Steven B; Holt, Sarah; Zhang, Xiaotun; Hu, Elaine; Lin, Daniel W.; Morrissey, Colm; Wooldridge, Bryan; Gore, John L; Porter, Michael P; Wright, Jonathan L

    2015-01-01

    Background Metformin has received considerable attention as a potential anti-cancer agent. Animal and in-vitro prostate cancer (PCa) models have demonstrated decreased tumor growth with metformin, however the precise mechanisms are unknown. We examine the effects of metformin on PCa biochemical recurrence (BCR) in a large clinical database followed by evaluating metabolic signaling changes in a cohort of men undergoing prostate needle biopsy (PNB). Methods Men treated for localized PCa were identified in a comprehensive clinical database between 2001 and 2010. Cox regression was performed to determine association with BCR relative to metformin use. We next identified a separate case-control cohort of men undergoing prostate needle biopsy (PNB) stratified by metformin use. Differences in mean IHC scores were compared with linear regression for phosphorylated IR, IGF-IR, AKT, and AMPK. Results 1,734 men were evaluated for BCR with mean follow up of 41 months (range 1-121 months). ‘Ever’ metformin use was not associated with BCR (HR 1.12, 0.77-1.65), however men reporting both pre/post-treatment metformin use had a 45% reduction in BCR (HR=0.55 (0.31-0.96)). For the tissue-based study, 48 metformin users and 42 controls underwent PNB. Significantly greater staining in phosphorylated nuclear (p-IR, p-AKT) and cytoplasmic (p-IR, p-IGF-1R) insulin signaling proteins were seen in patients with PCa detected compared to those with negative PNB (p-values all < 0.006). When stratified by metformin use, IGF-1R remained significantly elevated (p=0.01) in men with PCa detected whereas p-AMPK (p=0.05) was elevated only in those without PCa. Conclusion Metformin use is associated with reduced BCR after treatment of localized PCa when considering pre-diagnostic and cumulative dosing. In men with cancer detected on PNB, insulin signaling markers were significantly elevated compared to negative PNB patients. The finding of IGF-1R elevation in positive PNBs versus p-AMPK elevation

  2. Monitoring and Management of Toxicities of Novel B Cell Signaling Agents.

    Science.gov (United States)

    Rhodes, Joanna; Mato, Anthony; Sharman, Jeff P

    2018-04-11

    B cell signaling agents, including ibrutinib, idelalisib, and the BCL-2 inhibitor venetoclax have become an integral part of therapy for patients with non-Hodgkin's lymphomas. The toxicity profiles of these medications is distinct from chemoimmunotherapy. Here, we will review the mechanism of action of these drugs, their efficacy, and toxicity management. Ibrutinib use is associated with increased risk of atrial fibrillation and bleeding which can be managed using dose interruptions and modifications. Patients on idelalisib require close clinical and frequent laboratory monitoring, particularly of liver function tests to ensure there are no serious adverse events. Monitoring for infections is important in patients on both idelalisib and ibrutinib. Venetoclax requires close clinical and laboratory monitoring to prevent significant tumor lysis. Targeted B cell receptor therapies each have unique side effect profiles which require careful clinical monitoring. As we continue to use these therapies, optimal management strategies will continue to be elucidated.

  3. A Wireless Physiological Signal Monitoring System with Integrated Bluetooth and WiFi Technologies.

    Science.gov (United States)

    Yu, Sung-Nien; Cheng, Jen-Chieh

    2005-01-01

    This paper proposes a wireless patient monitoring system which integrates Bluetooth and WiFi wireless technologies. A wireless portable multi-parameter device was designated to acquire physiological signals and transmit them to a local server via Bluetooth wireless technology. Four kinds of monitor units were designed to communicate via the WiFi wireless technology, including a local monitor unit, a control center, mobile devices (personal digital assistant; PDA), and a web page. The use of various monitor units is intending to meet different medical requirements for different medical personnel. This system was demonstrated to promote the mobility and flexibility for both the patients and the medical personnel, which further improves the quality of health care.

  4. Monitoring and robust adaptive control of fed-batch cultures of microorganisms exhibiting overflow metabolism [abstract

    Directory of Open Access Journals (Sweden)

    Vande Wouwer, A.

    2010-01-01

    Full Text Available Overflow metabolism characterizes cells strains that are likely to produce inhibiting by-products resulting from an excess of substrate feeding and a saturated respiratory capacity. The critical substrate level separating the two different metabolic pathways is generally not well defined. Monitoring of this kind of cultures, going from model identification to state estimation, is first discussed. Then, a review of control techniques which all aim at maximizing the cell productivity of fed-batch fermentations is presented. Two main adaptive control strategies, one using an estimation of the critical substrate level as set-point and another regulating the by-product concentration, are proposed. Finally, experimental investigations of an adaptive RST control scheme using the observer polynomial for the regulation of the ethanol concentration in Saccharomyces cerevisiae fed-batch cultures ranging from laboratory to industrial scales, are also presented.

  5. Monitoring fetal heart rate during pregnancy: contributions from advanced signal processing and wearable technology.

    Science.gov (United States)

    Signorini, Maria G; Fanelli, Andrea; Magenes, Giovanni

    2014-01-01

    Monitoring procedures are the basis to evaluate the clinical state of patients and to assess changes in their conditions, thus providing necessary interventions in time. Both these two objectives can be achieved by integrating technological development with methodological tools, thus allowing accurate classification and extraction of useful diagnostic information. The paper is focused on monitoring procedures applied to fetal heart rate variability (FHRV) signals, collected during pregnancy, in order to assess fetal well-being. The use of linear time and frequency techniques as well as the computation of non linear indices can contribute to enhancing the diagnostic power and reliability of fetal monitoring. The paper shows how advanced signal processing approaches can contribute to developing new diagnostic and classification indices. Their usefulness is evaluated by comparing two selected populations: normal fetuses and intra uterine growth restricted (IUGR) fetuses. Results show that the computation of different indices on FHRV signals, either linear and nonlinear, gives helpful indications to describe pathophysiological mechanisms involved in the cardiovascular and neural system controlling the fetal heart. As a further contribution, the paper briefly describes how the introduction of wearable systems for fetal ECG recording could provide new technological solutions improving the quality and usability of prenatal monitoring.

  6. Fetal alcohol exposure disrupts metabolic signaling in hypothalamic proopiomelanocortin neurons via a circadian mechanism in male mice.

    Science.gov (United States)

    Agapito, Maria A; Zhang, Changqing; Murugan, Sengottuvelan; Sarkar, Dipak K

    2014-07-01

    Early-life ethanol feeding (ELAF) alters the metabolic function of proopiomelanocortin (POMC)-producing neurons and the circadian expression of clock regulatory genes in the hypothalamus. We investigated whether the circadian mechanisms control the action of ELAF on metabolic signaling genes in POMC neurons. Gene expression measurements of Pomc and a selected group of metabolic signaling genes, Stat3, Sirt1, Pgc1-α, and Asb4 in laser-captured microdissected POMC neurons in the hypothalamus of POMC-enhanced green fluorescent protein mice showed circadian oscillations under light/dark and constant darkness conditions. Ethanol programmed these neurons such that the adult expression of Pomc, Stat3, Sirt, and Asb4 gene transcripts became arrhythmic. In addition, ELAF dampened the circadian peak of gene expression of Bmal1, Per1, and Per2 in POMC neurons. We crossed Per2 mutant mice with transgenic POMC-enhanced green fluorescent protein mice to determine the role of circadian mechanism in ELAF-altered metabolic signaling in POMC neurons. We found that ELAF failed to alter arrhythmic expression of most circadian genes, with the exception of the Bmal1 gene and metabolic signaling regulating genes in Per2 mutant mice. Comparison of the ELAF effects on the circadian blood glucose in wild-type and Per2 mutant mice revealed that ELAF dampened the circadian peak of glucose, whereas the Per2 mutation shifted the circadian cycle and prevented the ELAF dampening of the glucose peak. These data suggest the possibility that the Per2 gene mutation may regulate the ethanol actions on Pomc and the metabolic signaling genes in POMC neurons in the hypothalamus by blocking circadian mechanisms.

  7. A Non-invasive and Real-time Monitoring of the Regulation of Photosynthetic Metabolism Biosensor Based on Measurement of Delayed Fluorescence in Vivo

    Directory of Open Access Journals (Sweden)

    Junsheng Wang

    2007-01-01

    Full Text Available In this paper, a new principle biosensor for non-invasive monitoring of theregulation of photosynthetic metabolism based on quantitative measurement of delayedfluorescence (DF is developed. The biosensor, which uses light-emitting diode lattice asexcitation light source and a compact Single Photon Counting Module to collect DF signal,is portable and can evaluate plant photosynthesis capacity in vivo. Compared with itsprimary version in our previous report, the biosensor can better control environmentalfactors. Moreover, the improved biosensor can automatically complete the measurements oflight and CO2 response curves of DF intensity. In the experimental study, the testing of theimproved biosensor has been made in soybean (Glycine max Zaoshu No. 18 seedlingstreated with NaHSO3 to induce changes in seedlings growth and photosynthetic metabolism.Contrast evaluations of seedlings photosynthesis were made from measurements of netphotosynthesis rate (Pn based on consumption of CO2 in tested plants. Current testingresults have demonstrated that the improved biosensor can accurately determine theregulatory effects of NaHSO3 on photosynthetic metabolism. Therefore, the biosensorpresented here could be potential useful for real-time monitoring the regulatory effects ofplant growth regulators (PGRs and other exogenous chemical factors on plant growth andphotosynthetic metabolism.

  8. Construction of a Vibration Monitoring System for HANARO's Rotating Machinery and Analysis of Pump Vibration Signals

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2005-01-01

    HANARO is an open-tank-in-pool type research reactor with a thermal power of 30MW. In order to remove the heat generated by the reactor core and the reflector vessel, primary cooling pumps and reflector cooling pumps circulate coolant. These pumps are installed at the RCI(Reactor Concrete Island) which is covered by heavy concrete hatches. For the prevention of an abnormal operation of these pumps in the RCI, it is necessary to construct a vibration monitoring system that provides an alarm signal to the reactor control room when the rotating speed or the vibration level exceeds the allowable limit. The first objective of this work is to construct a vibration monitoring system for HANARO's rotating machinery. The second objective is to verify the possibility of condition monitoring of the rotating machinery. To construct a vibration monitoring system, as a first step, the standards and references related to the vibration monitoring system were investigated. In addition, to determine the number and the location of sensors that can effectively characterize the overall vibration of a pump, the vibration of the primary cooling pumps and the reflector cooling pumps were measured. Based on these results, detailed construction plans for the vibration monitoring system for HANARO were established. Then, in accordance with the construction plans, the vibration monitoring system for HANARO's rotating machinery was manufactured and installed at HANARO. To achieve the second objective, FFT analysis and bearing fault detection of the measured vibration signals were performed. The analysis results demonstrate that the accelerometers mounted at the bearing locations of the pumps can effectively monitor the pump condition

  9. A Monte Carlo technique for signal level detection in implanted intracranial pressure monitoring.

    Science.gov (United States)

    Avent, R K; Charlton, J D; Nagle, H T; Johnson, R N

    1987-01-01

    Statistical monitoring techniques like CUSUM, Trigg's tracking signal and EMP filtering have a major advantage over more recent techniques, such as Kalman filtering, because of their inherent simplicity. In many biomedical applications, such as electronic implantable devices, these simpler techniques have greater utility because of the reduced requirements on power, logic complexity and sampling speed. The determination of signal means using some of the earlier techniques are reviewed in this paper, and a new Monte Carlo based method with greater capability to sparsely sample a waveform and obtain an accurate mean value is presented. This technique may find widespread use as a trend detection method when reduced power consumption is a requirement.

  10. Using signal ''KVANT-1'' direct-reading dosemeter for the purposes of personnel monitoring

    International Nuclear Information System (INIS)

    Glinskij, G.A.; Karasev, V.S.; Mukhin, I.E.; Chumak, V.K.

    1977-01-01

    Presented is the description of ''KVANT-1'' dosemeter for monitoring personnel doses of gamma and X radiation. The dosemeter permits to judge on the radiation intensity, to control directly the dose being accumulated, to store the reading of the dose accumulated for a necessary period of time, to obtain sound signal in case of reaching the limit of a pre-set dose. Presented are a general view, block diagram, and the discription of the dosemeter desing and operation. Advantages of the ''KVANT-1'' dosemeter are shown as compared with the conventional personnel monitoring IFK-2,3 and KID-2 dosemeters [ru

  11. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  12. Bluetooth-based sensor networks for remotely monitoring the physiological signals of a patient.

    Science.gov (United States)

    Zhang, Ying; Xiao, Hannan

    2009-11-01

    Integrating intelligent medical microsensors into a wireless communication network makes it possible to remotely collect physiological signals of a patient, release the patient from being tethered to monitoring medical instrumentations, and facilitate the patient's early hospital discharge. This can further improve life quality by providing continuous observation without the need of disrupting the patient's normal life, thus reducing the risk of infection significantly, and decreasing the cost of the hospital and the patient. This paper discusses the implementation issues, and describes the overall system architecture of our developed Bluetooth sensor network for patient monitoring and the corresponding heart activity sensors. It also presents our approach to developing the intelligent physiological sensor nodes involving integration of Bluetooth radio technology, hardware and software organization, and our solutions for onboard signal processing.

  13. Technological monitoring radar: a weak signals interpretation tool for the identification of strategic surprises

    Directory of Open Access Journals (Sweden)

    Adalton Ozaki

    2011-07-01

    Full Text Available In the current competitive scenario, marked by rapid and constant changes, it is vital that companies actively monitor the business environment, in search of signs which might anticipate changes. This study poses to propose and discuss a tool called Technological Monitoring Radar, which endeavours to address the following query: “How can a company systematically monitor the environment and capture signs that anticipate opportunities and threats concerning a particular technology?”. The literature review covers Competitive Intelligence, Technological Intelligence, Environmental Analysis and Anticipative Monitoring. Based on the critical analysis of the literature, a tool called Technological Monitoring Radar is proposed comprising five environments to be monitored (political, economical, technological, social and competition each of which with key topics for analysis. To exemplify the use of the tool, it is applied to the smartphone segment in an exclusively reflexive manner, and without the participation of a specific company. One of the suggestions for future research is precisely the application of the proposed methodology in an actual company. Despite the limitation of this being a theoretical study, the example demonstrated the tool´s applicability. The radar prove to be very useful for a company that needs to monitor the environment in search of signs of change. This study´s main contribution is to relate different fields of study (technological intelligence, environmental analysis and anticipative monitoring and different approaches to provide a practical tool that allows a manager to identify and better visualize opportunities and threats, thus avoiding strategic surprises in the technological arena.Key words: Technological monitoring. Technological intelligence. Competitive intelligence. Weak signals.

  14. Property-Based Monitoring of Analog and Mixed-Signal Systems

    Science.gov (United States)

    Havlicek, John; Little, Scott; Maler, Oded; Nickovic, Dejan

    In the recent past, there has been a steady growth of the market for consumer embedded devices such as cell phones, GPS and portable multimedia systems. In embedded systems, digital, analog and software components are combined on a single chip, resulting in increasingly complex designs that introduce richer functionality on smaller devices. As a consequence, the potential insertion of errors into a design becomes higher, yielding an increasing need for automated analog and mixed-signal validation tools. In the purely digital setting, formal verification based on properties expressed in industrial specification languages such as PSL and SVA is nowadays successfully integrated in the design flow. On the other hand, the validation of analog and mixed-signal systems still largely depends on simulation-based, ad-hoc methods. In this tutorial, we consider some ingredients of the standard verification methodology that can be successfully exported from digital to analog and mixed-signal setting, in particular property-based monitoring techniques. Property-based monitoring is a lighter approach to the formal verification, where the system is seen as a "black-box" that generates sets of traces, whose correctness is checked against a property, that is its high-level specification. Although incomplete, monitoring is effectively used to catch faults in systems, without guaranteeing their full correctness.

  15. Impaired cross-talk between mesolimbic food reward processing and metabolic signaling predicts body mass index

    Directory of Open Access Journals (Sweden)

    Joe J Simon

    2014-10-01

    Full Text Available The anticipation of the pleasure derived from food intake drives the motivation to eat, and hence facilitate overconsumption of food which ultimately results in obesity. Brain imaging studies provide evidence that mesolimbic brain regions underlie both general as well as food related anticipatory reward processing. In light of this knowledge, the present study examined the neural responsiveness of the ventral striatum in participants with a broad BMI spectrum. The study differentiated between general (i.e. monetary and food related anticipatory reward processing. We recruited a sample of volunteers with greatly varying body weights, ranging from a low BMI (below 20 kg/m² over a normal (20 to 25 kg/m² and overweight (25 to 30 kg/m² BMI, to class I (30 to 35 kg/m² and class II (35 to 40 kg/m² obesity. A total of 24 participants underwent functional magnetic resonance imaging whilst performing both a food and monetary incentive delay task, which allows to measure neural activation during the anticipation of rewards. After the presentation of a cue indicating the amount of food or money to be won, participants had to react correctly in order to earn snack points or money coins which could then be exchanged for real food or money, respectively, at the end of the experiment. During the anticipation of both types of rewards, participants displayed activity in the ventral striatum, a region that plays a pivotal role in the anticipation of rewards. Additionally, we observed that specifically anticipatory food reward processing predicted the individual BMI (current and maximum lifetime. This relation was found to be mediated by impaired hormonal satiety signaling, i.e. increased leptin levels and insulin resistance. These findings suggest that heightened food reward motivation contributes to obesity through impaired metabolic signaling.

  16. Integration of AI-2 Based Cell-Cell Signaling with Metabolic Cues in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Arindam Mitra

    Full Text Available The quorum sensing molecule Autoinducer-2 (AI-2 is generated as a byproduct of activated methyl cycle by the action of LuxS in Escherichia coli. AI-2 is synthesized, released and later internalized in a cell-density dependent manner. Here, by mutational analysis of the genes, uvrY and csrA, we describe a regulatory circuit of accumulation and uptake of AI-2. We constructed a single-copy chromosomal luxS-lacZ fusion in a luxS + merodiploid strain and evaluated its relative expression in uvrY and csrA mutants. At the entry of stationary phase, the expression of the fusion and AI-2 accumulation was positively regulated by uvrY and negatively regulated by csrA respectively. A deletion of csrA altered message stability of the luxS transcript and CsrA protein exhibited weak binding to 5' luxS regulatory region. DNA protein interaction and chromatin immunoprecipitation analysis confirmed direct interaction of UvrY with the luxS promoter. Additionally, reduced expression of the fusion in hfq deletion mutant suggested involvement of small RNA interactions in luxS regulation. In contrast, the expression of lsrA operon involved in AI-2 uptake, is negatively regulated by uvrY and positively by csrA in a cell-density dependent manner. The dual role of csrA in AI-2 synthesis and uptake suggested a regulatory crosstalk of cell signaling with carbon regulation in Escherichia coli. We found that the cAMP-CRP mediated catabolite repression of luxS expression was uvrY dependent. This study suggests that luxS expression is complex and regulated at the level of transcription and translation. The multifactorial regulation supports the notion that cell-cell communication requires interaction and integration of multiple metabolic signals.

  17. A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals.

    Science.gov (United States)

    Uno, Kenji; Yamada, Tetsuya; Ishigaki, Yasushi; Imai, Junta; Hasegawa, Yutaka; Sawada, Shojiro; Kaneko, Keizo; Ono, Hiraku; Asano, Tomoichiro; Oka, Yoshitomo; Katagiri, Hideki

    2015-08-13

    Metabolism is coordinated among tissues and organs via neuronal signals. Levels of circulating amino acids (AAs), which are elevated in obesity, activate the intracellular target of rapamycin complex-1 (mTORC1)/S6kinase (S6K) pathway in the liver. Here we demonstrate that hepatic AA/mTORC1/S6K signalling modulates systemic lipid metabolism via a mechanism involving neuronal inter-tissue communication. Hepatic expression of an AA transporter, SNAT2, activates the mTORC1/S6K pathway, and markedly elevates serum triglycerides (TGs), while downregulating adipose lipoprotein lipase (LPL). Hepatic Rheb or active-S6K expression have similar metabolic effects, whereas hepatic expression of dominant-negative-S6K inhibits TG elevation in SNAT2 mice. Denervation, pharmacological deafferentation and β-blocker administration suppress obesity-related hypertriglyceridemia with adipose LPL upregulation, suggesting that signals are transduced between liver and adipose tissue via a neuronal pathway consisting of afferent vagal and efferent sympathetic nerves. Thus, the neuronal mechanism uncovered here serves to coordinate amino acid and lipid levels and contributes to the development of obesity-related hypertriglyceridemia.

  18. Safe and effective error rate monitors for SS7 signaling links

    Science.gov (United States)

    Schmidt, Douglas C.

    1994-04-01

    This paper describes SS7 error monitor characteristics, discusses the existing SUERM (Signal Unit Error Rate Monitor), and develops the recently proposed EIM (Error Interval Monitor) for higher speed SS7 links. A SS7 error monitor is considered safe if it ensures acceptable link quality and is considered effective if it is tolerant to short-term phenomena. Formal criteria for safe and effective error monitors are formulated in this paper. This paper develops models of changeover transients, the unstable component of queue length resulting from errors. These models are in the form of recursive digital filters. Time is divided into sequential intervals. The filter's input is the number of errors which have occurred in each interval. The output is the corresponding change in transmit queue length. Engineered EIM's are constructed by comparing an estimated changeover transient with a threshold T using a transient model modified to enforce SS7 standards. When this estimate exceeds T, a changeover will be initiated and the link will be removed from service. EIM's can be differentiated from SUERM by the fact that EIM's monitor errors over an interval while SUERM's count errored messages. EIM's offer several advantages over SUERM's, including the fact that they are safe and effective, impose uniform standards in link quality, are easily implemented, and make minimal use of real-time resources.

  19. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  20. Real-Time Estimation for Cutting Tool Wear Based on Modal Analysis of Monitored Signals

    Directory of Open Access Journals (Sweden)

    Yongjiao Chi

    2018-05-01

    Full Text Available There is a growing body of literature that recognizes the importance of product safety and the quality problems during processing. The working status of cutting tools may lead to project delay and cost overrun if broken down accidentally, and tool wear is crucial to processing precision in mechanical manufacturing, therefore, this study contributes to this growing area of research by monitoring condition and estimating wear. In this research, an effective method for tool wear estimation was constructed, in which, the signal features of machining process were extracted by ensemble empirical mode decomposition (EEMD and were used to estimate the tool wear. Based on signal analysis, vibration signals that had better linear relationship with tool wearing process were decomposed, then the intrinsic mode functions (IMFs, frequency spectrums of IMFs and the features relating to amplitude changes of frequency spectrum were obtained. The trend that tool wear changes with the features was fitted by Gaussian fitting function to estimate the tool wear. Experimental investigation was used to verify the effectiveness of this method and the results illustrated the correlation between tool wear and the modal features of monitored signals.

  1. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.

    Science.gov (United States)

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-06-17

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  2. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2016-06-01

    Full Text Available A novel micro-needle array electrode (MAE fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid (PLGA into a micro-needle array (MA by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG, electrocardiography (ECG, and electroencephalograph (EEG were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  3. A configurable and low-power mixed signal SoC for portable ECG monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat

    2014-04-01

    This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.

  4. The SWI/SNF chromatin-remodeling factors BAF60a, b, and c in nutrient signaling and metabolic control

    Directory of Open Access Journals (Sweden)

    Ruo-Ran Wang

    2017-07-01

    Full Text Available ABSTRACT Metabolic syndrome has become a global epidemic that adversely affects human health. Both genetic and environmental factors contribute to the pathogenesis of metabolic disorders; however, the mechanisms that integrate these cues to regulate metabolic physiology and the development of metabolic disorders remain incompletely defined. Emerging evidence suggests that SWI/SNF chromatin-remodeling complexes are critical for directing metabolic reprogramming and adaptation in response to nutritional and other physiological signals. The ATP-dependent SWI/SNF chromatin-remodeling complexes comprise up to 11 subunits, among which the BAF60 subunit serves as a key link between the core complexes and specific transcriptional factors. The BAF60 subunit has three members, BAF60a, b, and c. The distinct tissue distribution patterns and regulatory mechanisms of BAF60 proteins confer each isoform with specialized functions in different metabolic cell types. In this review, we summarize the emerging roles and mechanisms of BAF60 proteins in the regulation of nutrient sensing and energy metabolism under physiological and disease conditions.

  5. Health monitoring of 90° bolted joints using fuzzy pattern recognition of ultrasonic signals

    International Nuclear Information System (INIS)

    Jalalpour, M; El-Osery, A I; Austin, E M; Reda Taha, M M

    2014-01-01

    Bolted joints are important parts for aerospace structures. However, there is a significant risk associated with assembling bolted joints due to potential human error during the assembly process. Such errors are expensive to find and correct if exposed during environmental testing, yet checking the integrity of individual fasteners after assembly would be a time consuming task. Recent advances in structural health monitoring (SHM) can provide techniques to not only automate this process but also make it reliable. This integrity monitoring requires damage features to be related to physical conditions representing the structural integrity of bolted joints. In this paper an SHM technique using ultrasonic signals and fuzzy pattern recognition to monitor the integrity of 90° bolted joints in aerospace structures is described. The proposed technique is based on normalized fast Fourier transform (NFFT) of transmitted signals and fuzzy pattern recognition. Moreover, experimental observations of a case study on an aluminum 90° bolted joint are presented. We demonstrate the ability of the proposed method to efficiently monitor and indicate bolted joint integrity. (paper)

  6. Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.

    Science.gov (United States)

    André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. Copyright © 2011. Published by Elsevier Ltd.

  7. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism

    Directory of Open Access Journals (Sweden)

    Dietmar Fuchs

    2010-08-01

    Full Text Available Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects. Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC and the non-psychotropic cannabidiol (CBD modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC. The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO, suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system. Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling. We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.

  8. Metabolic Symbiosis Enables Adaptive Resistance to Anti-angiogenic Therapy that Is Dependent on mTOR Signaling

    Directory of Open Access Journals (Sweden)

    Elizabeth Allen

    2016-05-01

    Full Text Available Therapeutic targeting of tumor angiogenesis with VEGF inhibitors results in demonstrable, but transitory efficacy in certain human tumors and mouse models of cancer, limited by unconventional forms of adaptive/evasive resistance. In one such mouse model, potent angiogenesis inhibitors elicit compartmental reorganization of cancer cells around remaining blood vessels. The glucose and lactate transporters GLUT1 and MCT4 are induced in distal hypoxic cells in a HIF1α-dependent fashion, indicative of glycolysis. Tumor cells proximal to blood vessels instead express the lactate transporter MCT1, and p-S6, the latter reflecting mTOR signaling. Normoxic cancer cells import and metabolize lactate, resulting in upregulation of mTOR signaling via glutamine metabolism enhanced by lactate catabolism. Thus, metabolic symbiosis is established in the face of angiogenesis inhibition, whereby hypoxic cancer cells import glucose and export lactate, while normoxic cells import and catabolize lactate. mTOR signaling inhibition disrupts this metabolic symbiosis, associated with upregulation of the glucose transporter GLUT2.

  9. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro).

    Science.gov (United States)

    Orthner, M P; Lin, G; Avula, M; Buetefisch, S; Magda, J; Rieth, L W; Solzbacher, F

    2010-03-19

    This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, and backing plate. Each of the individual sensors of the array can be used with various hydrogels used to measure the presence of a number of stimuli including pH, ionic strength, and glucose concentrations. Ideally, in the future, these sensors will be used for continuous metabolic monitoring applications and implanted subcutaneously. In this paper and to properly characterize the sensor assembly, hydrogels sensitive to changes ionic strength were synthesized using hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA) and inserted into the sensor assembly. This hydrogel quickly and reversibly swells when placed environments of physiological buffer solutions (PBS) with ionic strengths ranging from 0.025 to 0.15 M, making it ideal for proof-of-concept testing and initial characterization. The assembly was wire bonded to a printed circuit board and coated with 3 ± 0.5 μm of Parylene-C using chemical vapor deposition (CVD) to protect the sensor and electrical connections during ionic strength wet testing. Two versions of sensors were fabricated for comparison, the first incorporated diffusion pores into the diaphragm, and the second used a solid diaphragm with perforated backing plate. This new design (perforated diaphragm) was shown to have slightly higher sensitivity than solid diaphragm sensors with separate diffuse backing plates when coupled with the hydrogel. The sensitivities for the 1 mm

  10. The Role of Reactive Oxygen Species in β-Adrenergic Signaling in Cardiomyocytes from Mice with the Metabolic Syndrome.

    Directory of Open Access Journals (Sweden)

    Monica Llano-Diez

    Full Text Available The metabolic syndrome is associated with prolonged stress and hyperactivity of the sympathetic nervous system and afflicted subjects are prone to develop cardiovascular disease. Under normal conditions, the cardiomyocyte response to acute β-adrenergic stimulation partly depends on increased production of reactive oxygen species (ROS. Here we investigated the interplay between beta-adrenergic signaling, ROS and cardiac contractility using freshly isolated cardiomyocytes and whole hearts from two mouse models with the metabolic syndrome (high-fat diet and ob/ob mice. We hypothesized that cardiomyocytes of mice with the metabolic syndrome would experience excessive ROS levels that trigger cellular dysfunctions. Fluorescent dyes and confocal microscopy were used to assess mitochondrial ROS production, cellular Ca2+ handling and contractile function in freshly isolated adult cardiomyocytes. Immunofluorescence, western blot and enzyme assay were used to study protein biochemistry. Unexpectedly, our results point towards decreased cardiac ROS signaling in a stable, chronic phase of the metabolic syndrome because: β-adrenergic-induced increases in the amplitude of intracellular Ca2+ signals were insensitive to antioxidant treatment; mitochondrial ROS production showed decreased basal rate and smaller response to β-adrenergic stimulation. Moreover, control hearts and hearts with the metabolic syndrome showed similar basal levels of ROS-mediated protein modification, but only control hearts showed increases after β-adrenergic stimulation. In conclusion, in contrast to the situation in control hearts, the cardiomyocyte response to acute β-adrenergic stimulation does not involve increased mitochondrial ROS production in a stable, chronic phase of the metabolic syndrome. This can be seen as a beneficial adaptation to prevent excessive ROS levels.

  11. An electromagnetic signals monitoring and analysis wireless platform employing personal digital assistants and pattern analysis techniques

    Science.gov (United States)

    Ninos, K.; Georgiadis, P.; Cavouras, D.; Nomicos, C.

    2010-05-01

    This study presents the design and development of a mobile wireless platform to be used for monitoring and analysis of seismic events and related electromagnetic (EM) signals, employing Personal Digital Assistants (PDAs). A prototype custom-developed application was deployed on a 3G enabled PDA that could connect to the FTP server of the Institute of Geodynamics of the National Observatory of Athens and receive and display EM signals at 4 receiver frequencies (3 KHz (E-W, N-S), 10 KHz (E-W, N-S), 41 MHz and 46 MHz). Signals may originate from any one of the 16 field-stations located around the Greek territory. Employing continuous recordings of EM signals gathered from January 2003 till December 2007, a Support Vector Machines (SVM)-based classification system was designed to distinguish EM precursor signals within noisy background. EM-signals corresponding to recordings preceding major seismic events (Ms≥5R) were segmented, by an experienced scientist, and five features (mean, variance, skewness, kurtosis, and a wavelet based feature), derived from the EM-signals were calculated. These features were used to train the SVM-based classification scheme. The performance of the system was evaluated by the exhaustive search and leave-one-out methods giving 87.2% overall classification accuracy, in correctly identifying EM precursor signals within noisy background employing all calculated features. Due to the insufficient processing power of the PDAs, this task was performed on a typical desktop computer. This optimal trained context of the SVM classifier was then integrated in the PDA based application rendering the platform capable to discriminate between EM precursor signals and noise. System's efficiency was evaluated by an expert who reviewed 1/ multiple EM-signals, up to 18 days prior to corresponding past seismic events, and 2/ the possible EM-activity of a specific region employing the trained SVM classifier. Additionally, the proposed architecture can form a

  12. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells

    DEFF Research Database (Denmark)

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio

    2015-01-01

    of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further...... and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels...

  13. Cucurbitacin E reduces obesity and related metabolic dysfunction in mice by targeting JAK-STAT5 signaling pathway.

    Science.gov (United States)

    Murtaza, Munazza; Khan, Gulnaz; Aftab, Meha Fatima; Afridi, Shabbir Khan; Ghaffar, Safina; Ahmed, Ayaz; Hafizur, Rahman M; Waraich, Rizwana Sanaullah

    2017-01-01

    Several members of cucurbitaceae family have been reported to regulate growth of cancer by interfering with STAT3 signaling. In the present study, we investigated the unique role and molecular mechanism of cucurbitacins (Cucs) in reducing symptoms of metabolic syndrome in mice. Cucurbitacin E (CuE) was found to reduce adipogenesis in murine adipocytes. CuE treatment diminished hypertrophy of adipocytes, visceral obesity and lipogenesis gene expression in diet induced mice model of metabolic syndrome (MetS). CuE also ameliorated adipose tissue dysfunction by reducing hyperleptinemia and TNF-alpha levels and enhancing hypoadiponectinemia. Results show that CuE mediated these effects by attenuating Jenus kinase- Signal transducer and activator of transcription 5 (JAK- STAT5) signaling in visceral fat tissue. As a result, CuE treatment also reduced PPAR gamma expression. Glucose uptake enhanced in adipocytes after stimulation with CuE and insulin resistance diminished in mice treated with CuE, as reflected by reduced glucose intolerance and glucose stimulated insulin secretion. CuE restored insulin sensitivity indirectly by inhibiting JAK phosphorylation and improving AMPK activity. Consequently, insulin signaling was up-regulated in mice muscle. As CuE positively regulated adipose tissue function and suppressed visceral obesity, dyslipedemia, hyperglycemia and insulin resistance in mice model of MetS, we suggest that CuE can be used as novel approach to treat metabolic diseases.

  14. Fast 2D NMR Spectroscopy for In vivo Monitoring of Bacterial Metabolism in Complex Mixtures

    Directory of Open Access Journals (Sweden)

    Rupashree Dass

    2017-07-01

    Full Text Available The biological toolbox is full of techniques developed originally for analytical chemistry. Among them, spectroscopic experiments are very important source of atomic-level structural information. Nuclear magnetic resonance (NMR spectroscopy, although very advanced in chemical and biophysical applications, has been used in microbiology only in a limited manner. So far, mostly one-dimensional 1H experiments have been reported in studies of bacterial metabolism monitored in situ. However, low spectral resolution and limited information on molecular topology limits the usability of these methods. These problems are particularly evident in the case of complex mixtures, where spectral peaks originating from many compounds overlap and make the interpretation of changes in a spectrum difficult or even impossible. Often a suite of two-dimensional (2D NMR experiments is used to improve resolution and extract structural information from internuclear correlations. However, for dynamically changing sample, like bacterial culture, the time-consuming sampling of so-called indirect time dimensions in 2D experiments is inefficient. Here, we propose the technique known from analytical chemistry and structural biology of proteins, i.e., time-resolved non-uniform sampling. The method allows application of 2D (and multi-D experiments in the case of quickly varying samples. The indirect dimension here is sparsely sampled resulting in significant reduction of experimental time. Compared to conventional approach based on a series of 1D measurements, this method provides extraordinary resolution and is a real-time approach to process monitoring. In this study, we demonstrate the usability of the method on a sample of Escherichia coli culture affected by ampicillin and on a sample of Propionibacterium acnes, an acne causing bacterium, mixed with a dose of face tonic, which is a complicated, multi-component mixture providing complex NMR spectrum. Through our experiments

  15. Monitoring of Recommended Metabolic Laboratory Parameters Among Medicaid Recipients on Second-Generation Antipsychotics in Federally Qualified Health Centers.

    Science.gov (United States)

    Uzal, Natalia E; Chavez, Benjamin; Kosirog, Emily R; Billups, Sarah J; Saseen, Joseph J

    2018-02-01

    In 2004, a consensus statement outlining recommended metabolic monitoring for patients prescribed second-generation antipsychotics (SGAs) was published. More than a decade later, suboptimal adherence rates to these recommendations continue to be reported, which could lead to long-term and costly complications. To define the prevalence of appropriately monitored Medicaid patients receiving care at federally qualified health centers (FQHCs) prescribed SGAs. This was a retrospective study examining electronic health record and Medicaid claims data to assess the rates of glucose and lipid monitoring for patients prescribed SGAs from January 2014 to August 2016 in a FQHC. Prescription and laboratory claims for patients receiving care at 4 FQHCs were reviewed. Descriptive statistics were used to evaluate the primary outcome. A total of 235 patients were included in the analysis. Patients initiated on SGA therapy (n = 92) had baseline glucose and lipid monitoring rates of 50% and 23%, respectively. The 3-month monitoring rates were 37% for glucose and 26% for lipids, whereas annual rates were 71% and 40%, respectively. Patients continuing SGA therapy (n = 143) had annual glucose and lipid monitoring rates of 67% and 44%. Medicaid patients at FQHCs initially prescribed SGAs have low baseline and 3-month metabolic monitoring, whereas annual monitoring was comparable to previously published studies. Adults receiving chronic care at a FQHC were more likely to receive glucose monitoring. Those with type 2 diabetes mellitus and/or hyperlipidemia were more likely to receive glucose and lipid monitoring.

  16. Advanced Signal Processing for High Temperatures Health Monitoring of Condensed Water Height in Steam Pipes

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Takano, Nobuyuki; Bao, Xiaoqi

    2013-01-01

    An advanced signal processing methodology is being developed to monitor the height of condensed water thru the wall of a steel pipe while operating at temperatures as high as 250deg. Using existing techniques, previous study indicated that, when the water height is low or there is disturbance in the environment, the predicted water height may not be accurate. In recent years, the use of the autocorrelation and envelope techniques in the signal processing has been demonstrated to be a very useful tool for practical applications. In this paper, various signal processing techniques including the auto correlation, Hilbert transform, and the Shannon Energy Envelope methods were studied and implemented to determine the water height in the steam pipe. The results have shown that the developed method provides a good capability for monitoring the height in the regular conditions. An alternative solution for shallow water or no water conditions based on a developed hybrid method based on Hilbert transform (HT) with a high pass filter and using the optimized windowing technique is suggested. Further development of the reported methods would provide a powerful tool for the identification of the disturbances of water height inside the pipe.

  17. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals.

    Science.gov (United States)

    Cai, Feng; Yi, Changrui; Liu, Shichang; Wang, Yan; Liu, Lacheng; Liu, Xiaoqing; Xu, Xuming; Wang, Li

    2016-03-15

    Flexible sensors have attracted more and more attention as a fundamental part of anthropomorphic robot research, medical diagnosis and physical health monitoring. Here, we constructed an ultrasensitive and passive flexible sensor with the advantages of low cost, lightness and wearability, electric safety and reliability. The fundamental mechanism of the sensor is based on triboelectric effect inducing electrostatic charges on the surfaces between two different materials. Just like a plate capacitor, current will be generated while the distance or size of the parallel capacitors changes caused by the small mechanical disturbance upon it and therefore the output current/voltage will be produced. Typically, the passive sensor unambiguously monitors muscle motions including hand motion from stretch-clench-stretch, mouth motion from open-bite-open, blink and respiration. Moreover, this sensor records the details of the consecutive phases in a cardiac cycle of the apex cardiogram, and identify the peaks including percussion wave, tidal wave and diastolic wave of the radial pulse wave. To record subtle human physiological signals including radial pulsilogram and apex cardiogram with excellent signal/noise ratio, stability and reproducibility, the sensor shows great potential in the applications of medical diagnosis and daily health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Non-Intrusive Load Monitoring of HVAC Components using Signal Unmixing

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Alireza [University of Tennessee, Knoxville (UTK); Qi, Hairong [ORNL; Fugate, David L [ORNL; Kuruganti, Teja [ORNL

    2015-01-01

    Heating, Ventilating and Air Conditioning units (HVAC) are a major electrical energy consumer in buildings. Monitoring of the operation and energy consumption of HVAC would increase the awareness of building owners and maintenance service providers of the condition and quality of performance of these units, enabling conditioned-based maintenance which would help achieving higher energy efficiency. In this paper, a novel non-intrusive load monitoring method based on group constrained non-negative matrix factorization is proposed for monitoring the different components of HVAC unit by only measuring the whole building aggregated power signal. At the first level of this hierarchical approach, power consumption of the building is decomposed to energy consumption of the HVAC unit and all the other electrical devices operating in the building such as lighting and plug loads. Then, the estimated power signal of the HVAC is used for estimating the power consumption profile of the HVAC major electrical loads such as compressors, condenser fans and indoor blower. Experiments conducted on real data collected from a building testbed maintained at the Oak Ridge National Laboratory (ORNL) demonstrate high accuracy on the disaggregation task.

  19. Quantitative Raman Spectroscopy to monitor microbial metabolism in situ under pressure

    Science.gov (United States)

    Picard, A.; Daniel, I.; Oger, P.

    2006-12-01

    Although high hydrostatic pressure (HHP) biotopes are ubiquitous on Earth, little is known about the metabolism of piezophile organisms. Cell culture under HHP can be technically challenging, and equipment- dependent. In addition, the depressurization step required for analysis can lead to erroneous data. Therefore, to understand how piezophile organisms react to pressure, it is crucial to be able to monitor their activity in situ under HHP. We developed the use of Quantitative Raman Spectroscopy (QRS, 1) to monitor in situ the metabolism of organic molecules. This technique is based on the specific spectral signature of an analyte from which its concentration can be deduced. An application of this technique to the monitoring of alcoholic fermentation by the piezotolerant micro-eucaryote Saccharomyces cerevisiae is presented. Ethanol fermentation from glucose was monitored during 24h from ambient P up to 100 MPa in the low- pressure Diamond Anvil Cell (lpDAC, 2). The experimental compression chamber consisted in a 300 μm-thick Ni gasket in which a 500 μm-diameter hole was drilled. Early-stationnary yeast cells were inoculated into fresh low-fluorescence medium containing 0.15 M of glucose. Ethanol concentration was determined in situ by QRS using the symmetric C-C stretching mode of ethanol at 878 cm-1 normalizing the data to the intensity of the sulfate S-O stretching mode at 980 cm-1. In our setup, the detection limit of ethanol is lower than 0.05 mM with a precision below 1%. At ambient P, ethanol production in the lpDAC and in control experiments proceeds with the same kinetics. Thus, yeast is not affected by its confinement. This is further confirmed by its ability to bud with a generation time similar to control experiments performed in glass tubes at ambient pressure inside the lpDAC. Ethanol production by yeast occurs to at least 65 MPa (3). At 10 MPa, fermentation proceeds 3 times faster than at ambient P. Fermentation rates decrease linearly from 20 to

  20. An Internet of Things based physiological signal monitoring and receiving system for virtual enhanced health care network.

    Science.gov (United States)

    Rajan, J Pandia; Rajan, S Edward

    2018-01-01

    Wireless physiological signal monitoring system designing with secured data communication in the health care system is an important and dynamic process. We propose a signal monitoring system using NI myRIO connected with the wireless body sensor network through multi-channel signal acquisition method. Based on the server side validation of the signal, the data connected to the local server is updated in the cloud. The Internet of Things (IoT) architecture is used to get the mobility and fast access of patient data to healthcare service providers. This research work proposes a novel architecture for wireless physiological signal monitoring system using ubiquitous healthcare services by virtual Internet of Things. We showed an improvement in method of access and real time dynamic monitoring of physiological signal of this remote monitoring system using virtual Internet of thing approach. This remote monitoring and access system is evaluated in conventional value. This proposed system is envisioned to modern smart health care system by high utility and user friendly in clinical applications. We claim that the proposed scheme significantly improves the accuracy of the remote monitoring system compared to the other wireless communication methods in clinical system.

  1. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    International Nuclear Information System (INIS)

    Kodavanti, Prasada Rao S.; Osorio, Cristina; Royland, Joyce E.; Ramabhadran, Ram; Alzate, Oscar

    2011-01-01

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca 2+ -mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit β (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: ► We performed brain proteomic analysis of rats exposed to the neurotoxicant, Aroclor 1254. ► Cerebellum and

  2. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling.

    Science.gov (United States)

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-05-06

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. Copyright © 2017. Published by Elsevier Inc.

  3. Regularized non-stationary morphological reconstruction algorithm for weak signal detection in microseismic monitoring: methodology

    Science.gov (United States)

    Huang, Weilin; Wang, Runqiu; Chen, Yangkang

    2018-05-01

    Microseismic signal is typically weak compared with the strong background noise. In order to effectively detect the weak signal in microseismic data, we propose a mathematical morphology based approach. We decompose the initial data into several morphological multiscale components. For detection of weak signal, a non-stationary weighting operator is proposed and introduced into the process of reconstruction of data by morphological multiscale components. The non-stationary weighting operator can be obtained by solving an inversion problem. The regularized non-stationary method can be understood as a non-stationary matching filtering method, where the matching filter has the same size as the data to be filtered. In this paper, we provide detailed algorithmic descriptions and analysis. The detailed algorithm framework, parameter selection and computational issue for the regularized non-stationary morphological reconstruction (RNMR) method are presented. We validate the presented method through a comprehensive analysis through different data examples. We first test the proposed technique using a synthetic data set. Then the proposed technique is applied to a field project, where the signals induced from hydraulic fracturing are recorded by 12 three-component geophones in a monitoring well. The result demonstrates that the RNMR can improve the detectability of the weak microseismic signals. Using the processed data, the short-term-average over long-term average picking algorithm and Geiger's method are applied to obtain new locations of microseismic events. In addition, we show that the proposed RNMR method can be used not only in microseismic data but also in reflection seismic data to detect the weak signal. We also discussed the extension of RNMR from 1-D to 2-D or a higher dimensional version.

  4. Glucose metabolism disorder in obese children assessed by continuous glucose monitoring system.

    Science.gov (United States)

    Zou, Chao-Chun; Liang, Li; Hong, Fang; Zhao, Zheng-Yan

    2008-02-01

    Continuous glucose monitoring system (CGMS) can measure glucose levels at 5-minute intervals over a few days, and may be used to detect hypoglycemia, guide insulin therapy, and control glucose levels. This study was undertaken to assess the glucose metabolism disorder by CGMS in obese children. Eighty-four obese children were studied. Interstitial fluid (ISF) glucose levels were measured by CGMS for 24 hours covering the time for oral glucose tolerance test (OGTT). Impaired glucose tolerance (IGT), impaired fasting glucose (IFG), type 2 diabetic mellitus (T2DM) and hypoglycemia were assessed by CGMS. Five children failed to complete CGMS test. The glucose levels in ISF measured by CGMS were highly correlated with those in capillary samples (r=0.775, Pobese children who finished the CGMS, 2 children had IFG, 2 had IGT, 3 had IFG + IGT, and 2 had T2DM. Nocturnal hypoglycemia was noted during the overnight fasting in 11 children (13.92%). Our data suggest that glucose metabolism disorder including hyperglycemia and hypoglycemia is very common in obese children. Further studies are required to improve the precision of the CGMS in children.

  5. Novel textile systems for the continuous monitoring of vital signals: design and characterization.

    Science.gov (United States)

    Trindade, Isabel G; Martins, Frederico; Dias, Rúben; Oliveira, Cristina; Machado da Silva, José

    2015-08-01

    In this article we present a smart textile system for the continuous monitoring of cardiorespiratory signals, produced and integrated with an industrial embroidery unit. The design of a T-shirt system, having embedded textile sensors and interconnects and custom designed circuit for data collection and Bluetooth transmission is presented. The performance of skin-contact textile electrodes, having distinctive electrical characteristics and surface morphologies, was characterized by measurements of signal to noise ratio, under dry and moisture conditions. The influence of the electrodes size and the wear resistance were addressed. Results of an electrocardiogram acquisition with a subject wearing the T-shirt and display on a smartphone are also shown. The presented smart textile systems exhibit good performance and versatility for custom demand production.

  6. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  7. Integration and enhancement of low-level signals from air-pollution monitoring sensors

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, G F; Dubois, L; Monkman, J L

    1975-09-01

    In this paper, we have demonstrated how signal enhancement techniques would be advantageous in the low-level analysis of air pollutants. We have further shown what type of signal-to-noise gain may be expected from an off-the-shelf, inexpensive run-of-the-mill mercury monitor. As long as an evoked response time constant is introduced into the measuring system, noise of a random nature may be reduced to such an extent that trace signals, buried deep in the electrical background, may be reliably measured. If we couple this type of analysis to a multi-parameter mercury analyzer, contributing factors may be evaluated. This will result in a more efficient system application. We have also reported a manner in which evoked response time is related to instrument onset time. However, there are other methods for obtaining an evoked response. Of note is the use of wavelength in the enhancement of spectrophotometric signals. In additional work now being carried out in our laboratory, there are indications that it is possible to relate this type of processing to SO/sub 2/ analyzing systems using conductometry. (auth)

  8. Frequency Analysis of Acoustic Emission Signal to Monitor Damage Evolution in Masonry Structures

    International Nuclear Information System (INIS)

    Masera, D; Bocca, P; Grazzini, A

    2011-01-01

    A crucial aspect in damage evaluation of masonry structures is the analysis of long-term behaviour and for this reason fatigue analysis has a great influence on safety assessment of this structures. Acoustic Emission (AE) are very effective non-destructive techniques applied to identify micro and macro-defects and their temporal evolution in several materials. This technique permits to estimate the velocity of ultrasound waves propagation and the amount of energy released during fracture propagation to obtain information on the criticality of the ongoing process. By means of AE monitoring, an experimental analysis on a set of reinforced and unreinforced masonry walls under variable amplitude and static loading has been carried out. During these tests, the AE signals were recorded. The AE signals were analysed using Fast Fourier Transform (FFT) to examine the frequency distribution of the micro and macro cracking. It possible to evaluate the evolution of the wavelength of the AE signal through the two characteristic peak in the AE spectrum signals and the wave speed of the P or S waves. This wavelength evolution can be represent the microcrak and macrocrack evolution in masonry walls. This procedure permits to estimate the fracture dimension characteristic in several loading condition and for several masonry reinforced condition.

  9. Monitoring and predicting cognitive state and performance via physiological correlates of neuronal signals.

    Science.gov (United States)

    Russo, Michael B; Stetz, Melba C; Thomas, Maria L

    2005-07-01

    Judgment, decision making, and situational awareness are higher-order mental abilities critically important to operational cognitive performance. Higher-order mental abilities rely on intact functioning of multiple brain regions, including the prefrontal, thalamus, and parietal areas. Real-time monitoring of individuals for cognitive performance capacity via an approach based on sampling multiple neurophysiologic signals and integrating those signals with performance prediction models potentially provides a method of supporting warfighters' and commanders' decision making and other operationally relevant mental processes and is consistent with the goals of augmented cognition. Cognitive neurophysiological assessments that directly measure brain function and subsequent cognition include positron emission tomography, functional magnetic resonance imaging, mass spectroscopy, near-infrared spectroscopy, magnetoencephalography, and electroencephalography (EEG); however, most direct measures are not practical to use in operational environments. More practical, albeit indirect measures that are generated by, but removed from the actual neural sources, are movement activity, oculometrics, heart rate, and voice stress signals. The goal of the papers in this section is to describe advances in selected direct and indirect cognitive neurophysiologic monitoring techniques as applied for the ultimate purpose of preventing operational performance failures. These papers present data acquired in a wide variety of environments, including laboratory, simulator, and clinical arenas. The papers discuss cognitive neurophysiologic measures such as digital signal processing wrist-mounted actigraphy; oculometrics including blinks, saccadic eye movements, pupillary movements, the pupil light reflex; and high-frequency EEG. These neurophysiological indices are related to cognitive performance as measured through standard test batteries and simulators with conditions including sleep loss

  10. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling

    International Nuclear Information System (INIS)

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-01-01

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. - Highlights: • Aspirin inhibits the levels of liquid droplets, triglyceride and cholesterol in HCC cells. • Aspirin is able to down-regulate ACSL1 in HCC cells. • NF-κB inhibitor PDTC can down-regulate ACSL1 and reduces lipogenesis in HCC cells. • Aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling.

  11. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    International Nuclear Information System (INIS)

    Buchanan, M.V.

    2000-01-01

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis

  12. Application of rapid-sampling, online microdialysis to the monitoring of brain metabolism during aneurysm surgery.

    Science.gov (United States)

    Bhatia, Robin; Hashemi, Parastoo; Razzaq, Ashfaq; Parkin, Mark C; Hopwood, Sarah E; Boutelle, Martyn G; Strong, Anthony J

    2006-04-01

    To introduce rapid-sampling microdialysis for the early detection of adverse metabolic changes in tissue at risk during aneurysm surgery. A microdialysis catheter was inserted under direct vision into at-risk cortex at the start of surgery. This monitoring was sustained throughout the course of the operation, during which intraoperative events, for example, temporary arterial occlusion or lobe retraction, were precisely documented. A continuous online flow of dialysate was fed into a mobile bedside glucose and lactate analyser. This comprises flow-injection dual-assay enzyme-based biosensors capable of determining values of metabolites every 30 seconds. Eight patients underwent clipping or wrapping of intracranial aneurysms and were monitored. Time between events and detection: 9 minutes. Mean change in metabolite value +/- standard deviation: temporal lobe retraction lactate, +656 +/- 562 micromol/L (n = 7, P glucose, -123 +/- 138 micromol/L (n = 6, P = 0.08). Glucose intravenous bolus infusion glucose, +512 +/- 244 micromol/L (n = 5, P lactate, +731 +/- 346 micromol/L (n = 6, P glucose, -139 +/- 96 micromol/L (n = 5, P glucose and lactate in dialysate, particularly when rapid, transient changes in brain analyte levels need to be determined and the alternative offline methodology would be inadequate.

  13. Rewiring AMPK and Mitochondrial Retrograde Signaling for Metabolic Control of Aging and Histone Acetylation in Respiratory-Defective Cells

    Directory of Open Access Journals (Sweden)

    R. Magnus N. Friis

    2014-04-01

    Full Text Available Abnormal respiratory metabolism plays a role in numerous human disorders. We find that regulation of overall histone acetylation is perturbed in respiratory-incompetent (ρ0 yeast. Because histone acetylation is highly sensitive to acetyl-coenzyme A (acetyl-CoA availability, we sought interventions that suppress this ρ0 phenotype through reprogramming metabolism. Nutritional intervention studies led to the discovery that genetic coactivation of the mitochondrion-to-nucleus retrograde (RTG response and the AMPK (Snf1 pathway prevents abnormal histone deacetylation in ρ0 cells. Metabolic profiling of signaling mutants uncovered links between chromatin-dependent phenotypes of ρ0 cells and metabolism of ATP, acetyl-CoA, glutathione, branched-chain amino acids, and the storage carbohydrate trehalose. Importantly, RTG/AMPK activation reprograms energy metabolism to increase the supply of acetyl-CoA to lysine acetyltransferases and extend the chronological lifespan of ρ0 cells. Our results strengthen the framework for rational design of nutrient supplementation schemes and drug-discovery initiatives aimed at mimicking the therapeutic benefits of dietary interventions.

  14. Persistence of metabolic monitoring for psychiatry inpatients treated with second-generation antipsychotics utilizing a computer-based intervention.

    Science.gov (United States)

    Lee, J; Dalack, G W; Casher, M I; Eappen, S A; Bostwick, J R

    2016-04-01

    Monitoring and intervention for metabolic abnormalities secondary to second-generation antipsychotics (SGAs) remain weak areas of performance in mental health care. This study evaluated the sustained impact of a computerized physician order entry (CPOE) pop-up alert designed to improve rates of laboratory metabolic monitoring of patients treated with SGAs in an inpatient psychiatry unit. Interventions carried out by the psychiatry team to manage metabolic abnormalities found on screening were also identified. A retrospective chart review of patients treated with scheduled SGAs at a large Midwestern academic medical centre's inpatient adult psychiatry unit was conducted nearly 4 years after the initial implementation of a pop-up alert. Rates of laboratory monitoring (blood glucose level, haemoglobin A1C [HbA1c], lipid panel) were compared to those following the initial implementation. Medical charts of patients with abnormal laboratory results were also reviewed to summarize interventions made by the psychiatry team to manage identified abnormalities. Patient demographics in the current study population (n = 129) were similar to those in the initial test cohort (n = 157). There was no significant decrease in monitoring of glucose levels and lipid panels (fasting or random). Nine patients with abnormally elevated laboratories were identified. Interventions by the psychiatry team included referrals to appropriate healthcare professionals and initiation of medication. The rate of metabolic monitoring for inpatients on SGA therapy did not significantly change over time with the continued use of the CPOE pop-up alert. Optimal monitoring utilizing a CPOE pop-up alert may allow the psychiatry team, including psychiatric pharmacists, to better manage metabolic conditions. © 2016 John Wiley & Sons Ltd.

  15. Integrated Optimization of Long-Range Underwater Signal Detection, Feature Extraction, and Classification for Nuclear Treaty Monitoring

    NARCIS (Netherlands)

    Tuma, M.; Rorbech, V.; Prior, M.; Igel, C.

    2016-01-01

    We designed and jointly optimized an integrated signal processing chain for detection and classification of long-range passive-acoustic underwater signals recorded by the global geophysical monitoring network of the Comprehensive Nuclear-Test-Ban Treaty Organization. Starting at the level of raw

  16. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes.

    Directory of Open Access Journals (Sweden)

    Kenkichi Takase

    Full Text Available The demand for meta-analyses in basic biomedical research has been increasing because the phenotyping of genetically modified mice does not always produce consistent results. Melanin-concentrating hormone (MCH has been reported to be involved in a variety of behaviors that include feeding, body-weight regulation, anxiety, sleep, and reward behavior. However, the reported behavioral and metabolic characteristics of MCH signaling-deficient mice, such as MCH-deficient mice and MCH receptor 1 (MCHR1-deficient mice, are not consistent with each other. In the present study, we performed a meta-analysis of the published data related to MCH-deficient and MCHR1-deficient mice to obtain robust conclusions about the role of MCH signaling. Overall, the meta-analysis revealed that the deletion of MCH signaling enhanced wakefulness, locomotor activity, aggression, and male sexual behavior and that MCH signaling deficiency suppressed non-REM sleep, anxiety, responses to novelty, startle responses, and conditioned place preferences. In contrast to the acute orexigenic effect of MCH, MCH signaling deficiency significantly increased food intake. Overall, the meta-analysis also revealed that the deletion of MCH signaling suppressed the body weight, fat mass, and plasma leptin, while MCH signaling deficiency increased the body temperature, oxygen consumption, heart rate, and mean arterial pressure. The lean phenotype of the MCH signaling-deficient mice was also confirmed in separate meta-analyses that were specific to sex and background strain (i.e., C57BL/6 and 129Sv. MCH signaling deficiency caused a weak anxiolytic effect as assessed with the elevated plus maze and the open field test but also caused a weak anxiogenic effect as assessed with the emergence test. MCH signaling-deficient mice also exhibited increased plasma corticosterone under non-stressed conditions, which suggests enhanced activity of the hypothalamic-pituitary-adrenal axis. To the best of our

  17. Information selection and signal probability in multisource monitoring under the influence of centrally active drugs : Phentermine versus pentobarbital

    NARCIS (Netherlands)

    Volkerts, E.R; van Laar, M.W; Verbaten, M.N; Mulder, G.; Maes, R.A A

    1996-01-01

    The present study is concerned with the relationship between drug-induced arousal shifts and sampling [(monitoring)] behaviour in a three-source task with an a priori signal occurrence probability of 0.6, 0.3, and 0.1. The multisource monitoring task and procedure was adopted from Hockey (1973) who

  18. An in-vacuum wall current monitor and low cost signal sampling system

    International Nuclear Information System (INIS)

    Yin, Y.; Rawnsley, W.R.; Mackenzie, G.H.

    1993-11-01

    The beam bunches extracted from the TRIUMF cyclotron are usually about 4 ns long, contain ∼ 4 x 10 7 protons, and are spaced at 43 ns. A wall current monitor capable of giving the charge distribution within a bunch, on a bunch by bunch basis, has recently been installed together with a sampling system for routine display in the control room. The wall current monitor is enclosed in a vacuum vessel and no ceramic spacer is required. This enhances the response to high frequencies, ferrite rings extend the low frequency response. Bench measurements show a flat response between a few hundred kilohertz and 4.6 GHz. For a permanent display in the control room the oscilloscope will be replaced by a Stanford Research Systems fast sampler module, a scanner module, and an interface module made at TRIUMF. The time to acquire one 10 ns distribution encompassing the beam bunch is 30 ms with a sample width of 100 ps and an average sample spacing of 13 ps. The scan, sample, and retrace signals are buffered carried on 70 m differential lines to the control room. An analog scope in XYZ mode provides a real time display. Signal averaging can be performed by using a digital oscilloscope in YT mode. (author). 6 refs., 2 tabs., 7 figs

  19. Neuroelectronics and modeling of electrical signals for monitoring and control of Parkinson's disease

    Science.gov (United States)

    Chintakuntla, Ritesh R.; Abraham, Jose K.; Varadan, Vijay K.

    2009-03-01

    The brain and the human nervous system are perhaps the most researched but least understood components of the human body. This is so because of the complex nature of its working and the high density of functions. The monitoring of neural signals could help one better understand the working of the brain and newer recording and monitoring methods have been developed ever since it was discovered that the brain communicates internally by means of electrical pulses. Neuroelectronics is the field which deals with the interface between electronics or semiconductors to living neurons. This includes monitoring of electrical activity from the brain as well as the development of feedback devices for stimulation of parts of the brain for treatment of disorders. In this paper these electrical signals are modeled through a nano/microelectrode arrays based on the electronic equivalent model using Cadence PSD 15.0. The results were compared with those previously published models such as Kupfmuller and Jenik's model, McGrogan's Neuron Model which are based on the Hodgkin and Huxley model. We have developed and equivalent circuit model using discrete passive components to simulate the electrical activity of the neurons. The simulated circuit can be easily be modified by adding some more ionic channels and the results can be used to predict necessary external stimulus needed for stimulation of neurons affected by the Parkinson's disease (PD). Implementing such a model in PD patients could predict the necessary voltages required for the electrical stimulation of the sub-thalamus region for the control tremor motion.

  20. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring

    Directory of Open Access Journals (Sweden)

    Alexander Caicedo

    2016-11-01

    Full Text Available Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP, assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + _. SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first three days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen

  1. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring.

    Science.gov (United States)

    Caicedo, Alexander; Varon, Carolina; Hunyadi, Borbala; Papademetriou, Maria; Tachtsidis, Ilias; Van Huffel, Sabine

    2016-01-01

    Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ϵ . SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the

  2. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems.

    Science.gov (United States)

    Lowenstern, Jacob B; Smith, Robert B; Hill, David P

    2006-08-15

    Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption.

  3. Bio-Signal Complexity Analysis in Epileptic Seizure Monitoring: A Topic Review

    Directory of Open Access Journals (Sweden)

    Zhenning Mei

    2018-05-01

    Full Text Available Complexity science has provided new perspectives and opportunities for understanding a variety of complex natural or social phenomena, including brain dysfunctions like epilepsy. By delving into the complexity in electrophysiological signals and neuroimaging, new insights have emerged. These discoveries have revealed that complexity is a fundamental aspect of physiological processes. The inherent nonlinearity and non-stationarity of physiological processes limits the methods based on simpler underlying assumptions to point out the pathway to a more comprehensive understanding of their behavior and relation with certain diseases. The perspective of complexity may benefit both the research and clinical practice through providing novel data analytics tools devoted for the understanding of and the intervention about epilepsies. This review aims to provide a sketchy overview of the methods derived from different disciplines lucubrating to the complexity of bio-signals in the field of epilepsy monitoring. Although the complexity of bio-signals is still not fully understood, bundles of new insights have been already obtained. Despite the promising results about epileptic seizure detection and prediction through offline analysis, we are still lacking robust, tried-and-true real-time applications. Multidisciplinary collaborations and more high-quality data accessible to the whole community are needed for reproducible research and the development of such applications.

  4. Statistical Analysis of Stress Signals from Bridge Monitoring by FBG System

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Ye

    2018-02-01

    Full Text Available In this paper, a fiber Bragg grating (FBG-based stress monitoring system instrumented on an orthotropic steel deck arch bridge is demonstrated. The FBG sensors are installed at two types of critical fatigue-prone welded joints to measure the strain and temperature signals. A total of 64 FBG sensors are deployed around the rib-to-deck and rib-to-diagram areas at the mid-span and quarter-span of the investigated orthotropic steel bridge. The local stress behaviors caused by the highway loading and temperature effect during the construction and operation periods are presented with the aid of a wavelet multi-resolution analysis approach. In addition, the multi-modal characteristic of the rainflow counted stress spectrum is modeled by the method of finite mixture distribution together with a genetic algorithm (GA-based parameter estimation approach. The optimal probability distribution of the stress spectrum is determined by use of Bayesian information criterion (BIC. Furthermore, the hot spot stress of the welded joint is calculated by an extrapolation method recommended in the specification of International Institute of Welding (IIW. The stochastic characteristic of stress concentration factor (SCF of the concerned welded joint is addressed. The proposed FBG-based stress monitoring system and probabilistic stress evaluation methods can provide an effective tool for structural monitoring and condition assessment of orthotropic steel bridges.

  5. COMPASS: an Interoperable Personal Health System to Monitor and Compress Signals in Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Thomas Hofer

    2015-11-01

    Full Text Available In the past years the progress on the mobile market has made possible an advancement in terms of telemedicine systems and definition of systems for monitoring chronic illnesses. The distribution of mobile devices in developed countries is increasing. Many of these devices are equipped with wireless standards including Bluetooth and the amount of sold Smartphones is constantly increasing. Our approach is oriented towards this market, using existing devices to enable in-home patient monitoring and even further to ubiquitious monitoring. The idea is to increase the quality of care, reduce costs and gather medical grade data, especially vital signs, with a resolution of minutes or even less, which is nowadays only possible in an ICU (Intensive Care Units. In this paper we will present the COMPASS personal health system (PHS platform, and how this platform enables Android devices to collect, analyze and send sensor data to an observation storage by means of interoperability standards. Furthermore, we will also present how this data can be compressed using advanced compressed sensing techniques and how to optimize these techniques with genetic algorithms to improve the RMSE of the reconstructed signal after compression. We also produce a preliminary evaluation of the algorithm against the state of the art algorithms for compressed sensing.

  6. Epidemiological-molecular evidence of metabolic reprogramming on proliferation, autophagy and cell signaling in pancreas cancer.

    Science.gov (United States)

    Søreide, Kjetil; Sund, Malin

    2015-01-28

    Pancreatic cancer remains one of the deadliest human cancers with little progress made in survival over the past decades, and 5-year survival usually below 5%. Despite this dismal scenario, progresses have been made in understanding of the underlying tumor biology through among other definition of precursor lesions, delineation of molecular pathways, and advances in genome-wide technology. Further, exploring the relationship between epidemiological risk factors involving metabolic features to that of an altered cancer metabolism may provide the foundation for new therapies. Here we explore how nutrients and caloric intake may influence the KRAS-driven ductal carcinogenesis through mediators of metabolic stress, including autophagy in presence of TP53, advanced glycation end products (AGE) and the receptors (RAGE) and ligands (HMGB1), as well as glutamine pathways, among others. Effective understanding the cancer metabolism mechanisms in pancreatic cancer may propose new ways of prevention and treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation.

    Science.gov (United States)

    Yuk, Jae-Min; Kim, Tae Sung; Kim, Soo Yeon; Lee, Hye-Mi; Han, Jeongsu; Dufour, Catherine Rosa; Kim, Jin Kyung; Jin, Hyo Sun; Yang, Chul-Su; Park, Ki-Sun; Lee, Chul-Ho; Kim, Jin-Man; Kweon, Gi Ryang; Choi, Hueng-Sik; Vanacker, Jean-Marc; Moore, David D; Giguère, Vincent; Jo, Eun-Kyeong

    2015-07-21

    The orphan nuclear receptor estrogen-related receptor α (ERRα; NR3B1) is a key metabolic regulator, but its function in regulating inflammation remains largely unknown. Here, we demonstrate that ERRα negatively regulates Toll-like receptor (TLR)-induced inflammation by promoting Tnfaip3 transcription and fine-tuning of metabolic reprogramming in macrophages. ERRα-deficient (Esrra(-/-)) mice showed increased susceptibility to endotoxin-induced septic shock, leading to more severe pro-inflammatory responses than control mice. ERRα regulated macrophage inflammatory responses by directly binding the promoter region of Tnfaip3, a deubiquitinating enzyme in TLR signaling. In addition, Esrra(-/-) macrophages showed an increased glycolysis, but impaired mitochondrial respiratory function and biogenesis. Further, ERRα was required for the regulation of NF-κB signaling by controlling p65 acetylation via maintenance of NAD(+) levels and sirtuin 1 activation. These findings unravel a previously unappreciated role for ERRα as a negative regulator of TLR-induced inflammatory responses through inducing Tnfaip3 transcription and controlling the metabolic reprogramming. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Endothelial cell-derived matrix promotes the metabolic functional maturation of hepatocyte via integrin-Src signalling.

    Science.gov (United States)

    Guo, Xinyue; Li, Weihong; Ma, Minghui; Lu, Xin; Zhang, Haiyan

    2017-11-01

    The extracellular matrix (ECM) microenvironment is involved in the regulation of hepatocyte phenotype and function. Recently, the cell-derived extracellular matrix has been proposed to represent the bioactive and biocompatible materials of the native ECM. Here, we show that the endothelial cell-derived matrix (EC matrix) promotes the metabolic maturation of human adipose stem cell-derived hepatocyte-like cells (hASC-HLCs) through the activation of the transcription factor forkhead box protein A2 (FOXA2) and the nuclear receptors hepatocyte nuclear factor 4 alpha (HNF4α) and pregnane X receptor (PXR). Reducing the fibronectin content in the EC matrix or silencing the expression of α5 integrin in the hASC-HLCs inhibited the effect of the EC matrix on Src phosphorylation and hepatocyte maturation. The inhibition of Src phosphorylation using the inhibitor PP2 or silencing the expression of Src in hASC-HLCs also attenuated the up-regulation of the metabolic function of hASC-HLCs in a nuclear receptor-dependent manner. These data elucidate integrin-Src signalling linking the extrinsic EC matrix signals and metabolic functional maturation of hepatocyte. This study provides a model for studying the interaction between hepatocytes and non-parenchymal cell-derived matrix. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  9. Acetic acid activates the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    Full Text Available The effect of acetic acid on hepatic lipid metabolism in ruminants differs significantly from that in monogastric animals. Therefore, the aim of this study was to investigate the regulation mechanism of acetic acid on the hepatic lipid metabolism in dairy cows. The AMP-activated protein kinase (AMPK signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of sodium acetate (neutralized acetic acid and BML-275 (an AMPKα inhibitor. Acetic acid consumed a large amount of ATP, resulting in an increase in AMPKα phosphorylation. The increase in AMPKα phosphorylation increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α, which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation in bovine hepatocytes. Furthermore, elevated AMPKα phosphorylation reduced the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and the carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid biosynthesis in bovine hepatocytes. In addition, activated AMPKα inhibited the activity of acetyl-CoA carboxylase. Consequently, the triglyceride content in the acetate-treated hepatocytes was significantly decreased. These results indicate that acetic acid activates the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in bovine hepatocytes, thereby reducing liver fat accumulation in dairy cows.

  10. MONITORING HIGH-FREQUENCY OCEAN SIGNALS USING LOW-COST GNSS/IMU BUOYS

    Directory of Open Access Journals (Sweden)

    Y.-L. Huang

    2016-06-01

    Full Text Available In oceans there are different ocean signals covering the multi-frequencies including tsunami, meteotsunami, storm surge, as sea level change, and currents. These signals have the direct and significant impact on the economy and life of human-beings. Therefore, measuring ocean signals accurately becomes more and more important and necessary. Nowadays, there are many techniques and methods commonly used for monitoring oceans, but each has its limitation. For example, tide gauges only measure sea level relative to benchmarks and are disturbed unevenly, and satellite altimeter measurements are not continuous and inaccurate near coastal oceans. In addition, high-frequency ocean signals such as tsunami and meteotsunami cannot be sufficiently detected by 6-minutes tide gauge measurements or 10-day sampled altimetry data. Moreover, traditional accelerometer buoy is heavy, expensive and the low-frequency noise caused by the instrument is unavoidable. In this study, a small, low-cost and self-assembly autonomous Inertial Measurement Unit (IMU that independently collects continuous acceleration and angular velocity data is mounted on a GNSS buoy to provide the positions and tilts of the moving buoy. The main idea is to integrate the Differential GNSS (DGNSS or Precise Point Positioning (PPP solutions with IMU data, and then evaluate the performance by comparing with in situ tide gauges. The validation experiments conducted in the NCKU Tainan Hydraulics Laboratory showed that GNSS and IMU both can detect the simulated regular wave frequency and height, and the field experiments in the Anping Harbor, Tainan, Taiwan showed that the low-cost GNSS buoy has an excellent ability to observe significant wave heights in amplitude and frequency.

  11. DEPTOR-mTOR Signaling Is Critical for Lipid Metabolism and Inflammation Homeostasis of Lymphocytes in Human PBMC Culture

    Directory of Open Access Journals (Sweden)

    Qi-bing Xie

    2017-01-01

    Full Text Available Abnormal immune response of the body against substances and tissues causes autoimmune diseases, such as polymyositis, dermatomyositis, and rheumatoid arthritis. Irregular lipid metabolism and inflammation may be a significant cause of autoimmune diseases. Although much progress has been made, mechanisms of initiation and proceeding of metabolic and inflammatory regulation in autoimmune disease have not been well-defined. And novel markers for the detection and therapy of autoimmune disease are urgent. mTOR signaling is a central regulator of extracellular metabolic and inflammatory processes, while DEP domain-containing mTOR-interacting protein (DEPTOR is a natural inhibitor of mTOR. Here, we report that overexpression of DEPTOR reduces mTORC1 activity in lymphocytes of human peripheral blood mononuclear cells (PBMCs. Combination of DEPTOR overexpression and mTORC2/AKT inhibitors effectively inhibits lipogenesis and inflammation in lymphocytes of PBMC culture. Moreover, DEPTOR knockdown activates mTORC1 and increases lipogenesis and inflammations. Our findings provide a deep insight into the relationship between lipid metabolism and inflammations via DEPTOR-mTOR pathway and imply that DEPTOR-mTOR in lymphocytes of PBMC culture has the potential to be as biomarkers for the detection and therapies of autoimmune diseases.

  12. Hexarelin Signaling to PPARγ in Metabolic Diseases

    Directory of Open Access Journals (Sweden)

    Amélie Rodrigue-Way

    2008-01-01

    Full Text Available Investigating the metabolic functions of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ has been extremely rewarding over the past years. Uncovering the biologic roles of PPARγ and its mechanism of action has greatly advanced our understanding of the transcriptional control of lipid and glucose metabolism, and compounds such as thiazolidinediones which directly regulate PPARγ have proven to exhibit potent insulin-sensitizer effects in the treatment of diabetes. We review here recent advances on the emerging role of growth hormone releasing peptides in regulating PPARγ through interaction with scavenger receptor CD36 and ghrelin GHS-R1a receptor. With the impact that these peptides exert on the metabolic pathways involved in lipid metabolism and energy homeostasis, it is hoped that the development of novel approaches in the regulation of PPAR functions will bring additional therapeutic possibilities to face problems related to metabolic diseases.

  13. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov [Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Osorio, Cristina [Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States); Royland, Joyce E.; Ramabhadran, Ram [Genetic and Cellular Toxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Alzate, Oscar [Department of Cellular and Developmental Biology, University of North Carolina at Chapel Hill, North Carolina (United States); Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States)

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the neurotoxicant

  14. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring.

    Science.gov (United States)

    Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman

    2017-07-13

    Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.

  15. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Thakkar, Hiren Kumar; Lin, Wen-Yen; Chang, Po-Cheng; Lee, Ming-Yih

    2018-01-28

    Cardiovascular disease (CVD) is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI), computerized tomography scan (CT scan), and echocardiography (Echo) are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL). In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG) signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG) signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB) approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to the

  16. On the Design of an Efficient Cardiac Health Monitoring System Through Combined Analysis of ECG and SCG Signals

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2018-01-01

    Full Text Available Cardiovascular disease (CVD is a major public concern and socioeconomic problem across the globe. The popular high-end cardiac health monitoring systems such as magnetic resonance imaging (MRI, computerized tomography scan (CT scan, and echocardiography (Echo are highly expensive and do not support long-term continuous monitoring of patients without disrupting their activities of daily living (ADL. In this paper, the continuous and non-invasive cardiac health monitoring using unobtrusive sensors is explored aiming to provide a feasible and low-cost alternative to foresee possible cardiac anomalies in an early stage. It is learned that cardiac health monitoring based on sole usage of electrocardiogram (ECG signals may not provide powerful insights as ECG provides shallow information on various cardiac activities in the form of electrical impulses only. Hence, a novel low-cost, non-invasive seismocardiogram (SCG signal along with ECG signals are jointly investigated for the robust cardiac health monitoring. For this purpose, the in-laboratory data collection model is designed for simultaneous acquisition of ECG and SCG signals followed by mechanisms for the automatic delineation of relevant feature points in acquired ECG and SCG signals. In addition, separate feature points based novel approach is adopted to distinguish between normal and abnormal morphology in each ECG and SCG cardiac cycle. Finally, a combined analysis of ECG and SCG is carried out by designing a Naïve Bayes conditional probability model. Experiments on Institutional Review Board (IRB approved licensed ECG/SCG signals acquired from real subjects containing 12,000 cardiac cycles show that the proposed feature point delineation mechanisms and abnormal morphology detection methods consistently perform well and give promising results. In addition, experimental results show that the combined analysis of ECG and SCG signals provide more reliable cardiac health monitoring compared to

  17. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Cornelius, Nanna; Gregersen, Niels

    2015-01-01

    Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences...... in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory...... chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism...

  18. A Versatile Vector for In Vivo Monitoring of Type I Interferon Induction and Signaling.

    Directory of Open Access Journals (Sweden)

    Estanislao Nistal-Villan

    Full Text Available Development of reporter systems for in vivo examination of IFN-β induction or signaling of type I interferon (IFN-I pathways is of great interest in order to characterize biological responses to different inducers such as viral infections. Several reporter mice have been developed to monitor the induction of both pathways in response to different agonists. However, alternative strategies that do not require transgenic mice breeding have to date not been reported. In addition, detection of these pathways in vivo in animal species other than mice has not yet been addressed. Herein we describe a simple method based on the use of an adeno-associated viral vector (AAV8-3xIRF-ISRE-Luc containing an IFN-β induction and signaling-sensitive promoter sequence controlling the expression of the reporter gene luciferase. This vector is valid for monitoring IFN-I responses in vivo elicited by diverse stimuli in different organs. Intravenous administration of the vector in C57BL/6 mice and Syrian hamsters was able to detect activation of the IFN pathway in the liver upon systemic treatment with different pro-inflammatory agents and infection with Newcastle disease virus (NDV. In addition, intranasal instillation of AAV8-3xIRF-ISRE-Luc showed a rapid and transient IFN-I response in the respiratory tract of mice infected with the influenza A/PR8/34 virus lacking the NS1 protein. In comparison, this response was delayed and exacerbated in mice infected with influenza A/PR/8 wild type virus. In conclusion, the AAV8-3xIRF-ISRE-Luc vector offers the possibility of detecting IFN-I activation in response to different stimuli and in different animal models with no need for reporter transgenic animals.

  19. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity

    OpenAIRE

    Meyers, Allison M.; Mourra, Devry; Beeler, Jeff A.

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study ...

  20. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    Science.gov (United States)

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism

  1. Combination of digital signal processing methods towards an improved analysis algorithm for structural health monitoring.

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Makris, John P.

    2013-04-01

    In Structural Health Monitoring (SHM) is of great importance to reveal valuable information from the recorded SHM data that could be used to predict or indicate structural fault or damage in a building. In this work a combination of digital signal processing methods, namely FFT along with Wavelet Transform is applied, together with a proposed algorithm to study frequency dispersion, in order to depict non-linear characteristics of SHM data collected in two university buildings under natural or anthropogenic excitation. The selected buildings are of great importance from civil protection point of view, as there are the premises of a public higher education institute, undergoing high use, stress, visit from academic staff and students. The SHM data are collected from two neighboring buildings that have different age (4 and 18 years old respectively). Proposed digital signal processing methods are applied to the data, presenting a comparison of the structural behavior of both buildings in response to seismic activity, weather conditions and man-made activity. Acknowledgments This work was supported in part by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) » and is co-financed by the European Union (European Social Fund) and Greek National Fund.

  2. TLP Structural Health Monitoring Based on Vibration Signal of Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Vahid Jahangiri

    Full Text Available Abstract Structural Health Monitoring (SHM of Tension Leg Platform (TLP is very crucial for preventing catastrophic and sudden collapse of the structures. One of the methods of monitoring these structures is implementing SHM sensors. Supplying energy for these sensors for a long period is a challenging problem. So, one of the new methods of supplying energy for SHM, is usage of mechanical energy. In this method, the piezoelectric material is employed to convert the mechanical energy which is resulted from vibration of structure, to electrical energy. The advantage of this method is based on not implementing the battery charging system. Therefore, in this paper, after modeling TLP structure, energy supplying of these sensors with piezoelectric converters is studied. Furthermore, fault diagnosis of these structures in the presence of different uncertainties is proposed by the features of voltage signal, produced from piezoelectric patches and fuzzy classification method. Results show that this method can diagnose faults of the structure with an acceptable success rate.

  3. Development of an induction motor abnormality monitoring system(IMAMS) using power line signal analysis

    International Nuclear Information System (INIS)

    Jung, Jae Cheon

    1997-02-01

    An induction motor abnormality monitoring system using power line signal analysis is developed in this work. Various studies have focused their attention on the detection of particular harmonic frequencies produced from each defect mode of motors. However, these harmonic frequencies are valuable only when the motor has a continuous slip frequency and operate in constant torque/load condition. The basic concept of the system developed in this work is to detect the characteristic harmonic frequencies occurred when the motor is in abnormal state and to compare it with a predetermined setpoint. Based on these analyses, the place and degree of defect can be easily identified. The experimental results under test bench simulation are also introduced. To find out an alternative way to obtain a threshold level independent of slip/torque, with the rotating field theory, the ratio between harmonic current and total current was calculated with the simplified circuit that is equivalent to two abnormal cases, such as the spatial rotor resistance variation and the symmetrical components changes with field. Also, the threshold level calculation was done with performed the rotating field theory. The results show that they are in good agreement with a experimental results. Further studies are undertaken to extend this work to the on-line monitoring and diagnostic system with a likelihood ratio test method for field application

  4. Design, development and test of the gearbox condition monitoring system using sound signal processing

    Directory of Open Access Journals (Sweden)

    M Zamani

    2016-09-01

    Full Text Available Introduction One of the ways used for minimizing the cost of maintenance and repairs of rotating industrial equipment is condition monitoring using acoustic analysis. One of the most important problems which always have been under consideration in industrial equipment application is confidence possibility. Each dynamic, electrical, hydraulic or thermal system has certain characteristics which show the normal condition of the machine during function. Any changes of the characteristics can be a signal of a problem in the machine. The aim of condition monitoring is system condition determination using measurements of the signals of characteristics and using this information for system impairment prognostication. There are a lot of ways for condition monitoring of different systems, but sound analysis is accepted and used extensively as a method for condition investigation of rotating machines. The aim of this research is the design and construction of considered gearbox and using of obtaining data in frequency and time spectrum in order to analyze the sound and diagnosis. Materials and Methods This research was conducted at the department of mechanical biosystem workshop at Aboureihan College at Tehran University in February 15th.2015. In this research, in order to investigate the trend of diagnosis and gearbox condition, a system was designed and then constructed. The sound of correct and damaged gearbox was investigated by audiometer and stored in computer for data analysis. Sound measurement was done in three pinions speed of 749, 1050 and 1496 rpm and for correct gearboxes, damage of the fracture of a tooth and a tooth wear. Gearbox design and construction: In order to conduct the research, a gearbox with simple gearwheels was designed according to current needs. Then mentioned gearbox and its accessories were modeled in CATIA V5-R20 software and then the system was constructed. Gearbox is a machine that is used for mechanical power transition

  5. Toll- like receptors expressed on embryonic macrophages couple inflammatory signals to iron metabolism during early ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Balounová, Jana; Vavrochová, Tereza; Benešová, Martina; Ballek, Ondřej; Kolář, Michal; Filipp, Dominik

    2014-01-01

    Roč. 44, č. 5 (2014), s. 1491-1502 ISSN 0014-2980 R&D Projects: GA AV ČR IAA500520707 Institutional support: RVO:68378050 Keywords : Embryo nic macrophages * Ferroportin * Gene expression microarray * Iron metabolism * TLR stimulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.034, year: 2014

  6. The Secret Life of NAD(+): An Old Metabolite Controlling New Metabolic Signaling Pathways

    NARCIS (Netherlands)

    Houtkooper, Riekelt H.; Cantó, Carles; Wanders, Ronald J.; Auwerx, Johan

    2010-01-01

    A century after the identification of a coenzymatic activity for NAD(+), NAD(+) metabolism has come into the spotlight again due to the potential therapeutic relevance of a set of enzymes whose activity is tightly regulated by the balance between the oxidized and reduced forms of this metabolite. In

  7. LXR signaling couples sterol metabolism to proliferation in the acquired immune response

    NARCIS (Netherlands)

    Bensinger, Steven J.; Bradley, Michelle N.; Joseph, Sean B.; Zelcer, Noam; Janssen, Edith M.; Hausner, Mary Ann; Shih, Roger; Parks, John S.; Edwards, Peter A.; Jamieson, Beth D.; Tontonoz, Peter

    2008-01-01

    Cholesterol is essential for membrane synthesis; however, the mechanisms that link cellular lipid metabolism to proliferation are incompletely understood. We demonstrate here that cellular cholesterol levels in dividing T cells are maintained in part through reciprocal regulation of the LXR and

  8. Toll- like receptors expressed on embryonic macrophages couple inflammatory signals to iron metabolism during early ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Balounová, Jana; Vavrochová, Tereza; Benešová, Martina; Ballek, Ondřej; Kolář, Michal; Filipp, Dominik

    2014-01-01

    Roč. 44, č. 5 (2014), s. 1491-1502 ISSN 0014-2980 R&D Projects: GA AV ČR IAA500520707 Institutional support: RVO:68378050 Keywords : Embryonic macrophages * Ferroportin * Gene expression microarray * Iron metabolism * TLR stimulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.034, year: 2014

  9. Multi-signal Visualization of Physiology (MVP): a novel visualization dashboard for physiological monitoring of Traumatic Brain Injury patients.

    Science.gov (United States)

    Sebastian, Kevin; Sari, Vivian; Loy, Liang Yu; Zhang, Feng; Zhang, Zhuo; Feng, Mengling

    2012-01-01

    To prevent Traumatic Brain Injury (TBI) patients from secondary brain injuries, patients' physiological readings are continuously monitored. However, the visualization dashboards of most existing monitoring devices cannot effectively present all physiological information of TBI patients and are also ineffective in facilitating neuro-clinicians for fast and accurate diagnosis. To address these shortcomings, we proposed a new visualization dashboard, namely the Multi-signal Visualization of Physiology (MVP). MVP makes use of multi-signal polygram to collate various physiological signals, and it also utilizes colors and the concept of "safe/danger zones" to assist neuro-clinicians to achieve fast and accurate diagnosis. Moreover, MVP allows neuro-clinicians to review historical physiological statuses of TBI patients, which can guide and optimize clinicians' diagnosis and prognosis decisions. The performance of MVP is tested and justified with an actual Philips monitoring device.

  10. A Method for Vibration-Based Structural Interrogation and Health Monitoring Based on Signal Cross-Correlation

    International Nuclear Information System (INIS)

    Trendafilova, I

    2011-01-01

    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.

  11. Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.

    Science.gov (United States)

    Lorenz, Christin; Rolletschek, Hardy; Sunderhaus, Stephanie; Braun, Hans-Peter

    2014-08-28

    Oilseeds are an important element of human nutrition and of increasing significance for the production of industrial materials. The development of the seeds is based on a coordinated interplay of the embryo and its surrounding tissue, the endosperm. This study aims to give insights into the physiological role of endosperm for seed development in the oilseed crop Brassica napus. Using protein separation by two-dimensional (2D) isoelectric focusing (IEF)/SDS polyacrylamide gel electrophoresis (PAGE) and protein identification by mass spectrometry three proteome projects were carried out: (i) establishment of an endosperm proteome reference map, (ii) proteomic characterization of endosperm development and (iii) comparison of endosperm and embryo proteomes. The endosperm proteome reference map comprises 930 distinct proteins, including enzymes involved in genetic information processing, carbohydrate metabolism, environmental information processing, energy metabolism, cellular processes and amino acid metabolism. To investigate dynamic changes in protein abundance during seed development, total soluble proteins were extracted from embryo and endosperm fractions at defined time points. Proteins involved in sugar converting and recycling processes, ascorbate metabolism, amino acid biosynthesis and redox balancing were found to be of special importance for seed development in B. napus. Implications for the seed filling process and the function of the endosperm for seed development are discussed. The endosperm is of key importance for embryo development during seed formation in plants. We present a broad study for characterizing endosperm proteins in the oilseed plant B. napus. Furthermore, a project on the biochemical interplay between the embryo and the endosperm during seed development is presented. We provide evidence that the endosperm includes a complete set of enzymes necessary for plant primary metabolism. Combination of our results with metabolome data will further

  12. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    Science.gov (United States)

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring

    Directory of Open Access Journals (Sweden)

    Ivan D. Castro

    2018-02-01

    Full Text Available Sleep-related conditions require high-cost and low-comfort diagnosis at the hospital during one night or longer. To overcome this situation, this work aims to evaluate an unobtrusive monitoring technique for sleep apnea. This paper presents, for the first time, the evaluation of contactless capacitively-coupled electrocardiography (ccECG signals for the extraction of sleep apnea features, together with a comparison of different signal quality indicators. A multichannel ccECG system is used to collect signals from 15 subjects in a sleep environment from different positions. Reference quality labels were assigned for every 30-s segment. Quality indicators were calculated, and their signal classification performance was evaluated. Features for the detection of sleep apnea were extracted from capacitive and reference signals. Sleep apnea features related to heart rate and heart rate variability achieved high similarity to the reference values, with p-values of 0.94 and 0.98, which is in line with the more than 95% beat-matching obtained. Features related to signal morphology presented lower similarity with the reference, although signal similarity metrics of correlation and coherence were relatively high. Quality-based automatic classification of the signals had a maximum accuracy of 91%. Best-performing quality indicators were based on template correlation and beat-detection. Results suggest that using unobtrusive cardiac signals for the automatic detection of sleep apnea can achieve similar performance as contact signals, and indicates clinical value of ccECG. Moreover, signal segments can automatically be classified by the proposed quality metrics as a pre-processing step. Including contactless respiration signals is likely to improve the performance and provide a complete unobtrusive cardiorespiratory monitoring solution; this is a promising alternative that will allow the screening of more patients with higher comfort, for a longer time, and at

  14. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations

    Science.gov (United States)

    García Plaza, E.; Núñez López, P. J.

    2018-01-01

    The wavelet packet transform method decomposes a time signal into several independent time-frequency signals called packets. This enables the temporary location of transient events occurring during the monitoring of the cutting processes, which is advantageous in monitoring condition and fault diagnosis. This paper proposes the monitoring of surface roughness using a single low cost sensor that is easily implemented in numerical control machine tools in order to make on-line decisions on workpiece surface finish quality. Packet feature extraction in vibration signals was applied to correlate the sensor signals to measured surface roughness. For the successful application of the WPT method, mother wavelets, packet decomposition level, and appropriate packet selection methods should be considered, but are poorly understood aspects in the literature. In this novel contribution, forty mother wavelets, optimal decomposition level, and packet reduction methods were analysed, as well as identifying the effective frequency range providing the best packet feature extraction for monitoring surface finish. The results show that mother wavelet biorthogonal 4.4 in decomposition level L3 with the fusion of the orthogonal vibration components (ax + ay + az) were the best option in the vibration signal and surface roughness correlation. The best packets were found in the medium-high frequency DDA (6250-9375 Hz) and high frequency ADA (9375-12500 Hz) ranges, and the feed acceleration component ay was the primary source of information. The packet reduction methods forfeited packets with relevant features to the signal, leading to poor results for the prediction of surface roughness. WPT is a robust vibration signal processing method for the monitoring of surface roughness using a single sensor without other information sources, satisfactory results were obtained in comparison to other processing methods with a low computational cost.

  15. A signal processing application for evaluating self-monitoring blood glucose strategies in a software agent model.

    Science.gov (United States)

    Wang, Zhanle; Paranjape, Raman

    2015-07-01

    We propose the signal processing technique of calculating a cross-correlation function and an average deviation between the continuous blood glucose and the interpolation of limited blood glucose samples to evaluate blood glucose monitoring frequency in a self-aware patient software agent model. The diabetic patient software agent model [1] is a 24-h circadian, self-aware, stochastic model of a diabetic patient's blood glucose levels in a software agent environment. The purpose of this work is to apply a signal processing technique to assist patients and physicians in understanding the extent of a patient's illness using a limited number of blood glucose samples. A second purpose of this work is to determine an appropriate blood glucose monitoring frequency in order to have a minimum number of samples taken that still provide a good understanding of the patient's blood glucose levels. For society in general, the monitoring cost of diabetes is an extremely important issue, and these costs can vary tremendously depending on monitoring approaches and monitoring frequencies. Due to the cost and discomfort associated with blood glucose monitoring, today, patients expect monitoring frequencies specific to their health profile. The proposed method quantitatively assesses various monitoring protocols (from 6 times per day to 1 time per week) in nine predefined categories of patient agents in terms of risk factors of health status and age. Simulation results show that sampling 6 times per day is excessive, and not necessary for understanding the dynamics of the continuous signal in the experiments. In addition, patient agents in certain conditions only need to sample their blood glucose 1 time per week to have a good understanding of the characteristics of their blood glucose. Finally, an evaluation scenario is developed to visualize this concept, in which appropriate monitoring frequencies are shown based on the particular conditions of patient agents. This base line can

  16. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism.

    Science.gov (United States)

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-12-04

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.

  17. Copper excess in liver HepG2 cells interferes with apoptosis and lipid metabolic signaling at the protein level.

    Science.gov (United States)

    Liu, Yu; Yang, Huarong; Song, Zhi; Gu, Shaojuan

    2014-12-01

    Copper is an essential trace element that serves as an important catalytic cofactor for cuproenzymes, carrying out major biological functions in growth and development. Although Wilson's disease (WD) is unquestionably caused by mutations in the ATP7B gene and subsequent copper overload, the precise role of copper in inducing pathological changes remains poorly understood. Our study aimed to explore, in HepG2 cells exposed to copper, the cell viability and apoptotic cells was tested by MTT and Hoechst 33342 stainning respectively, and the signaling pathways involved in oxidative stress response, apoptosis and lipid metabolism were determined by real time RT-PCR and Western blot analysis. The results demonstrate dose- and time-dependent cell viability and apoptosis in HepG2 cells following treatment with 10 μM, 200 μM and 500 μM of copper sulfate for 8 and 24 h. Copper overload significantly induced the expression of HSPA1A (heat shock 70 kDa protein 1A), an oxidative stress-responsive signal gene, and BAG3 (BCL2 associated athanogene3), an anti-apoptotic gene, while expression of HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), a lipid biosynthesis and lipid metabolism gene, was inhibited. These findings provide new insights into possible mechanisms accounting for the development of liver apoptosis and steatosis in the early stages of Wilson's disease.

  18. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    Directory of Open Access Journals (Sweden)

    Yusuke Nakatsu

    2016-09-01

    Full Text Available Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14. Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  19. Cre-Mediated Stress Affects Sirtuin Expression Levels, Peroxisome Biogenesis and Metabolism, Antioxidant and Proinflammatory Signaling Pathways

    Science.gov (United States)

    Xiao, Yu; Karnati, Srikanth; Qian, Guofeng; Nenicu, Anca; Fan, Wei; Tchatalbachev, Svetlin; Höland, Anita; Hossain, Hamid; Guillou, Florian; Lüers, Georg H.; Baumgart-Vogt, Eveline

    2012-01-01

    Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  20. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    Full Text Available Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts, inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14 as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase. In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2 and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7 in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  1. Neurodegeneration Alters Metabolic Profile and Sirt 1 Signaling in High-Fat-Induced Obese Mice.

    Science.gov (United States)

    Lima, Leandro Ceotto Freitas; Saliba, Soraya Wilke; Andrade, João Marcus Oliveira; Cunha, Maria Luisa; Cassini-Vieira, Puebla; Feltenberger, John David; Barcelos, Lucíola Silva; Guimarães, André Luiz Sena; de-Paula, Alfredo Mauricio Batista; de Oliveira, Antônio Carlos Pinheiro; Santos, Sérgio Henrique Sousa

    2017-07-01

    Different factors may contribute to the development of neurodegenerative diseases. Among them, metabolic syndrome (MS), which has reached epidemic proportions, has emerged as a potential element that may be involved in neurodegeneration. Furthermore, studies have shown the importance of the sirtuin family in neuronal survival and MS, which opens the possibility of new pharmacological targets. This study investigates the influence of sirtuin metabolic pathways by examining the functional capacities of glucose-induced obesity in an excitotoxic state induced by a quinolinic acid (QA) animal model. Mice were divided into two groups that received different diets for 8 weeks: one group received a regular diet, and the other group received a high-fat diet (HF) to induce MS. The animals were submitted to a stereotaxic surgery and subdivided into four groups: Standard (ST), Standard-QA (ST-QA), HF and HF-QA. The QA groups were given a 250 nL quinolinic acid injection in the right striatum and PBS was injected in the other groups. Obese mice presented with a weight gain of 40 % more than the ST group beyond acquiring an insulin resistance. QA induced motor impairment and neurodegeneration in both ST-QA and HF-QA, although no difference was observed between these groups. The HF-QA group showed a reduction in adiposity when compared with the groups that received PBS. Therefore, the HF-QA group demonstrated a commitment-dependent metabolic pathway. The results suggest that an obesogenic diet does not aggravate the neurodegeneration induced by QA. However, the excitotoxicity induced by QA promotes a sirtuin pathway impairment that contributes to metabolic changes.

  2. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Science.gov (United States)

    Meyers, Allison M; Mourra, Devry; Beeler, Jeff A

    2017-01-01

    The contribution of high fructose corn syrup (HFCS) to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO) and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6) received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  3. High fructose corn syrup induces metabolic dysregulation and altered dopamine signaling in the absence of obesity.

    Directory of Open Access Journals (Sweden)

    Allison M Meyers

    Full Text Available The contribution of high fructose corn syrup (HFCS to metabolic disorder and obesity, independent of high fat, energy-rich diets, is controversial. While high-fat diets are widely accepted as a rodent model of diet-induced obesity (DIO and metabolic disorder, the value of HFCS alone as a rodent model of DIO is unclear. Impaired dopamine function is associated with obesity and high fat diet, but the effect of HFCS on the dopamine system has not been investigated. The objective of this study was to test the effect of HFCS on weight gain, glucose regulation, and evoked dopamine release using fast-scan cyclic voltammetry. Mice (C57BL/6 received either water or 10% HFCS solution in combination with ad libitum chow for 15 weeks. HFCS consumption with chow diet did not induce weight gain compared to water, chow-only controls but did induce glucose dysregulation and reduced evoked dopamine release in the dorsolateral striatum. These data show that HFCS can contribute to metabolic disorder and altered dopamine function independent of weight gain and high-fat diets.

  4. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure.

    Science.gov (United States)

    Ryan, John J; Archer, Stephen L

    2014-06-20

    The right ventricle (RV) is the major determinant of functional state and prognosis in pulmonary arterial hypertension. RV hypertrophy (RVH) triggered by pressure overload is initially compensatory but often leads to RV failure. Despite similar RV afterload and mass some patients develop adaptive RVH (concentric with retained RV function), while others develop maladaptive RVH, characterized by dilatation, fibrosis, and RV failure. The differentiation of adaptive versus maladaptive RVH is imprecise, but adaptive RVH is associated with better functional capacity and survival. At the molecular level, maladaptive RVH displays greater impairment of angiogenesis, adrenergic signaling, and metabolism than adaptive RVH, and these derangements often involve the left ventricle. Clinically, maladaptive RVH is characterized by increased N-terminal pro-brain natriuretic peptide levels, troponin release, elevated catecholamine levels, RV dilatation, and late gadolinium enhancement on MRI, increased (18)fluorodeoxyglucose uptake on positron emission tomography, and QTc prolongation on the ECG. In maladaptive RVH there is reduced inotrope responsiveness because of G-protein receptor kinase-mediated downregulation, desensitization, and uncoupling of β-adrenoreceptors. RV ischemia may result from capillary rarefaction or decreased right coronary artery perfusion pressure. Maladaptive RVH shares metabolic abnormalities with cancer including aerobic glycolysis (resulting from a forkhead box protein O1-mediated transcriptional upregulation of pyruvate dehydrogenase kinase), and glutaminolysis (reflecting ischemia-induced cMyc activation). Augmentation of glucose oxidation is beneficial in experimental RVH and can be achieved by inhibition of pyruvate dehydrogenase kinase, fatty acid oxidation, or glutaminolysis. Therapeutic targets in RV failure include chamber-specific abnormalities of metabolism, angiogenesis, adrenergic signaling, and phosphodiesterase-5 expression. The ability to

  5. Extracellular ATP in the Exocrine Pancreas – ATP Release, Signalling and Metabolism

    DEFF Research Database (Denmark)

    Kowal, Justyna Magdalena

    release. So far, the contribution of duct cells in purinergic signalling has never been studied. This work presents that both acinar and duct cells are sources of extracellular ATP in the exocrine pancreas. Here we show that duct cells release ATP in response to several physiological......ATP plays an important role as an autocrine/paracrine signalling molecule, being released from a number of tissues, in response to physiological and pathophysiological stimuli. Released ATP induces Ca2+ - and/or cAMP - dependent cellular responses via activation of ubiquitously expressed P2X and P2......, particularly during Ca2+ stress conditions. In conclusion, these studies demonstrate a complex regulation of purinergic signalling in exocrine pancreas. A crucial role for duct cells in mediating extracellular nucleotides homeostasis, involving ATP release, subsequent hydrolysis and conversion via...

  6. GPR Image and Signal Processing for Pavement and Road Monitoring on Android Smartphones and Tablets

    Science.gov (United States)

    Benedetto, Francesco; Benedetto, Andrea; Tedeschi, Antonio

    2014-05-01

    Ground Penetrating Radar (GPR) is a geophysical method that uses radar pulses to image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. It can detect objects, changes in material, and voids and cracks. GPR has many applications in a number of fields. In the field of civil engineering one of the most advanced technologies used for road pavement monitoring is based on the deployment of advanced GPR systems. One of the most relevant causes of road pavement damage is often referable to water intrusion in structural layers. In this context, GPR has been recently proposed as a method to estimate moisture content in a porous medium without preventive calibration. Hence, the development of methods to obtain an estimate of the moisture content is a crucial research field involving economic, social and strategic aspects in road safety for a great number of public and private Agencies. In particular, a recent new approach was proposed to estimate moisture content in a porous medium basing on the theory of Rayleigh scattering, showing a shift of the frequency peak of the GPR spectrum towards lower frequencies as the moisture content increases in the soil. Addressing some of these issues, this work proposes a mobile application, for smartphones and tablets, for GPR image and signal processing. Our application has been designed for the Android mobile operating system, since it is open source and android mobile platforms are selling the most smartphones in the world (2013). The GPR map can be displayed in black/white or color and the user can zoom and navigate into the image. The map can be loaded in two different ways: from the local memory of the portable device or from a remote server. This latter possibility can be very useful for real-time and mobile monitoring of road and pavement inspection. In addition, the application allows analyzing the GPR data also in the frequency domain. It is

  7. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.

    Science.gov (United States)

    Cömert, Alper; Hyttinen, Jari

    2015-05-15

    With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced

  8. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling.

    Science.gov (United States)

    Pasoreck, Elise K; Su, Jin; Silverman, Ian M; Gosai, Sager J; Gregory, Brian D; Yuan, Joshua S; Daniell, Henry

    2016-09-01

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zheng, Jingui

    2017-12-15

    Black rice ( Oryza sativa L.) is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ) MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3-10 days after flowering (DAF). The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%), signal transduction (16.7%) and developmental regulation and hormone-like proteins (12.5%). The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  10. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    2017-12-01

    Full Text Available Black rice (Oryza sativa L. is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF. The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%, signal transduction (16.7% and developmental regulation and hormone-like proteins (12.5%. The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  11. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    Science.gov (United States)

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  12. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening

    OpenAIRE

    Llorente, Briardo; D?Andrea, Lucio; Rodr?guez-Concepci?n, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mec...

  13. Branched-chain amino acids in metabolic signaling and insulin resistance

    Science.gov (United States)

    Branched-chain amino acids (BCAAs) are important directly- and indirectly-acting nutrient signals. Frequently, their actions have been reported to be anti-obesity in nature, especially in rodent models. Yet, circulating BCAAs tend to be elevated in obesity, and even associated with poorer metaboli...

  14. Effects of Wnt signaling on brown adipocyte differentiation and metabolism mediated by PGC-1alpha

    DEFF Research Database (Denmark)

    Kang, Sona; Bajnok, Laszlo; Longo, Kenneth A

    2005-01-01

    Activation of canonical Wnt signaling inhibits brown adipogenesis of cultured cells by impeding induction of PPARgamma and C/EBPalpha. Although enforced expression of these adipogenic transcription factors restores lipid accumulation and expression of FABP4 in Wnt-expressing cells, additional...

  15. Central and peripheral effects of thyroid hormone signalling in the control of energy metabolism

    NARCIS (Netherlands)

    Alkemade, A.

    2010-01-01

    Increasing evidence points towards a role for thyroid hormone signalling in the central nervous system with respect to the development of symptoms of thyroid disease, in addition to the well-known peripheral effects of thyroid hormone. Thyroid hormone affects target tissues directly via thyroid

  16. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling

    Czech Academy of Sciences Publication Activity Database

    Shahnejat-Bushehri, S.; Tarkowská, Danuše; Sakuraba, Y.; Balazadeh, S.

    2016-01-01

    Roč. 2, č. 3 (2016), č. článku 16013. ISSN 2055-026X R&D Projects: GA MŠk LK21306; GA MŠk(CZ) LO1204; GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : gibberellins * brassinosteroids * signalling Subject RIV: EF - Botanics Impact factor: 10.300, year: 2016

  17. Isomer-specific regulation of metabolism and PPARgamma signaling by CLA in human preadipocytes

    DEFF Research Database (Denmark)

    Brown, J Mark; Boysen, Maria Sandberg; Jensen, Søren Skov

    2003-01-01

    Trans-10,cis-12 conjugated linoleic acid (CLA) has previously been shown to be the CLA isomer responsible for CLA-induced reductions in body fat in animal models, and we have shown that this isomer, but not the cis-9,trans-11 CLA isomer, specifically decreased triglyceride (TG) accumulation...... transporter 4 gene expression. Furthermore, trans-10,cis-12 CLA reduced oleic acid uptake and oxidation when compared with all other treatments. In parallel to CLA's effects on metabolism, trans-10,cis-12 CLA decreased, whereas cis-9,trans-11 CLA increased, the expression of peroxisome proliferator...

  18. A noise reconfigurable current-reuse resistive feedback amplifier with signal-dependent power consumption for fetal ECG monitoring

    NARCIS (Netherlands)

    Song, Shuang; Rooijakkers, M.J.; Harpe, P.; Rabotti, C.; Mischi, M.; Van Roermund, A.H.M.; Cantatore, E.

    2016-01-01

    This paper presents a noise-reconfigurable resistive feedback amplifier with current-reuse technique for fetal ECG monitoring. The proposed amplifier allows for both tuning of the noise level and changing the power consumption according to the signal properties, minimizing the total power

  19. Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer's disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels.

    Science.gov (United States)

    Ruiz, Henry H; Chi, Tiffany; Shin, Andrew C; Lindtner, Claudia; Hsieh, Wilson; Ehrlich, Michelle; Gandy, Sam; Buettner, Christoph

    2016-08-01

    Epidemiologic studies have demonstrated an association between diabetes and dementia. Insulin signaling within the brain, in particular within the hypothalamus regulates carbohydrate, lipid, and branched chain amino acid (BCAA) metabolism in peripheral organs such as the liver and adipose tissue. We hypothesized that cerebral amyloidosis impairs central nervous system control of metabolism through disruption of insulin signaling in the hypothalamus, which dysregulates glucose and BCAA homeostasis resulting in increased susceptibility to diabetes. We examined whether APP/PS1 mice exhibit increased susceptibility to aging or high-fat diet (HFD)-induced metabolic impairment using metabolic phenotyping and insulin-signaling studies. APP/PS1 mice were more susceptible to high-fat feeding and aging-induced metabolic dysregulation including disrupted BCAA homeostasis and exhibited impaired hypothalamic insulin signaling. Our data suggest that AD pathology increases susceptibility to diabetes due to impaired hypothalamic insulin signaling, and that plasma BCAA levels could serve as a biomarker of hypothalamic insulin action in patients with AD. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  20. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    Science.gov (United States)

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  1. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice.

    Directory of Open Access Journals (Sweden)

    Bert Avau

    Full Text Available Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/- mice became less obese than wild type (WT mice when fed a high-fat diet (HFD. White adipose tissue (WAT mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB or quinine (Q during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB, but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.

  2. Differential regulation of c-di-GMP metabolic enzymes by environmental signals modulates biofilm formation in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Gai-Xian eRen

    2016-06-01

    Full Text Available Cyclic diguanylate (c-di-GMP is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs, HmsT and HmsD and one phosphodiesterase (PDE, HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD and HmsP in Y. pestis. Biofilm formation was higher in the presence of nonlethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfonate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulates their DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  3. A wireless capsule system with ASIC for monitoring the physiological signals of the human gastrointestinal tract.

    Science.gov (United States)

    Xu, Fei; Yan, Guozheng; Zhao, Kai; Lu, Li; Gao, Jinyang; Liu, Gang

    2014-12-01

    This paper presents the design of a wireless capsule system for monitoring the physiological signals of the human gastrointestinal (GI) tract. The primary components of the system include a wireless capsule, a portable data recorder, and a workstation. Temperature, pH, and pressure sensors; an RF transceiver; a controlling and processing application specific integrated circuit (ASIC); and batteries were applied in a wireless capsule. Decreasing capsule size, improving sensor precision, and reducing power needs were the primary challenges; these were resolved by employing micro sensors, optimized architecture, and an ASIC design that include power management, clock management, a programmable gain amplifier (PGA), an A/D converter (ADC), and a serial peripheral interface (SPI) communication unit. The ASIC has been fabricated in 0.18- μm CMOS technology with a die area of 5.0 mm × 5.0 mm. The wireless capsule integrating the ASIC controller measures Φ 11 mm × 26 mm. A data recorder and a workstation were developed, and 20 cases of human experiments were conducted in hospitals. Preprocessing in the workstation can significantly improve the quality of the data, and 76 original features were determined by mathematical statistics. Based on the 13 optimal features achieved in the evaluation of the features, the clustering algorithm can identify the patients who lack GI motility with a recognition rate reaching 83.3%.

  4. Biomedical application of wavelets: analysis of electroencephalograph signals for monitoring depth of anesthesia

    Science.gov (United States)

    Abbate, Agostino; Nayak, A.; Koay, J.; Roy, R. J.; Das, Pankaj K.

    1996-03-01

    The wavelet transform (WT) has been used to study the nonstationary information in the electroencephalograph (EEG) as an aid in determining the anesthetic depth. A complex analytic mother wavelet is utilized to obtain the time evolution of the various spectral components of the EEG signal. The technique is utilized for the detection and spectral analysis of transient and background processes in the awake and asleep states. It can be observed that the response of both states before the application of the stimulus is similar in amplitude but not in spectral contents, which suggests a background activity of the brain. The brain reacts to the external stimulus in two different modes depending on the state of consciousness of the subject. In the case of awake state, there is an evident increase in response, while for the sleep state a reduction in this activity is observed. This analysis seems to suggest that the brain has an ongoing background process that monitors external stimulus in both the sleep and awake states.

  5. Is the alkaline tide a signal to activate metabolic or ionoregulatory enzymes in the dogfish shark (Squalus acanthias)?

    Science.gov (United States)

    Wood, Chris M; Kajimura, Makiko; Mommsen, Thomas P; Walsh, Patrick J

    2008-01-01

    Experimental metabolic alkalosis is known to stimulate whole-animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine-urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L(-1) NaHCO3 (alkalosis + volume expansion) or 500 mmol L(-1) NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg(-1) h(-1). NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [HCO3-] to 20.8 mmol L(-1) (control = 4.5 mmol L(-1)) at 20 h, with unchanged arterial P(CO2), whereas NaCl/volume loading had no effect on blood acid-base status. Rectal gland Na+,K+-ATPase activity was increased 50% by NaCl loading and more than 100% by NaHCO3 loading, indicating stimulatory effects of both volume expansion and alkalosis. Rectal gland lactate dehydrogenase activity was elevated 25% by both treatments, indicating volume expansion effects only, whereas neither treatment increased the activities of the aerobic enzymes citrate synthase, NADP-isocitrate dehydrogenase, or the ketone body-utilizing enzyme beta-hydroxybutyrate dehydrogenase in the rectal gland or liver. The activity of ornithine-citrulline transcarbamoylase in skeletal muscle was doubled by NaHCO3 infusion, but neither treatment altered the activities of other OUC-related enzymes (glutamine synthetase, carbamoylphosphate synthetase III). We conclude that both the alkaline tide and salt loading/volume expansion act as

  6. Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism.

    Science.gov (United States)

    Ayyar, Vivaswath S; Almon, Richard R; DuBois, Debra C; Sukumaran, Siddharth; Qu, Jun; Jusko, William J

    2017-05-08

    Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and

  7. An energy-efficient communication method based on the relationships between biological signals for ubiquitous health monitoring.

    Science.gov (United States)

    Kwon, Hyok Chon; Na, Doosu; Ko, Byung Geun; Lee, Songjun

    2008-01-01

    Wireless sensor networks have been studied in the area of intelligent transportation systems, disaster perception, environment monitoring, ubiquitous healthcare, home network, and so on. For the ubiquitous healthcare, the previous systems collect the sensed health related data at portable devices without regard to correlations of various biological signals to determine the health conditions. It is not the energy-efficient method to gather a lot of information into a specific node to decide the health condition. Since the biological signals are related with each other to estimate certain body condition, it is necessary to be collected selectively by their relationship for energy efficiency of the networked nodes. One of researches about low power consumption is the reduction of the amount of packet transmission. In this paper, a health monitoring system, which allows the transmission of the reduced number of packets by means of setting the routing path considered the relations of biological signals, is proposed.

  8. Nitro-fatty acids in plant signaling: New key mediators of nitric oxide metabolism

    Directory of Open Access Journals (Sweden)

    Capilla Mata-Pérez

    2017-04-01

    Full Text Available Recent studies in animal systems have shown that NO can interact with fatty acids to generate nitro-fatty acids (NO2-FAs. They are the product of the reaction between reactive nitrogen species and unsaturated fatty acids, and are considered novel mediators of cell signaling based mainly on a proven anti-inflammatory response. Although these signaling mediators have been described widely in animal systems, NO2-FAs have scarcely been studied in plants. Preliminary data have revealed the endogenous presence of free and protein-adducted NO2-FAs in extra-virgin olive oil (EVOO, which appear to be contributing to the cardiovascular benefits associated with the Mediterranean diet. Importantly, new findings have displayed the endogenous occurrence of nitro-linolenic acid (NO2-Ln in the model plant Arabidopsis thaliana and the modulation of NO2-Ln levels throughout this plant's development. Furthermore, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant-defense response against different abiotic-stress conditions, mainly by inducing the chaperone network and supporting a conserved mechanism of action in both animal and plant defense processes. Thus, NO2-Ln levels significantly rose under several abiotic-stress conditions, highlighting the strong signaling role of these molecules in the plant-protection mechanism. Finally, the potential of NO2-Ln as a NO donor has recently been described both in vitro and in vivo. Jointly, this ability gives NO2-Ln the potential to act as a signaling molecule by the direct release of NO, due to its capacity to induce different changes mediated by NO or NO-related molecules such as nitration and S-nitrosylation, or by the electrophilic capacity of these molecules through a nitroalkylation mechanism. Here, we describe the current state of the art regarding the advances performed in the field of NO2-FAs in plants and their

  9. Procedures and techniques for monitoring the radiation detection, signalization and alarm systems in the centralized ambience monitoring systems of the basic nuclear facilities of the CEN Saclay

    International Nuclear Information System (INIS)

    Andre, J.-J.; Drouet, J.; Leblanc, P.

    1979-01-01

    After referring to the regulations governing the 'systematic ambience monitoring' in the basic nuclear facilities, the main radiation detection, signalization and alarm devices existing at present in these facilities of the Saclay Nuclear Study Centre are described. The analysis of the operating defects of the measuring channels and detection possibilities leads to the anomalies being classified in two separate groups: the anomalies of the logical 'all or nothing' type of which all the possible origins are integrated into a so-called 'continuity' line and the evolutive anomalies of various origins corresponding to poor functioning extending possibly to a complete absence of signal. The techniques for testing the detection devices of the radiation monitoring board set up in the 'Departement de Rayonnements' at the Saclay Nuclear Study Centre are also described [fr

  10. Genetic Polymorphisms in Vitamin D Metabolism and Signaling Genes and Risk of Breast Cancer: A Nested Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Tess V Clendenen

    Full Text Available Genetic polymorphisms in vitamin D metabolism and signaling genes have been inconsistently associated with risk of breast cancer, though few studies have examined SNPs in vitamin D-related genes other than the vitamin D receptor (VDR gene and particularly have not examined the association with the retinoid X receptor alpha (RXRA gene which may be a key vitamin D pathway gene. We conducted a nested case-control study of 734 cases and 1435 individually matched controls from a population-based prospective cohort study, the Northern Sweden Mammary Screening Cohort. Tag and functional SNPs were genotyped for the VDR, cytochrome p450 24A1 (CYP24A1, and RXRA genes. We also genotyped specific SNPs in four other genes related to vitamin D metabolism and signaling (GC/VDBP, CYP2R1, DHCR7, and CYP27B1. SNPs in the CYP2R1, DHCR7, and VDBP gene regions that were associated with circulating 25(OHD concentration in GWAS were also associated with plasma 25(OHD in our study (p-trend <0.005. After taking into account the false discovery rate, these SNPs were not significantly associated with breast cancer risk, nor were any of the other SNPs or haplotypes in VDR, RXRA, and CYP24A1. We observed no statistically significant associations between polymorphisms or haplotypes in key vitamin D-related genes and risk of breast cancer. These results, combined with the observation in this cohort and most other prospective studies of no association of circulating 25(OHD with breast cancer risk, do not support an association between vitamin D and breast cancer risk.

  11. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway.

    Science.gov (United States)

    Zhao, Shuzhi; Li, Jun; Wang, Na; Zheng, Bingqing; Li, Tao; Gu, Qing; Xu, Xun; Zheng, Zhi

    2015-10-01

    Inflammation is a major contributing factor in the development of diabetic microvascular complications, regardless of whether improved glycaemic control is achieved. Studies have increasingly indicated that fenofibrate, a lipid‑lowering therapeutic agent in clinical use, exerts a potential anti‑inflammatory effect, which is mediated by sirtuin 1 (SIRT1; an NAD+‑dependent deacetylase) in endothelial cells. The aim of the present study was to investigate the inhibitory effect of fenofibrate on metabolic memory (via the regulation of SIRT1), and inflammatory responses in cell and animal models of diabetic retinopathy (DR). The data demonstrated that high glucose treatment in human retinal endothelial cells (HRECs) inhibited the expression and deacetylase activity of SIRT1. The reduction of SIRT1 expression and deacetylase activity persisted following a return to normal glucose levels. Furthermore, nuclear factor‑κB expression was observed to be negatively correlated with SIRT1 expression and activity in HRECs under high glucose levels and the subsequent return to normal glucose levels. Fenofibrate treatment abrogated these changes. Knockdown of SIRT1 attenuated the effect of fenofibrate on high glucose‑induced NF‑κB expression. In addition, fenofibrate upregulated SIRT1 expression through peroxisome proliferator‑activated receptor α in high glucose‑induced metabolic memory. These findings indicate that fenofibrate is important in anti‑inflammatory processes and suppresses the cellular metabolic memory of high glucose‑induced stress via the SIRT1‑dependent signalling pathway. Thus, treatment with fenofibrate may offer a promising therapeutic strategy for halting the development of DR and other complications of diabetes.

  12. Wearing red for signaling: the heme-bach axis in heme metabolism, oxidative stress response and iron immunology.

    Science.gov (United States)

    Igarashi, Kazuhiko; Watanabe-Matsui, Miki

    2014-04-01

    The connection between gene regulation and metabolism is an old issue that warrants revisiting in order to understand both normal as well as pathogenic processes in higher eukaryotes. Metabolites affect the gene expression by either binding to transcription factors or serving as donors for post-translational modification, such as that involving acetylation and methylation. The focus of this review is heme, a prosthetic group of proteins that includes hemoglobin and cytochromes. Heme has been shown to bind to several transcription factors, including Bach1 and Bach2, in higher eukaryotes. Heme inhibits the transcriptional repressor activity of Bach1, resulting in the derepression of its target genes, such as globin in erythroid cells and heme oxygenase-1 in diverse cell types. Since Bach2 is important for class switch recombination and somatic hypermutation of immunoglobulin genes as well as regulatory and effector T cell differentiation and the macrophage function, the heme-Bach2 axis may regulate the immune response as a signaling cascade. We discuss future issues regarding the topic of the iron/heme-gene regulation network based on current understanding of the heme-Bach axis, including the concept of "iron immunology" as the synthesis of the iron metabolism and the immune response.

  13. Monitoring the Simultaneous Presentation of Multiple Spatialized Speech Signals in the Free Field

    National Research Council Canada - National Science Library

    Nelson, W. T; Bolia, Robert S; Ericson, Mark A; McKinley, Richard L

    1998-01-01

    .... Factorial combinations of three variables, including the number of localized speech signals, the location of the speech signals along the horizontal plane, and the sex of the talker were employed...

  14. Augmenting Sulfur Metabolism and Herbivore Defense in Arabidopsis by Bacterial Volatile Signaling

    Directory of Open Access Journals (Sweden)

    Mina eAziz

    2016-04-01

    Full Text Available Sulfur is an element necessary for the life cycle of higher plants. Its assimilation and reduction into essential biomolecules are pivotal factors determining a plant’s growth and vigor as well as resistance to environmental stress. While certain soil microbes can enhance ion solubility via chelating agents or oxidation, microbial regulation of plant-sulfur assimilation has not been reported. With an increasing understanding that soil microbes can activate growth and stress tolerance in plants via chemical signaling, the question arises as to whether such beneficial bacteria also regulate sulfur assimilation. Here we report a previously unidentified mechanism by which the growth-promoting rhizobacterium Bacillus amyloliquefaciens (GB03 transcriptionally activates genes responsible for sulfur assimilation, increasing sulfur uptake and accumulation in Arabidopsis. Transcripts encoding for sulfur-rich aliphatic and indolic glucosinolates are also GB03 induced. As a result, GB03-exposed plants with elevated glucosinolates exhibit greater protection against the generalist herbivore, Spodoptera exigua (beet armyworm. In contrast, a previously-characterized glucosinolate mutant compromised in the production of both aliphatic and indolic glucosinolates is also compromised in terms of GB03-induced protection against insect herbivory. As with in vitro studies, soil-grown plants show enhanced glucosinolate accumulation and protection against beet armyworm feeding with GB03 exposure. These results demonstrate the potential of microbes to enhance plant sulfur assimilation and emphasize the sophisticated integration of microbial signaling in plant defense.

  15. Machine Learning Techniques for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Thrane, Jakob; Wass, Jesper; Piels, Molly

    2017-01-01

    Linear signal processing algorithms are effective in dealing with linear transmission channel and linear signal detection, while the nonlinear signal processing algorithms, from the machine learning community, are effective in dealing with nonlinear transmission channel and nonlinear signal...... detection. In this paper, a brief overview of the various machine learning methods and their application in optical communication is presented and discussed. Moreover, supervised machine learning methods, such as neural networks and support vector machine, are experimentally demonstrated for in-band optical...

  16. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins.

    Science.gov (United States)

    Tkatch, Tatiana; Greotti, Elisa; Baranauskas, Gytis; Pendin, Diana; Roy, Soumitra; Nita, Luliaoana I; Wettmarshausen, Jennifer; Prigge, Matthias; Yizhar, Ofer; Shirihai, Orian S; Fishman, Daniel; Hershfinkel, Michal; Fleidervish, Ilya A; Perocchi, Fabiana; Pozzan, Tullio; Sekler, Israel

    2017-06-27

    Key mitochondrial functions such as ATP production, Ca 2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH + ) across the inner membrane. Although several drugs can modulate ΔμH + , their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψ m ) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca 2+ dynamics, and respiratory metabolism. By directly modulating Δψ m , the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.

  17. Profiling the metabolic signals involved in chemical communication between microbes using imaging mass spectrometry.

    Science.gov (United States)

    Stasulli, Nikolas M; Shank, Elizabeth A

    2016-11-01

    The ability of microbes to secrete bioactive chemical signals into their environment has been known for over a century. However, it is only in the last decade that imaging mass spectrometry has provided us with the ability to directly visualize the spatial distributions of these microbial metabolites. This technology involves collecting mass spectra from multiple discrete locations across a biological sample, yielding chemical ‘maps’ that simultaneously reveal the distributions of hundreds of metabolites in two dimensions. Advances in microbial imaging mass spectrometry summarized here have included the identification of novel strain- or coculture-specific compounds, the visualization of biotransformation events (where one metabolite is converted into another by a neighboring microbe), and the implementation of a method to reconstruct the 3D subsurface distributions of metabolites, among others. Here we review the recent literature and discuss how imaging mass spectrometry has spurred novel insights regarding the chemical consequences of microbial interactions.

  18. Peripheral insulin resistance and impaired insulin signaling contribute to abnormal glucose metabolism in preterm baboons.

    Science.gov (United States)

    Blanco, Cynthia L; McGill-Vargas, Lisa L; Gastaldelli, Amalia; Seidner, Steven R; McCurnin, Donald C; Leland, Michelle M; Anzueto, Diana G; Johnson, Marney C; Liang, Hanyu; DeFronzo, Ralph A; Musi, Nicolas

    2015-03-01

    Premature infants develop hyperglycemia shortly after birth, increasing their morbidity and death. Surviving infants have increased incidence of diabetes as young adults. Our understanding of the biological basis for the insulin resistance of prematurity and developmental regulation of glucose production remains fragmentary. The objective of this study was to examine maturational differences in insulin sensitivity and the insulin-signaling pathway in skeletal muscle and adipose tissue of 30 neonatal baboons using the euglycemic hyperinsulinemic clamp. Preterm baboons (67% gestation) had reduced peripheral insulin sensitivity shortly after birth (M value 12.5 ± 1.5 vs 21.8 ± 4.4 mg/kg · min in term baboons) and at 2 weeks of age (M value 12.8 ± 2.6 vs 16.3 ± 4.2, respectively). Insulin increased Akt phosphorylation, but these responses were significantly lower in preterm baboons during the first week of life (3.2-fold vs 9.8-fold). Preterm baboons had lower glucose transporter-1 protein content throughout the first 2 weeks of life (8%-12% of term). In preterm baboons, serum free fatty acids (FFAs) did not decrease in response to insulin, whereas FFAs decreased by greater than 80% in term baboons; the impaired suppression of FFAs in the preterm animals was paired with a decreased glucose transporter-4 protein content in adipose tissue. In conclusion, peripheral insulin resistance and impaired non-insulin-dependent glucose uptake play an important role in hyperglycemia of prematurity. Impaired insulin signaling (reduced Akt) contributes to the defect in insulin-stimulated glucose disposal. Counterregulatory hormones are not major contributors.

  19. Sustained Attention in Auditory and Visual Monitoring Tasks: Evaluation of the Administration of a Rest Break or Exogenous Vibrotactile Signals.

    Science.gov (United States)

    Arrabito, G Robert; Ho, Geoffrey; Aghaei, Behzad; Burns, Catherine; Hou, Ming

    2015-12-01

    Performance and mental workload were observed for the administration of a rest break or exogenous vibrotactile signals in auditory and visual monitoring tasks. Sustained attention is mentally demanding. Techniques are required to improve observer performance in vigilance tasks. Participants (N = 150) monitored an auditory or a visual display for changes in signal duration in a 40-min watch. During the watch, participants were administered a rest break or exogenous vibrotactile signals. Detection accuracy was significantly greater in the auditory than in the visual modality. A short rest break restored detection accuracy in both sensory modalities following deterioration in performance. Participants experienced significantly lower mental workload when monitoring auditory than visual signals, and a rest break significantly reduced mental workload in both sensory modalities. Exogenous vibrotactile signals had no beneficial effects on performance, or mental workload. A rest break can restore performance in auditory and visual vigilance tasks. Although sensory differences in vigilance tasks have been studied, this study is the initial effort to investigate the effects of a rest break countermeasure in both auditory and visual vigilance tasks, and it is also the initial effort to explore the effects of the intervention of a rest break on the perceived mental workload of auditory and visual vigilance tasks. Further research is warranted to determine exact characteristics of effective exogenous vibrotactile signals in vigilance tasks. Potential applications of this research include procedures for decreasing the temporal decline in observer performance and the high mental workload imposed by vigilance tasks. © 2015, Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence.

  20. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A.

    Science.gov (United States)

    Somanna, Naveen K; Mani, Indra; Tripathi, Satyabha; Pandey, Kailash N

    2018-04-01

    Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125 I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.

  1. Development of signal processing electronics for self powered neutron detector signal with built-in on-line insulation monitoring [Paper No.:E3

    International Nuclear Information System (INIS)

    Das, Amitabha; Chaganty, S.P.

    1993-01-01

    Self powered neutron detectors (SPNDs) are employed to monitor in-core neutron flux in nuclear reactors for control, safety and mapping of in-core neutron flux. The d.c. current produced by SPND is converted into a proportional d.c. voltage, which in turn is used for various purposes stated above. This paper describes various features of the SPND amplifier developed in the Electronics Division of Bhabha Atomic Research Centre (BARC). It also outlines the principle of working of on-line monitoring of insulation resistance (IR) of the detector and associated mineral insulated (MI) and soft cables. The amplifier generates an alarm in case of the IR of the detector and the cable assembly falls below an accepted value or the cable is not connected to the amplifier and relieves the operator from periodic and manual checking of each of the individual detectors and ensures the validity of the signal for further processing. (author). 3 figs

  2. Ghrelin is an orexigenic and metabolic signaling peptide in the arcuate and paraventricular nuclei.

    Science.gov (United States)

    Currie, Paul J; Mirza, Aaisha; Fuld, Rebecca; Park, Diana; Vasselli, Joseph R

    2005-08-01

    Ghrelin is a 28-amino acid acylated peptide and is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The GHS-R is expressed in hypothalamic nuclei, including the arcuate nucleus (Arc) where it is colocalized with neuropeptide Y (NPY) neurons. In the present study, we examined the effects of ghrelin on feeding and energy substrate utilization (respiratory quotient; RQ) following direct injections into either the arcuate or the paraventricular nucleus (PVN) of the hypothalamus. Ghrelin was administered at the beginning of the dark cycle at doses of 15-60 pmol to male and female rats. In feeding studies, food intake was measured 2 and 4 h postinjection. Separate groups of rats were injected with ghrelin, and the RQ (VCO(2)/VO(2)) was measured using an open circuit calorimeter over a 4-h period. Both Arc and PVN injections of ghrelin increased food intake in male and female rats. Ghrelin also increased RQ, reflecting a shift in energy substrate utilization in favor of carbohydrate oxidation. Because these effects are similar to those observed after PVN injection of NPY, we then assessed the impact of coinjecting ghrelin with NPY into the PVN. When rats were pretreated with very low doses of ghrelin (2.5-10 pmol), NPY's (50 pmol) effects on eating and RQ were potentiated. Overall, these data are in agreement with evidence suggesting that ghrelin functions as a gut-brain endocrine hormone implicated in the regulation of food intake and energy metabolism. Our findings are also consistent with a possible interactive role of hypothalamic ghrelin and NPY systems.

  3. Studies in iodine metabolism: Monitoring of animal thyroids: Final progress report, April 1983 through March 1987

    International Nuclear Information System (INIS)

    Van Middlesworth, L.

    1987-01-01

    This report contains the results of monitoring radioiodine and radiocesium levels in both domestic and wild animals. Included are thyroids of cattle and sheep before and after the Chernobyl accident, monitoring of thyroids from deer kills on the Oak Ridge Plantation and the Savannah River Reserve. (DT)

  4. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.

  5. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    Energy Technology Data Exchange (ETDEWEB)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l' Exercice en conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171 Aubière cedex (France); Fabre, O.; Bordenave, S. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Hillaire-Buys, D. [CHRU Montpellier, 34295 Montpellier (France); Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France)

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  6. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    International Nuclear Information System (INIS)

    Sirvent, P.; Fabre, O.; Bordenave, S.; Hillaire-Buys, D.; Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J.

    2012-01-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  7. Classification of Parameters Extracted from Cardiotocographic Signals for Early Detection of Metabolic Acidemia in Newborns

    Directory of Open Access Journals (Sweden)

    ROTARIU, C.

    2015-08-01

    Full Text Available Fetal acidosis is reflected by the values of umbilical cord pH and base deficit (BDecf: normal recordings (pH over 7.2 and BDecf under 8 mmol/l and abnormal recordings (pH under 7.2 and BDecf over 8 mmol/l. The purpose of this paper is to present the implementation of an automated system for detecting fetal acidosis in cardiotocographic recordings. The method uses spectral analysis of medium (0.07-0.13 Hz and high (0.13-1 Hz frequency spectrum. We implement the algorithm for segments of the recordings without signal loss for better classification. We determined the normalized medium and high frequency components and mid to high frequency ratio. The recordings in the database are divided into a control group (100 normal recordings and a test group (431 normal or abnormal recordings. A t-test with the p value under 0.05 between the two groups is used to classify the test group. The classification is improved by including the presence of late and prolonged decelerations in the classification process, obtaining the final results, which are comparable to the best ones in current literature.

  8. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat

    2011-01-01

    This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.

  9. Design of excitation signals for active system monitoring in a performance assessment setup

    DEFF Research Database (Denmark)

    Green, Torben; Izadi-Zamanabadi, Roozbeh; Niemann, Hans Henrik

    2011-01-01

    This paper investigates how the excitation signal should be chosen for a active performance setup. The signal is used in a setup where the main purpose is to detect whether a parameter change of the controller has changed the global performance significantly. The signal has to be able to excite...... the dynamics of the subsystem under investigation both before and after the parameter change. The controller is well know, but there exists no detailed knowledge about the dynamics of the subsystem....

  10. Research on on-line monitoring technology for steel ball's forming process based on load signal analysis method

    Science.gov (United States)

    Li, Ying-jun; Ai, Chang-sheng; Men, Xiu-hua; Zhang, Cheng-liang; Zhang, Qi

    2013-04-01

    This paper presents a novel on-line monitoring technology to obtain forming quality in steel ball's forming process based on load signal analysis method, in order to reveal the bottom die's load characteristic in initial cold heading forging process of steel balls. A mechanical model of the cold header producing process is established and analyzed by using finite element method. The maximum cold heading force is calculated. The results prove that the monitoring on the cold heading process with upsetting force is reasonable and feasible. The forming defects are inflected on the three feature points of the bottom die signals, which are the initial point, infection point, and peak point. A novel PVDF piezoelectric force sensor which is simple on construction and convenient on installation is designed. The sensitivity of the PVDF force sensor is calculated. The characteristics of PVDF force sensor are analyzed by FEM. The PVDF piezoelectric force sensor is fabricated to acquire the actual load signals in the cold heading process, and calibrated by a special device. The measuring system of on-line monitoring is built. The characteristics of the actual signals recognized by learning and identification algorithm are in consistence with simulation results. Identification of actual signals shows that the timing difference values of all feature points for qualified products are not exceed ±6 ms, and amplitude difference values are less than ±3%. The calibration and application experiments show that PVDF force sensor has good static and dynamic performances, and is competent at dynamic measuring on upsetting force. It greatly improves automatic level and machining precision. Equipment capacity factor with damages identification method depends on grade of steel has been improved to 90%.

  11. Metabolic Monitoring of Postischemic Myocardium during Intermittent Warm-Blood Cardioplegic Administration

    NARCIS (Netherlands)

    Borowski, A.; Kurt, M.; Calvo, S.; Paprotny, G.; Godehardt, E.; Fraessdorf, J.; Ghodsizad, A.

    2010-01-01

    In 12 patients undergoing elective myocardial revascularization with intermittent administration of warm-blood cardioplegic solution for myocardial protection, we analyzed metabolic changes by assay of global ischemia indicators (pH, lactate, glucose, and potassium), which we measured in the

  12. Metabolic monitoring of postischemic myocardium during intermittent warm-blood cardioplegic administration

    NARCIS (Netherlands)

    Borowski, Andreas; Kurt, Muhammed; Calvo, Sanchez; Paprotny, Gerrit; Godehardt, Erhard; Fraessdorf, Jan; Ghodsizad, Ali

    2010-01-01

    In 12 patients undergoing elective myocardial revascularization with intermittent administration of warm-blood cardioplegic solution for myocardial protection, we analyzed metabolic changes by assay of global ischemia indicators (pH, lactate, glucose, and potassium), which we measured in the

  13. Design and array signal suggestion of array type pulsed eddy current probe for health monitoring of metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Kil [Dept. of Electrical Engineering, Kunsan National University, Kunsan (Korea, Republic of)

    2015-10-15

    An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

  14. IL-6 and IGF-1 signaling within and between muscle and bone: how important is the mTOR pathway for bone metabolism?

    NARCIS (Netherlands)

    Bakker, A.D.; Jaspers, R.T.

    2015-01-01

    Insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6) play an important role in the adaptation of both muscle and bone to mechanical stimuli. Here, we provide an overview of the functions of IL-6 and IGF-1 in bone and muscle metabolism, and the intracellular signaling pathways that are well

  15. IL-6 and IGF-1 Signaling within, and between, Muscle and Bone: How Important is the mTOR Pathway for Bone Metabolism?

    NARCIS (Netherlands)

    Bakker, A.D.; Jaspers, R.T.

    2015-01-01

    Insulin-like growth factor 1 (IGF-1) and interleukin 6 (IL-6) play an important role in the adaptation of both muscle and bone to mechanical stimuli. Here, we provide an overview of the functions of IL-6 and IGF-1 in bone and muscle metabolism, and the intracellular signaling pathways that are well

  16. KENeV: A web-application for the automated reconstruction and visualization of the enriched metabolic and signaling super-pathways deriving from genomic experiments

    Directory of Open Access Journals (Sweden)

    Eleftherios Pilalis

    2015-01-01

    In conclusion, KENeV (available online at http://www.grissom.gr/kenev provides an integrative tool, suitable for users with no programming experience, for the functional interpretation, at both the metabolic and signaling level, of differentially expressed gene subsets deriving from genomic experiments.

  17. GLP-1 Elicits an Intrinsic Gut-Liver Metabolic Signal to Ameliorate Diet-Induced VLDL Overproduction and Insulin Resistance.

    Science.gov (United States)

    Khound, Rituraj; Taher, Jennifer; Baker, Christopher; Adeli, Khosrow; Su, Qiaozhu

    2017-12-01

    Perturbations in hepatic lipid and very-low-density lipoprotein (VLDL) metabolism are involved in the pathogenesis of obesity and hepatic insulin resistance. The objective of this study is to delineate the mechanism of subdiaphragmatic vagotomy in preventing obesity, hyperlipidemia, and insulin resistance. By subjecting the complete subdiaphragmatic vagotomized mice to various nutritional conditions and investigating hepatic de novo lipogenesis pathway, we found that complete disruption of subdiaphragmatic vagal signaling resulted in a significant decrease of circulating VLDL-triglyceride compared with the mice obtained sham procedure. Vagotomy further prevented overproduction of VLDL-triglyceride induced by an acute fat load and a high-fat diet-induced obesity, hyperlipidemia, hepatic steatosis, and glucose intolerance. Mechanistic studies revealed that plasma glucagon-like peptide-1 was significantly raised in the vagotomized mice, which was associated with significant reductions in mRNA and protein expression of SREBP-1c (sterol regulatory element-binding protein 1c), SCD-1 (stearoyl-CoA desaturase-1), and FASN (fatty acid synthase), as well as enhanced hepatic insulin sensitivity. In vitro, treating mouse primary hepatocytes with a glucagon-like peptide-1 receptor agonist, exendin-4, for 48 hours inhibited free fatty acid, palmitic acid treatment induced de novo lipid synthesis, and VLDL secretion from hepatocytes. Elevation of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. These novel findings, for the first time, delineate an intrinsic gut-liver regulatory circuit that is mediated by glucagon-like peptide-1 in regulating hepatic energy metabolism. © 2017 American Heart Association, Inc.

  18. Dietary pattern associated with selenoprotein P and MRI-derived body fat volumes, liver signal intensity, and metabolic disorders.

    Science.gov (United States)

    di Giuseppe, Romina; Plachta-Danielzik, Sandra; Koch, Manja; Nöthlings, Ute; Schlesinger, Sabrina; Borggrefe, Jan; Both, Marcus; Müller, Hans-Peter; Kassubek, Jan; Jacobs, Gunnar; Lieb, Wolfgang

    2018-02-14

    The association of complex dietary patterns with circulating selenoprotein P (SELENOP) levels in humans is unknown. In a general population sample, we aimed to identify a dietary pattern explaining inter-individual variation in circulating SELENOP concentrations and to study this pattern in relation to prevalent diabetes, metabolic syndrome (MetS), MRI-determined total volumes of visceral (VAT) and subcutaneous (SAT) abdominal adipose tissue, and liver signal intensity/fatty liver disease. In this cross-sectional study, serum SELENOP levels were measured in 853 individuals. In a subsample of 553 participants, whole-body MRI was performed to assess body fat distribution and liver fat. Dietary intake was assessed by a self-administered food frequency questionnaire and the dietary pattern identified using reduced-rank regression (RRR). Multivariable linear and logistic regressions were used to investigate associations between dietary pattern score and metabolic traits. Characterized by high intake of fruit, vegetables and antioxidant beverages, the RRR-derived dietary pattern displayed inverse associations with VAT, SAT, MetS, and prevalent diabetes in multivariable-adjusted restricted cubic splines. Each unit increase in dietary pattern score was associated with 31% higher SELENOP levels, 12% lower VAT (95% CI: - 19%; - 5%), 13% (95% CI: - 20%; - 6%) lower SAT values and 46% (95% CI: 27%; 60%) and 53% (95% CI: 22%; 72%) lower odds of having MetS or diabetes, respectively. No meaningful relations were observed between the dietary pattern and liver traits. Our observations propose diet-related regulation in SELENOP levels and that the identified dietary pattern is inversely related to VAT, SAT, MetS, and prevalent diabetes.

  19. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes

    Directory of Open Access Journals (Sweden)

    Sreemathi Logan

    2018-03-01

    Full Text Available Objective: A decline in mitochondrial function and biogenesis as well as increased reactive oxygen species (ROS are important determinants of aging. With advancing age, there is a concomitant reduction in circulating levels of insulin-like growth factor-1 (IGF-1 that is closely associated with neuronal aging and neurodegeneration. In this study, we investigated the effect of the decline in IGF-1 signaling with age on astrocyte mitochondrial metabolism and astrocyte function and its association with learning and memory. Methods: Learning and memory was assessed using the radial arm water maze in young and old mice as well as tamoxifen-inducible astrocyte-specific knockout of IGFR (GFAP-CreTAM/igfrf/f. The impact of IGF-1 signaling on mitochondrial function was evaluated using primary astrocyte cultures from igfrf/f mice using AAV-Cre mediated knockdown using Oroboros respirometry and Seahorse assays. Results: Our results indicate that a reduction in IGF-1 receptor (IGFR expression with age is associated with decline in hippocampal-dependent learning and increased gliosis. Astrocyte-specific knockout of IGFR also induced impairments in working memory. Using primary astrocyte cultures, we show that reducing IGF-1 signaling via a 30–50% reduction IGFR expression, comparable to the physiological changes in IGF-1 that occur with age, significantly impaired ATP synthesis. IGFR deficient astrocytes also displayed altered mitochondrial structure and function and increased mitochondrial ROS production associated with the induction of an antioxidant response. However, IGFR deficient astrocytes were more sensitive to H2O2-induced cytotoxicity. Moreover, IGFR deficient astrocytes also showed significantly impaired glucose and Aβ uptake, both critical functions of astrocytes in the brain. Conclusions: Regulation of astrocytic mitochondrial function and redox status by IGF-1 is essential to maintain astrocytic function and coordinate hippocampal

  20. Intensive monitoring of new drugs based on first prescription signals from pharmacists : a pilot study

    NARCIS (Netherlands)

    Van Grootheest, AC; Groote, JK; de Jong-van den Berg, LTW

    Background Intensive monitoring can be a valuable tool in the early detection of adverse drug reactions, especially of new drugs. Aim of this pilot study was to investigate the practical possibilities of a system of intensive monitoring, using the pharmacy computer system to detect the first

  1. Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes.

    Science.gov (United States)

    Ma, Qian; Hedden, Peter; Zhang, Qifa

    2011-08-01

    Despite the accumulation of data on the genetic and molecular understanding of heterosis, there is little information on the regulation of heterosis at the physiological level. In this study, we performed a quantitative analysis of endogenous gibberellin (GA) content and expression profiling of the GA metabolism and signaling genes to investigate the possible relationship between GA signaling and heterosis for seedling development in rice (Oryza sativa). The materials used were an incomplete diallele set of 3 × 3 crosses and the six parents. In the growing shoots of the seedlings at 20 d after sowing, significant positive correlations between the contents of some GA species and performance and heterosis based on shoot dry mass were detected. Expression analyses of GA-related genes by real-time reverse transcription-polymerase chain reaction revealed that 13 out of the 16 GA-related genes examined exhibited significant differential expression among the F1 hybrid and its parents, acting predominantly in the modes of overdominance and positive dominance. Expression levels of nine genes in the hybrids displayed significant positive correlations with the heterosis of shoot dry mass. These results imply that GAs play a positive role in the regulation of heterosis for rice seedling development. In shoots plus root axes of 4-d-old germinating seeds that had undergone the deetiolation, mimicking normal germination in soil, the axis dry mass was positively correlated with the content of GA₂₉ but negatively correlated with that of GA₁₉. Our findings provide supporting evidence for GAs playing an important regulatory role in heterosis for rice seedling development.

  2. A conserved signaling network monitors delivery of sphingolipids to the plasma membrane in budding yeast.

    Science.gov (United States)

    Clarke, Jesse; Dephoure, Noah; Horecka, Ira; Gygi, Steven; Kellogg, Douglas

    2017-10-01

    In budding yeast, cell cycle progression and ribosome biogenesis are dependent on plasma membrane growth, which ensures that events of cell growth are coordinated with each other and with the cell cycle. However, the signals that link the cell cycle and ribosome biogenesis to membrane growth are poorly understood. Here we used proteome-wide mass spectrometry to systematically discover signals associated with membrane growth. The results suggest that membrane trafficking events required for membrane growth generate sphingolipid-dependent signals. A conserved signaling network appears to play an essential role in signaling by responding to delivery of sphingolipids to the plasma membrane. In addition, sphingolipid-dependent signals control phosphorylation of protein kinase C (Pkc1), which plays an essential role in the pathways that link the cell cycle and ribosome biogenesis to membrane growth. Together these discoveries provide new clues as to how growth--dependent signals control cell growth and the cell cycle. © 2017 Clarke et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. Hibiscus rosa sinensis Linn. Petals Modulates Glycogen Metabolism and Glucose Homeostasis Signalling Pathway in Streptozotocin-Induced Experimental Diabetes.

    Science.gov (United States)

    Pillai, Sneha S; Mini, S

    2016-03-01

    The prevalence of diabetes mellitus is becoming more and more serious and reaches epidemic proportions worldwide. Scientific research is constantly looking for new agents that could be used as dietary functional ingredients in the fight against diabetes. The objective of the present study was to evaluate the effect of ethyl acetate fraction of Hibiscus rosa sinensis Linn. petals on experimental diabetes at a dose of 25 mg/kg body weight and it was compared with standard anti-diabetic drug metformin. The elevated levels of serum glucose (398.56 ± 35.78) and glycated haemoglobin (12.89 ± 1.89) in diabetic rats were significantly decreased (156.89 ± 14.45 and 6.12 ± 0.49, respectively) by Hibiscus rosa sinensis petals (EHRS) administration. Hepatotoxicity marker enzyme levels in serum were normalized. The fraction supplementation restored the glycogen content by regulating the activities of glycogen metabolizing enzymes. It significantly modulated the expressions of marker genes involved in glucose homeostasis signalling pathway. Histopathological analysis of liver and pancreas supported our findings. The overall effect was comparable with metformin. Hence, our study reveals the role of hibiscus petals for alleviation of diabetes complications, thus it can be propagated as a nutraceutical agent.

  4. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows.

    Science.gov (United States)

    Li, Xinwei; Li, Yu; Ding, Hongyan; Dong, Jihong; Zhang, Renhe; Huang, Dan; Lei, Lin; Wang, Zhe; Liu, Guowen; Li, Xiaobing

    2018-05-01

    Dairy cows with type II ketosis display hepatic fat accumulation and hyperinsulinemia, but the underlying mechanism is not completely clear. This study aimed to clarify the regulation of lipid metabolism by insulin in cow hepatocytes. In vitro, cow hepatocytes were treated with 0, 1, 10, or 100 nm insulin in the presence or absence of AICAR (an AMP-activated protein kinase alpha (AMPKα) activator). The results showed that insulin decreased AMPKα phosphorylation. This inactivation of AMPKα increased the gene and protein expression levels of carbohydrate responsive element-binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-1c), which downregulated the expression of lipogenic genes, thereby decreasing lipid biosynthesis. Furthermore, AMPKα inactivation decreased the gene and protein expression levels of peroxisome proliferator-activated receptor-α (PPARα), which upregulated the expression of lipid oxidation genes, thereby increasing lipid oxidation. In addition, insulin decreased the very low density lipoprotein (VLDL) assembly. Consequently, triglyceride content was significantly increased in insulin treated hepatocytes. Activation of AMPKα induced by AICAR could reverse the effect of insulin on PPARα, SREBP-1c, and ChREBP, thereby decreasing triglyceride content. These results indicate that insulin inhibits the AMPKα signaling pathway to increase lipid synthesis and decrease lipid oxidation and VLDL assembly in cow hepatocytes, thereby inducing TG accumulation. This mechanism could partly explain the causal relationship between hepatic fat accumulation and hyperinsulinemia in dairy cows with type II ketosis.

  5. Aryl hydrocarbon receptor signaling modulates antiviral immune responses: ligand metabolism rather than chemical source is the stronger predictor of outcome.

    Science.gov (United States)

    Boule, Lisbeth A; Burke, Catherine G; Jin, Guang-Bi; Lawrence, B Paige

    2018-01-29

    The aryl hydrocarbon receptor (AHR) offers a compelling target to modulate the immune system. AHR agonists alter adaptive immune responses, but the consequences differ across studies. We report here the comparison of four agents representing different sources of AHR ligands in mice infected with influenza A virus (IAV): TCDD, prototype exogenous AHR agonist; PCB126, pollutant with documented human exposure; ITE, novel pharmaceutical; and FICZ, degradation product of tryptophan. All four compounds diminished virus-specific IgM levels and increased the proportion of regulatory T cells. TCDD, PCB126 and ITE, but not FICZ, reduced virus-specific IgG levels and CD8 + T cell responses. Similarly, ITE, PCB126, and TCDD reduced Th1 and Tfh cells, whereas FICZ increased their frequency. In Cyp1a1-deficient mice, all compounds, including FICZ, reduced the response to IAV. Conditional Ahr knockout mice revealed that all four compounds require AHR within hematopoietic cells. Thus, differences in the immune response to IAV likely reflect variances in quality, magnitude, and duration of AHR signaling. This indicates that binding affinity and metabolism may be stronger predictors of immune effects than a compound's source of origin, and that harnessing AHR will require finding a balance between dampening immune-mediated pathologies and maintaining sufficient host defenses against infection.

  6. Machine Learning for Optical Performance Monitoring from Directly Detected PDM-QAM Signals

    DEFF Research Database (Denmark)

    Wass, J.; Thrane, Jakob; Piels, Molly

    2016-01-01

    Supervised machine learning methods are applied and demonstrated experimentally for inband OSNR estimation and modulation format classification in optical communication systems. The proposed methods accurately evaluate coherent signals up to 64QAM using only intensity information....

  7. Condition monitoring and fault diagnosis of motor bearings using undersampled vibration signals from a wireless sensor network

    Science.gov (United States)

    Lu, Siliang; Zhou, Peng; Wang, Xiaoxian; Liu, Yongbin; Liu, Fang; Zhao, Jiwen

    2018-02-01

    Wireless sensor networks (WSNs) which consist of miscellaneous sensors are used frequently in monitoring vital equipment. Benefiting from the development of data mining technologies, the massive data generated by sensors facilitate condition monitoring and fault diagnosis. However, too much data increase storage space, energy consumption, and computing resource, which can be considered fatal weaknesses for a WSN with limited resources. This study investigates a new method for motor bearings condition monitoring and fault diagnosis using the undersampled vibration signals acquired from a WSN. The proposed method, which is a fusion of the kurtogram, analog domain bandpass filtering, bandpass sampling, and demodulated resonance technique, can reduce the sampled data length while retaining the monitoring and diagnosis performance. A WSN prototype was designed, and simulations and experiments were conducted to evaluate the effectiveness and efficiency of the proposed method. Experimental results indicated that the sampled data length and transmission time of the proposed method result in a decrease of over 80% in comparison with that of the traditional method. Therefore, the proposed method indicates potential applications on condition monitoring and fault diagnosis of motor bearings installed in remote areas, such as wind farms and offshore platforms.

  8. Listening to the Deep: Live monitoring of ocean noise and cetacean acoustic signals

    OpenAIRE

    André, Michel; Van der Schaar, Mike Connor Roger Malcolm; Zaugg, Serge Alain; Houégnigan, Ludwig; Sánchez, A.M.; Castell, Joan

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO(Listening to the Deep Ocean Environment) is an international project that is allowing the real-time longterm monitoring of marine ambient noise as well as marine mammal sounds at cabled and...

  9. On-line generation of three-dimensional core power distribution using incore detector signals to monitor safety limits

    International Nuclear Information System (INIS)

    Jang, Jin Wook; Lee, Ki Bog; Na, Man Gyun; Lee, Yoon Joon

    2004-01-01

    It is essential in commercial reactors that the safety limits imposed on the fuel pellets and fuel clad barriers, such as the Linear Power Density (LPD) and the Departure from Nucleate Boiling Ratio (DNBR), are not violated during reactor operations. In order to accurately monitor the safety limits of current reactor states, a detailed three-dimensional (3D) core power distribution should be estimated from the in-core detector signals. In this paper, we propose a calculation methodology for detailed 3D core power distribution, using in-core detector signals and core monitoring constants such as the 3D Coupling Coefficients (3DCC), node power fraction, and pin-to-node factors. Also, the calculation method for several core safety parameters is introduced. The core monitoring constants for the real core state are promptly provided by the core design code and on-line MASTER(Multi-purpose Analyzer for Static and Transient Effects of Reactors), coupled with the core monitoring program. Through the plant computer, core state variables, which include reactor thermal power, control rod bank position, boron concentration, inlet moderator temperature, and flow rate, are supplied as input data for MASTER. MASTER performs the core calculation based on the neutron balance equation and generates several core monitoring constants corresponding to the real core state in addition to the expected core power distribution. The accuracy of the developed method is verified through a comparison with the current CECOR method. Because in all the verification calculation cases the proposed method shows a more conservative value than the best estimated value and a less conservative one than the current CECOR and COLSS methods, it is also confirmed that this method secures a greater operating margin through the simulation of the YGN-3 cycle-1 core from the viewpoint of the power peaking factor for the LPD and the pseudo hot pin axial power distribution for the DNBR calculation

  10. Effects of reactive oxygen species on metabolism monitored by longitudinal 1H single voxel MRS follow-up in patients with mitochondrial disease or cerebral tumors

    International Nuclear Information System (INIS)

    Constans, J M; Collet, S; Hossu, G; Courtheoux, P; Guillamo, J S; Lechapt-Zalcman, E; Valable, S; Lacombe, S; Houee Levin, C; Gauduel, Y A; Dou, W; Ruan, S; Barre, L; Rioult, F; Derlon, J M; Chapon, F; Fong, V; Kauffmann, F

    2011-01-01

    Free radicals, or Reactive Oxygen Species (ROS), have an effect on energy and glycolytic metabolism, mitochondrial function, lipid metabolism, necrosis and apoptosis, cell proliferation, and infiltration. These changes could be monitored longitudinally (every 4 months over 6 years) in humans with glial brain tumors (low and high grade) after therapy, using conventional magnetic resonance imaging (MRI) and spectroscopy (MRS) and MR perfusion. Some examples of early clinical data from longitudinal follow-up monitoring in humans of energy and glycolytic metabolism, lipid metabolism, necrosis, proliferation, and infiltration measured by conventional MRI, MRS and perfusion, and positron emission tomography (PET) are shown in glial brain tumors after therapy. Despite the difficulty, the variability and unknown factors, these repeated measurements give us a better insight into the nature of the different processes, tumor progression and therapeutic response.

  11. Effects of reactive oxygen species on metabolism monitored by longitudinal {sup 1}H single voxel MRS follow-up in patients with mitochondrial disease or cerebral tumors

    Energy Technology Data Exchange (ETDEWEB)

    Constans, J M; Collet, S; Hossu, G; Courtheoux, P [MRI Unit, Caen University Hospital, Caen, Normandy (France); Guillamo, J S; Lechapt-Zalcman, E; Valable, S [CERVOxy Group, CI-NAPS, UMR 6232 CI-NAPS, Cyceron, Caen, Normandy (France); Lacombe, S; Houee Levin, C [Paris-Sud 11 University-CNRS, Orsay (France); Gauduel, Y A [LOA, Ecole Polytechnique - ENSTA ParisTech, Palaiseau (France); Dou, W [Tsinghua University, Beijing (China); Ruan, S [CReSTIC EA 3804, IUT Troyes, Troyes (France); Barre, L [GDMTEP, Group CI-NAPS, UMR 6232 CI-NAPS, Cyceron, Caen (France); Rioult, F [CNRS UMR 6072, GREYC, Caen, Normandy (France); Derlon, J M [Neurosurgery and Neurology, Caen University Hospital, Caen, Normandy (France); Chapon, F [Pathology, Caen University Hospital, Caen, Normandy (France); Fong, V [Caen University (France); Kauffmann, F, E-mail: constans-jm@chu-caen.fr [Mathematics LMNO CNRS UMR 6139, Caen University, Caen, Normandy (France)

    2011-01-01

    Free radicals, or Reactive Oxygen Species (ROS), have an effect on energy and glycolytic metabolism, mitochondrial function, lipid metabolism, necrosis and apoptosis, cell proliferation, and infiltration. These changes could be monitored longitudinally (every 4 months over 6 years) in humans with glial brain tumors (low and high grade) after therapy, using conventional magnetic resonance imaging (MRI) and spectroscopy (MRS) and MR perfusion. Some examples of early clinical data from longitudinal follow-up monitoring in humans of energy and glycolytic metabolism, lipid metabolism, necrosis, proliferation, and infiltration measured by conventional MRI, MRS and perfusion, and positron emission tomography (PET) are shown in glial brain tumors after therapy. Despite the difficulty, the variability and unknown factors, these repeated measurements give us a better insight into the nature of the different processes, tumor progression and therapeutic response.

  12. Development of capacitive beam position, beam current and Schottky-signal monitors for the Cryogenic Storage Ring (CSR)

    International Nuclear Information System (INIS)

    Laux, Felix

    2011-01-01

    In this thesis novel techniques based on capacitive pickups for the determination of the beam current, the beam position and the Schottky-signal in storage rings have been developed. Beam current measurements at the heavy ion storage ring TSR with a capacitive pickup have been found in very good agreement with the theory. Using this device the accurate measurement of beam currents at the TSR far below 1 μA is now possible. This method will also be used at the Cryogenic Storage Ring (CSR) at which beam currents in the range of 1 nA-1 μA are expected. For the first time, position measurements with a resonant amplifier system for capacitive pickups have been examined at the TSR for later use of this technique in the CSR. With this method an increased signal-to-noise ratio can be achieved using a parallel inductance. A comparison with measurements using the rest gas beam profile monitor has shown very good agreement even at very low intensities. Experiments with the cryo-capable electronics for the CSR beam position monitors have shown an achievable quality factor of Q=500, resulting in the prospect of precise position measurements at the CSR even at very low beam currents. The CSR Schottky-Pickup will also be equipped with a resonant amplifier system with a comparable quality factor. An estimation of the signal-to-noise ratio suggests a detection limit of a few protons. (orig.)

  13. Expert system for the automatic analysis of the Eddy current signals from the monitoring of vapor generators of a PWR, type reactor

    International Nuclear Information System (INIS)

    Lefevre, F.; Baumaire, A.; Comby, R.; Benas, J.C.

    1990-01-01

    The automatization of the monitoring of the steam generator tubes required some developments in the field of data processing. The monitoring is performed by means of Eddy current tests. Improvements in signal processing and in pattern recognition associated to the artificial intelligence techniques induced EDF (French Electricity Company) to develop an automatic signal processing system. The system, named EXTRACSION (French acronym for Expert System for the Processing and classification of Signals of Nuclear Nature), insures the coherence between the different fields of knowledge (metallurgy, measurement, signals) during data processing by applying an object oriented representation [fr

  14. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; Gunnarsson, Thomas Gunnar Petursson; Hostrup, Morten

    2016-01-01

    This study tested the hypothesis that elevated plasma adrenaline or metabolic stress enhances exercise-induced PGC-1α mRNA and intracellular signaling in human muscle. Trained (VO2-max: 53.8 ± 1.8 mL min(-1) kg(-1)) male subjects completed four different exercise protocols (work load of the legs...... exercise than at rest in all protocols, and higher (P adrenaline nor muscle metabolic stress determines the magnitude of PGC-1α mRNA response in human muscle. Furthermore, higher exercise-induced changes in AMPK, p38, and CREB...

  15. Metabolic Discrimination of Select List Agents by Monitoring Cellular Responses in a Multianalyte Microphysiometer

    Directory of Open Access Journals (Sweden)

    John Wikswo

    2009-03-01

    Full Text Available Harnessing the potential of cells as complex biosensors promises the potential to create sensitive and selective detectors for discrimination of biodefense agents. Here we present toxin detection and suggest discrimination using cells in a multianalyte microphysiometer (MMP that is capable of simultaneously measuring flux changes in four extracellular analytes (acidification rate, glucose uptake, oxygen uptake, and lactate production in real-time. Differential short-term cellular responses were observed between botulinum neurotoxin A and ricin toxin with neuroblastoma cells, alamethicin and anthrax protective antigen with RAW macrophages, and cholera toxin, muscarine, 2,4-dinitro-phenol, and NaF with CHO cells. These results and the post exposure dynamics and metabolic recovery observed in each case suggest the usefulness of cell-based detectors to discriminate between specific analytes and classes of compounds in a complex matrix, and furthermore to make metabolic inferences on the cellular effects of the agents. This may be particularly valuable for classifying unknown toxins.

  16. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    International Nuclear Information System (INIS)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-01-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  17. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  18. New Train Run Monitoring system: Getting the most out of an ERTMS level 2 Signalling system

    DEFF Research Database (Denmark)

    Richter, Troels; Landex, Alex; Andersen, Jonas Lohmann Elkjær

    . Rail Net Denmark is currently implementing ERTMS Level 2 signalling systems on the entire long distance network and a CBTC signalling system on the Copenhagen Suburban network. It is unlikely, that the current RDS will be able to function in this environment and especially be capable of taking...... advantage of the additional data delivered by the new systems. The conceptual design of a new RDS has consequently been underway since the start of the signalling program. The vision is to create an automatic system that delivers “perfect train run histories” with a cause for every time loss. The future...... ERTMS Traffic Management System will include a rescheduler: Every time a train leaves its path, a rescheduling is triggered and the train receives a new timetable. As a part of this process, other trains may also be rescheduled. A concept for converting this information into the “perfect train run...

  19. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Karl A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Candy, Jim V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guss, Gabe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  20. Extensive intestinal first-pass metabolism of arctigenin: evidenced by simultaneous monitoring of both parent drug and its major metabolites.

    Science.gov (United States)

    Gao, Qiong; Zhang, Yufeng; Wo, Siukwan; Zuo, Zhong

    2014-03-01

    The current study aims to investigate intestinal absorption and metabolism of arctigenin (AR) through simultaneous monitoring of AR and its major metabolites in rat plasma. An UPLC/MS/MS assay was developed with chromatographic separation of all analytes achieved by a C18 Column (3.9mm×150mm, 3.5μm) and a gradient elution with acetonitrile and 0.1% formic acid within 9min. Sample extraction with acetonitrile was optimized to achieve satisfactory recovery for both AR and its major metabolites. The lower limit of quantification (LLOQ) for all analytes was 25ng/ml. The intra-day and inter-day precision and accuracy of each analyte at LLOQ and three quality control (QC) concentrations (low, middle and high) in rat plasma was within 15.0% RSD and 15.0% bias. The extraction recoveries were within the range of 83.8-94.0% for all analytes. The developed and validated assay was then applied to the absorption study of AR in both Caco-2 cell monolayer model and in situ single-pass rat intestinal perfusion model. High absorption permeability of AR was demonstrated in both models with Papp of (1.76±0.48)×10(-5) (A→B) (Caco-2) and Pblood of (8.6±3.0)×10(-6)cm/s (intestinal perfusion). Extensive first-pass metabolism of AR to arctigenic acid (AA) and arctigenin-4'-O-glucuronide (AG) was identified in rat intestinal perfusion study with Cummins's extraction ratios of 0.458±0.012 and 0.085±0.013, respectively. The current assay method demonstrated to be a practical tool for pharmacokinetics investigation of AR with complicated metabolism pathways and multiple metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Dispersion induced power fading for radio frequency signals and its application for fast online PMD and CD monitoring

    Science.gov (United States)

    Ning, G.; Shum, P.

    2007-06-01

    We derive the expressions for the power fading including first-order polarization mode dispersion (PMD), chromatic dispersion, chirp parameter as well as polarization-dependent chromatic dispersion (PCD), which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for radio frequency (RF) signals power fading, we get the average power fading for chromatic dispersion, chirp parameter, first-order PMD and PCD for both double sideband (DSB) modulation and single sideband (SSB) modulation. We also demonstrate a fast PMD and chromatic dispersion monitoring technology with reduced polarization-dependent gain. The measured results agree well with theoretical analysis.

  2. Method for reducing x-ray background signals from insertion device x-ray beam position monitors

    Directory of Open Access Journals (Sweden)

    Glenn Decker

    1999-11-01

    Full Text Available A method is described that provides a solution to the long-standing problem of stray radiation-induced signals on photoemission-based x-ray beam position monitors (BPMs located on insertion device x-ray beam lines. The method involves the introduction of a chicane into the accelerator lattice that directs unwanted x radiation away from the photosensitive x-ray BPM blades. This technique has been implemented at the Advanced Photon Source, and experimental confirmation of the technique is provided.

  3. Improved Fuzzy Logic System to Evaluate Milk Electrical Conductivity Signals from On-Line Sensors to Monitor Dairy Goat Mastitis

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2016-07-01

    Full Text Available The aim of this study was to develop and test a new fuzzy logic model for monitoring the udder health status (HS of goats. The model evaluated, as input variables, the milk electrical conductivity (EC signal, acquired on-line for each gland by a dedicated sensor, the bandwidth length and the frequency and amplitude of the first main peak of the Fourier frequency spectrum of the recorded milk EC signal. Two foremilk gland samples were collected from eight Saanen goats for six months at morning milking (lactation stages (LS: 0–60 Days In Milking (DIM; 61–120 DIM; 121–180 DIM, for a total of 5592 samples. Bacteriological analyses and somatic cell counts (SCC were used to define the HS of the glands. With negative bacteriological analyses and SCC < 1,000,000 cells/mL, glands were classified as healthy. When bacteriological analyses were positive or showed a SCC > 1,000,000 cells/mL, glands were classified as not healthy (NH. For each EC signal, an estimated EC value was calculated and a relative deviation was obtained. Furthermore, the Fourier frequency spectrum was evaluated and bandwidth length, frequency and amplitude of the first main peak were identified. Before using these indexes as input variables of the fuzzy logic model a linear mixed-effects model was developed to evaluate the acquired data considering the HS, LS and LS × HS as explanatory variables. Results showed that performance of a fuzzy logic model, in the monitoring of mammary gland HS, could be improved by the use of EC indexes derived from the Fourier frequency spectra of gland milk EC signals recorded by on-line EC sensors.

  4. Process Monitoring by combining several signal-analysis results using fuzzy logic

    International Nuclear Information System (INIS)

    Schoonwelle, H.; Van der Hagen, T.H.J.J.; Hoogenboom, J.E.

    1996-01-01

    In order to improve reliability in detecting anomalies in nuclear power plant performance, a method is presented which is based on acquiring various characteristics of signal data using autoregressive, wavelet and fractal-analysis techniques. These characteristics are combined using a decision making approach based on fuzzy logic. This approach is able to detect and distinguish several system states

  5. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples

    DEFF Research Database (Denmark)

    Agersnap, Sune; Larsen, William Brenner; Knudsen, Steen Wilhelm

    2017-01-01

    human assisted expansion of non-indigenous signal crayfish Pacifastacus leniusculus that carry and transmit the crayfish plague pathogen. In Denmark, also the non-indigenous narrow-clawed crayfish Astacus leptodactylus has expanded due to anthropogenic activities. Knowledge about crayfish distribution...

  6. Pharmacodynamic Assay Panel for Monitoring Phospho-Signaling Networks | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The DNA damage response (DDR) is a highly regulated signal transduction network that orchestrates the temporal and spatial organization of protein complexes required to repair (or tolerate) DNA damage (e.g., nucleotide excision repair, base excision repair, homologous recombination, non-homologous end joining, post-replication repair).

  7. Drug Safety Monitoring in Children: Performance of Signal Detection Algorithms and Impact of Age Stratification

    NARCIS (Netherlands)

    O.U. Osokogu (Osemeke); C. Dodd (Caitlin); A.C. Pacurariu (Alexandra C.); F. Kaguelidou (Florentia); D.M. Weibel (Daniel); M.C.J.M. Sturkenboom (Miriam)

    2016-01-01

    textabstractIntroduction: Spontaneous reports of suspected adverse drug reactions (ADRs) can be analyzed to yield additional drug safety evidence for the pediatric population. Signal detection algorithms (SDAs) are required for these analyses; however, the performance of SDAs in the pediatric

  8. Artificial Neural Network-Based Early-Age Concrete Strength Monitoring Using Dynamic Response Signals.

    Science.gov (United States)

    Kim, Junkyeong; Lee, Chaggil; Park, Seunghee

    2017-06-07

    Concrete is one of the most common materials used to construct a variety of civil infrastructures. However, since concrete might be susceptible to brittle fracture, it is essential to confirm the strength of concrete at the early-age stage of the curing process to prevent unexpected collapse. To address this issue, this study proposes a novel method to estimate the early-age strength of concrete, by integrating an artificial neural network algorithm with a dynamic response measurement of the concrete material. The dynamic response signals of the concrete, including both electromechanical impedances and guided ultrasonic waves, are obtained from an embedded piezoelectric sensor module. The cross-correlation coefficient of the electromechanical impedance signals and the amplitude of the guided ultrasonic wave signals are selected to quantify the variation in dynamic responses according to the strength of the concrete. Furthermore, an artificial neural network algorithm is used to verify a relationship between the variation in dynamic response signals and concrete strength. The results of an experimental study confirm that the proposed approach can be effectively applied to estimate the strength of concrete material from the early-age stage of the curing process.

  9. Different exogenous sugars affect the hormone signal pathway and sugar metabolism in "Red Globe" (Vitis vinifera L.) plantlets grown in vitro as shown by transcriptomic analysis.

    Science.gov (United States)

    Mao, Juan; Li, Wenfang; Mi, Baoqin; Dawuda, Mohammed Mujitaba; Calderón-Urrea, Alejandro; Ma, Zonghuan; Zhang, Yongmei; Chen, Baihong

    2017-09-01

    Exogenously applied 2% fructose is the most appropriate carbon source that enhances photosynthesis and growth of grape plantlets compared with the same concentrations of sucrose and glucose. The role of the sugars was regulated by the expression of key candidate genes related to hormones, key metabolic enzymes, and sugar metabolism of grape plantlets ( Vitis vinifera L.) grown in vitro. The addition of sugars including sucrose, glucose, and fructose is known to be very helpful for the development of grape (V. vinifera L.) plantlets in vitro. However, the mechanisms by which these sugars regulate plant development and sugar metabolism are poorly understood. In grape plantlets, sugar metabolism and hormone synthesis undergo special regulation. In the present study, transcriptomic analyses were performed on grape (V. vinifera L., cv. Red Globe) plantlets in an in vitro system, in which the plantlets were grown in 2% each of sucrose (S20), glucose (G20), and fructose (F20). The sugar metabolism and hormone synthesis of the plantlets were analyzed. In addition, 95.72-97.29% high-quality 125 bp reads were further analyzed out of which 52.65-60.80% were mapped to exonic regions, 13.13-28.38% to intronic regions, and 11.59-28.99% to intergenic regions. The F20, G20, and S20 displayed elevated sucrose synthase (SS) activities; relative chlorophyll contents; Rubisco activity; and IAA and zeatin (ZT) contents. We found F20 improved the growth and development of the plantlets better than G20 and S20. Sugar metabolism was a complex process, which depended on the balanced expression of key potential candidate genes related to hormones (TCP15, LOG3, IPT3, ETR1, HK2, HK3, CKX7, SPY, GH3s, MYBH, AGB1, MKK2, PP2C, PYL, ABF, SnRK, etc.), key metabolic enzymes (SUS, SPS, A/V-INV, and G6PDH), and sugar metabolism (BETAFRUCT4 and AMY). Moreover, sugar and starch metabolism controls the generation of plant hormone transduction pathway signaling molecules. Our dataset advances our

  10. Porphyrin metabolisms in human skin commensal Propionibacterium acnes bacteria: potential application to monitor human radiation risk.

    Science.gov (United States)

    Shu, M; Kuo, S; Wang, Y; Jiang, Y; Liu, Y-T; Gallo, R L; Huang, C-M

    2013-01-01

    Propionibacterium acnes (P. acnes), a Gram-positive anaerobic bacterium, is a commensal organism in human skin. Like human cells, the bacteria produce porphyrins, which exhibit fluorescence properties and make bacteria visible with a Wood's lamp. In this review, we compare the porphyrin biosynthesis in humans and P. acnes. Also, since P. acnes living on the surface of skin receive the same radiation exposure as humans, we envision that the changes in porphyrin profiles (the absorption spectra and/or metabolism) of P. acnes by radiation may mirror the response of human cells to radiation. The porphyrin profiles of P. acnes may be a more accurate reflection of radiation risk to the patient than other biodosimeters/biomarkers such as gene up-/down-regulation, which may be non-specific due to patient related factors such as autoimmune diseases. Lastly, we discuss the challenges and possible solutions for using the P. acnes response to predict the radiation risk.

  11. Long-term monitoring reveals carbon-nitrogen metabolism key to microcystin production in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    Lucas J Beversdorf

    2015-05-01

    Full Text Available The environmental drivers contributing to cyanobacterial dominance in aquatic systems have been extensively studied. However, understanding of toxic versus non-toxic cyanobacterial population dynamics and the mechanisms regulating cyanotoxin production remain elusive, both physiologically and ecologically. One reason is the disconnect between laboratory and field-based studies. Here, we combined three years of temporal data, including microcystin (MC concentrations, 16 years of long-term ecological research, and 10 years of molecular data to investigate the potential factors leading to the selection of toxic Microcystis and MC production. Our analysis revealed that nitrogen (N speciation and inorganic carbon (C availability might be important drivers of Microcystis population dynamics and that an imbalance in cellular C: N ratios may trigger MC production. More specifically, precipitous declines in ammonium concentrations lead to a transitional period of N stress, even in the presence of high nitrate concentrations, that we call the toxic phase. Following the toxic phase, temperature and cyanobacterial abundance remained elevated but MC concentrations drastically declined. Increases in ammonium due to lake turnover may have led to down regulation of MC synthesis or a shift in the community from toxic to non-toxic species. While total phosphorus (P to total N ratios were relatively low over the time-series, MC concentrations were highest when total N to total P ratios were also highest. Similarly, high C: N ratios were also strongly correlated to the toxic phase. We propose a metabolic model that corroborates molecular studies and reflects our ecological observations that C and N metabolism may regulate MC production physiologically and ecologically. In particular, we hypothesize that an imbalance between 2-oxoglutarate and ammonium in the cell regulates MC synthesis in the environment.

  12. Effect of inhibiting the lactogenic signal at calving on milk production and metabolic and immune perturbations in dairy cows.

    Science.gov (United States)

    Vanacker, N; Ollier, S; Beaudoin, F; Blouin, R; Lacasse, P

    2017-07-01

    During the periparturient period, the abrupt increase in energy demand for milk production often induces metabolic and immunological disturbances in dairy cows. Our previous work has shown that reducing milk output by milking once a day or incompletely in the first few days of lactation reduces these disturbances. The aim of this study was to reduce metabolic and immunological disturbances by limiting milk production during the first week of lactation by inhibiting the lactogenic signal driven by prolactin. Twenty-two fresh cows received 8 i.m. injections of the prolactin-release inhibitor quinagolide (QUIN; 2 mg) or water as a control (CTL). The first injection was given just after calving, and the subsequent 7 injections were given every 12 h. Milk production was measured until d 28 after calving. Blood samples were taken from d 1 (calving) to d 5 and then on d 7, 10, 14, 21, and 28 to measure concentrations of urea, phosphorus, calcium, glucose, nonesterified fatty acids (NEFA), β-hydroxybutyrate, and prolactin. Other blood samples were taken on d 2, 5, 10, and 28 to analyze oxidative burst, phagocytosis, and the effect of the serum on the lymphoproliferation of peripheral blood mononuclear cells from donor cows. Blood prolactin concentration was lower from d 2 to 5 but higher from d 10 to 28 in the QUIN cows than in the CTL cows. Milk production was lower from d 2 to 6 in the QUIN cows than in the CTL cows (24.3 ± 6.4 and 34.8 ± 4.1 kg/d on average, respectively). We observed no residual effect of quinagolide on milk production after d 6. During the first week of lactation, blood glucose and calcium concentrations were higher and β-hydroxybutyrate concentration was lower in the QUIN cows than in the CTL cows. Blood NEFA, urea, and phosphorus concentrations were not affected by the treatment. At d 2 and 5, the phagocytosis ability of polymorphonuclear leukocytes was not affected by treatment; however, quinagolide injection enhanced the proportion of cells

  13. Combining discrepancy analysis with sensorless signal resampling for condition monitoring of rotating machines under fluctuating operations

    CSIR Research Space (South Africa)

    Heyns, T

    2012-12-01

    Full Text Available This paper proposes a novel framework for monitoring the condition of a rotating machine (for example a gearbox or a bearing) that may be subject to load and speed fluctuations. The methodology is especially relevant in situations where no (or only...

  14. ALGORITHM OF CARDIO COMPLEX DETECTION AND SORTING FOR PROCESSING THE DATA OF CONTINUOUS CARDIO SIGNAL MONITORING.

    Science.gov (United States)

    Krasichkov, A S; Grigoriev, E B; Nifontov, E M; Shapovalov, V V

    The paper presents an algorithm of cardio complex classification as part of processing the data of continuous cardiac monitoring. R-wave detection concurrently with cardio complex sorting is discussed. The core of this approach is the use of prior information about. cardio complex forms, segmental structure, and degree of kindness. Results of the sorting algorithm testing are provided.

  15. Development of advanced methods for signal processing in the monitoring of sodium-cooled reactors

    International Nuclear Information System (INIS)

    Schleisiek, K.; Aberle, J.; Massier, H.; Scherer, K.P.; Vaeth, W.; Leder, H.J.; Schade, H.J.

    1987-01-01

    Selected examples (acoustic boiling detection, pattern recognition method, identification of fuel element vibrations, diagnosis system for KNK II) are used to demonstrate the benefits of up-to-date information technology in the monitoring of nuclear facilities. The methods used range from intelligent frequency analysis to AI methods like pattern recognition and expert systems. (DG) [de

  16. Continuous CO2 gas monitoring to clarify natural pattern and artificial leakage signals

    Science.gov (United States)

    Joun, W.; Ha, S. W.; Joo, Y. J.; Lee, S. S.; Lee, K. K.

    2017-12-01

    Continuous CO2 gas monitoring at shallow aquifer is significant for early detection and immediate handling of an aquifer impacted by leaking CO2 gas from the sequestration reservoir. However, it is difficult to decide the origin of CO2 gas because detected CO2 includes not only leaked CO2 but also naturally emitted CO2. We performed CO2 injection and monitoring tests in a shallow aquifer. Before the injection of CO2 infused water, we have conducted continuous monitoring of multi-level soil CO2 gas concentration and physical parameters such as temperature, humidity, pressure, wind speed and direction, and precipitation. The monitoring data represented that CO2 gas concentrations in unsaturated soil zone borehole showed differences at depths and daily variation (360 to 6980 ppm volume). Based on the observed data at 5 m and 8 m depths, vertical flux of gas was calculated as 0.471 L/min (LPM) for inflow from 5 m to 8 m and 9.42E-2 LPM for outflow from 8 m to 5 m. The numerical and analytical models were used to calculate the vertical flux of gas and to compare with observations. The results showed that pressure-based modeling could not explain the rapid change of CO2 gas concentration in borehole. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)

  17. An Approach for Real-time Levee Health Monitoring Using Signal Processing Methods

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2013-01-01

    We developed a levee health monitoring system within the UrbanFlood project funded under the EU 7th Framework Programme. A novel real-time levee health assessment Artificial Intelligence system is developed using data-driven methods. The system is implemented in the UrbanFlood early warning system.

  18. The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression.

    Science.gov (United States)

    Dienel, Gerald A

    2017-01-10

    Glucose, glycogen, and lactate are traditionally identified with brain energetics, ATP turnover, and pathophysiology. However, recent studies extend their roles to include involvement in astrocytic signaling, memory consolidation, and gene expression. Emerging roles for these brain fuels and a readily-diffusible by-product are linked to differential fluxes in glycolytic and oxidative pathways, astrocytic glycogen dynamics, redox shifts, neuron-astrocyte interactions, and regulation of astrocytic activities by noradrenaline released from the locus coeruleus. Disproportionate utilization of carbohydrate compared with oxygen during brain activation is influenced by catecholamines, but its physiological basis is not understood and its magnitude may be affected by technical aspects of metabolite assays. Memory consolidation and gene expression are impaired by glycogenolysis blockade, and prevention of these deficits by injection of abnormally-high concentrations of lactate was interpreted as a requirement for astrocyte-to-neuron lactate shuttling in memory and gene expression. However, lactate transport was not measured and evidence for presumed shuttling is not compelling. In fact, high levels of lactate used to preserve memory consolidation and induce gene expression are sufficient to shut down neuronal firing via the HCAR1 receptor. In contrast, low lactate levels activate a receptor in locus coeruleus that stimulates noradrenaline release that may activate astrocytes throughout brain. Physiological relevance of exogenous concentrations of lactate used to mimic and evaluate metabolic, molecular, and behavioral effects of lactate requires close correspondence with the normal lactate levels, the biochemical and cellular sources and sinks, and specificity of lactate delivery to target cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys.

    Directory of Open Access Journals (Sweden)

    Laura Campello

    Full Text Available Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ± 1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to

  20. Effects of salicylic acid-induced wine rich in anthocyanins on metabolic parameters and adipose insulin signaling in high-fructose fed rats.

    Science.gov (United States)

    Rodriguez Lanzi, Cecilia; de Rosas, Inés; Perdicaro, Diahann J; Ponce, María Teresa; Martinez, Liliana; Miatello, Roberto M; Cavagnaro, Bruno; Vazquez Prieto, Marcela A

    2016-12-01

    We evaluated the effects of Syrah red wine treated with salicylic acid (RW SA) and its control red wine (RW) on metabolic parameters, systolic blood pressure and adipose tissue insulin signaling in high-fructose (F) fed rats. Grape treated with SA increased the anthocyanin (ANTs) levels in RW. F induced increased systolic blood pressure, dislipidemia and insulin resistance (HOMA:IR). F rats treated with RW significantly prevented these alterations while RW SA partially attenuated triglycerides levels and HOMA:IR without modifications in HDL cholesterol levels. F impaired the adipose tissue response to insulin. Supplementation with RW and RW SA partially attenuated these alterations. Rats supplemented with RW SA had lesser beneficial effects on metabolic alterations than control RW, while both RW and RW SA attenuated altered adipose response to insulin. More studies are necessary to deeply evaluate the effect on SA-induced RW rich in ANTs levels on metabolic alterations associated to MetS.

  1. [Development and basics of metabolic monitoring in dairy cows. Focus on research in Eastern Germany and at the University of Leipzig, Germany].

    Science.gov (United States)

    Fürll, M

    2016-01-01

    Systematic metabolic monitoring began in German-speaking countries in the late 1960s, early 1970s, due to an increase in metabolic disorders as a cause of infertility and mastitis and aimed at their prevention through early diagnosis. Development of a unified monitoring standard: Initiated by Rossow, Gürtler, Ehrentraut, Seidel and Furcht a standard "metabolic monitoring in cattle production" was developed in the 1970s. It included farm analysis, clinical and biochemical controls, prophylaxis and follow-up controls. Key points were: periodic screenings of heavily loaded, healthy indicator animals 2-4 days post partum (p.  p.), 2-8 weeks p.  p. and 1-2 weeks ante partum, maximal 10 animals/group, pooled samples are useful, optimal are individual samples, use of informative sample substrate and parameters, precise handling of specimens, expert assessment and follow-up. Metabolic controls during 1982-1989 in approximately 242  000 cows revealed means of 32.9% ketoses, 20.0% metabolic acidosis, 21.9% metabolic alkalosis, 34.2% nitrogen-metabolism disorders, 17.3% sodium deficiency and 23.7% liver disorders. Development of a metabolic profile after 1989: Reference values at higher milk yield, early diagnosis of diseases of the fat mobilization syndrome and improved early diagnosis by new indicators, including creatine kinase (CK), alkaline phosphatase (AP) with isoenzymes, acute phase proteins, cytokines, antioxidants, carnitine and lipoprotein fractions, were established. Optimized blood and urine screenings have important advantages over milk analysis. They are an important method of health and performance stabilization by exact analysis of causes and derived prevention. The fertility related parameters free fatty acids, β-hydroxybutyrate, urea, inorganic phosphate, CK, AP, sodium, potassium, selenium, copper, β-carotene and net acid-base excretion proved to be a standard spectrum for screenings. These should be tested once a year/herd, if necessary as

  2. Acoustic signal emission monitoring as a novel method to predict steam pops during radiofrequency ablation: preliminary observations.

    Science.gov (United States)

    Chik, William W B; Kosobrodov, Roman; Bhaskaran, Abhishek; Barry, Michael Anthony Tony; Nguyen, Doan Trang; Pouliopoulos, Jim; Byth, Karen; Sivagangabalan, Gopal; Thomas, Stuart P; Ross, David L; McEwan, Alistair; Kovoor, Pramesh; Thiagalingam, Aravinda

    2015-04-01

    Steam pop is an explosive rupture of cardiac tissue caused by tissue overheating above 100 °C, resulting in steam formation, predisposing to serious complications associated with radiofrequency (RF) ablations. However, there are currently no reliable techniques to predict the occurrence of steam pops. We propose the utility of acoustic signals emitted during RF ablation as a novel method to predict steam pop formation and potentially prevent serious complications. Radiofrequency generator parameters (power, impedance, and temperature) were temporally recorded during ablations performed in an in vitro bovine myocardial model. The acoustic system consisted of HTI-96-min hydrophone, microphone preamplifier, and sound card connected to a laptop computer. The hydrophone has the frequency range of 2 Hz to 30 kHz and nominal sensitivity in the range -240 to -165 dB. The sound was sampled at 96 kHz with 24-bit resolution. Output signal from the hydrophone was fed into the camera audio input to synchronize the video stream. An automated system was developed for the detection and analysis of acoustic events. Nine steam pops were observed. Three distinct sounds were identified as warning signals, each indicating rapid steam formation and its release from tissue. These sounds had a broad frequency range up to 6 kHz with several spectral peaks around 2-3 kHz. Subjectively, these warning signals were perceived as separate loud clicks, a quick succession of clicks, or continuous squeaking noise. Characteristic acoustic signals were identified preceding 80% of pops occurrence. Six cardiologists were able to identify 65% of acoustic signals accurately preceding the pop. An automated system identified the characteristic warning signals in 85% of cases. The mean time from the first acoustic signal to pop occurrence was 46 ± 20 seconds. The automated system had 72.7% sensitivity and 88.9% specificity for predicting pops. Easily identifiable characteristic acoustic emissions

  3. Methods to Manipulate and Monitor Wnt Signaling in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Huggins, Ian J; Brafman, David; Willert, Karl

    2016-01-01

    Human pluripotent stem cells (hPSCs) may revolutionize medical practice by providing: (a) a renewable source of cells for tissue replacement therapies, (b) a powerful system to model human diseases in a dish, and (c) a platform for examining efficacy and safety of novel drugs. Furthermore, these cells offer a unique opportunity to study early human development in vitro, in particular, the process by which a seemingly uniform cell population interacts to give rise to the three main embryonic lineages: ectoderm, endoderm. and mesoderm. This process of lineage allocation is regulated by a number of inductive signals that are mediated by growth factors, including FGF, TGFβ, and Wnt. In this book chapter, we introduce a set of tools, methods, and protocols to specifically manipulate the Wnt signaling pathway with the intention of altering the cell fate outcome of hPSCs.

  4. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats.

    Science.gov (United States)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)-cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ-Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ-Cd induced diabetic nephrotoxic rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The Development of Several Electromagnetic Monitoring Strategies and Algorithms for Validating Pre-Earthquake Electromagnetic Signals

    Science.gov (United States)

    Bleier, T. E.; Dunson, J. C.; Roth, S.; Mueller, S.; Lindholm, C.; Heraud, J. A.

    2012-12-01

    QuakeFinder, a private research group in California, reports on the development of a 100+ station network consisting of 3-axis induction magnetometers, and air conductivity sensors to collect and characterize pre-seismic electromagnetic (EM) signals. These signals are combined with daily Infra Red signals collected from the GOES weather satellite infrared (IR) instrument to compare and correlate with the ground EM signals, both from actual earthquakes and boulder stressing experiments. This presentation describes the efforts QuakeFinder has undertaken to automatically detect these pulse patterns using their historical data as a reference, and to develop other discriminative algorithms that can be used with air conductivity sensors, and IR instruments from the GOES satellites. The overall big picture results of the QuakeFinder experiment are presented. In 2007, QuakeFinder discovered the occurrence of strong uni-polar pulses in their magnetometer coil data that increased in tempo dramatically prior to the M5.1 earthquake at Alum Rock, California. Suggestions that these pulses might have been lightning or power-line arcing did not fit with the data actually recorded as was reported in Bleier [2009]. Then a second earthquake occurred near the same site on January 7, 2010 as was reported in Dunson [2011], and the pattern of pulse count increases before the earthquake occurred similarly to the 2007 event. There were fewer pulses, and the magnitude of them was decreased, both consistent with the fact that the earthquake was smaller (M4.0 vs M5.4) and farther away (7Km vs 2km). At the same time similar effects were observed at the QuakeFinder Tacna, Peru site before the May 5th, 2010 M6.2 earthquake and a cluster of several M4-5 earthquakes.

  6. On Time Domain Analysis of Photoplethysmogram Signals for Monitoring Heat Stress

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2015-09-01

    Full Text Available There are a limited number of studies on heat stress dynamics during exercise using the photoplethysmogram (PPG and its second derivative (APG. However, we investigate the most suitable index from short PPG signal recordings for heat stress assessment. The APG waveform consists of a, b, c and d waves in systole and an e wave in diastole. Our preliminary results indicate that the use of the energy of aa area, derived from PPG signals measured from emergency responders in tropical conditions, is promising in determining the heat stress level using 20-s recordings. After examining 14 time domain features using leave-one-out cross-validation, we found that the aa energy extracted from PPG signals is the most informative feature for classifying heat-stressed subjects, with an overall accuracy of 79%. Moreover, the combination of the aa energy with the traditional heart rate variability index of heat stress (i.e., the square root of the mean of the squares of the successive aa intervals improved the heat stress detection to an overall accuracy of 83%.

  7. A diagnostic signal selection scheme for planetary gearbox vibration monitoring under non-stationary operational conditions

    International Nuclear Information System (INIS)

    Feng, Ke; Wang, KeSheng; Zhang, Mian; Ni, Qing; Zuo, Ming J

    2017-01-01

    The planetary gearbox, due to its unique mechanical structures, is an important rotating machine for transmission systems. Its engineering applications are often in non-stationary operational conditions, such as helicopters, wind energy systems, etc. The unique physical structures and working conditions make the vibrations measured from planetary gearboxes exhibit a complex time-varying modulation and therefore yield complicated spectral structures. As a result, traditional signal processing methods, such as Fourier analysis, and the selection of characteristic fault frequencies for diagnosis face serious challenges. To overcome this drawback, this paper proposes a signal selection scheme for fault-emphasized diagnostics based upon two order tracking techniques. The basic procedures for the proposed scheme are as follows. (1) Computed order tracking is applied to reveal the order contents and identify the order(s) of interest. (2) Vold–Kalman filter order tracking is used to extract the order(s) of interest—these filtered order(s) constitute the so-called selected vibrations. (3) Time domain statistic indicators are applied to the selected vibrations for faulty information-emphasized diagnostics. The proposed scheme is explained and demonstrated in a signal simulation model and experimental studies and the method proves to be effective for planetary gearbox fault diagnosis. (paper)

  8. Improved data acquisition methods for uninterrupted signal monitoring and ultra-fast plasma diagnostics in LHD

    International Nuclear Information System (INIS)

    Nakanishi, Hideya; Imazu, Setsuo; Ohsuna, Masaki

    2012-01-01

    To deal with endless data streams acquired in LHD steady-state experiments, the LHD data acquisition system was designed with a simple concept that divides a long pulse into a consecutive series of 10-s “subshots”. Latest digitizers applying high-speed PCI-Express technology, however, output nonstop gigabyte per second data streams whose subshot intervals would be extremely long if 10-s rule was applied. These digitizers need shorter subshot intervals, less than 10-s long. In contrast, steady-state fusion plants need uninterrupted monitoring of the environment and device soundness. They adopt longer subshot lengths of either 10 min or 1 day. To cope with both uninterrupted monitoring and ultra-fast diagnostics, the ability to vary the subshot length according to the type of operation is required. In this study, a design modification that enables variable subshot lengths was implemented and its practical effectiveness in LHD was verified. (author)

  9. AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling.

    Science.gov (United States)

    Dietz, Karl-Josef; Vogel, Marc Oliver; Viehhauser, Andrea

    2010-09-01

    To optimize acclimation responses to environmental growth conditions, plants integrate and weigh a diversity of input signals. Signal integration within the signalling networks occurs at different sites including the level of transcription factor activation. Accumulating evidence assigns a major and diversified role in environmental signal integration to the family of APETALA 2/ethylene response element binding protein (AP2/EREBP) transcription factors. Presently, the Plant Transcription Factor Database 3.0 assigns 147 gene loci to this family in Arabidopsis thaliana, 200 in Populus trichocarpa and 163 in Oryza sativa subsp. japonica as compared to 13 to 14 in unicellular algae ( http://plntfdb.bio.uni-potsdam.de/v3.0/ ). AP2/EREBP transcription factors have been implicated in hormone, sugar and redox signalling in context of abiotic stresses such as cold and drought. This review exemplarily addresses present-day knowledge of selected AP2/EREBP with focus on a function in stress signal integration and retrograde signalling and defines AP2/EREBP-linked gene networks from transcriptional profiling-based graphical Gaussian models. The latter approach suggests highly interlinked functions of AP2/EREBPs in retrograde and stress signalling.

  10. Real-time signal processing of accelerometer data for wearable medical patient monitoring devices.

    Science.gov (United States)

    Van Wieringen, Matt; Eklund, J

    2008-01-01

    Elderly and other people who live at home but required some physical assistance to do so are often more susceptible injury causing falls in and around their place of residence. In the event that a fall does occur, as a direct result of a previous medical condition or the fall itself, these people are typically less likely to be able to seek timely medical help without assistance. The goal of this research is to develop a wearable sensor device that uses an accelerometer for monitoring the movement of the person to detect falls after they have occurred in order to enable timely medical assistance. The data coming from the accelerometer is processed in real-time in the device and sent to a remote monitoring station where operators can attempt to make contact with the person and/or notify medical personnel of the situation. The ADXL330 accelerometer is contained within a Nintendo WiiMote controller, which forms the basis of the wearable medical sensor. The accelerometer data can then be sent via Bluetooth connection and processed by a local gateway processor. If a fall is detected, the gateway will then contact a remote monitoring station, on a cellular network, for example, via satellite, and/or through a hardwired phone or Internet connection. To detect the occurrence of ta fall, the accelerometer data is passed through a matched filter and the data is compared to benchmark analysis data that will define the conditions that represents the occurrence of a fall.

  11. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reto Müller

    Full Text Available The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation.

  12. Three novel obese indicators perform better in monitoring management of metabolic syndrome in type 2 diabetes.

    Science.gov (United States)

    Ma, Chun-Ming; Lu, Na; Wang, Rui; Liu, Xiao-Li; Lu, Qiang; Yin, Fu-Zai

    2017-08-29

    The present study evaluated the performance of three novel obese indicators, visceral adiposity index (VAI), lipid accumulation product (LAP) and waist circumference-triglyceride index (WTI), for identifying metabolic syndrome(MetS) in type 2 diabetes. A cross-sectional study was conducted on 711 type 2 diabetes in Qinhuangdao. The MetS was defined as the definition of Chinese Diabetes Society. Receiver operating characteristic curve analyses were performed to assess the accuracy of three obese indicators as diagnostic tests for MetS. The prevalence of MetS was 71.3%. In men, among all three obese indicators, the LAP had the highest area under curve (AUC) value (AUC = 0.894), followed by VAI (AUC = 0.860) and WTI (AUC = 0.855). In women, among all three obese indicators, the LAP had the highest AUC value (AUC = 0.906), followed by WTI (AUC = 0.887) and VAI (AUC = 0.881). However. there was no significant difference between the three obese indicators(P > 0.05). Three obese indicators were effective indicators for the screening of MetS, LAP and WTI are more simple.

  13. Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring

    Science.gov (United States)

    Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

    2014-06-01

    The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), β-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while β-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological

  14. 2 H-fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the δ2 H values of plant organic compounds.

    Science.gov (United States)

    Cormier, Marc-André; Werner, Roland A; Sauer, Peter E; Gröcke, Darren R; Leuenberger, Markus C; Wieloch, Thomas; Schleucher, Jürgen; Kahmen, Ansgar

    2018-04-01

    Hydrogen (H) isotope ratio (δ 2 H) analyses of plant organic compounds have been applied to assess ecohydrological processes in the environment despite a large part of the δ 2 H variability observed in plant compounds not being fully elucidated. We present a conceptual biochemical model based on empirical H isotope data that we generated in two complementary experiments that clarifies a large part of the unexplained variability in the δ 2 H values of plant organic compounds. The experiments demonstrate that information recorded in the δ 2 H values of plant organic compounds goes beyond hydrological signals and can also contain important information on the carbon and energy metabolism of plants. Our model explains where 2 H-fractionations occur in the biosynthesis of plant organic compounds and how these 2 H-fractionations are tightly coupled to a plant's carbon and energy metabolism. Our model also provides a mechanistic basis to introduce H isotopes in plant organic compounds as a new metabolic proxy for the carbon and energy metabolism of plants and ecosystems. Such a new metabolic proxy has the potential to be applied in a broad range of disciplines, including plant and ecosystem physiology, biogeochemistry and palaeoecology. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  15. Evolutionary recycling of light signaling components in fleshy fruits: new insights on the role of pigments to monitor ripening

    Directory of Open Access Journals (Sweden)

    Briardo eLlorente

    2016-03-01

    Full Text Available Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes and phytochrome-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs.

  16. Evolutionary Recycling of Light Signaling Components in Fleshy Fruits: New Insights on the Role of Pigments to Monitor Ripening.

    Science.gov (United States)

    Llorente, Briardo; D'Andrea, Lucio; Rodríguez-Concepción, Manuel

    2016-01-01

    Besides an essential source of energy, light provides environmental information to plants. Photosensory pathways are thought to have occurred early in plant evolution, probably at the time of the Archaeplastida ancestor, or perhaps even earlier. Manipulation of individual components of light perception and signaling networks in tomato (Solanum lycopersicum) affects the metabolism of ripening fruit at several levels. Most strikingly, recent experiments have shown that some of the molecular mechanisms originally devoted to sense and respond to environmental light cues have been re-adapted during evolution to provide plants with useful information on fruit ripening progression. In particular, the presence of chlorophylls in green fruit can strongly influence the spectral composition of the light filtered through the fruit pericarp. The concomitant changes in light quality can be perceived and transduced by phytochromes (PHYs) and PHY-interacting factors, respectively, to regulate gene expression and in turn modulate the production of carotenoids, a family of metabolites that are relevant for the final pigmentation of ripe fruits. We raise the hypothesis that the evolutionary recycling of light-signaling components to finely adjust pigmentation to the actual ripening stage of the fruit may have represented a selective advantage for primeval fleshy-fruited plants even before the extinction of dinosaurs.

  17. Low-complexity R-peak detection in ECG signals: a preliminary step towards ambulatory fetal monitoring.

    Science.gov (United States)

    Rooijakkers, Michiel; Rabotti, Chiara; Bennebroek, Martijn; van Meerbergen, Jef; Mischi, Massimo

    2011-01-01

    Non-invasive fetal health monitoring during pregnancy has become increasingly important. Recent advances in signal processing technology have enabled fetal monitoring during pregnancy, using abdominal ECG recordings. Ubiquitous ambulatory monitoring for continuous fetal health measurement is however still unfeasible due to the computational complexity of noise robust solutions. In this paper an ECG R-peak detection algorithm for ambulatory R-peak detection is proposed, as part of a fetal ECG detection algorithm. The proposed algorithm is optimized to reduce computational complexity, while increasing the R-peak detection quality compared to existing R-peak detection schemes. Validation of the algorithm is performed on two manually annotated datasets, the MIT/BIH Arrhythmia database and an in-house abdominal database. Both R-peak detection quality and computational complexity are compared to state-of-the-art algorithms as described in the literature. With a detection error rate of 0.22% and 0.12% on the MIT/BIH Arrhythmia and in-house databases, respectively, the quality of the proposed algorithm is comparable to the best state-of-the-art algorithms, at a reduced computational complexity.

  18. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    He JL

    2014-12-01

    increase in the intracellular level of glutathione and total glutathione S-transferase content. SCE significantly elevated the messenger ribonucleic acid and protein levels of P-glycoprotein and multidrug resistance-associated protein 2 and 4, whereas the expression of organic anion transporting peptide 1A2 and 1B1 was significantly downregulated by SCE. Knockdown of Nrf2 by small interfering ribonucleic acid attenuated the regulatory effect of SCE on these DMEs and drug transporters. SCE significantly upregulated Nrf2 and promoted the translocation of Nrf2 from cytoplasm to the nuclei. Additionally, SCE significantly suppressed the expression of cytosolic Kelch-like ECH-associated protein 1 (the repressor of Nrf2 and remarkably increased Nrf2 stability in HepG2 cells. Taken together, our findings suggest that the hepatoprotective effects of SCE may be partially ascribed to the modulation of DMEs and drug transporters via Nrf2-mediated signaling pathway. SCE may alter the pharmacokinetics of other coadministered drugs that are substrates of these DMEs and transporters and thus cause unfavorable herb–drug interactions. Keywords: Nrf2, Keap1, HepG2 cell, drug metabolizing enzyme, drug transporter, P-gp, MRP, OATP, Schisandra chinensis

  19. Design, development and implementation of the IR signaling techniques for monitoring ambient and body temperature

    International Nuclear Information System (INIS)

    Baqai, A.

    2014-01-01

    Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks). This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red) communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes), TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags. (author)

  20. Design, development and implementation of the IR signaling techniques for monitoring ambient and body temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baqai, A. [Mehran Univ. of Engineering and Technology, Jamshoro (Pakistan). Dept. of Information and Communication Technology

    2014-07-15

    Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks). This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red) communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes), TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags. (author)

  1. Temporal variations in metabolic and autotrophic indices for Acropora digitifera and Acropora spicifera--implications for monitoring projects.

    Directory of Open Access Journals (Sweden)

    Saskia Hinrichs

    Full Text Available Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal. We compared metabolic indices (RNA/DNA ratio, protein concentration and autotrophic indices (Chlorophyll a (Chl a, zooxanthellae density, effective quantum yield (yield and relative electron transport rate (rETR for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia in August 2010 (austral winter and February 2011 (austral summer. Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal and short-term (diel coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time

  2. Temporal variations in metabolic and autotrophic indices for Acropora digitifera and Acropora spicifera--implications for monitoring projects.

    Science.gov (United States)

    Hinrichs, Saskia; Patten, Nicole L; Waite, Anya M

    2013-01-01

    Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal). We compared metabolic indices (RNA/DNA ratio, protein concentration) and autotrophic indices (Chlorophyll a (Chl a), zooxanthellae density, effective quantum yield (yield) and relative electron transport rate (rETR)) for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia) in August 2010 (austral winter) and February 2011 (austral summer). Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal) and short-term (diel) coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time-lag effect has

  3. Temporal Variations in Metabolic and Autotrophic Indices for Acropora digitifera and Acropora spicifera – Implications for Monitoring Projects

    Science.gov (United States)

    Hinrichs, Saskia; Patten, Nicole L.; Waite, Anya M.

    2013-01-01

    Coral health indices are important components of the management assessments of coral reefs, providing insight into local variation in reef condition, as well as tools for comparisons between reefs and across various time scales. Understanding how such health indices vary in space and time is critical to their successful implementation as management tools. Here we compare autotrophic and heterotrophic coral health indices, examining specifically the temporal variation driven by the local environmental variation, at three scales (diel, daily and seasonal). We compared metabolic indices (RNA/DNA ratio, protein concentration) and autotrophic indices (Chlorophyll a (Chl a), zooxanthellae density, effective quantum yield (yield) and relative electron transport rate (rETR)) for two dominant Acropora species, A. digitifera and A. spicifera at Ningaloo Reef (north-western Australia) in August 2010 (austral winter) and February 2011 (austral summer). Clear seasonal patterns were documented for metabolic indices, zooxanthellae density and rETR, while cyclic diel patterns only occurred for yield and rETR, and RNA/DNA ratio. Significant daily variation was observed for RNA/DNA ratio, Chl a concentration, yield and rETR. Results suggest that zooxanthellae density and protein concentrations are good long-term indicators of coral health whose variance is largely seasonal, while RNA/DNA ratio and rETR can be used for both long-term (seasonal) and short-term (diel) coral monitoring. Chl a can be used to describe changes between days and yield for both diel and daily variations. Correlations between health indices and light history showed that short-term changes in irradiance had the strongest impact on all health indices except zooxanthellae density for A. digitifera; for A. spicifera no correlation was observed at all. However, cumulative irradiance over the several days before sampling showed significant correlations with most health indices suggesting that a time-lag effect has

  4. Involvement of glucocorticoid prereceptor metabolism and signaling in rat visceral adipose tissue lipid metabolism after chronic stress combined with high-fructose diet.

    Science.gov (United States)

    Bursać, Biljana; Djordjevic, Ana; Veličković, Nataša; Milutinović, Danijela Vojnović; Petrović, Snježana; Teofilović, Ana; Gligorovska, Ljupka; Preitner, Frederic; Tappy, Luc; Matić, Gordana

    2018-05-03

    Both fructose overconsumption and increased glucocorticoids secondary to chronic stress may contribute to overall dyslipidemia. In this study we specifically assessed the effects and interactions of dietary fructose and chronic stress on lipid metabolism in the visceral adipose tissue (VAT) of male Wistar rats. We analyzed the effects of 9-week 20% high fructose diet and 4-week chronic unpredictable stress, separately and in combination, on VAT histology, glucocorticoid prereceptor metabolism, glucocorticoid receptor subcellular redistribution and expression of major metabolic genes. Blood triglycerides and fatty acid composition were also measured to assess hepatic Δ9 desaturase activity. The results showed that fructose diet increased blood triglycerides and Δ9 desaturase activity. On the other hand, stress led to corticosterone elevation, glucocorticoid receptor activation and decrease in adipocyte size, while phosphoenolpyruvate carboxykinase, adipose tissue triglyceride lipase, FAT/CD36 and sterol regulatory element binding protein-1c (SREBP-1c) were increased, pointing to VAT lipolysis and glyceroneogenesis. The combination of stress and fructose diet was associated with marked stimulation of fatty acid synthase and acetyl-CoA carboxylase mRNA level and with increased 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase protein levels, suggesting a coordinated increase in hexose monophosphate shunt and de novo lipogenesis. It however did not influence the level of peroxisome proliferator-activated receptor-gamma, SREBP-1c and carbohydrate responsive element-binding protein. In conclusion, our results showed that only combination of dietary fructose and stress increase glucocorticoid prereceptor metabolism and stimulates lipogenic enzyme expression suggesting that interaction between stress and fructose may be instrumental in promoting VAT expansion and dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Optimization of SPR signals: Monitoring the physical structures and refractive indices of prisms

    Directory of Open Access Journals (Sweden)

    Mukhtar Wan Maisarah

    2017-01-01

    Full Text Available Surface plasmon resonance (SPR can only be achieved if sufficient energy is provided at the boundary between metal and dielectric. An employment of prism as a light coupler by using Kretschmann configuration is one of the alternative for the production of adequate energy to be generated as surface plasmon polaritons (SPP. This work is carried out to investigate the effect of physical structure of the prism and its refractive index to the excitation of SPPs. A 50nm gold thin metal film with dielectric constant of ɛ=-12.45i+1.3 was deposited on the hypotenuse surface of the prisms. The physical structures of the prisms were varied such as triangular, conical, hemispherical and half cylindrical. These prisms were classified into two types of refractive indices (RI, namely n=1.51(type BK7 and n=1.77(type SF11. Based on SPR curve analyses, we discovered that strong SPR signals which consist of 82.98% photons were excited as SPPs can be obtained by using type-BK7 prism with physical structures of hemispherical or half cylindrical. From the view of selectivity ability as sensors, the usage of type-SF11 prisms (half cylindrical and hemispherical able to enhance this impressive feature in which sharp SPR curves with small FWHM values were obtained. In conclusion, apart from properties of thin film materials, the physical structure of prisms and their RI values play crucial roles to obtain optimum SPR signal. High sensitivity SPR sensor can be established with the appointment of type-BK7 prisms (hemispherical or half cylindrical shape as light couplers.

  6. Optimization of SPR signals: Monitoring the physical structures and refractive indices of prisms

    Science.gov (United States)

    Maisarah Mukhtar, Wan; Halim, Razman Mohd; Hassan, Hazirah

    2017-11-01

    Surface plasmon resonance (SPR) can only be achieved if sufficient energy is provided at the boundary between metal and dielectric. An employment of prism as a light coupler by using Kretschmann configuration is one of the alternative for the production of adequate energy to be generated as surface plasmon polaritons (SPP). This work is carried out to investigate the effect of physical structure of the prism and its refractive index to the excitation of SPPs. A 50nm gold thin metal film with dielectric constant of ɛ=-12.45i+1.3 was deposited on the hypotenuse surface of the prisms. The physical structures of the prisms were varied such as triangular, conical, hemispherical and half cylindrical. These prisms were classified into two types of refractive indices (RI), namely n=1.51(type BK7) and n=1.77(type SF11). Based on SPR curve analyses, we discovered that strong SPR signals which consist of 82.98% photons were excited as SPPs can be obtained by using type-BK7 prism with physical structures of hemispherical or half cylindrical. From the view of selectivity ability as sensors, the usage of type-SF11 prisms (half cylindrical and hemispherical) able to enhance this impressive feature in which sharp SPR curves with small FWHM values were obtained. In conclusion, apart from properties of thin film materials, the physical structure of prisms and their RI values play crucial roles to obtain optimum SPR signal. High sensitivity SPR sensor can be established with the appointment of type-BK7 prisms (hemispherical or half cylindrical shape) as light couplers.

  7. Power system low frequency oscillation monitoring and analysis based on multi-signal online identification

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The advance in the wide-area measurement system (WAMS) is driving the power system to the trend of wide-area monitoring and control.The Prony method is usually used for low frequency oscillation online identification.However,the identified amplitude and phase information is not sufficiently used.In this paper,the amplitude is adopted to detect the occurrence of the oscillation and to obtain the mode observability of the sites.The phase is adopted to identify the oscillation generator grouping and to obtain the mode shapes.The time varying characteristics of low frequency oscillations are studied.The behaviors and the characters of low frequency oscillations are displayed by dynamic visual techniques.Demonstrations on the "11.9" low frequency oscillation of the Guizhou Power Grid substantiate the feasibility and the validation of the proposed methods.

  8. Metabolic status of 1088 patients after renal transplantation: assessment of twelve years monitoring in Algiers Mustapha Hospital.

    Science.gov (United States)

    Yargui, Lyece; Chettouh, Houria; Boukni, Hamama; Mokhtari, Nassima; Berhoune, Arezki

    2014-01-01

    Since the introduction of monitoring levels of immunosuppressive medications in our service in July 2000, 1088 kidney transplant patients were received for therapeutic drug monitoring and regular follow-up. The aim of this study was to retrospectively analyze the data on these renal graft patients in Algeria and correlate with our 12 years' experience with calcineurin inhibitor (CNI) measurements. In addition, during this period, we also examined other bioche-mical parameters. The analysis was focused on the difference of effect of cyclosporin A (CsA; 623 patients) and Tacrolimus (Tac; 465 patients) on lipid and glucose metabolism and their side-effects, if any, on the renal function. The mean age at the time of transplantation was 36.1 years. A great majority of the transplanted kidneys had been taken from living related donors (88.6%). Three-quarters of all grafts were transplanted in our country (79.5%). Dyslipidemia and renal dysfunction were the most common adverse effects of CsA and Tac exposure, with a frequency of 21.4% and 10.3%, respectively. Both the CNIs had a similar effect on the lipid levels. The highest incidence occurred at 3-12 months after renal graft. Tac seemed to have more side-effects on glycemia, causing the onset of diabetes mellitus more than two-fold than CsA (6.9% vs. 3.1%). A significant difference was observed during 12-24 months after transplantation. However, Tac was associated with the most favorable effects on renal function estimated with the Modification of Diet in Renal Disease (MDRD) formula.

  9. A Review About Lycopene-Induced Nuclear Hormone Receptor Signalling in Inflammation and Lipid Metabolism via still Unknown Endogenous Apo-10´-Lycopenoids.

    Science.gov (United States)

    Caris-Veyrat, Catherine; Garcia, Ada L; Reynaud, Eric; Lucas, Renata; Aydemir, Gamze; Rühl, Ralph

    2017-10-20

    Lycopene is the red pigment in tomatoes and tomato products and is an important dietary carotenoid found in the human organism. Lycopene-isomers, oxidative lycopene metabolites and apo-lycopenoids are found in the food matrix. Lycopene intake derived from tomato consumption is associated with alteration of lipid metabolism and a lower incidence of cardiovascular diseases (CVD). Lycopene is mainly described as a potent antioxidant but novel studies are shifting towards its metabolites and their capacity to mediate nuclear receptor signalling. Di-/tetra-hydro-derivatives of apo-10´-lycopenoic acid and apo-15´-lycopenoic acids are potential novel endogenous mammalian lycopene metabolites which may act as ligands for nuclear hormone mediated activation and signalling. In this review, we postulate that complex lycopene metabolism results in various lycopene metabolites which have the ability to mediate transactivation of various nuclear hormone receptors like RARs, RXRs and PPARs. A new mechanistic explanation of how tomato consumption could positively modulate inflammation and lipid metabolism is discussed.

  10. Activation of the Tor/Myc signaling axis in intestinal stem and progenitor cells affects longevity, stress resistance and metabolism in drosophila.

    Science.gov (United States)

    Strilbytska, Olha M; Semaniuk, Uliana V; Storey, Kenneth B; Edgar, Bruce A; Lushchak, Oleh V

    2017-01-01

    The TOR (target of rapamycin) signaling pathway and the transcriptional factor Myc play important roles in growth control. Myc acts, in part, as a downstream target of TOR to regulate the activity and functioning of stem cells. Here we explore the role of TOR-Myc axis in stem and progenitor cells in the regulation of lifespan, stress resistance and metabolism in Drosophila. We found that both overexpression of rheb and myc-rheb in midgut stem and progenitor cells decreased the lifespan and starvation resistance of flies. TOR activation caused higher survival under malnutrition conditions. Furthermore, we demonstrate gut-specific activation of JAK/STAT and insulin signaling pathways to control gut integrity. Both genetic manipulations had an impact on carbohydrate metabolism and transcriptional levels of metabolic genes. Our findings indicate that activation of the TOR-Myc axis in midgut stem and progenitor cells influences a variety of traits in Drosophila. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Low Cost Plastic Optical Fiber Pressure Sensor Embedded in Mattress for Vital Signal Monitoring.

    Science.gov (United States)

    Sartiano, Demetrio; Sales, Salvador

    2017-12-13

    The aim of this paper is to report the design of a low-cost plastic optical fiber (POF) pressure sensor, embedded in a mattress. We report the design of a multipoint sensor, a cheap alternative to the most common fiber sensors. The sensor is implemented using Arduino board, standard LEDs for optical communication in POF (λ = 645 nm) and a silicon light sensor. The Super ESKA ® plastic fibers were used to implement the fiber intensity sensor, arranged in a 4 × 4 matrix. During the breathing cycles, the force transmitted from the lungs to the thorax is in the order of tens of Newtons, and the respiration rate is of one breath every 2-5 s (0.2-0.5 Hz). The sensor has a resolution of force applied on a single point of 2.2-4.5%/N on the normalized voltage output, and a bandwidth of 10 Hz, it is then suitable to monitor the respiration movements. Another issue to be addressed is the presence of hysteresis over load cycles. The sensor was loaded cyclically to estimate the drift of the system, and the hysteresis was found to be negligible.

  12. Implantable Biomedical Signal Monitoring Using RF Energy Harvestingand On-Chip Antenna

    Directory of Open Access Journals (Sweden)

    Jiann-Shiun Yuan

    2015-08-01

    Full Text Available This paper presents the design of an energy harvesting wireless and battery-less silicon-on-chip (SoC device that can be implanted in the human body to monitor certain health conditions. The proposed architecture has been designed on TSMC 0.18μm CMOS ICs and is an integrated system with a rectenna (antenna and rectifier and transmitting circuit, all on a single chip powered by an external transmitter and that is small enough to be inserted in the human eye, heart or brain. The transmitting and receiving antennas operate in the 5.8- GHz ISM band and have a -10dB gain. The distinguishing feature of this design is the rectenna that comprises of a singlestage diode connected NMOS rectifier and a 3-D on-chip antenna that occupies only 2.5 × 1 × 2.8 mm3 of chip area and has the ability to communicate within proximity of 5 cm while giving 10% efficiency. The external source is a reader that powers up the RF rectifier in the implantable chip triggering it to start sending data back to the reader enabling an efficient method of health evaluation for the patient.

  13. Low Cost Plastic Optical Fiber Pressure Sensor Embedded in Mattress for Vital Signal Monitoring

    Directory of Open Access Journals (Sweden)

    Demetrio Sartiano

    2017-12-01

    Full Text Available The aim of this paper is to report the design of a low-cost plastic optical fiber (POF pressure sensor, embedded in a mattress. We report the design of a multipoint sensor, a cheap alternative to the most common fiber sensors. The sensor is implemented using Arduino board, standard LEDs for optical communication in POF (λ = 645 nm and a silicon light sensor. The Super ESKA® plastic fibers were used to implement the fiber intensity sensor, arranged in a 4 × 4 matrix. During the breathing cycles, the force transmitted from the lungs to the thorax is in the order of tens of Newtons, and the respiration rate is of one breath every 2–5 s (0.2–0.5 Hz. The sensor has a resolution of force applied on a single point of 2.2–4.5%/N on the normalized voltage output, and a bandwidth of 10 Hz, it is then suitable to monitor the respiration movements. Another issue to be addressed is the presence of hysteresis over load cycles. The sensor was loaded cyclically to estimate the drift of the system, and the hysteresis was found to be negligible.

  14. The effectiveness of specialist roles in mental health metabolic monitoring: a retrospective cross-sectional comparison study.

    Science.gov (United States)

    McKenna, Brian; Furness, Trentham; Wallace, Elizabeth; Happell, Brenda; Stanton, Robert; Platania-Phung, Chris; Edward, Karen-leigh; Castle, David

    2014-09-02

    People with serious mental illness (SMI) exhibit a high prevalence of cardiovascular diseases. Mental health services have a responsibility to address poor physical health in their consumers. One way of doing this is to conduct metabolic monitoring (MM) of risk factors for cardiovascular diseases. This study compares two models of MM among consumers with SMI and describes referral pathways for those at high risk of cardiovascular diseases. A retrospective cross-sectional comparison design was used. The two models were: (1) MM integrated with case managers, and (2) MM integrated with case managers and specialist roles. Retrospective data were collected for all new episodes at two community mental health services (CMHS) over a 12-month period (September 2012 - August 2013). A total of 432 consumers with SMI across the two community mental health services were included in the analysis. At the service with the specialist roles, MM was undertaken for 78% of all new episode consumers, compared with 3% at the mental health service with case managers undertaking the role. Incomplete MM was systemic to both CMHS, although all consumers identified with high risk of cardiovascular diseases were referred to a general practitioner or other community based health services. The specialist roles enabled more varied referral options. The results of this study support incorporating specialist roles over case manager only roles for more effective MM among new episode consumers with SMI.

  15. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    Science.gov (United States)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  16. Monitoring Local Regional Hemodynamic Signal Changes during Motor Execution and Motor Imagery Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Naoki eIso

    2016-01-01

    Full Text Available The aim of this study was to clarify the topographical localization of motor-related regional hemodynamic signal changes during motor execution (ME and motor imagery (MI by using near-infrared spectroscopy (NIRS, as this technique is more clinically expedient than established methods (e.g. fMRI. Twenty right-handed healthy subjects participated in this study. The experimental protocol was a blocked design consisting of 3 cycles of 20 s of task performance and 30 s of rest. The tapping sequence task was performed with their fingers under 4 conditions: ME and MI with the right or left hand. Hemodynamic brain activity was measured with NIRS to monitor changes in oxygenated hemoglobin (oxy-Hb concentration. Oxy-Hb in the somatosensory motor cortex (SMC increased significantly only during contralateral ME and showed a significant interaction between task and hand. There was a main effect of hand in the left SMC. Although there were no significant main effects or interactions in the supplemental motor area (SMA and premotor area (PMA, oxy-Hb increased substantially under all conditions. These results clarified the topographical localization by motor-related regional hemodynamic signal changes during ME and MI by using NIRS.

  17. Development and characterization of a small electromembrane extraction probe coupled with mass spectrometry for real-time and online monitoring of in vitro drug metabolism

    DEFF Research Database (Denmark)

    Dugstad, Helene Bonkerud; Petersen, Nickolaj J.; Jensen, Henrik

    2014-01-01

    A small and very simple electromembrane extraction probe (EME-probe) was developed and coupled directly to electrospray ionization mass spectrometry (ESI-MS), and this system was used to monitor in real time in vitro metabolism by rat liver microsomes of drug substances from a small reaction...... (soft extraction). Soft extraction was mandatory in order not to affect the reaction kinetics by sample composition changes induced by the EME-probe. The EME-probe/MS-system was used to establish kinetic profiles for the in vitro metabolism of promethazine, amitriptyline and imipramine as model...

  18. Assessment of a flow cytometry technique for studying signaling pathways in platelets: Monitoring of VASP phosphorylation in clinical samples

    Directory of Open Access Journals (Sweden)

    N. Mallouk

    2018-07-01

    Full Text Available A recently released kit (PerFix EXPOSE was reported to improve the measurement of the degree of phosphorylation of proteins in leukocytes by flow cytometry. We tested its adaptation for platelets to monitor vasodilator-stimulated phosphoprotein (VASP phosphorylation, which is the basis of a currently used test for the assessment of the pharmacological response to P2Y12 antagonists (PLT VASP/P2Y12. The PerFix EXPOSE kit was compared to the PLT VASP/P2Y12 kit by using blood samples drawn at 24 h post clopidogrel dose from 19 patients hospitalized for a non-cardio-embolic ischemic stroke and treated with clopidogrel monotherapy for at least five days in an observational study. The platelet PerFix method was based on adaptation of the volume of the sample, the centrifugation speed and the incubation temperature. Poor agreement between prevention by adenosine diphosphate (ADP of PGE1-induced cAMP-mediated VASP phosphorylation and ADP induced aggregation assessed by Light Transmittance Aggregometry was found. We found a significant correlation between the PLT VASP/P2Y12 kit and the PerFix EXPOSE kit. The PerFix EXPOSE kit may also be helpful to monitor adverse effects of second-generation tyrosine kinase inhibitors on platelets. Keywords: Platelet signaling, VASP, Flow cytometry, Clopidogrel

  19. Ingestion of a natural mineral-rich water in an animal model of metabolic syndrome: effects in insulin signalling and endoplasmic reticulum stress.

    Science.gov (United States)

    Pereira, Cidália D; Passos, Emanuel; Severo, Milton; Vitó, Isabel; Wen, Xiaogang; Carneiro, Fátima; Gomes, Pedro; Monteiro, Rosário; Martins, Maria J

    2016-05-01

    High-fructose and/or low-mineral diets are relevant in metabolic syndrome (MS) development. Insulin resistance (IR) represents a central mechanism in MS development. Glucocorticoid signalling dysfunction and endoplasmic reticulum (ER) and oxidative stresses strongly contribute to IR and associate with MS. We have described that natural mineral-rich water ingestion delays fructose-induced MS development, modulates fructose effects on the redox state and glucocorticoid signalling and increases sirtuin 1 expression. Here, we investigated mineral-rich water ingestion effects on insulin signalling and ER homeostasis of fructose-fed rats. Adult male Sprague-Dawley rats had free access to standard-chow diet and different drinking solutions (8 weeks): tap water (CONT), 10%-fructose/tap water (FRUCT) or 10%-fructose/mineral-rich water (FRUCTMIN). Hepatic and adipose (visceral, VAT) insulin signalling and hepatic ER homeostasis (Western blot or PCR) as well as hepatic lipid accumulation were evaluated. Hepatic p-IRS1Ser307/IRS1 (tendency), p-IRS1Ser307, total JNK and (activated IRE1α)/(activated JNK) decreased with fructose ingestion, while p-JNK tended to increase; mineral-rich water ingestion, totally or partially, reverted all these effects. Total PERK, p-eIF2α (tendency) and total IRS1 (tendency) decreased in both fructose-fed groups. p-ERK/ERK and total IRE1α increasing tendencies in FRUCT became significant in FRUCTMIN (similar pattern for lipid area). Additionally, unspliced-XBP1 increased with mineral-rich water. In VAT, total ERK fructose-induced increase was partially prevented in FRUCTMIN. Mineral-rich water modulation of fructose-induced effects on insulin signalling and ER homeostasis matches the better metabolic profile previously reported. Increased p-ERK/ERK, adding to decreased IRE1α activation, and increased unspliced-XBP1 and lipid area may protect against oxidative stress and IR development in FRUCTMIN.

  20. Monitoring climate signal transfer into the varved lake sediments of Lake Czechowskie, Poland

    Science.gov (United States)

    Groß-Schmölders, Miriam; Ott, Florian; Brykała, Dariusz; Gierszewski, Piotr; Kaszubski, Michał; Kienel, Ulrike; Brauer, Achim

    2015-04-01

    In 2012 we started a monitoring program at Lake Czechowskie, Poland, because the lake comprises a long Holocene time series of calcite varves until recent times. The aim of the program is to understand how environmental and climatic conditions influence the hydrological conditions and, ultimately, the sediment deposition processes of the lake. Lake Czechowskie is located in the north of Poland in the Pomeranian Lake District and is part of the national park Tuchola Forest. The landscape and the lake is formed by the glacier retreat after the last glaciation (Weichselian). Lake Czechowskie is a typical hardwater lake and has a length of 1.4 km, an average width of 600 m and a lake surface area of ca 4 km. The maximum depth of 32 m is reached in a rather small hollow in the eastern part of the lake. Two different types of sediment traps provide sediment samples with monthly resolution from different water depths (12m, 26m). In addition, hydrological data including water temperature in different depths, water inflow, throughflow and outflow and the depth of visibility are measured. These data allow to describe strength and duration of lake mixing in spring and autumn and its influence on sedimentation. The sediment samples were analyzed with respect to their dry weight (used to calculate mean daily sediment flux), their inorganic and organic carbon contents, the stable C- and O-isotopes of organic matter and calcite as well as N-isotopes of organic matter. For selected samples dominant diatom taxa are determined. Our first results demonstrate the strong influence of the long winter with ice cover until April in 2013 on the sedimentation. A rapid warming in only 9 days starting on April 9th from -0,3 C° to 15,2 C° resulted in fast ice break-up and a short but intensive lake mixing. In consequence of this short mixing period a strong algal bloom especially of Fragilaria and Crysophycea commenced in April and had its maximum in May. This bloom further induced biogenic

  1. Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism

    International Nuclear Information System (INIS)

    Liu Jie; Xie Yaxiong; Cooper, Ryan; Ducharme, Danica M.K.; Tennant, Raymond; Diwan, Bhalchandra A.; Waalkes, Michael P.

    2007-01-01

    Exposure to inorganic arsenic in utero in C3H mice produces hepatocellular carcinoma in male offspring when they reach adulthood. To help define the molecular events associated with the fetal onset of arsenic hepatocarcinogenesis, pregnant C3H mice were given drinking water containing 0 (control) or 85 ppm arsenic from day 8 to 18 of gestation. At the end of the arsenic exposure period, male fetal livers were removed and RNA isolated for microarray analysis using 22K oligo chips. Arsenic exposure in utero produced significant (p < 0.001) alterations in expression of 187 genes, with approximately 25% of aberrantly expressed genes related to either estrogen signaling or steroid metabolism. Real-time RT-PCR on selected genes confirmed these changes. Various genes controlled by estrogen, including X-inactive-specific transcript, anterior gradient-2, trefoil factor-1, CRP-ductin, ghrelin, and small proline-rich protein-2A, were dramatically over-expressed. Estrogen-regulated genes including cytokeratin 1-19 and Cyp2a4 were over-expressed, although Cyp3a25 was suppressed. Several genes involved with steroid metabolism also showed remarkable expression changes, including increased expression of 17β-hydroxysteroid dehydrogenase-7 (HSD17β7; involved in estradiol production) and decreased expression of HSD17β5 (involved in testosterone production). The expression of key genes important in methionine metabolism, such as methionine adenosyltransferase-1a, betaine-homocysteine methyltransferase and thioether S-methyltransferase, were suppressed. Thus, exposure of mouse fetus to inorganic arsenic during a critical period in development significantly alters the expression of various genes encoding estrogen signaling and steroid or methionine metabolism. These alterations could disrupt genetic programming at the very early life stage, which could impact tumor formation much later in adulthood

  2. Glucose: an Energy Currency and Structural Precursor in Articular Cartilage and Bone with Emerging Roles as an Extracellular Signalling Molecule and Metabolic Regulator

    Directory of Open Access Journals (Sweden)

    Ali eMobasheri

    2012-12-01

    Full Text Available In the musculoskeletal system glucose serves as an essential source of energy for the development, growth and maintenance of bone and articular cartilage. It is particularly needed for skeletal morphogenesis during embryonic growth and foetal development. Glucose is vital for osteogenesis and chondrogenesis, and is used as a precursor for the synthesis of glycosaminoglycans, glycoproteins and glycolipids. Glucose sensors are present in tissues and organs that carry out bulk glucose fluxes (i.e. intestine, kidney and liver. The beta cells of the pancreatic islets of Langerhans respond to changes in glucose concentration by varying the rate of insulin synthesis and secretion. Neuronal cells in the hypothalamus are also capable of sensing extracellular glucose. Glucosensing neurons use glucose as a signalling molecule to alter their action potential frequency in response to variations in ambient glucose levels. Skeletal muscle and adipose tissue can respond to changes in circulating glucose but much less is known about glucosensing in bone and cartilage. Recent research suggests that bone cells can influence (and be influenced by systemic glucose metabolism. This focused review article discusses what we know about glucose transport and metabolism in bone and cartilage and highlights recent studies that have linked glucose metabolism, insulin signalling and osteocalcin activity in bone and cartilage. These new findings in bone cells raise important questions about nutrient sensing, uptake, storage and processing mechanisms and how they might contribute to overall energy homeostasis in health and disease. The role of glucose in modulating anabolic and catabolic gene expression in normal and osteoarthritic chondrocytes is also discussed. In summary, cartilage and bone cells are sensitive to extracellular glucose and adjust their gene expression and metabolism in response to varying extracellular glucose concentrations.

  3. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada); Faure, Robert [Département de Pédiatrie, Université Laval and Centre de recherche du CHUQ (Centre Mère-Enfant), Québec, Qc, Canada G1V 4G2 (Canada); Marceau, Normand, E-mail: normand.marceau@crhdq.ulaval.ca [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada)

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  4. Relationship between metabolic control and self-monitoring of blood glucose in insulin-treated patients with diabetes mellitus.

    Science.gov (United States)

    Soto González, Alfonso; Quintela Fernández, Niurka; Pumar López, Alfonso; Darias Garzón, Ricardo; Rivas Fernández, Margarita; Barberá Comes, Gloria

    2015-05-01

    To assess the relationship between metabolic control (MC) and frequency of self-monitoring of blood glucose (SMBG) in insulin-treated patients with type 1 (T1DM) and type 2 (T2DM) diabetes mellitus, and to analyze the factors associated to MC. A multicenter, cross-sectional, observational study was conducted in which endocrinologists enrolled diabetic patients treated with insulin who used a glucometer. The cut-off value for MC was HbA1c ≤ 7%. Grade of acceptance of the glucometer was assessed using a visual analogue scale (VAS). A total of 341 patients (53.5% males) with a mean age (SD) 52.8 (16.3) years, mean HbA1c of 7.69% (1.25) and 128 (37.5%) with T1DM and 211 (61.9%) with T2DM were evaluable. SMBG was done by 86.1% at least once weekly. No relationship was seen between MC and SMBG (P=.678) in the overall sample or in the T1DM (P=.940) or T2DM (P=.343) subgroups. In the logistic regression model, hyperglycemic episodes (Exp-b [risk] 1.794, P=0.022), falsely elevated HbA1c values (Exp-b 3.182, P=.005), and VAS (Exp-b 1.269, P=.008) were associated to poor MC in the total sample. Hyperglycemic episodes (Exp-b 2.538, P=.004), falsely elevated HbA1c values (Exp-b 3.125, P=.012), and VAS (Exp-b 1.316, P=.026) were associated to poor MC in the T2DM subgroup, while body mass index (Exp-b 1.143, P=.046) was associated to poor MC in the T1DM subgroup. In this retrospective, non-controlled study on patients with DM treated with insulin who used a glucometer, no relationship was seen between the degree of metabolic control and frequency of use of the glucometer. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  5. Metabolic changes and associated cytokinin signals in response to nitrate assimilation in roots and shoots of Lolium perenne

    Czech Academy of Sciences Publication Activity Database

    Roche, J.; Love, J.; Guo, Q.; Song, J.C.; Cao, M.; Fraser, K.; Huege, J.; Jones, C.; Novák, Ondřej; Turnbull, M.; Jameson, P. E.

    2016-01-01

    Roč. 156, č. 4 (2016), s. 497-511 ISSN 0031-9317 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk LK21306 Institutional support: RVO:61389030 Keywords : ZEATIN-TYPE CYTOKININS * FRUCTAN METABOLISM * USE EFFICIENCY Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.330, year: 2016

  6. High-fat diet feeding alters metabolic response to fasting/non fasting conditions. Effect on caveolin expression and insulin signalling.

    Science.gov (United States)

    Gómez-Ruiz, Ana; Milagro, Fermín I; Campión, Javier; Martínez, J Alfredo; de Miguel, Carlos

    2011-04-13

    The effect of food intake on caveolin expression in relation to insulin signalling was studied in skeletal muscle and adipocytes from retroperitoneal (RP) and subcutaneous (SC) adipose tissue, comparing fasted (F) to not fasted (NF) rats that had been fed a control or high-fat (HF) diet for 72 days. Serum glucose was analysed enzymatically and insulin and leptin by ELISA. Caveolins and insulin signalling intermediaries (IR, IRS-1 and 2 and GLUT4) were determined by RT-PCR and western blotting. Caveolin and IR phosphorylation was measured by immunoprecipitation. Data were analysed with Mann-Whitney U test. High-fat fed animals showed metabolic alterations and developed obesity and insulin resistance. In skeletal muscle, food intake (NF) induced activation of IR and increased expression of IRS-2 in control animals with normal metabolic response. HF animals became overweight, hyperglycaemic, hyperinsulinemic, hyperleptinemic and showed insulin resistance. In skeletal muscle of these animals, food intake (NF) also induced IRS-2 expression together with IR, although this was not active. Caveolin 3 expression in this tissue was increased by food intake (NF) in animals fed either diet. In RP adipocytes of control animals, food intake (NF) decreased IR and IRS-2 expression but increased that of GLUT4. A similar but less intense response was found in SC adipocytes. Food intake (NF) did not change caveolin expression in RP adipocytes with either diet, but in SC adipocytes of HF animals a reduction was observed. Food intake (NF) decreased caveolin-1 phosphorylation in RP but increased it in SC adipocytes of control animals, whereas it increased caveolin-2 phosphorylation in both types of adipocytes independently of the diet. Animals fed a control-diet show a normal response to food intake (NF), with activation of the insulin signalling pathway but without appreciable changes in caveolin expression, except a small increase of caveolin-3 in muscle. Animals fed a high-fat diet

  7. Direct monitoring by carbon-13 nuclear magnetic resonance spectroscopy of the metabolism and metabolic rate of 13C-labeled compounds in vivo.

    Science.gov (United States)

    Iida, K; Hidoh, O; Fukami, J; Kajiwara, M

    1991-01-01

    Carbon-13 nuclear magnetic resonance spectroscopy has been used to observe the transformations of [1-13C]-D-glucose to [1,1'-13C2]-D-trehalose, and [3-13C]-L-alanine to [2-13C]-L-glutamic acid in the living body of Gryllodes sigillatus. [3-13C]-D-Alanine was not metabolized. The metabolic rate of [1-13C]-D-glucose was found to be altered by prior injection of boric acid.

  8. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution

    Directory of Open Access Journals (Sweden)

    Adriano Maida

    2017-08-01

    Conclusions: Repletion of BCAAs in dietary PD is sufficient to oppose changes in somatic mTORC1 signaling but does not reverse the hepatic ISR nor induce insulin resistance in type 2 diabetes during dietary PD.

  9. Analysis of acoustic emission signals of fatigue crack growth and corrosion processes. Investigation of the possibilities for continuous condition monitoring of transport containers by acoustic emission testing

    International Nuclear Information System (INIS)

    Wachsmuth, Janne

    2016-01-01

    Fatigue crack growth and active corrosion processes are the main causes of structural failures of transport products like road tankers, railway tank cars and ships. To prevent those failures, preventive, time-based maintenance is performed. However, preventive inspections are costly and include the risk of not detecting a defect, which could lead to a failure within the next service period. An alternative is the idea of continuous monitoring of the whole structure by means of acoustic emission testing (AT). With AT, defects within the material shall be detected and repaired directly after their appearance. Acoustic emission testing is an online non-destructive testing method. Acoustic emission (AE) arises from changes within the material and is transported by elastic waves through the material. If the AE event generates enough energy, the elastic wave propagates to the boundaries of the component, produces a displacement in the picometre scale and can be detected by a piezoelectric sensor. The sensor produces an electrical signal. From this AE signal, AE features such as the maximum amplitude or the frequency can be extracted. Methods of signal analysis are used to investigate the time and frequency dependency of signal groups. The purpose of the signal analysis is to connect the AE signal with the originating AE source. If predefined damage mechanisms are identified, referencing the damage condition of the structure is possible. Acoustic emission from events of the actual crack propagation process can for example lead to the crack growth rate or the stress intensity factor, both specific values from fracture mechanics. A new development in the domain of acoustic emission testing is the pattern recognition of AE signals. Specific features are extracted from the AE signals to assign them to their damage mechanisms. In this thesis the AE signals from the damage mechanisms corrosion and fatigue crack growth are compared and analysed. The damage mechanisms were

  10. Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

    Science.gov (United States)

    Reuter, Tanja Y; Medhurst, Annette L; Waisfisz, Quinten; Zhi, Yu; Herterich, Sabine; Hoehn, Holger; Gross, Hans J; Joenje, Hans; Hoatlin, Maureen E; Mathew, Christopher G; Huber, Pia A J

    2003-10-01

    Mutations in one of at least eight different genes cause bone marrow failure, chromosome instability, and predisposition to cancer associated with the rare genetic syndrome Fanconi anemia (FA). The cloning of seven genes has provided the tools to study the molecular pathway disrupted in Fanconi anemia patients. The structure of the genes and their gene products provided few clues to their functional role. We report here the use of 3 FA proteins, FANCA, FANCC, and FANCG, as "baits" in the hunt for interactors to obtain clues for FA protein functions. Using five different human cDNA libraries we screened 36.5x10(6) clones with the technique of the yeast two-hybrid system. We identified 69 proteins which have not previously been linked to the FA pathway as direct interactors of FANCA, FANCC, or FANCG. Most of these proteins are associated with four functional classes including transcription regulation (21 proteins), signaling (13 proteins), oxidative metabolism (10 proteins), and intracellular transport (11 proteins). Interaction with 6 proteins, DAXX, Ran, IkappaBgamma, USP14, and the previously reported SNX5 and FAZF, was additionally confirmed by coimmunoprecipitation and/or colocalization studies. Taken together, our data strongly support the hypothesis that FA proteins are functionally involved in several complex cellular pathways including transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

  11. Study on the Relationship Between Emission Signals and Weld Defect for In-Process Monitoring in CO{sub 2} Laser Welding of Zn-Coated Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Lee, Chang Je [Korea Maritime University, Busan (Korea, Republic of)

    2010-10-15

    In this study, the plasma induced by CO{sub 2} laser lap welding of 6t Zn coated steel used for ship building was measured using photodiodes and a microphone. Then, the welding phenomenon with gap clearance of lap joint was compared with RMS-treated signal. Thus, we found that intensity of the RMS-treated signal increased with Zn vaporization; further, the presence of defects results in rapid variations with the RMS value as a function of lap-joint parameters. Besides, the FFT value of the raw signal with variations of changing welding parameters was calculated, and then the calculated FFT frequency value was set as the bandwidth of digital filter for a more accurate in-process monitoring. The RMS values were acquired by filtering the raw signal. By matching the weld beads and the calculated RMS values, we confirmed that there is a strong relationship between the signals and the defects.

  12. Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis.

    Science.gov (United States)

    Chen, Yanmei; Hoehenwarter, Wolfgang

    2015-12-01

    Salinity and oxidative stress are major factors affecting and limiting the productivity of agricultural crops. The molecular and biochemical processes governing the plant response to abiotic stress have often been researched in a reductionist manner. Here, we report a systemic approach combining metabolic labeling and phosphoproteomics to capture early signaling events with quantitative metabolome analysis and enzyme activity assays to determine the effects of salt and oxidative stress on plant physiology. K(+) and Na(+) transporters showed coordinated changes in their phosphorylation pattern, indicating the importance of dynamic ion homeostasis for adaptation to salt stress. Unique phosphorylation sites were found for Arabidopsis (Arabidopsis thaliana) SNF1 kinase homolog10 and 11, indicating their central roles in the stress-regulated responses. Seven Sucrose Non-fermenting1-Related Protein Kinase2 kinases showed varying levels of phosphorylation at multiple serine/threonine residues in their kinase domain upon stress, showing temporally distinct modulation of the various isoforms. Salinity and oxidative stress also lead to changes in protein phosphorylation of proteins central to photosynthesis, in particular the kinase State Transition Protein7 required for state transition and light-harvesting II complex proteins. Furthermore, stress-induced changes of the phosphorylation of enzymes of central metabolism were observed. The phosphorylation patterns of these proteins were concurrent with changes in enzyme activity. This was reflected by altered levels of metabolites, such as the sugars sucrose and fructose, glycolysis intermediates, and amino acids. Together, our study provides evidence for a link between early signaling in the salt and oxidative stress response that regulates the state transition of photosynthesis and the rearrangement of primary metabolism. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-01-01

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  14. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, Maria C. [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Amero, Paola; Santoro, Anna [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Monnolo, Anna [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Simeoli, Raffaele; Di Guida, Francesca [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Mattace Raso, Giuseppina, E-mail: mattace@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Meli, Rosaria, E-mail: meli@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy)

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  15. Challenges of arbitrary waveform signal detection by Silicon Photomultipliers as readout for Cherenkov fibre based beam loss monitoring systems

    CERN Document Server

    Vinogradov, Sergey; Nebot del Busto, Eduardo; Kastriotou, Maria; Welsch, Carsten P

    2016-01-01

    Silicon Photomultipliers (SiPMs) are well recognised as very competitive photodetectors due to their exceptional photon number and time resolution, room-temperature low-voltage operation, insensitivity to magnetic fields, compactness, and robustness. Detection of weak light pulses of nanosecond time scale appears to be the best area for SiPM applications because in this case most of the SiPM drawbacks have a rather limited effect on its performance. In contrast to the more typical scintillation and Cherenkov detection applications, which demand information on the number of photons and/or the arrival time of the light pulse only, beam loss monitoring (BLM) systems utilising Cherenkov fibres with photodetector readout have to precisely reconstruct the temporal profile of the light pulse. This is a rather challenging task for any photon detector especially taking into account the high dynamic range of incident signals (100K – 1M) from a few photons to a few percents of destructive losses in a beam line and pre...

  16. ApoB100-LDL acts as a metabolic signal from liver to peripheral fat causing inhibition of lipolysis in adipocytes.

    Directory of Open Access Journals (Sweden)

    Josefin Skogsberg

    Full Text Available BACKGROUND: Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown. METHODS AND FINDINGS: We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr(-/-Apob(100/100. CONCLUSIONS: Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome.

  17. Changes and significance of oxygen-metabolism and SHH signal pathway in soldiers trained in high altitude after returning to plains

    Directory of Open Access Journals (Sweden)

    Li LIU

    2012-11-01

    Full Text Available Objective  To observe the changes in oxygen metabolism and sonic hedgehog (SHH signaling pathway in soldiers returning to plains after being stationed and trained for 6 months in a plateau. Methods  Eighty male officers and soldiers, aged 20-30 (22.3±2.9 years, after being stationed and trained on plateau (altitude 3960m for 6 months and returned to plain region (altitude 200m, were selected as subjects. Before their returning to plateau, 6 months after their station and training in plateau, and 2 days after their returning to plain, fasting venous blood samples were collected, the serum levels of superoxide dismutase (SOD, malondialdehyde (MDA and Sonic Hedgehog (SHH were determined by ELISA, the transcription of SHH mRNA was assayed by RT-PCR, and the expressions of SMO and nucleoprotein GLI2 were detected by Western blotting. All the data mentioned above were collected for statistical analysis. Results  As the subjects entered and garrisoned in plateau for 6 months, the activity of SOD decreased and the content of MDA increased significantly (P < 0.05. Both the protein expression and mRNA transcription of SHH were significantly higher after staying in plateau than in plain. When they returned to plain, both parameters decreased significantly, but were still higher than that when they lived in plain (P < 0.01. The expressions of SMO and nucleoprotein GLI2 showed a same tendency of changes. Conclusion  High altitude environment may have a great influence on oxygen metabolism of organism and SHH signal pathway, and the hypoxic environment of high altitude region is one of the conditions in activating the SHH signal pathway.

  18. TATN-1 mutations reveal a novel role for tyrosine as a metabolic signal that influences developmental decisions and longevity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Annabel A Ferguson

    Full Text Available Recent work has identified changes in the metabolism of the aromatic amino acid tyrosine as a risk factor for diabetes and a contributor to the development of liver cancer. While these findings could suggest a role for tyrosine as a direct regulator of the behavior of cells and tissues, evidence for this model is currently lacking. Through the use of RNAi and genetic mutants, we identify tatn-1, which is the worm ortholog of tyrosine aminotransferase and catalyzes the first step of the conserved tyrosine degradation pathway, as a novel regulator of the dauer decision and modulator of the daf-2 insulin/IGF-1-like (IGFR signaling pathway in Caenorhabditis elegans. Mutations affecting tatn-1 elevate tyrosine levels in the animal, and enhance the effects of mutations in genes that lie within the daf-2/insulin signaling pathway or are otherwise upstream of daf-16/FOXO on both dauer formation and worm longevity. These effects are mediated by elevated tyrosine levels as supplemental dietary tyrosine mimics the phenotypes produced by a tatn-1 mutation, and the effects still occur when the enzymes needed to convert tyrosine into catecholamine neurotransmitters are missing. The effects on dauer formation and lifespan require the aak-2/AMPK gene, and tatn-1 mutations increase phospho-AAK-2 levels. In contrast, the daf-16/FOXO transcription factor is only partially required for the effects on dauer formation and not required for increased longevity. We also find that the controlled metabolism of tyrosine by tatn-1 may function normally in dauer formation because the expression of the TATN-1 protein is regulated both by daf-2/IGFR signaling and also by the same dietary and environmental cues which influence dauer formation. Our findings point to a novel role for tyrosine as a developmental regulator and modulator of longevity, and support a model where elevated tyrosine levels play a causal role in the development of diabetes and cancer in people.

  19. TATN-1 Mutations Reveal a Novel Role for Tyrosine as a Metabolic Signal That Influences Developmental Decisions and Longevity in Caenorhabditis elegans

    Science.gov (United States)

    Ferguson, Annabel A.; Dumas, Kathleen J.; Ritov, Vladimir B.; Matern, Dietrich; Hu, Patrick J.; Fisher, Alfred L.

    2013-01-01

    Recent work has identified changes in the metabolism of the aromatic amino acid tyrosine as a risk factor for diabetes and a contributor to the development of liver cancer. While these findings could suggest a role for tyrosine as a direct regulator of the behavior of cells and tissues, evidence for this model is currently lacking. Through the use of RNAi and genetic mutants, we identify tatn-1, which is the worm ortholog of tyrosine aminotransferase and catalyzes the first step of the conserved tyrosine degradation pathway, as a novel regulator of the dauer decision and modulator of the daf-2 insulin/IGF-1-like (IGFR) signaling pathway in Caenorhabditis elegans. Mutations affecting tatn-1 elevate tyrosine levels in the animal, and enhance the effects of mutations in genes that lie within the daf-2/insulin signaling pathway or are otherwise upstream of daf-16/FOXO on both dauer formation and worm longevity. These effects are mediated by elevated tyrosine levels as supplemental dietary tyrosine mimics the phenotypes produced by a tatn-1 mutation, and the effects still occur when the enzymes needed to convert tyrosine into catecholamine neurotransmitters are missing. The effects on dauer formation and lifespan require the aak-2/AMPK gene, and tatn-1 mutations increase phospho-AAK-2 levels. In contrast, the daf-16/FOXO transcription factor is only partially required for the effects on dauer formation and not required for increased longevity. We also find that the controlled metabolism of tyrosine by tatn-1 may function normally in dauer formation because the expression of the TATN-1 protein is regulated both by daf-2/IGFR signaling and also by the same dietary and environmental cues which influence dauer formation. Our findings point to a novel role for tyrosine as a developmental regulator and modulator of longevity, and support a model where elevated tyrosine levels play a causal role in the development of diabetes and cancer in people. PMID:24385923

  20. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production

    DEFF Research Database (Denmark)

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D

    2011-01-01

    Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout...... mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species......, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle....

  1. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring

    OpenAIRE

    Park, Youngja H.; Lee, Kichun; Soltow, Quinlyn A.; Strobel, Frederick H.; Brigham, Kenneth L.; Parker, Richard E.; Wilson, Mark E.; Sutliff, Roy L.; Mansfield, Keith G.; Wachtman, Lynn M.; Ziegler, Thomas R.; Jones, Dean P.

    2012-01-01

    High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic exposures and to detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop these possible uses,...

  2. Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling

    KAUST Repository

    Zeis, T.

    2015-04-01

    Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte–neuron lactate shuttle (ANLS) and the glutamate–glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others

  3. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway.

    Science.gov (United States)

    Zhao, Shuzhi; Li, Tao; Li, Jun; Lu, Qianyi; Han, Changjing; Wang, Na; Qiu, Qinghua; Cao, Hui; Xu, Xun; Chen, Haibing; Zheng, Zhi

    2016-03-01

    The mechanisms underlying the cellular metabolic memory induced by high glucose remain unclear. Here, we sought to determine the effects of microRNAs (miRNAs) on metabolic memory in diabetic retinopathy. The miRNA microarray was used to examine human retinal endothelial cells (HRECs) following exposure to normal glucose (N) or high glucose (H) for 1 week or transient H for 2 days followed by N for another 5 days (H→N). Levels of sirtuin 1 (SIRT1) and acetylated-nuclear factor κB (Ac-NF-κB) were examined following transfection with miR-23b-3p inhibitor or with SIRT1 small interfering (si)RNA in the H→N group, and the apoptotic HRECs were determined by flow cytometry. Retinal tissues from diabetic rats were similarly studied following intravitreal injection of miR-23b-3p inhibitor. Chromatin immunoprecipitation (ChIP) analysis was performed to detect binding of NF-κB p65 to the potential binding site of the miR-23b-27b-24-1 gene promoter in HRECs. High glucose increased miR-23b-3p expression, even after the return to normal glucose. Luciferase assays identified SIRT1 as a target mRNA of miR-23b-3p. Reduced miR-23b-3p expression inhibited Ac-NF-κB expression by rescuing SIRT1 expression and also relieved the effect of metabolic memory induced by high glucose in HRECs. The results were confirmed in the retina using a diabetic rat model of metabolic memory. High glucose facilitated the recruitment of NF-κB p65 and promoted transcription of the miR-23b-27b-24-1 gene, which can be suppressed by decreasing miR-23b-3p expression. These studies identify a novel mechanism whereby miR-23b-3p regulates high-glucose-induced cellular metabolic memory in diabetic retinopathy through a SIRT1-dependent signalling pathway.

  4. Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling.

    Science.gov (United States)

    Doody, Erin E; Groebner, Jennifer L; Walker, Jetta R; Frizol, Brittnee M; Tuma, Dean J; Fernandez, David J; Tuma, Pamela L

    2017-12-01

    The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P 450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N -acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity. NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol

  5. Strategies for the Assessment of Metabolic Profiles of Steroid Hormones in View of Diagnostics and Drug Monitoring: Analytical Problems and Challenges.

    Science.gov (United States)

    Plenis, Alina; Oledzka, Ilona; Kowalski, Piotr; Baczek, Tomasz

    2016-01-01

    During the last few years there has been a growing interest in research focused on the metabolism of steroid hormones despite that the study of metabolic hormone pathways is still a difficult and demanding task because of low steroid concentrations and a complexity of the analysed matrices. Thus, there has been an increasing interest in the development of new, more selective and sensitive methods for monitoring these compounds in biological samples. A lot of bibliographic databases for world research literature were structurally searched using selected review question and inclusion/exclusion criteria. Next, the reports of the highest quality were selected using standard tools (181) and they were described to evaluate the advantages and limitations of different approaches in the measurements of the steroids and their metabolites. The overview of the analytical challenges, development of methods used in the assessment of the metabolic pathways of steroid hormones, and the priorities for future research with a special consideration for liquid chromatography (LC) and capillary electrophoresis (CE) techniques have been presented. Moreover, many LC and CE applications in pharmacological and psychological studies as well as endocrinology and sports medicine, taking into account the recent progress in the area of the metabolic profiling of steroids, have been critically discussed. The latest reports show that LC systems coupled with mass spectrometry have the predominant position in the research of steroid profiles. Moreover, CE techniques are going to gain a prominent position in the diagnosis of hormone levels in the near future.

  6. A motion-tolerant approach for monitoring SpO2 and heart rate using photoplethysmography signal with dual frame length processing and multi-classifier fusion.

    Science.gov (United States)

    Fan, Feiyi; Yan, Yuepeng; Tang, Yongzhong; Zhang, Hao

    2017-12-01

    Monitoring pulse oxygen saturation (SpO 2 ) and heart rate (HR) using photoplethysmography (PPG) signal contaminated by a motion artifact (MA) remains a difficult problem, especially when the oximeter is not equipped with a 3-axis accelerometer for adaptive noise cancellation. In this paper, we report a pioneering investigation on the impact of altering the frame length of Molgedey and Schuster independent component analysis (ICAMS) on performance, design a multi-classifier fusion strategy for selecting the PPG correlated signal component, and propose a novel approach to extract SpO 2 and HR readings from PPG signal contaminated by strong MA interference. The algorithm comprises multiple stages, including dual frame length ICAMS, a multi-classifier-based PPG correlated component selector, line spectral analysis, tree-based HR monitoring, and post-processing. Our approach is evaluated by multi-subject tests. The root mean square error (RMSE) is calculated for each trial. Three statistical metrics are selected as performance evaluation criteria: mean RMSE, median RMSE and the standard deviation (SD) of RMSE. The experimental results demonstrate that a shorter ICAMS analysis window probably results in better performance in SpO 2 estimation. Notably, the designed multi-classifier signal component selector achieved satisfactory performance. The subject tests indicate that our algorithm outperforms other baseline methods regarding accuracy under most criteria. The proposed work can contribute to improving the performance of current pulse oximetry and personal wearable monitoring devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Repletion of branched chain amino acids reverses mTORC1 signaling but not improved metabolism during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Chan, Jessica S K; Sjøberg, Kim Anker

    2017-01-01

    OBJECTIVE: Dietary protein dilution (PD) has been associated with metabolic advantages such as improved glucose homeostasis and increased energy expenditure. This phenotype involves liver-induced release of FGF21 in response to amino acid insufficiency; however, it has remained unclear whether...... dietary dilution of specific amino acids (AAs) is also required. Circulating branched chain amino acids (BCAAs) are sensitive to protein intake, elevated in the serum of obese humans and mice and thought to promote insulin resistance. We tested whether replenishment of dietary BCAAs to an AA-diluted (AAD......) diet is sufficient to reverse the glucoregulatory benefits of dietary PD. METHODS: We conducted AA profiling of serum from healthy humans and lean and high fat-fed or New Zealand obese (NZO) mice following dietary PD. We fed wildtype and NZO mice one of three amino acid defined diets: control, total...

  8. The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators.

    Science.gov (United States)

    Borghi, Monica; Fernie, Alisdair R; Schiestl, Florian P; Bouwmeester, Harro J

    2017-04-01

    A striking feature of the angiosperms that use animals as pollen carriers to sexually reproduce is the great diversity of their flowers with regard to morphology and traits such as color, odor, and nectar. These traits are underpinned by the synthesis of secondary metabolites such as pigments and volatiles, as well as carbohydrates and amino acids, which are used by plants to lure and reward animal pollinators. We review here the knowledge of the metabolic network that supports the biosynthesis of these compounds and the behavioral responses that these molecules elicit in the animal pollinators. Such knowledge provides us with a deeper insight into the ecology and evolution of plant-pollinator interactions, and should help us to better manage these ecologically essential interactions in agricultural ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  10. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Science.gov (United States)

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    Desmoplasia and poor vascularity cause severe metabolic stress in pancreatic ductal adenocarcinomas (PDACs). Serotonin (5-HT) is a neuromodulator with neurotransmitter and neuroendocrine functions that contributes to tumorigenesis. We investigated the role of 5-HT signaling in the growth of pancreatic tumors. We measured the levels of proteins that regulate 5-HT synthesis, packaging, and degradation in pancreata from Kras G12D/+ /Trp53 R172H/+ /Pdx1-Cre (KPC) mice, which develop pancreatic tumors, as well as in PDAC cell lines and a tissue microarray containing 81 human PDAC samples. We also analyzed expression levels of proteins involved in 5-HT synthesis and degradation by immunohistochemical analysis of a tissue microarray containing 311 PDAC specimens, and associated expression levels with patient survival times. 5-HT level in 14 matched PDAC tumor and non-tumor tissues were analyzed by ELISA. PDAC cell lines were incubated with 5-HT and cell survival and apoptosis were measured. We analyzed expression of the 5-HT receptor HTR2B in PDAC cells and effects of receptor agonists and antagonists, as well as HTR2B knockdown with small hairpin RNAs. We determined the effects of 5-HT stimulation on gene expression profiles of BxPC-3 cells. Regulation of glycolysis by 5-HT signaling via HTR2B was assessed by immunofluorescence and immunoprecipitation analyses, as well as by determination of the extracellular acid ratio, glucose consumption, and lactate production. Primary PDACs, with or without exposure to SB204741 (a selective antagonist of HTR2B), were grown as xenograft tumors in mice, and SB204741 was administered to tumor-bearing KPC mice; tumor growth and metabolism were measured by imaging analyses. In immunohistochemical analysis of a tissue microarray of PDAC specimens, increased levels of TPH1 and decreased level of MAOA, which regulate 5-HT synthesis and degradation, correlated with stage and size of PDACs and shorter patient survival time. We found levels

  11. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Science.gov (United States)

    Eslami, J; Ghafaripour, F; Mortazavi, S A R; Mortazavi, S M J; Shojaei-Fard, M B

    2015-12-01

    People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched-on mobile phone with no signal strength. The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  12. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals ByUsing Microsoft Visual C Sharp.

    Science.gov (United States)

    Younessi Heravi, M A; Khalilzadeh, M A; Joharinia, S

    2014-03-01

    One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP) by sphygmomanometer cuff. Objective :In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device wasinserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET ) was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  13. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Directory of Open Access Journals (Sweden)

    Eslami J.

    2015-12-01

    Full Text Available Background: People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods: Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results: The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀ (were 7.4±3.9 mg/dl, 10.2±4.5 mg/ dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion: Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  14. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    Science.gov (United States)

    Eslami, J.; Ghafaripour, F.; Mortazavi, S.A.R.; Mortazavi, S.M.J.; Shojaei-fard, M.B.

    2015-01-01

    Background People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors. PMID:26688798

  15. Continuous and Cuffless Blood Pressure Monitoring Based on ECG and SpO2 Signals By Using Microsoft Visual C Sharp

    Directory of Open Access Journals (Sweden)

    Younessi Heravi M. A.

    2014-03-01

    Full Text Available Background: One of the main problems especially in operating room and monitoring devices is measurement of Blood Pressure (BP by sphygmomanometer cuff. Objective: In this study we designed a new method to measure BP changes continuously for detecting information between cuff inflation times by using vital signals in monitoring devices. This will be achieved by extraction of the time difference between each cardiac cycle and a relative pulse wave. Methods: Finger pulse and ECG signals in lead I were recorded by a monitoring device. The output of monitoring device was inserted in a computer by serial network communication. A software interface (Microsoft Visual C#.NET was used to display and process the signals in the computer. Time difference between each cardiac cycle and pulse signal was calculated throughout R wave detection in ECG and peak of pulse signal by the software. The relation between time difference in two waves and BP was determined then the coefficients of equation were obtained in different physical situations. The results of estimating BP were compared with the results of sphygmomanometer method and the error rate was calculated. Results: In this study, 25 subjects participated among them 15 were male and 10 were female. The results showed that BP was linearly related to time difference. Average of coefficient correlation was 0.9±0.03 for systolic and 0.82±0.04 for diastolic blood pressure. The highest error percentage was calculated 8% for male and 11% for female group. Significant difference was observed between the different physical situation and arm movement changes. The relationship between time difference and age was estimated in a linear relationship with a correlation coefficient of 0.76. Conclusion: By determining linear relation values with high accuracy, BP can be measured with insignificant error. Therefore it can be suggested as a new method to measure the blood pressure continuously.

  16. Electron spray ionization mass spectrometry and 2D 31P NMR for monitoring 18O/16O isotope exchange and turnover rates of metabolic oligophosphates

    International Nuclear Information System (INIS)

    Nemutlu, Emirhan; Juranic, Nenad; Macura, Slobodan; Zhang, Song; Terzic, Andre; Dzeja, Petras P.; Ward, Lawrence E.; Dutta, Tumpa; Nair, K.S.

    2012-01-01

    A new method was here developed for the determination of 18 O-labeling ratios in metabolic oligophosphates, such as ATP, at different phosphoryl moieties (α-, β-, and γ-ATP) using sensitive and rapid electrospray ionization mass spectrometry (ESI-MS). The ESI-MS-based method for monitoring of 18 O/ 16 O exchange was validated with gas chromatography-mass spectrometry and 2D 31 P NMR correlation spectroscopy, the current standard methods in labeling studies. Significant correlation was found between isotopomer selective 2D 31 P NMR spectroscopy and isotopomer less selective ESI-MS method. Results demonstrate that ESI-MS provides a robust analytical platform for simultaneous determination of levels, 18 O-labeling kinetics and turnover rates of α-, β-, and γ-phosphoryls in ATP molecule. Such method is advantageous for large scale dynamic phosphometabolomic profiling of metabolic networks and acquiring information on the status of probed cellular energetic system. (orig.)

  17. Comparative proteomic analyses reveal that the regulators of G-protein signaling proteins regulate amino acid metabolism of the rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Zhang, Haifeng; Ma, Hongyu; Xie, Xin; Ji, Jun; Dong, Yanhan; Du, Yan; Tang, Wei; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2014-11-01

    The rice blast fungus Magnaporthe oryzae encodes eight regulators of G-protein (GTP-binding protein) signaling (RGS) proteins MoRgs1-MoRgs8 that orchestrate the growth, asexual/sexual production, appressorium differentiation, and pathogenicity. To address the mechanisms by which MoRgs proteins function, we conducted a 2DE proteome study and identified 82 differentially expressed proteins by comparing five ∆Morgs mutants with wild-type Guy11 strain. We found that the abundances of eight amino acid (AA) biosynthesis or degradation associated proteins were markedly altered in five ∆Morgs mutants, indicating one of the main collective roles for the MoRgs proteins is to influence AA metabolism. We showed that MoRgs proteins have distinct roles in AA metabolism and nutrient responses from growth assays. In addition, we characterized MoLys20 (Lys is lysine), a homocitrate synthase, whose abundance was significantly decreased in the ∆Morgs mutants. The ∆Molys20 mutant is auxotrophic for lys and exogenous lys could partially rescue its auxotrophic defects. Deletion of MoLYS20 resulted in defects in conidiation and infection, as well as pathogenicity on rice. Overall, our results indicate that one of the critical roles for MoRgs proteins is to regulate AA metabolism, and that MoLys20 may be directly or indirectly regulated by MoRgs and participated in lys biosynthesis, thereby affecting fungal development and pathogenicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Obesity-Induced Metabolic Stress Leads to Biased Effector Memory CD4+ T Cell Differentiation via PI3K p110δ-Akt-Mediated Signals.

    Science.gov (United States)

    Mauro, Claudio; Smith, Joanne; Cucchi, Danilo; Coe, David; Fu, Hongmei; Bonacina, Fabrizia; Baragetti, Andrea; Cermenati, Gaia; Caruso, Donatella; Mitro, Nico; Catapano, Alberico L; Ammirati, Enrico; Longhi, Maria P; Okkenhaug, Klaus; Norata, Giuseppe D; Marelli-Berg, Federica M

    2017-03-07

    Low-grade systemic inflammation associated to obesity leads to cardiovascular complications, caused partly by infiltration of adipose and vascular tissue by effector T cells. The signals leading to T cell differentiation and tissue infiltration during obesity are poorly understood. We tested whether saturated fatty acid-induced metabolic stress affects differentiation and trafficking patterns of CD4 + T cells. Memory CD4 + T cells primed in high-fat diet-fed donors preferentially migrated to non-lymphoid, inflammatory sites, independent of the metabolic status of the hosts. This was due to biased CD4 + T cell differentiation into CD44 hi -CCR7 lo -CD62L lo -CXCR3 + -LFA1 + effector memory-like T cells upon priming in high-fat diet-fed animals. Similar phenotype was observed in obese subjects in a cohort of free-living people. This developmental bias was independent of any crosstalk between CD4 + T cells and dendritic cells and was mediated via direct exposure of CD4 + T cells to palmitate, leading to increased activation of a PI3K p110δ-Akt-dependent pathway upon priming. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Influence of antihypertensive therapy on cerebral perfusion in patients with metabolic syndrome: relationship with cognitive function and 24-h arterial blood pressure monitoring.

    Science.gov (United States)

    Efimova, Nataliya Y; Chernov, Vladimir I; Efimova, Irina Y; Lishmanov, Yuri B

    2015-08-01

    To investigate the regional cerebral blood flow, cognitive function, and parameters of 24-h arterial blood pressure monitoring in patients with metabolic syndrome before and after combination antihypertensive therapy. The study involved 54 patients with metabolic syndrome (MetS) investigated by brain single-photon emission computed tomography, 24-h blood pressure monitoring (ABPM), and comprehensive neuropsychological testing before and after 24 weeks of combination antihypertensive therapy. Patients with metabolic syndrome had significantly poorer regional cerebral blood flow compared with control group: by 7% (P = 0.003) in right anterior parietal cortex, by 6% (P = 0.028) in left anterior parietal cortex, by 8% (P = 0.007) in right superior frontal lobe, and by 10% (P = 0.00002) and 7% (P = 0.006) in right and left temporal brain regions, correspondingly. The results of neuropsychological testing showed 11% decrease in mentation (P = 0.002), and 19% (P = 0.011) and 20% (P = 0.009) decrease in immediate verbal and visual memory in patients with MetS as compared with control group. Relationships between the indices of ABPM, cerebral perfusion, and cognitive function were found. Data showed an improvement of regional cerebral blood flow, ABPM parameters, and indicators of cognitive functions after 6 months of antihypertensive therapy in patients with MetS. The study showed the presence of diffuse disturbances in cerebral perfusion is associated with cognitive disorders in patients with metabolic syndrome. Combination antihypertensive treatment exerts beneficial effects on the 24-h blood pressure profile, increases cerebral blood flow, and improves cognitive function in patients with MetS. © 2015 John Wiley & Sons Ltd.

  20. Vitamin D Signaling Through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models

    Directory of Open Access Journals (Sweden)

    Danmei Su

    2016-11-01

    Full Text Available Metabolic syndrome (MetS, characterized as obesity, insulin resistance, and non-alcoholic fatty liver diseases (NAFLD,is associated with vitamin D insufficiency/deficiency in epidemiological studies, while the underlying mechanism is poorly addressed. On the other hand, disorder of gut microbiota, namely dysbiosis, is known to cause MetS and NAFLD. It is also known that systemic inflammation blocks insulin signaling pathways, leading to insulin resistance and glucose intolerance, which are the driving force for hepatic steatosis. Vitamin D receptor (VDR is highly expressed in the ileum of the small intestine,which prompted us to test a hypothesis that vitamin D signaling may determine the enterotype of gut microbiota through regulating the intestinal interface. Here, we demonstrate that high-fat-diet feeding (HFD is necessary but not sufficient, while additional vitamin D deficiency (VDD as a second hit is needed, to induce robust insulin resistance and fatty liver. Under the two hits (HFD+VDD, the Paneth cell-specific alpha-defensins including α-defensin 5 (DEFA5, MMP7 which activates the pro-defensins, as well as tight junction genes, and MUC2 are all suppressed in the ileum, resulting in mucosal collapse, increased gut permeability, dysbiosis, endotoxemia, systemic inflammation which underlie insulin resistance and hepatic steatosis. Moreover, under the vitamin D deficient high fat feeding (HFD+VDD, Helicobacter hepaticus, a known murine hepatic-pathogen, is substantially amplified in the ileum, while Akkermansia muciniphila, a beneficial symbiotic, is diminished. Likewise, the VD receptor (VDR knockout mice exhibit similar phenotypes, showing down regulation of alpha-defensins and MMP7 in the ileum, increased Helicobacter hepaticus and suppressed Akkermansia muciniphila. Remarkably, oral administration of DEFA5 restored eubiosys, showing suppression of Helicobacter hepaticus and increase of Akkermansia muciniphila in association with

  1. Respiratory gas exchange as a new aid to monitor acidosis in endotoxemic rats: relationship to metabolic fuel substrates and thermometabolic responses.

    Science.gov (United States)

    Steiner, Alexandre A; Flatow, Elizabeth A; Brito, Camila F; Fonseca, Monique T; Komegae, Evilin N

    2017-01-01

    This study introduces the respiratory exchange ratio (RER; the ratio of whole-body CO 2 production to O 2 consumption) as an aid to monitor metabolic acidosis during the early phase of endotoxic shock in unanesthetized, freely moving rats. Two serotypes of lipopolysaccharide (lipopolysaccharide [LPS] O55:B5 and O127:B8) were tested at shock-inducing doses (0.5-2 mg/kg). Phasic rises in RER were observed consistently across LPS serotypes and doses. The RER rise often exceeded the ceiling of the quotient for oxidative metabolism, and was mirrored by depletion of arterial bicarbonate and decreases in pH It occurred independently of ventilatory adjustments. These data indicate that the rise in RER results from a nonmetabolic CO 2 load produced via an acid-induced equilibrium shift in the bicarbonate buffer. Having validated this new experimental aid, we asked whether acidosis was interconnected with the metabolic and thermal responses that accompany endotoxic shock in unanesthetized rats. Contrary to this hypothesis, however, acidosis persisted regardless of whether the ambient temperature favored or prevented downregulation of mitochondrial oxidation and regulated hypothermia. We then asked whether the substrate that fuels aerobic metabolism could be a relevant factor in LPS-induced acidosis. Food deprivation was employed to divert metabolism away from glucose oxidation and toward fatty acid oxidation. Interestingly, this intervention attenuated the RER response to LPS by 58%, without suppressing other key aspects of systemic inflammation. We conclude that acid production in unanesthetized rats with endotoxic shock results from a phasic activation of glycolysis, which occurs independently of physiological changes in mitochondrial oxidation and body temperature. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Rutin as a Mediator of Lipid Metabolism and Cellular Signaling Pathways Interactions in Fibroblasts Altered by UVA and UVB Radiation