WorldWideScience

Sample records for metabolic liver disease

  1. The role of IL6 in liver cancer linked to metabolic liver disease ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The role of IL6 in liver cancer linked to metabolic liver disease. Liver cancer is highly fatal, it has very few treatment options, and it is one of the few cancers whose incidence is rising worldwide. One poorly understood risk factor for liver cancer is obesity/metabolic disease (such as diabetes and fatty liver disease).

  2. Lactate metabolism in chronic liver disease

    DEFF Research Database (Denmark)

    Jeppesen, Johanne B; Mortensen, Christian; Bendtsen, Flemming

    2013-01-01

    Background. In the healthy liver there is a splanchnic net-uptake of lactate caused by gluconeogenesis. It has previously been shown that patients with acute liver failure in contrast have a splanchnic release of lactate caused by a combination of accelerated glycolysis in the splanchnic region...... and a reduction in hepatic gluconeogenesis. Aims. The aims of the present study were to investigate lactate metabolism and kinetics in patients with chronic liver disease compared with a control group with normal liver function. Methods. A total of 142 patients with chronic liver disease and 14 healthy controls...... underwent a liver vein catheterization. Blood samples from the femoral artery and the hepatic and renal veins were simultaneously collected before and after stimulation with galactose. Results. The fasting lactate levels, both in the hepatic vein and in the femoral artery, were higher in the patients than...

  3. Fatty Liver Index and Lipid Accumulation Product Can Predict Metabolic Syndrome in Subjects without Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Yuan-Lung Cheng

    2017-01-01

    Full Text Available Background. Fatty liver index (FLI and lipid accumulation product (LAP are indexes originally designed to assess the risk of fatty liver and cardiovascular disease, respectively. Both indexes have been proven to be reliable markers of subsequent metabolic syndrome; however, their ability to predict metabolic syndrome in subjects without fatty liver disease has not been clarified. Methods. We enrolled consecutive subjects who received health check-up services at Taipei Veterans General Hospital from 2002 to 2009. Fatty liver disease was diagnosed by abdominal ultrasonography. The ability of the FLI and LAP to predict metabolic syndrome was assessed by analyzing the area under the receiver operating characteristic (AUROC curve. Results. Male sex was strongly associated with metabolic syndrome, and the LAP and FLI were better than other variables to predict metabolic syndrome among the 29,797 subjects. Both indexes were also better than other variables to detect metabolic syndrome in subjects without fatty liver disease (AUROC: 0.871 and 0.879, resp., and the predictive power was greater among women. Conclusion. Metabolic syndrome increases the cardiovascular disease risk. The FLI and LAP could be used to recognize the syndrome in both subjects with and without fatty liver disease who require lifestyle modifications and counseling.

  4. Associations between Zinc Deficiency and Metabolic Abnormalities in Patients with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Takashi Himoto

    2018-01-01

    Full Text Available Zinc (Zn is an essential trace element which has favorable antioxidant, anti-inflammatory, and apoptotic effects. The liver mainly plays a crucial role in maintaining systemic Zn homeostasis. Therefore, the occurrence of chronic liver diseases, such as chronic hepatitis, liver cirrhosis, or fatty liver, results in the impairment of Zn metabolism, and subsequently Zn deficiency. Zn deficiency causes plenty of metabolic abnormalities, including insulin resistance, hepatic steatosis and hepatic encephalopathy. Inversely, metabolic abnormalities like hypoalbuminemia in patients with liver cirrhosis often result in Zn deficiency. Recent studies have revealed the putative mechanisms by which Zn deficiency evokes a variety of metabolic abnormalities in chronic liver disease. Zn supplementation has shown beneficial effects on such metabolic abnormalities in experimental models and actual patients with chronic liver disease. This review summarizes the pathogenesis of metabolic abnormalities deriving from Zn deficiency and the favorable effects of Zn administration in patients with chronic liver disease. In addition, we also highlight the interactions between Zn and other trace elements, vitamins, amino acids, or hormones in such patients.

  5. Inherited metabolic liver diseases in infants and children: an overview

    Directory of Open Access Journals (Sweden)

    Ivo Barić

    2013-10-01

    Full Text Available Inborn errors of metabolism, which affect the liver are a large, continuously increasing group of diseases. Their clinical onset can occur at any age, from intrauterine period presenting as liver failure already at birth to late adulthood. Inherited metabolic disorders must be considered in differential diagnosis of every unexplained liver disease. Specific diagnostic work-up for either their confirmation or exclusion should start immediately since any postponing can result in delayed diagnosis and death or irreversible disability. This can be particularly painful while many inherited metabolic liver diseases are relatively easily treatable if diagnosed on time, for instance galactosemia or hereditary fructose intolerance by simple dietary means. Any unexplained liver disease, even one looking initially benign, should be considered as a potential liver failure and therefore should deserve proper attention. Diagnosis in neonates is additionally complicated because of the factors which can mask liver disease, such as physiological neonatal jaundice, normally relatively enlarged liver and increased transaminases at that age. In everyday practice, in order to reveal the etiology, it is useful to classify and distinguish some clinical patterns which, together with a few routine, widely available laboratory tests (aminotransferases, prothrombine time, albumin, gammaGT, total and conjugated bilirubin, ammonia, alkaline phosphatase and glucose make the search for the cause much easier. These patterns are isolated hyperbilirubinemia, syndrome of cholestasis in early infancy, hepatocellular jaundice, Reye syndrome, portal cirrhosis and isolated hepatomegaly. Despite the fact that some diseases can present with more than one pattern (for instance, alpha-1-antitrypsin deficiency as infantile cholestasis, but also as hepatocellular jaundice, and that in some disesases one pattern can evolve into another (for instance, Wilson disease from hepatocellular

  6. Prevalence of non alcoholic fatty liver disease in patients with metabolic syndrome

    International Nuclear Information System (INIS)

    Iftikhar, R.; Kamran, S.M.

    2015-01-01

    To determine frequency of Non Alcoholic fatty liver disease in patients with Metabolic Syndrome (MetS). Study Design: Cross sectional study. Place and Duration of Study: Department of medicine, CMH Okara, Jan 2013 to July 2013. Patients and Methods: We included 491 adult males, diagnosed with metabolic syndrome (MetS), presenting in outpatient department for routine review. MetS was diagnosed as per the International Diabetes Federation (IDF) proposed criteria of 2004. Detailed history and examination of each individual was done and data entered in pre designed performa. Brightness and posterior attenuation on ultrasound abdomen were considered indices for fatty liver disease in presence of elevated ALT, negative hepatitis serology and absence of alcohol intake. All the data was analyzed using SPSS version 16. p value of less than 0.05 was considered statistically significant. Results: Out of 491 participants with MetS, 222 (45.2%) had fatty liver disease. Mean BMI in patients with metabolic syndrome was 26.1 (± .89) and mean BMI in fatty liver patients was 27.3 (± 0.67). Out of total 5 components of Mets, patients with fatty liver disease had 3.24 (± 0.25) components, as compared to 2.1 (± 0.34) in whole of study group. Conclusion: A large number of patients with metabolic syndrome have fatty liver disease. Fatty liver disease is more frequent in patients who are overweight and those having multiple risk factors of metabolic syndrome. (author)

  7. Bisphenol A sulfonation is impaired in metabolic and liver disease

    International Nuclear Information System (INIS)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L.; King, Roberta

    2016-01-01

    Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results: In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.

  8. Bisphenol A sulfonation is impaired in metabolic and liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Yalcin, Emine B.; Kulkarni, Supriya R.; Slitt, Angela L., E-mail: angela_slitt@uri.edu; King, Roberta, E-mail: rking@uri.edu

    2016-02-01

    Background: Bisphenol A (BPA) is a widely used industrial chemical and suspected endocrine disruptor to which humans are ubiquitously exposed. The liver metabolizes and facilitates BPA excretion through glucuronidation and sulfonation. The sulfotransferase enzymes contributing to BPA sulfonation (detected in human and rodents) is poorly understood. Objectives: To determine the impact of metabolic and liver disease on BPA sulfonation in human and mouse livers. Methods: The capacity for BPA sulfonation was determined in human liver samples that were categorized into different stages of metabolic and liver disease (including obesity, diabetes, steatosis, and cirrhosis) and in livers from ob/ob mice. Results: In human liver tissues, BPA sulfonation was substantially lower in livers from subjects with steatosis (23%), diabetes cirrhosis (16%), and cirrhosis (18%), relative to healthy individuals with non-fatty livers (100%). In livers of obese mice (ob/ob), BPA sulfonation was lower (23%) than in livers from lean wild-type controls (100%). In addition to BPA sulfonation activity, Sult1a1 protein expression decreased by 97% in obese mouse livers. Conclusion: Taken together these findings establish a profoundly reduced capacity of BPA elimination via sulfonation in obese or diabetic individuals and in those with fatty or cirrhotic livers versus individuals with healthy livers. - Highlights: • Present study demonstrates that hepatic SULT 1A1/1A3 are primarily sulfonate BPA in mouse and human. • Hepatic BPA sulfonation is profoundly reduced steatosis, diabetes and cirrhosis. • With BPA-S detectable in urine under low or common exposures, these findings are novel and important.

  9. The effectiveness of metformin in patients with metabolic syndrome and nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    S A Butrova

    2008-06-01

    Full Text Available The mechanism of action of metformin is realized through activation of cAMP-dependent protein kinase, leading to a decrease hepatic glucose production as well as to decrease the synthesis of triglycerides and an increase in fat oxidation. Several studies have demonstrated the positive effect of the drug in non-alcoholic fatty liver disease, manifested in reducing the activity of enzymes, reducing the size of the liver and insulin resistance. The aim of our study was to evaluate the effectiveness of metformin in patients with metabolic syndrome and nonalcoholic fatty liver disease. The study found that the use Siofor 850 mg 2 times a day in conjunction with a reduced-calorie nutrition in patients with metabolic syndrome and nonalcoholic fatty liver disease leads to a significant reduction in insulin resistance associated with decreased activity of transaminases, improvement of metabolic parameters. The therapy Siofor majority of patients (60% with metabolic syndrome and nonalcoholic fatty liver disease achieved a clinically significant weight loss and improved body composition. Application Siofor improves lifestyle changes in obese patients with non-alcoholic liver disease dirovoy and metabolic disorders.

  10. Diet-induced metabolic hamster model of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Bhathena J

    2011-06-01

    Full Text Available Jasmine Bhathena, Arun Kulamarva, Christopher Martoni, Aleksandra Malgorzata Urbanska, Meenakshi Malhotra, Arghya Paul, Satya PrakashBiomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Québec, CanadaBackground: Obesity, hypercholesterolemia, elevated triglycerides, and type 2 diabetes are major risk factors for metabolic syndrome. Hamsters, unlike rats or mice, respond well to diet-induced obesity, increase body mass and adiposity on group housing, and increase food intake due to social confrontation-induced stress. They have a cardiovascular and hepatic system similar to that of humans, and can thus be a useful model for human pathophysiology.Methods: Experiments were planned to develop a diet-induced Bio F1B Golden Syrian hamster model of dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hamsters were fed a normal control diet, a high-fat/high-cholesterol diet, a high-fat/high-cholesterol/methionine-deficient/choline-devoid diet, and a high-fat/high-cholesterol/choline-deficient diet. Serum total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, glucose, atherogenic index, and body weight were quantified biweekly. Fat deposition in the liver was observed and assessed following lipid staining with hematoxylin and eosin and with oil red O.Results: In this study, we established a diet-induced Bio F1B Golden Syrian hamster model for studying dyslipidemia and associated nonalcoholic fatty liver disease in the metabolic syndrome. Hyperlipidemia and elevated serum glucose concentrations were induced using this diet. Atherogenic index was elevated, increasing the risk for a cardiovascular event. Histological analysis of liver specimens at the end of four weeks showed increased fat deposition in the liver of animals fed

  11. Metabolic Disturbances in Children with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    A Rezaeian

    2014-04-01

    Full Text Available Introduction: Liver disease results in complex pathophysiologic disturbances affecting nutrient digestion, absorption, distribution, storage, and use. This article aimed to present a classification of metabolic disturbances in chronic liver disease in children?   Materials and Methods: In this review study databases including proquest, pubmedcentral, scincedirect, ovid, medlineplus were been searched with keyword words such as” chronic liver disease"  ” metabolic disorder””children” between 1999 to 2014. Finally, 8 related articles have been found.   Results: Metabolic disorder in this population could be categorized in four set: 1carbohydrates, 2proteins,3 fats and 4vitamins. 1 Carbohydrates: Children with CLD are at increased risk for fasting hypoglycemia, because the capacity for glycogen storage and gluconeogenesis is reduced as a result of abnormal hepatocyte function and loss of hepatocyte mass. 2 Proteins: The liver’s capacity for plasma protein synthesis is impaired by reduced substrate availability, impaired hepatocyte function, and increased catabolism. This results in hypoalbuminemia, leading to peripheral edema and contributing to ascites. Reduced synthesis of insulin-like growth factor (IGF-1 and its binding protein IGF-BP3 by the chronically diseased liver results in growth hormone resistance and may contribute to the poor growth observed in these children. 3 Fats: There is increased fat oxidation in children with end-stage liver disease in the fed and fasting states compared with controls, which is probably related to reduced carbohydrate availability. The increased lipolysis results in a decrease in fat stores, which may not be easily replenished in the setting of the fat malabsorption that accompanies cholestasis. Reduced bile delivery to the gut results in impaired fat emulsification, and hence digestion. The products of fat digestion are also poorly absorbed, because bile is also required for micelle formation

  12. Metabolic adaptations in models of fatty liver disease : Of mice and math

    NARCIS (Netherlands)

    Hijmans, Brenda

    2017-01-01

    The increasing incidence of overweight is accompanied by a plethora of medical symptoms together called the metabolic syndrome. Non-alcoholic fatty liver disease, characterized by persistent storage of lipids in the liver, is regarded as the hepatic component of the metabolic syndrome. An imbalance

  13. Disturbed Vitamin A Metabolism in Non-Alcoholic Fatty Liver Disease (NAFLD

    Directory of Open Access Journals (Sweden)

    Ali Saeed

    2017-12-01

    Full Text Available Vitamin A is required for important physiological processes, including embryogenesis, vision, cell proliferation and differentiation, immune regulation, and glucose and lipid metabolism. Many of vitamin A’s functions are executed through retinoic acids that activate transcriptional networks controlled by retinoic acid receptors (RARs and retinoid X receptors (RXRs.The liver plays a central role in vitamin A metabolism: (1 it produces bile supporting efficient intestinal absorption of fat-soluble nutrients like vitamin A; (2 it produces retinol binding protein 4 (RBP4 that distributes vitamin A, as retinol, to peripheral tissues; and (3 it harbors the largest body supply of vitamin A, mostly as retinyl esters, in hepatic stellate cells (HSCs. In times of inadequate dietary intake, the liver maintains stable circulating retinol levels of approximately 2 μmol/L, sufficient to provide the body with this vitamin for months. Liver diseases, in particular those leading to fibrosis and cirrhosis, are associated with impaired vitamin A homeostasis and may lead to vitamin A deficiency. Liver injury triggers HSCs to transdifferentiate to myofibroblasts that produce excessive amounts of extracellular matrix, leading to fibrosis. HSCs lose the retinyl ester stores in this process, ultimately leading to vitamin A deficiency. Non-alcoholic fatty liver disease (NAFLD is the hepatic manifestation of metabolic syndrome and is a spectrum of conditions ranging from benign hepatic steatosis to non-alcoholic steatohepatitis (NASH; it may progress to cirrhosis and liver cancer. NASH is projected to be the main cause of liver failure in the near future. Retinoic acids are key regulators of glucose and lipid metabolism in the liver and adipose tissue, but it is unknown whether impaired vitamin A homeostasis contributes to or suppresses the development of NAFLD. A genetic variant of patatin-like phospholipase domain-containing 3 (PNPLA3-I148M is the most prominent

  14. Radiorespirometric study of carbohydrate metabolism in childhood liver disease

    International Nuclear Information System (INIS)

    DaCosta, H.; Shreeve, W.W.; Merchant, S.

    1976-01-01

    The need for a suitable parameter to evaluate patients with chronic liver disease has been felt for some time, especially in order to judge the response to surgical shunts and the influence of certain drugs and diets on the liver. Since the liver is a major organ for carbohydrate metabolism, it was decided to analyze the in vivo oxidation of such substrates as glucose and galactose labeled with 14 C. Moderately advanced ''Indian childhood cirrhosis'' and idiopathic fatty hepatic infiltration were selected to represent diffuse chronic liver disease. Oral administration of 14 C-U-glucose or 14 C-1-galactose was followed by analyses of 14 CO 2 in breath by liquid scintillation counting. Conversion of 14 C-glucose to 14 CO 2 was accelerated by both diseases. On the other hand, oxidation of 14 C-galactose was slowed in fatty infiltration and was markedly subnormal in Indian childhood cirrhosis

  15. Relationship between hepatocellular carcinoma, metabolic syndrome and non-alcoholic fatty liver disease: which clinical arguments?

    Science.gov (United States)

    Rosmorduc, Olivier

    2013-05-01

    Obesity and the metabolic syndrome are growing epidemics associated with an increased risk for many types of cancer. In the liver, inflammatory and angiogenic changes due to insulin resistance and fatty liver disease are associated with an increased incidence of liver cancer. Regardless of underlying liver disease, cirrhosis remains the most important risk factor for hepatocellular carcinoma (HCC) although are cases of HCC arising without cirrhosis raise the possibility of a direct carcinogenesis secondary to Non-alcoholic Fatty Liver Disease (NAFLD). Moreover, metabolic syndrome and its different features may also increase the risk of HCC in the setting of chronic liver diseases of other causes such as viral hepatitis or alcohol abuse. Taking into account all these data, it is necessary to better determine the risk of developing HCC in patients with metabolic syndrome to improve the screening guidelines and develop prophylactic treatments in this setting. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-07-26

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.

  17. Metabolic syndrome and risk factors for non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Mônica Rodrigues de Araújo Souza

    2012-03-01

    Full Text Available CONTEXT: Non-alcoholic fatty liver disease (NAFLD, hepatic manifestation of metabolic syndrome, has been considered the most common liver disease nowadays, which is also the most frequent cause of elevated transaminases and cryptogenic cirrhosis. The greatest input of fatty acids into the liver and consequent increased beta-oxidation contribute to the formation of free radicals, release of inflammatory cytokines and varying degrees of hepatocytic aggression, whose histological expression may vary from steatosis (HS to non-alcoholic steatohepatitis (NASH. The differentiation of these forms is required by the potential risk of progression to cirrhosis and development of hepatocellular carcinoma. OBJECTIVE: To review the literature about the major risk factors for NAFLD in the context of metabolic syndrome, focusing on underlying mechanisms and prevention. METHOD: PubMed, MEDLINE and SciELO data basis analysis was performed to identify studies describing the link between risk factors for metabolic syndrome and NAFLD. A combination of descriptors was used, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, metabolic syndrome and risk factors. At the end, 96 clinical and experimental studies, cohorts, meta-analysis and systematic reviews of great impact and scientific relevance to the topic, were selected. RESULTS: The final analysis of all these data, pointed out the central obesity, type 2 diabetes, dyslipidemia and hypertension as the best risk factors related to NAFLD. However, other factors were highlighted, such as gender differences, ethnicity, genetic factors and the role of innate immunity system. How these additional factors may be involved in the installation, progression and disease prognosis is discussed. CONCLUSION: Risk factors for NAFLD in the context of metabolic syndrome expands the prospects to 1 recognize patients with metabolic syndrome at high risk for NAFLD, 2 elucidate pathways common to other co-morbidities, 3

  18. Structural changes in the liver in metabolic syndrome

    Directory of Open Access Journals (Sweden)

    D. V. Vasendin

    2015-01-01

    Full Text Available Scientifically proven close relationship of nonalcoholic fatty liver disease with development of metabolic syndrome and its individual components involves the conclusion that the target organ in metabolic symptom, even regardless of the severity of obesity, the liver occupies a dominant position, as the body undergoes the first characteristic of non-alcoholic fatty liver disease changes, involving violation of metabolism in the body. Dislipoproteinemia plays an important role in the formation of metabolic syndrome in obesity and other obesity-associated diseases. Altered liver function are the root cause of violations of processes of lipid metabolism and, consequently, abnormal functioning of the liver may be a separate, additional and independent risk factor for development of dyslipidemia and obesity as the main component of the metabolic syndrome.

  19. Bile Acid Metabolism in Liver Pathobiology

    Science.gov (United States)

    Chiang, John Y. L.; Ferrell, Jessica M.

    2018-01-01

    Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602

  20. Diagnosis and management of non-alcoholic fatty liver disease and related metabolic disorders: Consensus statement from the Study Group of Liver and Metabolism, Chinese Society of Endocrinology

    Science.gov (United States)

    Gao, Xin; Fan, Jian-Gao

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in Western countries, affecting 20%–33% of the general population. Large population-based surveys in China indicate a prevalence of approximately 15%–30%. Worldwide, including in China, the prevalence of NAFLD has increased rapidly in parallel with regional trends of obesity, type2 diabetes and metabolic syndrome. In addition, NAFLD has contributed significantly to increased overall, as well as cardiovascular and liver-related, mortality in the general population. In view of rapid advances in research into NAFLD in recent years, this consensus statement provides a brief update on the progress in the field and suggests preferred approaches for the comprehensive management of NAFLD and its related metabolic diseases. PMID:23560695

  1. The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Marco Sanduzzi Zamparelli

    2016-07-01

    Full Text Available The prevalence of metabolic disorders, such as type 2 diabetes (T2D, obesity, and non-alcoholic fatty liver disease (NAFLD, which are common risk factors for cardiovascular disease (CVD, has dramatically increased worldwide over the last decades. Although dietary habit is the main etiologic factor, there is an imperfect correlation between dietary habits and the development of metabolic disease. Recently, research has focused on the role of the microbiome in the development of these disorders. Indeed, gut microbiota is implicated in many metabolic functions and an altered gut microbiota is reported in metabolic disorders. Here we provide evidence linking gut microbiota and metabolic diseases, focusing on the pathogenetic mechanisms underlying this association.

  2. Energy Metabolism in the Liver

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  3. Nonalcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis in Childhood: Endocrine-Metabolic “Mal-Programming”

    Science.gov (United States)

    Manti, Sara; Romano, Claudio; Chirico, Valeria; Filippelli, Martina; Cuppari, Caterina; Loddo, Italia; Salpietro, Carmelo; Arrigo, Teresa

    2014-01-01

    Context: Nonalcoholic Fatty Liver Disease (NAFLD) is the major chronic liver disease in the pediatric population. NAFLD includes a broad spectrum of abnormalities (inflammation, fibrosis and cirrhosis), ranging from accumulation of fat (also known as steatosis) towards non-alcoholic steatohepatitis (NASH). The development of NAFLD in children is significantly increased. Evidence Acquisition: A literature search of electronic databases was undertaken for the major studies published from 1998 to today. The databases searched were: PubMed, EMBASE, Orphanet, Midline and Cochrane Library. We used the key words: "non-alcoholic fatty liver disease, children, non-alcoholic steatohepatitis and fatty liver". Results: NAFLD/NASH is probably promoted by “multiple parallel hits”: environmental and genetic factors, systemic immunological disorders (oxidative stress, persistent-low grade of inflammation) as well as obesity and metabolic alterations (insulin resistance and metabolic syndrome). However its exact cause still underdiagnosed and unknown. Conclusions: Pediatric NAFLD/NASH is emerging problem. Longitudinal follow-up studies, unfortunately still insufficient, are needed to better understand the natural history and outcome of NAFLD in children. This review focuses on the current knowledge regarding the epidemiology, pathogenesis, environmental, genetic and metabolic factors of disease. The review also highlights the importance of studying the underlying mechanisms of pediatric NAFLD and the need for complete and personalized approach in the management of NAFLD/NASH. PMID:24829591

  4. Energy metabolism in the liver.

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases. © 2014 American Physiological Society.

  5. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level.

    Science.gov (United States)

    Sookoian, Silvia; Castaño, Gustavo O; Scian, Romina; Fernández Gianotti, Tomas; Dopazo, Hernán; Rohr, Cristian; Gaj, Graciela; San Martino, Julio; Sevic, Ina; Flichman, Diego; Pirola, Carlos J

    2016-02-01

    Extensive epidemiologic studies have shown that cardiovascular disease and the metabolic syndrome (MetS) are associated with serum concentrations of liver enzymes; however, fundamental characteristics of this relation are currently unknown. We aimed to explore the role of liver aminotransferases in nonalcoholic fatty liver disease (NAFLD) and MetS. Liver gene- and protein-expression changes of aminotransferases, including their corresponding isoforms, were evaluated in a case-control study of patients with NAFLD (n = 42), which was proven through a biopsy (control subjects: n = 10). We also carried out a serum targeted metabolite profiling to the glycolysis, gluconeogenesis, and Krebs cycle (n = 48) and an exploration by the next-generation sequencing of aminotransferase genes (n = 96). An in vitro study to provide a biological explanation of changes in the transcriptional level and enzymatic activity of aminotransferases was included. Fatty liver was associated with a deregulated liver expression of aminotransferases, which was unrelated to the disease severity. Metabolite profiling showed that serum aminotransferase concentrations are a signature of liver metabolic perturbations, particularly at the amino acid metabolism and Krebs cycle level. A significant and positive association between systolic hypertension and liver expression levels of glutamic-oxaloacetic transaminase 2 (GOT2) messenger RNA (Spearman R = 0.42, P = 0.03) was observed. The rs6993 located in the 3' untranslated region of the GOT2 locus was significantly associated with features of the MetS, including arterial hypertension [P = 0.028; OR: 2.285 (95% CI: 1.024, 5.09); adjusted by NAFLD severity] and plasma lipid concentrations. In the context of an abnormal hepatic triglyceride accumulation, circulating aminotransferases rise as a consequence of the need for increased reactions of transamination to cope with the liver metabolic derangement that is associated with greater gluconeogenesis and

  6. The Role of Lipid and Lipoprotein Metabolism in Non‐Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Francesco Massimo Perla

    2017-06-01

    Full Text Available Due to the epidemic of obesity across the world, nonalcoholic fatty liver disease (NAFLD has become one of the most prevalent chronic liver disorders in children and adolescents. NAFLD comprises a spectrum of fat-associated liver conditions that can result in end-stage liver disease and the need for liver transplantation. Simple steatosis, or fatty liver, occurs early in NAFLD and may progress to nonalcoholic steatohepatitis, fibrosis and cirrhosis with increased risk of hepatocellular carcinoma. The mechanism of the liver injury in NAFLD is currently thought to be a “multiple-hit process” where the first “hit” is an increase in liver fat, followed by multiple additional factors that trigger the inflammatory activity. At the onset of disease, NAFLD is characterized by hepatic triglyceride accumulation and insulin resistance. Liver fat accumulation is associated with increased lipotoxicity from high levels of free fatty acids, free cholesterol and other lipid metabolites. As a consequence, mitochondrial dysfunction with oxidative stress and production of reactive oxygen species and endoplasmic reticulum stress-associated mechanisms, are activated. The present review focuses on the relationship between intra-cellular lipid accumulation and insulin resistance, as well as on lipid and lipoprotein metabolism in NAFLD.

  7. Nor-Ursodeoxycholic Acid as a Novel Therapeutic Approach for Cholestatic and Metabolic Liver Diseases.

    Science.gov (United States)

    Halilbasic, Emina; Steinacher, Daniel; Trauner, Michael

    2017-01-01

    Norursodeoxycholic acid (norUDCA) is a side-chain-shortened derivative of ursodeoxycholic acid with relative resistance to amidation, which enables its cholehepatic shunting. Based on its specific pharmacologic properties, norUDCA is a promising drug for a range of cholestatic liver and bile duct disorders. Recently, norUDCA has been successfully tested clinically in patients with primary sclerosing cholangitis (PSC) as first application in patients. Moreover, hepatic enrichment of norUDCA facilitates direct therapeutic effects on both parenchymal and non-parenchymal liver cells, thereby counteracting cholestasis, steatosis, hepatic inflammation and fibrosis, inhibiting hepatocellular proliferation, and promoting autophagy. This may open its therapeutic use to other non-cholestatic and metabolic liver diseases. This review article is a summary of a lecture given at the XXIV International Bile Acid Meeting (Falk Symposium 203) on "Bile Acids in Health and Disease" held in Düsseldorf, on June 17-18, 2016 and summarizes the recent progress of norUDCA as novel therapeutic approach in cholestatic and metabolic liver disorders with a specific focus on PSC. © 2017 S. Karger AG, Basel.

  8. Gender Differences in Adipocyte Metabolism and Liver Cancer Progression

    Directory of Open Access Journals (Sweden)

    Otto Ka-Wing Cheung

    2016-09-01

    Full Text Available Liver cancer is the third most common cancer type and the second leading cause of deaths in men. Large population studies have demonstrated remarkable gender disparities in the incidence and the cumulative risk of liver cancer. A number of emerging risk factors regarding metabolic alterations associated with obesity, diabetes and dyslipidemia have been ascribed to the progression of non-alcoholic fatty liver diseases (NAFLD and ultimately liver cancer. The deregulation of fat metabolism derived from excessive insulin, glucose and lipid promotes cancer-causing inflammatory signaling and oxidative stress, which eventually triggers the uncontrolled hepatocellular proliferation. This review presents the current standing on the gender differences in body fat compositions and their mechanistic linkage with the development of NAFLD-related liver cancer, with an emphasis on genetic, epigenetic and microRNA control. The potential roles of sex hormones in instructing adipocyte metabolic programs may help unravel the mechanisms underlying gender dimorphism in liver cancer and identify the metabolic targets for disease management.

  9. Effect of specific amino acids on hepatic lipid metabolism in fructose-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Jegatheesan, Prasanthi; Beutheu, Stéphanie; Ventura, Gabrielle; Sarfati, Gilles; Nubret, Esther; Kapel, Nathalie; Waligora-Dupriet, Anne-Judith; Bergheim, Ina; Cynober, Luc; De-Bandt, Jean-Pascal

    2016-02-01

    Fructose diets have been shown to induce insulin resistance and to alter liver metabolism and gut barrier function, ultimately leading to non-alcoholic fatty liver disease. Citrulline, Glutamine and Arginine may improve insulin sensitivity and have beneficial effects on gut trophicity. Our aim was to evaluate their effects on liver and gut functions in a rat model of fructose-induced non-alcoholic fatty liver disease. Male Sprague-Dawley rats (n = 58) received a 4-week fructose (60%) diet or standard chow with or without Citrulline (0.15 g/d) or an isomolar amount of Arginine or Glutamine. All diets were made isonitrogenous by addition of non-essential amino acids. At week 4, nutritional and metabolic status (plasma glucose, insulin, cholesterol, triglycerides and amino acids, net intestinal absorption) was determined; steatosis (hepatic triglycerides content, histological examination) and hepatic function (plasma aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin) were assessed; and gut barrier integrity (myeloperoxidase activity, portal endotoxemia, tight junction protein expression and localization) and intestinal and hepatic inflammation were evaluated. We also assessed diets effects on caecal microbiota. In these experimental isonitrogenous fructose diet conditions, fructose led to steatosis with dyslipidemia but without altering glucose homeostasis, liver function or gut permeability. Fructose significantly decreased Bifidobacterium and Lactobacillus and tended to increase endotoxemia. Arginine and Glutamine supplements were ineffective but Citrulline supplementation prevented hypertriglyceridemia and attenuated liver fat accumulation. While nitrogen supply alone can attenuate fructose-induced non-alcoholic fatty liver disease, Citrulline appears to act directly on hepatic lipid metabolism by partially preventing hypertriglyceridemia and steatosis. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition

  10. Non-alcoholic Fatty Liver Disease and Metabolic Syndrome in Hypopituitary Patients

    Science.gov (United States)

    Nyenwe, Ebenezer A; Williamson-Baddorf, Sarah; Waters, Bradford; Wan, Jim Y; Solomon, Solomon S.

    2009-01-01

    Background Increased incidence of cardiovascular mortality and non-alcoholic fatty liver disease (NAFLD) has been reported in hypopituitarism; but previous studies did not correct for obesity in these patients. Therefore it remained unclear if endocrine deficiency in hypopituitarism is associated with metabolic consequences independent of obesity. This study was designed to determine the burden of cardiovascular disease and NAFLD in hypopituitarism. Methods We performed a retrospective case-control analysis of hypopituitary patients at Veterans Affair Medical center, Memphis; from January 1997- June 2007. After matching for age, gender, obesity and race, relevant data were abstracted from the subjects' records to determine the presence of hypopituitarism, cardiovascular risk factors and fatty liver disease. Cases and controls were characterized by descriptive statistics, and compared using Chi-square and Student's t- tests. Results Hypopituitary patients exhibited higher prevalence of hypertension- 88% vs 78% (P0.3). Hypopituitary patients had higher elevations in serum aminotransferase levels and hyperbilirubinemia-24% vs 11% (Phypopituitarism. Although hypopituitary patients had higher prevalence of cardiovascular risk factors than controls, they were not disproportionately affected by cardiovascular disease. PMID:19745609

  11. NON-ALCOHOLIC FATTY LIVER DISEASE IN CHILDREN

    Directory of Open Access Journals (Sweden)

    L.V. Chistova

    2010-01-01

    Full Text Available Metabolic syndrome that represents a totality of interrelated carbohydrate metabolism and lipid disorders, as well as a mechanism regulating arterial tension and endothelium function is one of the critical issues in pediatrics. In recent years, children with metabolic syndrome are increasingly diagnosed with liver injuries symptoms that are associated with a fatty transformation of the liver [1–3]. In this case, non-alcoholic fatty liver disease (NAFLD, a liver manifestation of metabolic syndrome is diagnosed. The diagnosis is confirmed in the absence of alcohol abuse in the past medical history, virus and autoimmune liver disease markers, elimination of toxic and drug influence, as wells as disorders of copper and iron exchange in the patient’s system. One of the key risk factors for developing NAFLD in children is overeating and reduced physical activities. It was believed in the past that NAFLD is relatively benign, however, there is evidence in current literature that this is a pathological condition that may develop and result in extreme fibrotic alterations in the liver parenchymatous tissue all the way to cirrhosis and hepatocellular carcinoma [4]. Early-stage identification and timely launch of therapy for NAFLD in children represents one of the most important objectives in modern healthcare. Key words: metabolic syndrome, non-alcoholic fatty liver disease, children, steatohepatosis. (Pediatric Pharmacology. – 2010; 7(6:68-72

  12. Role of folate in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Sid, Victoria; Siow, Yaw L; O, Karmin

    2017-10-01

    Nonalcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver conditions that are characterized by steatosis, inflammation, fibrosis, and liver injury. The global prevalence of NAFLD is rapidly increasing in proportion to the rising incidence of obesity and type 2 diabetes. Because NAFLD is a multifaceted disorder with many underlying metabolic abnormalities, currently, there is no pharmacological agent that is therapeutically approved for the treatment of this disease. Folate is a water-soluble B vitamin that plays an essential role in one-carbon transfer reactions involved in nucleic acid biosynthesis, methylation reactions, and sulfur-containing amino acid metabolism. The liver is the primary organ responsible for storage and metabolism of folates. Low serum folate levels have been observed in patients with obesity and diabetes. It has been reported that a low level of endogenous folates in rodents perturbs folate-dependent one-carbon metabolism, and may be associated with development of metabolic diseases such as NAFLD. This review highlights the biological role of folate in the progression of NAFLD and its associated metabolic complications including obesity and type 2 diabetes. Understanding the role of folate in metabolic disease may position this vitamin as a potential therapeutic for NAFLD.

  13. Nonalcoholic Fatty Liver Disease: Focus on Lipoprotein and Lipid Deregulation

    Directory of Open Access Journals (Sweden)

    Klementina Fon Tacer

    2011-01-01

    Full Text Available Obesity with associated comorbidities is currently a worldwide epidemic and among the most challenging health conditions in the 21st century. A major metabolic consequence of obesity is insulin resistance which underlies the pathogenesis of the metabolic syndrome. Nonalcoholic fatty liver disease (NAFLD is the hepatic manifestation of obesity and metabolic syndrome. It comprises a disease spectrum ranging from simple steatosis (fatty liver, through nonalcoholic steatohepatitis (NASH to fibrosis, and ultimately liver cirrhosis. Abnormality in lipid and lipoprotein metabolism accompanied by chronic inflammation is the central pathway for the development of metabolic syndrome-related diseases, such as atherosclerosis, cardiovascular disease (CVD, and NAFLD. This paper focuses on pathogenic aspect of lipid and lipoprotein metabolism in NAFLD and the relevant mouse models of this complex multifactorial disease.

  14. Non-Alcoholic Fatty Liver Disease in HIV Infection.

    Science.gov (United States)

    Macías, Juan; Pineda, Juan A; Real, Luis M

    2017-01-01

    Non-alcoholic fatty liver disease is one of the most frequent chronic hepatic conditions worldwide. The spectrum of non-alcoholic fatty liver disease goes from hepatic steatosis to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Risk factors for non-alcoholic fatty liver disease are metabolic, mainly obesity and the accompanying consequences. Treatment and prevention of non-alcoholic fatty liver disease should target those metabolic abnormalities. The frequency of and the factors associated with hepatic steatosis in HIV infection seem to be similar to those reported in the general population, though direct comparisons are lacking. Hepatic steatosis in HIV infection may also be secondary to antiretroviral drugs or HCV-related factors in HCV-coinfected subjects. However, more recent data suggest that hepatic steatosis in HIV infection represents true non-alcoholic fatty liver disease. As such, management of non-alcoholic fatty liver disease in HIV infection should follow the same principles as in the general population.

  15. Etiology, clinical spectrum and outcome of metabolic liver diseases in children

    International Nuclear Information System (INIS)

    Roy, A.; Samanta, T.; Purkait, R.; Mukherji, A.

    2013-01-01

    Objective: To determine the etiology, clinical spectrum and outcome of metabolic liver diseases (MLD) in children admitted in a tertiary care hospital of Eastern India. Study Design: An observational study. Place and Duration of Study: Paediatric Liver Clinic and Paediatrics Inpatient Department of Nilratan Sircar Medical College and Hospital, Kolkata, Eastern India, from April 2009 to March 2011. Methodology: All children aged 0 - 12 years having characteristic clinical features along with diagnostic hallmark of any MLDs were included in this study and data were collected on a pre-designed proforma. After appropriate management and discharge, all patients were followed-up for next 6 months. Results: Fifty one children with mean age 4.34 +- 3.78 years (range 2 days +- 12 years), male: female ratio 1.55:1, were studied. The etiologies were Wilson's disease (33.33%, n = 17); glycogen storage disorder (23.53%, n = 12); galactosemia (19.61%, n = 10); non-alcoholic fatty liver disease (11.76%, n = 6); Gaucher disease (5.88%, n = 3); mucopolysaccharidoses (3.92%, n = 2) and familial hyperlipoproteinemia type-I (1.96%, n = 1). Jaundice (n = 24) and hepatomegaly (n = 47), was the commonest symptom and sign respectively. Of the 17 non-responders, most were Wilson's disease (n = 7) cases. There was statistical difference in outcome with respect to INR > 1.3 at diagnosis (p = 0.026). Conclusion: High index of suspicion, early detection and screening, simple dietary modification and cost effective drugs along with good compliance are sufficient to treat and even prevent evolution of most causes of the MLDs. (author)

  16. Transferrin metabolism in alcoholic liver disease

    International Nuclear Information System (INIS)

    Potter, B.J.; Chapman, R.W.; Nunes, R.M.; Sorrentino, D.; Sherlock, S.

    1985-01-01

    The metabolism of transferrin was studied using purified 125 I-labeled transferrin in 11 alcoholic patients; six with fatty liver and five with cirrhosis. Six healthy subjects whose alcohol intake was les than 40 gm daily were studied as a control group. There were no significant differences in the mean fractional catabolic rate and plasma volume in the alcoholic groups when compared with control subjects. A significantly decreased mean serum transferrin concentration was found in the alcoholic cirrhotic patients (1.8 +/- 0.3 gm per liter vs. 2.9 +/- 0.2; p less than 0.01), resulting from diminished total body synthesis (0.9 +/- 0.2 mg per kg per hr vs. 1.8 +/- 0.2; p less than 0.01). In contrast, in the patients with alcoholic fatty liver, the mean total body transferrin synthesis (2.4 +/- 0.3 mg per kg per hr) was significantly increased when compared with controls (p less than 0.05). For all the alcoholic patients, the serum transferrin correlated with transferrin synthesis (r = +0.70; p less than 0.01) but the serum iron did not. These results suggest that, in alcoholic cirrhosis, transferrin synthesis is decreased, probably reflecting diminished synthetic capacity by the liver. In contrast, in patients with alcoholic fatty liver, transferrin turnover is accelerated

  17. Alteration of liver parameters in non-alcoholic fatty liver disease in patients with metabolic síndrome

    Directory of Open Access Journals (Sweden)

    Alicia Sahuquillo Martínez

    2016-06-01

    Full Text Available The interest of non-alcoholic fatty liver disease (NAFLD is growing due to several reasons: high prevalence of the disease in the Western World, its capability to progress towards more aggressive histological forms and its association with diseases that increase cardiovascular risk. Objective: To analyze the alteration of liver parameters in NAFLD in patients with metabolic syndrome. Methods: A transverse, descriptive study of 100 patients with two or more cardiovascular risk factors was conducted. All patients signed informed consent. Patients selected were among those attending our Medical Office of Primary Attention and who had very little or no alcoholic consumption. A complete battery of analysis was performed including total abdominal ultrasound. Steatosis was evaluated and, if determined positive, patients were stratified in three degrees. The following determinations were collected: sex, personal and familial history of diabetes, arterial hypertension, dyslipidemia, age, weight, BMI, present pharmacological treatment, analytical parameters, blood pressure and abdominal perimeter. Results: 100 patients were included in the study, 56 (56% women and 44 (44% men, with an average age of 61,84 + 9,5 years 23% of all patients did not have NAFLD; 29% had mild NAFLD, 29% had moderate NAFLD and 19% had severe NAFLD. 82% of men presented NAFLD. 29% of women did not nave NAFLD. 22% were overweight and 38% were obese. Blood pressure was altered in 22% of men and 18% of women. 60% had altered fasting blood glucose. 36% had hypertriglyceridemia, 41% hypercholesterolemia with 65% high LDL cholesterol and 16% of low HDL cholesterol. 83% of patients had two or more criteria of metabolic syndrome. Average transaminases were: ALT 24.98 u/i; AST 32.19 u/i; GGT 55,65 u/i; ALT/AST ratio: 0.77. Lactate dehydrogenase 255.30 u/L. Alkaline phosphatase 82.80 u/L and bilirubin 0.78 mg/dL Conclusions: We did not find correlation between liver steatosis and alteration

  18. [Adiponectin in patients with metabolic syndrome and diseases of the liver, bile ducts and pancreas].

    Science.gov (United States)

    Vašura, Adam; Blaho, Martin; Dítě, Petr; Kupka, Tomáš; Svoboda, Pavel; Martínek, Arnošt

    Epidemiological data show that the metabolic syndrome can be diagnosed in up to 30 % of the population. Regarding 5 components of the metabolic syndrome, three of them, in case of positivity (visceral obesity, arterial hypertension, hypertriglyceridemia, changes of HDL-cholesterol levels and type 2 diabetes mellitus), are pathogenic factors which are the most frequently related to cardiovascular diseases, but currently they are also the focus of interest for gastroenterologists. The relationship between non-alcoholic hepatic steatosis, including non-alcoholic steatohepatitis, has been described. Less is known so far about the relation to the pancreas disease, particularly with respect to the status referred to as non-alcoholic fatty pancreas disease. The hormone selectively produced by adipose tissue is adiponectin. This protein is studied as a possible biomarker in people with metabolic syndrome, including obesity. Besides that, there is a question studied whether adiponectin can also play a significant role in the pathogenesis of diseases associated with fat building up in parenchymatous organs. Finding a reliable biomarker for patients with metabolic syndrome or diseases of the liver, biliary system and pancreas in relation to metabolic syndrome, presents a big challenge. And adiponectin is one of the promising biomarkers.Key words: adiponectin - biliary disease - metabolic syndrome - pancreatic steatosis - steatohepatitis.

  19. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease

    Science.gov (United States)

    Perumpail, Brandon J; Khan, Muhammad Ali; Yoo, Eric R; Cholankeril, George; Kim, Donghee; Ahmed, Aijaz

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is defined as the presence of hepatic fat accumulation after the exclusion of other causes of hepatic steatosis, including other causes of liver disease, excessive alcohol consumption, and other conditions that may lead to hepatic steatosis. NAFLD encompasses a broad clinical spectrum ranging from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH), advanced fibrosis, cirrhosis, and finally hepatocellular carcinoma (HCC). NAFLD is the most common liver disease in the world and NASH may soon become the most common indication for liver transplantation. Ongoing persistence of obesity with increasing rate of diabetes will increase the prevalence of NAFLD, and as this population ages, many will develop cirrhosis and end-stage liver disease. There has been a general increase in the prevalence of NAFLD, with Asia leading the rise, yet the United States is following closely behind with a rising prevalence from 15% in 2005 to 25% within 5 years. NAFLD is commonly associated with metabolic comorbidities, including obesity, type II diabetes, dyslipidemia, and metabolic syndrome. Our understanding of the pathophysiology of NAFLD is constantly evolving. Based on NAFLD subtypes, it has the potential to progress into advanced fibrosis, end-stage liver disease and HCC. The increasing prevalence of NAFLD with advanced fibrosis, is concerning because patients appear to experience higher liver-related and non-liver-related mortality than the general population. The increased morbidity and mortality, healthcare costs and declining health related quality of life associated with NAFLD makes it a formidable disease, and one that requires more in-depth analysis. PMID:29307986

  20. Skeletal Muscle Derived IL-6 in Liver and Adipose Tissue Metabolism

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet

    Summary Physical activity can lead to metabolic disease and treatment of several metabolic diseases include exercise training. Skeletal muscle has, due to its central role in glucose and fat metabolism at rest and during exercise been studied in detail with regard to exercise training. The role...... of both liver and adipose tissue regulation in whole body metabolism has come in to focus and it has been shown that both tissues are subject to exercise training-induced adaptations. However, the contribution of endocrine factors to the regulation of exercise training-induced adaptations in liver...... and adipose tissue metabolism is unknown. It has been suggested that myokines, such as IL-6, released from skeletal muscle affects liver and adipose tissue and are involved in the regulation of exercise training adaptations. Thus, the aim of this thesis was to investigate the role of skeletal muscle derived...

  1. Alcoholic Liver Disease and Malnutrition

    OpenAIRE

    McClain, Craig J.; Barve, Shirish S.; Barve, Ashutosh; Marsano, Luis

    2011-01-01

    Malnutrition, both protein energy malnutrition (PEM) and deficiencies in individual nutrients, is a frequent complication of alcoholic liver disease (ALD). Severity of malnutrition correlates with severity of ALD. Malnutrition also occurs in patients with cirrhosis due to etiologies other than alcohol. The mechanisms for malnutrition are multifactorial, and malnutrition frequently worsens in the hospital due to fasting for procedures and metabolic complications of liver disease, such as hepat...

  2. The Severity of Fatty Liver Disease Relating to Metabolic Abnormalities Independently Predicts Coronary Calcification

    International Nuclear Information System (INIS)

    Lee, Ying-Hsiang; Wu, Yih-Jer; Liu, Chuan-Chuan; Hou, Charles Jia-Yin; Yeh, Hung-I.; Tsai, Cheng-Ho; Shih, Shou-Chuan; Hung, Chung-Lieh

    2011-01-01

    Background. Nonalcoholic fatty liver disease (NAFLD) is one of the metabolic disorders presented in liver. The relationship between severity of NAFLD and coronary atherosclerotic burden remains largely unknown. Methods and Materials. We analyzed subjects undergoing coronary calcium score evaluation by computed tomography (MDCT) and fatty liver assessment using abdominal ultrasonography. Framingham risk score (FRS) and metabolic risk score (MRS) were obtained in all subjects. A graded, semiquantitative score was established to quantify the severity of NAFLD. Multivariate logistic regression analysis was used to depict the association between NAFLD and calcium score. Results. Of all, 342 participants (female: 22.5%, mean age: 48.7 ± 7.0 years) met the sufficient information rendering detailed analysis. The severity of NAFLD was positively associated with MRS (X 2 = 6.12, trend P < 0.001) and FRS (X 2 = 5.88, trend P < 0.001). After multivariable adjustment for clinical variables and life styles, the existence of moderate to severe NAFLD was independently associated with abnormal calcium score (P < 0.05). Conclusion. The severity of NAFLD correlated well with metabolic abnormality and was independently predict coronary calcification beyond clinical factors. Our data suggests that NAFLD based on ultrasonogram could positively reflect the burden of coronary calcification

  3. Endocrine-Manifestations of Cirrhosis and Liver Disease

    Directory of Open Access Journals (Sweden)

    M Khalili

    2014-04-01

    Full Text Available The liver is involved in the synthesis and metabolism of many kinds of hormones, various abnormalities hormone levels are found in advanced liver disease. For example the liver is, extremely sensitive to changes in insulin or glucagon levels. The liver is the primary organ of iron storage is frequently involved, diabetes is common in patients with iron overload and may be seen in cirrhosis. Chronic infection with HCV is associated with insulin resistance. Thyroid disease often accompanies chronic hepatitis C infection .Anti thyroid autoantibodies are also found in chronic HCV infection. Nonalcoholic liver disease (NAFLDas a most common cause of chronic liver disease in western world ,as well accompanied by Type 2 diabetes and hyperlipidemia. Hypopituitarism and hypothyroidism also have been in NAFLD.The patients with NAFLD and Hypopituitarism may be susceptible to central obesity, dyslipidemia and insulin resistance leading to disease progression. Hepatic cirrhosis as the end stage of chronic liver disease is also associated with hypogonadism and signs of feminization. The peripheral metabolism of steroids is altered in many of hypogonadism, low testosterone level decreased libido, infertility, reduced secondary sex hair and gynecomastia, reduced spermatogenesis and peritubular fibrosis are found in men with cirrhosis .The normal function of the hypothalamic-pituitary gonadal axis is affected in liver disease. In cirrhotic patients the estrogen/androgen ratio is usually increased, the level of testosterone and dihydroepiandosteron are reduced while the estradiol level are normal or slightly elevated, these alterations are dependent on the severity of the liver disease.Succsesfull orthotropic liver transplantation  leads to improvement of the sex hormone disturbances. The pathogenesis of gynecomastia is due to the loss of equilibrium between estrogen and androgen caused by a feminizing state but it is due to increased estrogen precursor in

  4. An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease.

    Science.gov (United States)

    De Las Heras, Javier; Aldámiz-Echevarría, Luis; Martínez-Chantar, María-Luz; Delgado, Teresa C

    2017-04-01

    Ammonia-scavenging drugs, benzoate and phenylacetate (PA)/phenylbutyrate (PB), modulate hepatic nitrogen metabolism mainly by providing alternative pathways for nitrogen disposal. Areas covered: We review the major findings and potential novel applications of ammonia-scavenging drugs, focusing on urea cycle disorders and liver disease. Expert opinion: For over 40 years, ammonia-scavenging drugs have been used in the treatment of urea cycle disorders. Recently, the use of these compounds has been advocated in acute liver failure and cirrhosis for reducing hyperammonemic-induced hepatic encephalopathy. The efficacy and mechanisms underlying the antitumor effects of these ammonia-scavenging drugs in liver cancer are more controversial and are discussed in the review. Overall, as ammonia-scavenging drugs are usually safe and well tolerated among cancer patients, further studies should be instigated to explore the role of these drugs in liver cancer. Considering the relevance of glutamine metabolism to the progression and resolution of liver disease, we propose that ammonia-scavenging drugs might also be used to non-invasively probe liver glutamine metabolism in vivo. Finally, novel derivatives of classical ammonia-scavenging drugs with fewer and less severe adverse effects are currently being developed and used in clinical trials for the treatment of acute liver failure and cirrhosis.

  5. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    Science.gov (United States)

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  6. Bone histomorphometric changes after liver transplantation for chronic cholestatic liver disease

    NARCIS (Netherlands)

    Guichelaar, MMJ; Malinchoc, M; Sibonga, JD; Clarke, BL; Hay, JE

    2003-01-01

    Introduction: Patients with advanced liver disease, especially chronic cholestasis, often have osteopenia, which worsens early after orthotopic liver transplantation (OLT) before starting to recover. The changes in bone metabolism leading to this rapid loss of bone after OLT, and to its recovery,

  7. Abdominal ultrasonography in inheredited diseases of carbohydrate metabolism

    International Nuclear Information System (INIS)

    Pozzato, Carlo; Curti, Alessandra; Cornalba, Gianpaolo; Radaelli, Giovanni; Fiori, Laura; Rossi, Samantha; Riva, Enrica

    2005-01-01

    Purpose: To determine the usefulness of abdominal sonography in inherited diseases of carbohydrate metabolism. Materials and methods: Thirty patients (age range, 4 months to 27 years) with glycogen storage diseases, galactosemia, disorders of fructose metabolism were studied with sonography. Echogenicity of the liver, sonographic dimensions of liver, kidneys and spleen were evaluated. Plasma blood parameters (ALT, AST, total cholesterol, triglycerides) were determined. Results: Liver was enlarged in 21/22 patients (95.4%) with glycogen storage diseases, in both subjects with disorders of fructose metabolism, and in 2/6 patients (33.3%) with galactosemia. Hepatic echogenicity was increased in 20/22 patients (90.9%) with glycogen storage diseases, and in the subject with hereditary fructose intolerance. Patients with galactosemia did not show increased liver echogenicity. Both kidney were enlarged in 8/17 patients (47.0%) with glycogen storage disease type I. Subjects with increased hepatic echogenicity exhibited higher plasma concentrations of any blood parameter than the others with normal echogenicity (p [it

  8. Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats.

    Science.gov (United States)

    Kapravelou, Garyfallia; Martínez, Rosario; Andrade, Ana M; Nebot, Elena; Camiletti-Moirón, Daniel; Aparicio, Virginia A; Lopez-Jurado, Maria; Aranda, Pilar; Arrebola, Francisco; Fernandez-Segura, Eduardo; Bermano, Giovanna; Goua, Marie; Galisteo, Milagros; Porres, Jesus M

    2015-12-01

    Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P < 0.001). The training protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to improve some of the plasma and liver alterations featured by the MS.

  9. Current management of non-alcoholic fatty liver disease

    OpenAIRE

    LISBOA, QUELSON COELHO; COSTA, SILVIA MARINHO FEROLLA; COUTO, CLÁUDIA ALVES

    2016-01-01

    SUMMARY Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic accumulation of lipid in patients who do not consume alcohol in amounts generally considered harmful to the liver. NAFLD is becoming a major liver disease in Eastern countries and it is related to insulin resistance and metabolic syndrome. Treatment has focused on improving insulin sensitivity, protecting the liver from oxidative stress, decreasing obesity and improving diabetes mellitus, dyslipidemia, hepatic infla...

  10. Influence of dietary macronutrients on liver fat accumulation and metabolism

    OpenAIRE

    Parry, Siôn A; Hodson, Leanne

    2017-01-01

    The liver is a principal metabolic organ within the human body and has a major role in regulating carbohydrate, fat, and protein metabolism. With increasing rates of obesity, the prevalence of non-alcoholic fatty liver disease (NAFLD) is growing. It remains unclear why NAFLD, which is now defined as the hepatic manifestation of the metabolic syndrome, develops but lifestyle factors such as diet (ie, total calorie and specific nutrient intakes), appear to play a key role. Here we review the av...

  11. Endocrine causes of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Marino, Laura; Jornayvaz, François R

    2015-10-21

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed.

  12. Nonalcoholic fatty liver disease - A multisystem disease?

    Science.gov (United States)

    Mikolasevic, Ivana; Milic, Sandra; Turk Wensveen, Tamara; Grgic, Ivana; Jakopcic, Ivan; Stimac, Davor; Wensveen, Felix; Orlic, Lidija

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most common comorbidities associated with overweight and metabolic syndrome (MetS). Importantly, NAFLD is one of its most dangerous complications because it can lead to severe liver pathologies, including fibrosis, cirrhosis and hepatic cellular carcinoma. Given the increasing worldwide prevalence of obesity, NAFLD has become the most common cause of chronic liver disease and therefore is a major global health problem. Currently, NAFLD is predominantly regarded as a hepatic manifestation of MetS. However, accumulating evidence indicates that the effects of NAFLD extend beyond the liver and are negatively associated with a range of chronic diseases, most notably cardiovascular disease (CVD), diabetes mellitus type 2 (T2DM) and chronic kidney disease (CKD). It is becoming increasingly clear that these diseases are the result of the same underlying pathophysiological processes associated with MetS, such as insulin resistance, chronic systemic inflammation and dyslipidemia. As a result, they have been shown to be independent reciprocal risk factors. In addition, recent data have shown that NAFLD actively contributes to aggravation of the pathophysiology of CVD, T2DM, and CKD, as well as several other pathologies. Thus, NAFLD is a direct cause of many chronic diseases associated with MetS, and better detection and treatment of fatty liver disease is therefore urgently needed. As non-invasive screening methods for liver disease become increasingly available, detection and treatment of NAFLD in patients with MetS should therefore be considered by both (sub-) specialists and primary care physicians. PMID:27920470

  13. Fatty liver disease--a practical guide for GPs.

    Science.gov (United States)

    Iser, David; Ryan, Marno

    2013-07-01

    Non-alcoholic fatty liver disease (NAFLD), encompassing both simple steatosis and non-alcoholic steato-hepatitis (NASH), is the most common cause of liver disease in Australia. Non-alcoholic fatty liver disease needs to be considered in the context of the metabolic syndrome, as cardiovascular disease will account for much of the mortality associated with NAFLD. To provide an approach to the identification of NAFLD in general practice, the distinction between simple steatosis and NASH, and the management of these two conditions. Non-alcoholic steato-hepatitis is more common in the presence of diabetes, obesity, older age and increased inflammation, and is more likely to progress to cirrhosis. Cirrhosis may be complicated by hepatocellular carcinoma or liver failure. Hepatocellular carcinoma has also been described in NASH without cirrhosis. Assessment and treatment of features of the metabolic syndrome may reduce associated cardiovascular mortality. Numerous agents have been evaluated, but weight loss remains the only effective treatment for NAFLD.

  14. Dietary Omega-3 Fatty Acid Deficiency and High Fructose Intake in the Development of Metabolic Syndrome, Brain Metabolic Abnormalities, and Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Artemis P. Simopoulos

    2013-07-01

    Full Text Available Western diets are characterized by both dietary omega-3 fatty acid deficiency and increased fructose intake. The latter found in high amounts in added sugars such as sucrose and high fructose corn syrup (HFCS. Both a low intake of omega-3 fatty acids or a high fructose intake contribute to metabolic syndrome, liver steatosis or non-alcoholic fatty liver disease (NAFLD, promote brain insulin resistance, and increase the vulnerability to cognitive dysfunction. Insulin resistance is the core perturbation of metabolic syndrome. Multiple cognitive domains are affected by metabolic syndrome in adults and in obese adolescents, with volume losses in the hippocampus and frontal lobe, affecting executive function. Fish oil supplementation maintains proper insulin signaling in the brain, ameliorates NAFLD and decreases the risk to metabolic syndrome suggesting that adequate levels of omega-3 fatty acids in the diet can cope with the metabolic challenges imposed by high fructose intake in Western diets which is of major public health importance. This review presents the current status of the mechanisms involved in the development of the metabolic syndrome, brain insulin resistance, and NAFLD a most promising area of research in Nutrition for the prevention of these conditions, chronic diseases, and improvement of Public Health.

  15. MicroRNA-mediated regulation of glutathione and methionine metabolism and its relevance for liver disease.

    Science.gov (United States)

    Lu, Shelly C; Mato, José M; Espinosa-Diez, Cristina; Lamas, Santiago

    2016-11-01

    The discovery of the microRNA (miRNA) family of small RNAs as fundamental regulators of post-transcriptional gene expression has fostered research on their importance in every area of biology and clinical medicine. In the particular area of liver metabolism and disease, miRNAs are gaining increasing importance. By focusing on two fundamental hepatic biosynthetic pathways, glutathione and methionine, we review recent advances on the comprehension of the role of miRNAs in liver pathophysiology and more specifically of models of hepatic cholestasis/fibrosis and hepatocellular carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Non-alcoholic fatty liver disease, to struggle with the strangle: Oxygen availability in fatty livers.

    Science.gov (United States)

    Anavi, Sarit; Madar, Zecharia; Tirosh, Oren

    2017-10-01

    Nonalcoholic fatty liver diseases (NAFLD) is one of the most common chronic liver disease in Western countries. Oxygen is a central component of the cellular microenvironment, which participate in the regulation of cell survival, differentiation, functions and energy metabolism. Accordingly, sufficient oxygen supply is an important factor for tissue durability, mainly in highly metabolic tissues, such as the liver. Accumulating evidence from the past few decades provides strong support for the existence of interruptions in oxygen availability in fatty livers. This outcome may be the consequence of both, impaired systemic microcirculation and cellular membrane modifications which occur under steatotic conditions. This review summarizes current knowledge regarding the main factors which can affect oxygen supply in fatty liver. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Nonalcoholic fatty liver disease: Evolving paradigms

    Science.gov (United States)

    Lonardo, Amedeo; Nascimbeni, Fabio; Maurantonio, Mauro; Marrazzo, Alessandra; Rinaldi, Luca; Adinolfi, Luigi Elio

    2017-01-01

    In the last years new evidence has accumulated on nonalcoholic fatty liver disease (NAFLD) challenging the paradigms that had been holding the scene over the previous 30 years. NAFLD has such an epidemic prevalence as to make it impossible to screen general population looking for NAFLD cases. Conversely, focusing on those cohorts of individuals exposed to the highest risk of NAFLD could be a more rational approach. NAFLD, which can be diagnosed with either non-invasive strategies or through liver biopsy, is a pathogenically complex and clinically heterogeneous disease. The existence of metabolic as opposed to genetic-associated disease, notably including ”lean NAFLD” has recently been recognized. Moreover, NAFLD is a systemic condition, featuring metabolic, cardiovascular and (hepatic/extra-hepatic) cancer risk. Among the clinico-laboratory features of NAFLD we discuss hyperuricemia, insulin resistance, atherosclerosis, gallstones, psoriasis and selected endocrine derangements. NAFLD is a precursor of type 2 diabetes (T2D) and metabolic syndrome and progressive liver disease develops in T2D patients in whom the course of disease is worsened by NAFLD. Finally, lifestyle changes and drug treatment options to be implemented in the individual patient are also critically discussed. In conclusion, this review emphasizes the new concepts on clinical and pathogenic heterogeneity of NAFLD, a systemic disorder with a multifactorial pathogenesis and protean clinical manifestations. It is highly prevalent in certain cohorts of individuals who are thus potentially amenable to selective screening strategies, intensive follow-up schedules for early identification of liver-related and extrahepatic complications and in whom earlier and more aggressive treatment schedules should be carried out whenever possible. PMID:29085206

  18. Liver transplantation for Wilson disease.

    Science.gov (United States)

    Catana, Andreea M; Medici, Valentina

    2012-01-27

    The aim of this paper is to review the current status of liver transplantation (LT) for Wilson disease (WD), focusing on indications and controversies, especially in patients with neuropsychiatric disease, and on identification of acute liver failure (ALF) cases related to WD. LT remains the treatment of choice for patients with ALF, as initial presentation of WD or when anti-copper agents are stopped, and for patients with chronic liver disease progressed to cirrhosis, unresponsive to chelating medications or not timely treated with copper chelating agents. The indication for LT in WD remains highly debated in patients with progressive neurological deterioration and failure to improve with appropriate medical treatment. In case of Wilsonian ALF, early identification is key as mortality is 100% without emergency LT. As many of the copper metabolism parameters are believed to be less reliable in ALF, simple biochemical tests have been proposed for diagnosis of acute WD with good sensitivity and specificity. LT corrects copper metabolism and complications resulting from WD with excellent 1 and 5 year survival. Living related liver transplantation represents an alternative to deceased donor LT with excellent long-term survival, without disease recurrence. Future options may include hepatocyte transplantation and gene therapy. Although both of these have shown promising results in animal models of WD, prospective human studies are much needed to demonstrate their long-term beneficial effects and their potential to replace the need for medical therapy and LT in patients with WD.

  19. Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD).

    Science.gov (United States)

    Ni, Xunjun; Wang, Haiyan

    2016-01-01

    Silymarin, which derived from the milk thistle plant (silybum marianum), has been used for centuries as a natural remedy for diseases of the liver and biliary tract. Considering the therapeutic potential to liver disease, we tested efficacy of silymarin on hepatic steatosis with a high fat diet (HFD)-induced mouse model of non-alcoholic fatty liver disease (NAFLD), and investigated possible effects on lipid metabolic pathways. In our study, silymarin could attenuate the hepatic steatosis, which was proved by both Oil Red O staining and hepatic triglyceride (TG) level determination. Furthermore, compared with INT-747, a potent and selective FXR agonist, silymarin could preserve plasmatic high-density lipoprotein cholesterol (HDL-C) to a higher level and low-density lipoprotein cholesterol (LDL-C) to a lower level, which benefited more to the circulation system. Through real-time PCR analysis, we clarified a vital protective role of silymarin in mRNA regulation of genes involved in lipid metabolism and oxidative stress. It was also shown that silymarin had no effects on body weight, food intake, and liver transaminase. Taken together, silymarin could attenuate hepatic steatosis in a mouse model of NAFLD through regulation of lipid metabolism and oxidative stress, and benefit to the circulation system. All these findings shed new light on NAFLD treatment.

  20. Nonalcoholic fatty liver disease and vascular disease: State-of-the-art

    Science.gov (United States)

    Fargion, Silvia; Porzio, Marianna; Fracanzani, Anna Ludovica

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD), the most common of chronic liver disease in Western Country, is closely related to insulin resistance and oxidative stress and includes a wide spectrum of liver diseases ranging from steatosis alone, usually a benign and non-progressive condition, to nonalcoholic steatohepatitis (NASH), which may progress to liver fibrosis and cirrhosis. NAFLD is considered the hepatic manifestation of the metabolic syndrome with which shares several characteristics, however recent data suggest that NAFLD is linked to increased cardiovascular risk independently of the broad spectrum of risk factors of metabolic syndrome. Accumulating evidence suggests that the clinical burden of NAFLD is not restricted to liver-related morbidity and mortality, with the majority of deaths in NAFLD patients related to cardiovascular disease and cancer and not to the progression of liver disease. Retrospective and prospective studies provide evidence of a strong association between NAFLD and subclinical manifestation of atherosclerosis (increased intima-media thickness, endothelial dysfunction, arterial stiffness, impaired left ventricular function and coronary calcification). A general agreement emerging from these studies indicates that patients with NASH are at higher risk of cardiovascular diseases than those with simple steatosis, emphasizing the role of chronic inflammation in the pathogenesis of atherosclerosis of these patients. It is very likely that the different mechanisms involved in the pathogenesis of atherosclerosis in patients with NAFLD have a different relevance in the patients according to individual genetic background. In conclusion, in the presence of NAFLD patients should undergo a complete cardiovascular evaluation to prevent future atherosclerotic complications. Specific life-style modification and aggressive pharmaceutical modification will not only reduce the progression of liver disease, but also reduce morbidity for cardiovascular

  1. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  2. Nonalcoholic Fatty Liver Disease: Prevalence, Influence on Age and Sex, and Relationship with Metabolic Syndrome and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Hui-Yun Cheng

    2013-12-01

    Conclusion: Fatty liver can be considered as the hepatic consequence of metabolic syndrome, specifically IR. There is a high prevalence of metabolic syndrome and fatty liver among the elderly population. Metabolic disorders are closely related to fatty liver; moreover, fatty liver appears to be a good predictor for the clustering of risk factors for metabolic syndrome.

  3. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease

    NARCIS (Netherlands)

    ter Horst, Kasper W.; Serlie, Mireille J.

    2017-01-01

    Increased fructose consumption has been suggested to contribute to non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and insulin resistance, but a causal role of fructose in these metabolic diseases remains debated. Mechanistically, hepatic fructose metabolism yields precursors that can be

  4. A switch in hepatic cortisol metabolism across the spectrum of non alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Adeeba Ahmed

    Full Text Available Non alcoholic fatty liver disease (NAFLD is the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of liver disease ranging from reversible hepatic steatosis, to non alcoholic steato-hepatitis (NASH and cirrhosis. The potential role of glucocorticoids (GC in the pathogenesis of NAFLD is highlighted in patients with GC excess, Cushing's syndrome, who develop central adiposity, insulin resistance and in 20% of cases, NAFLD. Although in most cases of NAFLD, circulating cortisol levels are normal, hepatic cortisol availability is controlled by enzymes that regenerate cortisol (F from inactive cortisone (E (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1, or inactivate cortisol through A-ring metabolism (5α- and 5β-reductase, 5αR and 5βR.In vitro studies defined 11β-HSD1 expression in normal and NASH liver samples. We then characterised hepatic cortisol metabolism in 16 patients with histologically proven NAFLD compared to 32 obese controls using gas chromatographic analysis of 24 hour urine collection and plasma cortisol generation profile following oral cortisone.In patients with steatosis 5αR activity was increased, with a decrease in hepatic 11β-HSD1 activity. Total cortisol metabolites were increased in this group consistent with increased GC production rate. In contrast, in patients with NASH, 11β-HSD1 activity was increased both in comparison to patients with steatosis, and controls. Endorsing these findings, 11β-HSD1 mRNA and immunostaining was markedly increased in NASH patients in peri septal hepatocytes and within CD68 positive macrophages within inflamed cirrhotic septa.Patients with hepatic steatosis have increased clearance and decreased hepatic regeneration of cortisol and we propose that this may represent a protective mechanism to decrease local GC availability to preserve hepatic metabolic phenotype. With progression to NASH, increased 11β-HSD1 activity and consequent cortisol regeneration may

  5. A switch in hepatic cortisol metabolism across the spectrum of non alcoholic fatty liver disease.

    Science.gov (United States)

    Ahmed, Adeeba; Rabbitt, Elizabeth; Brady, Theresa; Brown, Claire; Guest, Peter; Bujalska, Iwona J; Doig, Craig; Newsome, Philip N; Hubscher, Stefan; Elias, Elwyn; Adams, David H; Tomlinson, Jeremy W; Stewart, Paul M

    2012-01-01

    Non alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of liver disease ranging from reversible hepatic steatosis, to non alcoholic steato-hepatitis (NASH) and cirrhosis. The potential role of glucocorticoids (GC) in the pathogenesis of NAFLD is highlighted in patients with GC excess, Cushing's syndrome, who develop central adiposity, insulin resistance and in 20% of cases, NAFLD. Although in most cases of NAFLD, circulating cortisol levels are normal, hepatic cortisol availability is controlled by enzymes that regenerate cortisol (F) from inactive cortisone (E) (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1), or inactivate cortisol through A-ring metabolism (5α- and 5β-reductase, 5αR and 5βR). In vitro studies defined 11β-HSD1 expression in normal and NASH liver samples. We then characterised hepatic cortisol metabolism in 16 patients with histologically proven NAFLD compared to 32 obese controls using gas chromatographic analysis of 24 hour urine collection and plasma cortisol generation profile following oral cortisone. In patients with steatosis 5αR activity was increased, with a decrease in hepatic 11β-HSD1 activity. Total cortisol metabolites were increased in this group consistent with increased GC production rate. In contrast, in patients with NASH, 11β-HSD1 activity was increased both in comparison to patients with steatosis, and controls. Endorsing these findings, 11β-HSD1 mRNA and immunostaining was markedly increased in NASH patients in peri septal hepatocytes and within CD68 positive macrophages within inflamed cirrhotic septa. Patients with hepatic steatosis have increased clearance and decreased hepatic regeneration of cortisol and we propose that this may represent a protective mechanism to decrease local GC availability to preserve hepatic metabolic phenotype. With progression to NASH, increased 11β-HSD1 activity and consequent cortisol regeneration may serve to

  6. Prioritizing Popular Proteins in Liver Cancer: Remodelling One-Carbon Metabolism.

    Science.gov (United States)

    Mora, María Isabel; Molina, Manuela; Odriozola, Leticia; Elortza, Félix; Mato, José María; Sitek, Barbara; Zhang, Pumin; He, Fuchu; Latasa, María Uxue; Ávila, Matías Antonio; Corrales, Fernando José

    2017-12-01

    Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl 4 . This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060).

  7. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease

    Science.gov (United States)

    Moreno-Fernandez, Maria E.; Giles, Daniel A.; Stankiewicz, Traci E.; Sheridan, Rachel; Karns, Rebekah; Cappelletti, Monica; Lampe, Kristin; Mukherjee, Rajib; Sina, Christian; Sallese, Anthony; Bridges, James P.; Hogan, Simon P.; Aronow, Bruce J.; Hoebe, Kasper

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD), a metabolic predisposition for development of hepatocellular carcinoma (HCC), represents a disease spectrum ranging from steatosis to steatohepatitis to cirrhosis. Acox1, a rate-limiting enzyme in peroxisomal fatty acid β-oxidation, regulates metabolism, spontaneous hepatic steatosis, and hepatocellular damage over time. However, it is unknown whether Acox1 modulates inflammation relevant to NAFLD pathogenesis or if Acox1-associated metabolic and inflammatory derangements uncover and accelerate potential for NAFLD progression. Here, we show that mice with a point mutation in Acox1 (Acox1Lampe1) exhibited altered cellular metabolism, modified T cell polarization, and exacerbated immune cell inflammatory potential. Further, in context of a brief obesogenic diet stress, NAFLD progression associated with Acox1 mutation resulted in significantly accelerated and exacerbated hepatocellular damage via induction of profound histological changes in hepatocytes, hepatic inflammation, and robust upregulation of gene expression associated with HCC development. Collectively, these data demonstrate that β-oxidation links metabolism and immune responsiveness and that a better understanding of peroxisomal β-oxidation may allow for discovery of mechanisms central for NAFLD progression. PMID:29563328

  8. An observational study on the association of nonalcoholic fatty liver disease and metabolic syndrome with gall stone disease requiring cholecystectomy.

    Science.gov (United States)

    Ahmed, Farah; Baloch, Qamaruddin; Memon, Zahid Ali; Ali, Iqra

    2017-05-01

    Recognition of Non alcoholic fatty liver disease (NAFLD) and metabolic syndrome in patients with gallstones undergoing laparoscopic or open cholecystectomy, along with it we will also study the life style of patients with gall stones. Patients with gallstones have associated NAFLD, with concurrent metabolic syndrome and these ailments share similar factors for example obesity, hypertriglyceridemia and diabetes mellitus. Factors like body mass index, gender, raised lipid levels, use of contraceptives and alcohol and having diabetes, physical inactiveness, multiparous women, water with excessive iron content, metabolic syndrome, and NAFLD are accountable factors for gallstones formation. This was a case series done at Surgical Unit 1 of Civil Hospital Karachi. Selective samples of 88 patients were included. Duration was 3 months. We included both sexes with ultrasound proof of gall stone irrespective of cholecystitis. Excluded patients with history of seropositive viral hepatitis, autoimmune and wilson's disease. As these conditions can act as a confounder to our variables. Nafld was present in 62.5%(n = 55) while 28.4% (n = 25) had metabolic syndrome. 26.94% had BMI less than 18, 32.12 had BMI between 18 and 25 and majority had BMI greater than 25 i.e in 40.93%. Of all 46.6% had a family history of cholelithiasis. Gallstone patients with NAFLD reported about their first degree relative being suffering from cholelithiasis at a significant p-value of 0.034 while this was not significant in cases of metabolic syndrome and the p -value was 0.190. We found association of metabolic syndrome with gallstones and NAFLD. Non alcoholic fatty liver was highly prevalent in our study subjects. Huge percentage of first degree relatives of gall stone patients had gallstones and this relation was more pronounced patients who had associated NAFLD.

  9. Eicosapentaenoic Acid-Enriched Phosphatidylcholine Attenuated Hepatic Steatosis Through Regulation of Cholesterol Metabolism in Rats with Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Liu, Yanjun; Shi, Di; Tian, Yingying; Liu, Yuntao; Zhan, Qiping; Xu, Jie; Wang, Jingfeng; Xue, Changhu

    2017-02-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. Disturbed cholesterol metabolism plays a crucial role in the development of NAFLD. The present study was conducted to evaluate the effects of EPA-PC extracted from sea cucumber on liver steatosis and cholesterol metabolism in NAFLD. Male Wistar rats were randomly divided into seven groups (normal control group, model group, lovastatin group, low- and high-dose EPA groups, and low- and high-dose EPA-PC groups). Model rats were established by administering a diet containing 1% orotic acid. To determine the possible cholesterol metabolism promoting mechanism of EPA-PC, we analyzed the transcription of key genes and transcriptional factors involved in hepatic cholesterol metabolism. EPA-PC dramatically alleviated hepatic lipid accumulation, reduced the serum TC concentration, and elevated HDLC levels in NAFLD rats. Fecal neutral cholesterol excretion was also promoted by EPA-PC administration. Additionally, EPA-PC decreased the mRNA expression of hydroxymethyl glutaric acid acyl (HMGR) and cholesterol 7α-hydroxylase (CYP7A), and increased the transcription of sterol carrying protein 2 (SCP2). Moreover, EPA-PC stimulated the transcription of peroxisome proliferators-activated receptor α (PPARα) and adenosine monophosphate activated protein kinase (AMPK) as well as its modulators, liver kinase B1 (LKB1) and Ca 2+ /calmodulin-dependent kinase kinase (CAMKK). Based on the results, the promoting effects of EPA-PC on NAFLD may be partly associated with the suppression of cholesterol synthesis via HMGR inhibition and the enhancement of fecal cholesterol excretion through increased SCP2 transcription. The underlying mechanism may involve stimulation of PPARα and AMPK.

  10. A nonalcoholic fatty liver disease cirrhosis model in gerbil : the dynamic relationship between hepatic lipid metabolism and cirrhosis

    NARCIS (Netherlands)

    Li, Wei; Guan, Zheng; Brisset, Jean C.; Shi, Qiaojuan; Lou, Qi; Ma, Yue; Suriguga, Su; Ying, Huazhong; Sa, Xiaoying; Chen, Zhenwen; Quax, Wim J.; Chu, Xiaofeng

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) usually takes decades to develop into cirrhosis, which limits the longitudinal study of NAFLD. This work aims at developing a NAFLD-caused cirrhosis model in gerbil and examining the dynamic relationship between hepatic lipid metabolism and cirrhosis. We fed

  11. Osteopontin regulates the cross-talk between phosphatidylcholine and cholesterol metabolism in mouse liver.

    Science.gov (United States)

    Nuñez-Garcia, Maitane; Gomez-Santos, Beatriz; Buqué, Xabier; García-Rodriguez, Juan L; Romero, Marta R; Marin, Jose J G; Arteta, Beatriz; García-Monzón, Carmelo; Castaño, Luis; Syn, Wing-Kin; Fresnedo, Olatz; Aspichueta, Patricia

    2017-09-01

    Osteopontin (OPN) is involved in different liver pathologies in which metabolic dysregulation is a hallmark. Here, we investigated whether OPN could alter liver, and more specifically hepatocyte, lipid metabolism and the mechanism involved. In mice, lack of OPN enhanced cholesterol 7α-hydroxylase (CYP7A1) levels and promoted loss of phosphatidylcholine (PC) content in liver; in vivo treatment with recombinant (r)OPN caused opposite effects. rOPN directly decreased CYP7A1 levels through activation of focal adhesion kinase-AKT signaling in hepatocytes. PC content was also decreased in OPN-deficient (OPN-KO) hepatocytes in which de novo FA and PC synthesis was lower, whereas cholesterol (CHOL) synthesis was higher, than in WT hepatocytes. In vivo inhibition of cholesterogenesis normalized liver PC content in OPN-KO mice, demonstrating that OPN regulates the cross-talk between liver CHOL and PC metabolism. Matched liver and serum samples showed a positive correlation between serum OPN levels and liver PC and CHOL concentration in nonobese patients with nonalcoholic fatty liver. In conclusion, OPN regulates CYP7A1 levels and the metabolic fate of liver acetyl-CoA as a result of CHOL and PC metabolism interplay. The results suggest that CYP7A1 is a main axis and that serum OPN could disrupt liver PC and CHOL metabolism, contributing to nonalcoholic fatty liver disease progression in nonobese patients.

  12. Etiologies of chronic liver disease in children

    Directory of Open Access Journals (Sweden)

    Farahmand F

    2001-11-01

    Full Text Available Chronic Liver diseases in children is the result of many different diseases including: metabolic, genetic, infectious, toxic and idiopathic causes. This was a case series study on 133 infants and children with age range 6 month to 12 years old, who presented clinically with manifestation of chronic liver disease and were admitted to Children Hospital Medical Center from year 1999 to 2000. In this study, 32 (24.5 percent patients had autoimmune chronic hepatitis, 15 (11.3 percent Glycogen storage diseases, 12 (9 percent extrahepatic biliary atresia, 11 (8.2 percent willson disease, 10 (7.5 percent cryptogenic cirrhosis, 6 (4.5 percent chronic hepatitis C, 5 (3.8 percen chronic hepatitic B, 5 (3.8 percent galactosemia 3 (2.25 percent congenital hepatic fibrosis, 3 (3.8 percent histiocytosis X, 3 (2.25 percent sclerosing cholangitis, 2 (1.5 percent byler’s disease 2 (1.5 percent primary tuberculosis, 1 (0.75 percent choledocalcyst, 1 (0.75 percent Alagyle syndrome. According to our data, chronic liver disease should be considered in infants and children. In our study, the most common causes are found to be: metabolic and genetic diseases (37.5 percent, chronic autoimmune hepatitis (24 percent and biliary disorders (14 percent, that encompass 86 percent of the patients.

  13. An Overview of Novel Dietary Supplements and Food Ingredients in Patients with Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Priscila Silva Figueiredo

    2018-04-01

    Full Text Available Metabolic syndrome (MetS is characterized by interconnected factors related to metabolic disturbances, and is directly related to the occurrence of some diseases such as cardiovascular diseases and type 2 diabetes. MetS is described as one or both of insulin resistance and visceral adiposity, considered the initial causes of abnormalities that include hyperglycemia, elevated blood pressure, dyslipidemia, elevated inflammatory markers, and prothrombotic state, as well as polycystic ovarian syndrome in women. Other than in MetS, visceral adiposity and the pro-inflammatory state are also key in the development of non-alcoholic fatty liver disease (NAFLD, which is the most prevalent chronic liver disease in modern society. Both MetS and NAFLD are related to diet and lifestyle, and their treatment may be influenced by dietary pattern changes and the use of certain dietary supplements. This study aimed to review the role of food ingredients and supplements in the management of MetS and NAFLD specifically in human clinical trials. Moreover, bioactive compounds and polyunsaturated fatty acids (PUFAs may be used as strategies for preventing the onset of and treatment of metabolic disorders, such as MetS and NAFLD, improving the inflammatory state and other comorbidities, such as obesity, dyslipidemias, and cardiovascular diseases (CVD.

  14. Liver fat content in type 2 diabetes: relationship with hepatic perfusion and substrate metabolism

    NARCIS (Netherlands)

    Rijzewijk, Luuk J.; van der Meer, Rutger W.; Lubberink, Mark; Lamb, Hildo J.; Romijn, Johannes A.; de Roos, Albert; Twisk, Jos W.; Heine, Robert J.; Lammertsma, Adriaan A.; Smit, Johannes W. A.; Diamant, Michaela

    2010-01-01

    Hepatic steatosis is common in type 2 diabetes. It is causally linked to the features of the metabolic syndrome, liver cirrhosis, and cardiovascular disease. Experimental data have indicated that increased liver fat may impair hepatic perfusion and metabolism. The aim of the current study was to

  15. Non-alcoholic fatty liver disease and type 2 diabetes mellitus: the liver disease of our age?

    Science.gov (United States)

    Firneisz, Gábor

    2014-07-21

    Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that might affect up to one-third of the adult population in industrialised countries. NAFLD incorporates histologically and clinically different non-alcoholic entities; fatty liver (NAFL, steatosis hepatis) and steatohepatitis (NASH-characterised by hepatocyte ballooning and lobular inflammation ± fibrosis) might progress to cirrhosis and rarely to hepatocellular cancer. NAFL increasingly affects children (paediatric prevalence is 4.2%-9.6%). Type 2 diabetes mellitus (T2DM), insulin resistance (IR), obesity, metabolic syndrome and NAFLD are particularly closely related. Increased hepatic lipid storage is an early abnormality in insulin resistant women with a history of gestational diabetes mellitus. The accumulation of triacylglycerols in hepatocytes is predominantly derived from the plasma nonesterified fatty acid pool supplied largely by the adipose tissue. A few NAFLD susceptibility gene variants are associated with progressive liver disease, IR, T2DM and a higher risk for hepatocellular carcinoma. Although not approved, pharmacological approaches might be considered in NASH patients.

  16. 'Non-alcoholic fatty liver disease' bij kinderen : een nieuwe complicatie van obesitas

    NARCIS (Netherlands)

    Bocca, Gianni; Stolk, R.P.; Scheenstra, R.; Sauer, P.J.

    2008-01-01

    Non-alcoholic fatty liver disease (NAFLD) comprises a range of chronic liver diseases from simple steatosis to steatohepatitis and cirrhosis with liver failure. In children, NAFLD is mainly associated with obesity and metabolic syndrome, the results of an unhealthy lifestyle. Insulin resistance and

  17. Metabolism, genomics, and DNA repair in the mouse aging liver

    DEFF Research Database (Denmark)

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions......The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many......, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some...

  18. Potential use of metabolic breath tests to assess liver disease and prognosis: has the time arrived for routine use in the clinic?

    Science.gov (United States)

    Stravitz, R Todd; Ilan, Yaron

    2017-03-01

    The progression of liver disease may be unique among organ system diseases in that progressive fibrosis compromises not only the sufficiency of hepatocyte mass but also impairs blood flow to the liver, resulting in porto-systemic shunting. Although liver biopsy as an assessment of fibrosis has become the key biomarker of and target for new therapies, it is invasive and subject to sampling error, and cannot quantify metabolic function or porto-systemic shunting. Measurement of the hepatic venous pressure gradient accommodates some of the deficiencies of biopsy but requires expertise not widely available and misses minor changes in hepatocellular mass and thereby information about metabolic function. Thus, an unmet need in clinical hepatology remains unfulfilled: a noninvasive biomarker which quantitates both the hepatocellular insufficiency and porto-systemic shunting inherent in progressive hepatic fibrosis. Ideally, such a biomarker should correlate with clinical endpoints including liver-related survival and cirrhotic complications, be performed at the point-of-care, and be affordable and easy to use. This review, an expert opinion, summarizes background and recent data suggesting that metabolic breath tests may now meet these requirements and have a valid place in clinical hepatology to supplant the time-honoured assessment of hepatic fibrosis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. New Insights from Rodent Models of Fatty Liver Disease

    Science.gov (United States)

    2011-01-01

    Abstract Rodent models of fatty liver disease are essential research tools that provide a window into disease pathogenesis and a testing ground for prevention and treatment. Models come in many varieties involving dietary and genetic manipulations, and sometimes both. High-energy diets that induce obesity do not uniformly cause fatty liver disease; this has prompted close scrutiny of specific macronutrients and nutrient combinations to determine which have the greatest potential for hepatotoxicity. At the same time, diets that do not cause obesity or the metabolic syndrome but do cause severe steatohepatitis have been exploited to study factors important to progressive liver injury, including cell death, oxidative stress, and immune activation. Rodents with a genetic predisposition to overeating offer yet another model in which to explore the evolution of fatty liver disease. In some animals that overeat, steatohepatitis can develop even without resorting to a high-energy diet. Importantly, these models and others have been used to document that aerobic exercise can prevent or reduce fatty liver disease. This review focuses primarily on lessons learned about steatohepatitis from manipulations of diet and eating behavior. Numerous additional insights about hepatic lipid metabolism, which have been gained from genetically engineered mice, are also mentioned. Antioxid. Redox Signal. 15, 535–550. PMID:21126212

  20. Beneficial mechanisms of aerobic exercise on hepatic lipid metabolism in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Guo, Rui; Liong, Emily C; So, Kwok Fai; Fung, Man-Lung; Tipoe, George L

    2015-04-01

    Non-alcoholic fatty liver disease (NAFLD) refers to any fatty liver disease that is not due to excessive use of alcohol. NAFLD probably results from abnormal hepatic lipid metabolism and insulin resistance. Aerobic exercise is shown to improve NAFLD. This review aimed to evaluate the molecular mechanisms involved in the beneficial effects of aerobic exercise on NAFLD. We searched articles in English on the role of aerobic exercise in NAFLD therapy in PubMed. The mechanisms of chronic aerobic exercise in regulating the outcome of NAFLD include: (i) reducing intrahepatic fat content by down-regulating sterol regulatory element-binding protein-1c and up-regulating peroxisome proliferator-activated receptor gamma expression levels; (ii) decreasing hepatic oxidative stress through modulating the reactive oxygen species, and enhancing antioxidant enzymes such as catalase and glutathione peroxidase; (iii) ameliorating hepatic inflammation via the inhibition of pro-inflammatory mediators such as tumor necrosis factor-alpha and interleukin-1 beta; (iv) attenuating mitochondrial dependent apoptosis by reducing cytochrome C released from the mitochondria to the cytosol; and (v) inducing hepato-protective autophagy. Aerobic exercise, via different mechanisms, significantly decreases the fat content of the liver and improves the outcomes of patients with NAFLD.

  1. Hepatic diseases related to triglyceride metabolism.

    Science.gov (United States)

    Aguilera-Méndez, Asdrubal; Álvarez-Delgado, Carolina; Hernández-Godinez, Daniel; Fernandez-Mejia, Cristina

    2013-10-01

    Triglycerides participate in key metabolic functions such as energy storage, thermal insulation and as deposit for essential and non-essential fatty acids that can be used as precursors for the synthesis of structural and functional phospholipids. The liver is a central organ in the regulation of triglyceride metabolism, and it participates in triglyceride synthesis, export, uptake and oxidation. The metabolic syndrome and associated diseases are among the main concerns of public health worldwide. One of the metabolic syndrome components is impaired triglyceride metabolism. Diseases associated with the metabolic syndrome promote the appearance of hepatic alterations e.g., non-alcoholic steatosis, steatohepatitis, fibrosis, cirrhosis and cancer. In this article, we review the molecular actions involved in impaired triglyceride metabolism and its association with hepatic diseases. We discuss mechanisms that reconcile the chronic inflammation and insulin resistance, and new concepts on the role of intestinal micro-flora permeability and proliferation in fatty liver etiology. We also describe the participation of oxidative stress in the progression of events leading from steatosis to steatohepatitis and fibrosis. Finally, we provide information regarding the mechanisms that link fatty acid accumulation during steatosis with changes in growth factors and cytokines that lead to the development of neoplastic cells. One of the main medical concerns vis-a-vis hepatic diseases is the lack of symptoms at the onset of the illness and, as result, its late diagnosis. The understandings of the molecular mechanisms that underlie hepatic diseases could help design strategies towards establishing markers for their accurate and timely diagnosis.

  2. Serum γ-glutamyl transferase levels, insulin resistance and liver fibrosis in patients with chronic liver diseases.

    Directory of Open Access Journals (Sweden)

    Salvatore Petta

    Full Text Available BACKGROUND AND AIMS: Serum levels of γ-glutamyl-transpeptidase(γ-GT were associated with liver disease severity and metabolic alterations, which in turn are able to affect hepatic damage. In patients with nonalcoholic fatty liver disease (NAFLD, genotype 1 chronic hepatitis C (G1CHC and chronic hepatitis B (CHB, we assessed the link between liver fibrosis and γ-GT serum levels, and we evaluated if normal or high γ-GT serum levels affect the association between insulin resistance (IR and severity of liver fibrosis. METHODS: 843 consecutive patients with chronic liver disease (CLD(193 NAFLD, 481 G1CHC, 169 CHB were evaluated by liver biopsy (Kleiner and Scheuer scores and clinical and metabolic measurements. IR was diagnosed if HOMA>3. A serum γ-GT concentration of >36 IU/L in females and >61 IU/L in males was considered the threshold value for identifying high levels of γ-GT. RESULTS: By multivariate logistic regression analysis, abnormal γ-GT serum levels were independently linked to severe liver fibrosis in patients with NAFLD (OR2.711,CI1.120-6.564,p = 0.02, G1CHC (OR3.461,CI2.138-5.603,p80%. Interestingly, among patients with high or normal γ-GT values, even if IR prevalence was significantly higher in patients with severe fibrosis compared to those without, IR remained significantly associated with severe fibrosis in patients with abnormal γ-GT values only (OR4.150,CI1.079-15.970,p = 0.03 for NAFLD; OR2.250,CI1.211-4.181,p = 0.01 for G1CHC; OR3.096,CI2.050-34.220,p = 0.01 for CHB. CONCLUSIONS: In patients with CLD, IR is independently linked to liver fibrosis only in patients with abnormal γ-GT values, without differences according to liver disease etiology, and suggesting a role of γ-GT as a marker of metabolic-induced liver damage. These data could be useful for the clinical and pharmacologic management of patients with CLD.

  3. Gut Microbiota and Host Reaction in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Hiroshi Fukui

    2015-10-01

    Full Text Available Although alcohol feeding produces evident intestinal microbial changes in animals, only some alcoholics show evident intestinal dysbiosis, a decrease in Bacteroidetes and an increase in Proteobacteria. Gut dysbiosis is related to intestinal hyperpermeability and endotoxemia in alcoholic patients. Alcoholics further exhibit reduced numbers of the beneficial Lactobacillus and Bifidobacterium. Large amounts of endotoxins translocated from the gut strongly activate Toll-like receptor 4 in the liver and play an important role in the progression of alcoholic liver disease (ALD, especially in severe alcoholic liver injury. Gut microbiota and bacterial endotoxins are further involved in some of the mechanisms of nonalcoholic fatty liver disease (NAFLD and its progression to nonalcoholic steatohepatitis (NASH. There is experimental evidence that a high-fat diet causes characteristic dysbiosis of NAFLD, with a decrease in Bacteroidetes and increases in Firmicutes and Proteobacteria, and gut dysbiosis itself can induce hepatic steatosis and metabolic syndrome. Clinical data support the above dysbiosis, but the details are variable. Intestinal dysbiosis and endotoxemia greatly affect the cirrhotics in relation to major complications and prognosis. Metagenomic approaches to dysbiosis may be promising for the analysis of deranged host metabolism in NASH and cirrhosis. Management of dysbiosis may become a cornerstone for the future treatment of liver diseases.

  4. Oral Anticoagulation in Patients With Liver Disease.

    Science.gov (United States)

    Qamar, Arman; Vaduganathan, Muthiah; Greenberger, Norton J; Giugliano, Robert P

    2018-05-15

    Patients with liver disease are at increased risks of both thrombotic and bleeding complications. Many have atrial fibrillation (AF) or venous thromboembolism (VTE) necessitating oral anticoagulant agents (OACs). Recent evidence has contradicted the assumption that patients with liver disease are "auto-anticoagulated" and thus protected from thrombotic events. Warfarin and non-vitamin K-antagonist OACs have been shown to reduce thrombotic events safely in patients with either AF or VTE. However, patients with liver disease have largely been excluded from trials of OACs. Because all currently approved OACs undergo metabolism in the liver, hepatic dysfunction may cause increased bleeding. Thus, the optimal anticoagulation strategy for patients with AF or VTE who have liver disease remains unclear. This review discusses pharmacokinetic and clinical studies evaluating the efficacy and safety of OACs in patients with liver disease and provides a practical, clinically oriented approach to the management of OAC therapy in this population. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. A etiological factors of chronic liver disease in children

    International Nuclear Information System (INIS)

    Tahir, A.; Malik, F.R.; Akhtar, P.

    2011-01-01

    Background: Chronicity of liver disease is determined either by duration of liver disease or by evidence of either severe liver disease or physical stigmata of chronic liver disease. Chronic liver disease may be caused commonly by persistent viral infections, metabolic diseases, drugs, autoimmune hepatitis, or unknown factors. The objective of this study was to find out the aetiology of chronic liver disease (CLD) in children. Methodology: It was a descriptive, prospective study which used a structured proforma designed to collect data of cases of CLD from both indoor and outdoor Paediatrics units of Fauji Foundation Hospital, Rawalpindi, and Children Hospital, Pakistan Institute of Medical Sciences, Islamabad. All children under 12 years having either clinical or biochemical evidence of liver disease and/or elevated liver enzymes for more than 3 months were included in this study. Results: Sixty cases of CLD were enrolled from indoor and outdoor units from January 2010 to July 201. Thirty nine (65%) cases were male and 21 (35%) were female. Eleven children were less than 1 year, 18 were 1-5 years old and 31 were 5-12 years of age. Viral hepatitis was the most common cause found in 22 (36.7%) cases. Out of these 22 patients with viral aetiology 19 (31.66%) patients had Hepatitis C and 3 (5%) had Hepatitis B. Glycogen storage disease was seen in 8.3% cases, and biliary atresia and Wilson disease in 6.7% each. Other less commonly found cases were autoimmune hepatitis, TORCH infections, hepatoma and drug induced hepatitis (1.7% each). Cause couldn't be established in 35% cases which remained idiopathic. Conclusion: Viral hepatitis is the leading cause of chronic liver disease in children, with the highest incidence of chronic Hepatitis C followed by metabolic disorders (glycogen storage disease and Wilson disease) and biliary atresia. Chronic viral hepatitis was most prevalent between 11 months to 12 years of age. Wilson disease was common in 3-7 years age group, and

  6. Alcohol Metabolizing Gene Polymorphisms as Genetic Biomarkers of Alcoholic Liver Disease Susceptibility and Severity: A Northeast India Patient Based Study

    Directory of Open Access Journals (Sweden)

    Tarun K. Basumatary

    2017-07-01

    Full Text Available Background: Excessive alcohol consumption is associated with genetic predisposition to Alcoholic Liver Disease (ALD, but there is very limited data on both molecular and genetic aspects of ALD among the Northeast Indian (NEI population. Aim and Objectives: Screening the role of genetic alterations in alcohol metabolizing pathway genes in the pathogenesis of ALD which is prevalent in the ethnically NEI population. Material and Methods: Whole blood was collected from ALD patients (n=150 [alcoholic chronic liver disease (CLD, n=110 and alcoholic cirrhosis (Cirr/cirrhosis, n=40], Alcoholic Without Liver Disease (AWLD, n=93 and healthy controls (HC/controls, n=274 with informed consents along with Fibroscan based liver stiffness measurement (LSM score and clinical data. Alcohol Dehydrogenase 2 (ADH2 and Aldehyde Dehydrogenase 2 (ALDH2 genotyping was studied by Polymerase Chain Reaction with Confronting Two Pair Primers (PCR-CTPP; and Alcohol Dehydrogenase 3 (ADH3 by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP method. Results:ADH2*2 genotype was predominant and associated with increased risk of cirrhosis compared to healthy controls, AWLD and CLD cases; and CLD compared to AWLD cases. ADH3*1 genotype was associated with significantly increased risk of cirrhosis compared to healthy controls, AWLD and CLD cases (p<0.001. Variant ALDH2 genotype was rare and analysis of the joint effects of genotypes showed that higher variant genotype resulted increased risk of CLD and cirrhosis compared to AWLD, and cirrhosis compared to CLD; thereby confirming the association of the polymorphisms in key alcohol metabolizing genes in the predisposition to ALD susceptibility and severity. Presence of variant ADH2, ADH3 and ALDH2 genotypes correlated with higher LSM scores in ALD. Conclusion: Alterations in the alcohol metabolizing genes are critically associated with ALD susceptibility and severity.

  7. Liver steatosis is associated with insulin resistance in skeletal muscle rather than in the liver in Japanese patients with non-alcoholic fatty liver disease.

    Science.gov (United States)

    Kato, Ken-Ichiro; Takeshita, Yumie; Misu, Hirofumi; Zen, Yoh; Kaneko, Shuichi; Takamura, Toshinari

    2015-03-01

    To examine the association between liver histological features and organ-specific insulin resistance indices calculated from 75-g oral glucose tolerance test data in patients with non-alcoholic fatty liver disease. Liver biopsy specimens were obtained from 72 patients with non-alcoholic fatty liver disease, and were scored for steatosis, grade and stage. Hepatic and skeletal muscle insulin resistance indices (hepatic insulin resistance index and Matsuda index, respectively) were calculated from 75-g oral glucose tolerance test data, and metabolic clearance rate was measured using the euglycemic hyperinsulinemic clamp method. The degree of hepatic steatosis, and grade and stage of non-alcoholic steatohepatitis were significantly correlated with Matsuda index (steatosis r = -0.45, P hepatic insulin resistance index. Multiple regression analyses adjusted for age, sex, body mass index and each histological score showed that the degree of hepatic steatosis (coefficient = -0.22, P steatosis and metabolic clearance rate (coefficient = -0.62, P = 0.059). Liver steatosis is associated with insulin resistance in skeletal muscle rather than in the liver in patients with non-alcoholic fatty liver disease, suggesting a central role of fatty liver in the development of peripheral insulin resistance and the existence of a network between the liver and skeletal muscle.

  8. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben; Van Schothorst, E. M.; Keijer, J.; Palou, A.; Oliver, P.

    2016-01-01

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  9. Isocaloric high-fat feeding directs hepatic metabolism to handling of nutrient imbalance promoting liver fat deposition

    KAUST Repository

    Diaz Rua, Ruben

    2016-03-22

    Background/Objectives: Consumption of fat-rich foods is associated with obesity and related alterations. However, there is a group of individuals, the metabolically obese normal-weight (MONW) subjects, who present normal body weight but have metabolic features characteristic of the obese status, including fat deposition in critical tissues such as liver, recognized as a major cause for the promotion of metabolic diseases. Our aim was to better understand metabolic alterations present in liver of MONW rats applying whole genome transcriptome analysis. Methods: Wistar rats were chronically fed a high-fat diet isocaloric relative to Control animals to avoid the hyperphagia and overweight and to mimic MONW features. Liver transcriptome analysis of both groups was performed. Results: Sustained intake of an isocaloric high-fat diet had a deep impact on the liver transcriptome, mainly affecting lipid metabolism. Although serum cholesterol levels were not affected, circulating triacylglycerols were lower, and metabolic adaptations at gene expression level indicated adaptation toward handling the increased fat content of the diet, an increased triacylglycerol and cholesterol deposition in liver of MONW rats was observed. Moreover, gene expression pointed to increased risk of liver injury. One of the top upregulated genes in this tissue was Krt23, a marker of hepatic disease in humans that was also increased at the protein level.Conclusion:Long-term intake of a high-fat diet, even in the absence of overweight/obesity or increase in classical blood risk biomarkers, promotes a molecular environment leading to hepatic lipid accumulation and increasing the risk of suffering from hepatic diseases.

  10. Non-Alcoholic Fatty Liver Disease and Extra-Hepatic Cancers

    Directory of Open Access Journals (Sweden)

    Claudia Sanna

    2016-05-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a leading cause of chronic liver disease but the second cause of death among NAFLD patients are attributed to malignancies at both gastrointestinal (liver, colon, esophagus, stomach, and pancreas and extra-intestinal sites (kidney in men, and breast in women. Obesity and related metabolic abnormalities are associated with increased incidence or mortality for a number of cancers. NAFLD has an intertwined relationship with metabolic syndrome and significantly contributes to the risk of hepatocellular carcinoma (HCC, but recent evidence have fuelled concerns that NAFLD may be a new, and added, risk factor for extra-hepatic cancers, particularly in the gastrointestinal tract. In this review we critically appraise key studies on NAFLD-associated extra-hepatic cancers and speculate on how NAFLD may influence carcinogenesis at these sites.

  11. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Science.gov (United States)

    Li, Songtao; Liao, Xilu; Meng, Fanyu; Wang, Yemei; Sun, Zongxiang; Guo, Fuchuan; Li, Xiaoxia; Meng, Man; Li, Ying; Sun, Changhao

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA), an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD)-induced obese non-alcoholic fatty liver disease (NAFLD) rat model. Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR)-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  12. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats.

    Directory of Open Access Journals (Sweden)

    Songtao Li

    Full Text Available BACKGROUND: Non-alcoholic fatty liver disease (NAFLD is one of the most prevalent liver diseases around the world, and is closely associated with obesity, diabetes, and insulin resistance. Ursolic acid (UA, an ubiquitous triterpenoid with multifold biological roles, is distributed in various plants. This study was conducted to investigate the therapeutic effect and potential mechanisms of UA against hepatic steatosis in a high-fat diet (HFD-induced obese non-alcoholic fatty liver disease (NAFLD rat model. METHODOLOGY/PRINCIPAL FINDINGS: Obese NAFLD model was established in Sprague-Dawley rats by 8-week HFD feeding. Therapeutic role of UA was evaluated using 0.125%, 0.25%, 0.5% UA-supplemented diet for another 6 weeks. The results from both morphologic and histological detections indicated that UA significantly reversed HFD-induced hepatic steatosis and liver injury. Besides, hepatic peroxisome proliferator-activated receptor (PPAR-α was markedly up-regulated at both mRNA and protein levels by UA. Knocking down PPAR-α significantly inhibited the anti-steatosis role of UA in vitro. HFD-induced adverse changes in the key genes, which participated in hepatic lipid metabolism, were also alleviated by UA treatment. Furthermore, UA significantly ameliorated HFD-induced metabolic disorders, including insulin resistance, inflammation and oxidative stress. CONCLUSIONS/SIGNIFICANCE: These results demonstrated that UA effectively ameliorated HFD-induced hepatic steatosis through a PPAR-α involved pathway, via improving key enzymes in the controlling of lipids metabolism. The metabolic disorders were accordingly improved with the decrease of hepatic steatosis. Thereby, UA could be a promising candidate for the treatment of NAFLD.

  13. Surgical treatment of nonalcoholic fatty liver disease in severely obese patients

    Directory of Open Access Journals (Sweden)

    Vander Naalt SJ

    2014-10-01

    Full Text Available Steven J Vander Naalt, Juan P Gurria, AiXuan L HoltermanUniversity of Illinois College of Medicine at Peoria, Children's Hospital of Illinois, Department of Surgery/Pediatric Surgery, Peoria, IL, USAAbstract: Obesity is a multi-organ system disease with underlying metabolic abnormalities and chronic systemic inflammation. Nonalcoholic fatty liver disease (NAFLD is a hepatic manifestation of obesity metabolic dysfunction and its associated cardiovascular- and liver-related morbidities and mortality. Our current understanding of NAFLD pathogenesis, disease characteristics, the role of insulin resistance, chronic inflammation, gut–liver and gut–brain crosstalk and the effectiveness of pharmacotherapy is still evolving. Bariatric surgery significantly improves metabolic and NAFLD histology in severely obese patients, although its positive effects on fibrosis are not universal. Bariatric surgery benefits NAFLD through its metabolic effect on insulin resistance, inflammation, and insulinotropic and anorexinogenic gastrointestinal hormones. Further studies are needed to understand the natural course of NAFLD in severely obese patients and the role of weight loss surgery as a primary treatment for NAFLD.Keywords: NAFLD, severe obesity, bariatric surgery

  14. [Role of the endocrine system in the pathogenesis of non-alcoholic fatty liver disease].

    Science.gov (United States)

    Hagymási, Krisztina; Reismann, Péter; Rácz, Károly; Tulassay, Zsolt

    2009-11-29

    The most frequent liver disorder in metabolic syndrome is the nonalcoholic fatty liver disease. Its pathogenesis is a complex, multifactorial process, characterized by insulin resistance and involvement of the endocrine system. Hypothyroidism may lead to nonalcoholic steatohepatitis via hyperlipidemia and obesity. Adult patients with growth hormone deficiency have a metabolic syndrome-like phenotype with obesity and many characteristic metabolic alterations. The chronic activation of the hypothalamic-pituitary-adrenal axis results in metabolic syndrome as well. Cushing's syndrome has also features of metabolic syndrome. Mild elevation of transaminase activities is commonly seen in patients with adrenal failure. Non-alcoholic steatosis is twice as common in postmenopusal as in premenopausal women and hormonal replacement therapy decreases the risk of steatosis. Insulin resistance, diabetes mellitus type 2, sleeping apnoe syndrome, cardiovascular disorders and non-alcoholic fatty liver disease are more frequent in polycystic ovary syndrome. Hypoandrogenism in males and hyperandrogenism in females may lead to fatty liver via obesity and insulin resistance. Adipokines (leptin, acylation stimulating protein, adiponectin) have a potential role in the pathogenesis of nonalcoholic fatty liver. The alterations of endocrine system must be considered in the background of cryptogenic liver diseases. The endocrine perspective may help the therapeutic approaches in the future.

  15. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice.

    Science.gov (United States)

    Palmisano, Brian T; Le, Thao D; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M

    2016-08-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  16. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice[S

    Science.gov (United States)

    Palmisano, Brian T.; Le, Thao D.; Zhu, Lin; Lee, Yoon Kwang; Stafford, John M.

    2016-01-01

    Elevated plasma TGs increase risk of cardiovascular disease in women. Estrogen treatment raises plasma TGs in women, but molecular mechanisms remain poorly understood. Here we explore the role of cholesteryl ester transfer protein (CETP) in the regulation of TG metabolism in female mice, which naturally lack CETP. In transgenic CETP females, acute estrogen treatment raised plasma TGs 50%, increased TG production, and increased expression of genes involved in VLDL synthesis, but not in nontransgenic littermate females. In CETP females, estrogen enhanced expression of small heterodimer partner (SHP), a nuclear receptor regulating VLDL production. Deletion of liver SHP prevented increases in TG production and expression of genes involved in VLDL synthesis in CETP mice with estrogen treatment. We also examined whether CETP expression had effects on TG metabolism independent of estrogen treatment. CETP increased liver β-oxidation and reduced liver TG content by 60%. Liver estrogen receptor α (ERα) was required for CETP expression to enhance β-oxidation and reduce liver TG content. Thus, CETP alters at least two networks governing TG metabolism, one involving SHP to increase VLDL-TG production in response to estrogen, and another involving ERα to enhance β-oxidation and lower liver TG content. These findings demonstrate a novel role for CETP in estrogen-mediated increases in TG production and a broader role for CETP in TG metabolism. PMID:27354419

  17. HEPATOKIN1 is a biochemistry-based model of liver metabolism for applications in medicine and pharmacology.

    Science.gov (United States)

    Berndt, Nikolaus; Bulik, Sascha; Wallach, Iwona; Wünsch, Tilo; König, Matthias; Stockmann, Martin; Meierhofer, David; Holzhütter, Hermann-Georg

    2018-06-19

    The epidemic increase of non-alcoholic fatty liver diseases (NAFLD) requires a deeper understanding of the regulatory circuits controlling the response of liver metabolism to nutritional challenges, medical drugs, and genetic enzyme variants. As in vivo studies of human liver metabolism are encumbered with serious ethical and technical issues, we developed a comprehensive biochemistry-based kinetic model of the central liver metabolism including the regulation of enzyme activities by their reactants, allosteric effectors, and hormone-dependent phosphorylation. The utility of the model for basic research and applications in medicine and pharmacology is illustrated by simulating diurnal variations of the metabolic state of the liver at various perturbations caused by nutritional challenges (alcohol), drugs (valproate), and inherited enzyme disorders (galactosemia). Using proteomics data to scale maximal enzyme activities, the model is used to highlight differences in the metabolic functions of normal hepatocytes and malignant liver cells (adenoma and hepatocellular carcinoma).

  18. In vitro metabolism of [14C]-toluene by human and rat liver microsomes and liver slices

    International Nuclear Information System (INIS)

    Chapman, D.E.; Moore, T.J.; Michener, S.R.; Powis, G.

    1990-01-01

    Toluene metabolites produced by liver microsomes from six human donors included benzylalcohol (Balc), benzaldehyde (Bald) and benzoic acid (Bacid). Microsomes from only one human donor metabolized toluene to p-cresol and o-cresol. Human liver microsomes also metabolized Balc to Bald. Balc metabolism required NADPH, was inhibited by carbon monoxide, and was decreased at a buffer pH of 10. Balc metabolism was not inhibited by ADP-ribose or sodium azide. These results suggest that cytochrome P450 is responsible for the in vitro metabolism of Balc by human liver microsomes. Toluene metabolites formed by human liver slices and released into the incubation media included hippuric acid, and Bacid. Cresols or cresol-conjugates were not detected in liver slice incubation media from any human donor. Toluene metabolism by human liver was compared to metabolism by comparable liver preparations from male Fischer F344 rats. Rates of toluene metabolism by human liver microsomes and liver slices were 9-fold and 1.3-fold greater than for rat liver, respectively. Covalent binding of toluene to human liver microsomes and liver slices was 21-fold and 4-fold greater than for comparable rat liver preparations. Covalent binding of toluene to human microsomes required NADPH, was significantly decreased by coincubation with 4 mM cysteine or 4 mM glutathione, and radioactivity associated with microsomes was decreased by subsequent digestion of microsomes with protease. These results suggest that toluene metabolism and covalent binding of toluene are underestimated if the male Fischer 344 rat is used as a model for human toluene metabolism

  19. Non-Alcoholic Fatty Liver Disease: The Emerging Burden in Cardiometabolic and Renal Diseases.

    Science.gov (United States)

    Han, Eugene; Lee, Yong Ho

    2017-12-01

    As the number of individuals with non-alcoholic fatty liver disease (NAFLD) has increased, the influence of NAFLD on other metabolic diseases has been highlighted. Accumulating epidemiologic evidence indicates that NAFLD not only affects the liver but also increases the risk of extra-hepatic diseases such as type 2 diabetes mellitus, metabolic syndrome, dyslipidemia, hypertension, cardiovascular or cerebrovascular diseases, and chronic kidney disease. Non-alcoholic steatohepatitis, an advanced type of NAFLD, can aggravate these inter-organ relationships and lead to poorer outcomes. NAFLD induces insulin resistance and exacerbates systemic chronic inflammation and oxidative stress, which leads to organ dysfunction in extra-hepatic tissues. Although more research is needed to identify the pathophysiological mechanisms and causal relationship between NAFLD and cardiometabolic and renal diseases, screening for heart, brain, and kidney diseases, risk assessment for diabetes, and a multidisciplinary approach for managing these patients should be highly encouraged. Copyright © 2017 Korean Diabetes Association.

  20. Non-alcoholic fatty liver disease and metabolic syndrome in Brazilian middle-aged and older adults

    Directory of Open Access Journals (Sweden)

    Mauro Karnikowski

    Full Text Available CONTEXT AND OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD is a complex clinicopathological entity characterized by diffuse or focal fat accumulation in the hepatic parenchyma of patients who deny abusive alcohol consumption. This study aimed to assess idiopathic NAFLD in community-dwelling, middle-aged and older adults living in the Brazilian Federal District. Associations between NAFLD and components of metabolic syndrome and the whole syndrome were investigated. DESIGN AND SETTINGS: This was a cross-sectional study on 139 subjects aged 55 years or older. METHODS: NAFLD was diagnosed by means of clinical procedures, to exclude subjects with signs of liver disorders, abusive alcohol consumption and influence from hepatotoxic drugs. Phenotypes were graded based on ultrasound examination. Metabolic syndrome was defined using the NCEP ATP III criteria. Laboratory tests were performed to assist clinical examinations and define the syndrome. RESULTS NAFLD was present in 35.2% of the subjects. Taken together, the two most intense phenotypes correlated with increased serum fasting glucose, triglyceride and VLDL cholesterol levels. Metabolic syndrome was diagnosed in 25.9% of the sample. In addition to associating NAFLD with specific traits of metabolic syndrome, non-parametric analysis confirmed the existence of a relationship (p < 0.05 between the steatotic manifestation and the syndromic condition. CONCLUSION: Compared with the literature, this study reveals greater frequency of idiopathic NAFLD among Brazilian middle-aged and older adults than is described elsewhere. The findings also suggest that impaired glycemic metabolism coupled with increased fat delivery and/or sustained endogenous biosynthesis is the most likely physiopathogenic mechanisms underlying the onset of NAFLD in this population.

  1. Non-alcoholic fatty liver disease and subclinical atherosclerosis: A comparison of metabolically- versus genetically-driven excess fat hepatic storage.

    Science.gov (United States)

    Di Costanzo, Alessia; D'Erasmo, Laura; Polimeni, Licia; Baratta, Francesco; Coletta, Paola; Di Martino, Michele; Loffredo, Lorenzo; Perri, Ludovica; Ceci, Fabrizio; Montali, Anna; Girelli, Gabriella; De Masi, Bruna; Angeloni, Antonio; Catalano, Carlo; Maranghi, Marianna; Del Ben, Maria; Angelico, Francesco; Arca, Marcello

    2017-02-01

    Non-alcoholic fatty liver disease (NAFLD) is frequently associated with atherosclerosis. However, it is unclear whether this association is related to excess fat liver storage per se or to metabolic abnormalities that typically accompany NAFLD. To investigate this, we compared individuals with hepatic steatosis driven by metabolic disturbances to those with hepatic steatosis associated with the rs738409 GG genotype in the patatin-like phospholipase domain-containing 3 gene (PNPLA3). Carotid intima-media thickness (CIMT), as a surrogate marker of subclinical atherosclerosis, was measured in 83 blood donors with the mutant GG genotype (group G), 100 patients with features of metabolic syndrome (MetS) but the wildtype CC genotype (group M), and 74 blood donors with the wildtype CC genotype (controls). Fatty liver was evaluated by ultrasonography and hepatic fat fraction (HFF) was measured using magnetic resonance (MRS/MRI) in 157 subjects. Compared with group G and controls, group M subjects were older and had increased adiposity indices, dyslipidemia, insulin resistance and elevated transaminase levels (all p hepatic steatosis), the median CIMT in group M (0.84 [0.70-0.95] mm) was significantly greater than that in group G (0.66 [0.55-0.74] mm; p < 0.001), which was similar to that in controls (0.70 [0.64-0.81] mm). Results were similar in the subgroup evaluated using MRS/MRI. Excess liver fat accumulation appeared to increase the burden of subclinical atherosclerosis only when it is associated with metabolic abnormalities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression.

    Directory of Open Access Journals (Sweden)

    Sathidpak Nantasanti

    Full Text Available The tumor suppressors Retinoblastoma (Rb and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver for metabolizing therapeutic drugs or toxins. We demonstrate that Rb and p53 cooperate to metabolize the xenobiotic 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC. DDC is metabolized mainly by cytochrome P450 (Cyp3a enzymes resulting in inhibition of heme synthesis and accumulation of protoporphyrin, an intermediate of heme pathway. Protoporphyrin accumulation causes bile injury and ductular reaction. We show that loss of Rb and p53 resulted in reduced Cyp3a expression decreased accumulation of protoporphyrin and consequently less ductular reaction in livers of mice fed with DDC for 3 weeks. These findings provide strong evidence that synergistic functions of Rb and p53 are essential for metabolism of DDC. Because Rb and p53 functions are frequently disabled in liver diseases, our results suggest that liver patients might have altered ability to remove toxins or properly metabolize therapeutic drugs. Strikingly the reduced biliary injury towards the oxidative stress inducer DCC was accompanied by enhanced hepatocellular injury and formation of HCCs in Rb and p53 deficient livers. The increase in hepatocellular injury might be related to reduce protoporphyrin accumulation, because protoporphrin is well known for its anti-oxidative activity. Furthermore our results indicate that Rb and p53 not only function as tumor suppressors in response to carcinogenic injury, but also in response to non-carcinogenic injury such as DDC.

  3. Liver transplant for cholestatic liver diseases.

    Science.gov (United States)

    Carrion, Andres F; Bhamidimarri, Kalyan Ram

    2013-05-01

    Cholestatic liver diseases include a group of diverse disorders with different epidemiology, pathophysiology, clinical course, and prognosis. Despite significant advances in the clinical care of patients with cholestatic liver diseases, liver transplant (LT) remains the only definitive therapy for end-stage liver disease, regardless of the underlying cause. As per the United Network for Organ Sharing database, the rate of cadaveric LT for cholestatic liver disease was 18% in 1991, 10% in 2000, and 7.8% in 2008. This review summarizes the available evidence on various common and rare cholestatic liver diseases, disease-specific issues, and pertinent aspects of LT. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Influence of dietary macronutrients on liver fat accumulation and metabolism

    Science.gov (United States)

    Parry, Siôn A; Hodson, Leanne

    2017-01-01

    The liver is a principal metabolic organ within the human body and has a major role in regulating carbohydrate, fat, and protein metabolism. With increasing rates of obesity, the prevalence of non-alcoholic fatty liver disease (NAFLD) is growing. It remains unclear why NAFLD, which is now defined as the hepatic manifestation of the metabolic syndrome, develops but lifestyle factors such as diet (ie, total calorie and specific nutrient intakes), appear to play a key role. Here we review the available observational and intervention studies that have investigated the influence of dietary macronutrients on liver fat content. Findings from observational studies are conflicting with some reporting that relative to healthy controls, patients with NAFLD consume diets higher in total fat/saturated fatty acids, whilst others find they consume diets higher in carbohydrates/sugars. From the limited number of intervention studies that have been undertaken, a consistent finding is a hypercaloric diet, regardless of whether the excess calories have been provided either as fat, sugar, or both, increases liver fat content. In contrast, a hypocaloric diet decreases liver fat content. Findings from both hyper- and hypo-caloric feeding studies provide some suggestion that macronutrient composition may also play a role in regulating liver fat content and this is supported by data from isocaloric feeding studies; fatty acid composition and/or carbohydrate content/type appear to influence whether there is accrual of liver fat or not. The mechanisms by which specific macronutrients, when consumed as part of an isocaloric diet, cause a change in liver fat remain to be fully elucidated. PMID:28947639

  5. Nonalcoholic fatty liver disease and polycystic ovary syndrome

    Science.gov (United States)

    Vassilatou, Evangeline

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the Western world comprising a spectrum of liver damage from fatty liver infiltration to end-stage liver disease, in patients without significant alcohol consumption. Increased prevalence of NAFLD has been reported in patients with polycystic ovary syndrome (PCOS), one of the most common endocrinopathies in premenopausal women, which has been redefined as a reproductive and metabolic disorder after the recognition of the important role of insulin resistance in the pathophysiology of the syndrome. Obesity, in particular central adiposity and insulin resistance are considered as the main factors related to NAFLD in PCOS. Moreover, existing data support that androgen excess, which is the main feature of PCOS and is interrelated to insulin resistance, may be an additional contributing factor to the development of NAFLD. Although the natural history of NAFLD remains unclear and hepatic steatosis seems to be a relatively benign condition in most patients, limited data imply that advanced stage of liver disease is possibly more frequent in obese PCOS patients with NAFLD. PCOS patients, particularly obese patients with features of the metabolic syndrome, should be submitted to screening for NAFLD comprising assessment of serum aminotransferase levels and of hepatic steatosis by abdominal ultrasound. Lifestyle modifications including diet, weight loss and exercise are the most appropriate initial therapeutic interventions for PCOS patients with NAFLD. When pharmacologic therapy is considered, metformin may be used, although currently there is no medical therapy of proven benefit for NAFLD. Long-term follow up studies are needed to clarify clinical implications and guide appropriate diagnostic evaluation, follow-up protocol and optimal treatment for PCOS patients with NAFLD. PMID:25024594

  6. Nonalcoholic fatty liver disease and polycystic ovary syndrome.

    Science.gov (United States)

    Vassilatou, Evangeline

    2014-07-14

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the Western world comprising a spectrum of liver damage from fatty liver infiltration to end-stage liver disease, in patients without significant alcohol consumption. Increased prevalence of NAFLD has been reported in patients with polycystic ovary syndrome (PCOS), one of the most common endocrinopathies in premenopausal women, which has been redefined as a reproductive and metabolic disorder after the recognition of the important role of insulin resistance in the pathophysiology of the syndrome. Obesity, in particular central adiposity and insulin resistance are considered as the main factors related to NAFLD in PCOS. Moreover, existing data support that androgen excess, which is the main feature of PCOS and is interrelated to insulin resistance, may be an additional contributing factor to the development of NAFLD. Although the natural history of NAFLD remains unclear and hepatic steatosis seems to be a relatively benign condition in most patients, limited data imply that advanced stage of liver disease is possibly more frequent in obese PCOS patients with NAFLD. PCOS patients, particularly obese patients with features of the metabolic syndrome, should be submitted to screening for NAFLD comprising assessment of serum aminotransferase levels and of hepatic steatosis by abdominal ultrasound. Lifestyle modifications including diet, weight loss and exercise are the most appropriate initial therapeutic interventions for PCOS patients with NAFLD. When pharmacologic therapy is considered, metformin may be used, although currently there is no medical therapy of proven benefit for NAFLD. Long-term follow up studies are needed to clarify clinical implications and guide appropriate diagnostic evaluation, follow-up protocol and optimal treatment for PCOS patients with NAFLD.

  7. Fasting-induced liver GADD45β restrains hepatic fatty acid uptake and improves metabolic health.

    Science.gov (United States)

    Fuhrmeister, Jessica; Zota, Annika; Sijmonsma, Tjeerd P; Seibert, Oksana; Cıngır, Şahika; Schmidt, Kathrin; Vallon, Nicola; de Guia, Roldan M; Niopek, Katharina; Berriel Diaz, Mauricio; Maida, Adriano; Blüher, Matthias; Okun, Jürgen G; Herzig, Stephan; Rose, Adam J

    2016-06-01

    Recent studies have demonstrated that repeated short-term nutrient withdrawal (i.e. fasting) has pleiotropic actions to promote organismal health and longevity. Despite this, the molecular physiological mechanisms by which fasting is protective against metabolic disease are largely unknown. Here, we show that, metabolic control, particularly systemic and liver lipid metabolism, is aberrantly regulated in the fasted state in mouse models of metabolic dysfunction. Liver transcript assays between lean/healthy and obese/diabetic mice in fasted and fed states uncovered "growth arrest and DNA damage-inducible" GADD45β as a dysregulated gene transcript during fasting in several models of metabolic dysfunction including ageing, obesity/pre-diabetes and type 2 diabetes, in both mice and humans. Using whole-body knockout mice as well as liver/hepatocyte-specific gain- and loss-of-function strategies, we revealed a role for liver GADD45β in the coordination of liver fatty acid uptake, through cytoplasmic retention of FABP1, ultimately impacting obesity-driven hyperglycaemia. In summary, fasting stress-induced GADD45β represents a liver-specific molecular event promoting adaptive metabolic function. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  8. [Non-alcoholic fatty liver disease (NAFLD) in patients with metabolic syndrome and type 2 diabetes mellitus. Pathomechanism, new diagnostic markers].

    Science.gov (United States)

    Kieć-Wilk, Beata; Klupa, Tomasz; Dembińska-Kieć, Aldona

    2010-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a complex of a wide spectrum of liver pathology--from steatosis alone, to cirrhosis and liver cancer. The pathogenic concept of NAFLD covers overnutrition with fatty acids, underactivity. Insulin resistance is believed to play the main role in this process. NAFLD is mostly related to visceral adiposity, metabolic syndrome and type 2 diabetes melitus. The presented work is a review of in vitro and in vivo modern studies, as well as clinical observations on molecular mechanisms leading to development and progress of NAFLD. Up till today their is no treatment od NAFLD, and this pathology is not benign--it may lead to patients' death in 10 years. The clinical approach to NAFLD is prevention of it's development. The manuscript is a review of new biochemical markers allowing for early detection of metabolic disorders leading to NAFLD development, thus to sufficient prevention of this pathology in patients.

  9. Extrahepatic manifestations of cholestatic liver diseases: pathogenesis and therapy

    NARCIS (Netherlands)

    Pusl, Thomas; Beuers, Ulrich

    2005-01-01

    Pruritus, fatigue, and metabolic bone disease are frequent complications of cholestatic liver diseases, which can be quite distressing for the patient and can considerably reduce the quality of life. The molecular pathogenesis of these extrahepatic manifestations of cholestasis is poorly understood,

  10. [Non-alcoholic fatty liver disease--new view].

    Science.gov (United States)

    Raszeja-Wyszomirska, Joanna; Lawniczak, Małgorzata; Marlicz, Wojciech; Miezyńska-Kurtycz, Joanna; Milkiewicz, Piotr

    2008-06-01

    Non-alcoholic fatty liver disease (NAFLD) covers a wide spectrum of liver pathology--from steatosis alone, through the necroinflammatory disorder of non-alcoholic steatohepatitis (NASH) to cirrhosis and liver cancer. NAFLD/NASH is mostly related with visceral adiposity, obesity, type 2 diabetes melitus (DM t.2) and metabolic syndrome. Pathogenetic concepts of NAFLD include overnutrition and underactivity, insulin resistance (IR) and genetic factor. The prevalence of NAFLD has been estimated to be 17-33% in some countries, NASH may be present in about 1/3 of such cases, while 20-25% of NASH cases could progress to cirrhosis. NAFLD is now recognized as one of the most frequent reason of liver tests elevation without clinical symptoms. Insulin resistance is considering as having a central role in NAFLD pathogenesis. In hepatocytes, IR is related to hyperglycaemia and hyperinsulinaemia, formation of advanced glycation end-products, increased free fatty acids and their metabolites, oxidative stress and altered profiles of adipocytokines. Early stages of fatty liver are clinically silent and include elevation of ALT and GGTP, hyperechogenic liver in USG and/or hepatomegaly. Among clinical symptoms, abdominal discomfort is relatively common as well as chronic fatigue. NAFLD/NASH is not a benign disease, progressive liver biopsy have shown histological progression of fibrosis in 32%, the estimated rate of cirrhosis development is 20% and a liver--related death is 12% over 10 years. No treatment has scientifically proved to ameliorate NAFLD or to avoid its progression. The various therapeutic alternatives are aimed at interfering with the risk factors involved in the pathogenesis of the disorder in order to prevent the progression to end-stage liver disease. The most important therapeutic measure is increasing insulin sensitivity by an attempt to change a lifestyle mostly by dieting and physical activity in order to loose weight. The most used agent is metformin, the others

  11. Coordinated and interactive expression of genes of lipid metabolism and inflammation in adipose tissue and liver during metabolic overload.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available BACKGROUND: Chronic metabolic overload results in lipid accumulation and subsequent inflammation in white adipose tissue (WAT, often accompanied by non-alcoholic fatty liver disease (NAFLD. In response to metabolic overload, the expression of genes involved in lipid metabolism and inflammatory processes is adapted. However, it still remains unknown how these adaptations in gene expression in expanding WAT and liver are orchestrated and whether they are interrelated. METHODOLOGY/PRINCIPAL FINDINGS: ApoE*3Leiden mice were fed HFD or chow for different periods up to 12 weeks. Gene expression in WAT and liver over time was evaluated by micro-array analysis. WAT hypertrophy and inflammation were analyzed histologically. Bayesian hierarchical cluster analysis of dynamic WAT gene expression identified groups of genes ('clusters' with comparable expression patterns over time. HFD evoked an immediate response of five clusters of 'lipid metabolism' genes in WAT, which did not further change thereafter. At a later time point (>6 weeks, inflammatory clusters were induced. Promoter analysis of clustered genes resulted in specific key regulators which may orchestrate the metabolic and inflammatory responses in WAT. Some master regulators played a dual role in control of metabolism and inflammation. When WAT inflammation developed (>6 weeks, genes of lipid metabolism and inflammation were also affected in corresponding livers. These hepatic gene expression changes and the underlying transcriptional responses in particular, were remarkably similar to those detected in WAT. CONCLUSION: In WAT, metabolic overload induced an immediate, stable response on clusters of lipid metabolism genes and induced inflammatory genes later in time. Both processes may be controlled and interlinked by specific transcriptional regulators. When WAT inflammation began, the hepatic response to HFD resembled that in WAT. In all, WAT and liver respond to metabolic overload by

  12. [Various pathways leading to the progression of chronic liver diseases].

    Science.gov (United States)

    Egresi, Anna; Lengyel, Gabriella; Somogyi, Anikó; Blázovics, Anna; Hagymási, Krisztina

    2016-02-21

    As the result of various effects (viruses, metabolic diseases, nutritional factors, toxic agents, autoimmune processes) abnormal liver function, liver steatosis and connective tissue remodeling may develop. Progression of this process is complex including various pathways and a number of factors. The authors summarize the factors involved in the progression of chronic liver disease. They describe the role of cells and the produced inflammatory mediators and cytokines, as well as the relationship between the disease and the intestinal flora. They emphasize the role of oxidative stress, mitochondrial dysfunction and cell death in disease progression. Insulin resistance and micro-elements (iron, copper) in relation to liver damage are also discussed, and genetic and epigenetic aspects underlying disease progression are summarized. Discovery of novel treatment options, assessment of the effectiveness of treatment, as well as the success and proper timing of liver transplantation may depend on a better understanding of the process of disease progression.

  13. Fatty liver as a risk factor for progression from metabolically healthy to metabolically abnormal in non-overweight individuals.

    Science.gov (United States)

    Hashimoto, Yoshitaka; Hamaguchi, Masahide; Fukuda, Takuya; Ohbora, Akihiro; Kojima, Takao; Fukui, Michiaki

    2017-07-01

    Recent studies identified that metabolically abnormal non-obese phenotype is a risk factor for cardiovascular diseases. However, little is known about risk factor for progression from metabolically healthy non-overweight to metabolically abnormal phenotype. We hypothesized that fatty liver had a clinical impact on progression from metabolically healthy non-overweight to metabolically abnormal phenotype. In this retrospective cohort study, 14,093 Japanese (7557 men and 6736 women), who received the health-checkup program from 2004 to 2012, were enrolled. Overweight and obesity were defined as body mass index 23.0-25.0 and ≥25.0 kg/m 2 . Four metabolic factors (impaired fasting glucose, hypertension, hypertriglyceridemia and low high density lipoprotein-cholesterol concentration) were used for definition of metabolically healthy (less than two factors) or metabolically abnormal (two or more). We divided the participants into three groups: metabolically healthy non-overweight (9755 individuals, men/women = 4290/5465), metabolically healthy overweight (2547 individuals, 1800/747) and metabolically healthy obesity (1791 individuals, 1267/524). Fatty liver was diagnosed by ultrasonography. Over the median follow-up period of 5.3 years, 873 metabolically healthy non-overweight, 512 metabolically healthy overweight and 536 metabolically healthy obesity individuals progressed to metabolically abnormal. The adjusted hazard risks of fatty liver on progression were 1.49 (95% confidence interval 1.20-1.83, p = 0.005) in metabolically healthy non-overweight, 1.37 (1.12-1.66, p = 0.002) in metabolically healthy overweight and 1.38 (1.15-1.66, p overweight individuals.

  14. Effect of vitamin E in nonalcoholic fatty liver disease with metabolic syndrome: A propensity score-matched cohort study

    Directory of Open Access Journals (Sweden)

    Gi Hyun Kim

    2015-12-01

    Full Text Available Background/AimsVitamin E improves the biochemical profiles and liver histology in nonalcoholic steatohepatitis, but the role of vitamin E is not clearly defined in the management of nonalcoholic fatty liver disease (NAFLD which includes both simple steatosis and steatohepatitis. Co-morbid metabolic syndrome increases the probability of steatohepatitis in NAFLD. In this study, we aimed to determine the short-term effects of vitamin E and off-treatment durability of response in a propensity-score matched cohort of NAFLD patients with metabolic syndrome.MethodsA retrospective cohort was constructed by retrieving 526 consecutive NAFLD patients from the electronic medical record data warehouse of a tertiary referral hospital in South Korea. Among them, 335 patients (63.7% had metabolic syndrome and were eligible for vitamin E therapy. In order to assess the effect of vitamin E, propensity score matching was used by matching covariates between control patients (n=250 and patients who received vitamin E (n=85.ResultsThe PS-matched vitamin E group (n=58 and control group (n=58 exhibited similar baseline metabolic profiles. After 6 months of vitamin E therapy, the mean ALT levels decreased significantly compared to PS-matched control (P<0.01. The changes in metabolic profiles (body weight, lipid and glucose levels did not differ between control and vitamin E groups during the study period.ConclusionsShort-term vitamin E treatment significantly reduces ALT levels in NAFLD patients with metabolic syndrome, but metabolic profiles are not affected by vitamin E.

  15. Nuclear receptors and nonalcoholic fatty liver disease1

    Science.gov (United States)

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic

  16. Prevalence of metabolic risk factors in non-alcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Ashraf, N.; Sarfraz, T.; Mumtaz, Z.; Rizwan, M.

    2017-01-01

    Objective: To determine the frequency of factors leading to metabolic syndrome among non-alcoholic fatty liver disease (NAFLD) patients at a tertiary care hospital. Study Design: Descriptive cross sectional study. Place and Duration of Study: Department of Medicine, Combined Military Hospital, Kharian. Study was carried out over a period of six months from Jan 2015 to Jun 2015. Material and Methods: A total of 110 patients were included in this study. Past history was taken to rule out alcohol intake, viral and drug induced etiology, to determine the presence of co-morbidities like obesity, type 2 diabetes mellitus, arterial hypertension and dyslipidemia. Physical examination was carried to determine the arterial blood pressure and to determine anthropometric data that is weight, height, body mass index (BMI) and abdominal obesity by measuring waist circumference. Results: Mean age of the patients was 49.95 +- 8.86 years. There were 72 male patients (65.5%) while 38 (34.5%) patients were female. Different metabolic factors were central obesity in 82 patients (74.5%), raised high density lipoprotein (HDL) in 19 patients (17.3%), raised cholesterol in 87 patients (79.1%), raised blood pressure in 65 patients (59.1%) and raised fasting plasma glucose in 82 patients (74.5%). Mean BMI was 26.31 kg/m2 +- 2.68, mean waist circumference was 109.82 cm +- 18.41, mean cholesterol was 237.50 +- 48.47mg/dl, mean systolic blood pressure was 148.88mmHg +- 22.10, mean diastolic blood pressure was 90.41mmHg +- 12.25 and mean fasting plasma glucose was 113.28mg/dl +- 22.80. Stratification with regard to age was carried out. Conclusion: A considerable number of patients with NAFLD had metabolic syndrome. There was a close correlation between NAFLD and metabolic syndrome. (author)

  17. Liver disease in pregnancy

    Institute of Scientific and Technical Information of China (English)

    Noel M Lee; Carla W Brady

    2009-01-01

    Liver diseases in pregnancy may be categorized into liver disorders that occur only in the setting of pregnancy and liver diseases that occur coincidentally with pregnancy. Hyperemesis gravidarum, preeclampsia/eclampsia, syndrome of hemolysis, elevated liver tests and low platelets (HELLP), acute fatty liver of pregnancy, and intrahepatic cholestasis of pregnancy are pregnancy-specific disorders that may cause elevations in liver tests and hepatic dysfunction. Chronic liver diseases, including cholestatic liver disease, autoimmune hepatitis, Wilson disease, and viral hepatitis may also be seen in pregnancy. Management of liver disease in pregnancy requires collaboration between obstetricians and gastroenterologists/hepatologists. Treatment of pregnancy-specific liver disorders usually involves delivery of the fetus and supportive care, whereas management of chronic liver disease in pregnancy is directed toward optimizing control of the liver disorder. Cirrhosis in the setting of pregnancy is less commonly observed but offers unique challenges for patients and practitioners. This article reviews the epidemiology, pathophysiology, diagnosis, and management of liver diseases seen in pregnancy.

  18. Alcoholic Liver Disease and Malnutrition

    Science.gov (United States)

    McClain, Craig J.; Barve, Shirish S.; Barve, Ashutosh; Marsano, Luis

    2013-01-01

    Malnutrition, both protein energy malnutrition (PEM) and deficiencies in individual nutrients, is a frequent complication of alcoholic liver disease (ALD). Severity of malnutrition correlates with severity of ALD. Malnutrition also occurs in patients with cirrhosis due to etiologies other than alcohol. The mechanisms for malnutrition are multifactorial, and malnutrition frequently worsens in the hospital due to fasting for procedures and metabolic complications of liver disease, such as hepatic encephalopathy. Aggressive nutritional support is indicated in inpatients with ALD, and patients often need to be fed through an enteral feeding tube to achieve protein and calorie goals. Enteral nutritional support clearly improves nutrition status and may improve clinical outcome. Moreover, late-night snacks in outpatient cirrhotics improve nutritional status and lean body mass. Thus, with no FDA-approved therapy for ALD, careful nutritional intervention should be considered as frontline therapy. PMID:21284673

  19. Relationship between obesity, metabolic syndrome, and nonalcoholic fatty liver disease in the elderly agricultural and fishing population of Taiwan.

    Science.gov (United States)

    Shen, Hsi-Che; Zhao, Zi-Hao; Hu, Yi-Chun; Chen, Yu-Fen; Tung, Tao-Hsin

    2014-01-01

    The purpose of this study was to explore the relationship between obesity, the metabolic syndrome, and nonalcoholic fatty liver disease (NAFLD) in the elderly agricultural and fishing population of Taipei, Taiwan. The study participants comprised 6,511 (3,971 male and 2,540 female) healthy elderly subjects voluntarily attending a teaching hospital for a physical check-up in 2010. Blood samples and real-time ultrasound-proven fatty liver sonography results were collected. The prevalence of NAFLD in this elderly population was 27.2%, including mild NAFLD (16.0%), moderate NAFLD (10.3%), and severe NAFLD (0.9%). The prevalence of moderate or severe NAFLD for metabolic syndrome proved to be substantially greater (P<0.0001, χ(2) test) for one or two metabolic factors. Using multinomial logistic regression analysis, age, sex, metabolic syndrome, and higher body mass index had a statistically significant association with mild NAFLD. Age, sex, metabolic syndrome, higher body mass index, and higher alanine aminotransferase were significantly related to moderate NAFLD. In addition, higher body mass index, higher uric acid, and higher alanine aminotransferase levels were significantly related to severe NAFLD. The sensitivity and specificity of body mass index and waist circumference as markers of NAFLD were estimated to be 81% and 84%, respectively, and 77% and 69%, respectively. The prevalence of mild or moderate NAFLD was related to obesity and metabolic syndrome. Higher body mass index was also related to severe NAFLD but not to metabolic syndrome. Targeting this population for control of obesity and improved metabolic function is important.

  20. A Guide to Non-Alcoholic Fatty Liver Disease in Childhood and Adolescence

    Science.gov (United States)

    Temple, Jonathan L.; Cordero, Paul; Li, Jiawei; Nguyen, Vi; Oben, Jude A.

    2016-01-01

    Non-Alcoholic Fatty Liver Disease (NAFLD) is now the most prevalent form of chronic liver disease, affecting 10%–20% of the general paediatric population. Within the next 10 years it is expected to become the leading cause of liver pathology, liver failure and indication for liver transplantation in childhood and adolescence in the Western world. While our understanding of the pathophysiological mechanisms underlying this disease remains limited, it is thought to be the hepatic manifestation of more widespread metabolic dysfunction and is strongly associated with a number of metabolic risk factors, including insulin resistance, dyslipidaemia, cardiovascular disease and, most significantly, obesity. Despite this, ”paediatric” NAFLD remains under-studied, under-recognised and, potentially, undermanaged. This article will explore and evaluate our current understanding of NAFLD in childhood and adolescence and how it differs from adult NAFLD, in terms of its epidemiology, pathophysiology, natural history, diagnosis and clinical management. Given the current absence of definitive radiological and histopathological diagnostic tests, maintenance of a high clinical suspicion by all members of the multidisciplinary team in primary and specialist care settings remains the most potent of diagnostic tools, enabling early diagnosis and appropriate therapeutic intervention. PMID:27314342

  1. Influence of dietary macronutrients on liver fat accumulation and metabolism.

    Science.gov (United States)

    Parry, Siôn A; Hodson, Leanne

    2017-12-01

    The liver is a principal metabolic organ within the human body and has a major role in regulating carbohydrate, fat, and protein metabolism. With increasing rates of obesity, the prevalence of non-alcoholic fatty liver disease (NAFLD) is growing. It remains unclear why NAFLD, which is now defined as the hepatic manifestation of the metabolic syndrome, develops but lifestyle factors such as diet (ie, total calorie and specific nutrient intakes), appear to play a key role. Here we review the available observational and intervention studies that have investigated the influence of dietary macronutrients on liver fat content. Findings from observational studies are conflicting with some reporting that relative to healthy controls, patients with NAFLD consume diets higher in total fat/saturated fatty acids, whilst others find they consume diets higher in carbohydrates/sugars. From the limited number of intervention studies that have been undertaken, a consistent finding is a hypercaloric diet, regardless of whether the excess calories have been provided either as fat, sugar, or both, increases liver fat content. In contrast, a hypocaloric diet decreases liver fat content. Findings from both hyper- and hypo-caloric feeding studies provide some suggestion that macronutrient composition may also play a role in regulating liver fat content and this is supported by data from isocaloric feeding studies; fatty acid composition and/or carbohydrate content/type appear to influence whether there is accrual of liver fat or not. The mechanisms by which specific macronutrients, when consumed as part of an isocaloric diet, cause a change in liver fat remain to be fully elucidated. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Angiosarcoma of the liver and other occupational diseases in vinyl chloride workers

    International Nuclear Information System (INIS)

    Halama, J.; Becker-Stone, S.; Halama, J.M.

    1985-01-01

    Occupational diseases resulting from exposure to vinyl chloride (VC) include angiosarcoma of the liver and other neoplasms. Among workers exposed to VC we have found capillary abnormalities in the extremities, with scleroderma and Raynaud syndrome, acro-osteolysis, neurological and psychiatric diseases and chromosome abnormalities, as well as abnormal liver metabolism and haematological findings.(orig.)

  3. Energy Metabolism in the Liver

    OpenAIRE

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, p...

  4. Prevalence and determinants of non-alcoholic fatty liver disease in lifelines: A large Dutch population cohort.

    Directory of Open Access Journals (Sweden)

    Eline H van den Berg

    Full Text Available Non-alcoholic fatty liver disease is an increasing health issue that develops rather unnoticed with obesity, type 2 diabetes mellitus and metabolic syndrome. We investigated prevalence, determinants and associated metabolic abnormalities of non-alcoholic fatty liver disease in the largest population-based cohort to date.Biochemical characteristics, type 2 diabetes mellitus and metabolic syndrome were determined in the Lifelines Cohort Study (N = 167,729, a population-based cohort in the North of the Netherlands. Non-alcoholic fatty liver disease was defined as Fatty Liver Index (FLI≥60. Exclusion criteria were age <18 years, immigrants, missing data to assess FLI and metabolic syndrome, excessive alcohol use, previous-diagnosed hepatitis or cirrhosis and non-fasting blood sampling.Out of 37,496 included participants (median age 44 years, 62.1% female, 8,259 (22.0% had a FLI≥60. Individuals with a FLI≥60 were more often male, older, obese, had higher levels of hemoglobinA1c, fasting glucose, liver enzymes, total cholesterol, low-density lipoprotein cholesterol, triglycerides, c-reactive protein and leucocytes and lower high-density lipoprotein cholesterol (all P<0.0001. Participants with a FLI≥60 showed higher prevalence of type 2 diabetes mellitus (9.3% vs. 1.4%, metabolic syndrome (54.2% vs. 6.2%, impaired renal function (20.1% vs. 8.7% and cardiovascular disease (4.6% vs. 1.6% (all P<0.0001. Multivariable logistic analysis showed that smoking, hemoglobin, leucocytes, c-reactive protein, platelets, alanine aminotransferase, alkaline phosphatase, albumin, impaired renal function (OR 1.27, 95%CI 1.15-1.41, metabolic syndrome (OR 11.89, 95%CI 11.03-12.82 and its individual components hyperglycemia (OR 2.53, 95%CI 2.34-2.72, hypertension (OR 1.89, 95%CI 1.77-2.01 and reduced high-density lipoprotein cholesterol (OR 3.44, 95%CI 3.22-3.68 were independently associated with suspected non-alcoholic fatty liver disease (all P<0.0001.Twenty

  5. Fumarylacetoacetate hydrolase deficient pigs are a novel large animal model of metabolic liver disease

    Directory of Open Access Journals (Sweden)

    Raymond D. Hickey

    2014-07-01

    FAH-deficiency produced a lethal defect in utero that was corrected by administration of 2-(2-nitro-4-trifluoromethylbenzoyl-1,3 cyclohexanedione (NTBC throughout pregnancy. Animals on NTBC were phenotypically normal at birth; however, the animals were euthanized approximately four weeks after withdrawal of NTBC due to clinical decline and physical examination findings of severe liver injury and encephalopathy consistent with acute liver failure. Biochemical and histological analyses, characterized by diffuse and severe hepatocellular damage, confirmed the diagnosis of severe liver injury. FAH−/− pigs provide the first genetically engineered large animal model of a metabolic liver disorder. Future applications of FAH−/− pigs include discovery research as a large animal model of HT1 and spontaneous acute liver failure, and preclinical testing of the efficacy of liver cell therapies, including transplantation of hepatocytes, liver stem cells, and pluripotent stem cell-derived hepatocytes.

  6. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    Science.gov (United States)

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  7. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery.

    Science.gov (United States)

    Kizawa, Hideki; Nagao, Eri; Shimamura, Mitsuru; Zhang, Guangyuan; Torii, Hitoshi

    2017-07-01

    The liver plays a central role in metabolism. Although many studies have described in vitro liver models for drug discovery, to date, no model has been described that can stably maintain liver function. Here, we used a unique, scaffold-free 3D bio-printing technology to construct a small portion of liver tissue that could stably maintain drug, glucose, and lipid metabolism, in addition to bile acid secretion. This bio-printed normal human liver tissue maintained expression of several kinds of hepatic drug transporters and metabolic enzymes that functioned for several weeks. The bio-printed liver tissue displayed glucose production via cAMP/protein kinase A signaling, which could be suppressed with insulin. Bile acid secretion was also observed from the printed liver tissue, and it accumulated in the culture medium over time. We observed both bile duct and sinusoid-like structures in the bio-printed liver tissue, which suggested that bile acid secretion occurred via a sinusoid-hepatocyte-bile duct route. These results demonstrated that our bio-printed liver tissue was unique, because it exerted diverse liver metabolic functions for several weeks. In future, we expect our bio-printed liver tissue to be applied to developing new models that can be used to improve preclinical predictions of long-term toxicity in humans, generate novel targets for metabolic liver disease, and evaluate biliary excretion in drug development.

  8. Rb and p53 Liver Functions Are Essential for Xenobiotic Metabolism and Tumor Suppression

    NARCIS (Netherlands)

    Nantasanti, Sathidpak; Toussaint, Mathilda J. M.; Youssef, Sameh A.; Tooten, Peter C. J.; de Bruin, Alain

    2016-01-01

    The tumor suppressors Retinoblastoma (Rb) and p53 are frequently inactivated in liver diseases, such as hepatocellular carcinomas (HCC) or infections with Hepatitis B or C viruses. Here, we discovered a novel role for Rb and p53 in xenobiotic metabolism, which represent a key function of the liver

  9. Lipocalin-2 in Fructose-Induced Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Jessica Lambertz

    2017-11-01

    Full Text Available The intake of excess dietary fructose most often leads to non-alcoholic fatty liver disease (NAFLD. Fructose is metabolized mainly in the liver and its chronic consumption results in lipogenic gene expression in this organ. However, precisely how fructose is involved in NAFLD progression is still not fully understood, limiting therapy. Lipocalin-2 (LCN2 is a small secreted transport protein that binds to fatty acids, phospholipids, steroids, retinol, and pheromones. LCN2 regulates lipid and energy metabolism in obesity and is upregulated in response to insulin. We previously discovered that LCN2 has a hepatoprotective effect during hepatic insult, and that its upregulation is a marker of liver damage and inflammation. To investigate if LCN2 has impact on the metabolism of fructose and thereby arising liver damage, we fed wild type and Lcn2−/− mice for 4 or 8 weeks on diets that were enriched in fructose either by adding this sugar to the drinking water (30% w/v, or by feeding a chow containing 60% (w/w fructose. Body weight and daily intake of food and water of these mice was then measured. Fat content in liver sections was visualized using Oil Red O stain, and expression levels of genes involved in fat and sugar metabolism were measured by qRT-PCR and Western blot analysis. We found that fructose-induced steatosis and liver damage was more prominent in female than in male mice, but that the most severe hepatic damage occurred in female mice lacking LCN2. Unexpectedly, consumption of elevated fructose did not induce de novo lipogenesis or fat accumulation. We conclude that LCN2 acts in a lipid-independent manner to protect the liver against fructose-induced damage.

  10. Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose.

    Science.gov (United States)

    Li, Jianmei; He, Xiwei; Yang, Yang; Li, Mei; Xu, Chenke; Yu, Rong

    2018-07-01

    This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease.

    Science.gov (United States)

    Schiffer, Lina; Kempegowda, Punith; Arlt, Wiebke; O'Reilly, Michael W

    2017-09-01

    Female androgen excess and male androgen deficiency manifest with an overlapping adverse metabolic phenotype, including abdominal obesity, insulin resistance, type 2 diabetes mellitus, non-alcoholic fatty liver disease and an increased risk of cardiovascular disease. Here, we review the impact of androgens on metabolic target tissues in an attempt to unravel the complex mechanistic links with metabolic dysfunction; we also evaluate clinical studies examining the associations between metabolic disease and disorders of androgen metabolism in men and women. We conceptualise that an equilibrium between androgen effects on adipose tissue and skeletal muscle underpins the metabolic phenotype observed in female androgen excess and male androgen deficiency. Androgens induce adipose tissue dysfunction, with effects on lipid metabolism, insulin resistance and fat mass expansion, while anabolic effects on skeletal muscle may confer metabolic benefits. We hypothesise that serum androgen concentrations observed in female androgen excess and male hypogonadism are metabolically disadvantageous, promoting adipose and liver lipid accumulation, central fat mass expansion and insulin resistance. © 2017 The authors.

  12. Liver disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000205.htm Liver disease To use the sharing features on this page, please enable JavaScript. The term "liver disease" applies to many conditions that stop the ...

  13. Prevalence of Nonalcoholic Fatty Liver Disease in Normal-weight and Overweight Preadolescent Children in Haryana, India.

    Science.gov (United States)

    Das, Manoja Kumar; Bhatia, Vidyut; Sibal, Anupam; Gupta, Abha; Gopalan, Sarath; Sardana, Raman; Sahni, Reeti; Roy, Ankur; Arora, Narendra K

    2017-12-15

    To document the prevalence of non-alcoholic fatty liver disease (NAFLD) and metabolic parameters among normal-weight and overweight schoolchildren. Cross-sectional study. Thirteen private schools in urban Faridabad, Haryana. 961 school children aged 5-10 years. Ultrasound testing was done, and 215 with fatty liver on ultrasound underwent further clinical, biochemical and virological testing. Prevalence of fatty liver on ultrasound, and NAFLD and its association with biochemical abnormalities and demographic risk factors. On ultrasound, 215 (22.4%) children had fatty liver; 18.9% in normal-weight and 45.6% in overweight category. Presence and severity of fatty liver disease increased with body mass index (BMI) and age. Among the children with NAFLD, elevated SGOT and SGPT was observed in 21.5% and 10.4% children, respectively. Liver enzyme derangement was significantly higher in overweight children (27% vs 19.4% in normal-weight) and severity of fatty liver (28% vs 20% in mild fatty liver cases). Eleven (8.1%) children with NAFLD had metabolic syndrome. Higher BMI (OR 35.9), severe fatty liver disease (OR 1.7) and female sex (OR 1.9) had strong association with metabolic syndrome. 22.4% of normal-weight and overweight children aged 5-10 years had fatty liver. A high proportion (18.9%) of normal-weight children with fatty liver on ultrasound indicates the silent burden in the population.

  14. Liver Diseases

    Science.gov (United States)

    Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. There are many kinds of liver diseases: Diseases caused by viruses, such as hepatitis ...

  15. Procoagulant imbalance in patients with non-alcoholic fatty liver disease.

    Science.gov (United States)

    Tripodi, Armando; Fracanzani, Anna L; Primignani, Massimo; Chantarangkul, Veena; Clerici, Marigrazia; Mannucci, Pier Mannuccio; Peyvandi, Flora; Bertelli, Cristina; Valenti, Luca; Fargion, Silvia

    2014-07-01

    Non-alcoholic fatty liver disease (NAFLD) is characterized by increased risk of cardiovascular events and liver-fibrosis. Both could be explained by a procoagulant-imbalance that was surmised but never directly demonstrated. We investigated 113 patients with varying histological liver damage [steatosis (n=32), steatohepatitis (n=51), metabolic-cirrhosis (n=30)], 54 with alcoholic/viral-cirrhosis and 179 controls. Plasma was evaluated for levels of pro- and anti-coagulants, and for thrombin-generation assessed as endogenous-thrombin-potential (ETP) with and without thrombomodulin or Protac® as protein C activators. The procoagulant-imbalance was defined as ETP-ratio (with-to-without thrombomodulin) or as Protac®-induced-coagulation-inhibition (PICI%). High ETP-ratios or low PICI% indicate resistance to thrombomodulin or Protac® and hence a procoagulant-imbalance. ETP-ratio increased from controls [0.57 (0.11-0.89)] to steatosis [0.72 (0.33-0.86)] and metabolic-cirrhosis [0.80 (0.57-0.95)], (pimbalance detected as ETP-ratio greater or PICI% lower than the median value of controls tended to have a higher risk of metabolic-syndrome, higher intima-media thickness, fibrosis, steatosis or lobular inflammation, all considered clinical manifestations of NAFLD. NAFLD is characterized by a procoagulant-imbalance progressing from the less severe (steatosis) to the most severe form of the disease (metabolic-cirrhosis). This imbalance appears to result from increased factor VIII and reduced protein C and might play a role in the risk of cardiovascular events and liver-fibrosis commonly observed in NAFLD. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  16. COMPLICATIONS OF ALCOHOLIC LIVER DISEASE AND DIAGNOSTIC MARKERS

    Directory of Open Access Journals (Sweden)

    Milena Ilić

    2011-12-01

    Full Text Available Alcoholism is one of the leading diseases affecting people’s health and immunity worldwide. Nearly 30 thousand people in the USA die from chronic liver damage. The liver is the central organ in the metabolism of alcohol. Alcohol is primarily a hepatotoxic agent. Hepatotoxicity of alcohol is clinically manifested by the development of alcoholic fatty liver, alcoholic hepatitis and alcoholic cirrhosis. It is characterized by appropriate symptomatology, depending on the degree of liver damage. Excessive use of alcohol for a long period of time, along with malnutrition, genetic and ethnic predisposition, leads to alcoholic cirrhosis and the development of its complications. Portal hypertension damages other organs and organ systems, causing hepatopulmonary syndrome, hepatorenal syndrome, hepatic encephalopathy, spontaneous bacterial peritonitis, etc. For these reasons, alcoholism reduction is given priority, as well as reduction of morbidity and mortality of people with alcoholic chronic liver damage. Therefore, early diagnosis of alcohol abuse is necessary, as well as timely diagnosis of different degrees of alcoholic liver damage. The diagnosis of chronic alcoholic liver damage is set on the basis of confirmed data of alcohol consumption; liver function test (serum markers aminotransferase, gammaglutamyl transferase, prothrombin time, serum bilirubin and albumin level; serum markers of liver fibrosis. Fibrosis markers are directly involved in sedimentation and dissolution of extracellular matrix, i.e. in the process of fibrogenesis and fibrinolysis of liver tissues. They include markers and enzymes of metabolism, as well as cytokines and chemokines.

  17. Non-alcoholic and alcoholic Fatty Liver Disease - two Diseases of Affluence associated with the Metabolic Syndrome and Type 2 Diabetes: the FIN-D2D Survey

    Directory of Open Access Journals (Sweden)

    Saltevo Juha

    2010-05-01

    Full Text Available Abstract Background Non-alcoholic fatty liver disease (NAFLD is known to be associated with the metabolic syndrome (MetS and abnormal glucose tolerance. Whether alcoholic fatty liver disease (AFLD is associated with similar metabolic abnormalities has not been examined in a population-based study. We aimed at assessing the prevalences of NAFLD and AFLD, and to examine to what extent these conditions are associated with MetS and abnormal glucose tolerance. Methods The cohort included 2766 Finnish subjects (45-74 years from the population-based FIN-D2D survey. Features of insulin resistance, components of the MetS, glucose tolerance status by oral glucose tolerance test, serum liver enzyme concentrations, and daily alcohol consumption were assessed. Results Subjects with NAFLD and AFLD were equally obese and had similar fasting and insulin concentrations. The prevalences of NAFLD and AFLD were 21% (95% CI: 19%-22% and 7% (95% CI: 6%-8%. The MetS was slightly more prevalent in AFLD (73% than in NAFLD (70%, p = 0.028, and type 2 diabetes was similarly prevalent in NAFLD and AFLD (24-25%. The MetS and type 2 diabetes were more prevalent in subjects with NAFLD or AFLD compared to subjects with normal LFTs (53% and 14%, p Discussion and conclusion In Finnish middle-aged population, the prevalence of NAFLD is 3-fold higher than that of AFLD. The prevalences of MetS and type 2 diabetes are, however, significantly increased in both NAFLD and AFLD compared to subjects with normal LFTs. Subjects with AFLD are thus similarly metabolically unhealthy as subjects with NAFLD.

  18. The Dual Role of Nrf2 in Nonalcoholic Fatty Liver Disease: Regulation of Antioxidant Defenses and Hepatic Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Sílvia S. Chambel

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is a progressive liver disease with ever-growing incidence in the industrialized world. It starts with the simple accumulation of lipids in the hepatocyte and can progress to the more severe nonalcoholic steatohepatitis (NASH, which is associated with inflammation, fibrosis, and cirrhosis. There is increasing awareness that reactive oxygen species and electrophiles are implicated in the pathogenesis of NASH. Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2 is a positive regulator of the expression of a battery of genes involved in the protection against oxidative/electrophilic stress. In rodents, Nrf2 is also known to participate in hepatic fatty acid metabolism, as a negative regulator of genes that promote hepatosteatosis. We review relevant evidence in the literature that these two mechanisms may contribute to the protective role of Nrf2 in the development of hepatic steatosis and in the progression to steatohepatitis, particularly in young animals. We propose that age may be a key to explain contradictory findings in the literature. In summary, Nrf2 mediates the crosstalk between lipid metabolism and antioxidant defense mechanisms in experimental models of NAFLD, and the nutritional or pharmacological induction of Nrf2 represents a promising potential new strategy for its prevention and treatment.

  19. MR of the liver in Wilson's disease

    International Nuclear Information System (INIS)

    Vogl, T.J.; Steiner, S.; Hammerstingl, R.; Schwarz, S.; Kraft, E.; Weinzierl, M.; Felix, R.

    1994-01-01

    To show that Wilson's disease is one likely cause of multiple low-intensity nodules of the liver we obtained MR images in 16 patients with clinically and histopathologically confirmed Wilson's disease. Corresponding to morphological changes MRI enabled the subdivision of the patients into two groups. Using a T 2 -weighted spin-echo sequence (TR/TE=2000/45-90) liver parenchyma showed multiple tiny low-intensity-nodules surrounded by high-intensity septa in 10 out of 16 patients. 5 patients had also low-intensity nodules in T 1 -weighted images (TR/TE=600/20). In patients of this group histopathology revealed liver cirrhosis (n=7) and fibrosis (n=2). Common feature of this patient group was marked inflammatory cell infiltration into fibrous septa, increase of copper concentration in liver parenchyma and distinct pathological changes of laboratory data. In the remaining 6 patients no pathological change of liver morphology was demonstrated by MRI corresponding to slight histopathological changes of parenchyma and normal laboratory data. As low-intensity nodules surrounded by high intensity septa can be demonstrated in patients with marked inflammatory infiltration of liver parenchyma MRI may help to define Wilson patients with poorer prognosis. In patients with low-intensity nodules of the liver and unknown cause of liver cirrhosis laboratory data and histopathology should be checked when searching for disorders of copper metabolism. (orig.) [de

  20. Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease.

    Science.gov (United States)

    Ter Horst, Kasper W; Serlie, Mireille J

    2017-09-06

    Increased fructose consumption has been suggested to contribute to non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and insulin resistance, but a causal role of fructose in these metabolic diseases remains debated. Mechanistically, hepatic fructose metabolism yields precursors that can be used for gluconeogenesis and de novo lipogenesis (DNL). Fructose-derived precursors also act as nutritional regulators of the transcription factors, including ChREBP and SREBP1c, that regulate the expression of hepatic gluconeogenesis and DNL genes. In support of these mechanisms, fructose intake increases hepatic gluconeogenesis and DNL and raises plasma glucose and triglyceride levels in humans. However, epidemiological and fructose-intervention studies have had inconclusive results with respect to liver fat, and there is currently no good human evidence that fructose, when consumed in isocaloric amounts, causes more liver fat accumulation than other energy-dense nutrients. In this review, we aim to provide an overview of the seemingly contradicting literature on fructose and NAFLD. We outline fructose physiology, the mechanisms that link fructose to NAFLD, and the available evidence from human studies. From this framework, we conclude that the cellular mechanisms underlying hepatic fructose metabolism will likely reveal novel targets for the treatment of NAFLD, dyslipidemia, and hepatic insulin resistance. Finally, fructose-containing sugars are a major source of excess calories, suggesting that a reduction of their intake has potential for the prevention of NAFLD and other obesity-related diseases.

  1. Research advances in the pathogenesis of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    WANG Hu

    2017-04-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD has been developing rapidly in recent years and has become one of the most common liver diseases. However, its pathogenesis remains unclear, and there are no widely accepted therapeutic regimens. NAFLD has a complex pathogenesis with multiple factors involved, including insulin resistance, oxidative stress, bile acid metabolic disorders, and autophagy. This article reviews the pathogenesis of NAFLD in order to provide a reference for further research and clinical treatment in the future.

  2. Chronic Liver Diseases in Children: Clinical Profile and Histology.

    Science.gov (United States)

    Dhole, Sachin Devidas; Kher, Archana S; Ghildiyal, Radha G; Tambse, Manjusha P

    2015-07-01

    The main aim of the study is to study the clinical profile of disorders of the liver and hepatobiliary system in paediatric patients and to correlate the histopathology findings of liver biopsy in chronic liver disease. Another aim being to assess the prognosis and to know the outcome and the effects of treatment in chronic liver diseases in paediatric age group. It was a prospective study, included the clinical profile of Chronic Liver Diseases (CLD) in children and the histopathological correlation. A total of 55 children were thoroughly investigated by doing relevant investigations and liver biopsy. A male predominance (60%) was noted with maximum incidence in the age group of 6-12 years. The incidence of CLD was 1.1% of total admissions. The most common presenting complaint was jaundice and abdominal distension. Hepatic encephalopathy was noted in 29% patients. Hepatomegaly was seen in 63% patients and spleenomegaly was seen in 60% patients. The incidence of cirrhosis on liver biopsy was 42% (23cases) in CLD patients. The most common diagnosis on histopathology was Wilson's disease (22%), followed by hepatitis and autoimmune hepatitis. The predominant spectrum of CLD was metabolic liver disease and also the predominant cause of death. As the incidence of CLD is quite low, a very high index of suspicion is required for its diagnosis. Some uncommon causes of CLD in children were seen in our study like neutral lipid storage disease, α1-Antitrypsin deficiency disease, lupus hepatitis, Alagille syndrome and Budd-Chiari syndrome. A patient of CLD with jaundice and hepatomegaly should be treated aggressively as those are the poor prognostic indicators of the disease. Hepatic encephalopathy and cirrhosis are also associated with poor outcome in patients with CLD. Liver biopsy histopathology by an expert and its correlation with laboratory investigations plays an important role in the diagnosis of CLD. The major cause of deaths in patients with CLD is due to end stage

  3. Fatty Liver Disease

    Science.gov (United States)

    What is fatty liver disease? Your liver is the largest organ inside your body. It helps your body digest food, store energy, and remove poisons. Fatty liver disease is a condition in which fat builds ...

  4. Nuclear magnetic resonance based metabolomics and liver diseases: Recent advances and future clinical applications.

    Science.gov (United States)

    Amathieu, Roland; Triba, Mohamed Nawfal; Goossens, Corentine; Bouchemal, Nadia; Nahon, Pierre; Savarin, Philippe; Le Moyec, Laurence

    2016-01-07

    Metabolomics is defined as the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification. It is an "omics" technique that is situated downstream of genomics, transcriptomics and proteomics. Metabolomics is recognized as a promising technique in the field of systems biology for the evaluation of global metabolic changes. During the last decade, metabolomics approaches have become widely used in the study of liver diseases for the detection of early biomarkers and altered metabolic pathways. It is a powerful technique to improve our pathophysiological knowledge of various liver diseases. It can be a useful tool to help clinicians in the diagnostic process especially to distinguish malignant and non-malignant liver disease as well as to determine the etiology or severity of the liver disease. It can also assess therapeutic response or predict drug induced liver injury. Nevertheless, the usefulness of metabolomics is often not understood by clinicians, especially the concept of metabolomics profiling or fingerprinting. In the present work, after a concise description of the different techniques and processes used in metabolomics, we will review the main research on this subject by focusing specifically on in vitro proton nuclear magnetic resonance spectroscopy based metabolomics approaches in human studies. We will first consider the clinical point of view enlighten physicians on this new approach and emphasis its future use in clinical "routine".

  5. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research

    Science.gov (United States)

    Willebrords, Joost; Pereira, Isabel Veloso Alves; Maes, Michaël; Yanguas, Sara Crespo; Colle, Isabelle; Van Den Bossche, Bert; Da silva, Tereza Cristina; Oliveira, Cláudia P; Andraus, Wellington; Alves, Venâncio Avancini Ferreira; Cogliati, Bruno; Vinken, Mathieu

    2015-01-01

    Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and ‘-omics’-based read-outs are still in their infancy, but show great promise. . In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed. PMID:26073454

  6. Studies of liver-specific metabolic reactions with 15N. 1

    International Nuclear Information System (INIS)

    Hirschberg, K.; Jung, K.; Faust, H.; Matkowitz, R.

    1987-01-01

    The 15 N tracer technique was used to investigate liver-specific reactions (urea and hippurate synthesis) for studying the metabolism in the healthy and damaged pig liver. After [ 15 N]ammonium chloride administration the tracer distribution on non-protein compounds of serum and urine was followed. Blood samplings before and after liver passage rendered possible a direct analysis of the [ 15 N]ammonium metabolism. The thioacetamide-induced liver damage was used as model for an acute liver intoxication. The capacity for urea synthesis was not influenced by means of this noxious substance, but the metabolism of amino acids and hippuric acid. The considerably depressed excretion of [ 15 N]hippurate seems to be a suitable indicator of liver disfunction. (author)

  7. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis.

    Science.gov (United States)

    Koo, Seung-Hoi

    2013-09-01

    Liver plays a central role in the biogenesis of major metabolites including glucose, fatty acids, and cholesterol. Increased incidence of obesity in the modern society promotes insulin resistance in the peripheral tissues in humans, and could cause severe metabolic disorders by inducing accumulation of lipid in the liver, resulting in the progression of non-alcoholic fatty liver disease (NAFLD). NAFLD, which is characterized by increased fat depots in the liver, could precede more severe diseases such as non-alcoholic steatohepatitis (NASH), cirrhosis, and in some cases hepatocellular carcinoma. Accumulation of lipid in the liver can be traced by increased uptake of free fatty acids into the liver, impaired fatty acid beta oxidation, or the increased incidence of de novo lipogenesis. In this review, I would like to focus on the roles of individual pathways that contribute to the hepatic steatosis as a precursor for the NAFLD.

  8. Progression of Liver Disease

    Science.gov (United States)

    ... Liver Function Tests Clinical Trials Liver Transplant FAQs Medical Terminology Diseases of the Liver Alagille Syndrome Alcohol-Related ... the Liver The Progression of Liver Disease FAQs Medical Terminology HOW YOU CAN HELP Sponsorship Ways to Give ...

  9. Additive Effect of Non-Alcoholic Fatty Liver Disease on Metabolic Syndrome-Related Endothelial Dysfunction in Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Maria Perticone

    2016-03-01

    Full Text Available Metabolic syndrome (MS is characterized by an increased risk of incident diabetes and cardiovascular (CV events, identifying insulin resistance (IR and endothelial dysfunction as key elements. Moreover, non-alcoholic fatty liver disease (NAFLD is bidirectionally linked with MS as a consequence of metabolic and inflammatory abnormalities. We addressed the question if the evolution in NAFLD might worsen endothelium-dependent vasodilating response in MS hypertensives. We recruited 272 Caucasian newly-diagnosed never-treated hypertensive outpatients divided into three groups according to the presence/absence of MS alone or in combination with NAFLD. MS and NAFLD were defined according to the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII and non-invasive fatty liver index, respectively. We determined IR by using the homeostasis model assessment (HOMA index. Vascular function, as forearm blood flow (FBF, was determined through strain-gauge plethysmography after intra-arterial infusion of acetylcholine (ACh and sodium nitroprusside. MS+NAFLD+ group showed worse metabolic, inflammatory and vascular profiles compared with MS−NAFLD− and MS+NAFLD−. HOMA resulted in being the strongest predictor of FBF both in the MS+NAFLD− and in the MS+NAFLD+ groups, accounting for 20.5% and 33.2% of its variation, respectively. In conclusion, we demonstrated that MS+NAFLD+ hypertensives show a worse endothelium-dependent vasodilation compared with MS+NAFLD−, allowing for consideration of NAFLD as an early marker of endothelial dysfunction in hypertensives.

  10. Peroxisome Proliferator-Activated Receptor Genetic Polymorphisms and Nonalcoholic Fatty Liver Disease: Any Role in Disease Susceptibility?

    Directory of Open Access Journals (Sweden)

    Paola Dongiovanni

    2013-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD defines a wide spectrum of liver diseases that extend from simple steatosis, that is, increased hepatic lipid content, to nonalcoholic steatohepatitis (NASH, a condition that may progress to cirrhosis with its associated complications. Nuclear hormone receptors act as intracellular lipid sensors that coordinate genetic networks regulating lipid metabolism and energy utilization. This family of transcription factors, in particular peroxisome proliferator-activated receptors (PPARs, represents attractive drug targets for the management of NAFLD and NASH, as well as related conditions such as type 2 diabetes and the metabolic syndrome. The impact on the regulation of lipid metabolism observed for PPARs has led to the hypothesis that genetic variants within the human PPARs genes may be associated with human disease such as NAFLD, the metabolic syndrome, and/or coronary heart disease. Here we review the available evidence on the association between PPARs genetic polymorphism and the susceptibility to NAFLD and NASH, and we provide a meta-analysis of the available evidence. The impact of PPAR variants on the susceptibility to NASH in specific subgroup of patients, and in particular on the response to therapies, especially those targeting PPARs, represents promising new areas of investigation.

  11. Nucleic acid metabolism in human chronic liver disease by in vitro autoradiography. I. Altered RNA metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T [Okayama Univ. (Japan). School of Medicine

    1976-06-01

    Biopsy liver specimens from healthy control subjects (N=5) and patients with various liver diseases (N=43) were investigated by the vitro autoradiography. The Leevy technique of adding /sup 3/H-5-uridine (/sup 3/H-U) to the incubation medium was used. In healthy subjects labeling with /sup 3/H-U was observed mostly in hepatocytes and Kupffer cells and the frequency of /sup 3/H-U labeled cells was extremely high. Higher frequencies of labeled fibrocytes and endothelial cells of the blood vessel were found in acute hepatitis than in control subjects. In the active form of chronic hepatitis, significantly higher counts of labeled fibrocytes, ductular cells and lymphocytes were found. In patients with acute hepatitis or the inactive form of chronic hepatitis, only a few labeled lymphocytes were observed. Larger numbers of labeled fibrocytes were found in patients with chronic hepatitis with sublobular hepatic necrosis, than in patients with the active form of chronic hepatitis. In cirrhotic livers, marked increases of labeled ductular cells, fibrocytes and bile duct cells were found. No significant labeling differences were observed in the hepatocytes of various liver diseases. In chronic hepatitis with sublobular hepatic necrosis, a more significant decrease of labeled Kupffer cells was present than in the inactive form of chronic hepatitis. Labeled ductular cells and fibrocytes increased as the disease progressed from acute hepatitis to liver cirrhosis. The labeling index of rosettes cells was intermediate between the hepatocytes and ductular cells. The ratio of labeled parenchymal to non-parenchymal cells decreased proportionally from chronic hepatitis to cirrhosis.

  12. [Advances in the pathogenesis of non alcoholic fatty liver disease].

    Science.gov (United States)

    Pár, Alajos; Pár, Gabriella

    2017-06-01

    Non alcoholic fatty liver disease is the hepatic manifestation of metabolic syndrome, and the most common liver disease. Its more aggressive form is the non alcoholic steatohepatitis. Multiple genetic and environmental factors lead to the accumulation of triglicerides and the inflammatory cascade. High fat diet, obesity, adipocyte dysfunction with cytokine production, insulin resistance and increased lipolysis with free fatty acid flux into the liver - all are the drivers of liver cell injury. Activation of inflammasome by damage- or pathogen-associated molecular patterns results in "steril inflammation" and immune response, while the hepatic stellate cells and progenitor cells lead to fibrogenesis. Small intestinal bacterial overgrowth and gut dysbiosis are also of pivotal importance in the inflammation. Among the susceptible genetic factors, mutations of patatin-like phospholipase domain containing 3 and the transmembrane 6 superfamily 2 genes play a role in the development and progression of the disease, similarly as do epigenetic regulators such as microRNAs and extracellular vesicles. Better understanding of the pathogenesis of non alcoholic fatty liver disease may identify novel therapeutic agents that improve the outcome of the disease. Orv Hetil. 2017; 158(23): 882-894.

  13. Determination of Selected Amino Acids in Serum of Patients with Liver Disease.

    Science.gov (United States)

    Kanďár, Roman; Drábková, Petra; Toiflová, Tereza; Čegan, Alexander

    2016-01-01

    The determination of amino acids can be a reliable approach for extended diagnosis of liver diseases. This is because liver disease can be a cause of impaired amino acid metabolism. Therefore, a method for the determination of serum amino acids, applicable for clinical purposes, is necessary. The aim of this study was to find differences in the levels of selected amino acids between patients with liver disease and a control group. Samples of peripheral venous blood were obtained from a group of patients with liver disease (n = 131, 59 women at an average age of 60 years and 72 men at an average age of 52 years) and a control group (n = 105, 47 women at an average age of 62 years and 58 men at an average age of 58 years). Before the separation, the amino acids were derivatized with naphthalene-2,3-dicarboxaldehyde. For the separation, reverse phase column was used. The effluent was monitored with a fluorescence detector. There were significant differences in the concentrations of some amino acids between the patients and the control group, but also between women and men. Correlations between some amino acids and markers of liver blood tests and lipid metabolism were observed. A simple, relatively rapid and selective HPLC method with fluorescence detection for the determination of selected amino acids in serum has been developed.

  14. Nonalcoholic fatty liver disease: A comprehensive review of a growing epidemic

    Science.gov (United States)

    Hassan, Kareem; Bhalla, Varun; Ezz El Regal, Mohammed; A-Kader, H Hesham

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) is quickly becoming one of the most prominent causes of liver disease worldwide. The increasing incidence of NAFLD is tied to the obesity epidemic and the subsequent metabolic derangements brought along with it. Current efforts to elucidate the mechanism and causes of the disease have answered some questions, but much remains unknown about NAFLD. The aim of this article is to discuss the current knowledge regarding the pathogenesis of the disease, as well as the current and future diagnostic, preventative, and therapeutic options available to clinicians for the management of NAFLD. PMID:25232245

  15. Adipose Tissue Dysfunction and Altered Systemic Amino Acid Metabolism Are Associated with Non-Alcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Sulin Cheng

    Full Text Available Fatty liver is a major cause of obesity-related morbidity and mortality. The aim of this study was to identify early metabolic alterations associated with liver fat accumulation in 50- to 55-year-old men (n = 49 and women (n = 52 with and without NAFLD.Hepatic fat content was measured using proton magnetic resonance spectroscopy (1H MRS. Serum samples were analyzed using a nuclear magnetic resonance (NMR metabolomics platform. Global gene expression profiles of adipose tissues and skeletal muscle were analyzed using Affymetrix microarrays and quantitative PCR. Muscle protein expression was analyzed by Western blot.Increased branched-chain amino acid (BCAA, aromatic amino acid (AAA and orosomucoid were associated with liver fat accumulation already in its early stage, independent of sex, obesity or insulin resistance (p<0.05 for all. Significant down-regulation of BCAA catabolism and fatty acid and energy metabolism was observed in the adipose tissue of the NAFLD group (p<0.001for all, whereas no aberrant gene expression in the skeletal muscle was found. Reduced BCAA catabolic activity was inversely associated with serum BCAA and liver fat content (p<0.05 for all.Liver fat accumulation, already in its early stage, is associated with increased serum branched-chain and aromatic amino acids. The observed associations of decreased BCAA catabolism activity, mitochondrial energy metabolism and serum BCAA concentration with liver fat content suggest that adipose tissue dysfunction may have a key role in the systemic nature of NAFLD pathogenesis.

  16. Liver Disease

    Science.gov (United States)

    ... and ridding your body of toxic substances. Liver disease can be inherited (genetic) or caused by a variety of factors that damage the ... that you can't stay still. Causes Liver disease has many ... or semen, contaminated food or water, or close contact with a person who is ...

  17. Psoriasis and Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Carrascosa, J M; Bonanad, C; Dauden, E; Botella, R; Olveira-Martín, A

    Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver condition in the West. The prevalence and severity of NAFLD is higher and the prognosis worse in patients with psoriasis. The pathogenic link between psoriasis and NAFLD is chronic inflammation and peripheral insulin resistance, a common finding in diseases associated with psoriasis. NAFLD should therefore be ruled out during the initial evaluation of patients with psoriasis, in particular if they show signs of metabolic syndrome and require systemic treatment. Concomitant psoriasis and NAFLD and the likelihood of synergy between them place limitations on general recommendations and treatment for these patients given the potential for liver toxicity. As hepatotoxic risk is associated with some of the conventional drugs used in this setting (e.g., acitretin, methotrexate, and ciclosporin), patients prescribed these treatments should be monitored as appropriate. Anti-tumor necrosis factor agents hold the promise of potential benefits based on their effects on the inflammatory process and improving peripheral insulin resistance. However, cases of liver toxicity have also been reported in relation to these biologics. No evidence has emerged to suggest that anti-p40 or anti-interleukin 17 agents provide benefits or have adverse effects. Copyright © 2017 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Evolving insights on metabolism, autophagy and epigenetics in liver myofibroblasts

    Directory of Open Access Journals (Sweden)

    Zeribe Chike Nwosu

    2016-06-01

    Full Text Available Liver myofibroblasts (MFB are crucial mediators of extracellular matrix (ECM deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs upon a process termed activation. To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.

  19. Pathogenesis of hepatic steatosis: the link between hypercortisolism and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Tarantino, Giovanni; Finelli, Carmine

    2013-10-28

    Based on the available literature, non alcoholic fatty liver disease or generally speaking, hepatic steatosis, is more frequent among people with diabetes and obesity, and is almost universally present amongst morbidly obese diabetic patients. Non alcoholic fatty liver disease is being increasingly recognized as a common liver condition in the developed world, with non alcoholic steatohepatitis projected to be the leading cause of liver transplantation. Previous data report that only 20% of patients with Cushing's syndrome have hepatic steatosis. Aiming at clarifying the reasons whereby patients suffering from Cushing's syndrome - a condition characterized by profound metabolic changes - present low prevalence of hepatic steatosis, the Authors reviewed the current concepts on the link between hypercortisolism and obesity/metabolic syndrome. They hypothesize that this low prevalence of fat accumulation in the liver of patients with Cushing's syndrome could result from the inhibition of the so-called low-grade chronic-inflammation, mainly mediated by Interleukin 6, due to an excess of cortisol, a hormone characterized by an anti-inflammatory effect. The Cushing's syndrome, speculatively considered as an in vivo model of the hepatic steatosis, could also help clarify the mechanisms of non alcoholic fatty liver disease.

  20. Coffee and Liver Disease.

    Science.gov (United States)

    Wadhawan, Manav; Anand, Anil C

    2016-03-01

    Coffee is the most popular beverage in the world. Consumption of coffee has been shown to benefit health in general, and liver health in particular. This article reviews the effects of coffee intake on development and progression of liver disease due to various causes. We also describe the putative mechanisms by which coffee exerts the protective effect. The clinical evidence of benefit of coffee consumption in Hepatitis B and C, as well as nonalcoholic fatty liver disease and alcoholic liver disease, has also been presented. Coffee consumption is associated with improvement in liver enzymes (ALT, AST, and GGTP), especially in individuals with risk for liver disease. Coffee intake more than 2 cups per day in patients with preexisting liver disease has been shown to be associated with lower incidence of fibrosis and cirrhosis, lower hepatocellular carcinoma rates, as well as decreased mortality.

  1. Connection Between Non-Alcoholic Fatty Liver Disease and Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Oprea-Călin Gabriela

    2014-06-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the commonest liver condition in the world, accounting for 20-30% of the adult population, and encompasses a spectrum of liver disorders characterized by fat accumulation within the liver, associated or not with varying degrees of hepatic inflammation and liver fibrosis through to cirrhosis. The prevalence of NAFLD increases significantly in the presence of obesity (60-80% and type 2 diabetes (60%. NAFLD is associated with metabolic disorders (type 2 diabetes, obesity and hyperlipidemia grouped together as the metabolic syndrome (MetS. It is now regarded as the hepatic manifestation of this syndrome and is closely linked to insulin resistance (IR.The presence of NAFLD predicts the development of type 2 diabetes independent of established risk factors. NAFLD patients should therefore be screened for diabetes, including by the Oral Glucose Tolerance Test (OGTT if there any abnormalities of fasting blood glucose (FBG and given appropriate lifestyle advice. Early diagnosis with the institution of lifestyle measures could help prevent or retard the onset of these metabolic disorders. Type 2 diabetes causes more severe non-alcoholic steatohepatitis (NASH, and patients with diabetes have an increased risk for cirrhosis and the development of hepatocellular carcinoma (HCC

  2. Non-alcoholic fatty liver disease in obese persons with diabetes

    Directory of Open Access Journals (Sweden)

    Tomašević Ratko

    2007-01-01

    Full Text Available Background. Obesity, diabetes and different lipid metabolic disorders are the most frequent risk factors for nonalcoholic fatty liver disease, presented with a high variability in clinical and histological findings. Case report. We presented a case of 37-year-old male, suffering from type 2 diabetes mellitus, grade III obesity (BMI 45 kg/m2 and multiple metabolic disorders. Abdominal ultrasound revealed hepatomegaly during the last six months. Laboratory diagnostics showed increased serum transaminase levels. Serologic markers for viral hepatitis B and C were negative. The patient denied significant alcohol consumption. Liver biopsy and pathohistologic finding revealed macro- (III grade and microvesicular (I grade fatty degeneration, as well as mixed-cell portal infiltration with moderate liver fibrosis, corresponding to the typical presentation of NASH (Non Alcoholic Steatohepatitis. Conclusion. NASH treatment options include the reduction of body mass and an adequate antidiabetic and dislipidemia treatment. The aim of all therapeutic measures was to stop the progression of the disease, to prevent the progression of fibrosis and the development of of cirrhosis. .

  3. Therapeutic Mechanisms of Bile Acids and Nor-Ursodeoxycholic Acid in Non-Alcoholic Fatty Liver Disease.

    Science.gov (United States)

    Steinacher, Daniel; Claudel, Thierry; Trauner, Michael

    2017-01-01

    Non-alcoholic fatty liver disease is one of the most rapidly rising clinical problems in the 21st century. So far no effective drug treatment has been established to cure this disease. Bile acids (BAs) have a variety of signaling properties, which can be used therapeutically for modulating hepatic metabolism and inflammation. A side-chain shorted derivative of ursodeoxycholic acid (UDCA) is 24 nor-ursodeoxycholic acid (NorUDCA) and it represents a new class of drugs for treatment of liver diseases. NorUDCA has unique biochemical and therapeutic properties, since it is relatively resistant to conjugation with glycine or taurine compared to UDCA. NorUDCA undergoes cholehepatic shunting, resulting in ductular targeting, bicarbonate-rich hypercholeresis, and cholangiocyte protection. Furthermore, it showed anti-fibrotic, anti-inflammatory, and anti-lipotoxic properties in several animal models. As such, NorUDCA is a promising new approach in the treatment of cholestatic and metabolic liver diseases. This review is a summary of current BA-based therapeutic approaches in the treatment of the fatty liver disease. © 2017 S. Karger AG, Basel.

  4. Recellularization of rat liver: An in vitro model for assessing human drug metabolism and liver biology.

    Directory of Open Access Journals (Sweden)

    Matthew J Robertson

    Full Text Available Liver-like organoids that recapitulate the complex functions of the whole liver by combining cells, scaffolds, and mechanical or chemical cues are becoming important models for studying liver biology and drug metabolism. The advantages of growing cells in three-dimensional constructs include enhanced cell-cell and cell-extracellular matrix interactions and preserved cellular phenotype including, prevention of de-differentiation. In the current study, biomimetic liver constructs were made via perfusion decellularization of rat liver, with the goal of maintaining the native composition and structure of the extracellular matrix. We optimized our decellularization process to produce liver scaffolds in which immunogenic residual DNA was removed but glycosaminoglycans were maintained. When the constructs were recellularized with rat or human liver cells, the cells remained viable, capable of proliferation, and functional for 28 days. Specifically, the cells continued to express cytochrome P450 genes and maintained their ability to metabolize a model drug, midazolam. Microarray analysis showed an upregulation of genes involved in liver regeneration and fibrosis. In conclusion, these liver constructs have the potential to be used as test beds for studying liver biology and drug metabolism.

  5. Independent and supra-additive effects of alcohol consumption, cigarette smoking, and metabolic syndrome on the elevation of serum liver enzyme levels.

    Directory of Open Access Journals (Sweden)

    Eun Young Park

    Full Text Available We investigated the independent and combined effects of alcohol consumption, cigarette smoking and metabolic syndrome on abnormal liver function, i.e., the elevation of serum liver enzyme levels. Participants of a Korean population-based prospective cohort aged ≥30 years without liver disease, diabetes, or cardiovascular diseases were included. Information on alcohol consumption, smoking status, and metabolic syndrome, defined as per the criteria of the Adult Treatment Panel III, were applied to evaluate their impact on serum levels of aspartate aminotransferase (AST, alanine aminotransferase (ALT, and gamma-glutamyl transferase (GGT. Alcohol consumption, cigarette smoking and metabolic syndrome were the significant individual factors that elevated serum liver enzyme levels. Supra-additive effects of metabolic syndrome and either alcohol consumption or cigarette smoking were also identified. The combination of heavy drinking (≥24 g/day and metabolic syndrome conferred an effect that was higher than the sum of the two individual effects (Synergic Index (SI: AST, 2.37 [1.20-4.67]; GGT, 1.91 [1.17-3.13]. Only GGT level (odds ratio 6.04 [3.68-9.94], SI 2.33 [1.24-4.41] was significantly elevated when the effect of moderate drinking (20 pack years, 1.80 for ≥24 g/day and ≤20 pack years, 2.03 for ≥24 g/day and >20 pack years, while only the combined effect of drinking ≥24 g/day and smoking >20 pack years elevated the AST level (SI 4.55 [3.12-6.61]. The combined effect of cigarette smoking and metabolic syndrome was not supra-additive. To prevent fatty liver disease and other related diseases, a multifactorial prevention strategy that includes limited alcohol consumption, smoking cessation and rectification of adverse metabolic profiles is required.

  6. Gallstone disease is associated with more severe liver damage in patients with non-alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Anna Ludovica Fracanzani

    Full Text Available BACKGROUND: Nonalcoholic fatty liver disease (NAFLD and gallstone disease (GD are both highly prevalent in the general population and associated with obesity and insulin resistance. We aimed to evaluate the prevalence of GD in a cross sectional study of NAFLD patients and to define whether the presence of GD is associated with diabetes and predicts more severe liver disease. METHODOLOGY/PRINCIPAL FINDINGS: We merged databases of four Liver Units, comprising 524 consecutive biopsy-proven NAFLD (373 males observed between January 2003 and June 2010. GD was diagnosed in 108 (20%, and 313 cases (60% were classified by liver biopsy as nonalcoholic steatohepatitis (NASH. The GD subgroup was characterized by a significantly higher prevalence of females, prediabetes/diabetes, abdominal obesity and metabolic syndrome, older age, higher BMI, fasting glucose, HOMA-IR and lower ALT. The prevalence of GD progressively increased with advancing fibrosis and with the severity of necroinflammatory activity (p for trend  = 0.0001 and  = 0.01, respectively, without differences in the severity of steatosis. At multivariate analysis GD was associated with female gender (OR 1.37, 95% CI 1.04-1.8, age (OR 1.027, 95% CI1.003-1.05, fasting glucose (OR 1.21, 95% CI 1.10-1.33 and NASH (OR 1.40,95% CI 1.06-1.89, whereas ALT levels were associated with a lower GD risk (OR 0.98, 95% CI 0.97-0.99. When subjects with cirrhosis were excluded from analysis, the association between GD and fasting glucose, female gender, and NASH was maintained. CONCLUSION: Patients with NAFLD have a high prevalence of GD, which characterizes subjects with altered glucose regulation and more advanced liver disease.

  7. Progress and challenges in the prevention and control of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Cai, Jingjing; Zhang, Xiao-Jing; Li, Hongliang

    2018-05-30

    Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common liver disease worldwide. Individuals with NAFLD have a high frequency of developing progressive liver disease and metabolism-related comorbidities, which result from of a lack of awareness and poor surveillance of the disease and a paucity of approved and effective therapies. Managing the complications of NAFLD has already begun to place a tremendous burden on health-care systems. Although efforts to identify effective therapies are underway, the lack of validated preclinical NAFLD models that represent the biology and outcomes of human disease remains a major barrier. This review summarizes the characteristics and prevalence of the disease and the status of our understanding of its mechanisms and potential therapeutic targets. © 2018 Wiley Periodicals, Inc.

  8. Cardiometabolic effects of antidiabetic drugs in non-alcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Rix, Iben; Steen Pedersen, Julie; Storgaard, Heidi

    2018-01-01

    PURPOSE: Non-alcoholic fatty liver disease (NAFLD) affects about 25% of the population worldwide. NAFLD may be viewed as the hepatological manifestation of metabolic syndrome. Patients with metabolic syndrome due to diabetes or obesity have an increased risk of cardiovascular disease....... This narrative review describes cardiometabolic effects of antidiabetic drugs in NAFLD. METHODS: We conducted a systematic search in PubMed and manually scanned bibliographies in trial databases and reference lists in relevant articles. RESULTS: Heart disease is the leading cause of death in NAFLD. Conversely......, NAFLD is an independent cardiovascular risk factor in patients suffering from metabolic syndrome. NAFLD is associated with markers of atherosclerosis, and patients have increased risk of ischaemic heart disease. Additionally, patients with NAFLD have increased risk of cardiac dysfunction and heart...

  9. Manifestation of Non-Alcoholic Fatty Liver Disease/Non-Alcoholic Steatohepatitis in Different Dietary Mouse Models

    Directory of Open Access Journals (Sweden)

    Vera HI Fengler

    2016-05-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD and non-alcoholic steatohepatitis (NASH, which are usually associated with obesity and metabolic syndrome, are considerable health and economic issues due to the rapid increase of their prevalence in Western society. Histologically, the diseases are characterised by steatosis, hepatic inflammation, and if further progressed, fibrosis. Dietary-induced mouse models are widely used in investigations of the development and progression of NAFLD and NASH; these models attempt to mimic the histological and metabolic features of the human diseases. However, the majority of dietary mouse models fail to reflect the whole pathophysiological spectrum of NAFLD and NASH. Some models exhibit histological features similar to those seen in humans while lacking the metabolic context, while others resemble the metabolic conditions leading to NAFLD in humans but fail to mimic the whole histological spectrum, including progression from steatosis to liver fibrosis, and thus fail to mimic NASH. This review summarises the advantages and disadvantages of the different dietary-induced mouse models of NAFLD and NASH, with a focus on the genetic background of several commonly used wild-type mouse strains as well as gender and age, which influence the development and progression of these liver diseases.

  10. OBESITY AS A RISK FACTOR FOR NON-ALCOHOLIC FATTY LIVER DISEASE

    Directory of Open Access Journals (Sweden)

    O. A. Pavlenko

    2015-01-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a highly prevalent disorder associated with obesity and metabolic syndrome. The main pathophysiological factor of liver steatosis is insulin resistance that may lead to development of type 2 diabetes mellitus. Overcoming of insulin resistance by means of body weight reduction and administration of insulin sensitizers is considered to be a promising approach to NAFLD treatment. In accordance with the Russian guidelines on diagnostics and treatment of NAFLD, sibutramine is the drug of choice for medical treatment of obesity. As for insulin sensitizers, metformin (biguanide class is widely used for treatment of NAFLD in everyday clinical practice. Treatment of NAFLD as a component of metabolic syndrome should be multifactorial and aimed at different aspects of the disease pathophysiology. 

  11. The nutritional geometry of liver disease including non-alcoholic fatty liver disease.

    Science.gov (United States)

    Simpson, Stephen J; Raubenheimer, David; Cogger, Victoria C; Macia, Laurence; Solon-Biet, Samantha M; Le Couteur, David G; George, Jacob

    2018-02-01

    Nutrition has a profound effect on chronic liver disease, especially non-alcoholic fatty liver disease (NAFLD). Most observational studies and clinical trials have focussed on the effects of total energy intake, or the intake of individual macronutrients and certain micronutrients, such as vitamin D, on liver disease. Although these studies have shown the importance of nutrition on hepatic outcomes, there is not yet any unifying framework for understanding the relationship between diet and liver disease. The Geometric Framework for Nutrition (GFN) is an innovative model for designing nutritional experiments or interpreting nutritional data that can determine the effects of nutrients and their interactions on animal behaviour and phenotypes. Recently the GFN has provided insights into the relationship between dietary energy and macronutrients on obesity and ageing in mammals including humans. Mouse studies using the GFN have disentangled the effects of macronutrients on fatty liver and the gut microbiome. The GFN is likely to play a significant role in disentangling the effects of nutrients on liver disease, especially NAFLD, in humans. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  12. [Liver diseases in the elderly].

    Science.gov (United States)

    Bruguera, Miguel

    2014-11-01

    Liver diseases in the elderly have aroused less interest than diseases of other organs, since the liver plays a limited role in aging. There are no specific liver diseases of old age, but age-related anatomical and functional modifications of the liver cause changes in the frequency and clinical behavior of some liver diseases compared with those in younger patients. This review discusses the most important features of liver function in the healthy elderly population, as well as the features of the most prevalent liver diseases in this age group, especially the diagnostic approach to the most common liver problems in the elderly: asymptomatic elevation of serum transaminases and jaundice. Copyright © 2014 Elsevier España, S.L.U. and AEEH y AEG. All rights reserved.

  13. Potential and Challenges of Induced Pluripotent Stem Cells in Liver Diseases Treatment

    Directory of Open Access Journals (Sweden)

    Yue Yu

    2014-09-01

    Full Text Available Tens of millions of patients are affected by liver disease worldwide. Many of these patients can benefit from cell therapy involving living metabolically active cells, either by treatment of their liver disease, or by prevention of their disease phenotype. Cell therapies, including hepatocyte transplantation and bioartificial liver (BAL devices, have been proposed as therapeutic alternatives to the shortage of transplantable livers. Both BAL and hepatocyte transplantation are cellular therapies that avoid use of a whole liver. Hepatocytes are also widely used in drug screening and liver disease modelling. However, the demand for human hepatocytes, heavily outweighs their availability by conventional means. Induced pluripotent stem cells (iPSCs technology brings together the potential benefits of embryonic stem cells (ESCs (i.e., self-renewal, pluripotency and addresses the major ethical and scientific concerns of ESCs: embryo destruction and immune-incompatibility. It has been shown that hepatocyte-like cells (HLCs can be generated from iPSCs. Furthermore, human iPSCs (hiPSCs can provide an unlimited source of human hepatocytes and hold great promise for applications in regenerative medicine, drug screening and liver diseases modelling. Despite steady progress, there are still several major obstacles that need to be overcome before iPSCs will reach the bedside. This review will focus on the current state of efforts to derive hiPSCs for potential use in modelling and treatment of liver disease.

  14. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  15. Krüppel-Like Factors in Metabolic Homeostasis and Cardiometabolic Disease

    Directory of Open Access Journals (Sweden)

    Yumiko Oishi

    2018-06-01

    Full Text Available Members of the Krüppel-like factor (KLF family of transcription factors, which are characterized by the presence of three conserved Cys2/His2 zinc-fingers in their C-terminal domains, control a wide variety of biological processes. In particular, recent studies have revealed that KLFs play diverse and essential roles in the control of metabolism at the cellular, tissue and systemic levels. In both liver and skeletal muscle, KLFs control glucose, lipid and amino acid metabolism so as to coordinate systemic metabolism in the steady state and in the face of metabolic stresses, such as fasting. The functions of KLFs within metabolic tissues are also important contributors to the responses to injury and inflammation within those tissues. KLFs also control the function of immune cells, such as macrophages, which are involved in the inflammatory processes underlying both cardiovascular and metabolic diseases. This review focuses mainly on the physiological and pathological functions of KLFs in the liver and skeletal muscle. The involvement of KLFs in inflammation in these tissues is also summarized. We then discuss the implications of KLFs' control of metabolism and inflammation in cardiometabolic diseases.

  16. Mineral Requirements in Children with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    A Rezaeian

    2014-04-01

    Full Text Available Introduction: Decreased oral intake or impaired function / structure in the gut, such as hypertension port associated with atrophic changes in the protein nutrition - calories can lead to micronutrient deficiencies.This paper examines the status of micronutrients in chronic liver disease in children.   Materials and Methods: In this review study databases including proquest, pubmedcentral, scincedirect, ovid, medlineplus were been searched with keyword words such as” chronic liver disease"” minerals””children” between 1999 to 2014. Finally, 3 related articles have been found.   Results: In chronic liver disease changes in micronutrient metabolism lead to changes in the daily requirements, such that in certain circumstances intake increasing or decreasing  is needed. Low serum calcium and phosphate concentrations are often the reflection of malabsorption-induced bone disease that is unresponsive to vitamin D store normalization. Iron is usually deficient in children with CLD and supplementation frequently needed. The origin of iron deficiency is multifactorial and includes ongoing losses, inadequate intakes, serial blood draws and malabsorption secondary to hypertensive enteropathy. Zinc plays an important role in cognitive function, appetite and taste, immune function, wound healing, and protein metabolism. Low plasma zinc levels are frequent in children with chronic cholestasis, but unfortunately plasma concentrations are not reflective of total body zinc status. Copper and manganese, unlike other minerals, are increased in CLD, because they are normally excreted through bile. Parenteral nutrition in cholestatic patients can induce manganese intoxication and accumulation in basal ganglia.   Conclusion:  In fants with CLD are prone to multiple nutritional deficiencies. Mineral state should be evaluated, treated and reevaluated, until sufficient daily requirement achieved. Poster  Presentation, N 33  

  17. Investigation on liver fast metabolism with CT

    International Nuclear Information System (INIS)

    Huebener, K.H.; Schmitt, W.G.H.

    1981-01-01

    Measurements of the density of normal and diffusely diseased liver parenchyma show a significant difference only in fatty liver. A linear relationship between the fat content and physical density has been demonstrated. Computed tomographic densitometry of liver tissue correlates well with physical in vitro measurements of fat content and is sufficiently accurate for clinical use. Other types of liver diseases cannot be differentiated by densitometry, Lipolisis in fatty liver in chronic alcoholism alcohol withdrawal has been investigated. It has been found that a rate of decrease of the fatty degeneration of the liver equals to 1 percent/day. Fatty degeneration of the liver in acute pancreatitis and other diseases have been also investigated. CT densitometry of the liver should be considered as a useful routine clinical method to determine the fat content of liver. (author)

  18. Investigation on liver fast metabolism with CT

    Energy Technology Data Exchange (ETDEWEB)

    Huebener, K.H.; Schmitt, W.G.H. (Heidelberg Univ. (Germany, F.R.). Pathologisches Inst.)

    1981-01-01

    Measurements of the density of normal and diffusely diseased liver parenchyma show a significant difference only in fatty liver. A linear relationship between the fat content and physical density has been demonstrated. Computed tomographic densitometry of liver tissue correlates well with physical in vitro measurements of fat content and is sufficiently accurate for clinical use. Other types of liver diseases cannot be differentiated by densitometry, Lipolisis in fatty liver in chronic alcoholism alcohol withdrawal has been investigated. It has been found that a rate of decrease of the fatty degeneration of the liver equals to 1 percent/day. Fatty degeneration of the liver in acute pancreatitis and other diseases have been also investigated. CT densitometry of the liver should be considered as a useful routine clinical method to determine the fat content of liver.

  19. Multidisciplinary Pharmacotherapeutic Options for Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Kei Nakajima

    2012-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD and non-alcoholic steatohepatitis (NASH are multidisciplinary liver diseases that often accompany type 2 diabetes or metabolic syndrome, which are characterized by insulin resistance. Therefore, effective treatment of type 2 diabetes and metabolic syndrome should target not only the cardiometabolic abnormalities, but also the associated liver disorders. In the last decade, it has been shown that metformin, thiazolidinediones, vitamin E, ezetimibe, n-3 polyunsaturated fatty acids, renin-angiotensin system (RAS blockers, and antiobesity drugs may improve hepatic pathophysiological disorders as well as clinical parameters. Accordingly, insulin sensitizers, antioxidative agents, Niemann-Pick C1-like 1 (NPC1L1 inhibitors, RAS blockers, and drugs that target the central nervous system may represent candidate pharmacotherapies for NAFLD and possibly NASH. However, the efficacy, safety, and tolerability of long-term treatment (potentially for many years with these drugs have not been fully established. Furthermore, clinical trials have not comprehensively examined the efficacy of lipid-lowering drugs (i.e., statins, fibrates, and NPC1L1 inhibitors for the treatment of NAFLD. Although clinical evidence for RAS blockers and incretin-based agents (GLP-1 analogs and dipeptidyl peptidase-4 inhibitors is also lacking, these agents are promising in terms of their insulin-sensitizing and anti-inflammatory effects without causing weight gain.

  20. Lipid biomarkers and metabolic effects of lycopene from tomato juice on liver of rats with induced hepatic steatosis.

    Science.gov (United States)

    Bernal, Cristina; Martín-Pozuelo, Gala; Lozano, Ana B; Sevilla, Angel; García-Alonso, Javier; Canovas, Manuel; Periago, María J

    2013-11-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver disorders, covering steatosis to nonalcoholic steatohepatitis (NASH). Dietary factors may modulate its evolution, and antioxidants have been proposed as therapeutic agents. Among them, lycopene has been demonstrated to prevent the development of steatohepatitis and even to inhibit NASH-promoted early hepatocarcinogenesis induced by a high-fat diet in rats. These conclusions have been related to its antioxidant activity; however, NAFLD is more complex than a simple redox imbalance state since it disturbs several metabolic systems in the liver. In consequence, there is a lack of information related to the action of lycopene beyond antioxidant biomarkers. In this work, NAFLD was induced in rats using a hypercholesterolemic and high-fat diet to evaluate the effect of lycopene consumption from tomato juice on liver metabolism. Several classical antioxidant biomarkers related to NAFLD were measured to check the state of this disease after 7 weeks of the controlled diet. Moreover, a metabolomics platform was applied to measure more than 70 metabolites. Results showed clear differences in the classical antioxidant biomarkers as well as in the metabolic pattern, attending not only to the diet but also to the intake of lycopene from tomato juice. Interestingly, tomato juice administration partially reverted the metabolic pattern from a high-fat diet to a normal diet even in metabolites not related to the redox state, which could lead to new targets for therapeutic agents against NAFLD and to achieving a better understanding of the role of lycopene in liver metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Adipose Tissue Dysfunction and Altered Systemic Amino Acid Metabolism Are Associated with Non-Alcoholic Fatty Liver Disease

    NARCIS (Netherlands)

    Cheng, Sulin; Wiklund, Petri; Autio, Reija; Borra, Ronald; Ojanen, Xiaowei; Xu, Leiting; Törmäkangas, Timo; Alen, Markku

    2015-01-01

    BACKGROUND: Fatty liver is a major cause of obesity-related morbidity and mortality. The aim of this study was to identify early metabolic alterations associated with liver fat accumulation in 50- to 55-year-old men (n = 49) and women (n = 52) with and without NAFLD. METHODS: Hepatic fat content was

  2. Free triiodothyronine as determinant of non-alcoholic fatty liver disease in euthyroid subjects: The lifelines cohort study

    NARCIS (Netherlands)

    Van Den Berg, Eline; van Tienhoven-Wind, Lynnda; Amini, Marzyeh; Schreuder, Tim C.M.A.; Faber, Klaas Nico; Blokzijl, H.; Dullaart, Robin P.F.

    2016-01-01

    Background: Non-alcoholic fatty live disease (NAFLD) is becoming the leading cause of chronic liver disease in de Western world. The liver plays a crucial role in the metabolism of cholesterol and triglycerides and thyroid hormones interact on hepatic lipid homeostasis. Given the importance of

  3. Aetiology and pathogenesis of alcoholic liver disease.

    Science.gov (United States)

    Lieber, C S

    1993-09-01

    Until the 1960s, liver disease of the alcoholic patient was attributed exclusively to dietary deficiencies. Since then, however, our understanding of the impact of alcoholism on nutritional status has undergone a progressive evolution. Alcohol, because of its high energy content, was at first perceived to act exclusively as 'empty calories' displacing other nutrients in the diet, and causing primary malnutrition through decreased intake of essential nutrients. With improvement in the overall nutrition of the population, the role of primary malnutrition waned and secondary malnutrition was emphasized as a result of a better understanding of maldigestion and malabsorption caused by chronic alcohol consumption and various diseases associated with chronic alcoholism. At the same time, the concept of the direct toxicity of alcohol came to the forefront as an explanation for the widespread cellular injury. Some of the hepatotoxicity was found to result from the metabolic disturbances associated with the oxidation of ethanol via the liver alcohol dehydrogenase (ADH) pathway and the redox changes produced by the generated NADH, which in turn affects the metabolism of lipids, carbohydrates, proteins and purines. Exaggeration of the redox change by the relative hypoxia which prevails physiologically in the perivenular zone contributes to the exacerbation of the ethanol-induced lesions in zone 3. In addition to ADH, ethanol can be oxidized by liver microsomes: studies over the last twenty years have culminated in the molecular elucidation of the ethanol-inducible cytochrome P450IIE1 (CYP2E1) which contributes not only to ethanol metabolism and tolerance, but also to the selective hepatic perivenular toxicity of various xenobiotics. Their activation by CYP2E1 now provides an understanding for the increased susceptibility of the heavy drinker to the toxicity of industrial solvents, anaesthetic agents, commonly prescribed drugs, 'over the counter' analgesics, chemical

  4. Novel Action of Carotenoids on Non-Alcoholic Fatty Liver Disease: Macrophage Polarization and Liver Homeostasis.

    Science.gov (United States)

    Ni, Yinhua; Zhuge, Fen; Nagashimada, Mayumi; Ota, Tsuguhito

    2016-06-24

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. It is characterized by a wide spectrum of hepatic changes, which may progress to non-alcoholic steatohepatitis (NASH) and cirrhosis. NAFLD is considered a hepatic manifestation of metabolic syndrome; however, mechanisms underlying the onset and progression of NAFLD are still unclear. Resident and recruited macrophages are key players in the homeostatic function of the liver and in the progression of NAFLD to NASH. Progress has been made in understanding the molecular mechanisms underlying the polarized activation of macrophages. New NAFLD therapies will likely involve modification of macrophage polarization by restraining M1 activation or driving M2 activation. Carotenoids are potent antioxidants and anti-inflammatory micronutrients that have been used to prevent and treat NAFLD. In addition to their antioxidative action, carotenoids can regulate macrophage polarization and thereby halt the progression of NASH. In this review, we summarize the molecular mechanisms of macrophage polarization and the function of liver macrophages/Kupffer cells in NAFLD. From our review, we propose that dietary carotenoids, such as β-cryptoxanthin and astaxanthin, be used to prevent or treat NAFLD through the regulation of macrophage polarization and liver homeostasis.

  5. Cytokines and Liver Diseases

    Directory of Open Access Journals (Sweden)

    Herbert Tilg

    2001-01-01

    Full Text Available Cytokines are pleiotropic peptides produced by virtually every nucleated cell in the body. In most tissues, including the liver, constitutive production of cytokines is absent or minimal. There is increasing evidence that several cytokines mediate hepatic inflammation, apoptosis and necrosis of liver cells, cholestasis and fibrosis. Interestingly, the same mediators also mediate the regeneration of liver tissue after injury. Among the various cytokines, the proinflammatory cytokine tumour necrosis factor-alpha (TNF-a has emerged as a key factor in various aspects of liver disease, such as cachexia and/or cholestasis. Thus, antagonism of TNF-a and other injury-related cytokines in liver diseases merits evaluation as a treatment of these diseases. However, because the same cytokines are also necessary for the regeneration of the tissue after the liver has been injured, inhibition of these mediators might impair hepatic recovery. The near future will bring the exiting clinical challenge of testing new anticytokine strategies in various liver diseases.

  6. Gene polymorphisms of desaturase enzymes of polyunsaturated fatty acid metabolism and adiponutrin and the increased risk of nonalcoholic fatty liver disease

    OpenAIRE

    Manvi Vernekar; Deepak Amarapurkar; Kalpana Joshi; Rekha Singhal

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is considered to be the hepatic manifestation of the metabolic syndrome (MetS). Adiponutrin gene polymorphisms have been associated with NAFLD worldwide. Polyunsaturated fatty acids (PUFAs) have been studied to have anti-inflammatory effects and plasma lipid lowering properties. PUFAs are endogenously synthesized with the help of delta-6-desaturase and delta-5-desaturase enzymes. They are encoded by FADS2 and FADS1 genes respectively. Polymorphisms in ...

  7. Antioxidant supplements for liver diseases

    DEFF Research Database (Denmark)

    Bjelakovic, Goran; Gluud, Lise Lotte; Nikolova, Dimitrinka

    2011-01-01

    Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal.......Several liver diseases have been associated with oxidative stress. Accordingly, antioxidants have been suggested as potential therapeutics for various liver diseases. The evidence supporting these suggestions is equivocal....

  8. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro

    Science.gov (United States)

    Zhang, Xiaoqian; Lu, Juan; He, Bin; Tang, Lingling; Liu, Xiaoli; Zhu, Danhua; Cao, Hongcui; Wang, Yingjie; Li, Lanjuan

    2017-01-01

    Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotransformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two-dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases. PMID:27959388

  9. Impact of Time-Restricted Feeding and Dawn-to-Sunset Fasting on Circadian Rhythm, Obesity, Metabolic Syndrome, and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Ayse L. Mindikoglu

    2017-01-01

    Full Text Available Obesity now affects millions of people and places them at risk of developing metabolic syndrome, nonalcoholic fatty liver disease (NAFLD, and even hepatocellular carcinoma. This rapidly emerging epidemic has led to a search for cost-effective methods to prevent the metabolic syndrome and NAFLD as well as the progression of NAFLD to cirrhosis and hepatocellular carcinoma. In murine models, time-restricted feeding resets the hepatic circadian clock and enhances transcription of key metabolic regulators of glucose and lipid homeostasis. Studies of the effect of dawn-to-sunset Ramadan fasting, which is akin to time-restricted feeding model, have also identified significant improvement in body mass index, serum lipid profiles, and oxidative stress parameters. Based on the findings of studies conducted on human subjects, dawn-to-sunset fasting has the potential to be a cost-effective intervention for obesity, metabolic syndrome, and NAFLD.

  10. Impact of Time-Restricted Feeding and Dawn-to-Sunset Fasting on Circadian Rhythm, Obesity, Metabolic Syndrome, and Nonalcoholic Fatty Liver Disease

    Science.gov (United States)

    Gagan, Sood K.

    2017-01-01

    Obesity now affects millions of people and places them at risk of developing metabolic syndrome, nonalcoholic fatty liver disease (NAFLD), and even hepatocellular carcinoma. This rapidly emerging epidemic has led to a search for cost-effective methods to prevent the metabolic syndrome and NAFLD as well as the progression of NAFLD to cirrhosis and hepatocellular carcinoma. In murine models, time-restricted feeding resets the hepatic circadian clock and enhances transcription of key metabolic regulators of glucose and lipid homeostasis. Studies of the effect of dawn-to-sunset Ramadan fasting, which is akin to time-restricted feeding model, have also identified significant improvement in body mass index, serum lipid profiles, and oxidative stress parameters. Based on the findings of studies conducted on human subjects, dawn-to-sunset fasting has the potential to be a cost-effective intervention for obesity, metabolic syndrome, and NAFLD. PMID:29348746

  11. Epicardial adipose tissue relating to anthropometrics, metabolic derangements and fatty liver disease independently contributes to serum high-sensitivity C-reactive protein beyond body fat composition: a study validated with computed tomography.

    Science.gov (United States)

    Lai, Yau-Huei; Yun, Chun-Ho; Yang, Fei-Shih; Liu, Chuan-Chuan; Wu, Yih-Jer; Kuo, Jen-Yuan; Yeh, Hung-I; Lin, Tin-Yu; Bezerra, Hiram G; Shih, Shou-Chuan; Tsai, Cheng-Ho; Hung, Chung-Lieh

    2012-02-01

    Epicardial adipose tissue (EAT) measured by echocardiography has been proposed to be associated with metabolic syndrome and increased cardiovascular risks. However, its independent association with fatty liver disease and systemic inflammation beyond clinical variables and body fat remains less well known. The relationships between EAT and various factors of metabolic derangement were retrospectively examined in consecutive 359 asymptomatic subjects (mean age, 51.6 years; 31% women) who participated in a cardiovascular health survey. Echocardiography-derived regional EAT thickness from parasternal long-axis and short-axis views was quantified. A subset of data from 178 randomly chosen participants were validated using 16-slice multidetector computed tomography. Body fat composition was evaluated using bioelectrical impedance from foot-to-foot measurements. Increased EAT was associated with increased waist circumference, body weight, and body mass index (all P values for trend = .005). Graded increases in serum fasting glucose, insulin resistance, and alanine transaminase levels were observed across higher EAT tertiles as well as a graded decrease of high-density lipoprotein (all P values for trend <.05). The areas under the receiver operating characteristic curves for identifying metabolic syndrome and fatty liver disease were 0.8 and 0.77, with odds ratio estimated at 3.65 and 2.63, respectively. In a multivariate model, EAT remained independently associated with higher high-sensitivity C-reactive protein and fatty liver disease. These data suggested that echocardiography-based epicardial fat measurement can be clinically feasible and was related to several metabolic abnormalities and independently associated fatty liver disease. In addition, EAT amount may contribute to systemic inflammation beyond traditional cardiovascular risks and body fat composition. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  12. Nonalcoholic fatty liver disease and fatigue in long-term survivors of childhood-onset craniopharyngioma

    NARCIS (Netherlands)

    Hoffmann, Anika; Bootsveld, Klaus; Gebhardt, Ursel; Daubenbuchel, Anna M. M.; Sterkenburg, Anthe S.; Muller, Hermann L.

    Objective: Hypothalamic obesity in childhood craniopharyngioma (CP) patients carries a high risk for development of metabolic syndrome. In metabolic syndrome, the development of nonalcoholic fatty liver disease (NAFLD) is known. The aim of this study is to detect the risk for NAFLD in

  13. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease

    Science.gov (United States)

    Metabolic syndrome is often accompanied by development of hepatic steatosis and less frequently by nonalcoholic fatty liver disease (NAFLD) leading to nonalcoholic steatohepatitis (NASH). Replacement of corn oil with medium chain triacylglycerols (MCT) in the diets of alcohol-fed rats has been show...

  14. Metabonomics Research Progress on Liver Diseases.

    Science.gov (United States)

    Yu, Mengqian; Zhu, Ying; Cong, Qingwei; Wu, Chunyan

    2017-01-01

    Metabolomics as the new omics technique develops after genomics, transcriptomics, and proteomics and has rapid development at present. Liver diseases are worldwide public health problems. In China, chronic hepatitis B and its secondary diseases are the common liver diseases. They can be diagnosed by the combination of history, virology, liver function, and medical imaging. However, some patients seldom have relevant physical examination, so the diagnosis may be delayed. Many other liver diseases, such as drug-induced liver injury (DILI), alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD), and autoimmune liver diseases, still do not have definite diagnostic markers; the diagnosis consists of history, medical imaging, and the relevant score. As a result, the clinical work becomes very complex. So it has broad prospects to explore the specific and sensitive biomarkers of liver diseases with metabolomics. In this paper, there are several summaries which are related to the current research progress and application of metabolomics on biomarkers of liver diseases.

  15. Metabolic profiling of fatty liver in young and middle‐aged adults: Cross‐sectional and prospective analyses of the Young Finns Study

    Science.gov (United States)

    Würtz, Peter; Suomela, Emmi; Lehtovirta, Miia; Kangas, Antti J.; Jula, Antti; Mikkilä, Vera; Viikari, Jorma S.A.; Juonala, Markus; Rönnemaa, Tapani; Hutri‐Kähönen, Nina; Kähönen, Mika; Lehtimäki, Terho; Soininen, Pasi; Ala‐Korpela, Mika; Raitakari, Olli T.

    2016-01-01

    Nonalcoholic fatty liver is associated with obesity‐related metabolic disturbances, but little is known about the metabolic perturbations preceding fatty liver disease. We performed comprehensive metabolic profiling to assess how circulating metabolites, such as lipoprotein lipids, fatty acids, amino acids, and glycolysis‐related metabolites, reflect the presence of and future risk for fatty liver in young adults. Sixty‐eight lipids and metabolites were quantified by nuclear magnetic resonance metabolomics in the population‐based Young Finns Study from serum collected in 2001 (n = 1,575), 2007 (n = 1,509), and 2011 (n = 2,002). Fatty liver was diagnosed by ultrasound in 2011 when participants were aged 34‐49 years (19% prevalence). Cross‐sectional associations as well as 4‐year and 10‐year risks for fatty liver were assessed by logistic regression. Metabolites across multiple pathways were strongly associated with the presence of fatty liver (P fatty acids including omega‐6 (OR = 0.37, 0.32‐0.42). The metabolic associations were attenuated but remained significant after adjusting for waist, physical activity, alcohol consumption, and smoking (P fatty liver diagnosis. Conclusion: Circulating lipids, fatty acids, and amino acids reflect fatty liver independently of routine metabolic risk factors; these metabolic aberrations appear to precede the development of fatty liver in young adults. (Hepatology 2017;65:491‐500). PMID:27775848

  16. Mitochondrial-nuclear genome interactions in nonalcoholic fatty liver disease in mice

    OpenAIRE

    Betancourt, Angela M.; King, Adrienne L.; Fetterman, Jessica L.; Millender-Swain, Telisha; Finley, Rachel D.; Oliva, Claudia R.; Crowe, David Ralph; Ballinger, Scott W.; Bailey, Shannon M.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation, and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. Herein, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, Mitochondrial-Nuclear eXchange (MNX) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6...

  17. [Nutritional Assessment and Management for Patients with Chronic Liver Disease].

    Science.gov (United States)

    Lee, Tae Hee

    2018-04-25

    When liver disease is severe, the prognosis can be worse if the patient is malnourished. Adequate nutritional support for patients with liver diseases can improve the patient's condition and prognosis. In the case of liver cirrhosis, malnutrition can occur due to a variety of causes, including poor oral intake, maldigestion, malabsorption, associated renal disease, and metabolic abnormalities. For a nutritional assessment, it is important to check the dietary intake, change in body composition, including anthropometry, and a functional assessment of muscle. Counselling and oral or enteral nutrition is preferred over parenteral nutrition as in other diseases. If esophageal varices are present, care should be taken when installing a feeding tube, but if there are ascites, percutaneous endoscopic gastrostomy is contraindicated because of the risk of complications. Calories of 30-35 kcal/kg/day and protein from 1.2 to 1.5 g/kg/day are appropriate. Protein restriction is unnecessary unless the hepatic encephalopathy is severe. A late evening snack and branched chain amino acids can be helpful. In the case of cholestasis, the supply of manganese and copper should be restricted. Sarcopenia in patients with liver cirrhosis is also prevalent and associated with the prognosis.

  18. Systems biology elucidates common pathogenic mechanisms between nonalcoholic and alcoholic-fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Silvia Sookoian

    Full Text Available The abnormal accumulation of fat in the liver is often related either to metabolic risk factors associated with metabolic syndrome in the absence of alcohol consumption (nonalcoholic fatty liver disease, NAFLD or to chronic alcohol consumption (alcoholic fatty liver disease, AFLD. Clinical and histological studies suggest that NAFLD and AFLD share pathogenic mechanisms. Nevertheless, current data are still inconclusive as to whether the underlying biological process and disease pathways of NAFLD and AFLD are alike. Our primary aim was to integrate omics and physiological data to answer the question of whether NAFLD and AFLD share molecular processes that lead to disease development. We also explored the extent to which insulin resistance (IR is a distinctive feature of NAFLD. To answer these questions, we used systems biology approaches, such as gene enrichment analysis, protein-protein interaction networks, and gene prioritization, based on multi-level data extracted by computational data mining. We observed that the leading disease pathways associated with NAFLD did not significantly differ from those of AFLD. However, systems biology revealed the importance of each molecular process behind each of the two diseases, and dissected distinctive molecular NAFLD and AFLD-signatures. Comparative co-analysis of NAFLD and AFLD clarified the participation of NAFLD, but not AFLD, in cardiovascular disease, and showed that insulin signaling is impaired in fatty liver regardless of the noxa, but the putative regulatory mechanisms associated with NAFLD seem to encompass a complex network of genes and proteins, plausible of epigenetic modifications. Gene prioritization showed a cancer-related functional map that suggests that the fatty transformation of the liver tissue is regardless of the cause, an emerging mechanism of ubiquitous oncogenic activation. In conclusion, similar underlying disease mechanisms lead to NAFLD and AFLD, but specific ones depict a

  19. Propylthiouracil for alcoholic liver disease

    DEFF Research Database (Denmark)

    Rambaldi, A; Gluud, C

    2002-01-01

    Alcohol is the most common cause of liver disease in the Western world today. Randomised clinical trials have addressed the question whether propylthiouracil has any efficacy in patients with alcoholic liver disease.......Alcohol is the most common cause of liver disease in the Western world today. Randomised clinical trials have addressed the question whether propylthiouracil has any efficacy in patients with alcoholic liver disease....

  20. Strong association between non alcoholic fatty liver disease (NAFLD and low 25(OH vitamin D levels in an adult population with normal serum liver enzymes

    Directory of Open Access Journals (Sweden)

    Pozzilli Paolo

    2011-07-01

    Full Text Available Abstract Background Hypovitaminosis D has been recently recognized as a worldwide epidemic. Since vitamin D exerts significant metabolic activities, comprising free fatty acids (FFA flux regulation from the periphery to the liver, its deficiency may promote fat deposition into the hepatocytes. Aim of our study was to test the hypothesis of a direct association between hypovitaminosis D and the presence of NAFLD in subjects with various degree of insulin-resistance and related metabolic disorders. Methods We studied 262 consecutive subjects referred to the Diabetes and Metabolic Diseases clinics for metabolic evaluation. NAFLD (non-alcoholic fatty liver disease was diagnosed by upper abdomen ultrasonography, metabolic syndrome was identified according to the Third Report of National Cholesterol Education Program/Adult Treatment Panel (NCEP/ATPIII modified criteria. Insulin-resistance was evaluated by means of HOMA-IR. Fatty-Liver-Index, a recently identified correlate of NAFLD, was also estimated. Serum 25(OHvitamin D was measured by colorimetric method. Results Patients with NAFLD (n = 162,61.8% had reduced serum 25(OH vitamin D levels compared to subjects without NAFLD (14.8 ± 9.2 vs 20.5 ± 9.7 ng/ml, p Conclusions Low 25(OHvitamin D levels are associated with the presence of NAFLD independently from metabolic syndrome, diabetes and insulin-resistance profile.

  1. Liver Disease and Adult Vaccination

    Science.gov (United States)

    ... The Basics Adult Vaccination Resources for Healthcare Professionals Liver Disease and Adult Vaccination Recommend on Facebook Tweet ... critical for people with health conditions such as liver disease. If you have chronic liver disease, talk ...

  2. Two consecutive partial liver transplants in a patient with Classic Maple Syrup Urine Disease

    Directory of Open Access Journals (Sweden)

    H.L. Chin

    2015-09-01

    Full Text Available Maple syrup urine disease is caused by a deficiency in the branched chain ketoacid dehydrogenase (BCKAD complex. This results in the accumulation of branched chain amino acids (BCAA and branched chain ketoacids in the body. Even when aggressively treated with dietary restriction of BCAA, patients experience long term cognitive, neurological and psychosocial problems. Liver transplantation from deceased donors has been shown to be an effective modality in introducing adequate BCKAD activity, attaining a metabolic cure for patients. Here, we report the clinical course of the first known patient with classic MSUD who received two consecutive partial liver grafts from two different living non-carrier donors and his five year outcome posttransplant. We also show that despite the failure of the first liver graft, and initial acute cellular rejection of the second liver graft in our patient, his metabolic control remained good without metabolic decompensation.

  3. Risk factors for metabolic syndrome after liver transplantation

    DEFF Research Database (Denmark)

    Thoefner, Line Buch; Rostved, Andreas Arendtsen; Pommergaard, Hans-Christian

    2018-01-01

    syndrome after liver transplantation. METHODS: The databases Medline and Scopus were searched for observational studies evaluating prevalence and risk factors for metabolic syndrome after liver transplantation. Meta-analyses were performed based on odds ratios (ORs) from multivariable analyses...

  4. Nonalcoholic fatty liver disease

    DEFF Research Database (Denmark)

    Patrick-Melin, A J; Kalinski, M I; Kelly, K R

    2009-01-01

    Nonalcoholic fatty liver disease (NAFLD) is a rapidly emerging chronic liver disease and is reported to affect up to 70-80% of overweight and obese individuals. NAFLD represents a spectrum of liver diseases that range from simple hepatic steatosis, to a more severe and treatment resistant stage...... that features steatosis plus inflammation, termed nonalcoholic steatohepatitis (NASH), which may in turn progress to hepatic fibrosis, cirrhosis, and sub-acute liver failure. Thus, NAFLD and its subsequent complications create a significant health burden, and currently there is no effective treatment strategy...

  5. A proteomic-based characterization of liver metabolism in dairy cows and young pigs

    DEFF Research Database (Denmark)

    Sejersen, Henrik

    This thesis deals with studies on liver metabolism in cows and pigs. Proteome analysis was used to quantify a large number of proteins involved in metabolic pathways. In cows, the objective was to characterize differences in the liver proteome between early lactation dairy cows with low or high...... liver fat content and suggest potential blood-based biomarkers for early detection of fatty liver to substantiate prevention strategies. Our results show that several proteins in liver metabolic pathways are affected by liver fat content and that blood aspartate aminotransferase, ß...

  6. Autoimmune liver disease panel

    Science.gov (United States)

    Liver disease test panel - autoimmune ... Autoimmune disorders are a possible cause of liver disease. The most common of these diseases are autoimmune hepatitis and primary biliary cholangitis (formerly called primary biliary cirrhosis). This group of tests ...

  7. Alcohol extract of North American ginseng (Panax quinquefolius) reduces fatty liver, dyslipidemia, and other complications of metabolic syndrome in a mouse model.

    Science.gov (United States)

    Singh, Ratnesh K; Lui, Edmund; Wright, David; Taylor, Adrian; Bakovic, Marica

    2017-09-01

    We investigated whether North American ginseng (Panax quinquefolius) could reduce development of the metabolic syndrome phenotype in a mouse model (ETKO) of the disease. Young ETKO mice have no disease but similar to humans start to develop the fatty liver, hypertriglyceridemia, obesity, and insulin resistance at 25-30 weeks of age, and the disease continues to progress with ageing. ETKO mice were orally given an ethanol extract of ginseng roots at 4 and 32 weeks of age. Treatments with ginseng eliminated the ETKO fatty liver, reduced hepatic and intestinal lipoprotein secretion, and reduced the level of circulating lipids. Improvements by ginseng treatments were manifested as a reduction in the expression of genes involved in the regulation of fatty acid and triglyceride (fat) synthesis and secretion by the lipoproteins on one hand, and the stimulation of fatty acid oxidation and triglyceride degradation by lipolysis on the other hand. These processes altogether improved glucose, fatty acid, and triglyceride metabolism, reduced liver fat load, and reversed the progression of metabolic syndrome. These data confirm that treatments with North American ginseng could alleviate metabolic syndrome through the maintenance of a better balance between glucose and fatty acid metabolism, lipoprotein secretion, and energy homeostasis in disease-prone states.

  8. PNPLA3 Expression Is Related to Liver Steatosis in Morbidly Obese Women with Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Gemma Aragonès

    2016-04-01

    Full Text Available Recent reports suggest a role for the Patatin-like phospholipase domain-containing protein 3 (PNPLA3 in the pathology of non-alcoholic fatty liver disease (NAFLD. Lipid deposition in the liver seems to be a critical process in the pathogenesis of NAFLD. The aim of the present work was to evaluate the association between the liver PNPLA3 expression, key genes of lipid metabolism, and the presence of NAFLD in morbidly obese women. We used real-time polymerase chain reaction (PCR analysis to analyze the hepatic expression of PNPLA3 and lipid metabolism-related genes in 55 morbidly obese subjects with normal liver histology (NL, n = 18, simple steatosis (SS, n = 20, and non-alcoholic steatohepatitis (NASH, n = 17. Liver biopsies were collected during bariatric surgery. We observed that liver PNPLA3 expression was increased in NAFLD than in NL. It was also upregulated in SS than in NL. Interestingly, we found that the expression of PNPLA3 was significantly higher in severe than mild SS group. In addition, the expression of the transcription factors LXRα, PPARα, and SREBP2 was positively correlated with PNPLA3 liver expression. Regarding rs738409 polymorphism, GG genotype was positive correlated with the presence of NASH. In conclusion, our results show that PNPLA3 could be related to lipid accumulation in liver, mainly in the development and progression of simple steatosis.

  9. PNPLA3 Expression Is Related to Liver Steatosis in Morbidly Obese Women with Non-Alcoholic Fatty Liver Disease.

    Science.gov (United States)

    Aragonès, Gemma; Auguet, Teresa; Armengol, Sandra; Berlanga, Alba; Guiu-Jurado, Esther; Aguilar, Carmen; Martínez, Salomé; Sabench, Fátima; Porras, José Antonio; Ruiz, Maikel Daniel; Hernández, Mercé; Sirvent, Joan Josep; Del Castillo, Daniel; Richart, Cristóbal

    2016-04-27

    Recent reports suggest a role for the Patatin-like phospholipase domain-containing protein 3 (PNPLA3) in the pathology of non-alcoholic fatty liver disease (NAFLD). Lipid deposition in the liver seems to be a critical process in the pathogenesis of NAFLD. The aim of the present work was to evaluate the association between the liver PNPLA3 expression, key genes of lipid metabolism, and the presence of NAFLD in morbidly obese women. We used real-time polymerase chain reaction (PCR) analysis to analyze the hepatic expression of PNPLA3 and lipid metabolism-related genes in 55 morbidly obese subjects with normal liver histology (NL, n = 18), simple steatosis (SS, n = 20), and non-alcoholic steatohepatitis (NASH, n = 17). Liver biopsies were collected during bariatric surgery. We observed that liver PNPLA3 expression was increased in NAFLD than in NL. It was also upregulated in SS than in NL. Interestingly, we found that the expression of PNPLA3 was significantly higher in severe than mild SS group. In addition, the expression of the transcription factors LXRα, PPARα, and SREBP2 was positively correlated with PNPLA3 liver expression. Regarding rs738409 polymorphism, GG genotype was positive correlated with the presence of NASH. In conclusion, our results show that PNPLA3 could be related to lipid accumulation in liver, mainly in the development and progression of simple steatosis.

  10. [Hepatic cell transplantation: a new therapy in liver diseases].

    Science.gov (United States)

    Pareja, Eugenia; Cortés, Miriam; Martínez, Amparo; Vila, Juan José; López, Rafael; Montalvá, Eva; Calzado, Angeles; Mir, José

    2010-07-01

    Liver transplantation has been remarkably effective in the treatment in patients with end-stage liver disease. However, disparity between solid-organ supply and increased demand is the greatest limitation, resulting in longer waiting times and increase in mortality of transplant recipients. This situation creates the need to seek alternatives to orthotopic liver transplantation.Hepatocyte transplantation or liver cell transplantation has been proposed as the best method to support patients. The procedure consists of transplanting individual cells to a recipient organ in sufficient quantity to survive and restore the function. The capacity of hepatic regeneration is the biological basis of hepatocyte transplantation. This therapeutic option is an experimental procedure in some patients with inborn errors of metabolism, fulminant hepatic failure and acute and chronic liver failure, as a bridge to orthotopic liver transplantation. In the Hospital La Fe of Valencia, we performed the first hepatocyte transplantation in Spain creating a new research work on transplant program. Copyright 2009 AEC. Published by Elsevier Espana. All rights reserved.

  11. Phytosterols, Lipid Administration, and Liver Disease During Parenteral Nutrition.

    Science.gov (United States)

    Zaloga, Gary P

    2015-09-01

    Phytosterols are plant-derived sterols that are structurally and functionally analogous to cholesterol in vertebrate animals. Phytosterols are found in many foods and are part of the normal human diet. However, absorption of phytosterols from the diet is minimal. Most lipid emulsions used for parenteral nutrition are based on vegetable oils. As a result, phytosterol administration occurs during intravenous administration of lipid. Levels of phytosterols in the blood and tissues may reach high levels during parenteral lipid administration and may be toxic to cells. Phytosterols are not fully metabolized by the human body and must be excreted through the hepatobiliary system. Accumulating scientific evidence suggests that administration of high doses of intravenous lipids that are high in phytosterols contributes to the development of parenteral nutrition-associated liver disease. In this review, mechanisms by which lipids and phytosterols may cause cholestasis are discussed. Human studies of the association of phytosterols with liver disease are reviewed. In addition, clinical studies of lipid/phytosterol reduction for reversing and/or preventing parenteral nutrition associated liver disease are discussed. © 2015 American Society for Parenteral and Enteral Nutrition.

  12. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2017-08-01

    Full Text Available Endoplasmic reticulum (ER is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs, liver disorders, such as non-alcoholic fatty liver disease (NAFLD, non-alcoholic steatosis hepatitis (NASH, and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries. Keywords: Endoplasmic reticulum stress, High cholesterol, Cardiovascular diseases, Non-alcoholic fatty liver disease, Non-alcoholic steatosis hepatitis

  13. Autoimmune liver disease 2007.

    Science.gov (United States)

    Muratori, Paolo; Granito, Alessandro; Pappas, Georgios; Muratori, Luigi; Lenzi, Marco; Bianchi, Francesco B

    2008-01-01

    Autoimmune liver disease (ALD) includes a spectrum of diseases which comprises both cholestatic and hepatitic forms: autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and the so called "overlap" syndromes where hepatitic and cholestatic damage coexists. All these diseases are characterized by an extremely high heterogeneity of presentation, varying from asymptomatic, acute (as in a subset of AIH) or chronic (with aspecific symptoms such as fatigue and myalgia in AIH or fatigue and pruritus in PBC and PSC). The detection and characterization of non organ specific autoantibodies plays a major role in the diagnostic approach of autoimmune liver disease; anti nuclear reactivities (ANA) and anti smooth muscle antibodies (SMA) mark type 1 AIH, liver kidney microsomal antibody type 1 (LKM1) and liver cytosol type 1 (LC1) are the serological markers of type 2 AIH; antimitochondrial antibodies (AMA) are associated with PBC, while no specific marker is found in PSC, since anticytoplasmic neutrophil antibodies with perinuclear pattern (atypical p-ANCA or p-ANNA) are also detected in a substantial proportion of type 1 AIH cases. Treatment options rely on immunosoppressive therapy (steroids and azathioprine) in AIH and on ursodeoxycholic acid in cholestatic conditions; in all these diseases liver transplantation remains the only therapeutical approach for the end stage of liver disease.

  14. Epigenetic Mechanisms Underlying the Link between Non-Alcoholic Fatty Liver Diseases and Nutrition

    Directory of Open Access Journals (Sweden)

    Joo Ho Lee

    2014-08-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is defined as a pathologic accumulation of fat in the form of triglycerides (TG in the liver (steatosis that is not caused by alcohol. A subgroup of NAFLD patients shows liver cell injury and inflammation coupled with the excessive fat accumulation (steatohepatitis, which is referred to as non-alcoholic steatohepatitis (NASH. Patients with NASH may develop cirrhosis and hepatocellular carcinoma (HCC. NAFLD shares the key features of metabolic syndrome including obesity, hyperlipidemia, hypertension, and insulin resistance. The pathogenesis of NAFLD is multi-factorial, however the oxidative stress seems to plays a major role in the development and progression of the disease. The emerging field of epigenetics provides a new perspective on the pathogenesis of NAFLD. Epigenetics is an inheritable but reversible phenomenon that affects gene expression without altering the DNA sequence and refers to DNA methylation, histone modifications and microRNAs. Epigenetic manipulation through metabolic pathways such as one-carbon metabolism has been proposed as a promising approach to retard the progression of NAFLD. Investigating the epigenetic modifiers in NAFLD may also lead to the development of preventive or therapeutic strategies for NASH-associated complications.

  15. Lipotoxicity in macrophages: evidence from diseases associated with the metabolic syndrome.

    Science.gov (United States)

    Prieur, Xavier; Roszer, Tamás; Ricote, Mercedes

    2010-03-01

    Accumulation of lipid metabolites within non-adipose tissues can induce chronic inflammation by promoting macrophage infiltration and activation. Oxidized and glycated lipoproteins, free fatty acids, free cholesterol, triacylglycerols, diacylglycerols and ceramides have long been known to induce cellular dysfunction through their pro-inflammatory and pro-apoptotic properties. Emerging evidence suggests that macrophage activation by lipid metabolites and further modulation by lipid signaling represents a common pathogenic mechanism underlying lipotoxicity in atherosclerosis, obesity-associated insulin resistance and inflammatory diseases related to metabolic syndrome such as liver steatosis and chronic kidney disease. In this review, we discuss the latest discoveries that support the role of lipids in modulating the macrophage phenotype in different metabolic diseases. We describe the common mechanisms by which lipid derivatives, through modulation of macrophage function, promote plaque instability in the arterial wall, impair insulin responsiveness and contribute to inflammatory liver, muscle and kidney disease. We discuss the molecular mechanism of lipid activation of pro-inflammatory pathways (JNK, NFkappaB) and the key roles played by the PPAR and LXR nuclear receptors-lipid sensors that link lipid metabolism and inflammation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  16. Alanine metabolism in pyridoxine-depleted rat liver

    International Nuclear Information System (INIS)

    Okada, Mitsuko; Abe, Midori

    1976-01-01

    Alanine metabolism in normal and pyridoxine-deficient rats was studied in vivo and in vitro. Incorporation of 14 C-alanine into various liver components was determined and no difference was shown between normal and deficient animals in the incorporation into liver homogenates, lipid, protein and plasma glucose. Using the liver slice system, gluconeogenic activity from alanine or pyruvate was 40% lower in deficient rats compared with the activity of normal rats. However, inhibition was completely removed by the addition of 2-oxoglutarate to alanine. Penicillamine did not affect glucose formation from alanine in the liver slice. (auth.)

  17. Vitamin A metabolic aspects and alcoholic liver disease Aspectos metabólicos da vitamina A e doença hepática alcoólica

    Directory of Open Access Journals (Sweden)

    Tatiana Pereira de Paula

    2006-10-01

    Full Text Available The liver is a strategic organ in the metabolism of macro and micronutrients; when its functioning is compromised, it may cause some change in the nutritional status of vitamin A. The purpose of this article is to review scientific evidence in literature on the liver metabolism of vitamin A, the role of ethanol and retinol interactions on hepatic morphology, besides the alterations in the metabolism of this vitamin in alcoholic liver disease. Data were collected from Medline database. The liver is the main organ responsible for the storage, metabolism and distribution of vitamin A to peripheral tissues. This organ uses retinol for its normal functioning such as cell proliferation and differentiation. This way, vitamin A deficiency seems to alter liver morphology. Patients with alcoholic liver disease have been found to have low hepatic levels of retinol in all stages of their disease. In alcoholic liver disease, vitamin A deficiency may result from decreased ingestion or absorption, reduction in retinoic acid synthesis or increased degradation. Long-term alcohol intake results in reduced levels of retinoic acid, which may promote the development of liver tumor. So, in chronic alcoholic subjects, vitamin A status needs to be closely monitored to avoid its deficiency and clinical effects, however its supplementation must be done with caution since the usual dose may be toxic for those who consume ethanol.O fígado é um órgão estratégico no metabolismo de macro e de micronutrientes e, portanto, é de esperar que o comprometimento de sua função seja acompanhado de alterações no estado nutricional de vitamina A. O objetivo deste artigo é revisar na literatura evidências científicas sobre o metabolismo hepático da vitamina A, o efeito das interações entre a vitamina A e o etanol sobre a morfologia hepática, além das alterações do metabolismo dessa vitamina na doença hepática alcoólica. Os dados foram selecionados na base de dados

  18. Insulin resistance and postreceptor changes of liver metabolism in fat-fed mice

    DEFF Research Database (Denmark)

    Hedeskov, Carl Jørgen; Capito, Kirsten; Hansen, Svend Erik

    1992-01-01

    Medicinsk biokemi, animal diabetes, insulin resistance, postreceptor defects, liver metabolism, high-fat diet......Medicinsk biokemi, animal diabetes, insulin resistance, postreceptor defects, liver metabolism, high-fat diet...

  19. Periodontal disease and liver cirrhosis

    DEFF Research Database (Denmark)

    Grønkjær, Lea Ladegaard

    2015-01-01

    and liver cirrhosis and to identify opportunities and directions for future research in this area. METHODS: A systematic review of English articles in the PubMed, EMBASE, and Scopus databases was conducted using search terms including 'liver cirrhosis', 'end-stage liver disease', 'liver diseases', 'oral...

  20. Review article: coffee consumption, the metabolic syndrome and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Yesil, A; Yilmaz, Y

    2013-11-01

    Coffee consumption may modulate the risk of the metabolic syndrome (MetS) and non-alcoholic fatty liver disease (NAFLD). To review the experimental, epidemiological and clinical studies investigating the association between coffee consumption and the risk of MetS and NAFLD. A literature search was conducted with the aim of finding original experimental, epidemiological and clinical articles on the association between coffee consumption, MetS and NAFLD. The following databases were used: PubMed, Embase, Scopus and Science Direct. We included articles written in English and published up to July 2013. Three experimental animal studies investigated the effects of coffee in the MetS, whereas five examined whether experimental coffee intake may modulate the risk of fatty liver infiltration. All of the animal studies showed a protective effect of coffee towards the development of MetS and NAFLD. Moreover, we identified eleven epidemiological and clinical studies that met the inclusion criteria. Of them, six were carried out on the risk of the MetS and five on the risk of NAFLD. Four of the six studies reported an inverse association between coffee consumption and the risk of MetS. The two studies showing negative results were from the same study cohort consisting of young persons with a low prevalence of the MetS. All of the epidemiological and clinical studies on NAFLD reported a protective effect of coffee intake. Coffee intake can reduce the risk of NAFLD. Whether this effect may be mediated by certain components of the MetS deserves further investigation. © 2013 John Wiley & Sons Ltd.

  1. The in utero programming effect of increased maternal androgens and a direct fetal intervention on liver and metabolic function in adult sheep.

    Science.gov (United States)

    Hogg, Kirsten; Wood, Charlotte; McNeilly, Alan S; Duncan, W Colin

    2011-01-01

    Epigenetic changes in response to external stimuli are fast emerging as common underlying causes for the pre-disposition to adult disease. Prenatal androgenization is one such model that results in reproductive and metabolic features that are present in conditions such as polycystic ovary syndrome (PCOS). We examined the effect of prenatal androgens on liver function and metabolism of adult sheep. As non-alcoholic fatty liver disease is increased in PCOS we hypothesized that this, and other important liver pathways including metabolic function, insulin-like growth factor (IGF) and steroid receptivity, would be affected. Pregnant ewes received vehicle control (C; n = 5) or testosterone propionate (TP; n = 9) twice weekly (100 mg; i.m) from d62-102 (gestation 147 days). In a novel treatment paradigm, a second cohort received a direct C (n = 4) or TP (20 mg; n = 7) fetal injection at d62 and d82. In adults, maternal TP exposure resulted in increased insulin secretion to glucose load (Pfetal intervention (C and TP) led to early fatty liver changes in all animals without differential changes in insulin secretion. Furthermore, hepatic phosphoenolpyruvate carboxykinase (PEPCK) was up-regulated in the fetal controls (Pfetal TP (Pfetal TP exposure. Adult liver metabolism and signaling can be altered by early exposure to sex steroids implicating epigenetic regulation of metabolic disturbances that are common in PCOS.

  2. Mediterranean diet and non-alcoholic fatty liver disease: New therapeutic option around the corner?

    Science.gov (United States)

    Sofi, Francesco; Casini, Alessandro

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) represents the most common chronic liver disease in Western countries, being considered as the hepatic manifestation of metabolic syndrome. NAFLD has a common pathogenic background to that of metabolic syndrome, and shares many risk factors such as obesity, hypertension, insulin resistance and dyslipidemia. Although there is no currently available evidence-based established treatment for NAFLD, all the recommendations from the medical associations indicate that the most effective treatment is to reduce weight through lifestyle modifications. Diet, indeed, plays a key role in the management of NAFLD patients, as both the quantity and quality of the diet have been reported to have a beneficial role in the onset and severity of the liver disease. Among all the diets that have been proposed, a Mediterranean diet was the most effective dietary option for inducing weight loss together with beneficial effects on all the risk factors associated with metabolic syndrome and NAFLD. Over the last few years, research has demonstrated a beneficial effect of a Mediterranean diet in NAFLD. In this review, we will examine all the available data on the association between diet, nutrients and the Mediterranean diet in association with onset and severity of NAFLD. PMID:24966604

  3. Molecular insights into the mechanisms of liver-associated diseases in early-lactating dairy cows: hypothetical role of endoplasmic reticulum stress.

    Science.gov (United States)

    Ringseis, R; Gessner, D K; Eder, K

    2015-08-01

    The transition period represents the most critical period in the productive life of high-yielding dairy cows due to both metabolic and inflammatory stimuli, which challenge the liver and predispose dairy cows to develop liver-associated diseases such as fatty liver and ketosis. Despite the fact that all high-yielding dairy cows are affected by marked metabolic stress due to a severe negative energy balance (NEB) during early lactation, not all cows develop liver-associated diseases. Although the reason for this is largely unknown, this indicates that the capacity of the liver to cope with metabolic and inflammatory challenges varies between individual high-yielding dairy cows. Convincing evidence exists that endoplasmic reticulum (ER) stress plays a key role in the development of fatty liver, and it has been recently shown that ER stress occurs in the liver of high-yielding dairy cows. This indicates that ER stress may be involved in the development of liver-associated diseases in dairy cows. The present review shows that the liver of dairy cows during early lactation is exposed to several metabolic and inflammatory challenges, such as non-esterified fatty acids, tumour necrosis factor α, interleukin-1β, reactive oxygen species and lipopolysaccharides, which are known inducers of ER stress. Thus, ER stress may represent a molecular basis for fatty liver development and account for the frequent occurrence of fatty liver and ketosis in high-yielding dairy cows. Interindividual differences between dairy cows in the activation of hepatic stress response pathways, such as nuclear factor E2-related factor 2, which is activated during ER stress and reduces the sensitivity of tissues to oxidative and inflammatory damage, might provide an explanation at the molecular level for differences in the capacity to cope with pathological inflammatory challenges during early lactation and the susceptibility to develop liver-associated diseases between early-lactating dairy cows

  4. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver.

    Science.gov (United States)

    Wang, Danfeng; Chen, Siyu; Liu, Mei; Liu, Chang

    2015-06-01

    Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.

  5. Association of nonalcoholic fatty liver disease with low bone mass in postmenopausal women.

    Science.gov (United States)

    Moon, Seong-Su; Lee, Young-Sil; Kim, Sung Woo

    2012-10-01

    Osteoporosis is a disease associated with insulin resistant states such as central obesity, diabetes, and metabolic syndrome. Non-alcoholic fatty liver disease (NAFLD) is also increased in such conditions. However, little is known about whether osteoporosis and nonalcoholic fatty liver disease are etiologically related to each other or not. We examined whether bone mineral density (BMD) is associated with NAFLD in pre- and postmenopausal women. Four hundred eighty-one female subjects (216 premenopausal and 265 postmenopausal) were enrolled. Lumbar BMD was measured using dual-energy X-ray absorptiometry. Liver ultrasonography was done to check the severity of fatty liver. We excluded subjects with a secondary cause of liver disease. Blood pressure, lipid profile, fasting plasma glucose, alanine aminotransferase (ALT), aspartate aminotransferase, and body mass index were measured in every subject. Mean lumbar BMD was lower in subjects with NAFLD than those without NAFLD in postmenopausal women (0.98 ± 0.01 vs. 1.01 ± 0.02 g/cm², P = 0.046). Multiple correlation analysis revealed a significant association between mean lumbar BMD and NAFLD in postmenopausal subjects after adjusting for age, body mass index, ALT, smoking status, and alcohol consumption (β coefficient -0.066, 95% CI -0.105 to -0.027, P = 0.001). Even after adjusting the presence of metabolic syndrome, the significance was maintained (β coefficient -0.043, 95% CI -0.082 to -0.004, P = 0.031). Lumbar BMD is related with NAFLD in postmenopausal females. We suggest that postmenopausal women with NAFLD may have a higher risk of osteoporosis than those without.

  6. A tryptophan derivative, ITE, enhances liver cell metabolic functions in vitro.

    Science.gov (United States)

    Zhang, Xiaoqian; Lu, Juan; He, Bin; Tang, Lingling; Liu, Xiaoli; Zhu, Danhua; Cao, Hongcui; Wang, Yingjie; Li, Lanjuan

    2017-01-01

    Cell encapsulation provides a three-dimensional support by incorporating isolated cells into microcapsules with the goal of simultaneously maintaining cell survival and function, as well as providing active transport for a bioreactor in vitro similarly to that observed in vivo. However, the biotra-nsformation and metabolic functions of the encapsulated cells are not satisfactory for clinical applications. For this purpose, in this study, hepatoma-derived Huh7 cells/C3A cells were treated with 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), an endogenous non-toxic ligand for aryl hydrocarbon receptor, in monolayer cultures and on microspheres. The mRNA and protein levels, as well as the metabolic activities of drug metabolizing enzymes, albumin secretion and urea synthesis were determined. When the Huh7 and C3A cells cultured in a monolayer on two‑dimensional surfaces, ITE enhanced the protein levels and the metabolic activities of the major cytochrome P450 (CYP450) enzymes, CYP1A1, CYP1A2, CYP3A4 and CYP1B1, and slightly increased albumin secretion and urea synthesis. Moreover, when cultured on microspheres, ITE also substantially increased the protein levels and metabolic activities of CYP1A1, CYP1A2, CYP3A4 and CYP1B1 in both liver cell lines. On the whole, our findings indicate that ITE enhances the enzymatic activities of major CYP450 enzymes and the metabolic functions of liver cells cultured in monolayer or on microspheres, indicating that it may be utilized to improve the functions of hepatocytes. Thus, it may be used in the future for the treatment of liver diseases.

  7. Non-alcoholic fatty liver disease: An expanded review

    Science.gov (United States)

    Benedict, Mark; Zhang, Xuchen

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses the simple steatosis to more progressive steatosis with associated hepatitis, fibrosis, cirrhosis, and in some cases hepatocellular carcinoma. NAFLD is a growing epidemic, not only in the United States, but worldwide in part due to obesity and insulin resistance leading to liver accumulation of triglycerides and free fatty acids. Numerous risk factors for the development of NAFLD have been espoused with most having some form of metabolic derangement or insulin resistance at the core of its pathophysiology. NAFLD patients are at increased risk of liver-related as well as cardiovascular mortality, and NAFLD is rapidly becoming the leading indication for liver transplantation. Liver biopsy remains the gold standard for definitive diagnosis, but the development of noninvasive advanced imaging, biochemical and genetic tests will no doubt provide future clinicians with a great deal of information and opportunity for enhanced understanding of the pathogenesis and targeted treatment. As it currently stands several medications/supplements are being used in the treatment of NAFLD; however, none seem to be the “magic bullet” in curtailing this growing problem yet. In this review we summarized the current knowledge of NAFLD epidemiology, risk factors, diagnosis, pathogenesis, pathologic changes, natural history, and treatment in order to aid in further understanding this disease and better managing NAFLD patients. PMID:28652891

  8. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice.

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas D E; Rozen, Rima

    2015-03-01

    Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot

  9. Cost-effectiveness analysis of ultrasonography screening for nonalcoholic fatty liver disease in metabolic syndrome patients

    Science.gov (United States)

    Phisalprapa, Pochamana; Supakankunti, Siripen; Charatcharoenwitthaya, Phunchai; Apisarnthanarak, Piyaporn; Charoensak, Aphinya; Washirasaksiri, Chaiwat; Srivanichakorn, Weerachai; Chaiyakunapruk, Nathorn

    2017-01-01

    Abstract Background: Nonalcoholic fatty liver disease (NAFLD) can be diagnosed early by noninvasive ultrasonography; however, the cost-effectiveness of ultrasonography screening with intensive weight reduction program in metabolic syndrome patients is not clear. This study aims to estimate economic and clinical outcomes of ultrasonography in Thailand. Methods: Cost-effectiveness analysis used decision tree and Markov models to estimate lifetime costs and health benefits from societal perspective, based on a cohort of 509 metabolic syndrome patients in Thailand. Data were obtained from published literatures and Thai database. Results were reported as incremental cost-effectiveness ratios (ICERs) in 2014 US dollars (USD) per quality-adjusted life year (QALY) gained with discount rate of 3%. Sensitivity analyses were performed to assess the influence of parameter uncertainty on the results. Results: The ICER of ultrasonography screening of 50-year-old metabolic syndrome patients with intensive weight reduction program was 958 USD/QALY gained when compared with no screening. The probability of being cost-effective was 67% using willingness-to-pay threshold in Thailand (4848 USD/QALY gained). Screening before 45 years was cost saving while screening at 45 to 64 years was cost-effective. Conclusions: For patients with metabolic syndromes, ultrasonography screening for NAFLD with intensive weight reduction program is a cost-effective program in Thailand. Study can be used as part of evidence-informed decision making. Translational Impacts: Findings could contribute to changes of NAFLD diagnosis practice in settings where economic evidence is used as part of decision-making process. Furthermore, study design, model structure, and input parameters could also be used for future research addressing similar questions. PMID:28445256

  10. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish

    Directory of Open Access Journals (Sweden)

    Kathryn Bambino

    2018-02-01

    Full Text Available The rapid increase in fatty liver disease (FLD incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD. We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf, including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR caused by endoplasmic reticulum (ER stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin, suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper.

  11. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish

    Science.gov (United States)

    Zhang, Chi; Austin, Christine; Amarasiriwardena, Chitra; Arora, Manish

    2018-01-01

    ABSTRACT The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper. PMID:29361514

  12. How predictive quantitative modelling of tissue organisation can inform liver disease pathogenesis.

    Science.gov (United States)

    Drasdo, Dirk; Hoehme, Stefan; Hengstler, Jan G

    2014-10-01

    From the more than 100 liver diseases described, many of those with high incidence rates manifest themselves by histopathological changes, such as hepatitis, alcoholic liver disease, fatty liver disease, fibrosis, and, in its later stages, cirrhosis, hepatocellular carcinoma, primary biliary cirrhosis and other disorders. Studies of disease pathogeneses are largely based on integrating -omics data pooled from cells at different locations with spatial information from stained liver structures in animal models. Even though this has led to significant insights, the complexity of interactions as well as the involvement of processes at many different time and length scales constrains the possibility to condense disease processes in illustrations, schemes and tables. The combination of modern imaging modalities with image processing and analysis, and mathematical models opens up a promising new approach towards a quantitative understanding of pathologies and of disease processes. This strategy is discussed for two examples, ammonia metabolism after drug-induced acute liver damage, and the recovery of liver mass as well as architecture during the subsequent regeneration process. This interdisciplinary approach permits integration of biological mechanisms and models of processes contributing to disease progression at various scales into mathematical models. These can be used to perform in silico simulations to promote unravelling the relation between architecture and function as below illustrated for liver regeneration, and bridging from the in vitro situation and animal models to humans. In the near future novel mechanisms will usually not be directly elucidated by modelling. However, models will falsify hypotheses and guide towards the most informative experimental design. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  13. Methods of measuring metabolism during surgery in humans: focus on the liver-brain relationship.

    Science.gov (United States)

    Battezzati, Alberto; Bertoli, Simona

    2004-09-01

    The purpose of this work is to review recent advances in setting methods and models for measuring metabolism during surgery in humans. Surgery, especially solid organ transplantation, may offer unique experimental models in which it is ethically acceptable to gain information on difficult problems of amino acid and protein metabolism. Two areas are reviewed: the metabolic study of the anhepatic phase during liver transplantation and brain microdialysis during cerebral surgery. The first model offers an innovative approach to understand the relative role of liver and extrahepatic organs in gluconeogenesis, and to evaluate whether other organs can perform functions believed to be exclusively or almost exclusively performed by the liver. The second model offers an insight to intracerebral metabolism that is closely bound to that of the liver. The recent advances in metabolic research during surgery provide knowledge immediately useful for perioperative patient management and for a better control of surgical stress. The studies during the anhepatic phase of liver transplantation have showed that gluconeogenesis and glutamine metabolism are very active processes outside the liver. One of the critical organs for extrahepatic glutamine metabolism is the brain. Microdialysis studies helped to prove that in humans there is an intense trafficking of glutamine, glutamate and alanine among neurons and astrocytes. This delicate network is influenced by systemic amino acid metabolism. The metabolic dialogue between the liver and the brain is beginning to be understood in this light in order to explain the metabolic events of brain damage during liver failure.

  14. Vitamin D in chronic liver disease.

    Science.gov (United States)

    Stokes, Caroline S; Volmer, Dietrich A; Grünhage, Frank; Lammert, Frank

    2013-03-01

    Chronic liver disease (CLD) and several related extrahepatic manifestations such as hepatic osteodystrophy are associated with deficiency of vitamin D, which has therefore been suggested as therapeutic target. Vitamin D undergoes hepatic 25-hydroxylation, rendering the liver critical to the metabolic activation of this vitamin. Vitamin D deficiency is highly prevalent in CLD patients, and vitamin D levels are inversely related to the severity of CLD. Declining levels of carrier proteins such as albumin and vitamin D-binding protein might also be critical in CLD. Intervention studies report improvements of CLD following supplementation, and benefits to health outcomes in particular with respect to hepatitis C virus infection have recently been documented. We discuss vitamin D sources, functions and metabolism with a focus on the inherent complications of analytical measurements, such as the interference of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D C-3 epimers. Global discrepancies in the definition of optimal serum 25-hydroxyvitamin D levels are covered, and the prevalence of vitamin D deficiency in CLD is reviewed. We also address the functional mechanisms underlying this deficiency, and refer to associations between genetic variation in vitamin D metabolism and CLD. Lastly, we consider the health implications of a vitamin D deficiency in CLD and consider therapeutic options. Herein, we focus on the epidemiological and functional relationships between vitamin D deficiency and CLD, followed by a discussion of the potential implications for therapeutic interventions. © 2012 John Wiley & Sons A/S.

  15. Association of serum retinoic acid with hepatic steatosis and liver injury in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Liu, Yan; Chen, Hongen; Wang, Jingjing; Zhou, Wenjing; Sun, Ruifang; Xia, Min

    2015-07-01

    Retinoic acid (RA), an active metabolite of vitamin A (retinol), has been implicated in the regulation of lipid metabolism and hepatic steatosis in animal models. However, the relation between RA and liver histology in patients with nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is unknown. This study aimed at examining the association of RA with NAFLD and NASH in Chinese subjects. Serum RA concentration was determined by ELISA in 41 control subjects, 45 patients with NAFLD, and 38 patients with NASH. The associations of RA with adiposity, serum glucose, lipid profiles, and markers of liver damage were studied. Moreover, both mRNA and protein levels of retinoic X receptor α (RXRα) in the liver were analyzed in subjects with different degrees of hepatic steatosis. Serum RA concentrations in patients with NAFLD (1.42 ± 0.47 ng/mL) and NASH (1.14 ± 0.26 ng/mL) were significantly lower than those in control subjects (2.70 ± 0.52 ng/mL) (P hepatic steatosis. Both serum RA concentrations and RXRα mRNA levels were inversely correlated with intrahepatic triglyceride content (r = -0.700, P hepatic lipid metabolism and insulin resistance. This trial was registered at clinicaltrials.gov as NCT01940263. © 2015 American Society for Nutrition.

  16. Metabolic Syndrome: Systems Thinking in Heart Disease.

    Science.gov (United States)

    Dommermuth, Ron; Ewing, Kristine

    2018-03-01

    Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors. MetS is associated with approximately 4-fold increase in the likelihood of developing type 2 diabetes mellitus (T2DM) and a 2-fold increase in the incidence of cardiovascular disease complications. MetS is a progressive, proinflammatory, prothrombotic condition that manifests itself along a broad spectrum of disease. It is associated with hypertension, obstructive sleep apnea, fatty liver disease, gout, and polycystic ovarian syndrome. Intervening in and reversing the pathologic process become more difficult as the disease progresses, highlighting the needs for increased individual and community surveillance and primary prevention. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. [Progress in research of the mechanisms related with the hepatic steatosis in the nonalcoholic fatty liver disease].

    Science.gov (United States)

    Shi, Li-Juan; Song, Guang-Yao

    2013-12-01

    With the increased morbidity of Nonalcoholic fatty liver disease, the pathogenesis of which has become one of the focuses for researchers. Many details need to be clarified. The hepatic steatosis has been taken as the clinical pathological characters and the "golden standard of diagnosis" for the nonalcoholic fatty liver disease. More and more studies have shown that the hepatic steatosis (mainly as triglycerides) is the consequence of hepatic lipid metabolism disequilibrium. Generally, the related metabolism pathways including lipid input, lipid uptake, de novo lipogenesis, fatty acid oxidation, fatty acid reesterification, and lipid secretion etc. In this review, we focused on the progress of some key enzymes involved in these pathways in order to clarify the possible molecular mechanisms and the effective targets so that to broad our vision about the prevention and treatment of non-alcoholic fatty liver disease.

  18. Update on Berberine in Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2013-01-01

    Full Text Available Berberine (BBR, an active ingredient from nature plants, has demonstrated multiple biological activities and pharmacological effects in a series of metabolic diseases including nonalcoholic fatty liver disease (NAFLD. The recent literature points out that BBR may be a potential drug for NAFLD in both experimental models and clinical trials. This review highlights important discoveries of BBR in this increasing disease and addresses the relevant targets of BBR on NAFLD which links to insulin pathway, adenosine monophosphate-activated protein kinase (AMPK signaling, gut environment, hepatic lipid transportation, among others. Developing nuanced understanding of the mechanisms will help to optimize more targeted and effective clinical application of BBR for NAFLD.

  19. Assessing nutritional status in children with chronic liver disease.

    Science.gov (United States)

    Taylor, Rachel M; Dhawan, Anil

    2005-12-01

    The metabolic changes compounded by anorexia associated with chronic liver disease adversely affect growth in children. In many cases, this requires the administration of artificial nutritional support. It is important in this group of patients that those who are becoming nutritionally depleted are identified quickly and in those receiving artificial nutritional support, the effectiveness is monitored. The current review is an examination of methods available to assess nutritional status. These include anthropometry, methods available in the laboratory and a selection of less commonly used methods undergoing evaluation at research level. A brief discussion accompanies each technique, outlining the limitations of its use in children with chronic liver disease. The review concludes with an outline of how nutritional status should be assessed in this group of children, and suggests further research.

  20. Bile Acid Metabolism and Signaling

    Science.gov (United States)

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  1. Association between noninvasive fibrosis markers and chronic kidney disease among adults with nonalcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Giorgio Sesti

    Full Text Available Evidence suggests that nonalcoholic fatty liver disease (NAFLD and non-alcoholic steatohepatitis (NASH are associated with an increased risk of chronic kidney disease (CKD. In this study we aimed to evaluate whether the severity of liver fibrosis estimated by NAFLD fibrosis score is associated with higher prevalence of CKD in individuals with NAFLD. To this end NAFLD fibrosis score and estimated glomerular filtration rate (eGFR were assessed in 570 White individuals with ultrasonography-diagnosed NAFLD. As compared with subjects at low probability of liver fibrosis, individuals at high and intermediate probability showed an unfavorable cardio-metabolic risk profile having significantly higher values of waist circumference, insulin resistance, high sensitivity C-reactive protein, fibrinogen, uric acid and lower insulin-like growth factor-1 levels. Individuals at high and intermediate probability of liver fibrosis have lower eGFR after adjustment for gender, smoking, glucose tolerance status, homeostasis model assessment index of insulin resistance (HOMA-IR index, diagnosis of metabolic syndrome, statin therapy, anti-diabetes and anti-hypertensive treatments (P = 0.001. Individuals at high probability of liver fibrosis had a 5.1-fold increased risk of having CKD (OR 5.13, 95%CI 1.13-23.28; P = 0.03 as compared with individuals at low probability after adjustment for age, gender, and BMI. After adjustment for glucose tolerance status, statin therapy, and anti-hypertensive treatment in addition to gender, individuals at high probability of liver fibrosis had a 3.9-fold increased risk of CKD (OR 3.94, 95%CI 1.11-14.05; P = 0.03 as compared with individuals at low probability. In conclusion, advanced liver fibrosis, determined by noninvasive fibrosis markers, is associated with CKD independently from other known factors.

  2. Fibropolycystic liver disease in children

    International Nuclear Information System (INIS)

    Veigel, Myka Call; Prescott-Focht, Julia; Zinati, Reza; Rodriguez, Michael G.; Shao, Lei; Moore, Charlotte A.W.; Lowe, Lisa H.

    2009-01-01

    Fibropolycystic liver diseases are a group of associated congenital disorders that present most often in childhood. These disorders include congenital hepatic fibrosis, biliary hamartomas, autosomal dominant polycystic liver disease, choledochal cysts and Caroli disease. We present a discussion and illustrations of the embryology, genetics, anatomy, pathology, imaging approach and key imaging features that distinguish fibropolycystic liver disease in children. The pathogenesis of these disorders is believed to be abnormal development of the embryonic ductal plates, which ultimately form the liver and biliary systems. An understanding of the abnormal embryogenesis helps to explain the characteristic imaging features of these disorders. (orig.)

  3. Epicardial Adipose Tissue (EAT Thickness Is Associated with Cardiovascular and Liver Damage in Nonalcoholic Fatty Liver Disease.

    Directory of Open Access Journals (Sweden)

    Anna Ludovica Fracanzani

    Full Text Available Epicardial adipose tissue (EAT has been proposed as a cardiometabolic and hepatic fibrosis risk factor in patients with non alcoholic fatty liver disease (NAFLD. Aim of this study was to evaluate the role of EAT in NAFLD by analyzing 1 the association between EAT, the other metabolic parameters and the severity of steatosis 2 the relationship between cardiovascular (cIMT, cplaques, E/A, liver (presence of NASH and significant fibrosis damage and metabolic risk factors including EAT 3 the relationship between EAT and genetic factors strongly influencing liver steatosis.In a cross-sectional study, we considered 512 consecutive patients with NAFLD (confirmed by biopsy in 100. EAT, severity of steatosis, carotid intima-media thickness (cIMT and plaques were evaluated by ultrasonography and results analysed by multiple linear and logistic regression models. Variables independently associated with EAT (mm were female gender (p = 0.003, age (p = 0.001, BMI (p = 0.01, diastolic blood pressure (p = 0.009, steatosis grade 2 (p = 0.01 and 3 (p = 0.04, fatty liver index (p = 0.001 and statin use (p = 0.03. Variables independently associated with carotid IMT were age (p = 0.0001, hypertension (p = 0.009, diabetes (p = 0.04, smoking habits (p = 0.04 and fatty liver index (p = 0.02, with carotid plaques age (p = 0.0001, BMI (p = 0.03, EAT (p = 0.02, and hypertension (p = 0.02, and with E/A age (p = 0.0001, diabetes (p = 0.005, hypertension (p = 0.04 and fatty liver index (p = 0.004. In the 100 patients with available liver histology non alcoholic steatohepatitis (NASH was independently associated with EAT (p = 0.04 and diabetes (p = 0.054 while significant fibrosis with EAT (p = 0.02, diabetes (p = 0.01 and waist circumference (p = 0.05. No association between EAT and PNPLA3 and TM6SF2 polymorphisms was found.In patients with NAFLD, EAT is associated with the severity of liver and vascular damage besides with the known metabolic risk factors.

  4. Nonalcoholic Fatty Liver Disease & NASH

    Science.gov (United States)

    ... Eating, Diet, & Nutrition Clinical Trials Wilson Disease Nonalcoholic Fatty Liver Disease & NASH View or Print All Sections Definition & Facts Nonalcoholic fatty liver disease (NAFLD) is a condition in which fat ...

  5. Liver fat content, non-alcoholic fatty liver disease, and ischaemic heart disease

    DEFF Research Database (Denmark)

    Lauridsen, Bo Kobberø; Stender, Stefan; Kristensen, Thomas Skårup

    2018-01-01

    Aims: In observational studies, non-alcoholic fatty liver disease (NAFLD) is associated with high risk of ischaemic heart disease (IHD). We tested the hypothesis that a high liver fat content or a diagnosis of NAFLD is a causal risk factor for IHD. Methods and results: In a cohort study...

  6. An observational study on the association of nonalcoholic fatty liver disease and metabolic syndrome with gall stone disease requiring cholecystectomy

    Directory of Open Access Journals (Sweden)

    Farah Ahmed

    2017-05-01

    Conclusion: We found association of metabolic syndrome with gallstones and NAFLD. Non alcoholic fatty liver was highly prevalent in our study subjects. Huge percentage of first degree relatives of gall stone patients had gallstones and this relation was more pronounced patients who had associated NAFLD.

  7. Circadian Reprogramming in the Liver Identifies Metabolic Pathways of Aging.

    Science.gov (United States)

    Sato, Shogo; Solanas, Guiomar; Peixoto, Francisca Oliveira; Bee, Leonardo; Symeonidi, Aikaterini; Schmidt, Mark S; Brenner, Charles; Masri, Selma; Benitah, Salvador Aznar; Sassone-Corsi, Paolo

    2017-08-10

    The process of aging and circadian rhythms are intimately intertwined, but how peripheral clocks involved in metabolic homeostasis contribute to aging remains unknown. Importantly, caloric restriction (CR) extends lifespan in several organisms and rewires circadian metabolism. Using young versus old mice, fed ad libitum or under CR, we reveal reprogramming of the circadian transcriptome in the liver. These age-dependent changes occur in a highly tissue-specific manner, as demonstrated by comparing circadian gene expression in the liver versus epidermal and skeletal muscle stem cells. Moreover, de novo oscillating genes under CR show an enrichment in SIRT1 targets in the liver. This is accompanied by distinct circadian hepatic signatures in NAD + -related metabolites and cyclic global protein acetylation. Strikingly, this oscillation in acetylation is absent in old mice while CR robustly rescues global protein acetylation. Our findings indicate that the clock operates at the crossroad between protein acetylation, liver metabolism, and aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Nutritional Modulation of Non-Alcoholic Fatty Liver Disease and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Hannele Yki-Järvinen

    2015-11-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD covers a spectrum of disorders ranging from simple steatosis (non-alcoholic fatty liver, NAFL to non-alcoholic steatohepatitis (NASH and cirrhosis. NAFL increases the risk of liver fibrosis. If the liver is fatty due to causes of insulin resistance such as obesity and physical inactivity, it overproduces glucose and triglycerides leading to hyperinsulinemia and a low high-density lipoprotein (HDL cholesterol concentration. The latter features predispose to type 2 diabetes and cardiovascular disease (CVD. Understanding the impact of nutritional modulation of liver fat content and insulin resistance is therefore of interest for prevention and treatment of NAFLD. Hypocaloric, especially low carbohydrate ketogenic diets rapidly decrease liver fat content and associated metabolic abnormalities. However, any type of caloric restriction seems effective long-term. Isocaloric diets containing 16%–23% fat and 57%–65% carbohydrate lower liver fat compared to diets with 43%–55% fat and 27%–38% carbohydrate. Diets rich in saturated (SFA as compared to monounsaturated (MUFA or polyunsaturated (PUFA fatty acids appear particularly harmful as they increase both liver fat and insulin resistance. Overfeeding either saturated fat or carbohydrate increases liver fat content. Vitamin E supplementation decreases liver fat content as well as fibrosis but has no effect on features of insulin resistance.

  9. Transient elastography for diagnosis of stages of hepatic fibrosis and cirrhosis in people with alcoholic liver disease

    DEFF Research Database (Denmark)

    Pavlov, Chavdar S; Casazza, Giovanni; Nikolova, Dimitrinka

    2015-01-01

    BACKGROUND: The presence and progression of hepatic (liver) fibrosis into cirrhosis is a prognostic variable having impact on survival in people with alcoholic liver disease. Liver biopsy, although an invasive method, is the recommended 'reference standard' for diagnosis and staging of hepatic...... fibrosis in people with liver diseases. Transient elastography is a non-invasive method for assessing and staging hepatic fibrosis. OBJECTIVES: To determine the diagnostic accuracy of transient elastography for diagnosis and staging hepatic fibrosis in people with alcoholic liver disease when compared...... participants could be of any sex and ethnic origin, above 16 years old, hospitalised or managed as outpatients. We excluded participants with viral hepatitis, autoimmunity, metabolic diseases, and toxins. DATA COLLECTION AND ANALYSIS: We followed the guidelines in the draft Cochrane Handbook for Systematic...

  10. Ablation of systemic SIRT1 activity promotes nonalcoholic fatty liver disease by affecting liver-mesenteric adipose tissue fatty acid mobilization

    Science.gov (United States)

    The incidence of nonalcoholic fatty liver disease (NAFLD) is escalating paralleled with obesity rates in both adults and children. Mammalian sirtuin 1 (SIRT1), a highly conserved NAD+-dependent protein deacetylase, has been identified as a metabolic regulator of lipid homeostasis and a potential tar...

  11. Risk of seizures and status epilepticus in older patients with liver disease.

    Science.gov (United States)

    Alkhachroum, Ayham M; Rubinos, Clio; Kummer, Benjamin R; Parikh, Neal S; Chen, Monica; Chatterjee, Abhinaba; Reynolds, Alexandra; Merkler, Alexander E; Claassen, Jan; Kamel, Hooman

    2018-06-06

    Seizures can be provoked by systemic diseases associated with metabolic derangements, but the association between liver disease and seizures remains unclear. We performed a retrospective cohort study using inpatient and outpatient claims between 2008 and 2015 from a nationally representative 5% sample of Medicare beneficiaries. The primary exposure variable was cirrhosis, and the secondary exposure was mild, noncirrhotic liver disease. The primary outcome was seizure, and the secondary outcome was status epilepticus. Diagnoses were ascertained using validated International Classification of Diseases, Ninth Edition, Clinical Modification codes. Survival statistics were used to calculate incidence rates, and Cox proportional hazards models were used to examine the association between exposures and outcomes while adjusting for seizure risk factors. Among 1 782 402 beneficiaries, we identified 10 393 (0.6%) beneficiaries with cirrhosis and 19 557 (1.1%) with mild, noncirrhotic liver disease. Individuals with liver disease were older and had more seizure risk factors than those without liver disease. Over 4.6 ± 2.2 years of follow-up, 49 843 (2.8%) individuals were diagnosed with seizures and 25 patients (0.001%) were diagnosed with status epilepticus. Cirrhosis was not associated with seizures (hazard ratio [HR] = 1.1, 95% confidence interval [CI] = 1.0-1.3), but there was an association with status epilepticus (HR = 1.9, 95% CI = 1.3-2.8). Mild liver disease was not associated with a higher risk of seizures (HR = 0.8, 95% CI = 0.6-0.9) or status epilepticus (HR = 1.1, 95% CI = 0.7-1.5). In a large, population-based cohort, we found an association between cirrhosis and status epilepticus, but no overall association between liver disease and seizures. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  12. Studies of liver-specific metabolic reactions with /sup 15/N. 1. Metabolism of /sup 15/N-ammonium chloride in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, K; Jung, K; Faust, H; Matkowitz, R

    1987-07-01

    The /sup 15/N tracer technique was used to investigate liver-specific reactions (urea and hippurate synthesis) for studying the metabolism in the healthy and damaged pig liver. After (/sup 15/N)ammonium chloride administration the tracer distribution on non-protein compounds of serum and urine was followed. Blood samplings before and after liver passage rendered possible a direct analysis of the (/sup 15/N)ammonium metabolism. The thioacetamide-induced liver damage was used as model for an acute liver intoxication. The capacity for urea synthesis was not influenced by means of this noxious substance, but the metabolism of amino acids and hippuric acid. The considerably depressed excretion of (/sup 15/N)hippurate seems to be a suitable indicator of liver disfunction.

  13. Irisin, a Link among Fatty Liver Disease, Physical Inactivity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    María Teresa Arias-Loste

    2014-12-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common cause of chronic liver disease in industrialized countries. The increasing prevalence of NAFLD mirrors the outbreak of obesity in western countries, highlighting the connection between these two conditions. Nevertheless, there is currently no specific pharmacotherapy for its treatment. Accepted management begins with weight loss and exercise. Moreover, exercise can provide metabolic benefits independently of weight loss. It is known how long-term aerobic training produces improvements in hepatic triglycerides, visceral adipose tissue and free fatty acids, even if there is no weight reduction. A recent study from Boström et al. unravels a potential molecular mechanism that may explain how exercise, independently of weight loss, can potentially improve metabolic parameters through a new messenger system (irisin linking muscle and fat tissue. Irisin has been proposed to act as a hormone on subcutaneous white fat cells increasing energy expenditure by means of a program of brown-fat-like development. Moreover, it was also shown that irisin plasma concentration was higher in people who exercise, suggesting a molecular mechanism by which exercise may improve metabolism. The present systematic review is based on the possibility that irisin might represent a hypothetical connection between NAFLD pathogenesis and disease progression.

  14. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice12345

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas DE

    2015-01-01

    Background: Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Objective: Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Design: Folic acid–supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr+/+ and Mthfr+/− mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Results: Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr+/− mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr+/− livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr+/− mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. Conclusions: We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2

  15. Nutrition and Physical Activity in Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Claudia P. Oliveira

    2016-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common liver disease worldwide and it is associated with other medical conditions such as diabetes mellitus, metabolic syndrome, and obesity. The mechanisms of the underlying disease development and progression are not completely established and there is no consensus concerning the pharmacological treatment. In the gold standard treatment for NAFLD weight loss, dietary therapy, and physical activity are included. However, little scientific evidence is available on diet and/or physical activity and NAFLD specifically. Many dietary approaches such as Mediterranean and DASH diet are used for treatment of other cardiometabolic risk factors such as insulin resistance and type-2 diabetes mellitus (T2DM, but on the basis of its components their role in NAFLD has been discussed. In this review, the implications of current dietary and exercise approaches, including Brazilian and other guidelines, are discussed, with a focus on determining the optimal nonpharmacological treatment to prescribe for NAFLD.

  16. The role of hepatocyte nuclear factor 4 alpha in development and progression of liver diseases

    Directory of Open Access Journals (Sweden)

    YANG Jinlian

    2016-02-01

    Full Text Available Hepatocyte nuclear factor 4 alpha (HNF4α, a member of the nuclear receptor superfamily, has a high expression level in mature hepatocytes. HNF4α can regulate hepatocyte-specific gene expression at a transcriptional level, promote hepatocyte development and differentiation, participate in establishment and maintenance of hepatocyte polarity, and enhance the synthetic, metabolic, and detoxifying functions of the liver. Through inhibiting the activation of hepatic stellate cells, reversing epithelial-mesenchymal transition, and inhibiting the proliferation, invasion, and metastasis of hepatoma cells, HNF4α may be involved in the development and progression of various liver diseases including liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. This paper elaborates on the biological functions of HNF4α, and summarizes and analyzes the research advances in the mechanisms of action of HNF4α in the pathological process of liver diseases, in order to provide references for further investigation of the potential targeted therapies for liver diseases.

  17. Serum dipeptidyl peptidase-4 activity in insulin resistant patients with non-alcoholic fatty liver disease: a novel liver disease biomarker.

    Directory of Open Access Journals (Sweden)

    Gábor Firneisz

    Full Text Available BACKGROUND: In a cross-sectional study we studied the fasting serum DPP-4 enzymatic activity (sDPP-4 and the insulin resistance index (HOMA2-IR in gliptin naïve patients with type 2 diabetes and in non-alcoholic fatty liver disease (NAFLD and in healthy controls (CNTRL. METHODS AND FINDINGS: sDPP-4 was measured by kinetic assay in 39 NAFLD (F/M:19/20, mean age: 47.42 yrs and 82 type 2 diabetes (F/M:48/34, 62.8 yrs patients and 26 (F/M:14/12, 35.3 yrs controls. Definition of T2D group as patients with type 2 diabetes but without clinically obvious liver disease created non-overlapping study groups. Diagnosis of NAFLD was based on ultrasonography and the exclusion of other etiololgy. Patients in T2D and NAFLD groups were similarly obese. 75 g CH OGTT in 39 NAFLD patients: 24-NGT, 4-IGT or IFG ("prediabetes", 11-type 2 diabetes. HOMA2-IR: CNTRL: 1.44; T2D-group: 2.62 (p = 0.046 vs CNTRL, parametric tests; NAFLD(NGTonly: 3.23 (p = 0.0013 vs CNTRL; NAFLD(IFG/IGT/type 2 diabetes: 3.82 (p<0.001 vs CNTRL, p = 0.049 vs 2TD group. sDPP-4 activity was higher in NAFLD both with NGT (mean:33.08U/L and abnormal glucose metabolism (30.38U/L than in CNTRL (25.89U/L, p<0.001 and p = 0.013 or in T2D groups (23.97U/L, p<0.001 and p = 0.004. Correlations in NAFLD among sDPP-4 and ALT: r = 0.4637,p = 0.0038 and gammaGT: r = 0.4991,p = 0.0017 and HOMA2-IR: r = 0.5295,p = 0.0026 and among HOMA2-IR and ALT: r = 0.4340,p = 0.0147 and gammaGT: r = 0.4128,p = 0.0210. CONCLUSIONS: The fasting serum DPP-4 activity was not increased in T2D provided that patients with liver disease were intentionally excluded. The high serum DPP-4 activities in NAFLD were correlated with liver tests but not with the fasting plasma glucose or HbA1C supporting that the excess is of hepatic origin and it might contribute to the speedup of metabolic deterioration. The correlation among gammaGT, ALT and serum DPP-4 activity and also between serum DPP-4 activity and HOMA2-IR in NAFLD strongly

  18. Proteomic Profiles of Adipose and Liver Tissues from an Animal Model of Metabolic Syndrome Fed Purple Vegetables

    Directory of Open Access Journals (Sweden)

    Hala M Ayoub

    2018-04-01

    Full Text Available Metabolic Syndrome (MetS is a complex disorder that predisposes an individual to Cardiovascular Diseases and type 2 Diabetes Mellitus. Proteomics and bioinformatics have proven to be an effective tool to study complex diseases and mechanisms of action of nutrients. We previously showed that substitution of the majority of carbohydrate in a high fat diet by purple potatoes (PP or purple carrots (PC improved insulin sensitivity and hypertension in an animal model of MetS (obese Zucker rats compared to a control sucrose-rich diet. In the current study, we used TMT 10plex mass tag combined with LC-MS/MS technique to study proteomic modulation in the liver (n = 3 samples/diet and adipose tissue (n = 3 samples/diet of high fat diet-fed rats with or without substituting sucrose for purple vegetables, followed by functional enrichment analysis, in an attempt to elucidate potential molecular mechanisms responsible for the phenotypic changes seen with purple vegetable feeding. Protein folding, lipid metabolism and cholesterol efflux were identified as the main modulated biological themes in adipose tissue, whereas lipid metabolism, carbohydrate metabolism and oxidative stress were the main modulated themes in liver. We propose that enhanced protein folding, increased cholesterol efflux and higher free fatty acid (FFA re-esterification are mechanisms by which PP and PC positively modulate MetS pathologies in adipose tissue, whereas, decreased de novo lipogenesis, oxidative stress and FFA uptake, are responsible for the beneficial effects in liver. In conclusion, we provide molecular evidence for the reported metabolic health benefits of purple carrots and potatoes and validate that these vegetables are good choices to replace other simple carbohydrate sources for better metabolic health.

  19. Non-alcoholic fatty liver disease is associated with high prevalence of gastro-oesophageal reflux symptoms.

    Science.gov (United States)

    Miele, Luca; Cammarota, Giovanni; Vero, Vittoria; Racco, Simona; Cefalo, Consuelo; Marrone, Giuseppe; Pompili, Maurizio; Rapaccini, Gianlodovico; Bianco, Alessandro; Landolfi, Raffaele; Gasbarrini, Antonio; Grieco, Antonio

    2012-12-01

    Gastro-oesophageal reflux symptoms are usually reported by patients with obesity and metabolic syndrome. Aim of this study was to assess the prevalence and clinical characteristics of gastro-oesophageal reflux symptoms in subjects with non-alcoholic fatty liver disease. Cross-sectional, case-control study of 185 consecutive patients with non-alcoholic fatty liver disease and an age- and sex-matched control group of 112 healthy volunteers. Participants were interviewed with the aid of a previously validated questionnaire to assess lifestyle and reflux symptoms in the 3 months preceding enrolment. Odds ratios were determined before and after adjustment for body mass index, increased waist circumference, physical activity, metabolic syndrome and proton pump inhibitors and/or antiacid medication. The prevalence of heartburn and/or regurgitation and of at least one of gastro-oesophageal reflux symptoms was significantly higher in the non-alcoholic fatty liver disease group. Non-alcoholic fatty liver disease subjects were associated to higher prevalence of heartburn (adjusted odds ratios: 2.17, 95% confidence intervals: 1.16-4.04), regurgitation (adjusted odds ratios: 2.61, 95% confidence intervals: 1.24-5.48) and belching (adjusted odds ratios: 2.01, 95% confidence intervals: 1.12-3.59) and had higher prevalence of at least one GER symptom (adjusted odds ratios: 3.34, 95% confidence intervals: 1.76-6.36). Non-alcoholic fatty liver disease is associated with a higher prevalence of gastro-oesophageal reflux symptoms. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  20. Liver diseases and aging : friends or foes?

    NARCIS (Netherlands)

    Sheedfar, Fareeba; Di Biase, Stefano; Koonen, Debby; Vinciguerra, Manlio

    2013-01-01

    The liver is the only internal human organ capable of natural regeneration of lost tissue, as little as 25% of a liver can regenerate into a whole liver. The process of aging predisposes to hepatic functional and structural impairment and metabolic risk. Therefore, understanding how aging could

  1. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease.

    Science.gov (United States)

    van der Veen, Jelske N; Kennelly, John P; Wan, Sereana; Vance, Jean E; Vance, Dennis E; Jacobs, René L

    2017-09-01

    Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are the most abundant phospholipids in all mammalian cell membranes. In the 1950s, Eugene Kennedy and co-workers performed groundbreaking research that established the general outline of many of the pathways of phospholipid biosynthesis. In recent years, the importance of phospholipid metabolism in regulating lipid, lipoprotein and whole-body energy metabolism has been demonstrated in numerous dietary studies and knockout animal models. The purpose of this review is to highlight the unappreciated impact of phospholipid metabolism on health and disease. Abnormally high, and abnormally low, cellular PC/PE molar ratios in various tissues can influence energy metabolism and have been linked to disease progression. For example, inhibition of hepatic PC synthesis impairs very low density lipoprotein secretion and changes in hepatic phospholipid composition have been linked to fatty liver disease and impaired liver regeneration after surgery. The relative abundance of PC and PE regulates the size and dynamics of lipid droplets. In mitochondria, changes in the PC/PE molar ratio affect energy production. We highlight data showing that changes in the PC and/or PE content of various tissues are implicated in metabolic disorders such as atherosclerosis, insulin resistance and obesity. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Adipokines and Non-Alcoholic Fatty Liver Disease: Multiple Interactions

    Directory of Open Access Journals (Sweden)

    Timon E. Adolph

    2017-07-01

    Full Text Available Accumulating evidence links obesity with low-grade inflammation which may originate from adipose tissue that secretes a plethora of pro- and anti-inflammatory cytokines termed adipokines. Adiponectin and leptin have evolved as crucial signals in many obesity-related pathologies including non-alcoholic fatty liver disease (NAFLD. Whereas adiponectin deficiency might be critically involved in the pro-inflammatory state associated with obesity and related disorders, overproduction of leptin, a rather pro-inflammatory mediator, is considered of equal relevance. An imbalanced adipokine profile in obesity consecutively contributes to metabolic inflammation in NAFLD, which is associated with a substantial risk for developing hepatocellular carcinoma (HCC also in the non-cirrhotic stage of disease. Both adiponectin and leptin have been related to liver tumorigenesis especially in preclinical models. This review covers recent advances in our understanding of some adipokines in NAFLD and associated HCC.

  3. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways.

    Science.gov (United States)

    Imbernon, Monica; Beiroa, Daniel; Vázquez, María J; Morgan, Donald A; Veyrat-Durebex, Christelle; Porteiro, Begoña; Díaz-Arteaga, Adenis; Senra, Ana; Busquets, Silvia; Velásquez, Douglas A; Al-Massadi, Omar; Varela, Luis; Gándara, Marina; López-Soriano, Francisco-Javier; Gallego, Rosalía; Seoane, Luisa M; Argiles, Josep M; López, Miguel; Davis, Roger J; Sabio, Guadalupe; Rohner-Jeanrenaud, Françoise; Rahmouni, Kamal; Dieguez, Carlos; Nogueiras, Ruben

    2013-03-01

    Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Risk factors associated with non-alcoholic fatty liver disease in subjects from primary care units. A case-control study

    Directory of Open Access Journals (Sweden)

    Bernad Jesús

    2008-10-01

    Full Text Available Abstract Background Non alcoholic fatty liver disease (NAFL consists in the accumulation of fat vacuoles in the cytoplasm of hepatocytes. Many etiologic factors are associated with NAFL, such as, the metabolic syndrome factors, medications, bariatric surgery, nutritional disorders. However, very little information is available on the clinical relevance of this disorder as a health problem in the general population. Methods and design The aim of the study is establish the risk factors most frequently associated with NAFL in a general adult population assigned to the primary care units and to investigate the relationship between each component of the metabolic syndrome and the risk of having a NAFL. A population based case-control, observational and multicenter study will be carried out in 18 primary care units from the "Area de Gestión del Barcelonés Nord y Maresme" (Barcelona attending a population of 360,000 inhabitants and will include 326 cases and 370 controls. Cases are defined as all subjects fulfilling the inclusion criteria and with evidence of fatty liver in an abdominal ultrasonography performed for any reason. One control will be randomly selected for each case from the population, matched for age, gender and primary care center. Controls with fatty liver or other liver diseases will be excluded. All cases and controls will be asked about previous hepatic diseases, consumption of alcohol, smoking and drugs, and a physical examination, biochemical analyses including liver function tests, the different components of the metabolic syndrome and the HAIR score will also be performed. Paired controls will also undergo an abdominal ultrasonography. Discussion This study will attempt to determine the factors most frequently associated with the presence of NAFL investigate the relationship between the metabolic syndrome and the risk of fatty liver and study the influence of the different primary care professionals in avoiding the evolution

  5. Alcoholic Liver Disease

    Science.gov (United States)

    ... may be increased in women because their digestive system may be less able to process alcohol, thus increasing the amount of alcohol reaching the liver. Genetic makeup Genetic makeup is thought to be involved because alcoholic liver disease often ...

  6. Liver scanning in diffuse liver disease

    International Nuclear Information System (INIS)

    Aiginger, P.; Atefie, K.; Scherak, O.; Wolf, A.; Hoefer, R.; Seyfried, H.

    1975-01-01

    The results of liver scans performed with sup(99m)Tc-sulphur colloid in 169 patients suffering from diffuse liver diseases and in 48 normal controls were evaluated. The patients with reactive hepatitis, acute hepatitis, chronic persistent hepatitis, fatty liver and fibrosis of the liver show only minimal deviations from the scintigraphic pattern. On the contrary, highly increased colloid uptake in the spleen is found in cases of chronic aggressive hepatitis, whilst the intrahepatic distribution of the colloid is approximately normal. In cases of liver cirrhosis, increased colloid uptake is found in the left lobe of the liver as well as in the spleen and in the bone marrow. Either normal findings or cirrhosis-like changes of the colloid distribution are observed in patients with alcoholic hepatitis. (orig.) [de

  7. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases.

    Science.gov (United States)

    Ackers, Ian; Malgor, Ramiro

    2018-01-01

    Chronic diseases account for approximately 45% of all deaths in developed countries and are particularly prevalent in countries with the most sophisticated and robust public health systems. Chronic metabolic diseases, specifically lifestyle-related diseases pertaining to diet and exercise, continue to be difficult to treat clinically. The most prevalent of these chronic metabolic diseases include obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiovascular disease and will be the focus of this review. Wnt proteins are highly conserved glycoproteins best known for their role in development and homeostasis of tissues. Given the importance of Wnt signalling in homeostasis, aberrant Wnt signalling likely regulates metabolic processes and may contribute to the development of chronic metabolic diseases. Expression of Wnt proteins and dysfunctional Wnt signalling has been reported in multiple chronic diseases. It is interesting to speculate about an interrelationship between the Wnt signalling pathways as a potential pathological mechanism in chronic metabolic diseases. The aim of this review is to summarize reported findings on the contrasting roles of Wnt signalling in lifestyle-related chronic metabolic diseases; specifically, the contribution of Wnt signalling to lipid accumulation, fibrosis and chronic low-grade inflammation.

  8. Actions of juglone on energy metabolism in the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Saling, Simoni Cristina; Comar, Jurandir Fernando; Mito, Marcio Shigueaki; Peralta, Rosane Marina; Bracht, Adelar, E-mail: adebracht@uol.com.br

    2011-12-15

    Juglone is a phenolic compound used in popular medicine as a phytotherapic to treat inflammatory and infectious diseases. However, it also acts as an uncoupler of oxidative phosphorylation in isolated liver mitochondria and, thus, may interfere with the hepatic energy metabolism. The purpose of this work was to evaluate the effect of juglone on several metabolic parameters in the isolated perfused rat liver. Juglone, in the concentration range of 5 to 50 {mu}M, stimulated glycogenolysis, glycolysis and oxygen uptake. Gluconeogenesis from both lactate and alanine was inhibited with half-maximal effects at the concentrations of 14.9 and 15.7 {mu}M, respectively. The overall alanine transformation was increased by juglone, as indicated by the stimulated release of ammonia, urea, L-glutamate, lactate and pyruvate. A great increase (9-fold) in the tissue content of {alpha}-ketoglutarate was found, without a similar change in the L-glutamate content. The tissue contents of ATP were decreased, but those of ADP and AMP were increased. Experiments with isolated mitochondria fully confirmed previous notions about the uncoupling action of juglone. It can be concluded that juglone is active on metabolism at relatively low concentrations. In this particular it resembles more closely the classical uncoupler 2,4-dinitrophenol. Ingestion of high doses of juglone, thus, presents the same risks as the ingestion of 2,4-dinitrophenol which comprise excessive compromising of ATP production, hyperthermia and even death. Low doses, i.e., moderate consumption of natural products containing juglone, however, could be beneficial to health if one considers recent reports about the consequences of chronic mild uncoupling. -- Highlights: Black-Right-Pointing-Pointer We investigated how juglone acts on liver metabolism. Black-Right-Pointing-Pointer The actions on hepatic gluconeogenesis, glycolysis and ureogenesis. Black-Right-Pointing-Pointer Juglone stimulates glycolysis and ureagenesis and

  9. Actions of juglone on energy metabolism in the rat liver

    International Nuclear Information System (INIS)

    Saling, Simoni Cristina; Comar, Jurandir Fernando; Mito, Márcio Shigueaki; Peralta, Rosane Marina; Bracht, Adelar

    2011-01-01

    Juglone is a phenolic compound used in popular medicine as a phytotherapic to treat inflammatory and infectious diseases. However, it also acts as an uncoupler of oxidative phosphorylation in isolated liver mitochondria and, thus, may interfere with the hepatic energy metabolism. The purpose of this work was to evaluate the effect of juglone on several metabolic parameters in the isolated perfused rat liver. Juglone, in the concentration range of 5 to 50 μM, stimulated glycogenolysis, glycolysis and oxygen uptake. Gluconeogenesis from both lactate and alanine was inhibited with half-maximal effects at the concentrations of 14.9 and 15.7 μM, respectively. The overall alanine transformation was increased by juglone, as indicated by the stimulated release of ammonia, urea, L-glutamate, lactate and pyruvate. A great increase (9-fold) in the tissue content of α-ketoglutarate was found, without a similar change in the L-glutamate content. The tissue contents of ATP were decreased, but those of ADP and AMP were increased. Experiments with isolated mitochondria fully confirmed previous notions about the uncoupling action of juglone. It can be concluded that juglone is active on metabolism at relatively low concentrations. In this particular it resembles more closely the classical uncoupler 2,4-dinitrophenol. Ingestion of high doses of juglone, thus, presents the same risks as the ingestion of 2,4-dinitrophenol which comprise excessive compromising of ATP production, hyperthermia and even death. Low doses, i.e., moderate consumption of natural products containing juglone, however, could be beneficial to health if one considers recent reports about the consequences of chronic mild uncoupling. -- Highlights: ► We investigated how juglone acts on liver metabolism. ► The actions on hepatic gluconeogenesis, glycolysis and ureogenesis. ► Juglone stimulates glycolysis and ureagenesis and inhibits gluconeogenesis. ► The cellular ATP content is diminished. ► Juglone can

  10. Celastrol ameliorates liver metabolic damage caused by a high-fat diet through Sirt1

    Directory of Open Access Journals (Sweden)

    Yinliang Zhang

    2017-01-01

    . Conclusions: Celastrol ameliorates NAFLD by decreasing lipid synthesis and improving the anti-oxidative and anti-inflammatory status. And Sirt1 has an important role in Celastrol-ameliorating liver metabolic damage caused by HFD. Keywords: Nonalcoholic fatty liver disease, Celastrol, Sirt1, Lipid metabolism, Chronic inflammation, Oxidative stress

  11. Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy

    International Nuclear Information System (INIS)

    Lockwood, A.H.; Yap, E.W.; Rhoades, H.M.; Wong, W.H.

    1991-01-01

    We measured CBF and the CMRglc in normal controls and in patients with severe liver disease and evidence for minimal hepatic encephalopathy using positron emission tomography. Regions were defined in frontal, temporal, parietal, and visual cortex; the thalamus; the caudate; the cerebellum; and the white matter along with a whole-slice value obtained at the level of the thalamus. There was no difference in whole-slice CBF and CMRglc values. Individual regional values were normalized to the whole-slice value and subjected to a two-way repeated measures analysis of variance. When normalized CBF and CMRglc values for regions were compared between groups, significant differences were demonstrated (F = 5.650, p = 0.00014 and F = 4.58, p = 0.0073, respectively). These pattern differences were due to higher CBF and CMRglc in the cerebellum, thalamus, and caudate in patients and lower values in the cortex. Standardized coefficients extracted from a discriminant function analysis permitted correct group assignment for 95.5% of the CBF studies and for 92.9% of the CMRglc studies. The similarity of the altered pattern of cerebral metabolism and flow in our patients to that seen in rats subjected to portacaval shunts or ammonia infusions suggests that this toxin may alter flow and metabolism and that this, in turn, causes the clinical expression of encephalopathy

  12. Gallstones in Patients with Chronic Liver Diseases

    Directory of Open Access Journals (Sweden)

    Xu Li

    2017-01-01

    Full Text Available With prevalence of 10–20% in adults in developed countries, gallstone disease (GSD is one of the most prevalent and costly gastrointestinal tract disorders in the world. In addition to gallstone disease, chronic liver disease (CLD is also an important global public health problem. The reported frequency of gallstone in chronic liver disease tends to be higher. The prevalence of gallstone disease might be related to age, gender, etiology, and severity of liver disease in patients with chronic liver disease. In this review, the aim was to identify the epidemiology, mechanisms, and treatment strategies of gallstone disease in chronic liver disease patients.

  13. Liver transplant in ethylmalonic encephalopathy: a new treatment for an otherwise fatal disease.

    Science.gov (United States)

    Dionisi-Vici, Carlo; Diodato, Daria; Torre, Giuliano; Picca, Stefano; Pariante, Rosanna; Giuseppe Picardo, Sergio; Di Meo, Ivano; Rizzo, Cristiano; Tiranti, Valeria; Zeviani, Massimo; De Ville De Goyet, Jean

    2016-04-01

    Ethylmalonic encephalopathy is a fatal, rapidly progressive mitochondrial disorder caused by ETHE1 mutations, whose peculiar clinical and biochemical features are due to the toxic accumulation of hydrogen sulphide and of its metabolites, including thiosulphate. In mice with ethylmalonic encephalopathy, liver-targeted adeno-associated virus-mediated ETHE1 gene transfer dramatically improved both clinical course and metabolic abnormalities. Reasoning that the same achievement could be accomplished by liver transplantation, we performed living donor-liver transplantation in an infant with ethylmalonic encephalopathy. Unlike the invariably progressive deterioration of the disease, 8 months after liver transplantation, we observed striking neurological improvement with remarkable achievements in psychomotor development, along with dramatic reversion of biochemical abnormalities. These results clearly indicate that liver transplantation is a viable therapeutic option for ETHE1 disease. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Neutrophil depletion improves diet-induced non-alcoholic fatty liver disease in mice.

    Science.gov (United States)

    Ou, Rongying; Liu, Jia; Lv, Mingfen; Wang, Jingying; Wang, Jinmeng; Zhu, Li; Zhao, Liang; Xu, Yunsheng

    2017-07-01

    Non-alcoholic fatty liver disease is highly associated with morbidity and mortality in population. Although studies have already demonstrated that the immune response plays a pivotal role in the development of non-alcoholic fatty liver disease, the comprehensive regulation is unclear. Therefore, present study was carried out to investigate the non-alcoholic fatty liver disease development under neutrophil depletion. To achieve the aim of the study, C57BL/6 J mice were fed with high fat diet for 6 weeks before treated with neutrophil deplete antibody 1A8 or isotype control (200 μg/ mouse every week) for another 4 weeks. Treated with 1A8 antibody, obese mice exhibited better whole body metabolic parameters, including reduction of body weight gain and fasting blood glucose levels. Neutrophil depletion also effectively reduced hepatic structural disorders, dysfunction and lipid accumulation. Lipid β-oxidative markers, phosphorylated-AMP-activated protein kinase α and phosphorylated-acetyl-CoA carboxylase levels were increased in 1A8 antibody-treated obese mouse group. The mitochondrial number and function were also reversed after 1A8 antibody treatment, including increased mitochondrial number, reduced lipid oxidative damage and enhanced mitochondrial activity. Furthermore, the expression of inflammatory cytokines, tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 were obviously reduced after neutrophil depletion, accompanied with decreased F4/80 mRNA level and macrophage percentage in liver. The decreased NF-κB signaling activity was also involved in the beneficial effect of neutrophil depletion. Taken together, neutrophil depletion could attenuate metabolic syndromes and hepatic dysfunction.

  15. Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease.

    Directory of Open Access Journals (Sweden)

    Yijing Zhang

    Full Text Available Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in six clusters. Top biological functions and diseases significantly enriched in sex-biased genes include transcription, chromatin organization and modification, sexual reproduction, lipid metabolism and cardiovascular disease. Notably, sex-biased genes are enriched at loci associated with polygenic dyslipidemia and coronary artery disease in genome-wide association studies. Moreover, of the 8 sex-biased genes at these loci, 4 have been directly linked to monogenic disorders of lipid metabolism and show an expression profile in females (elevated expression of ABCA1, APOA5 and LDLR; reduced expression of LIPC that is consistent with the lower female risk of coronary artery disease. Female-biased expression was also observed for CYP7A1, which is activated by drugs used to treat hypercholesterolemia. Several sex-biased drug-metabolizing enzyme genes were identified, including members of the CYP, UGT, GPX and ALDH families. Half of 879 mouse orthologs, including many genes of lipid metabolism and homeostasis, show growth hormone-regulated sex-biased expression in mouse liver, suggesting growth hormone might play a similar regulatory role in human liver. Finally, the evolutionary rate of protein coding regions for human-mouse orthologs, revealed by dN/dS ratio, is significantly higher for genes showing the same sex-bias in both species than for non-sex-biased genes. These findings establish that human hepatic sex differences are widespread and affect diverse cell

  16. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish.

    Science.gov (United States)

    Bambino, Kathryn; Zhang, Chi; Austin, Christine; Amarasiriwardena, Chitra; Arora, Manish; Chu, Jaime; Sadler, Kirsten C

    2018-02-26

    The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt , which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  17. HEMOSTATIC DISORDERS IN LIVER DISEASES

    Directory of Open Access Journals (Sweden)

    A. F. Minov

    2010-01-01

    Full Text Available The liver is an essential player in the pathway of coagulation in both primary and secondary hemostasis as it is the site of synthesis of all coagulation factors and their inhibitors. Liver diseases are associated with complex changes in coagulation and the delicate balance between pro and antithrombotic factors is preserved but reset to a lower level. There is growing evidence that portal and hepatic vein thrombosis is cause of disease progression in cirrhotic patients and worsens hemostatic abnormalities. These hemostatic abnormalities do not always lead to spontaneous bleeding, which may be triggered only by additional factors, such as infections. Usually therapy for coagulation disorders in liver disease is needed only during bleeding or before invasive procedures. In patients with end stage liver disease liver transplantation is the only treatment available, which can restore normal hemostasis, and correct genetic clotting defects. During liver transplantation hemorrhage may occur due to the pre-existing hypocoagulable state, the collateral circulation caused by portal hypertension and increased fibrinolysis. 

  18. Using multiphoton fluorescence lifetime imaging to characterize liver damage and fluorescein disposition in liver in vivo

    Science.gov (United States)

    Thorling, Camilla A.; Studier, Hauke; Crawford, Darrell; Roberts, Michael S.

    2016-03-01

    Liver disease is the fifth most common cause of death and unlike many other major causes of mortality, liver disease rates are increasing rather than decreasing. There is no ideal measurement of liver disease and although biopsies are the gold standard, this only allows for a spot examination and cannot follow dynamic processes of the liver. Intravital imaging has the potential to extract detailed information over a larger sampling area continuously. The aim of this project was to investigate whether multiphoton and fluorescence lifetime imaging microscopy could detect early liver damage and to assess whether it could detect changes in metabolism of fluorescein in normal and diseased livers. Four experimental groups were used in this study: 1) control; 2) ischemia reperfusion injury; 3) steatosis and 4) steatosis with ischemia reperfusion injury. Results showed that multiphoton microscopy could visualize morphological changes such as decreased fluorescence of endogenous fluorophores and the presence of lipid droplets, characteristic of steatosis. Fluorescence lifetime imaging microscopy showed increase in NADPH in steatosis with and without ischemia reperfusion injury and could detect changes in metabolism of fluorescein to fluorescein monoglurcuronide, which was impaired in steatosis with ischemia reperfusion injury. These results concluded that the combination of multiphoton microscopy and fluorescence lifetime imaging is a promising method of assessing early stage liver damage and that it can be used to study changes in drug metabolism in the liver as an indication of liver disease and has the potential to replace the traditional static liver biopsy currently used.

  19. Higher free triiodothyronine is associated with non-alcoholic fatty liver disease in euthyroid subjects : The Lifelines Cohort Study

    NARCIS (Netherlands)

    van den Berg, Eline H.; van Tienhoven-Wind, Lynnda J. N.; Amini, Marzyeh; Schreuder, Tim C.M.A.; Faber, Klaas Nico; Blokzijl, Hans; Dullaart, Robin P. F.

    Objective. Overt hypothyroidism confers an increased risk of non-alcoholic fatty liver disease (NAFLD). The liver plays a crucial role in the metabolism of cholesterol and triglycerides; thyroid hormones interact on hepatic lipid homeostasis. Thyroid function within the euthyroid range affects a

  20. Diagnostic methods of fatty liver disease

    International Nuclear Information System (INIS)

    Kukuk, Guido Matthias; Sprinkart, Alois Martin; Traeber, Frank

    2017-01-01

    Fatty liver disease is defined as an abnormal accumulation of lipids into the cytoplasm of hepatocytes. Different kinds of fatty liver diseases are becoming the most important etiologies of end-stage liver disease in the western world. Because fatty liver is a theoretically reversible process, timely and accurate diagnosis is a prerequisite for potential therapeutic options. This work describes major diagnostic methods and discusses particular advantages and disadvantages of various techniques.

  1. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    International Nuclear Information System (INIS)

    Gao, Jialin; Zhang, Yao; Yu, Cui; Tan, Fengbiao; Wang, Lizhuo

    2016-01-01

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2"−"/"− mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2"−"/"− mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2"−"/"− mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2"−"/"− mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2"−"/"− mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2"−"/"− mice had spontaneous nonalcoholic fatty liver

  2. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jialin [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Zhang, Yao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Yu, Cui [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Tan, Fengbiao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Wang, Lizhuo, E-mail: 19277924@qq.com [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China)

    2016-08-05

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2{sup −/−} mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2{sup −/−} mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2{sup −/−} mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2{sup −/−} mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2{sup −/−} mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2{sup −/−} mice had spontaneous

  3. High coffee intake is associated with lower grade nonalcoholic fatty liver disease: the role of peripheral antioxidant activity.

    Science.gov (United States)

    Gutiérrez-Grobe, Ylse; Chávez-Tapia, Norberto; Sánchez-Valle, Vicente; Gavilanes-Espinar, Juan Gabriel; Ponciano-Rodríguez, Guadalupe; Uribe, Misael; Méndez-Sánchez, Nahum

    2012-01-01

    Some phytochemicals present in coffee have a potential antioxidant role which seems to protect the human body against cardiovascular diseases, liver disease and malignancies. Nonalcoholic fatty liver disease is a common disease with limited therapeutic options. This study investigated the antioxidant effect of coffee by measuring antioxidant enzymes and lipid peroxidation markers in patients with nonalcoholic fatty liver disease. We performed a case-control study at the University Hospital, Mexico City. Anthropometric, metabolic, dietary and biochemical variables of all patients were determined and compared. The presence of nonalcoholic fatty liver disease was established by ultrasonography. All patients completed a dietary questionnaire in order to determine their of coffee consumption. Catalase, superoxide dismutase and thiobarbituric acid reactive substances were measured in all of the patients. Seventy-three subjects with and 57 without nonalcoholic fatty liver disease were included. Patients with nonalcoholic fatty liver disease had significantly higher body mass index, blood glucose, homeostasis model of assessment-insulin resistance and insulin values in comparison to patients without nonalcoholic fatty liver disease. On the one hand, there was a significant difference in coffee intake between the groups (p coffee has a protective effect against nonalcoholic fatty liver disease however there was no significant difference in the antioxidant variables analyzed.

  4. Nonalcoholic fatty liver disease, association with cardiovascular disease and treatment (II). The treatment of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Brea, Ángel; Pintó, Xavier; Ascaso, Juan F; Blasco, Mariano; Díaz, Ángel; González-Santos, Pedro; Hernández-Mijares, Antonio; Mantilla, Teresa; Millán, Jesús; Pedro-Botet, Juan

    Disease nonalcoholic fatty liver disease (NAFLD) comprises a series of histologically similar to those induced by alcohol consumption in people with very little or no liver damage same. The importance of NAFLD is its high prevalence in our Western societies, from the point of view liver in its progressive evolution from steatosis to steatohepatitis, cirrhosis and liver cancer. During the last decade it has been observed that NAFLD leads to an increased cardiovascular risk with accelerated atherosclerosis and cardiovascular events, the leading cause of morbidity and mortality. This updated January 2016 revision consists of two parts. In this second part, the treatment of NAFLD and its influence on cardiovascular disease and drugs used in the control of cardiovascular risk factors showing a beneficial effect on the liver disease will be reviewed. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Evaluation of nonalcoholic fatty liver disease using magnetic resonance in obese children and adolescents.

    Science.gov (United States)

    Benetolo, Patrícia O; Fernandes, Maria I M; Ciampo, Ieda R L Del; Elias-Junior, Jorge; Sawamura, Regina

    2018-02-10

    To determine the frequency of nonalcoholic fatty liver disease using nuclear magnetic resonance as a noninvasive method. This was a cross-sectional study conducted on 50 children and adolescents followed up at an outpatient obesity clinic. The subjects were submitted to physical examination, laboratory tests (transaminases, liver function tests, lipid profile, glycemia, and basal insulin) and abdominal nuclear magnetic resonance (calculation of hepatic, visceral, and subcutaneous fat). Nonalcoholic fatty liver disease was diagnosed in 14 (28%) participants, as a severe condition in eight (percent fat >18%), and as non-severe in four (percent fat from 9% to 18%). Fatty liver was associated with male gender, triglycerides, AST, ALT, AST/ALT ratio, and acanthosis nigricans. Homeostasis model assessment of insulin resistance and metabolic syndrome did not show an association with fatty liver. The frequency of nonalcoholic fatty liver disease in the present population of children and adolescents was lower than that reported in the international literature. It is suggested that nuclear magnetic resonance is an imaging exam that can be applied to children and adolescents, thus representing an effective noninvasive tool for the diagnosis of nonalcoholic fatty liver disease in this age range. However, further national multicenter studies with longitudinal design are needed for a better analysis of the correlation between nonalcoholic fatty liver disease and its risk factors, as well as its consequences. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  6. Well Preserved Renal Function in Children With Untreated Chronic Liver Disease.

    Science.gov (United States)

    Berg, Ulla B; Németh, Antal

    2018-04-01

    On the basis of studies with hepatorenal syndrome, it is widely regarded that renal function is impacted in chronic liver disease (CLD). Therefore, we investigated renal function in children with CLD. In a retrospective study of 277 children with CLD, renal function was investigated as glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), measured as clearance of inulin and para-amino hippuric acid or clearance of iohexol. The data were analyzed with regard to different subgroups of liver disease and to the grade of damage. Hyperfiltration (>+2 SD of controls) was found in the subgroups of progressive familial intrahepatic cholestasis (44%), glycogenosis (75%), and acute fulminant liver failure (60%). Patients with biliary atresia, most other patients with metabolic disease and intrahepatic cholestasis, and those with vascular anomalies and cryptogenic cirrhosis had normal renal function. Decreased renal function was found in patients with Alagille's syndrome (64% < -2 SD). Increased GFR and ERPF was found in patients with elevated transaminases, low prothrombin level, high bile acid concentration, and high aspartate-aminotransferase-to-platelet ratio. Most children with CLD had surprisingly well preserved renal function and certain groups had even hyperfiltration. The finding that children with decompensated liver disease and ongoing liver failure had stable kidney function suggests that no prognostic markers of threatening hepatorenal syndrome were at hand. Moreover, estimation of GFR based on serum creatinine fails to reveal hyperfiltration.

  7. The management of perioperative nutrition in patients with end stage liver disease undergoing liver transplantation.

    Science.gov (United States)

    Zhang, Qi-Kun; Wang, Meng-Long

    2015-10-01

    Malnutrition is found in almost 100% of patients with end stage liver disease (ESLD) awaiting transplantation and malnutrition before transplantation leads to higher rates of post-transplant complications and worse graft survival outcomes. Reasons for protein energy malnutrition include several metabolic alterations such as inadequate intake, malabsorption, and overloaded expenditure. And also, stress from surgery, gastrointestinal reperfusion injury, immunosuppressive therapy and corticosteriods use lead to delayed bowl function recovery and disorder of nutrients absorption. In the pretransplant phase, nutritional goals include optimization of nutritional status and treatment of nutrition-related symptoms induced by hepatic decompensation. During the acute post-transplant phase, adequate nutrition is required to help support metabolic demands, replenish lost stores, prevent infection, arrive at a new immunologic balance, and promote overall recovery. In a word, it is extremely important to identify and correct nutritional deficiencies in this population and provide an adequate nutritional support during all phases of liver transplantation (LT). This study review focuses on prevalence, nutrition support, evaluation, and management of perioperative nutrition disorder in patients with ESLD undergoing LT.

  8. The association between donor genetic variations in one-carbon metabolism pathway genes and hepatitis B recurrence after liver transplantation.

    Science.gov (United States)

    Lu, Di; Zhuo, Jianyong; Yang, Modan; Wang, Chao; Linhui, Pan; Xie, Haiyang; Xu, Xiao; Zheng, Shusen

    2018-04-05

    Hepatitis B recurrence adversely affects patients' survival after liver transplantation. This study aims to find association between donor gene variations of one carbon metabolism and post-transplant hepatitis B recurrence. This study enrolled 196 patients undergoing liver transplantation for HBV related end-stage liver diseases. We detected 11 single nucleotide polymorphisms (SNP) of 7 one-carbon metabolism pathway genes (including MTHFR, MTR, MTRR, ALDH1L1, GART, SHMT1 and CBS) in donor livers and analyzed their association with HBV reinfection after liver transplantation. Hepatitis B recurrence was observed in 19 of the 196 patients (9.7%) undergoing liver transplantation. Hepatitis B recurrence significantly affected post-transplant survival in the 196 patients (p = 0.018), and correlate with tumor recurrence in the subgroup of HCC patients (n = 99, p = 0.006). Among the 11 SNPs, donor liver mutation in rs1979277 (G > A) was adversely associated with post-transplant hepatitis B recurrence (p = 0.042). In the subgroup of HCC patients, survival analysis showed donor liver mutations in rs1801133 (G > A) and rs1979277 (G > A) were risk factors for hepatitis B recurrence (p B recurrence in non-HCC patients (n = 97, p > 0.05). Hepatitis B recurrence impaired post-transplant survival. Donor liver genetic variations in one-carbon metabolism pathway genes were significantly associated with post-transplant hepatitis B recurrence. Copyright © 2017. Published by Elsevier B.V.

  9. Acute renal dysfunction in liver diseases

    OpenAIRE

    Betrosian, Alex P; Agarwal, Banwari; Douzinas, Emmanuel E

    2007-01-01

    Renal dysfunction is common in liver diseases, either as part of multiorgan involvement in acute illness or secondary to advanced liver disease. The presence of renal impairment in both groups is a poor prognostic indicator. Renal failure is often multifactorial and can present as pre-renal or intrinsic renal dysfunction. Obstructive or post renal dysfunction only rarely complicates liver disease. Hepatorenal syndrome (HRS) is a unique form of renal failure associated with advanced liver dise...

  10. The Role of Liver Biopsy in the Management of Patients with Liver Disease

    Directory of Open Access Journals (Sweden)

    Florence Wong

    2003-01-01

    Full Text Available The role of liver biopsy in the diagnosis and management of liver disease is a controversial issue even among hepatologists. Although most causes of elevated liver enzymes can be determined, or at least suspected, on the basis of a careful history and laboratory tests, histological assessment remains the gold standard for most liver diseases. Histological evaluation can either confirm or refute clinical diagnoses and can provide information about the severity and stage of disease. Occasionally, the liver biopsy also provides an additional diagnosis. The spectrum of nonalcoholic fatty liver disease accounts for a substantial proportion of cases of chronically elevated liver enzymes and can be reliably diagnosed only by liver biopsy. Prognostic information can be obtained in patients with this disorder, as well as in those with alcoholic liver disease and viral hepatitis, and liver biopsy can be used as a guide to their management.

  11. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  12. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  13. [Liver transplantation].

    Science.gov (United States)

    Pompili, Maurizio; Mirante, Vincenzo Giorgio; Rapaccini, Gian Ludovico; Gasbarrini, Giovanni

    2004-01-01

    Liver transplantation represents the first choice treatment for patients with fulminant acute hepatitis and for patients with chronic liver disease and advanced functional failure. Patients in the waiting list for liver transplantation are classified according to the severity of their clinical conditions (evaluated using staging systems mostly based on hematochemical parameters related to liver function). This classification, together with the blood group and the body size compatibility, remains the main criterion for organ allocation. The main indications for liver transplantation are cirrhosis (mainly HCV-, HBV- and alcohol-related) and hepatocellular carcinoma emerging in cirrhosis in adult patients, biliary atresia and some inborn errors of metabolism in pediatric patients. In adults the overall 5-year survival ranges between 60 and 70%, in both American and European series. Even better results have been reported for pediatric patients: in fact, the 5-year survival rate for children ranges between 70 and 80% in the main published series. In this study we evaluated the main medical problems correlated with liver transplantation such as immunosuppressive treatment, acute and chronic rejection, infectious complications, the recurrence of the liver disease leading to transplantation, and cardiovascular and metabolic complications.

  14. Article Commentary: Insulin Resistance, Type 2 Diabetes and Chronic Liver Disease. A Deadly Trio

    Directory of Open Access Journals (Sweden)

    Amedeo Lonardo

    2009-01-01

    Full Text Available In this commentary to the paper by Donadon V. et al (Clinical Medicine: Endocrinology and Diabetes. 2009;2:25–33. the association and significance of insulin resistance with chronic liver disease are shortly reviewed and the molecular mechanisms underlying the diabetogenic and oncogenic potentials of advanced liver disease are summarized. Literature studies demonstrate that hepatocellular carcinoma (HCC can be part of the natural history of NASH. HCCs in patients with features of metabolic syndrome as the only risk factor for liver disease have distinct morphological characteristics and mainly occur in the absence of significant fibrosis in the background liver. Moreover, data indicate that the presence of diabetes carries an approximately three to four-fold increased risk of HCC and such a risk is strongly increased by concurrent viral infections. Finally, the relationship between insulin resistance, steatosis and diabetes in NAFLD and HCV infection will be commented, along with the directions for future studies.

  15. Autoimmune liver disease and therapy in childhood

    Directory of Open Access Journals (Sweden)

    Matjaž Homan

    2013-10-01

    Full Text Available Autoimmune hepatitis is a chronic immune-mediated disease of the liver. In childhood, autoimmune liver disorders include autoimmune hepatitis type I and II, autoimmune sclerosing cholangitis, Coombs-positive giant cell hepatitis, and de novo autoimmune hepatitis after liver transplantation. Autoimmune liver disease has a more aggressive course in children, especially autoimmune hepatitis type II. Standard therapy is a combination of corticosteroids and azathioprine. Around 80 % of children with autoimmune liver disease show a rapid response to combination therapy. The non-responders are treated with more potent drugs, otherwise autoimmune disease progresses to cirrhosis of the liver and the child needs liver transplantation as rescue therapy.

  16. Molecular pathways in non-alcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Berlanga A

    2014-07-01

    synthesis is increased, but FAs are also taken up from the serum. Furthermore, a decrease in mitochondrial FA oxidation and secretion of very-low-density lipoproteins has been reported. This review discusses the molecular mechanisms that underlie the pathophysiological changes of hepatic lipid metabolism that contribute to NAFLD.Keywords: non-alcoholic fatty liver disease, molecular pathways, insulin resistance, fatty acid metabolism

  17. Serum Metabolomics to Identify the Liver Disease-Specific Biomarkers for the Progression of Hepatitis to Hepatocellular Carcinoma

    Science.gov (United States)

    Gao, Rong; Cheng, Jianhua; Fan, Chunlei; Shi, Xiaofeng; Cao, Yuan; Sun, Bo; Ding, Huiguo; Hu, Chengjin; Dong, Fangting; Yan, Xianzhong

    2015-12-01

    Hepatocellular carcinoma (HCC) is a common malignancy that has region specific etiologies. Unfortunately, 85% of cases of HCC are diagnosed at an advanced stage. Reliable biomarkers for the early diagnosis of HCC are urgently required to reduced mortality and therapeutic expenditure. We established a non-targeted gas chromatography-time of flight-mass spectrometry (GC-TOFMS) metabolomics method in conjunction with Random Forests (RF) analysis based on 201 serum samples from healthy controls (NC), hepatitis B virus (HBV), liver cirrhosis (LC) and HCC patients to explore the metabolic characteristics in the progression of hepatocellular carcinogenesis. Ultimately, 15 metabolites were identified intimately associated with the process. Phenylalanine, malic acid and 5-methoxytryptamine for HBV vs. NC, palmitic acid for LC vs. HBV, and asparagine and β-glutamate for HCC vs. LC were screened as the liver disease-specific potential biomarkers with an excellent discriminant performance. All the metabolic perturbations in these liver diseases are associated with pathways for energy metabolism, macromolecular synthesis, and maintaining the redox balance to protect tumor cells from oxidative stress.

  18. NHE1 deficiency in liver: Implications for non-alcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Vikram, E-mail: prasadvm@ucmail.uc.edu [Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine (United States); Chirra, Shivani [Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine (United States); Kohli, Rohit [Department of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital, University of Cincinnati, Cincinnati, OH 45267 (United States); Shull, Gary E. [Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine (United States)

    2014-07-25

    Highlights: • FXR, PGC1α and PPARγ levels are upregulated in NHE1 deficient livers. • NHE1 deficiency downregulates expression of pro-lipogenic genes in liver. • Chronic exposure to high-fat diet upregulates hepatic NHE1 expression. • Loss of NHE1 better preserves hepatic insulin signaling in high-fat diet-fed mice. - Abstract: Non-alcoholic fatty liver disease NAFLD is closely associated with the dysregulation of lipid homeostasis. Diet-induced hepatic steatosis, which can initiate NAFLD progression, has been shown to be dramatically reduced in mice lacking the electroneutral Na{sup +}/H{sup +} exchanger NHE1 (Slc9a1). In this study, we investigated if NHE1 deficiency had effects in liver that could contribute to the apparent protection against aberrant lipid accumulation. RT-PCR and immunoblot analyses of wild-type and NHE1-null livers revealed an expression profile that strongly suggested attenuation of both de novo lipogenesis and hepatic stellate cell activation, which is implicated in liver fibrosis. This included upregulation of the farnesoid X receptor FXR, peroxisome proliferator-activated receptor PPARγ, its co-activator PGC1α, and sestrin 2, an antioxidant protein involved in hepatic metabolic homeostasis. Furthermore, expression levels of the pro-lipogenic liver X receptor LXRα, and acetyl CoA carboxylases 1 and 2 were downregulated. These changes were associated with evidence of reduced cellular stress, which persisted even upon exposure to a high-fat diet, and the better preservation of insulin signaling, as evidenced by protein kinase B/Akt phosphorylation (Ser473). These results indicate that NHE1 deficiency may protect against NAFLD pathogenesis, which is significant given the availability of highly specific NHE1 inhibitors.

  19. NHE1 deficiency in liver: Implications for non-alcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Prasad, Vikram; Chirra, Shivani; Kohli, Rohit; Shull, Gary E.

    2014-01-01

    Highlights: • FXR, PGC1α and PPARγ levels are upregulated in NHE1 deficient livers. • NHE1 deficiency downregulates expression of pro-lipogenic genes in liver. • Chronic exposure to high-fat diet upregulates hepatic NHE1 expression. • Loss of NHE1 better preserves hepatic insulin signaling in high-fat diet-fed mice. - Abstract: Non-alcoholic fatty liver disease NAFLD is closely associated with the dysregulation of lipid homeostasis. Diet-induced hepatic steatosis, which can initiate NAFLD progression, has been shown to be dramatically reduced in mice lacking the electroneutral Na + /H + exchanger NHE1 (Slc9a1). In this study, we investigated if NHE1 deficiency had effects in liver that could contribute to the apparent protection against aberrant lipid accumulation. RT-PCR and immunoblot analyses of wild-type and NHE1-null livers revealed an expression profile that strongly suggested attenuation of both de novo lipogenesis and hepatic stellate cell activation, which is implicated in liver fibrosis. This included upregulation of the farnesoid X receptor FXR, peroxisome proliferator-activated receptor PPARγ, its co-activator PGC1α, and sestrin 2, an antioxidant protein involved in hepatic metabolic homeostasis. Furthermore, expression levels of the pro-lipogenic liver X receptor LXRα, and acetyl CoA carboxylases 1 and 2 were downregulated. These changes were associated with evidence of reduced cellular stress, which persisted even upon exposure to a high-fat diet, and the better preservation of insulin signaling, as evidenced by protein kinase B/Akt phosphorylation (Ser473). These results indicate that NHE1 deficiency may protect against NAFLD pathogenesis, which is significant given the availability of highly specific NHE1 inhibitors

  20. Anabolic-androgenic steroids for alcoholic liver disease

    DEFF Research Database (Denmark)

    Rambaldi, A; Gluud, C

    2006-01-01

    Alcohol is one of the most common causes of liver disease in the Western World. Randomised clinical trials have examined the effects of anabolic-androgenic steroids for alcoholic liver disease.......Alcohol is one of the most common causes of liver disease in the Western World. Randomised clinical trials have examined the effects of anabolic-androgenic steroids for alcoholic liver disease....

  1. Anabolic-androgenic steroids for alcoholic liver disease

    DEFF Research Database (Denmark)

    Rambaldi, A; Iaquinto, G; Gluud, C

    2003-01-01

    Alcohol is one of the most common causes of liver disease in the Western World today. Randomised clinical trials have examined the effects of anabolic-androgenic steroids for alcoholic liver disease.......Alcohol is one of the most common causes of liver disease in the Western World today. Randomised clinical trials have examined the effects of anabolic-androgenic steroids for alcoholic liver disease....

  2. Fimasartan Ameliorates Nonalcoholic Fatty Liver Disease through PPARδ Regulation in Hyperlipidemic and Hypertensive Conditions

    Directory of Open Access Journals (Sweden)

    Yong-Jik Lee

    2017-01-01

    Full Text Available To investigate the effects of fimasartan on nonalcoholic fatty liver disease in hyperlipidemic and hypertensive conditions, the levels of biomarkers related to fatty acid metabolism were determined in HepG2 and differentiated 3T3-L1 cells treated by high fatty acid and liver and visceral fat tissue samples of spontaneously hypertensive rats (SHRs given high-fat diet. In HepG2 cells and liver tissues, fimasartan was shown to increase the protein levels of peroxisome proliferator-activated receptor delta (PPARδ, phosphorylated 5′ adenosine monophosphate-activated protein kinase (p-AMPK, phosphorylated acetyl-CoA carboxylase (p-ACC, malonyl-CoA decarboxylase (MCD, medium chain acyl-CoA dehydrogenase (MCAD, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α, and it led to a decrease in the protein levels of 11 beta-hydroxysteroid dehydrogenase 1 (11β-HSDH1, fatty acid synthase (FAS, and tumor necrosis factor-alpha (TNF-α. Fimasartan decreased lipid contents in HepG2 and differentiated 3T3-L1 cells and liver tissues. In addition, fimasartan increased the adiponectin level in visceral fat tissues. The antiadipogenic effects of fimasartan were offset by PPARδ antagonist (GSK0660. Consequently, fimasartan ameliorates nonalcoholic fatty liver disease mainly through the activation of oxidative metabolism represented by PPARδ-AMPK-PGC-1α pathway.

  3. Does Vitamin C Deficiency Promote Fatty Liver Disease Development?

    Directory of Open Access Journals (Sweden)

    David Højland Ipsen

    2014-12-01

    Full Text Available Obesity and the subsequent reprogramming of the white adipose tissue are linked to human disease-complexes including metabolic syndrome and concurrent non-alcoholic fatty liver disease (NAFLD and non-alcoholic steatohepatitis (NASH. The dietary imposed dyslipidemia promotes redox imbalance by the generation of excess levels of reactive oxygen species and induces adipocyte dysfunction and reprogramming, leading to a low grade systemic inflammation and ectopic lipid deposition, e.g., in the liver, hereby promoting a vicious circle in which dietary factors initiate a metabolic change that further exacerbates the negative consequences of an adverse life-style. Large epidemiological studies and findings from controlled in vivo animal studies have provided evidence supporting an association between poor vitamin C (VitC status and propagation of life-style associated diseases. In addition, overweight per se has been shown to result in reduced plasma VitC, and the distribution of body fat in obesity has been shown to have an inverse relationship with VitC plasma levels. Recently, a number of epidemiological studies have indicated a VitC intake below the recommended daily allowance (RDA in NAFLD-patients, suggesting an association between dietary habits, disease and VitC deficiency. In the general population, VitC deficiency (defined as a plasma concentration below 23 μM affects around 10% of adults, however, this prevalence is increased by an adverse life-style, deficiency potentially playing a broader role in disease progression in specific subgroups. This review discusses the currently available data from human surveys and experimental models in search of a putative role of VitC deficiency in the development of NAFLD and NASH.

  4. Association of the components of the metabolic syndrome with non- alcoholic fatty liver disease among normal-weight, overweight and obese children and adolescents

    Directory of Open Access Journals (Sweden)

    Kelishadi Roya

    2009-12-01

    Full Text Available Abstract Objectives This study aimed to determine the prevalence of the metabolic syndrome, abnormalities of liver enzymes and sonographic fatty liver, as well as the inter-related associations in normal weight, overweight and obese children and adolescents. Methods This cross-sectional study was conducted among a sample of 1107 students (56.1% girls, aged 6-18 years in Isfahan, Iran. In addition to physical examination, fasting blood glucose, serum lipid profile and liver enzymes were determined. Liver sonography was performed among 931 participants. These variables were compared among participants with different body mass index (BMI categories. Results From lower to higher BMI category, alanine aminotransferase (ALT, total cholesterol, LDL-cholesterol, triglycerides and systolic blood pressure increased, and HDL-cholesterol decreased significantly. Elevated ALT, aspartate aminotransferase (AST and alkaline phosphatase (ALP were documented in respectively 4.1%, 6.6% and 9.8% of normal weight group. The corresponding figure was 9.5%, 9.8% and 9.1% in overweight group, and 16.9%, 14.9% and 10.8% in obese group, respectively. In all BMI categories, ALT increased significantly by increasing the number of the components of the metabolic syndrome. Odds ratio for elevated liver enzymes and sonographic fatty liver increased significantly with higher number of the components of the metabolic syndrome and higher BMI categories before and after adjustment for age. Conclusions Because of the interrelationship of biochemical and sonographic indexes of fatty liver with the components of the metabolic syndrome, and with increase in their number, it is suggested to determine the clinical impact of such association in future longitudinal studies.

  5. Sorafenib metabolism is significantly altered in the liver tumor tissue of hepatocellular carcinoma patient.

    Directory of Open Access Journals (Sweden)

    Ling Ye

    Full Text Available BACKGROUND: Sorafenib, the drug used as first line treatment for hepatocellular carcinoma (HCC, is metabolized by cytochrome P450 (CYP 3A4-mediated oxidation and uridine diphosphate glucuronosyl transferase (UGT 1A9-mediated glucuronidation. Liver diseases are associated with reduced CYP and UGT activities, which can considerably affect drug metabolism, leading to drug toxicity. Thus, understanding the metabolism of therapeutic compounds in patients with liver diseases is necessary. However, the metabolism characteristic of sorafenib has not been systematically determined in HCC patients. METHODS: Sorafenib metabolism was tested in the pooled and individual tumor hepatic microsomes (THLMs and adjacent normal hepatic microsomes (NHLMs of HCC patients (n = 18. Commercial hepatic microsomes (CHLMs were used as a control. In addition, CYP3A4 and UGT1A9 protein expression in different tissues were measured by Western blotting. RESULTS: The mean rates of oxidation and glucuronidation of sorafenib were significantly decreased in the pooled THLMs compared with those in NHLMs and CHLMs. The maximal velocity (Vmax of sorafenib oxidation and glucuronidation were approximately 25-fold and 2-fold decreased in the pooled THLMs, respectively, with unchanged Km values. The oxidation of sorafenib in individual THLMs sample was significantly decreased (ranging from 7 to 67-fold than that in corresponding NHLMs sample. The reduction of glucuronidation in THLMs was observed in 15 out of 18 patients' samples. Additionally, the level of CYP3A4 and UGT1A9 expression were both notably decreased in the pooled THLMs. CONCLUSIONS: Sorafenib metabolism was remarkably decreased in THLMs. This result was associated with the down regulation of the protein expression of CYP3A4 and UGT1A9.

  6. Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease

    Czech Academy of Sciences Publication Activity Database

    Lake, A.D.; Novák, Petr; Shipkova, P.; Aranibar, N.; Robertson, D.G.; Reily, M.D.; Lehman-McKeeman, L.D.; Vaillancourt, R.R.; Cherrington, N.J.

    2015-01-01

    Roč. 47, č. 3 (2015), s. 603-615 ISSN 0939-4451 Institutional support: RVO:60077344 Keywords : Branched chain amino acid * nonalcoholic fatty liver disease * nonalcoholic steatohepatitis * metabolomics and transcriptomics Subject RIV: CE - Biochemistry Impact factor: 3.196, year: 2015

  7. Curcumin: Reintroduced Therapeutic Agent from Traditional Medicine for Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    Hamid Reza Rahimi

    2015-03-01

    Full Text Available Alcoholic liver disease (ALD is the main cause of chronic liver disease across the world and can lead to fibrosis and cirrhosis. The etiopathogenesis of ALD is related to ethanol-induced oxidative stress, glutathione reduction, abnormal methionine metabolism, malnutrition, and production of endotoxins that activate Kupffer cells. Curcumin is an active ingredient of the rhizome of turmeric. The substance is shown to have minor adverse effects. As the substance possess low bioavailability in free formulation, different strategies has been conducted to improve its bioavailability which resulted in production of nanomiscels and nanoparticles. Curcumin can provide protection for the liver against toxic effects of alcohol use. Several studies showed curcumin blocks endotoxin-mediated activation of NF-κB and suppresses the expression of cytokines, chemokines, COX-2, and iNOS in Kupffer cells. According to the molecular studies, curcumin inhibits NF-κB signaling pathway, regulates cytokines production and modulates immune response. It has been shown that curcumin can suppress gene expression, especially cytokines genes resulting in down-regulation of tumor necrosis factor-α (TNF-α, interleukin 1 (IL-1, IL-6, IL-8, adhesion molecules (ICAM, VCAM and C-reactive protein. Hence, curcumin can have therapeutic effects on the majority of chronic inflammatory diseases such as asthma, bronchitis, inflammatory bowel disease, rheumatoid arthritis, ALD, fatty liver, and allergy.

  8. The treatment of diabetes mellitus of patients with chronic liver disease.

    Science.gov (United States)

    García-Compeán, Diego; González-González, José A; Lavalle-González, Fernando J; González-Moreno, Emmanuel I; Maldonado-Garza, Héctor J; Villarreal-Pérez, Jesús Zacarías

    2015-01-01

    About 80% of patients with liver cirrhosis may have glucose metabolism disorders, 30% show overt diabetes mellitus (DM). Prospective studies have demonstrated that DM is associated with an increased risk of hepatic complications and death in patients with liver cirrhosis. DM might contribute to liver damage by promoting inflammation and fibrosis through an increase in mitochondrial oxidative stress mediated by adipokines. Based on the above mentioned the effective control of hyperglycemia may have a favorable impact on the evolution of these patients. However, only few therapeutic studies have evaluated the effectiveness and safety of antidiabetic drugs and the impact of the treatment of DM on morbidity and mortality in patients with liver cirrhosis. In addition, oral hypoglycemic agents and insulin may produce hypoglycemia and lactic acidosis, as most of these agents are metabolized by the liver. This review discusses the clinical implications of DM in patients with chronic liver disease. In addition the effectiveness and safety of old, but particularly the new antidiabetic drugs will be described based on pharmacokinetic studies and chronic administration to patients. Recent reports regarding the use of the SGLT2 inhibitors as well as the new incretin-based therapies such as injectable glucagon-like peptide-1 (GLP-1) receptor agonists and oral inhibitors of dipeptidylpeptidase-4 (DPP-4) will be discussed. The establishment of clear guidelines for the management of diabetes in patients with CLD is strongly required.

  9. Comparison between a pediatric health promotion center and a pediatric obesity clinic in detecting metabolic syndrome and non-alcoholic fatty liver disease in children.

    Science.gov (United States)

    Yang, Hye Ran; Yi, Dae Yong; Choi, Hyoung Soo

    2014-12-01

    This study was done to evaluate the efficacy of health check-ups in children in detecting metabolic syndrome and non-alcoholic fatty liver disease (NAFLD) by comparing the pediatric health promotion center with the pediatric obesity clinic. Children who visited a pediatric health promotion center (n=218) or a pediatric obesity clinic (n=178) were included. Anthropometric data, blood pressure, laboratory tests, and abdominal ultrasonography were evaluated. Two different criteria were applied to diagnose metabolic syndrome. The prevalence of metabolic syndrome in the 2 units was 3.2%-3.7% in a pediatric health promotion center and 23%-33.2% in a pediatric obesity clinic. Significant differences were observed in the prevalence of each component of metabolic syndrome between the 2 units including abdominal adiposity, blood pressure, serum triglycerides, and fasting blood glucose (Pobesity clinic targeting obese children than that among patients visiting the health promotion center offering routine check-ups. An obesity-oriented approach is required to prevent obesity-related health problems in children.

  10. Propylthiouracil for alcoholic liver disease

    DEFF Research Database (Denmark)

    Fede, Giuseppe; Germani, Giacomo; Gluud, Christian

    2011-01-01

    Randomised clinical trials have addressed the question whether propylthiouracil has any beneficial effects in patients with alcoholic liver disease.......Randomised clinical trials have addressed the question whether propylthiouracil has any beneficial effects in patients with alcoholic liver disease....

  11. Liver transplantation in polycystic liver disease

    DEFF Research Database (Denmark)

    Krohn, Paul S; Hillingsø, Jens; Kirkegaard, Preben

    2008-01-01

    OBJECTIVE: Polycystic liver disease (PLD) is a rare, hereditary, benign disorder. Hepatic failure is uncommon and symptoms are caused by mass effects leading to abdominal distension and pain. Liver transplantation (LTX) offers fully curative treatment, but there is still some controversy about...... whether it is a relevant modality considering the absence of liver failure, relative organ shortage, perioperative risks and lifelong immunosuppression. The purpose of this study was to review our experience of LTX for PLD and to compare the survival with the overall survival of patients who underwent LTX...... from 1992 to 2005. MATERIAL AND METHODS: A retrospective study of the journals of 440 patients, who underwent 506 LTXs between 1992 and 2005, showed that 14 patients underwent LTX for PLD. All patients had normal liver function. Three were receiving haemodialysis and thus underwent combined liver...

  12. The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases.

    Science.gov (United States)

    Hansel, Marc C; Davila, Julio C; Vosough, Massoud; Gramignoli, Roberto; Skvorak, Kristen J; Dorko, Kenneth; Marongiu, Fabio; Blake, William; Strom, Stephen C

    2016-02-01

    Liver disease is a major global health concern. Liver cirrhosis is one of the leading causes of death in the world and currently the only therapeutic option for end-stage liver disease (e.g., acute liver failure, cirrhosis, chronic hepatitis, cholestatic diseases, metabolic diseases, and malignant neoplasms) is orthotropic liver transplantation. Transplantation of hepatocytes has been proposed and used as an alternative to whole organ transplant to stabilize and prolong the lives of patients in some clinical cases. Although these experimental therapies have demonstrated promising and beneficial results, their routine use remains a challenge due to the shortage of donor livers available for cell isolation, variable quality of those tissues, the potential need for lifelong immunosuppression in the transplant recipient, and high costs. Therefore, new therapeutic strategies and more reliable clinical treatments are urgently needed. Recent and continuous technological advances in the development of stem cells suggest they may be beneficial in this respect. In this review, we summarize the history of stem cell and induced pluripotent stem cell (iPSC) technology in the context of hepatic differentiation and discuss the potential applications the technology may offer for human liver disease modeling and treatment. This includes developing safer drugs and cell-based therapies to improve the outcomes of patients with currently incurable health illnesses. We also review promising advances in other disease areas to highlight how the stem cell technology could be applied to liver diseases in the future. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  13. Deregulation of fatty acid metabolism and cannabinoid receptors in liver of morbidly obese women with non-alcoholic fatty liver disease

    OpenAIRE

    Berlanga Bustos, Alba

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a histological spectrum from simple steatosis (SS) to non-alcoholic steatohepatitis (NASH), with the latter being more frequently progressive. Due to lipid accumulation in the human liver seems to be a crucial mechanism in the NAFLD pathogenesis, an improved understanding of the underlying mechanisms leading to the initial hepatic lipid accumulation could be of great interest for controlling the progression of NAFLD. It has also been repor...

  14. Obstructive Sleep Apnea and Non-alcoholic Fatty Liver Disease: Is the Liver Another Target?

    Directory of Open Access Journals (Sweden)

    Aibek eMirrakhimov

    2012-10-01

    Full Text Available Obstructive sleep apnea (OSA is recurrent obstruction of the upper airway during sleep leading to intermittent hypoxia (IH. OSA has been associated with all components of the metabolic syndrome as well as with non-alcoholic fatty liver disease (NAFLD. NAFLD is a common condition ranging in severity from uncomplicated hepatic steatosis to steatohepatitis (NASH, liver fibrosis and cirrhosis. The gold standard for the diagnosis and staging of NAFLD is liver biopsy. Obesity and insulin resistance lead to liver steatosis, but the causes of the progression to NASH are not known. Emerging evidence suggests that OSA may play a role in the progression of hepatic steatosis and the development of NASH. Several cross-sectional studies showed that the severity of IH in patients with OSA predicted the severity of NAFLD on liver biopsy. However, neither prospective nor interventional studies with continuous positive airway pressure (CPAP treatment have been performed. Studies in a mouse model showed that IH causes triglyceride accumulation in the liver and liver injury as well as hepatic inflammation. The mouse model provided insight in the pathogenesis of liver injury showing that (1 IH accelerates the progression of hepatic steatosis by inducing adipose tissue lipolysis and increasing free fatty acids (FFA flux into the liver; (2 IH up-regulates lipid biosynthetic pathways in the liver; (3 IH induces oxidative stress in the liver; (4 IH up-regulates hypoxia inducible factor 1 alpha and possibly HIF-2 alpha, which may increase hepatic steatosis and induce liver inflammation and fibrosis. However, the role of FFA and different transcription factors in the pathogenesis of IH-induced NAFLD is yet to be established. Thus, multiple lines of evidence suggest that IH of OSA may contribute to the progression of NAFLD but definitive clinical studies and experiments in the mouse model have yet to be done.

  15. Carcinoembryonic Antigen Level in Liver Disease

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Ok; Kim, Ki Whang; Park, Chang Yun [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1978-09-15

    Carcinoembryonic antigen was initially known as tumor specific antigen and had a potential diagnostic value in the detection of digestive tract malignancies. However, subsequent studies showed CEA and CEA-like antigen present in benign disease, particularly in liver. We had collected sera from 58 patients who had liver scan and later were diagnosed clinically and histologically as liver disease. We estimated CEA values and correlations were made with liver function tests in liver cirrhosis cases. The results: 1) The raised plasma carcinoembryonic antigen level were found in 13 (68.4%) of 19 patients cirrhosis, 5 (27.8%) of 18 patients in hepatoma, 5 (71%) of 7 patients in chronic active hepatitis, all 3 patients in liver abscesses, 2 (66.7%) of 3 patients in liver abscesses, 2 (66.7%) of 3 patients in obstructive biliary disease and none in each one patient of traumatic liver hematoma, subphrenic abscess and clonorchiasis. 2) There is no linear correlation between carcinoembryonic antigen level and liver function tests including serum bilirubin, alkaline phosphatase, SGOT and prothrombin time in liver patients.

  16. Carcinoembryonic Antigen Level in Liver Disease

    International Nuclear Information System (INIS)

    Choi, Kyoo Ok; Kim, Ki Whang; Park, Chang Yun

    1978-01-01

    Carcinoembryonic antigen was initially known as tumor specific antigen and had a potential diagnostic value in the detection of digestive tract malignancies. However, subsequent studies showed CEA and CEA-like antigen present in benign disease, particularly in liver. We had collected sera from 58 patients who had liver scan and later were diagnosed clinically and histologically as liver disease. We estimated CEA values and correlations were made with liver function tests in liver cirrhosis cases. The results: 1) The raised plasma carcinoembryonic antigen level were found in 13 (68.4%) of 19 patients cirrhosis, 5 (27.8%) of 18 patients in hepatoma, 5 (71%) of 7 patients in chronic active hepatitis, all 3 patients in liver abscesses, 2 (66.7%) of 3 patients in liver abscesses, 2 (66.7%) of 3 patients in obstructive biliary disease and none in each one patient of traumatic liver hematoma, subphrenic abscess and clonorchiasis. 2) There is no linear correlation between carcinoembryonic antigen level and liver function tests including serum bilirubin, alkaline phosphatase, SGOT and prothrombin time in liver patients.

  17. Intervention of pumpkin seed oil on metabolic disease revealed by metabonomics and transcript profile.

    Science.gov (United States)

    Zhao, Xiu-Ju; Chen, Yu-Lian; Fu, Bing; Zhang, Wen; Liu, Zhiguo; Zhuo, Hexian

    2017-03-01

    Understanding the metabolic and transcription basis of pumpkin seed oil (PSO) intervention on metabolic disease (MD) is essential to daily nutrition and health. This study analyzed the liver metabolic variations of Wistar rats fed normal diet (CON), high-fat diet (HFD) and high-fat plus PSO diet (PSO) to establish the relationship between the liver metabolite composition/transcript profile and the effects of PSO on MD. By using proton nuclear magnetic resonance spectroscopy together with multivariate data analysis, it was found that, compared with CON rats, HFD rats showed clear dysfunctions of choline metabolism, glucose metabolism and nucleotide and amino acid metabolism. Using quantitative real-time polymerase chain reaction (qPCR), it was found that, compared with HFD rats, PSO rats showed alleviated endoplasmic reticulum stress accompanied by lowered unfolded protein response. These findings provide useful information to understand the metabolic alterations triggered by MD and to evaluate the effects of PSO intervention. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Regional metabolic liver function measured in patients with cirrhosis by 2-[¹⁸F]fluoro-2-deoxy-D-galactose PET/CT.

    Science.gov (United States)

    Sørensen, Michael; Mikkelsen, Kasper S; Frisch, Kim; Villadsen, Gerda E; Keiding, Susanne

    2013-06-01

    There is a clinical need for methods that can quantify regional hepatic function non-invasively in patients with cirrhosis. Here we validate the use of 2-[(18)F]fluoro-2-deoxy-d-galactose (FDGal) PET/CT for measuring regional metabolic function to this purpose, and apply the method to test the hypothesis of increased intrahepatic metabolic heterogeneity in cirrhosis. Nine cirrhotic patients underwent dynamic liver FDGal PET/CT with blood samples from a radial artery and a liver vein. Hepatic blood flow was measured by indocyanine green infusion/Fick's principle. From blood measurements, hepatic systemic clearance (Ksyst, Lblood/min) and hepatic intrinsic clearance (Vmax/Km, Lblood/min) of FDGal were calculated. From PET data, hepatic systemic clearance of FDGal in liver parenchyma (Kmet, mL blood/mL liver tissue/min) was calculated. Intrahepatic metabolic heterogeneity was evaluated in terms of coefficient-of-variation (CoV, %) using parametric images of Kmet. Mean approximation of Ksyst to Vmax/Km was 86% which validates the use of FDGal as PET tracer of hepatic metabolic function. Mean Kmet was 0.157 mL blood/mL liver tissue/min, which was lower than 0.274 mL blood/mL liver tissue/min, previously found in healthy subjects (pdynamic FDGal PET/CT with arterial sampling provides an accurate measure of regional hepatic metabolic function in patients with cirrhosis. This is likely to have clinical implications for the assessment of patients with liver disease as well as treatment planning and monitoring. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. [Balneotherapeutics of non-alcoholic fatty liver disease with the use of the Essentuki-type drinking mineral waters].

    Science.gov (United States)

    Fedorova, T E; Efimenko, N V; Kaĭsinova, A S

    2012-01-01

    The objective of the present work was to estimate the effectiveness of combined spa-and-resort treatment with the use of the Essentuki-type drinking mineral waters for the patients presenting with non-alcoholic fatty liver disease. A total of 40 patients presening with non-alcoholic fatty liver disease (NOFLD) were available for the examination. The study has demonstrated positive dynamics of clinical symptoms and results of liver functional tests, characteristics of intrahepatic dynamics, lipid metabolism, antioxidant hemostais, and the hormonal status of the patients with non-alcoholic fatty liver disease. The intake of the Essentuki-type drinking mineral waters promoted normalization of adiponectin and leptin levels in conjunction with the reduction in the degree of insulin resistance, i.e., the key pathogenetic factors responsible for hepatic steatosis and non-alcoholic steatohepatitis. It is concluded that the Essentuki-type drinking mineral waters may be recommended for the inclusion in the combined treatment and prevention of the progression of non-alcoholic fatty liver disease.

  20. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.

    Science.gov (United States)

    Han, Kyu-Ho; Hashimoto, Naoto; Fukushima, Michihiro

    2016-01-07

    Excessive consumption of alcoholic beverages is a serious cause of liver disease worldwide. The metabolism of ethanol generates reactive oxygen species, which play a significant role in the deterioration of alcoholic liver disease (ALD). Antioxidant phytochemicals, such as polyphenols, regulate the expression of ALD-associated proteins and peptides, namely, catalase, superoxide dismutase, glutathione, glutathione peroxidase, and glutathione reductase. These plant antioxidants have electrophilic activity and may induce antioxidant enzymes via the Kelch-like ECH-associated protein 1-NF-E2-related factor-2 pathway and antioxidant responsive elements. Furthermore, these antioxidants are reported to alleviate cell injury caused by oxidants or inflammatory cytokines. These phenomena are likely induced via the regulation of mitogen-activating protein kinase (MAPK) pathways by plant antioxidants, similar to preconditioning in ischemia-reperfusion models. Although the relationship between plant antioxidants and ALD has not been adequately investigated, plant antioxidants may be preventive for ALD because of their electrophilic and regulatory activities in the MAPK pathway.

  1. Adrenal disorders and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Papanastasiou, Labrini; Fountoulakis, Stelios; Vatalas, Ioannis-Anastasios

    2017-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the developed world and its pathogenesis is complex and multifactorial. It is considered the hepatic manifestation of the metabolic syndrome and is the leading cause of hepatic cirrhosis. This review aims to present current knowledge on the involvement of the adrenal glands in the development of NAFLD. Clinical and animal studies have shown that excess glucocorticoids (GC) have been implicated in the pathogenesis of NAFLD. Patients with NAFLD seem to have a subtle chronic activation of the hypothalamic pituitary adrenal axis leading to a state of subclinical hypercortisolism. Regulators of GC such as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), an enzyme that regenerates cortisol from inactive cortisone, and 5α/5β-reductases, enzymes that increase cortisol clearance, are implicated in the development of NAFLD by amplifying local GC action. Adrenal androgen (dehydroepiandrosterone) abnormalities and increased aldosterone levels may also have a role in the development of NAFLD whereas the contribution of adrenergic signaling in NAFLD pathogenesis remains unclear.

  2. Intracerebroventricular ghrelin treatment affects lipid metabolism in liver of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Velasco, Cristina; Librán-Pérez, Marta; Otero-Rodiño, Cristina; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2016-03-01

    We aimed to elucidate in rainbow trout (Oncorhynchus mykiss) the effects of central ghrelin (GHRL) treatment on the regulation of liver lipid metabolism, and the possible modulatory effect of central GHRL treatment on the simultaneous effects of raised levels of oleate. Thus, we injected intracerebroventricularly (ICV) rainbow trout GHRL in the presence or absence of oleate and evaluated in liver variables related to lipid metabolism. Oleate treatment elicited in liver of rainbow trout decreased lipogenesis and increased oxidative capacity in agreement with previous studies. Moreover, as demonstrated for the first time in fish in the present study, GHRL also acts centrally modulating lipid metabolism in liver, resulting in increased potential for lipogenesis and decreased potential for fatty acid oxidation, i.e. the converse effects to those elicited by central oleate treatment. The simultaneous treatment of GHRL and oleate confirmed these counteractive effects. Thus, the nutrient sensing mechanisms present in hypothalamus, particularly those involved in sensing of fatty acid, are involved in the control of liver energy metabolism in fish, and this control is modulated by the central action of GHRL. These results give support to the notion of hypothalamus as an integrative place for the regulation of peripheral energy metabolism in fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Role of Dendritic Cells in Fibrosis Progression in Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Paloma Almeda-Valdes

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most frequent cause of chronic liver disease. NAFLD encompasses a wide range of pathologies, from simple steatosis to steatosis with inflammation to fibrosis. The pathogenesis of NAFLD progression has not been completely elucidated, and different liver cells could be implicated. This review focuses on the current evidence of the role of liver dendritic cells (DCs in the progression from NAFLD to fibrosis. Liver DCs are a heterogeneous population of hepatic antigen-presenting cells; their main function is to induce T-cell mediated immunity by antigen processing and presentation to T cells. During the steady state liver DCs are immature and tolerogenic. However, in an environment of chronic inflammation, DCs are transformed to potent inducers of immune responses. There is evidence about the role of DC in liver fibrosis, but it is not clearly understood. Interestingly, there might be a link between lipid metabolism and DC function, suggesting that immunogenic DCs are associated with liver lipid storage, representing a possible pathophysiological mechanism in NAFLD development. A better understanding of the interaction between inflammatory pathways and the different cell types and the effect on the progression of NAFLD is of great relevance.

  4. Liver Disease in the Alcoholic

    OpenAIRE

    Szilagyi, Andrew

    1986-01-01

    The problem of liver damage in alcoholic patients is widespread. This review discusses hepatic damage on the basis of a histologic classification of increasing severity. In the early stages, or with compensated cirrhosis, clinical and laboratory findings may not accurately reflect hepatic involvement. Furthermore, there exists a group of alcoholic patients in whom liver disease may be caused by factors other than alcohol. Nevertheless, in most patients with liver disease, certain biochemical ...

  5. Models of non-Alcoholic Fatty Liver Disease and Potential Translational Value: the Effects of 3,5-L-diiodothyronine.

    Science.gov (United States)

    Grasselli, Elena; Canesi, Laura; Portincasa, Piero; Voci, Adriana; Vergani, Laura; Demori, Ilaria

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common liver disorder in industrialized countries and is associated with increased risk of cardiovascular, hepatic and metabolic diseases. Molecular mechanisms on the root of the disrupted lipid homeostasis in NAFLD and potential therapeutic strategies can benefit of in vivo and in vitro experimental models of fatty liver. Here, we describe the high fat diet (HFD)-fed rat in vivo model, and two in vitro models, the primary cultured rat fatty hepatocytes or the FaO rat hepatoma fatty cells, mimicking human NAFLD. Liver steatosis was invariably associated with increased number/size of lipid droplets (LDs) and modulation of expression of genes coding for key genes of lipid metabolism such as peroxisome proliferator-activated receptors (Ppars) and perilipins (Plins). In these models, we tested the anti-steatotic effects of 3,5-L-diiodothyronine (T2), a metabolite of thyroid hormones. T2 markedly reduced triglyceride content and LD size acting on mRNA expression of both Ppars and Plins. T2 also stimulated mitochondrial oxidative metabolism of fatty acids. We conclude that in vivo and especially in vitro models of NAFLD are valuable tools to screen a large number of compounds counteracting the deleterious effect of liver steatosis. Because of the high and negative impact of liver steatosis on human health, ongoing experimental studies from our group are unravelling the ultimate translational value of such cellular models of NAFLD.

  6. Epidemiology Of Alcoholic Liver Disease

    Directory of Open Access Journals (Sweden)

    А.Г. Мартынова

    2009-12-01

    Full Text Available One of the main factors of chronic liver disease is alcohol. The level of alcoholic liver disease incidence and cirrhosis mortality has increased considerably in the recent years in many countries. The risk of development and disease progression are determined by the effect of endogenous and exogenous factors: "drinking mode", female gender, heredity and genetic predisposition, obesity, concomitant viral hepatitis

  7. Pediatric Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Haley Bush

    2017-06-01

    Full Text Available Abstract: With the increase in the prevalence of obesity, non-alcoholic fatty liver disease (NAFLD has become among the leading causes of chronic liver disease in the pediatric age group. Once believed to be a “two-hit process”, it is now clear that the actual pathophysiology of NAFLD is complex and involves multiple pathways. Moreover, NAFLD is not always benign, and patients with non-alcoholic steatohepatitis (NASH are at increased risk of developing advanced stages of liver disease. It has also been shown that NAFLD is not only a liver disease, but is also associated with multiple extrahepatic manifestations, including cardiovascular diseases, type 2 diabetes, and low bone mineral density. Although the data is scarce in the pediatric population, some studies have suggested that long-term mortality and the requirement of liver transplantation will continue to increase in patients with NAFLD. More studies are needed to better understand the natural history of NAFLD, especially in the pediatric age group.

  8. Traditional Chinese medicine treatment of liver diseases

    Directory of Open Access Journals (Sweden)

    WANG Rongbing

    2015-01-01

    Full Text Available Traditional Chinese medicine (TCM treatment of liver diseases is derived from the regulation of liver function including storing blood and governing the free flow of qi, in which functional systems such as modern digestion, endocrine, and the gut-liver axis are involved, and is established on modern hepatic physiology, pathology, and etiology. To objectively reveal the characteristics and advantages of modern TCM treatment of liver diseases, we analyzed the clinical and research situation of TCM therapy for liver diseases in the last decade and collected major achievements that have been applied in clinical treatment of diseases, published in core journals, and confirmed by major scientific research programs. The results showed TCM combined with antiviral therapy can improve the clinical outcomes of chronic hepatitis B. TCM can help HBV carriers prevent disease progression. Integrated traditional Chinese and Western medicine therapy for acute-on-chronic liver failure can block the deterioration induced by endotoxin. TCM has been widely applied in protecting the liver through nonspecific anti-inflammation, alleviating hepatic fibrosis, and preventing non-alcoholic fatty liver. TCM plays an important role in treating some currently untreatable liver diseases. Therefore, it is our common responsibility to inherit and develop effective principle-method-recipe-medicines and create a better medical care system.

  9. The role of oxidative stress in the development of alcoholic liver disease.

    Science.gov (United States)

    Galicia-Moreno, M; Gutiérrez-Reyes, G

    2014-01-01

    Alcohol is the most accepted addictive substance worldwide and its consumption is related to multiple health, economic, and social problems. The liver is the organ in charge of ethanol metabolism and it is susceptible to alcohol's toxic effects. To provide a detailed review of the role of oxidative stress in alcoholic liver disease and the mechanisms of damage involved, along with current information on the hepatoprotective effectiveness of the molecules that have been studied. A search of the PubMed database was conducted using the following keywords oxidative stress, alcoholic liver damage, alcoholic cirrhosis, and antioxidants. There was no time limit for gathering all available information on the subject at hand. According to the literature reviewed, oxidative stress plays an important role in the pathogenesis of alcoholic liver damage. Molecules such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), formed during ethanol metabolism, structurally and functionally modify organic molecules. Consequently, biologic processes are altered and hepatocytes are sensitized to the action of cytokines like tumor necrosis factor-α, as well as to the action of endotoxins, activating signaling pathways such as those controlled by nuclear factor kappa B, extracellular signal regulated kinases, and mitogen activated protein kinase. Oxidative stress plays an important role in the development of liver damage resulting from alcohol consumption. The molecules that have currently displayed a hepatoprotective effect in preclinical and clinical trials must be studied further so that their effectiveness can be confirmed and they can possibly be used as adjuvant treatments for this disease. Copyright © 2014 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  10. Metabolic effects of obesity causing disease in childhood.

    Science.gov (United States)

    Abrams, Pamela; Levitt Katz, Lorraine E

    2011-02-01

    Childhood obesity is rising to epidemic proportions throughout the world, and much emphasis has been placed on the long-term consequences that can result later, in adulthood. This article reviews the metabolic consequences of obesity that can manifest as disease during the childhood years. Obese children suffer from many disease processes once thought to affect only adults. They can have type 2 diabetes mellitus, and potentially early β cell failure with rapid progression to an insulin requirement. There is a high prevalence of fatty liver disease in obese children, and complications such as steatohepatitis and even cirrhosis can develop during childhood. Visceral fat has been shown to have many different properties than subcutaneous fat, and children with central adiposity can develop the metabolic syndrome with insulin resistance, hypertension, and dyslipidemia. Hyperandrogenism, sleep disturbances, and many types of orthopedic complications can also develop in young children. Physicians should not only warn obese children and their families about the long-term consequences of obesity for which they are at risk in adulthood, they should also screen for the many diseases that may already be present.

  11. Application of localized 31P MRS saturation transfer at 7 T for measurement of ATP metabolism in the liver: reproducibility and initial clinical application in patients with non-alcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Valkovic, Ladislav; Gajdosik, Martin; Chmelik, Marek; Trattnig, Siegfried; Traussnigg, Stefan; Kienbacher, Christian; Trauner, Michael; Wolf, Peter; Krebs, Michael; Bogner, Wolfgang; Krssak, Martin

    2014-01-01

    Saturation transfer (ST) phosphorus MR spectroscopy ( 31 P MRS) enables in vivo insight into energy metabolism and thus could identify liver conditions currently diagnosed only by biopsy. This study assesses the reproducibility of the localized 31 P MRS ST in liver at 7 T and tests its potential for noninvasive differentiation of non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH). After the ethics committee approval, reproducibility of the localized 31 P MRS ST at 7 T and the biological variation of acquired hepato-metabolic parameters were assessed in healthy volunteers. Subsequently, 16 suspected NAFL/NASH patients underwent MRS measurements and diagnostic liver biopsy. The Pi-to-ATP exchange parameters were compared between the groups by a Mann-Whitney U test and related to the liver fat content estimated by a single-voxel proton ( 1 H) MRS, measured at 3 T. The mean exchange rate constant (k) in healthy volunteers was 0.31 ± 0.03 s -1 with a coefficient of variation of 9.0 %. Significantly lower exchange rates (p -1 ) when compared to healthy volunteers, and NAFL patients (k = 0.30 ± 0.05 s -1 ). Significant correlation was found between the k value and the liver fat content (r = 0.824, p 31 P MRS ST technique provides a tool for gaining insight into hepatic ATP metabolism and could contribute to the differentiation of NAFL and NASH. (orig.)

  12. Review of nonalcoholic fatty liver disease in women with polycystic ovary syndrome

    Science.gov (United States)

    Kelley, Carly E; Brown, Ann J; Diehl, Anna Mae; Setji, Tracy L

    2014-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-aged women. Women with PCOS frequently have metabolic complications including insulin resistance (IR), early diabetes, hypertension and dyslipidemia. Recent studies have demonstrated an association between PCOS and another metabolic complication: nonalcoholic fatty liver disease (NAFLD). NAFLD occurs as a result of abnormal lipid handling by the liver, which sensitizes the liver to injury and inflammation. It can progress to nonalcoholic steatohepatitis (NASH), which is characterized by hepatocyte injury and apoptosis. With time and further inflammation, NASH can progress to cirrhosis. Thus, given the young age at which NAFLD may occur in PCOS, these women may be at significant risk for progressive hepatic injury over the course of their lives. Many potential links between PCOS and NAFLD have been proposed, most notably IR and hyperandrogenemia. Further studies are needed to clarify the association between PCOS and NAFLD. In the interim, clinicians should be aware of this connection and consider screening for NAFLD in PCOS patients who have other metabolic risk factors. The optimal method of screening is unknown. However, measuring alanine aminotransferase and/or obtaining ultrasound on high-risk patients can be considered. First line treatment consists of lifestyle interventions and weight loss, with possible pharmacologic interventions in some cases. PMID:25339805

  13. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  14. Genetic background in nonalcoholic fatty liver disease: A comprehensive review

    Science.gov (United States)

    Macaluso, Fabio Salvatore; Maida, Marcello; Petta, Salvatore

    2015-01-01

    In the Western world, nonalcoholic fatty liver disease (NAFLD) is considered as one of the most significant liver diseases of the twenty-first century. Its development is certainly driven by environmental factors, but it is also regulated by genetic background. The role of heritability has been widely demonstrated by several epidemiological, familial, and twin studies and case series, and likely reflects the wide inter-individual and inter-ethnic genetic variability in systemic metabolism and wound healing response processes. Consistent with this idea, genome-wide association studies have clearly identified Patatin-like phosholipase domain-containing 3 gene variant I148M as a major player in the development and progression of NAFLD. More recently, the transmembrane 6 superfamily member 2 E167K variant emerged as a relevant contributor in both NAFLD pathogenesis and cardiovascular outcomes. Furthermore, numerous case-control studies have been performed to elucidate the potential role of candidate genes in the pathogenesis and progression of fatty liver, although findings are sometimes contradictory. Accordingly, we performed a comprehensive literature search and review on the role of genetics in NAFLD. We emphasize the strengths and weaknesses of the available literature and outline the putative role of each genetic variant in influencing susceptibility and/or progression of the disease. PMID:26494964

  15. Effects of insulin-like growth factor-I on bone metabolism in patients with liver cirrhosis

    International Nuclear Information System (INIS)

    Li Xiaohong; Gao Wenjin; Wang Mingtao; Hu Haiqiang

    2006-01-01

    To study the effects of serum insulin-like growth factor-I (IGF-I) on bone metabolism in liver cirrhosis, 44 patients with hepatic cirrhosis were divided into 3 groups according to disease severity (Child Pugh Score) and 38 healthy subjects served as controls. Serum levels of IGF-I and osteocalcin(BGP) were measured in all patients and controls. Results showed that levels of IGF-I, BGP, and BMD were lower significantly in patients with liver cirrhosis than that in controls. When the condition of cirrhosis more deteriorated, these changes became much lower significantly. Serum levels of BGP and BMD were positively correlated with IGF-I. The decreasing level of IGF-I might be an important factor causing osteoporosis in patients with liver cirrhosis. (authors)

  16. Assessment of adrenal function in liver diseases

    Directory of Open Access Journals (Sweden)

    Sandeep Kharb

    2013-01-01

    Full Text Available Background: In recent times, there are reports of adrenal dysfunction in whole spectrum of liver disease. Adrenal insufficiency (AI has been shown to correlate with progression of liver disease. Hence this study was conducted to assess adrenal function in subjects with acute liver disease (ALD, chronic liver disease (CLD and post liver transplantation (LT. Material and Methods: This study included 25 healthy controls, 25 patients of ALD, 20 subjects of CLD with Child-Pugh stage A (CLD-1 and 30 with Child-Pugh stage B or C (CLD-2, and 10 subjects with LT. All subjects were assessed clinically, biochemically and for adrenal functions. Results: AI was present in 9 (34.6% patients with ALD, 20 (40% patients with CLD and 4 (40% in subjects with LT. AI was more common in CLD-2 (18 patients - 60% than CLD-1 (2 patients - 10%. All patients with chronic liver disease had significantly lower basal cortisol (8.8±4.8, P=0.01, stimulated cortisol (18.2±6.3, P <0.00001 and incremental cortisol (9.4±4.6, P <0.00001 as compared to controls. There was increase in percentage of subjects with adrenal dysfunction with progression of liver disease as assessed by Child-Pugh staging. AI was predicted by lower levels of serum protein, serum albumin, total cholesterol and HDL cholesterol and higher levels of serum bilirubin and INR. Adrenal functions showed recovery following liver transplantation. Conclusions: AI forms important part of spectrum of acute and chronic liver disease. Deterioration of synthetic functions of liver disease predicts presence of AI, and these patients should be evaluated for adrenal dysfunction periodically.

  17. Inverse association between hepatitis B virus infection and fatty liver disease: a large-scale study in populations seeking for check-up.

    Directory of Open Access Journals (Sweden)

    Yuan-Lung Cheng

    Full Text Available BACKGROUND: Although many studies have attempted to clarify the association between hepatitis B virus (HBV infection and fatty liver disease, no prior studies have emphasized the relationship of HBV and fatty liver regarding different demographics of age and body mass index (BMI. AIM: To investigate the correlation of HBV and fatty liver in the different demographics of age and BMI. METHODS: We enrolled consecutive subjects who had received health check-up services at the Taipei Veterans General Hospital from 2002 to 2009 and ultrasonography was used to diagnose fatty liver according to the practice guidelines of the American Gastroenterological Association. RESULTS: Among the 33,439 subjects enrolled in this study, fatty liver was diagnosed in 43.9% of the population and 38.9% of patients with chronic HBV infection. Multivariate analysis showed that BMI, age, waist circumference, systolic blood pressure, fasting glucose, cholesterol, alanine aminotransferase (ALT levels, and platelet counts were positively associated, while hepatitis B surface antigen (HBsAg positivity was inversely associated with fatty liver, especially for subjects with BMI>22.4 kg/m(2 and age>50 years. On the contrary, HBV infection was positively correlated with the presence of elevated serum ALT levels in subjects with fatty liver disease regardless of their age and BMI. CONCLUSIONS: Metabolic factors are important determinants for the prevalence of fatty liver. Patients with HBV infection were inversely associated with fatty liver disease than the general population, especially in older and obese patients. Furthermore, metabolic factors and HBV infection were associated with elevated serum ALT levels in fatty liver disease.

  18. CORRELATION OF NON-ALCOHOLIC FATTY LIVER DISEASE AND FEATURES OF METABOLIC SYNDROME IN MORBIDLY OBESE PATIENTS IN THE PREOPERATIVE ASSESSMENT FOR BARIATRIC SURGERY

    Science.gov (United States)

    de BARROS, Fernando; SETÚBAL, Sergio; MARTINHO, José Manoel; FERRAZ, Loraine; GAUDÊNCIO, Andressa

    2016-01-01

    ABSTRACT Background: Obesity is an epidemic and chronic disease that can bring other comorbidities to the patient. Non-alcoholic fatty liver disease is present in up to 90% of these patients and can progress to hepatitis and hepatocarcinoma. The relationship of this liver disease and obesity is already well known; however, it is possible that some parameters of the comorbidities are more related than others in the pathophysiology of the disease. Aim: Was analyzed the relationship between non-alcoholic fatty liver disease (NAFLD) and the comorbidities of metabolic syndrome in morbidly obese patients. Methods: Was involved ultrasonography and laboratory assessment of obese patients before bariatric surgery. NAFLD was assessed using the same sonography parameters for all patients. Based on the results, the patients were divided into groups with and without NAFLD. Comparisons between them involved clinical and laboratory variables such as fasting blood glucose, insulin, HOMA-IR (homeostasis model assessment - insulin resistance), glycated hemoglobin, total cholesterol and fractions, triglycerides, alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase, C-reactive protein, albumin and ferritin. Patients who reported alcohol abuse (defined as the consumption of >14 drinks per week) or who had hepatitis were excluded. Results: Eighty-two patients (74 women and 8 men) were studied, of whom 53 (64.6%) had NAFLD and 29 (35.4%) did not. The levels of glycated hemoglobin (p=0.05) and LDL cholesterol (p=0.01) were significantly altered in patients with NAFLD. However, weight, body mass index and excess weight did not differ significantly between the groups (p=0.835, p=0.488 and p=0.727, respectively). Conclusions: Altered LDL cholesterol and glycated hemoglobin levels were related to the presence of NAFLD. PMID:28076482

  19. Metabolism of 1-[14C]nitropyrene in isolated perfused rat livers

    International Nuclear Information System (INIS)

    Bond, J.A.; Medinsky, M.A.; Dutcher, J.S.

    1984-01-01

    1-Nitropyrene (1-NP), a constituent of diesel exhaust, is carcinogenic to rats and is a bacterial and mammalian mutagen. Biliary and fecal excretion of 1-NP metabolites are the major routes of excretion in rats, suggesting that hepatic metabolism plays a dominant role in determining the biological fate of 1-NP. The purpose of this investigation was to quantitate 1-[14C]NP metabolites formed in isolated perfused rat livers and excreted in bile from rats. Perfused rat livers displayed a capacity for oxidation, reduction, acetylation, and conjugation of 1-NP (or its metabolites). Reduction of 1-NP followed by N-acetylation was the major metabolic pathway observed in the perfused livers. Acetylaminopyrene (AAP) was the major metabolite detected, with total quantities (150 nmol) accounting for about 60% of the total 1-[14C]NP dose (258 nmol) added to the perfusate. Considerably smaller quantities of aminopyrene and hydroxynitropyrenes were also detected. Livers perfused with 1-[14C]NP excreted about 36 nmol equivalents of 1-[14C]NP (12% of the total 1-NP dose) in bile after 60 min. Some of the biliary metabolites were tentatively identified as metabolites of the mercapturic acid pathway. The spectrum of biliary metabolites was qualitatively identical to that seen in bile from intact rats. Quantities of 14C covalently bound to hepatic macromolecules from perfused livers were 0.4 nmol 1-NP eq/g liver. The data from this study indicate that the liver may be an important site for metabolism of 1-NP

  20. New therapeutic strategies for canine liver disease; Growth factors and liver progenitor cells

    NARCIS (Netherlands)

    Arends, B.

    2008-01-01

    The liver has the unique capacity to regulate its mass after loss of functional liver cells due to liver disease, injury, and/or toxicity. Unfortunately, in the course of chronic liver disease this meticulously regulated regeneration process is imbalanced resulting in a decreased regenerative

  1. Mechanisms and Implications of Age-Related Changes in the Liver: Nonalcoholic Fatty Liver Disease in the Elderly

    Directory of Open Access Journals (Sweden)

    Lay Gan

    2011-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is hepatic steatosis associated with metabolic abnormalities such as overweight/central obesity, insulin resistance, type 2 diabetes (T2D, and dyslipidemia. NAFLD is becoming the most common liver disease in contemporary society, with the highest prevalence in those over 60 years. NAFLD pathology ranges from simple steatosis to a necroinflammatory fibrosing disorder called steatohepatitis (SH, the latter associated with high risk of developing cirrhosis, often occuring in the seventh to ninth decades of life. While the main health implications of NAFLD are increased risk of developing T2D, cardiovascular diseases, and common cancers, there is substantantially increased standardized mortality, and deaths from decompensated cirrhosis and hepatocellular carcinoma (HCC. Little is known about the interactive effects of ageing and NAFLD, with most studies focusing on the younger population. This paper summarises the epidemiology, pathogenesis, and clinical course of NAFLD, with particular attention to persons over age 60 years. An approach to the management of NASH and its complications in the elderly, will also be presented here.

  2. Metabolic profiles are principally different between cancers of the liver, pancreas and breast.

    Science.gov (United States)

    Budhu, Anuradha; Terunuma, Atsushi; Zhang, Geng; Hussain, S Perwez; Ambs, Stefan; Wang, Xin Wei

    2014-01-01

    Molecular profiling of primary tumors may facilitate the classification of patients with cancer into more homogenous biological groups to aid clinical management. Metabolomic profiling has been shown to be a powerful tool in characterizing the biological mechanisms underlying a disease but has not been evaluated for its ability to classify cancers by their tissue of origin. Thus, we assessed metabolomic profiling as a novel tool for multiclass cancer characterization. Global metabolic profiling was employed to identify metabolites in paired tumor and non-tumor liver (n=60), breast (n=130) and pancreatic (n=76) tissue specimens. Unsupervised principal component analysis showed that metabolites are principally unique to each tissue and cancer type. Such a difference can also be observed even among early stage cancers, suggesting a significant and unique alteration of global metabolic pathways associated with each cancer type. Our global high-throughput metabolomic profiling study shows that specific biochemical alterations distinguish liver, pancreatic and breast cancer and could be applied as cancer classification tools to differentiate tumors based on tissue of origin.

  3. Serum thymidine kinase activity of various cancer and HBV positive liver diseases

    Energy Technology Data Exchange (ETDEWEB)

    Torizumi, Kazutami; Aibata, Hirofumi; Kiji, Shigeyuki; Ohta, Kiichiro; Okamoto, Yukiharu; Ohshiro, Iwao; Hirose, Tetsuhito

    1987-03-01

    Clinical utility of determination of serum deoxythymidine kinase (TK) activity is described. It is well known that elevated TK level is observed in leukemia and other malignant diseases, or some viral infectious diseases. The TK activity was assayed on normal subjects, hepatitis B virus (HBV) positive liver diseases and various cancer by a newly developed high sensitive method, radioenzyme assay (REA) utilizing /sup 125/I-iododeoxyuridine as the substrate. Measurement of TK activity by the REA is revealed to be useful for ''the marker of DNA metabolism anomaly'' in leukemia, etc.

  4. Epigenetic mechanisms in non-alcoholic fatty liver disease: An emerging field.

    Science.gov (United States)

    Gallego-Durán, Rocío; Romero-Gómez, Manuel

    2015-10-28

    Non-alcoholic fatty liver disease (NAFLD) is an emerging health concern in both developed and non-developed world, encompassing from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Incidence and prevalence of this disease are increasing due to the socioeconomic transition and change to harmful diet. Currently, gold standard method in NAFLD diagnosis is liver biopsy, despite complications and lack of accuracy due to sampling error. Further, pathogenesis of NAFLD is not fully understood, but is well-known that obesity, diabetes and metabolic derangements played a major role in disease development and progression. Besides, gut microbioma and host genetic and epigenetic background could explain considerable interindividual variability. Knowledge that epigenetics, heritable events not caused by changes in DNA sequence, contribute to development of diseases has been a revolution in the last few years. Recently, evidences are accumulating revealing the important role of epigenetics in NAFLD pathogenesis and in NASH genesis. Histone modifications, changes in DNA methylation and aberrant profiles or microRNAs could boost development of NAFLD and transition into clinical relevant status. PNPLA3 genotype GG has been associated with a more progressive disease and epigenetics could modulate this effect. The impact of epigenetic on NAFLD progression could deserve further applications on therapeutic targets together with future non-invasive methods useful for the diagnosis and staging of NAFLD.

  5. Effects of disturbed liver growth and oxidative stress of high-fat diet-fed dams on cholesterol metabolism in offspring mice.

    Science.gov (United States)

    Kim, Juyoung; Kim, Juhae; Kwon, Young Hye

    2016-08-01

    Changes in nutritional status during gestation and lactation have detrimental effects on offspring metabolism. Several animal studies have shown that maternal high-fat diet (HFD) can predispose the offspring to development of obesity and metabolic diseases, however the mechanisms underlying these transgenerational effects are poorly understood. Therefore, we examined the effect of maternal HFD consumption on metabolic phenotype and hepatic expression of involved genes in dams to determine whether any of these parameters were associated with the metabolic outcomes in the offspring. Female C57BL/6 mice were fed a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD: 45% calories from fat) for three weeks before mating, and during pregnancy and lactation. Dams and their male offspring were studied at weaning. Dams fed an HFD had significantly higher body and adipose tissue weights and higher serum triglyceride and cholesterol levels than dams fed an LFD. Hepatic lipid levels and mRNA levels of genes involved in lipid metabolism, including LXRα, SREBP-2, FXR, LDLR, and ABCG8 were significantly changed by maternal HFD intake. Significantly lower total liver DNA and protein contents were observed in dams fed an HFD, implicating the disturbed liver adaptation in the pregnancy-related metabolic demand. HFD feeding also induced significant oxidative stress in serum and liver of dams. Offspring of dams fed an HFD had significantly higher serum cholesterol levels, which were negatively correlated with liver weights of dams and positively correlated with hepatic lipid peroxide levels in dams. Maternal HFD consumption induced metabolic dysfunction, including altered liver growth and oxidative stress in dams, which may contribute to the disturbed cholesterol homeostasis in the early life of male mice offspring.

  6. Prevalence and factors associated with the presence of non alcoholic fatty liver disease in an apparently healthy adult population in primary care units

    Directory of Open Access Journals (Sweden)

    Pizarro Gregorio

    2007-11-01

    Full Text Available Abstract Background Fatty liver disease is characterized by the accumulation of fat vacuoles inside of the hepatocytes. Non alcoholic fatty liver is associated with obesity, type 2 diabetes, dyslipemia, the intake of certain drugs and with the so-called metabolic syndrome. However, there is little information on the clinical relevance of this disorder as a healthcare problem in the general population, since the studies published generally include a limited number of patients and the diagnosis is established on the basis of clear biochemical alterations and liver biopsy. Methods/Design The aim of the study is the prevalence of non-alcoholic fatty liver disease in a general adult population by hepatic ultrasonography. A population-based, descriptive, transversal, multicentre study. Eighteen primary care centres of the north of Barcelona and the Maresme Areas of Healthcare Management attending an urban and semi-urban population of 360.000 inhabitants. A randomized sample of 786 subjects of 15 years or older were selected from the population and assigned to the participating centres according to the Primary Care Information System (SIAP: This population is practically the same as the general population of the area. The following determinations will be carried out in all the participants: hepatic ultrasonography to detect fatty liver, a questionnaire concerning liver diseases, alcohol intake, smoking and drug use, physical examination including abdominal perimeter and body mass index and biochemical analysis including liver function tests and parameters related to the metabolic syndrome and the HAIR score. Ultrasonographic diagnosis of fatty liver will be made according to established criteria (American Gastroenterology Association and diagnosis of metabolic syndrome according to the criteria of the European Group for the Study of Insulin Resistance. Discussion This study will attempt to determine the prevalence of non alcoholic fatty liver disease

  7. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy

    Science.gov (United States)

    Kristiansen, Maria Nicoline Baandrup; Veidal, Sanne Skovgård; Rigbolt, Kristoffer Tobias Gustav; Tølbøl, Kirstine Sloth; Roth, Jonathan David; Jelsing, Jacob; Vrang, Niels; Feigh, Michael

    2016-01-01

    AIM: To characterize development of diet-induced nonalcoholic steatohepatitis (NASH) by performing liver biopsy in wild-type and genetically obese mice. METHODS: Male wild-type C57BL/6J (C57) mice (DIO-NASH) and male Lepob/Lepob (ob/ob) mice (ob/ob-NASH) were maintained on a diet high in trans-fat (40%), fructose (22%) and cholesterol (2%) for 26 and 12 wk, respectively. A normal chow diet served as control in C57 mice (lean chow) and ob/ob mice (ob/ob chow). After the diet-induction period, mice were liver biopsied and a blinded histological assessment of steatosis and fibrosis was conducted. Mice were then stratified into groups counterbalanced for steatosis score and fibrosis stage and continued on diet and to receive daily PO dosing of vehicle for 8 wk. Global gene expression in liver tissue was assessed by RNA sequencing and bioinformatics. Metabolic parameters, plasma liver enzymes and lipids (total cholesterol, triglycerides) as well as hepatic lipids and collagen content were measured by biochemical analysis. Non-alcoholic fatty liver disease activity score (NAS) (steatosis/inflammation/ballooning degeneration) and fibrosis were scored. Steatosis and fibrosis were also quantified using percent fractional area. RESULTS: Diet-induction for 26 and 12 wk in DIO-NASH and ob/ob-NASH mice, respectively, elicited progressive metabolic perturbations characterized by increased adiposity, total cholesterol and elevated plasma liver enzymes. The diet also induced clear histological features of NASH including hepatosteatosis and fibrosis. Overall, the metabolic NASH phenotype was more pronounced in ob/ob-NASH vs DIO-NASH mice. During the eight week repeated vehicle dosing period, the metabolic phenotype was sustained in DIO-NASH and ob/ob-NASH mice in conjunction with hepatomegaly and increased hepatic lipids and collagen accumulation. Histopathological scoring demonstrated significantly increased NAS of DIO-NASH mice (0 vs 4.7 ± 0.4, P NASH mice (2.4 ± 0.3 vs 6.3

  8. Prolactin and liver disease

    NARCIS (Netherlands)

    A.G.C. Bauer (Alexander)

    1982-01-01

    textabstractCirrhosis of the liver is associated with profound endocrinological disturbances. Until recently it was thought that these disturbances were caused mainly by ineffective elimination of hormones by the diseased liver. It is now known that the pathogenesis of disturbed hormonal function in

  9. Effect of Weight Loss, Diet, Exercise, and Bariatric Surgery on Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Hannah, William N; Harrison, Stephen A

    2016-05-01

    Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD is the most common liver disease in developed countries. Weight reduction of 3% to 5% is associated with improved steatosis; reductions of 5% to 7% are necessary for decreased inflammation; with 7% to 10%, individuals may experience NAFLD/NASH remission and regression of fibrosis. No specific dietary intervention has proven beneficial beyond calorie restriction. Physical activity without weight loss seems to decrease hepatic steatosis. Bariatric surgery is associated with decreased cardiovascular risk and improved overall mortality in addition to reduction in hepatic steatosis, inflammation, and fibrosis. Published by Elsevier Inc.

  10. Fructose-Drinking Water Induced Nonalcoholic Fatty Liver Disease and Ultrastructural Alteration of Hepatocyte Mitochondria in Male Wistar Rat

    Directory of Open Access Journals (Sweden)

    Norshalizah Mamikutty

    2015-01-01

    Full Text Available Background. Nonalcoholic fatty liver disease (NAFLD is one of the complications of the metabolic syndrome. It encompasses a wide range of disease spectrum from simple steatosis to liver cirrhosis. Structural alteration of hepatic mitochondria might be involved in the pathogenesis of NAFLD. Aims. In the present study, we used a newly established model of fructose-induced metabolic syndrome in male Wistar rats in order to investigate the ultrastructural changes in hepatic mitochondria that occur with fructose consumption and their association with NAFLD pathogenesis. Methods. The concentration of fructose-drinking water (FDW used in this study was 20%. Six male Wistar rats were supplemented with FDW 20% for eight weeks. Body composition and metabolic parameters were measured before and after 8 weeks of FDW 20%. Histomorphology of the liver was evaluated and ultrastructural changes of mitochondria were assessed with transmission electron micrograph. Results. After 8 weeks of fructose consumption, the animals developed several features of the metabolic syndrome. Moreover, fructose consumption led to the development of macrovesicular hepatic steatosis and mitochondrial ultrastructural changes, such as increase in mitochondrial size, disruption of the cristae, and reduction of matrix density. Conclusion. We conclude that in male Wistar rat 8-week consumption of FDW 20% leads to NAFLD likely via mitochondrial structural alteration.

  11. Bone metabolism dynamics in the early post-transplant period following kidney and liver transplantation.

    Science.gov (United States)

    Schreiber, Peter W; Bischoff-Ferrari, Heike A; Boggian, Katia; Bonani, Marco; van Delden, Christian; Enriquez, Natalia; Fehr, Thomas; Garzoni, Christian; Hirsch, Hans H; Hirzel, Cédric; Manuel, Oriol; Meylan, Pascal; Saleh, Lanja; Weisser, Maja; Mueller, Nicolas J

    2018-01-01

    Bone disease contributes to relevant morbidity after solid organ transplantation. Vitamin D has a crucial role for bone metabolism. Activation of vitamin D depends on the endocrine function of both, liver and kidney. Our study assessed key markers of bone metabolism at time of transplantation and 6 months after transplantation among 70 kidney and 70 liver recipients. In 70 kidney recipients 25-OH vitamin D levels did not differ significantly between peri-transplant (median 32.5nmol/l) and 6 months post-transplant (median 41.9nmol/l; P = 0.272). Six months post-transplant median 1, 25-(OH)2 vitamin D levels increased by >300% (from 9.1 to 36.5ng/l; Ptransplantation and of intact parathyroid hormone 6 months post-transplant. Among 70 liver recipients, 25-OH vitamin D, 1, 25-(OH)2 vitamin D and intact parathyroid hormone levels were not significantly altered between peri-transplant and 6 months post-transplant. Contrary to kidney recipients, median CTx increased by 60.0% (from 0.45 to 0.72 ng/ml; P = 0.002) and P1NP by 49.3% (from 84.0 to 125.4ng/ml; P = 0.001) in the longitudinal course. Assessed biomarkers didn't differ between liver recipients with and without fractures. To conclude, the assessed panel of biomarkers proved highly dynamic after liver as well as kidney transplantation in the early post-transplant period. After kidney transplantation a significant gain in 1, 25-(OH)2 vitamin D combined with a decline in iPTH, CTx and P1NP, whereas after liver transplantation an increase in CTx and P1NP were characteristic.

  12. A20 modulates lipid metabolism and energy production to promote liver regeneration.

    Directory of Open Access Journals (Sweden)

    Scott M Damrauer

    2011-03-01

    Full Text Available Liver regeneration is clinically of major importance in the setting of liver injury, resection or transplantation. We have demonstrated that the NF-κB inhibitory protein A20 significantly improves recovery of liver function and mass following extended liver resection (LR in mice. In this study, we explored the Systems Biology modulated by A20 following extended LR in mice.We performed transcriptional profiling using Affymetrix-Mouse 430.2 arrays on liver mRNA retrieved from recombinant adenovirus A20 (rAd.A20 and rAd.βgalactosidase treated livers, before and 24 hours after 78% LR. A20 overexpression impacted 1595 genes that were enriched for biological processes related to inflammatory and immune responses, cellular proliferation, energy production, oxidoreductase activity, and lipid and fatty acid metabolism. These pathways were modulated by A20 in a manner that favored decreased inflammation, heightened proliferation, and optimized metabolic control and energy production. Promoter analysis identified several transcriptional factors that implemented the effects of A20, including NF-κB, CEBPA, OCT-1, OCT-4 and EGR1. Interactive scale-free network analysis captured the key genes that delivered the specific functions of A20. Most of these genes were affected at basal level and after resection. We validated a number of A20's target genes by real-time PCR, including p21, the mitochondrial solute carriers SLC25a10 and SLC25a13, and the fatty acid metabolism regulator, peroxisome proliferator activated receptor alpha. This resulted in greater energy production in A20-expressing livers following LR, as demonstrated by increased enzymatic activity of cytochrome c oxidase, or mitochondrial complex IV.This Systems Biology-based analysis unravels novel mechanisms supporting the pro-regenerative function of A20 in the liver, by optimizing energy production through improved lipid/fatty acid metabolism, and down-regulated inflammation. These findings

  13. Assessment of metabolic stability using the rainbow trout (Oncorhynchus mykiss) liver S9 fraction

    Science.gov (United States)

    Standard protocols are given for assessing metabolic stability in rainbow trout using the liver S9 fraction. These protocols describe the isolation of S9 fractions from trout livers, evaluation of metabolic stability using a substrate depletion approach, and expression of the res...

  14. The in utero programming effect of increased maternal androgens and a direct fetal intervention on liver and metabolic function in adult sheep.

    Directory of Open Access Journals (Sweden)

    Kirsten Hogg

    Full Text Available Epigenetic changes in response to external stimuli are fast emerging as common underlying causes for the pre-disposition to adult disease. Prenatal androgenization is one such model that results in reproductive and metabolic features that are present in conditions such as polycystic ovary syndrome (PCOS. We examined the effect of prenatal androgens on liver function and metabolism of adult sheep. As non-alcoholic fatty liver disease is increased in PCOS we hypothesized that this, and other important liver pathways including metabolic function, insulin-like growth factor (IGF and steroid receptivity, would be affected. Pregnant ewes received vehicle control (C; n = 5 or testosterone propionate (TP; n = 9 twice weekly (100 mg; i.m from d62-102 (gestation 147 days. In a novel treatment paradigm, a second cohort received a direct C (n = 4 or TP (20 mg; n = 7 fetal injection at d62 and d82. In adults, maternal TP exposure resulted in increased insulin secretion to glucose load (P<0.05 and the histological presence of fatty liver (P<0.05 independent of central obesity. Additionally, hepatic androgen receptor (AR; P<0.05, glucocorticoid receptor (GR; P<0.05, UDP- glucose ceramide glucosyltransferase (UGCG; P<0.05 and IGF1 (P<0.01 expression were upregulated. The direct fetal intervention (C and TP led to early fatty liver changes in all animals without differential changes in insulin secretion. Furthermore, hepatic phosphoenolpyruvate carboxykinase (PEPCK was up-regulated in the fetal controls (P<0.05 and this was opposed by fetal TP (P<0.05. Hepatic estrogen receptor (ERα; P<0.05 and mitogen activated protein kinase kinase 4 (MAP2K4; P<0.05 were increased following fetal TP exposure. Adult liver metabolism and signaling can be altered by early exposure to sex steroids implicating epigenetic regulation of metabolic disturbances that are common in PCOS.

  15. Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease.

    Science.gov (United States)

    Woodhouse, C A; Patel, V C; Singanayagam, A; Shawcross, D L

    2018-01-01

    Mortality from chronic liver disease is rising exponentially. The liver is intimately linked to the gut via the portal vein, and exposure to gut microbiota and their metabolites translocating across the gut lumen may impact upon both the healthy and diseased liver. Modulation of gut microbiota could prove to be a potential therapeutic target. To characterise the changes in the gut microbiome that occur in chronic liver disease and to assess the impact of manipulation of the microbiome on the liver. We conducted a PubMed search using search terms including 'microbiome', 'liver' and 'cirrhosis' as well as 'non-alcoholic fatty liver disease', 'steatohepatitis', 'alcohol' and 'primary sclerosing cholangitis'. Relevant articles were also selected from references of articles and review of the ClinicalTrials.gov website. Reduced bacterial diversity, alcohol sensitivity and the development of gut dysbiosis are seen in several chronic liver diseases, including non-alcoholic fatty liver disease, alcohol-related liver disease and primary sclerosing cholangitis. Perturbations in gut commensals could lead to deficient priming of the immune system predisposing the development of immune-mediated diseases. Furthermore, transfer of stool from an animal with the metabolic syndrome may induce steatosis in a healthy counterpart. Patients with cirrhosis develop dysbiosis, small bowel bacterial overgrowth and increased gut wall permeability, allowing bacterial translocation and uptake of endotoxin inducing hepatic and systemic inflammation. Manipulation of the gut microbiota with diet, probiotics or faecal microbiota transplantation to promote the growth of "healthy" bacteria may ameliorate the dysbiosis and alter prognosis. © 2017 John Wiley & Sons Ltd.

  16. Periodontal disease and liver cirrhosis: A systematic review.

    Science.gov (United States)

    Grønkjær, Lea Ladegaard

    2015-01-01

    Studies suggest that periodontal disease, a source of subclinical and persistent infection, may be associated with various systemic conditions, including liver cirrhosis. The aim of this study was to examine the literature and determine the relationship between periodontal disease and liver cirrhosis and to identify opportunities and directions for future research in this area. A systematic review of English articles in the PubMed, EMBASE, and Scopus databases was conducted using search terms including 'liver cirrhosis', 'end-stage liver disease', 'liver diseases', 'oral health', 'periodontal disease', 'mouth disease', 'gingivitis', and 'periodontitis'. Thirteen studies published between 1981 and 2014 were found to include data on oral health and periodontal disease in cirrhotic patients. Studies indicated an increased incidence of periodontal disease in patients with liver cirrhosis, measured with several different periodontal indices. The reported prevalence of periodontal disease in cirrhosis patients ranged from 25.0% to 68.75% in four studies and apical periodontitis was found in 49%-79% of the patients. One study found that mortality was lower among patients who underwent dental treatment versus non-treated patients. Another study suggested an association between periodontal disease and the progression of liver cirrhosis, but data are sparse and conflicting as to whether periodontal disease is correlated to cirrhosis aetiology and severity. Despite the clinical reality of periodontal disease in liver cirrhosis patients, there are few published studies. Before clinical implications can be addressed, more data on the prevalence of and correlation between periodontal disease and liver cirrhosis aetiology, duration, and progression are needed.

  17. Heart over mind: metabolic control of white adipose tissue and liver.

    Science.gov (United States)

    Nakamura, Michinari; Sadoshima, Junichi

    2014-12-01

    Increasing evidence suggests that the heart controls the metabolism of peripheral organs. Olson and colleagues previously demonstrated that miR‐208a controls systemic energy homeostasis through the regulation of MED13 in cardiomyocytes (Grueter et al, 2012). In their follow‐up study in this issue of EMBO Molecular Medicine, white adipose tissue (WAT) and liver are identified as the physiological targets of cardiac MED13 signaling, most likely through cardiac‐derived circulating factors, which boost energy consumption by upregulating metabolic gene expression and increasing mitochondrial numbers (Baskin et al, 2014). In turn, increased energy expenditure in WAT and the liver confers leanness. These findings strengthen the evidence of metabolic crosstalk between the heart and peripheral tissues through cardiokines and also set the stage for the development of novel treatments for metabolic syndrome.

  18. Liver involvement in Gaucher disease - Review and clinical approach.

    Science.gov (United States)

    Adar, Tomer; Ilan, Yaron; Elstein, Deborah; Zimran, Ari

    2018-02-01

    Gaucher disease (GD), one of the most prevalent lysosomal storage diseases, is associated with glucocerebroside accumulation in cells of the monocyte-macrophage system in various organs, including the liver. Evaluating and managing liver disease in patients with Gaucher disease may be challenging. While hepatic involvement is common in Gaucher disease, its severity, and clinical significance span a wide spectrum, ranging from sub-clinical involvement to liver cirrhosis with its associated complications including portal hypertension. Apart from liver involvement in Gaucher disease, patients with may also suffer from other comorbidities involving the liver. That Gaucher disease itself can mimic hepatic lesions, affect laboratory tests used to characterize liver disease, and may be associated with non-cirrhotic portal hypertension, complicates the diagnostic approach even more. Better understanding of liver involvement in Gaucher disease can spare patients unnecessary invasive testing, and assist physicians in decision making when evaluating patients with Gaucher disease suspected for significant liver disease. This review describes the various clinical manifestations, laboratory and imaging abnormalities that may be encountered when following patients with Gaucher disease for liver involvement. The mechanism for liver disease are discussed, as well as the possible hepato-protective effect of glucocerebroside, and the a diagnostic and treatment approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease.

    Science.gov (United States)

    Luukkonen, Panu K; Zhou, You; Sädevirta, Sanja; Leivonen, Marja; Arola, Johanna; Orešič, Matej; Hyötyläinen, Tuulia; Yki-Järvinen, Hannele

    2016-05-01

    Recent data in mice have identified de novo ceramide synthesis as the key mediator of hepatic insulin resistance (IR) that in humans characterizes increases in liver fat due to IR ('Metabolic NAFLD' but not that due to the I148M gene variant in PNPLA3 ('PNPLA3 NAFLD'). We determined which bioactive lipids co-segregate with IR in the human liver. Liver lipidome was profiled in liver biopsies from 125 subjects that were divided into equally sized groups based on median HOMA-IR ('High and Low HOMA-IR', n=62 and n=63) or PNPLA3 genotype (PNPLA3(148MM/MI), n=61 vs. PNPLA3(148II), n=64). The subjects were also divided into 4 groups who had either IR, the I148M gene variant, both of the risk factors or neither. Steatosis and NASH prevalence were similarly increased in 'High HOMA-IR' and PNPLA3(148MM/MI) groups compared to their respective control groups. The 'High HOMA-IR' but not the PNPLA3(148MM/MI) group had features of IR. The liver in 'High HOMA-IR' vs. 'Low HOMA-IR' was markedly enriched in saturated and monounsaturated triacylglycerols and free fatty acids, dihydroceramides (markers of de novo ceramide synthesis) and ceramides. Markers of other ceramide synthetic pathways were unchanged. In PNPLA3(148MM/MI)vs. PNPLA3(148II), the increase in liver fat was due to polyunsaturated triacylglycerols while other lipids were unchanged. Similar changes were observed when data were analyzed using the 4 subgroups. Similar increases in liver fat and NASH are associated with a metabolically harmful saturated, ceramide-enriched liver lipidome in 'Metabolic NAFLD' but not in 'PNPLA3 NAFLD'. This difference may explain why metabolic but not PNPLA3 NAFLD increases the risk of type 2 diabetes and cardiovascular disease. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  20. Estimation of liver glucose metabolism after refeeding

    International Nuclear Information System (INIS)

    Rognstad, R.

    1987-01-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a 14 C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the 14 C yield from H 14 CO 3 - in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding

  1. A study of standardized extracts of Picrorhiza kurroa Royle ex Benth in experimental nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    Sapna N Shetty

    2010-01-01

    Full Text Available As a major organ of intermediary metabolism, the liver is exposed to a variety of metabolic insults due to diseases and xenobiotics viz., insulin resistance (IR drugs, toxins, microbial products, etc. One of the consequences of these metabolic insults including obesity and type 2 diabetes mellitus is the development of non-alcoholic fatty liver disease (NAFLD. The recent alarming increase in the prevalence of NAFLD compels the need to develop an appropriate animal model of the disease so as to evolve effective interventions. In this study, we have developed, in the rat, a new model of NAFLD showing several key features akin to the disease in humans. Male Wistar rats were challenged with 30% high fat diet (HFD - butter, for 2 weeks to induce NAFLD. A hydroalcoholic extract of Picrorhiza kurroa was administered to study the possible reversal of fatty changes in the liver. The extract was given in two doses viz., 200mg/kg and 400 mg/kg b.i.d., p.o. for a period of 4 weeks. There were three control groups (n = 6/group - vehicle with a regular diet, vehicle with HFD, and HFD with silymarin - a known hepatoprotective. Histopathology showed that the P. kurroa extract brought about a reversal of the fatty infiltration of the liver (mg/g and a lowering of the quantity of hepatic lipids (mg/g compared to that in the HFD control group (38.33 ± 5.35 for 200mg/kg; 29.44 ± 8.49 for 400mg/kg of P. kurroa vs.130.07 ± 6.36mg/g of liver tissue in the HFD control group; P<0.001. Compared to the standard dose of the known hepatoprotective silymarin, P. kurroa reduced the lipid content (mg/g of the liver more significantly at the dose of 400mg/kg (57.71 ± 12.45mg/kg vs. 29.44 ± 8.49 for the silymarin group vs. 400mg/kg of P. kurroa, P<0.001. In view of the increasing prevalence of metabolic syndrome and NAFLD, P. kurroa should be investigated by the reverse pharmacology path as a potential drug for the treatment of NAFLD, and essential safety studies and

  2. Liver enzymes and markers of inflammation in Nigerian adults with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Udenze Ifeoma Christiana

    2015-01-01

    Full Text Available Aims and objectives: The aim of this study is to determine the plasma levels of the liver enzymes alanine aminotransferase (ALT, aspartate aminotransferase (AST, alkaline phosphatase (ALP, gamma-glutamyl transferase (GGT, and lactate dehydrogenase (LDH in people with metabolic syndrome and to determine the association between the liver enzymes and obesity, insulin resistance, interleukin 6 (IL-6, and C-reactive protein (CRP in adult Nigerians with metabolic syndrome. Materials and Methods: This was a case control study of 50 adult men and women with metabolic syndrome, and 50 age- and sex-matched males and females without metabolic syndrome. Metabolic syndrome was defined based on the National Cholesterol Education Program (NCEP-Adult Treatment Panel III (ATPIII criteria. Written informed consent was obtained from the participants. Sociodemographic and clinical data were collected using a structured questionnaire. Venous blood was collected after an overnight fast. The ethics committee of the Lagos University Teaching Hospital in Lagos, Nigeria, approved the study protocol. Comparison of continuous variables was done using the student′s t-test. Regression and correlation analysis were used to determine the associations between variables. Statistical significance was set at P < 0.05. Results: There was a statistically significant increase in the liver enzymes ALP (P = 0.031, ALT (P = 0.019, and GGT (P = 0.037, as well as in the inflammatory markers CRP (P = 0.019 and the cytokine IL-6 (P = 0.040 between the two study groups. ALP and ALT showed significant correlation with waist circumference, BMI, fasting insulin, and waist/hip ratio (P < 0.05. Multivariate regression also identified ALT, AST, and ALP to be associated with IL-6 and CRP (P < 0.05. Conclusion: Liver enzyme levels were increased in metabolic syndrome and associated with obesity, fasting insulin, and CRP. Elevated liver enzymes may indicate dysmetabolism and increased

  3. Association Between Insulin Resistance and Oxidative Stress Parameters in Obese Adolescents with Non-Alcoholic Fatty Liver Disease

    OpenAIRE

    Pirgon, ?zg?r; Bilgin, H?seyin; ?ekmez, Ferhat; Kurku, H?seyin; D?ndar, Bumin Nuri

    2013-01-01

    Objective: Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases in children. The aim of this study was to investigate the associations of oxidative stress with insulin resistance and metabolic risk factors in obese adolescents with NAFLD. Methods: Forty-six obese adolescents (23 girls and 23 boys, mean age: 12.8?2.2 years) and 29 control subjects (15 girls and 14 boys, mean age: 12.7?2.7 years) were enrolled in the study. The obese subjects were d...

  4. Current Concepts in Diabetes Mellitus and Chronic Liver Disease: Clinical Outcomes, Hepatitis C Virus Association, and Therapy.

    Science.gov (United States)

    García-Compeán, Diego; González-González, José Alberto; Lavalle-González, Fernando Javier; González-Moreno, Emmanuel Irineo; Villarreal-Pérez, Jesús Zacarías; Maldonado-Garza, Héctor J

    2016-02-01

    Hereditary type 2 diabetes mellitus is a risk factor for chronic liver disease, and ~30 % of patients with liver cirrhosis develop diabetes. Diabetes mellitus has been associated with cirrhotic and non-cirrhotic hepatitis C virus liver infection, can aggravate the course the liver infection, and can induce a lower sustained response to antiviral treatment. Evidences that HCV may induce metabolic and autoimmune disturbances leading to hypobetalipoproteinemia, steatosis, insulin resistance, impaired glucose tolerance, thyroid disease, and gonadal dysfunction have been found. Prospective studies have demonstrated that diabetes increases the risk of liver complications and death in patients with cirrhosis. However, treatment of diabetes in these patients is complex, as antidiabetic drugs can promote hypoglycemia and lactic acidosis. There have been few therapeutic studies evaluating antidiabetic treatments in patients with liver cirrhosis published to date; thus, the optimal treatment for diabetes and the impact of treatment on morbidity and mortality are not clearly known. As numbers of patients with chronic liver disease and diabetes mellitus are increasing, largely because of the global epidemics of obesity and nonalcoholic fatty liver disease, evaluation of treatment options is becoming more important. This review discusses new concepts on hepatogenous diabetes, the diabetes mellitus–hepatitis C virus association, and clinical implications of diabetes mellitus in patients with chronic liver disease. In addition, the effectiveness and safety of old and new antidiabetic drugs, including incretin-based therapies, will be described.

  5. The Role of Tumor Necrosis Factor- alpha and Resistin in Nonalcoholic Fatty Liver Disease

    International Nuclear Information System (INIS)

    Alkady, M.M.

    2011-01-01

    Nonalcoholic fatty liver disease (NAFLD) represents one of the most common liver diseases. It is strongly associated with obesity and insulin resistance and is thought to be a part of the metabolic syndrome. It can progress from simple fatty liver to steatohepatitis, cirrhosis and liver failure. Adipocytokines, synthesized in adipose tissue, are involved in the pathophysiology of many acute and chronic liver diseases. The aim of this study was to investigate the role of Tumor Necrosis Factor-alpha (TNF-alpha) and resistin in the pathogenesis of NAFLD and their correlation to the severity of the disease. Serum concentration of TNF-alpha and resistin were measured in 20 patients with NAFLD and 20 healthy controls with ELISA method. The results of this study revealed that serum levels of both adipokines were significantly elevated in NAFLD patients than controls (P<0.01). Moreover, they were significantly higher in patients with nonalcoholic steatohepatitis than in patients with simple fatty liver. There was a significant positive correlation between TNF-alpha, resistin and each of AST, ALT and HOMA. Similarly, the results showed a significant positive correlation between the two studied adipokines, TNF-alpha and resistin (P<0.001). We conclude that TNF-alpha and resistin have a role in the pathogenesis of NAFLD and they may be promising markers for the progressin to steatohepatitis and inhibition of their activities by drugs may be a new approach for the treatment of NAFLD

  6. Bile Acid Signaling in Liver Metabolism and Diseases

    Directory of Open Access Journals (Sweden)

    Tiangang Li

    2012-01-01

    Full Text Available Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.

  7. Omics for Understanding the Gut-Liver-Microbiome Axis and Precision Medicine

    Science.gov (United States)

    Human metabolic disease opens a new view to understanding the contribution of the intestinal microbiome to drug metabolism and drug-induced toxicity in gut-liver function. Gut microbiota, a key determinant of intestinal inflammation, also plays a direct role in chronic inflammation and liver disease...

  8. Non-Alcoholic Fatty Liver Disease (NAFLD): new challenge for general practitioners and important burden for health authorities?

    Science.gov (United States)

    Ahmed, Mohamed H; Abu, Emmanuel O; Byrne, Christopher D

    2010-10-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of hepatic dysfunction encountered in general practice. A large proportion of individuals with type 2 diabetes and the metabolic syndrome develop NAFLD. NAFLD is associated with severe insulin resistance and increased risk of cardiovascular disease and can progress to non-alcoholic steato-hepatitis, liver cirrhosis and cancer. Currently the only known effective treatments for NAFLD are lifestyle changes including stable weight loss and a diet low in calories. General practitioners will increasingly play a key role in dealing with this evolving but serious epidemic of NAFLD and associated metabolic complications. However, success will depend on the appropriate systems and mechanisms being in place in primary care and the proper motivation, support and education of the patient. This review provides the primary care physician with: (a) a step-by step guide of how to identify NAFLD, (b) information to exclude common other causes of liver fat accumulation and (c) additional insight into relationships between NAFLD and other conditions such as obesity, cardiovascular disease and type 2 diabetes. Copyright © 2010 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  9. Sox17 regulates liver lipid metabolism and adaptation to fasting.

    Directory of Open Access Journals (Sweden)

    Samuel Rommelaere

    Full Text Available Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is depressed. This mouse carries a mutation in the HMG domain of the Sox17 transcription factor. Mutant mice display a metabolic phenotype featuring lipid abnormalities and inefficient adaptation to fasting. Upon fasting, a fraction of the PPARα-driven transcriptional program is no longer induced and associated with impaired fatty acid oxidation. The transcriptional phenotype is partially observed in heterozygous Sox17+/- mice. In mutant mice, the fasting phenotype but not all transcriptomic signature is rescued by the administration of the PPARalpha agonist fenofibrate. These results identify a novel role for Sox17 in adult liver as a modulator of the metabolic adaptation to fasting.

  10. Transplantation in autoimmune liver diseases

    Institute of Scientific and Technical Information of China (English)

    Marcus Mottershead; James Neuberger

    2008-01-01

    Liver transplantation remains an effective treatment for those with end-stage disease and with intractable liver-related symptoms.The shortage of organs for transplantation has resulted in the need for rationing.A variety of approaches to selection and allocation have been developed and vary from country to country.The shortage of donors has meant that new approaches have to be adopted to make maximal use of the available organs;these include splitting grafts,use of extended criteria livers,livers from nonheart-beating donors and from living donors.Post transplantation, most patients will need life-long immunosuppression,although a small proportion can have immunosuppression successfully withdrawn.Newer immunosuppressive drugs and different strategies may allow a more targeted approach with a reduction in sideeffects and so improve the patient and graft survival.For autoimmune diseases, transplantation is associated with significant improvement in the quality and length of life.Disease may recur after transplantation and may affect patient and graft survival.

  11. Perioperative management of liver surgery-review on pathophysiology of liver disease and liver failure.

    Science.gov (United States)

    Gasteiger, Lukas; Eschertzhuber, Stephan; Tiefenthaler, Werner

    2018-01-01

    An increasing number of patients present for liver surgery. Given the complex pathophysiological changes in chronic liver disease (CLD), it is pivotal to understand the fundamentals of chronic and acute liver failure. This review will give an overview on related organ dysfunction as well as recommendations for perioperative management and treatment of liver failure-related symptoms.

  12. in Human Liver Diseases

    Directory of Open Access Journals (Sweden)

    Minoru Fujimoto

    2010-01-01

    Full Text Available Toll-like receptor (TLR signaling pathways are strictly coordinated by several mechanisms to regulate adequate innate immune responses. Recent lines of evidence indicate that the suppressor of cytokine signaling (SOCS family proteins, originally identified as negative-feedback regulators in cytokine signaling, are involved in the regulation of TLR-mediated immune responses. SOCS1, a member of SOCS family, is strongly induced upon TLR stimulation. Cells lacking SOCS1 are hyperresponsive to TLR stimulation. Thus, SOCS1 is an important regulator for both cytokine and TLR-induced responses. As an immune organ, the liver contains various types of immune cells such as T cells, NK cells, NKT cells, and Kupffer cells and is continuously challenged with gut-derived bacterial and dietary antigens. SOCS1 may be implicated in pathophysiology of the liver. The studies using SOCS1-deficient mice revealed that endogenous SOCS1 is critical for the prevention of liver diseases such as hepatitis, cirrhosis, and cancers. Recent studies on humans suggest that SOCS1 is involved in the development of various liver disorders in humans. Thus, SOCS1 and other SOCS proteins are potential targets for the therapy of human liver diseases.

  13. A Branched-Chain Amino Acid-Related Metabolic Signature Characterizes Obese Adolescents with Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Martina Goffredo

    2017-06-01

    Full Text Available Dysregulation of several metabolite pathways, including branched-chain amino acids (BCAAs, are associated with Non-Alcoholic Fatty Liver Disease (NAFLD and insulin resistance in adults, while studies in youth reported conflicting results. We explored whether, independently of obesity and insulin resistance, obese adolescents with NAFLD display a metabolomic signature consistent with disturbances in amino acid and lipid metabolism. A total of 180 plasma metabolites were measured by a targeted metabolomic approach in 78 obese adolescents with (n = 30 or without (n = 48 NAFLD assessed by magnetic resonance imaging (MRI. All subjects underwent an oral glucose tolerance test and subsets of patients underwent a two-step hyperinsulinemic-euglycemic clamp and/or a second MRI after a 2.2 ± 0.8-year follow-up. Adolescents with NAFLD had higher plasma levels of valine (p = 0.02, isoleucine (p = 0.03, tryptophan (p = 0.02, and lysine (p = 0.02 after adjustment for confounding factors. Circulating BCAAs were negatively correlated with peripheral and hepatic insulin sensitivity. Furthermore, higher baseline valine levels predicted an increase in hepatic fat content (HFF at follow-up (p = 0.01. These results indicate that a dysregulation of BCAA metabolism characterizes obese adolescents with NAFLD independently of obesity and insulin resistance and predict an increase in hepatic fat content over time.

  14. Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases

    Directory of Open Access Journals (Sweden)

    Irina V. Kholodenko

    2017-01-01

    Full Text Available The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.

  15. Presentation of an acquired urea cycle disorder post liver transplantation.

    Science.gov (United States)

    Ghabril, Marwan; Nguyen, Justin; Kramer, David; Genco, Trina; Mai, Martin; Rosser, Barry G

    2007-12-01

    The liver's role as the largest organ of metabolism and the unique and often critical function of liver-specific enzyme pathways imply a greater risk to the recipient of acquiring a donor metabolic disease with liver transplants versus other solid organ transplants. With clinical consequences rarely reported, the frequency of solid organ transplant transfer of metabolic disease is not known. Ornithine transcarbamylase deficiency (OTCD), although rare, is the most common of the urea cycle disorders (UCDs). Because of phenotypic heterogeneity, OTCD may go undiagnosed into adulthood. With over 5000 liver transplant procedures annually in the United States, the likelihood of unknowingly transmitting OTCD through liver transplantation is very low. We describe the clinical course of a liver transplant recipient presenting with acute hyperammonemia and encephalopathy after receiving a liver graft form a donor with unrecognized OTCD. Copyright (c) 2007 AASLD.

  16. Aberrant Lipid Metabolism in Hepatocellular Carcinoma Revealed by Liver Lipidomics

    Directory of Open Access Journals (Sweden)

    Zhao Li

    2017-11-01

    Full Text Available Background: The aim of this study was to characterize the disorder of lipid metabolism in hepatocellular carcinoma (HCC. HCC is a worldwide disease. The research into the disorder of lipid metabolism in HCC is very limited. Study of lipid metabolism in liver cancer tissue may have the potential to provide new insight into HCC mechanisms. Methods: A lipidomics study of HCC based on Ultra high performance liquid chromatography-electronic spray ionization-QTOF mass spectrometer (UPLC-ESI-QTOF MS and Matrix assisted laser desorption ionization-fourier transform ion cyclotron resonance mass spectrometer (MALDI-FTICR MS was performed. Results: Triacylglycerols (TAGs with the number of double bond (DB > 2 (except 56:5 and 56:4 TAG were significantly down-regulated; conversely, others (except 52:2 TAG were greatly up-regulated in HCC tissues. Moreover, the more serious the disease was, the higher the saturated TAG concentration and the lower the polyunsaturated TAG concentration were in HCC tissues. The phosphatidylcholine (PC, phosphatidylethanolamine (PE and phosphatidylinositol (PI were altered in a certain way. Sphingomyelin (SM was up-regulated and ceramide (Cer were down-regulated in HCC tissues. Conclusions: To our knowledge, this is the first such report showing a unique trend of TAG, PC, PE and PI. The use of polyunsaturated fatty acids, like eicosapentanoic and docosahexanoic acid, as supplementation, proposed for the treatment of Non-alcoholic steatohepatitis (NASH, may also be effective for the treatment of HCC.

  17. Immunosuppressive and postoperative effects of orthotopic liver transplantation on bone metabolism

    NARCIS (Netherlands)

    Guichelaar, MMJ; Malinchoc, M; Sibonga, J; Clarke, BL; Hay, JE

    Bone loss occurs early after orthotopic liver transplantation (OLT) in all liver transplant recipients and leads to postoperative fractures, especially in cholestatic patients with the lowest bone mass. Little is known about the underlying changes in bone metabolism after OLT or about the etiology

  18. Serum Sialic Acid Concentration and Content in ApoB-Containing Lipoproteins in Liver Diseases.

    Science.gov (United States)

    Gudowska, Monika; Gruszewska, Ewa; Cylwik, Bogdan; Panasiuk, Anatol; Filisiak, Robert; Szmitkowski, Maciej; Chrostek, Lech

    2016-01-01

    The great significance for the metabolism of lipoproteins is the composition of carbohydrate chain of apolipoproteins, where sialic acid (SA) is located. In VILDL and LDL sialic acid is attached to apolipoprotein B. The sialylation of serum proteins including apolipoprotein B can be affected in the course of liver diseases. Therefore, the aim of this study was to assess the effect of liver diseases on the concentration and content of SA in ApoB-containing lipoproteins. The tested group consisted of 165 patients (118 males, 47 females) with liver diseases: alcoholic cirrhosis, non-alcoholic cirrhosis, chronic hepatitis, toxic hepatitis, chronic viral hepatitis, and liver cancer. ApoB-containing lipoproteins were isolated by a turbidimetric procedure and SA concentration was measured according to an enzymatic method. There was a significant increase in the serum concentration of SA in ApoB-containing lipoproteins in viral hepatitis. Although the serum concentration of ApoB was not significantly different between specific liver diseases, the serum levels of SA in ApoB-containing lipoproteins appeared to be different. There is an association between SA concentration and triglycerides in alcoholic cirrhosis and viral hepatitis. Also, in viral hepatitis SA concentration correlated negatively with HDL-cholesterol. The content of SA in ApoB-containing lipoproteins in alcoholic cirrhosis and viral hepatitis was significantly higher than that in the control group, but did not differ between diseases. This study may explain the variations in serum lipids and lipoproteins in liver diseases. It seems that the reason for these abnormalities is the changes in the concentration of sialic acid in ApoB-containing lipoproteins.

  19. [Effect of acute biliary pancreatitis on liver metabolism of phenazone].

    Science.gov (United States)

    Hartleb, M; Nowak, A; Nowakowska-Duława, E; Mańczyk, I; Becker, A; Kacperek, T

    1990-03-01

    In 22 patients with acute pancreatitis caused by biliary calculi and 9 healthy controls the rate of hepatic elimination of phenazone was measured. The aim of the study was evaluation of the oxidative-detoxicating action of the liver in this disease in relation to its severity. In pancreatitis patients the half-time (T2) of phenazone was significantly (p less than 0.01 longer than in healthy subjects (23.6 +/- 10.5 vs 13.2 +/- 7.2 hrs). The T2 of phenazone was not correlated with the concentrations of transaminases, bilirubin and prothrombin, but was correlated positively with the concentration of hepatic lactic dehydrogenase (p less than 0.001). In the initial stage of pancreatitis the T2 of phenazone was without prognostic significance and showed no agreement with Ranson's clinical-laboratory classification of the severity of the disease. The degree of impairment of the hepatic metabolism of phenazone measured with the percent difference between T2 of phenazone in both tests was significantly (p less than 0.05) greater in the group of patients with complications than in those without pancreatitis complications (70.7 +/- 64.4% vs 21.4 +/- 16.2%). Biliary pancreatitis impairs the oxidative-reductive function of the liver proportionally to the degree of hepatic lactic dehydrogenase in the serum. Evaluation of the rate of hepatic elimination of phenazone in the initial stage of this pancreatitis was without prognostic importance for the severity of the disease.

  20. Hemangiosarcoma of the liver in workers of the PVC industry and other VC-induced diseases with angiologic-dermatologic, hepatologic, radiologic and neurologic symptoms

    Energy Technology Data Exchange (ETDEWEB)

    Halama, J.; Becker-Stone, S.; Halama, J.M.

    1985-01-01

    Occupational diseases resulting from exposure to vinyl chloride (VC) include angiosarcoma of the liver and other neoplasms. Among workers exposed to VC the authors have found capillary abnormalities in the extremities, with scleroderma and Raynaud syndrome, acro-osteolysis, neurological and psychiatric diseases and chromosome abnormalities, as well as abnormal liver metabolism and haematological findings.

  1. Chlamydia pneumoniae acute liver infection affects hepatic cholesterol and triglyceride metabolism in mice.

    Science.gov (United States)

    Marangoni, Antonella; Fiorino, Erika; Gilardi, Federica; Aldini, Rita; Scotti, Elena; Nardini, Paola; Foschi, Claudio; Donati, Manuela; Montagnani, Marco; Cevenini, Monica; Franco, Placido; Roda, Aldo; Crestani, Maurizio; Cevenini, Roberto

    2015-08-01

    Chlamydia pneumoniae has been linked to atherosclerosis, strictly associated with hyperlipidemia. The liver plays a central role in the regulation of lipid metabolism. Since in animal models C. pneumoniae can be found at hepatic level, this study aims to elucidate whether C. pneumoniae infection accelerates atherosclerosis by affecting lipid metabolism. Thirty Balb/c mice were challenged intra-peritoneally with C. pneumoniae elementary bodies and thirty with Chlamydia trachomatis, serovar D. Thirty mice were injected with sucrose-phosphate-glutamate buffer, as negative controls. Seven days after infection, liver samples were examined both for presence of chlamydia and expression of genes involved in inflammation and lipid metabolism. C. pneumoniae was isolated from 26 liver homogenates, whereas C. trachomatis was never re-cultivated (P triglycerides levels compared both with negative controls (P metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Does vitamin C deficiency promote fatty liver disease development?

    DEFF Research Database (Denmark)

    Ipsen, David Højland; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-01-01

    by the generation of excess levels of reactive oxygen species and induces adipocyte dysfunction and reprogramming, leading to a low grade systemic inflammation and ectopic lipid deposition, e.g., in the liver, hereby promoting a vicious circle in which dietary factors initiate a metabolic change that further...... exacerbates the negative consequences of an adverse life-style. Large epidemiological studies and findings from controlled in vivo animal studies have provided evidence supporting an association between poor vitamin C (VitC) status and propagation of life-style associated diseases. In addition, overweight per...

  3. Evidence that non-alcoholic fatty liver disease and polycystic ovary syndrome are associated by necessity rather than chance: a novel hepato-ovarian axis?

    Science.gov (United States)

    Targher, Giovanni; Rossini, Maurizio; Lonardo, Amedeo

    2016-02-01

    Increasing evidence suggests that non-alcoholic fatty liver disease (NAFLD) and polycystic ovary syndrome (PCOS) are associated with obesity, insulin resistance, metabolic syndrome, cardiovascular disease, cirrhosis, and liver tumors. On these grounds, we have hypothesized that NAFLD and PCOS occur more frequently than expected by chance alone. We have tested this hypothesis by reviewing the clinical and biological evidence that supports a significant association between NAFLD and PCOS. PubMed was extensively searched for articles published through March 2015 using the keywords "nonalcoholic fatty liver disease" or "fatty liver" combined with "PCOS." Several cross-sectional and case-control studies have consistently demonstrated that the prevalence of NAFLD is remarkably increased in young women with PCOS, independent of overweight/obesity and other coexisting metabolic syndrome features, and that these women are more likely to have the more severe forms of NAFLD (non-alcoholic steatohepatitis, advanced fibrosis, and cirrhosis). Accumulating evidence suggests that NAFLD, especially its necro-inflammatory form, may exacerbate hepatic and systemic insulin resistance and releases multiple pro-inflammatory, pro-coagulant, and pro-fibrogenic mediators that may play important roles in the pathophysiology of PCOS. These findings call for more active and systematic search for NAFLD among women with PCOS. Conversely, gastroenterologists/hepatologists need to be aware of the presence of PCOS among female patients with NAFLD and compatible clinical features. Finally, all these patients should undergo regular follow-up not only for liver-related complications but also for cardio-metabolic diseases.

  4. Ananas comosus L. Leaf Phenols and p-Coumaric Acid Regulate Liver Fat Metabolism by Upregulating CPT-1 Expression

    Directory of Open Access Journals (Sweden)

    Weidong Xie

    2014-01-01

    Full Text Available In this study, we aimed to investigate the effect and action mechanisms of pineapple leaf phenols (PLPs on liver fat metabolism in high-fat diet-fed mice. Results show that PLP significantly reduced abdominal fat and liver lipid accumulation in high-fat diet-fed mice. The effects of PLP were comparable with those of FB. Furthermore, at the protein level, PLP upregulated the expression of carnitine palmitoyltransferase 1 (CPT-1, whereas FB had no effects on CPT-1 compared with the HFD controls. Regarding mRNA expression, PLP mainly promoted the expression of CPT-1, PGC1a, UCP-1, and AMPK in the mitochondria, whereas FB mostly enhanced the expression of Ech1, Acox1, Acaa1, and Ehhadh in peroxisomes. PLP seemed to enhance fat metabolism in the mitochondria, whereas FB mainly exerted the effect in peroxisomes. In addition, p-coumaric acid (CA, one of the main components from PLP, significantly inhibited fat accumulation in oleic acid-induced HepG2 cells. CA also significantly upregulated CPT-1 mRNA and protein expressions in HepG2 cells. We, firstly, found that PLP enhanced liver fat metabolism by upregulating CPT-1 expression in the mitochondria and might be promising in treatment of fatty liver diseases as alternative natural products. CA may be one of the active components of PLP.

  5. Chylomicrons metabolism in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Brandizzi, Laura Ines Ventura

    2002-01-01

    Chylomicrons are the triglyceride-rich lipoproteins that carry dietary lipids absorbed in the intestine. In the bloodstream , chylomicron triglycerides are broken-down by lipoprotein lipase using apoliprotein (apo) CII as co factor. Fatty acids and glycerol resulting from the enzymatic action are absorbed and stored in the body tissues mainly adipose and muscle for subsequent utilizations energy source. The resulting triglycerides depleted remnants are taken-up by liver receptor such as the LDL receptor using mainly apo E as ligand. For methodological reasons, chylomicron metabolism has been unfrequently studied in subjects despite its pathophysiological importance, and this metabolism was not evaluated in the great clinical trials that established the link between atherosclerosis and lipids. In studies using oral fat load tests, it has been shown that in patients with coronary artery disease there is a trend to accumulation of post-prandial triglycerides, vitamin A or apo B-48 , suggesting that in those patients chylomicrons and their remnants are slowly removed from the circulation. A triglyceride-rich emulsion marked radioisotopic which mimics chylomicron metabolism when injected into the bloodstream has been described that can offer a more straight forward approach to evaluate chylomicrons. In coronary artery disease patients both lipolysis and remnant removal from the plasma of the chylomicron-like emulsions were found slowed-down compared with control subjects without the disease. The introduction of more practical techniques to assess chylomicron metabolism may be new mechanisms underlying atherogenesis. (author)

  6. Effects of a six-week intraduodenal supplementation with quercetin on liver lipid metabolism and oxidative stress in peripartal dairy cows.

    Science.gov (United States)

    Stoldt, A-K; Mielenz, M; Nürnberg, G; Sauerwein, H; Esatbeyoglu, T; Wagner, A E; Rimbach, G; Starke, A; Wolffram, S; Metges, C C

    2016-05-01

    The purpose of this study was to evaluate possible effects of quercetin (Q) on liver lipid metabolism and antioxidative status in periparturient dairy cows. The periparturient period is associated with enormous metabolic changes for dairy cows. Energy needs for incipient lactation are too high to be balanced by feed intake, leading to negative energy balance and body fat mobilization. It has been estimated that this leads to the development of fatty liver in about 50% of cows, which are at high risk for disease. Furthermore, the antioxidative status of these cows may be impaired. Quercetin is a plant flavonoid having hepatoprotective and antioxidative potential and the ability to reduce liver lipid accumulation in monogastric animals. Little information is available in regard to these effects in ruminants. To prevent microbial Q degradation in the rumen, Q was administered via a duodenal fistula to improve systemic availability. Five cows of the Q-treated group received, daily, 100 mg of quercetin dehydrate/kg BW in a 0.9% sodium chloride solution from d -20 until d 20 relative to calving, whereas 5 control (CTR) cows received only a sodium chloride solution. Blood samples were taken weekly and liver biopsies were performed in wk -4, -2, and 3 relative to calving. Cows treated with Q showed a tendency ( = 0.082) for lower liver fat content compared with CTR cows. Liver glycogen, glutathione concentrations, and relative mRNA abundance of genes related to hepatic lipid metabolism and antioxidative status as well as parameters of antioxidative status in plasma were not affected ( > 0.1) by Q supplementation. In conclusion, liver fat content in dairy cows tended to be reduced by Q supplementation, but potential underlying mechanisms remain unclear because analyzed parameters related to hepatic lipid metabolism and antioxidative defense were not altered by Q supplementation.

  7. Nonalcoholic fatty liver disease and hepatic cirrhosis: Comparison with viral hepatitis-associated steatosis.

    Science.gov (United States)

    Haga, Yuki; Kanda, Tatsuo; Sasaki, Reina; Nakamura, Masato; Nakamoto, Shingo; Yokosuka, Osamu

    2015-12-14

    Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH) is globally increasing and has become a world-wide health problem. Chronic infection with hepatitis B virus or hepatitis C virus (HCV) is associated with hepatic steatosis. Viral hepatitis-associated hepatic steatosis is often caused by metabolic syndrome including obesity, type 2 diabetes mellitus and/or dyslipidemia. It has been reported that HCV genotype 3 exerts direct metabolic effects that lead to hepatic steatosis. In this review, the differences between NAFLD/NASH and viral hepatitis-associated steatosis are discussed.

  8. /sup 14/C-D-galactose breath test for evaluation of liver function in patients with chronic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Caspary, W F; Schaffer, J

    1978-01-01

    D-galactose metabolism and demethylation of aminopyrine by healthy controls and patients with chronic active hepatitis (CAH) and cirrhosis (Ci), were assessed by a breath analysis technique measuring /sup 14/CO2 exhalation after oral ingestion of /sup 14/C-D-galactose or /sup 14/C-aminopyrine. Patients with CAH and Ci exhibited decreased /sup 14/CO2-exhalation rates following /sup 14/-D-galactose or /sup 14/C-aminopyrine. D-galactose oxidation capacity of the liver can be assessed by a breath analysis technique in analogy to the demethylating function for aminopyrine. The ordinary oral D-galactose tolerance test seems, however, superior in comparison to the /sup 14/C-D-galactose tolerance test, in discriminating between healthy controls and patients with chronic liver disease.

  9. Liver Transplantation for Alcoholic Liver Disease and Hepatocellular Carcinoma.

    Science.gov (United States)

    Burra, Patrizia; Zanetto, Alberto; Germani, Giacomo

    2018-02-09

    Hepatocellular carcinoma is one of the main important causes of cancer-related death and its mortality is increasingly worldwide. In Europe, alcohol abuse accounts for approximately half of all liver cancer cases and it will become the leading cause of hepatocellular carcinoma in the next future with the sharp decline of chronic viral hepatitis. The pathophysiology of alcohol-induced carcinogenesis involves acetaldehyde catabolism, oxidative stress and chronic liver inflammation. Genetic background plays also a significant role and specific patterns of gene mutations in alcohol-related hepatocellular carcinoma have been characterized. Survival is higher in patients who undergo specific surveillance programmes than in patients who do not. However, patients with alcohol cirrhosis present a significantly greater risk of liver decompensation than those with cirrhosis due to other aetiologies. Furthermore, the adherence to screening program can be suboptimal. Liver transplant for patients with Milan-in hepatocellular carcinoma represents the best possible treatment in case of tumour recurrence/progression despite loco-regional or surgical treatments. Long-term result after liver transplantation for alcohol related liver disease is good. However, cardiovascular disease and de novo malignancies can significantly hamper patients' survival and should be carefully considered by transplant team. In this review, we have focused on the evolution of alcohol-related hepatocellular carcinoma epidemiology and risk factors as well as on liver transplantation in alcoholic patients with and without hepatocellular carcinoma.

  10. Dendrobium nobile Lindl. alkaloids regulate metabolism gene expression in livers of mice.

    Science.gov (United States)

    Xu, Yun-Yan; Xu, Ya-Sha; Wang, Yuan; Wu, Qin; Lu, Yuan-Fu; Liu, Jie; Shi, Jing-Shan

    2017-10-01

    In our previous studies, Dendrobium nobile Lindl. alkaloids (DNLA) has been shown to have glucose-lowering and antihyperlipidaemia effects in diabetic rats, in rats fed with high-fat diets, and in mice challenged with adrenaline. This study aimed to examine the effects of DNLA on the expression of glucose and lipid metabolism genes in livers of mice. Mice were given DNLA at doses of 10-80 mg/kg, po for 8 days, and livers were removed for total RNA and protein isolation to perform real-time RT-PCR and Western blot analysis. Dendrobium nobile Lindl. alkaloids increased PGC1α at mRNA and protein levels and increased glucose metabolism gene Glut2 and FoxO1 expression. DNLA also increased the expression of fatty acid β-oxidation genes Acox1 and Cpt1a. The lipid synthesis regulator Srebp1 (sterol regulatory element-binding protein-1) was decreased, while the lipolysis gene ATGL was increased. Interestingly, DNLA increased the expression of antioxidant gene metallothionein-1 and NADPH quinone oxidoreductase-1 (Nqo1) in livers of mice. Western blot on selected proteins confirmed these changes including the increased expression of GLUT4 and PPARα. DNLA has beneficial effects on liver glucose and lipid metabolism gene expressions, and enhances the Nrf2-antioxidant pathway gene expressions, which could play integrated roles in regulating metabolic disorders. © 2017 Royal Pharmaceutical Society.

  11. Hotspots in clinical management of severe liver diseases

    Directory of Open Access Journals (Sweden)

    LYU Jiayu

    2017-09-01

    Full Text Available Severe liver diseases such as liver failure and acute decompensated cirrhosis have critical conditions and high mortality rates, and the prognosis of such patients is closely associated with early warning, timely dynamic assessment, and comprehensive and effective therapy. The patients require a series of effective clinical management measures for elimination of causative factors, organ support, and prevention and treatment of complications. Medical treatment-artificial liver-liver transplantation is an important modality for severe liver diseases. Granulocyte colony-stimulating factor, stem cell therapy, and bioartificial liver have a promising future, while there are still controversies over non-selective β-blocker. This article reviews the hotspots in the clinical management of severe liver diseases.

  12. Non-alcoholic Fatty Liver Disease: Beneficial Effects of Flavonoids.

    Science.gov (United States)

    Akhlaghi, Masoumeh

    2016-10-01

    Non-alcoholic fatty liver disease (NAFLD) has been known as the hepatic feature of metabolic syndrome. Extra fat depots, especially in visceral areas, develop insulin resistance as a result of mild oxidation and inflammation. Insulin resistance induces lipolysis and releases free fatty acids into the circulation, where they are transported to the liver. In the liver, free fatty acids are converted to triglycerides and accumulate, causing simple steatosis that, if left untreated, can lead to steatohepatitis, and subsequently liver necrosis and cirrhosis.Flavonoids, a group of plant compounds with incredible biological characteristics, have shown advantages in pathological conditions. Beneficial effects of flavonoids against NAFLD and its related disorders have been observed in both animal and human studies. Various mechanisms have been found for their protection. Flavonoids prevent hepatosteatosis by increasing fatty acid oxidation in the liver. They can also reduce caloric intake and decrease body weight and fat deposition in visceral tissues. Flavonoids are unique antioxidants that exert their beneficial effects through inhibition of nuclear factor κB, thereby attenuating release of inflammatory cytokines, which are triggers of insulin resistance. Finally, flavonoids have shown to increase adiponectin, improve insulin sensitivity and glucose tolerance, correct dyslipidemia, and reduce blood pressure in patients with NAFLD. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    Science.gov (United States)

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  14. Periodontal disease and liver cirrhosis: A systematic review

    Science.gov (United States)

    2015-01-01

    Objectives: Studies suggest that periodontal disease, a source of subclinical and persistent infection, may be associated with various systemic conditions, including liver cirrhosis. The aim of this study was to examine the literature and determine the relationship between periodontal disease and liver cirrhosis and to identify opportunities and directions for future research in this area. Methods: A systematic review of English articles in the PubMed, EMBASE, and Scopus databases was conducted using search terms including ‘liver cirrhosis’, ‘end-stage liver disease’, ‘liver diseases’, ‘oral health’, ‘periodontal disease’, ‘mouth disease’, ‘gingivitis’, and ‘periodontitis’. Results: Thirteen studies published between 1981 and 2014 were found to include data on oral health and periodontal disease in cirrhotic patients. Studies indicated an increased incidence of periodontal disease in patients with liver cirrhosis, measured with several different periodontal indices. The reported prevalence of periodontal disease in cirrhosis patients ranged from 25.0% to 68.75% in four studies and apical periodontitis was found in 49%–79% of the patients. One study found that mortality was lower among patients who underwent dental treatment versus non-treated patients. Another study suggested an association between periodontal disease and the progression of liver cirrhosis, but data are sparse and conflicting as to whether periodontal disease is correlated to cirrhosis aetiology and severity. Conclusion: Despite the clinical reality of periodontal disease in liver cirrhosis patients, there are few published studies. Before clinical implications can be addressed, more data on the prevalence of and correlation between periodontal disease and liver cirrhosis aetiology, duration, and progression are needed. PMID:26770799

  15. Fish oil alleviated high-fat diet-induced non-alcoholic fatty liver disease via regulating hepatic lipids metabolism and metaflammation: a transcriptomic study.

    Science.gov (United States)

    Yuan, Fahu; Wang, Hualin; Tian, Yu; Li, Qi; He, Lei; Li, Na; Liu, Zhiguo

    2016-02-01

    Intake of fish oil rich in n-3 polyunsaturated fatty acids (PUFAs) is believed to be beneficial against development of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanisms remain unclear. This study was to gain further understanding of the potential mechanisms of the protective effects of fish oil against NAFLD. Ten male Sprague-Dawley rats were fed a control diet (CON), a Western style high-fat and high-cholesterol diet (WD), or a WD diet containing fish oil (FOH) for 16 weeks respectively. The development of liver steatosis and fibrosis were verified by histological and biochemical examination. Hepatic transcriptome were extracted for RNA-seq analysis, and particular results were confirmed by real-time polymerase chain reaction (PCR). The consumption of fish oil significantly ameliorated WD-induced dyslipidemia, transaminase elevation, hepatic steatosis, inflammatory infiltration, and fibrosis. Hepatic RNA-Seq analysis showed that long-term intake of fish oil restored the expression of circadian clock-related genes per2 and per3, which were reduced in WD fed animals. Fish oil consumption also corrected the expression levels of genes involved in fatty acid and cholesterol metabolism, such as Srebf1, Fasn, Scd1, Insig2, Cd36, Cyp7a1, Abcg5, Abcg8 and Pcsk9. Moreover, the expression levels of pro-inflammation genes Mcp1, Socs2, Sema4a, and Cd44 in the FOH group were lower than that of WD group, implying that fish oil protects the liver against WD-induced hepatic inflammation. The present study demonstrates fish oil protects against WD-induced NALFD via improving lipid metabolism and ameliorating hepatic inflammation. Our findings add to the current understanding on the benefits of n-3 PUFAs against NAFLD.

  16. Nutrition and Liver Health.

    Science.gov (United States)

    Jackson, Alan A

    2017-01-01

    Good clinical practice is based on a secure and accurate diagnosis. Poor nutrition is frequently associated with disorders of the liver, and a specific nutrition diagnosis is needed for providing best care and experiencing successful outcome. There is opportunity for better-structured approaches to making secure and consistent nutritional diagnoses in patients with liver disease. Nutrition is the set of integrated processes by which cells, tissues, organs and the whole body acquire the energy and nutrients to retain normal structure and perform the required functions. At the level of the whole body, this is achieved through dietary supply and the capacity of the body to transform the substrates and cofactors necessary for metabolism. All of these domains (diet, metabolic capacity, activity of the microbiome, body composition and the level of demand for energy and nutrients) are influenced by levels of physical activity and can vary according to physiological and pathological disease states. The liver plays a central role in establishing and maintaining these regulated processes. Its capacity to achieve and maintain these functional capabilities is established during one's early life. When these capabilities are exceeded and the ability to maintain the milieu interieur is compromised, ill-health supervenes. Stress tests that assess flow through gateway pathways can be used to determine the maximal capacity and functional reserve for critical functions. The inability of the liver to reliably integrate body lipid metabolism and the accumulation of abnormal lipid are obvious manifestations of impaired regulation both in situations of weight loss, for example, the fatty liver of severe malnutrition, and in situations of energy excess, as in non-alcoholic fatty liver disease. The use of stable isotopic probes and the more recent definition of the variability in the metabolome in different nutritional and pathological states indicate the great potential for clinical tools

  17. Interplay between FGF21 and insulin action in the liver regulates metabolism

    DEFF Research Database (Denmark)

    Emanuelli, Brice; Vienberg, Sara G; Smyth, Graham

    2014-01-01

    gluconeogenesis in these animals. Improvements in blood sugar were due in part to increased glucose uptake in brown fat, browning of white fat, and overall increased energy expenditure. These effects were preserved even after removal of the main interscapular brown fat pad. In contrast to its retained effects...... of insulin action in the liver by increasing energy metabolism via activation of brown fat and browning of white fat, but intact liver insulin action is required for FGF21 to control hepatic lipid metabolism....

  18. Excellent survival after liver transplantation for isolated polycystic liver disease : an European Liver Transplant Registry study

    NARCIS (Netherlands)

    van Keimpema, Loes; Nevens, Frederik; Adam, Rene; Porte, Robert J.; Fikatas, Panagiotis; Becker, Thomas; Kirkegaard, Preben; Metselaar, Herold J.; Drenth, Joost P. H.

    2011-01-01

    Patients with end-stage isolated polycystic liver disease (PCLD) suffer from incapacitating symptoms because of very large liver volumes. Liver transplantation (LT) is the only curative option. This study assesses the feasibility of LT in PCLD. We used the European Liver Transplant Registry (ELTR)

  19. Role of intestinal mucosal barrier in the development and progression of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    ZHANG Yuanyuan

    2016-12-01

    Full Text Available The incidence of non-alcoholic fatty liver disease (NAFLD has been increasing year by year in China. Intestinal mucosa is the largest organ for bacterial storage, and intestinal mucosal barrier includes biological barrier, mechanical barrier, immunological barrier, and chemical barrier. This article investigates the important role of intestinal mucosal barrier function in the pathogenesis of NAFLD. As for the intestinal biological barrier, abnormalities in gut microbiota occur earlier than obesity and other metabolic disorders; small intestinal bacterial overgrowth may affect energy metabolism, promote insulin resistance, and get involved in the pathogenesis of NAFLD; regulation of gut microbiota has a certain clinical effect in the treatment of NAFLD. Intestinal mechanical barrier impairment increases the mucosal permeability and is associated with intestinal dysbacteriosis. The changes in intestinal immunological barrier may be associated with obesity, metabolic disorders, and liver inflammation. The changes in intestinal chemical barrier can inhibit the synthesis and secretion of very low-density lipoprotein and low-density lipoprotein in hepatocytes and may result in triglyceride deposition in the liver. It is pointed out that the research on intestinal mucosal barrier function provides promising prospects for the prevention and treatment of NAFLD.

  20. Application of localized {sup 31}P MRS saturation transfer at 7 T for measurement of ATP metabolism in the liver: reproducibility and initial clinical application in patients with non-alcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Valkovic, Ladislav [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Slovak Academy of Sciences, Department of Imaging Methods, Institute of Measurement Science, Bratislava (Slovakia); Gajdosik, Martin; Chmelik, Marek; Trattnig, Siegfried [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Traussnigg, Stefan; Kienbacher, Christian; Trauner, Michael [Medical University of Vienna, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Vienna (Austria); Wolf, Peter; Krebs, Michael [Medical University of Vienna, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Vienna (Austria); Bogner, Wolfgang [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Krssak, Martin [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Medical University of Vienna, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Vienna (Austria)

    2014-07-15

    Saturation transfer (ST) phosphorus MR spectroscopy ({sup 31}P MRS) enables in vivo insight into energy metabolism and thus could identify liver conditions currently diagnosed only by biopsy. This study assesses the reproducibility of the localized {sup 31}P MRS ST in liver at 7 T and tests its potential for noninvasive differentiation of non-alcoholic fatty liver (NAFL) and steatohepatitis (NASH). After the ethics committee approval, reproducibility of the localized {sup 31}P MRS ST at 7 T and the biological variation of acquired hepato-metabolic parameters were assessed in healthy volunteers. Subsequently, 16 suspected NAFL/NASH patients underwent MRS measurements and diagnostic liver biopsy. The Pi-to-ATP exchange parameters were compared between the groups by a Mann-Whitney U test and related to the liver fat content estimated by a single-voxel proton ({sup 1}H) MRS, measured at 3 T. The mean exchange rate constant (k) in healthy volunteers was 0.31 ± 0.03 s{sup -1} with a coefficient of variation of 9.0 %. Significantly lower exchange rates (p < 0.01) were found in NASH patients (k = 0.17 ± 0.04 s{sup -1}) when compared to healthy volunteers, and NAFL patients (k = 0.30 ± 0.05 s{sup -1}). Significant correlation was found between the k value and the liver fat content (r = 0.824, p < 0.01). Our data suggest that the {sup 31}P MRS ST technique provides a tool for gaining insight into hepatic ATP metabolism and could contribute to the differentiation of NAFL and NASH. (orig.)

  1. Adrenergic Metabolic and Hemodynamic Effects of Octopamine in the Liver

    Directory of Open Access Journals (Sweden)

    Adelar Bracht

    2013-11-01

    Full Text Available The fruit extracts of Citrus aurantium (bitter orange are traditionally used as weight-loss products and as appetite suppressants. A component of these extracts is octopamine, which is an adrenergic agent. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of octopamine on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways and hemodynamics. Octopamine increased glycogenolysis, glycolysis, oxygen uptake, gluconeogenesis and the portal perfusion pressure. Octopamine also accelerated the oxidation of exogenous fatty acids (octanoate and oleate, as revealed by the increase in 14CO2 production derived from 14C labeled precursors. The changes in glycogenolysis, oxygen uptake and perfusion pressure were almost completely abolished by α1-adrenergic antagonists. The same changes were partly sensitive to the β-adrenergic antagonist propranolol. It can be concluded that octopamine accelerates both catabolic and anabolic processes in the liver via adrenergic stimulation. Acceleration of oxygen uptake under substrate-free perfusion conditions also means acceleration of the oxidation of endogenous fatty acids, which are derived from lipolysis. All these effects are compatible with an overall stimulating effect of octopamine on metabolism, which is compatible with its reported weight-loss effects in experimental animals.

  2. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of nonalcoholic fatty liver disease

    Science.gov (United States)

    Obesity is often associated with a cluster of increased health risks collectively known as "Metabolic Syndrome" (MS). MS is often accompanied by development of fatty liver. Sometimes fatty liver results in damage leading to reduced liver function, and need for a transplant. This condition is known...

  3. Gut microbiota in alcoholic liver disease: pathogenetic role and therapeutic perspectives.

    Science.gov (United States)

    Malaguarnera, Giulia; Giordano, Maria; Nunnari, Giuseppe; Bertino, Gaetano; Malaguarnera, Michele

    2014-11-28

    Alcoholic liver disease (ALD) is the commonest cause of cirrhosis in many Western countries and it has a high rate of morbidity and mortality. The pathogenesis is characterized by complex interactions between metabolic intermediates of alcohol. Bacterial intestinal flora is itself responsible for production of endogenous ethanol through the fermentation of carbohydrates. The intestinal metabolism of alcohol produces a high concentration of toxic acetaldehyde that modifies gut permeability and microbiota equilibrium. Furthermore it causes direct hepatocyte damage. In patients who consume alcohol over a long period, there is a modification of gut microbiota and, in particular, an increment of Gram negative bacteria. This causes endotoxemia and hyperactivation of the immune system. Endotoxin is a constituent of Gram negative bacteria cell walls. Two types of receptors, cluster of differentiation 14 and Toll-like receptors-4, present on Kupffer cells, recognize endotoxins. Several studies have demonstrated the importance of gut-liver axis and new treatments have been studied in recent years to reduce progression of ALD modifying gut microbiota. It has focused attention on antibiotics, prebiotics, probiotics and synbiotics.

  4. Gender and racial differences in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Pan, Jen-Jung; Fallon, Michael B

    2014-05-27

    Due to the worldwide epidemic of obesity, nonalcoholic fatty liver disease (NAFLD) has become the most common cause of elevated liver enzymes. NAFLD represents a spectrum of liver injury ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) which may progress to advanced fibrosis and cirrhosis. Individuals with NAFLD, especially those with metabolic syndrome, have higher overall mortality, cardiovascular mortality, and liver-related mortality compared with the general population. According to the population-based studies, NAFLD and NASH are more prevalent in males and in Hispanics. Both the gender and racial ethnic differences in NAFLD and NASH are likely attributed to interaction between environmental, behavioral, and genetic factors. Using genome-wide association studies, several genetic variants have been identified to be associated with NAFLD/NASH. However, these variants account for only a small amount of variation in hepatic steatosis among ethnic groups and may serve as modifiers of the natural history of NAFLD. Alternatively, these variants may not be the causative variants but simply markers representing a larger body of genetic variations. In this article, we provide a concise review of the gender and racial differences in the prevalence of NAFLD and NASH in adults. We also discuss the possible mechanisms for these disparities.

  5. Nonalcoholic fatty liver disease, association with cardiovascular disease and treatment. (I). Nonalcoholic fatty liver disease and its association with cardiovascular disease.

    Science.gov (United States)

    Brea, Ángel; Pintó, Xavier; Ascaso, Juan F; Blasco, Mariano; Díaz, Ángel; González-Santos, Pedro; Hernández Mijares, Antonio; Mantilla, Teresa; Millán, Jesús; Pedro-Botet, Juan

    Non-alcoholic fatty liver disease (NAFLD) comprises a series of histologically lesions similar to those induced by alcohol consumption in people with very little or no liver damage. The importance of NAFLD is its high prevalence in the Western world and, from the point of view of the liver, in its gradual progression from steatosis to steatohepatitis, cirrhosis, and liver cancer. During the last decade it has been observed that NAFLD leads to an increased cardiovascular risk with acceleration of arteriosclerosis and events related to it, being the main cause of its morbidity and mortality. This review, updated to January 2016, consists of two parts, with the first part analysing the association of NAFLD with cardiovascular disease. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Lack of ClC-2 Alleviates High Fat Diet-Induced Insulin Resistance and Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Dongxia Fu

    2018-03-01

    Full Text Available Background/Aims: Non-alcoholic fatty liver disease (NAFLD is the most common cause of chronic liver disease. This study aims to investigate whether chloride channel 2 (ClC-2 is involved in high fat diet (HFD-induced NAFLD and possible molecular mechanisms. Methods: ClC-2 expression was liver-specifically downregulated using adeno-associated virus in C57BL/6 mice treated with a chow diet or HFD for 12 weeks. Peripheral blood and liver tissues were collected for biochemical and pathological estimation respectively. Western blotting was applied to detect the protein expressions of lipid synthesis-related enzymes and the phosphorylated level of IRS-1, Akt and mTOR. Results: ClC-2 mRNA level was significantly increased in patients with non-alcoholic steatohepatitis, which positively correlated with the plasma levels of alanine transaminase (ALT, aspartate transaminase (AST and insulin. Knockdown of ClC-2 in liver attenuated HFD-induced weight gain, obesity, hepatocellular ballooning, and liver lipid accumulation and fibrosis, accompanied by reduced plasma free fatty acid (FFA, triglyceride (TG, total cholesterol (TC, ALT, AST, glucose and insulin levels and homeostasis model of insulin resistance (HOMA-IR value. Moreover, HFD-treated mice lacking ClC-2 showed inhibited hepatic lipid accumulation via regulating lipid metabolism through decreasing sterol regulatory element binding protein (SREBP-1c expression and its downstream targeting enzymes such as fatty acid synthase (FAS, HMG-CoA reductase (HMGCR and acetyl-Coenzyme A carboxylase (ACCα. In addition, in vivo and in vitro results demonstrated that ClC-2 downregulation in HFD-treated mice or HepG2 cells increased the sensitivity to insulin via activation of IRS-1/Akt/mTOR signaling pathway. Conclusion: Our present study reveals a critical role of ClC-2 in regulating metabolic diseases. Mice lacking ClC-2 are associated with a remarkably beneficial metabolic phenotype, suggesting that decreasing Cl

  7. Defining normal liver stiffness range in a normal healthy Chinese population without liver disease.

    Directory of Open Access Journals (Sweden)

    James Fung

    Full Text Available BACKGROUND: For patients with chronic liver disease, different optimal liver stiffness cut-off values correspond to different stages of fibrosis, which are specific for the underlying liver disease and population. AIMS: To establish the normal ranges of liver stiffness in the healthy Chinese population without underlying liver disease. METHODS: This is a prospective cross sectional study of 2,528 healthy volunteers recruited from the general population and the Red Cross Transfusion Center in Hong Kong. All participants underwent a comprehensive questionnaire survey, measurement of weight, height, and blood pressure. Fasting liver function tests, glucose and cholesterol was performed. Abdominal ultrasound and transient elastography were performed on all participants. RESULTS: Of the 2,528 subjects, 1,998 were excluded with either abnormal liver parenchyma on ultrasound, chronic medical condition, abnormal blood tests including liver enzymes, fasting glucose, fasting cholesterol, high body mass index, high blood pressure, or invalid liver stiffness scan. The reference range for the 530 subjects without known liver disease was 2.3 to 5.9 kPa (mean 4.1, SD 0.89. The median liver stiffness was higher in males compared with females (4.3 vs 4.0 kPa respectively, p55 years (p=0.001. CONCLUSIONS: The healthy reference range for liver stiffness in the Chinese population is 2.3 to 5.9 kPa. Female gender and older age group was associated with a lower median liver stiffness.

  8. Antifibrotic and molecular aspects of rifaximin in alcoholic liver disease

    DEFF Research Database (Denmark)

    Madsen, Bjørn Stæhr; Trebicka, Jonel; Thiele, Maja

    2018-01-01

    Background: Alcoholic liver disease is the leading cause of cirrhosis worldwide. Due to an increase in alcohol overuse, alcoholic liver disease has become an increased burden on health care systems. Abstinence from alcohol remains the cornerstone of alcoholic liver disease treatment; however......, this approach is hampered by frequent relapse and lack of specific therapy for treating advanced cases of liver disease. In the present study, we hypothesized that gut microbiota drive the development of liver fibrosis and that modulation of gut microbiota with the gut-selective, nonabsorbable antibiotic...... promoter of alcoholic liver disease, current results may open new therapeutic avenues and revolutionize the current understanding of chronic liver diseases....

  9. Effects of probiotic yogurt consumption on metabolic factors in individuals with nonalcoholic fatty liver disease.

    Science.gov (United States)

    Nabavi, S; Rafraf, M; Somi, M H; Homayouni-Rad, A; Asghari-Jafarabadi, M

    2014-12-01

    The aim of this study was to investigate the effects of probiotic yogurt consumption on some metabolic factors in nonalcoholic fatty liver disease (NAFLD) patients. This double-blind, randomized, controlled clinical trial was conducted on 72 patients with NAFLD (33 males and 39 females) aged 23 to 63 yr. Subjects in the intervention group (n=36) consumed 300 g/d of probiotic yogurt containing Lactobacillus acidophilus La5 and Bifidobacterium lactis Bb12 and those in the control group (n=36) consumed 300 g/d of conventional yogurt for 8 wk. Fasting blood samples, anthropometric measurements, and dietary records (24h/d for 3 d) were collected at baseline and at the end of the trial. Probiotic yogurt consumption resulted in reductions of 4.67, 5.42, 4.1, and 6.92% in serum levels of alanine aminotransferase, aspartate aminotransferase, total cholesterol, and low-density lipoprotein cholesterol, respectively, compared with control group. No significant changes were observed in levels of serum glucose, triglycerides, or high-density lipoprotein cholesterol in either group. Probiotic yogurt consumption improved hepatic enzymes, serum total cholesterol, and low-density lipoprotein cholesterol levels in studied subjects and might be useful in management of NAFLD risk factors. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Type 2 Diabetes in Non-Alcoholic Fatty Liver Disease and Hepatitis C Virus Infection—Liver: The “Musketeer” in the Spotlight

    Science.gov (United States)

    Ballestri, Stefano; Nascimbeni, Fabio; Romagnoli, Dante; Baldelli, Enrica; Targher, Giovanni; Lonardo, Amedeo

    2016-01-01

    The pathogenesis of type 2 diabetes (T2D) involves chronic hyperinsulinemia due to systemic and hepatic insulin resistance (IR), which if uncorrected, will lead to progressive pancreatic beta cell failure in predisposed individuals. Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of fatty (simple steatosis and steatohepatitis) and non-fatty liver changes (NASH-cirrhosis with or without hepatocellular carcinoma (HCC)) that are commonly observed among individuals with multiple metabolic derangements, notably including visceral obesity, IR and T2D. Hepatitis C virus (HCV) infection is also often associated with both hepatic steatosis and features of a specific HCV-associated dysmetabolic syndrome. In recent years, the key role of the steatotic liver in the development of IR and T2D has been increasingly recognized. Thus, in this comprehensive review we summarize the rapidly expanding body of evidence that links T2D with NAFLD and HCV infection. For each of these two liver diseases with systemic manifestations, we discuss the epidemiological burden, the pathophysiologic mechanisms and the clinical implications. To date, substantial evidence suggests that NAFLD and HCV play a key role in T2D development and that the interaction of T2D with liver disease may result in a “vicious circle”, eventually leading to an increased risk of all-cause mortality and liver-related and cardiovascular complications. Preliminary evidence also suggests that improvement of NAFLD is associated with a decreased incidence of T2D. Similarly, the prevention of T2D following HCV eradication in the era of direct-acting antiviral agents is a biologically plausible result. However, additional studies are required for further clarification of mechanisms involved. PMID:27005620

  11. Type 2 Diabetes in Non-Alcoholic Fatty Liver Disease and Hepatitis C Virus Infection—Liver: The “Musketeer” in the Spotlight

    Directory of Open Access Journals (Sweden)

    Stefano Ballestri

    2016-03-01

    Full Text Available The pathogenesis of type 2 diabetes (T2D involves chronic hyperinsulinemia due to systemic and hepatic insulin resistance (IR, which if uncorrected, will lead to progressive pancreatic beta cell failure in predisposed individuals. Non-alcoholic fatty liver disease (NAFLD encompasses a spectrum of fatty (simple steatosis and steatohepatitis and non-fatty liver changes (NASH-cirrhosis with or without hepatocellular carcinoma (HCC that are commonly observed among individuals with multiple metabolic derangements, notably including visceral obesity, IR and T2D. Hepatitis C virus (HCV infection is also often associated with both hepatic steatosis and features of a specific HCV-associated dysmetabolic syndrome. In recent years, the key role of the steatotic liver in the development of IR and T2D has been increasingly recognized. Thus, in this comprehensive review we summarize the rapidly expanding body of evidence that links T2D with NAFLD and HCV infection. For each of these two liver diseases with systemic manifestations, we discuss the epidemiological burden, the pathophysiologic mechanisms and the clinical implications. To date, substantial evidence suggests that NAFLD and HCV play a key role in T2D development and that the interaction of T2D with liver disease may result in a “vicious circle”, eventually leading to an increased risk of all-cause mortality and liver-related and cardiovascular complications. Preliminary evidence also suggests that improvement of NAFLD is associated with a decreased incidence of T2D. Similarly, the prevention of T2D following HCV eradication in the era of direct-acting antiviral agents is a biologically plausible result. However, additional studies are required for further clarification of mechanisms involved.

  12. Alcoholic liver disease

    Science.gov (United States)

    ... FF, ed. Ferri's Clinical Advisor 2018 . Philadelphia, PA: Elsevier; 2018:59-60. Carithers RL, McClain C. Alcoholic ... Gastrointestinal and Liver Disease . 10th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 86. Haines EJ, Oyama LC. ...

  13. Increased Nitroxidative Stress Promotes Mitochondrial Dysfunction in Alcoholic and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Byoung-Joon Song

    2013-01-01

    Full Text Available Increased nitroxidative stress causes mitochondrial dysfunctions through oxidative modifications of mitochondrial DNA, lipids, and proteins. Persistent mitochondrial dysfunction sensitizes the target cells/organs to other pathological risk factors and thus ultimately contributes to the development of more severe disease states in alcoholic and nonalcoholic fatty liver disease. The incidences of nonalcoholic fatty liver disease continuously increase due to high prevalence of metabolic syndrome including hyperlipidemia, hypercholesterolemia, obesity, insulin resistance, and diabetes. Many mitochondrial proteins including the enzymes involved in fat oxidation and energy supply could be oxidatively modified (including S-nitrosylation/nitration under increased nitroxidative stress and thus inactivated, leading to increased fat accumulation and ATP depletion. To demonstrate the underlying mechanism(s of mitochondrial dysfunction, we employed a redox proteomics approach using biotin-N-maleimide (biotin-NM as a sensitive biotin-switch probe to identify oxidized Cys residues of mitochondrial proteins in the experimental models of alcoholic and acute liver disease. The aims of this paper are to briefly describe the mechanisms, functional consequences, and detection methods of mitochondrial dysfunction. We also describe advantages and limitations of the Cys-targeted redox proteomics method with alternative approaches. Finally, we discuss various applications of this method in studying oxidatively modified mitochondrial proteins in extrahepatic tissues or different subcellular organelles and translational research.

  14. Chronic liver disease in Aboriginal North Americans

    Institute of Scientific and Technical Information of China (English)

    John D Scott; Naomi Garland

    2008-01-01

    A structured literature review was performed to detail the frequency and etiology of chronic liver disease (CLD) in Aboriginal North Americans. CLD affects Aboriginal North Americans disproportionately and is now one of the most common causes of death.Alcoholic liver disease is the leading etiology of CLD,but viral hepatitis, particularly hepatitis C, is an important and growing cause of CLD. High rates of autoimmune hepatitis and primary biliary cirrhosis (PBC) are reported in regions of coastal British Columbia and southeastern Alaska. Non-alcoholic liver disease is a common, but understudied, cause of CLD.Future research should monitor the incidence and etiology of CLD and should be geographically inclusive.In addition, more research is needed on the treatment of hepatitis C virus (HCV) infection and non-alcoholicfatty liver disease (NAFLD) in this population.

  15. Contrast-enhanced Ultrasound for Non-tumor Liver Diseases

    Directory of Open Access Journals (Sweden)

    H Maruyama

    2012-03-01

    Full Text Available Contrast-enhanced ultrasound (CEUS is a simple, safe and reliable technique for the clinical management of patients with various liver diseases. Although the major target of the technique may be focal hepatic lesions, it is also effective for the diagnosis of non-tumor liver diseases, such as grading hepatic fibrosis, characterization of chronic liver diseases and diagnosis of portal vein thrombosis. This review article aimed to overview the recent application of CEUS in the assessment of non-tumor liver diseases. Keywords: Cirrhosis, contrast agent, fibrosis, idiopathic portal hypertension, microbubble, portal vein thrombosis, ultrasound.

  16. Malnutrition in end stage liver disease : Who is malnourished?

    NARCIS (Netherlands)

    Huisman, E.J.

    2017-01-01

    Liver diseases are highly prevalent. While death rates of most other diseases, such as heart disease and cancer, have decreased, standardized mortality rates of liver diseases have increased up to 400% in the last decades. Cirrhosis is the endstage of patients who have chronic progressive liver

  17. Brain MRI changes in chronic liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Skehan, S. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Norris, S. [Liver Unit, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Hegarty, J. [Liver Unit, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); Owens, A. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland); MacErlaine, D. [Department of Diagnostic Imaging, St. Vincent`s Hospital, Elm Park, Dublin 4 (Ireland)

    1997-08-01

    Cirrhotic patients are known to have abnormally high signal principally in the globus pallidus on non-contrast T1-weighted MRI. The purpose of this study was to relate MR changes to clinical and pathological features of chronic liver disease. We confirmed abnormally high signal in the globus pallidus on T1-weighted images in 25 of 28 patients with chronic liver disease, showing that it also occurs in patients who have not yet progressed to cirrhosis. Changes were seen in patients both with and without clinical portosystemic shunting. This abnormality is not responsible for hepatic encephalopathy. Cholestatic disease was more likely to produce marked changes than non-cholestatic disease. No statistically significant correlation was demonstrated between the severity of liver disease and the degree of MR abnormality. However, marked improvement in MR appearances was seen after successful liver transplantation. (orig.). With 3 figs., 4 tabs.

  18. Brain MRI changes in chronic liver disease

    International Nuclear Information System (INIS)

    Skehan, S.; Norris, S.; Hegarty, J.; Owens, A.; MacErlaine, D.

    1997-01-01

    Cirrhotic patients are known to have abnormally high signal principally in the globus pallidus on non-contrast T1-weighted MRI. The purpose of this study was to relate MR changes to clinical and pathological features of chronic liver disease. We confirmed abnormally high signal in the globus pallidus on T1-weighted images in 25 of 28 patients with chronic liver disease, showing that it also occurs in patients who have not yet progressed to cirrhosis. Changes were seen in patients both with and without clinical portosystemic shunting. This abnormality is not responsible for hepatic encephalopathy. Cholestatic disease was more likely to produce marked changes than non-cholestatic disease. No statistically significant correlation was demonstrated between the severity of liver disease and the degree of MR abnormality. However, marked improvement in MR appearances was seen after successful liver transplantation. (orig.). With 3 figs., 4 tabs

  19. A liver stress-endocrine nexus promotes metabolic integrity during dietary protein dilution

    DEFF Research Database (Denmark)

    Maida, Adriano; Zota, Annika; Sjøberg, Kim Anker

    2016-01-01

    of impaired glucose homeostasis independently of obesity and food intake. DPD-mediated metabolic inefficiency and improvement of glucose homeostasis were independent of uncoupling protein 1 (UCP1), but required expression of liver-derived fibroblast growth factor 21 (FGF21) in both lean and obese mice. FGF21...... expression and secretion as well as the associated metabolic remodeling induced by DPD also required induction of liver-integrated stress response-driven nuclear protein 1 (NUPR1). Insufficiency of select nonessential amino acids (NEAAs) was necessary and adequate for NUPR1 and subsequent FGF21 induction...... and secretion in hepatocytes in vitro and in vivo. Taken together, these data indicate that DPD promotes improved glucose homeostasis through an NEAA insufficiency-induced liver NUPR1/FGF21 axis....

  20. Study on the changes of serum HA and CG levels in several diseases besides liver disorders

    International Nuclear Information System (INIS)

    Lu Zhiping; Ma Yunbao; Zhang Xiaoyi; Lv Weihua

    2005-01-01

    Objective: To study the changes of serum hyaluronic acid (HA) and cholyglycine (CG) in several diseases besides liver disorders. Methods: Serum HA and CG levels were measured with RIA in 78 patients with chronic liver diseases (with 70 controls), (84 patients with primary hepatic carcinoma ), 70 pediatric patients with various infections diseases (with 40 controls), 50 pediatric patients with recurrent respiratory infection (RRI, with 30 controls) and 428 pregnant women ( with 60 controls). In addition, RBC C 3 b receptor ratio (RBCC 3 bRR) and RBC immune-complex ratio (RBCICR) (both with yeast rosette method) as well as serum IgG,IgM,IgA,C 3 levels (with immunoturbidity test) were examined in the 50 RRI pediatric patients, ALT levels were examined in the 70 pediatric patients with infectious diseases and SF examined in the 78 patients with chronic liver diseases. Results: The serum CG, HA and SF levels in the three groups of patients with chronic liver diseases ( CPH, CAH, Cirrhosis) were significantly higher than those in the controls (all P 0.05). In patients with hepatic carcinoma, the CG and HA levels were positively correlated with the mortality at 4 months (P 0.05). For ALT, levels only increased in patients with hepatitis and typhoid fever with none in bacillary dysentery and mumps. In pediatric patients with RRI, RBCC 3 bRR (%), CG, C 3 , IgG levels were significantly higher than those in controls (P 0.05). Conclusion: Various infectious diseases in pediatric patients could induce mild liver damage, which was closely related to the depressed immune status. High CG and HA levels in liver cancer patients suggested high mortality at 4 months. Women in late pregnancy might harbour disturbances in CG metabolism and mild liver injury though without overt symptoms. (authors)

  1. Fasting augments PCB impact on liver metabolism in anadromous Arctic Char

    Science.gov (United States)

    Vijayan, M.M.; Aluru, N.; Maule, A.G.; Jorgensen, E.H.

    2006-01-01

    Anadromous arctic char (Salvelinus alpinus) undertake short feeding migrations to seawater every summer and accumulate lipids, while the rest of the year is spent in fresh water where the accumulated lipid reserves are mobilized. We tested the hypothesis that winter fasting and the associated polychlorinated biphenyls' (PCBs) redistribution from lipid depots to critical tissues impair the liver metabolic capacity in these animals. Char were administered Aroclor 1254 (0, 1, 10, and 100 mg/ kg body mass) orally and maintained for 4 months without feeding to mimic seasonal winter fasting, while fed groups (0 and 100 mg Aroclor 1254/kg) were maintained for comparison. A clear dose-related increase in PCB accumulation and cytochrome P4501A (CYP1A) protein content was observed in the livers of fasted fish. This PCB concentration and CYP1A response with the high dose of Aroclor were 1.5-fold and 3-fold greater in the fasted than in the fed fish, respectively. In fed fish, PCB exposure lowered liver glycogen content, whereas none of the other metabolic indicators were significantly affected. In fasted fish, PCB exposure depressed liver glycogen content and activities of glucose-6-phosphate dehydrogenase, alanine aminotransferase, lactate dehydrogenase, and phosphoenolpyruvate carboxykinase and elevated 3-hydroxyacylcoA dehydrogenase activity and glucocorticoid receptor protein expression. There were no significant impacts of PCB on heat shock protein 70 (hsp70) and hsp90 contents in either fed or fasted fish. Collectively, our study demonstrates that winter emaciation associated with the anadromous lifestyle predisposes arctic char to PCB impact on hepatic metabolism including disruption of the adaptive metabolic responses to extended fasting. ?? 2006 Oxford University Press.

  2. Role of metabolic overload and metabolic inflammation in the development of Nonalcoholic Steatohepatitis (NASH)

    NARCIS (Netherlands)

    Liang, W.

    2015-01-01

    Overload of nutrients can lead to diet-induced inflammation, also called metabolic inflammation, which is thought to play an important role in many metabolic diseases, including the development of nonalcoholic fatty liver disease (NAFLD). NAFLD encompasses a spectrum of pathologies that range from

  3. Anabolic-androgenic steroids for alcoholic liver disease

    DEFF Research Database (Denmark)

    Rambaldi, Andrea; Iaquinto, Gaetano; Gluud, Christian

    2002-01-01

    The objectives were to assess the beneficial and harmful effects of anabolic-androgenic steroids for alcoholic liver disease.......The objectives were to assess the beneficial and harmful effects of anabolic-androgenic steroids for alcoholic liver disease....

  4. The Potential of Non-Provitamin A Carotenoids for the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Ana Gabriela Murillo

    2016-11-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is an obesity-associated spectrum of comorbidities defined by the presence of metabolic dysfunction, oxidative stress, inflammation, and fibrosis in the liver. If left untreated, NAFLD can progress to cirrhosis, liver failure, or hepatocellular carcinoma. NAFLD is recognized as the most common liver disease in the United States, affecting around 30% of the population. Identification of dietary components capable of reducing or preventing NAFLD is therefore essential to battle this condition. Dietary carotenoids including astaxanthin, lycopene, lutein, and zeaxanthin have been demonstrated to be potent antioxidants as well as to exhibit anti-inflammatory effects. Many studies report the protective effect(s of these carotenoids against different conditions such as atherosclerosis, diabetic complications, age-related macular degeneration, and liver diseases. In this review, we will focus on the effects of these carotenoids in the prevention or reduction of NAFLD as seen in epidemiological observations and clinical trials, as well as the suggested mechanism of action derived from animal and cell studies.

  5. Isolation of primary human hepatocytes from normal and diseased liver tissue: a one hundred liver experience.

    Directory of Open Access Journals (Sweden)

    Ricky H Bhogal

    2011-03-01

    Full Text Available Successful and consistent isolation of primary human hepatocytes remains a challenge for both cell-based therapeutics/transplantation and laboratory research. Several centres around the world have extensive experience in the isolation of human hepatocytes from non-diseased livers obtained from donor liver surplus to surgical requirement or at hepatic resection for tumours. These livers are an important but limited source of cells for therapy or research. The capacity to isolate cells from diseased liver tissue removed at transplantation would substantially increase availability of cells for research. However no studies comparing the outcome of human hepatocytes isolation from diseased and non-diseased livers presently exist. Here we report our experience isolating human hepatocytes from organ donors, non-diseased resected liver and cirrhotic tissue. We report the cell yields and functional qualities of cells isolated from the different types of liver and demonstrate that a single rigorous protocol allows the routine harvest of good quality primary hepatocytes from the most commonly accessible human liver tissue samples.

  6. Nutrition Therapy for Liver Diseases Based on the Status of Nutritional Intake

    OpenAIRE

    Yasutake, Kenichiro; Kohjima, Motoyuki; Nakashima, Manabu; Kotoh, Kazuhiro; Nakamuta, Makoto; Enjoji, Munechika

    2012-01-01

    The dietary intake of patients with nonalcoholic fatty liver disease (NAFLD) is generally characterized by high levels of carbohydrate, fat, and/or cholesterol, and these dietary patterns influence hepatic lipid metabolism in the patients. Therefore, careful investigation of dietary habits could lead to better nutrition therapy in NAFLD patients. The main treatment for chronic hepatitis C (CHC) is interferon-based antiviral therapy, which often causes a decrease in appetite and energy intake;...

  7. Non-alcoholic fatty liver disease is associated with left ventricular diastolic dysfunction in essential hypertension.

    Science.gov (United States)

    Fallo, F; Dalla Pozza, A; Sonino, N; Lupia, M; Tona, F; Federspil, G; Ermani, M; Catena, C; Soardo, G; Di Piazza, L; Bernardi, S; Bertolotto, M; Pinamonti, B; Fabris, B; Sechi, L A

    2009-11-01

    Insulin resistance is recognized as the pathophysiological hallmark of non-alcoholic fatty liver disease (NAFLD). A relation between insulin sensitivity and left ventricular morphology and function has been reported in essential hypertension, where a high prevalence of NAFLD has been recently found. We investigated the inter-relationship between left ventricular morphology/function, metabolic parameters and NAFLD in 86 never-treated essential hypertensive patients subdivided in two subgroups according to the presence (n = 48) or absence (n = 38) of NAFLD at ultrasonography. The two groups were similar as to sex, age and blood pressure levels. No patient had diabetes mellitus, obesity, hyperlipidemia, or other risk factors for liver disease. Body mass index, waist circumference, triglycerides, glucose, insulin, homeostasis model of assessment index for insulin resistance (HOMA-IR), aspartate aminotransferase and alanine aminotransferase were higher and adiponectin levels were lower in patients with NAFLD than in patients without NAFLD, and were associated with NAFLD at univariate analysis. Patients with NAFLD had similar prevalence of left ventricular hypertrophy compared to patients without NAFLD, but a higher prevalence of diastolic dysfunction (62.5 vs 21.1%, P 220 ms. Diastolic dysfunction (P = 0.040) and HOMA-IR (P = 0.012) remained independently associated with NAFLD at backward multivariate analysis. Non-alcoholic fatty liver disease was associated with insulin resistance and abnormalities of left ventricular diastolic function in a cohort of patients with essential hypertension, suggesting a concomitant increase of metabolic and cardiac risk in this condition.

  8. p300/CBP as a Key Nutritional Sensor for Hepatic Energy Homeostasis and Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Weilei Yao

    2018-01-01

    Full Text Available The overwhelming frequency of metabolic diseases such as obesity and diabetes are closely related to liver diseases, which might share common pathogenic signaling processes. These metabolic disorders in the presence of inflammatory response seem to be triggered by and to reside in the liver, which is the central metabolic organ that plays primary roles in regulating lipid and glucose homeostasis upon alterations of metabolic conditions. Recently, abundant emerging researches suggested that p300 and CREB binding protein (CBP are crucial regulators of energy homeostasis and liver fibrosis through both their acetyltransferase activities and transcriptional coactivators. Plenty of recent findings demonstrated the potential roles of p300/CBP in mammalian metabolic homeostasis in response to nutrients. This review is focused on the different targets and functions of p300/CBP in physiological and pathological processes, including lipogenesis, lipid export, gluconeogenesis, and liver fibrosis, also provided some nutrients as the regulator of p300/CBP for nutritional therapeutic approaches to treat liver diseases.

  9. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Laia; Rebollo, Alba; Adalsteisson, Gunnar S [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); Alegret, Marta; Merlos, Manuel; Roglans, Nuria [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); IBUB - Institute of Biomedicine, University of Barcelona, Barcelona (Spain); CIBERobn, [Center for Biomedical Investigation Network in Obesity and Nutrition Physiopathology; Spain; Laguna, Juan C., E-mail: jclagunae@ub.edu [Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, School of Pharmacy, University of Barcelona, Barcelona (Spain); IBUB -Institute of Biomedicine, University of Barcelona, Barcelona (Spain); CIBERobn, [Center for Biomedical Investigation Network in Obesity and Nutrition Physiopathology; Spain

    2011-02-15

    Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose + atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days. Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid {beta}-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x0.45) and its target genes, and increased the hepatic activity of the fatty acid {beta}-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion. - Graphical Abstract: Display Omitted Research Highlights

  10. Reduction of liver fructokinase expression and improved hepatic inflammation and metabolism in liquid fructose-fed rats after atorvastatin treatment

    International Nuclear Information System (INIS)

    Vila, Laia; Rebollo, Alba; Adalsteisson, Gunnar S.; Alegret, Marta; Merlos, Manuel; Roglans, Nuria; Laguna, Juan C.

    2011-01-01

    Consumption of beverages that contain fructose favors the increasing prevalence of metabolic syndrome alterations in humans, including non-alcoholic fatty liver disease (NAFLD). Although the only effective treatment for NAFLD is caloric restriction and weight loss, existing data show that atorvastatin, a hydroxymethyl-glutaryl-CoA reductase inhibitor, can be used safely in patients with NAFLD and improves hepatic histology. To gain further insight into the molecular mechanisms of atorvastatin's therapeutic effect on NAFLD, we used an experimental model that mimics human consumption of fructose-sweetened beverages. Control, fructose (10% w/v solution) and fructose + atorvastatin (30 mg/kg/day) Sprague-Dawley rats were sacrificed after 14 days. Plasma and liver tissue samples were obtained to determine plasma analytes, liver histology, and the expression of liver proteins that are related to fatty acid synthesis and catabolism, and inflammatory processes. Fructose supplementation induced hypertriglyceridemia and hyperleptinemia, hepatic steatosis and necroinflammation, increased the expression of genes related to fatty acid synthesis and decreased fatty acid β-oxidation activity. Atorvastatin treatment completely abolished histological signs of necroinflammation, reducing the hepatic expression of metallothionein-1 and nuclear factor kappa B binding. Furthermore, atorvastatin reduced plasma (x 0.74) and liver triglyceride (x 0.62) concentrations, decreased the liver expression of carbohydrate response element binding protein transcription factor (x0.45) and its target genes, and increased the hepatic activity of the fatty acid β-oxidation system (x 1.15). These effects may be related to the fact that atorvastatin decreased the expression of fructokinase (x 0.6) in livers of fructose-supplemented rats, reducing the metabolic burden on the liver that is imposed by continuous fructose ingestion. - Graphical Abstract: Display Omitted Research Highlights:

  11. Fructose as a key player in the development of fatty liver disease.

    Science.gov (United States)

    Basaranoglu, Metin; Basaranoglu, Gokcen; Sabuncu, Tevfik; Sentürk, Hakan

    2013-02-28

    We aimed to investigate whether increased consumption of fructose is linked to the increased prevalence of fatty liver. The prevalence of nonalcoholic steatohepatitis (NASH) is 3% and 20% in nonobese and obese subjects, respectively. Obesity is a low-grade chronic inflammatory condition and obesity-related cytokines such as interleukin-6, adiponectin, leptin, and tumor necrosis factor-α may play important roles in the development of nonalcoholic fatty liver disease (NAFLD). Additionally, the prevalence of NASH associated with both cirrhosis and hepatocellular carcinoma was reported to be high among patients with type 2 diabetes with or without obesity. Our research group previously showed that consumption of fructose is associated with adverse alterations of plasma lipid profiles and metabolic changes in mice, the American Lifestyle-Induced Obesity Syndrome model, which included consumption of a high-fructose corn syrup in amounts relevant to that consumed by some Americans. The observation reinforces the concerns about the role of fructose in the obesity epidemic. Increased availability of fructose (e.g., high-fructose corn syrup) increases not only abnormal glucose flux but also fructose metabolism in the hepatocyte. Thus, the anatomic position of the liver places it in a strategic buffering position for absorbed carbohydrates and amino acids. Fructose was previously accepted as a beneficial dietary component because it does not stimulate insulin secretion. However, since insulin signaling plays an important role in central mechanisms of NAFLD, this property of fructose may be undesirable. Fructose has a selective hepatic metabolism, and provokes a hepatic stress response involving activation of c-Jun N-terminal kinases and subsequent reduced hepatic insulin signaling. As high fat diet alone produces obesity, insulin resistance, and some degree of fatty liver with minimal inflammation and no fibrosis, the fast food diet which includes fructose and fats produces

  12. Host homeostatic responses to alcohol-induced cellular stress in animal models of alcoholic liver disease.

    Science.gov (United States)

    Wang, He Joe; Murray, Gary J; Jung, Mary Katherine

    2015-01-01

    Humans develop various clinical phenotypes of severe alcoholic liver disease, including alcoholic hepatitis and cirrhosis, generally after decades of heavy drinking. In such individuals, following each episode of drinking, their livers experience heightened intracellular and extracellular stresses that are closely associated with alcohol consumption and alcohol metabolism. This article focuses on the latest advances made in animal models on evolutionarily conserved homeostatic mechanisms for coping with and resolving these stress conditions. The mechanisms discussed include the stress-activated protein kinase JNK, energy regulator AMPK, autophagy and the inflammatory response. Over time, the host may respond variably to stress with protective mechanisms that are critical in determining an individual's vulnerability to developing severe alcoholic liver disease. A systematic review of these mechanisms and their temporal changes in animal models provides the basis for general conclusions, and raises questions for future studies. The relevance of these data to human conditions is also discussed.

  13. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    Science.gov (United States)

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  14. Links of gut microbiota composition with alcohol dependence syndrome and alcoholic liver disease.

    Science.gov (United States)

    Dubinkina, Veronika B; Tyakht, Alexander V; Odintsova, Vera Y; Yarygin, Konstantin S; Kovarsky, Boris A; Pavlenko, Alexander V; Ischenko, Dmitry S; Popenko, Anna S; Alexeev, Dmitry G; Taraskina, Anastasiya Y; Nasyrova, Regina F; Krupitsky, Evgeny M; Shalikiani, Nino V; Bakulin, Igor G; Shcherbakov, Petr L; Skorodumova, Lyubov O; Larin, Andrei K; Kostryukova, Elena S; Abdulkhakov, Rustam A; Abdulkhakov, Sayar R; Malanin, Sergey Y; Ismagilova, Ruzilya K; Grigoryeva, Tatiana V; Ilina, Elena N; Govorun, Vadim M

    2017-10-17

    Alcohol abuse has deleterious effects on human health by disrupting the functions of many organs and systems. Gut microbiota has been implicated in the pathogenesis of alcohol-related liver diseases, with its composition manifesting expressed dysbiosis in patients suffering from alcoholic dependence. Due to its inherent plasticity, gut microbiota is an important target for prevention and treatment of these diseases. Identification of the impact of alcohol abuse with associated psychiatric symptoms on the gut community structure is confounded by the liver dysfunction. In order to differentiate the effects of these two factors, we conducted a comparative "shotgun" metagenomic survey of 99 patients with the alcohol dependence syndrome represented by two cohorts-with and without liver cirrhosis. The taxonomic and functional composition of the gut microbiota was subjected to a multifactor analysis including comparison with the external control group. Alcoholic dependence and liver cirrhosis were associated with profound shifts in gut community structures and metabolic potential across the patients. The specific effects on species-level community composition were remarkably different between cohorts with and without liver cirrhosis. In both cases, the commensal microbiota was found to be depleted. Alcoholic dependence was inversely associated with the levels of butyrate-producing species from the Clostridiales order, while the cirrhosis-with multiple members of the Bacteroidales order. The opportunist pathogens linked to alcoholic dependence included pro-inflammatory Enterobacteriaceae, while the hallmarks of cirrhosis included an increase of oral microbes in the gut and more frequent occurrence of abnormal community structures. Interestingly, each of the two factors was associated with the expressed enrichment in many Bifidobacterium and Lactobacillus-but the exact set of the species was different between alcoholic dependence and liver cirrhosis. At the level of

  15. The Prevalence of Nonalcoholic Fatty Liver Disease and Related Metabolic Comorbidities Was Associated with Age at Onset of Moderate to Severe Plaque Psoriasis: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Xin Xu

    Full Text Available Nonalcoholic fatty liver disease (NAFLD has been found to be highly prevalent in psoriatic patients. Adult onset psoriasis could be divided into either early or late onset psoriasis. The associations between NAFLD and related metabolic comorbidities and age at onset of psoriasis have not yet been investigated. Our study was to evaluate the associations between prevalence of NAFLD and related metabolic conditions and early, late, and childhood onset psoriasis. A cross-sectional observational study was conducted on patients with moderate to severe plaque psoriasis. Data on clinical characteristics of NAFLD and related metabolic diseases (diabetes, hypertriglyceridemia, hyperuricemia, and metabolic syndrome were collected. The prevalence of NAFLD in 439 patients (mean: 51±14 years, range: 18-85 years was 55.8%. NAFLD was frequently identified in early onset patients (74.2%, and this diagnosis was particularly common in patients currently younger than 40 (85.3%. Diabetes was the least prevalent component of metabolic syndrome in early onset patients with metabolic syndrome but the most often found component in late onset ones. Patients with childhood onset psoriasis had the lowest frequencies of all metabolic comorbidities except hyperuricemia among the three groups. In the multivariate analyses, early onset was independently and positively associated with NAFLD, hypertriglyceridemia and hyperuricemia and independently and negatively associated with diabetes among early and late onset patients. The results suggested prevalence of NAFLD and related metabolic comorbidities was associated with age at onset of moderate to severe plaque psoriasis. Early onset of psoriasis was independently associated with greater odds of NAFLD, hypertriglyceridemia, hyperuricemia and smaller odds of diabetes compared to late onset. Early onset patients have metabolic syndrome mainly related to lipid disorders and abnormal glucose metabolism was not often involved.

  16. Genetics of liver disease: From pathophysiology to clinical practice.

    Science.gov (United States)

    Karlsen, Tom H; Lammert, Frank; Thompson, Richard J

    2015-04-01

    Paralleling the first 30 years of the Journal of Hepatology we have witnessed huge advances in our understanding of liver disease and physiology. Genetic advances have played no small part in that. Initial studies in the 1970s and 1980s identified the strong major histocompatibility complex associations in autoimmune liver diseases. During the 1990 s, developments in genomic technologies drove the identification of genes responsible for Mendelian liver diseases. Over the last decade, genome-wide association studies have allowed for the dissection of the genetic susceptibility to complex liver disorders, in which also environmental co-factors play important roles. Findings have allowed the identification and elaboration of pathophysiological processes, have indicated the need for reclassification of liver diseases and have already pointed to new disease treatments. In the immediate future genetics will allow further stratification of liver diseases and contribute to personalized medicine. Challenges exist with regard to clinical implementation of rapidly developing technologies and interpretation of the wealth of accumulating genetic data. The historical perspective of genetics in liver diseases illustrates the opportunities for future research and clinical care of our patients. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  17. Discharge Disposition After Stroke in Patients With Liver Disease.

    Science.gov (United States)

    Parikh, Neal S; Merkler, Alexander E; Schneider, Yecheskel; Navi, Babak B; Kamel, Hooman

    2017-02-01

    Liver disease is associated with both hemorrhagic and thrombotic processes, including an elevated risk of intracranial hemorrhage. We sought to assess the relationship between liver disease and outcomes after stroke, as measured by discharge disposition. Using administrative claims data, we identified a cohort of patients hospitalized with stroke in California, Florida, and New York from 2005 to 2013. The predictor variable was liver disease. All diagnoses were defined using validated diagnosis codes. Ordinal logistic regression was used to analyze the association between liver disease and worsening discharge disposition: home, nursing/rehabilitation facility, or death. Secondarily, multiple logistic regression was used to analyze the association between liver disease and in-hospital mortality. Models were adjusted for demographics, vascular risk factors, and comorbidities. We identified 121 428 patients with intracerebral hemorrhage and 703 918 with ischemic stroke. Liver disease was documented in 13 584 patients (1.7%). Liver disease was associated with worse discharge disposition after both intracerebral hemorrhage (global odds ratio, 1.28; 95% confidence interval, 1.19-1.38) and ischemic stroke (odds ratio, 1.23; 95% confidence interval, 1.17-1.29). Similarly, liver disease was associated with in-hospital death after both intracerebral hemorrhage (odds ratio, 1.33; 95% confidence interval, 1.23-1.44) and ischemic stroke (odds ratio, 1.60; 95% confidence interval, 1.51-1.71). Liver disease was associated with worse hospital discharge disposition and in-hospital mortality after stroke, suggesting worse functional outcomes. © 2016 American Heart Association, Inc.

  18. Relationship between Retinal Vascular Caliber and Coronary Artery Disease in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD

    Directory of Open Access Journals (Sweden)

    Marmor Alon

    2013-08-01

    Full Text Available Objective: To evaluate the relationship between retinal vascular caliber and cardiovascular disease in non-alcoholic fatty liver disease (NAFLD patients without diabetes and hypertension. Methods: Intention to treat study of individuals who underwent cardiac computed tomography (CT during a two year period. Coronary artery disease (CAD was defined as stenosis of >50% in at least one major coronary artery. Liver and spleen density were measured by abdominal (CT; intima-media thickness (IMT by Doppler ultrasound; retinal artery and vein diameter by colored-retinal angiography; and metabolic syndrome by ATP III guidelines. Serum biomarkers of insulin resistance, inflammation, and oxidant-antioxidant status were assessed. Results: Compared with 22 gender and age matched controls, the 29 NAFLD patients showed higher prevalence of coronary plaques (70% vs. 30%, p < 0.001, higher prevalence of coronary stenosis (30% vs. 15%, p < 0.001, lower retinal arteriole-to-venule ratio (AVR (0.66 ± 0.06 vs. 0.71 ± 0.02, p < 0.01, higher IMT (0.98 ± 0.3 vs. 0.83 ± 0.1, p < 0.04, higher carotid plaques (60% vs. 40%, p < 0.001, higher homeostasis model assessment of insulin resistance (HOMA (4.0 ± 3.4 vs. 2.0 ± 1.0, p < 0.005, and higher triglyceride levels (200 ± 80 vs. 150 ± 60, p < 0.005 than controls. Multivariate analysis showed fatty liver (OR 2.5; p < 0.01, IMT (OR 2.3 p < 0.001, and retinal AVR ratio (OR 1.5, p < 0.01 to be strongly associated with CAD independent of metabolic syndrome (OR 1.2, p < 0.05. Conclusions: Patients with smaller retinal AVR (<0.7 are likely to be at increased risk for CAD and carotid atherosclerosis in patients with NAFLD even without hypertension or diabetes.

  19. A lipid-rich gestational diet predisposes offspring to nonalcoholic fatty liver disease: a potential sequence of events

    Directory of Open Access Journals (Sweden)

    Hughes AN

    2014-03-01

    Full Text Available Alexandria N Hughes, Julia Thom Oxford Department of Biological Sciences, Biomolecular Research Center, Boise State University, Boise, ID, USA Abstract: Nonalcoholic fatty liver disease (NAFLD is the hepatic manifestation of metabolic syndrome. It affects 20%–30% of the US population, and it is increasing worldwide. Recently, the role of lipid-rich maternal gestational nutrition in spurring the development of NAFLD among offspring has been indicated. Fetal predisposition to NAFLD involves numerous physiological reroutings that are initiated by increased delivery of nonesterified fatty acids to the fetal liver. Hampered ß-oxidation, uncontrolled oxidative stress, increased triacylglycerol synthesis, and the endoplasmic reticulum unfolded protein response are all implicated in sculpting a hepatic phenotype with a propensity to develop NAFLD in the postnatal state. This review suggests a mechanism that integrates outcomes reported by a variety of studies conducted in an analysis of fetal hepatic metabolic capacity amid the maternal consumption of a high-fat diet. Potential preventive measures and therapies for use both as part of prenatal nutrition and for those at risk for the development of NAFLD are also discussed. Keywords: nonalcoholic fatty liver disease, fetal–maternal diet, hepatocyte, oxidative stress

  20. Hypercoagulability in end-stage liver disease: prevalence and its correlation with severity of liver disease and portal vein thrombosis.

    Science.gov (United States)

    Singhal, Ashish; Karachristos, Andreas; Bromberg, Michael; Daly, Ellen; Maloo, Manoj; Jain, Ashok Kumar

    2012-11-01

    Contrary to well-recognized bleeding diathesis in chronic liver disease, thrombotic events can occur in these patients due to reduction or loss of synthesis of anticoagulant proteins. Forty-seven consecutive patients with end-stage liver disease (ESLD) were investigated for activity of protein C, protein S, antithrombin, and factor V Leiden mutation. Forty-two (89.4%) patients had low levels of at least 1 while 33 (70.2%) patients were deficient for all anticoagulant proteins studied. Forty-six (97.9%) patients were negative for factor V Leiden mutation. The deficiencies were more marked in hepatitis C virus-positive patients and patients with model for end-stage liver disease (MELD) score >15. Six (12.8%) patients had portal vein thrombosis (PVT), and all had diminished protein S activity. In conclusions, deficiency of anticoagulant proteins occur in early phase of chronic liver disease. The severity of deficiency is proportional to the severity of liver disease. Despite the high prevalence of hypercoagulability, the incidence of PVT is low. Further studies with larger cohort of patients are needed to support these conclusions and to study other associated factors.

  1. Plasma plasminogen activator inhibitor-1 levels and nonalcoholic fatty liver in individuals with features of metabolic syndrome.

    Science.gov (United States)

    de Larrañaga, Gabriela; Wingeyer, Silvia Perés; Graffigna, Mabel; Belli, Susana; Bendezú, Karla; Alvarez, Silvia; Levalle, Oscar; Fainboim, Hugo

    2008-07-01

    Fatty liver represents the liver component of metabolic syndrome and may be involved in plasminogen activator inhibitor-1 (PAI-1) synthesis. We studied plasma PAI-1 levels and relationships with risk factors for metabolic syndrome, including fatty liver, in 170 patients. Liver ultrasound scan was performed on all patients, and a liver biopsy was performed on those patients with chronically elevated transaminase levels. Plasma PAI-1 levels correlated significantly (P < .05) with body mass index, degree of steatosis, insulin resistance, insulin level, waist circumference, triglycerides, and high-density lipoprotein (HDL) -cholesterol. However, only body mass index (beta = .455) and HDL-cholesterol (beta = .293) remained predictors of PAI-1 levels. Liver biopsy revealed a significant correlation (P < .05) between insulin resistance (r = 0.381) or insulin level (r = 0.519) and liver fibrosis. In patients presenting features of metabolic syndrome, plasma PAI-1 levels were mainly conditioned by the whole-body fat content.

  2. Metabolic Vascular Syndrome: New Insights into a Multidimensional Network of Risk Factors and Diseases.

    Science.gov (United States)

    Scholz, Gerhard H; Hanefeld, Markolf

    2016-10-01

    Since 1981, we have used the term metabolic syndrome to describe an association of a dysregulation in lipid metabolism (high triglycerides, low high-density lipoprotein cholesterol, disturbed glucose homeostasis (enhanced fasting and/or prandial glucose), gout, and hypertension), with android obesity being based on a common soil (overnutrition, reduced physical activity, sociocultural factors, and genetic predisposition). We hypothesized that main traits of the syndrome occur early and are tightly connected with hyperinsulinemia/insulin resistance, procoagulation, and cardiovascular diseases. To establish a close link between the traits of the metabolic vascular syndrome, we focused our literature search on recent original work and comprehensive reviews dealing with the topics metabolic syndrome, visceral obesity, fatty liver, fat tissue inflammation, insulin resistance, atherogenic dyslipidemia, arterial hypertension, and type 2 diabetes mellitus. Recent research supports the concept that the metabolic vascular syndrome is a multidimensional and interactive network of risk factors and diseases based on individual genetic susceptibility and epigenetic changes where metabolic dysregulation/metabolic inflexibility in different organs and vascular dysfunction are early interconnected. The metabolic vascular syndrome is not only a risk factor constellation but rather a life-long abnormality of a closely connected interactive cluster of developing diseases which escalate each other and should continuously attract the attention of every clinician.

  3. Experimental evidence for therapeutic potential of taurine in the treatment of nonalcoholic fatty liver disease

    Science.gov (United States)

    Gentile, Christopher L.; Nivala, Angela M.; Gonzales, Jon C.; Pfaffenbach, Kyle T.; Wang, Dong; Wei, Yuren; Jiang, Hua; Orlicky, David J.; Petersen, Dennis R.; Maclean, Kenneth N.

    2011-01-01

    The incidence of obesity is now at epidemic proportions and has resulted in the emergence of nonalcoholic fatty liver disease (NAFLD) as a common metabolic disorder that can lead to liver injury and cirrhosis. Excess sucrose and long-chain saturated fatty acids in the diet may play a role in the development and progression of NAFLD. One factor linking sucrose and saturated fatty acids to liver damage is dysfunction of the endoplasmic reticulum (ER). Although there is currently no proven, effective therapy for NAFLD, the amino sulfonic acid taurine is protective against various metabolic disturbances, including alcohol-induced liver damage. The present study was undertaken to evaluate the therapeutic potential of taurine to serve as a preventative treatment for diet-induced NAFLD. We report that taurine significantly mitigated palmitate-mediated caspase-3 activity, cell death, ER stress, and oxidative stress in H4IIE liver cells and primary hepatocytes. In rats fed a high-sucrose diet, dietary taurine supplementation significantly reduced hepatic lipid accumulation, liver injury, inflammation, plasma triglycerides, and insulin levels. The high-sucrose diet resulted in an induction of multiple components of the unfolded protein response in the liver consistent with ER stress, which was ameliorated by taurine supplementation. Treatment of mice with the ER stress-inducing agent tunicamycin resulted in liver injury, unfolded protein response induction, and hepatic lipid accumulation that was significantly ameliorated by dietary supplementation with taurine. Our results indicate that dietary supplementation with taurine offers significant potential as a preventative treatment for NAFLD. PMID:21957160

  4. Hypothalamic-pituitary-gonadal function in men with liver cirrhosis before and after liver transplantation

    Directory of Open Access Journals (Sweden)

    Bruno T. Zacharias

    2014-12-01

    Full Text Available Objective: To evaluate the influence of end-stage liver disease and orthotopic liver transplantation in the pituitary function and hormone metabolism before and after liver transplantation.Methods: In a prospective study, serum levels of follicle stimulating hormone (FSH, luteinizing hormone (LH, estradiol (E2 and prolactin (PRL of 30 male patients with cirrhosis were determined two to four hours before and six months after liver transplantation. The results were compared according to the Model for End-stage Liver Disease (MELD.Results: male patients with liver cirrhosis have hypogonadism. FSH was normal, but inappropriately low due to androgen failure; E2 and PRL, on their turn, were high. After liver transplantation, FSH and LH levels increased (p 18. The severity of cirrhosis had no influence on FSH, PRL and LH.

  5. PREVALENCE OF NON-ALCOHOLIC FATTY LIVER DISEASE IN WOMEN WITH POLYCYSTIC OVARY SYNDROME AND ITS CORRELATION WITH METABOLIC SYNDROME

    Directory of Open Access Journals (Sweden)

    Mariana Drechmer ROMANOWSKI

    2015-06-01

    Full Text Available Background The polycystic ovary syndrome (PCOS is one of the most common endocrine disorders in women at childbearing age. Metabolic syndrome is present from 28% to 46% of patients with PCOS. Non-alcoholic fatty liver disease (NAFLD is considered the hepatic expression of metabolic syndrome. There are few published studies that correlate PCOS and NAFLD. Objective To determine the prevalence of NAFLD and metabolic syndrome in patients with PCOS, and to verify if there is a correlation between NAFLD and metabolic syndrome in this population. Methods Study developed at Gynecology Department of Clinical Hospital of Federal University of Parana (UFPR. The sessions were conducted from April 2008 to January 2009. One hundred and thirty-one patients joined the analysis; 101 were diagnosed with PCOS and 30 formed the control group. We subdivided the PCOS patients into two subgroups: PCOS+NAFLD and PCOS. All the patients were submitted to hepatic sonography. For hepatoestheatosis screening, hepatic ecotexture was compared do spleen’s. For diagnosis of metabolic syndrome, we adopted the National Cholesterol Education Program/Adult Treatment Panel III (NCEP/ATP III criteria, as well as the criteria proposed by International Diabetes Federation. Statistical analysis were performed with t of student and U of Mann-Whitney test for means and chi square for proportions. Results At PCOS group, NAFLD was present in 23.8% of the population. At control group, it represented 3.3%, with statistical significance (P=0.01. Metabolic syndrome, by NCEP/ATP III criteria, was diagnosed in 32.7% of the women with PCOS and in 26.6% of the women at control group (no statistical difference, P=0.5. At PCOS+DHGNA subgroup, age, weight, BMI, abdominal circumference and glucose tolerance test results were higher when compared to PCOS group (P<0.01. Metabolic syndrome by NCEP/ATPIII criteria was present in 75% and by International Diabetes Federation criteria in 95.8% of women with

  6. The emerging role of mast cells in liver disease.

    Science.gov (United States)

    Jarido, Veronica; Kennedy, Lindsey; Hargrove, Laura; Demieville, Jennifer; Thomson, Joanne; Stephenson, Kristen; Francis, Heather

    2017-08-01

    The depth of our knowledge regarding mast cells has widened exponentially in the last 20 years. Once thought to be only important for allergy-mediated events, mast cells are now recognized to be important regulators of a number of pathological processes. The revelation that mast cells can influence organs, tissues, and cells has increased interest in mast cell research during liver disease. The purpose of this review is to refresh the reader's knowledge of the development, type, and location of mast cells and to review recent work that demonstrates the role of hepatic mast cells during diseased states. This review focuses primarily on liver diseases and mast cells during autoimmune disease, hepatitis, fatty liver disease, liver cancer, and aging in the liver. Overall, these studies demonstrate the potential role of mast cells in disease progression.

  7. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    Science.gov (United States)

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  8. Diagnostic methods of fatty liver disease; Diagnostik der Fettleber

    Energy Technology Data Exchange (ETDEWEB)

    Kukuk, Guido Matthias; Sprinkart, Alois Martin; Traeber, Frank [Radiologische Universitaetsklinik Bonn (Germany). FE MRT

    2017-09-15

    Fatty liver disease is defined as an abnormal accumulation of lipids into the cytoplasm of hepatocytes. Different kinds of fatty liver diseases are becoming the most important etiologies of end-stage liver disease in the western world. Because fatty liver is a theoretically reversible process, timely and accurate diagnosis is a prerequisite for potential therapeutic options. This work describes major diagnostic methods and discusses particular advantages and disadvantages of various techniques.

  9. Translational Aspects of Diet and Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Nicolas Goossens

    2017-09-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is a spectrum of diseases ranging from simple steatosis without inflammation or fibrosis to nonalcoholic steatohepatitis (NASH. Despite the strong association between dietary factors and NAFLD, no dietary animal model of NAFLD fully recapitulates the complex metabolic and histological phenotype of the disease, although recent models show promise. Although animal models have significantly contributed to our understanding of human diseases, they have been less successful in accurate translation to predict effective treatment strategies. We discuss strategies to overcome this challenge, in particular the adoption of big data approaches combining clinical phenotype, genomic heterogeneity, transcriptomics, and metabolomics changes to identify the ideal NAFLD animal model for a given scientific question or to test a given drug. We conclude by noting that novel big data approaches may help to bridge the translational gap for selecting dietary models of NAFLD.

  10. Metabolically based liver damage pathophysiology in patients with urea cycle disorders - A new hypothesis.

    Science.gov (United States)

    Ivanovski, Ivan; Ješić, Miloš; Ivanovski, Ana; Garavelli, Livia; Ivanovski, Petar

    2017-11-28

    The underlying pathophysiology of liver dysfunction in urea cycle disorders (UCDs) is still largely elusive. There is some evidence that the accumulation of urea cycle (UC) intermediates are toxic for hepatocyte mitochondria. It is possible that liver injury is directly caused by the toxicity of ammonia. The rarity of UCDs, the lack of checking of iron level in these patients, superficial knowledge of UC and an underestimation of the metabolic role of fumaric acid, are the main reasons that are responsible for the incomprehension of the mechanism of liver injury in patients suffering from UCDs. Owing to our routine clinical practice to screen for iron overload in severely ill neonates, with the focus on the newborns suffering from acute liver failure, we report a case of citrullinemia with neonatal liver failure and high blood parameters of iron overload. We hypothesize that the key is in the decreased-deficient fumaric acid production in the course of UC in UCDs that causes several sequentially intertwined metabolic disturbances with final result of liver iron overload. The presented hypothesis could be easily tested by examining the patients suffering from UCDs, for liver iron overload. This could be easily performed in countries with a high population and comprehensive national register for inborn errors of metabolism. Providing the hypothesis is correct, neonatal liver damage in patients having UCD can be prevented by the supplementation of pregnant women with fumaric or succinic acid, prepared in the form of iron supplementation pills. After birth, liver damage in patients having UCDs can be prevented by supplementation of these patients with zinc fumarate or zinc succinylate, as well.

  11. Comparative Metabolism Study of Five Protoberberine Alkaloids in Liver Microsomes from Rat, Rhesus Monkey, and Human.

    Science.gov (United States)

    Li, Yan; Zhou, Yanyan; Si, Nan; Han, Lingyu; Ren, Wei; Xin, Shaokun; Wang, Hongjie; Zuo, Ran; Wei, Xiaolu; Yang, Jian; Zhao, Haiyu; Bian, Baolin

    2017-11-01

    Protoberberine alkaloids including berberine, palmatine, jatrorrhizine, coptisine, and epiberberine are major components in many medicinal plants. They have been widely used for the treatment of cancer, inflammation, diabetes, depression, hypertension, and various infectious areas. However, the metabolism of five protoberberine alkaloids among different species has not been clarified previously. In order to elaborate on the in vitro metabolism of them, a comparative analysis of their metabolic profile in rat, rhesus monkey, and human liver microsomes was carried out using ultrahigh-performance liquid chromatography coupled with a high-resolution linear trap quadrupole-Orbitrap mass spectrometer (UHPLC-electrospray ionization-Orbitrap MS) for the first time. Each metabolite was identified and semiquantified by its accurate mass data and peak area. Fifteen metabolites were characterized based on accurate MS/MS spectra and the proposed MS/MS fragmentation pathways including demethylation, hydroxylation, and methyl reduction. Among them, the content of berberine metabolites in human liver microsomes was similar with those in rhesus monkey liver microsomes, whereas berberine in rat liver microsomes showed no demethylation metabolites and the content of metabolites showed significant differences with that in human liver microsomes. On the contrary, the metabolism of palmatine in rat liver microsomes resembled that in human liver microsomes. The content of jatrorrhizine metabolites presented obvious differences in all species. The HR-ESI-MS/MS fragmentation behavior of protoberberine alkaloids and their metabolic profile in rat, rhesus monkey, and human liver microsomes were investigated for the first time. The results demonstrated that the biotransformation characteristics of protoberberine alkaloids among different species had similarities as well differences that would be beneficial for us to better understand the pharmacological activities of protoberberine alkaloids

  12. Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy

    Directory of Open Access Journals (Sweden)

    Junli Ma

    2017-10-01

    Full Text Available The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD, type 2 diabetes(T2D, and insulin resistance(IR, highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.

  13. Metabolic liver function in humans measured by 2-(18)F-fluoro-2-deoxy-D-galactose PET/CT-reproducibility and clinical potential

    DEFF Research Database (Denmark)

    Bak-Fredslund, Kirstine P; Lykke Eriksen, Peter; Munk, Ole L

    2017-01-01

    Background: PET/CT with the radioactively labelled galactose analogue 2-18F-fluoro-2-deoxy-D-galactose (18F-FDGal) can be used to quantify the hepatic metabolic function and visualise regional metabolic heterogeneity. We determined the day-to-day variation in humans with and without liver disease....... Furthermore, we examined whether the standardised uptake value (SUV) of 18F-FDGal from static scans can substitute the hepatic systemic clearance of 18F- FDGal (Kmet, mL blood/min/mL liver tissue/) quantified from dynamic scans as measure of metabolic function. Four patients with cirrhosis and six healthy...... subjects underwent two 18F-FDGal PET/CT scans within a median interval of 15 days for determination of day-to-day variation. The correlation between Kmet and SUV was examined using scan data and measured arterial blood concentrations of 18F-FDGal (blood samples) from 14 subjects from previous studies...

  14. Endothelins in chronic liver disease

    DEFF Research Database (Denmark)

    Møller, S; Henriksen, Jens Henrik Sahl

    1996-01-01

    renal failure. Studies on liver biopsies have revealed synthesis of ET-1 in hepatic endothelial and other cells, and recent investigations have identified the hepatosplanchnic system as a major source of ET-1 and ET-3 spillover into the circulation, with a direct relation to portal venous hypertension......This review describes recent progress in the accumulation of knowledge about the endothelins (ETs), a family of vasoactive 21-amino acid polypeptides, in chronic liver disease. Particular prominence is given to the dynamics of ET-1 and ET-3 and their possible relation to the disturbed circulation....... In addition, marked associations with disturbance of systemic haemodynamics and with abnormal distribution of blood volume have been reported. Although the pathophysiological importance of the ET system in chronic liver disease is not completely understood, similarities to other vasopressive...

  15. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    International Nuclear Information System (INIS)

    Lake, April D.; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D.; Lu, Zhenqiang; Lehman-McKeeman, Lois D.; Cherrington, Nathan J.

    2013-01-01

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  16. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Lake, April D. [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States); Novak, Petr [Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice 37001 (Czech Republic); Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Lu, Zhenqiang [The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lehman-McKeeman, Lois D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Cherrington, Nathan J., E-mail: cherrington@pharmacy.arizona.edu [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States)

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  17. A randomised controlled trial of a Mediterranean Dietary Intervention for Adults with Non Alcoholic Fatty Liver Disease (MEDINA): study protocol.

    Science.gov (United States)

    Papamiltiadous, Elena S; Roberts, Stuart K; Nicoll, Amanda J; Ryan, Marno C; Itsiopoulos, Catherine; Salim, Agus; Tierney, Audrey C

    2016-02-02

    Non-alcoholic fatty liver disease, the most prevalent liver disease in developed countries, remains difficult to manage with no proven safe and effective pharmacotherapy available. While weight reduction is the most commonly practiced treatment strategy, this is difficult to both achieve and/or maintain in the majority. Furthermore evidence-based dietary recommendations to guide the nutritional management of these patients are lacking. Using a randomised controlled trial design, this study compares the effectiveness of the Mediterranean diet to a standard low fat diet in terms of differences in insulin sensitivity, hepatic steatosis and metabolic outcomes in participants with non-alcoholic fatty liver disease. Ninety four eligible patients who have non-alcoholic fatty liver disease and who are insulin resistant, will be randomised into either a Mediterranean or low fat diet group for a 3 month intervention period. Insulin sensitivity will be measured on peripheral blood using Homeostatic Model Assessment and liver fat content quantified using Magnetic Resonance Spectroscopy. Both arms will consist of three face to face and three telephone call follow up consultations delivered by an Accredited Practicing Dietitian. The intervention arm focuses on recommendations from the traditional Mediterranean diet which have been tailored for use in the Australian population The standard arm uses the Australian Guide to Healthy Eating and the Australian National Heart Foundation dietary guidelines. Study recruitment will take place at four major metropolitan hospitals in Melbourne, Australia. Data collection will occur at all face to face reviews including baseline, 6, and 12 weeks. A follow up assessment to measure sustainability will take place at 6 and 12 months. The primary end point is improved insulin sensitivity scores at the 12 week time point. This trial aims to demonstrate in a large cohort of participants with NALFD that a Mediterranean diet independent of weight

  18. [Non-invasive assessment of fatty liver].

    Science.gov (United States)

    Egresi, Anna; Lengyel, Gabriella; Hagymási, Krisztina

    2015-04-05

    As the result of various harmful effects (infectious agents, metabolic diseases, unhealthy diet, obesity, toxic agents, autoimmune processes) hepatic damage may develop, which can progress towards liver steatosis, and fibrosis as well. The most common etiological factors of liver damages are hepatitis B and C infection, alcohol consumption and non-alcoholic fatty liver disease. Liver biopsy is considered as the gold standard for the diagnosis of chronic liver diseases. Due to the dangers and complications of liver biopsy, studies are focused on non-invasive markers and radiological imaging for liver steatosis, progression of fatty liver, activity of the necroinflammation and the severity of the fibrosis. Authors review the possibilities of non-invasive assessment of liver steatosis. The statistical features of the probes (positive, negative predictive values, sensitivity, specificity) are reviewed. The role of radiological imaging is also discussed. Although the non-invasive methods discussed in this article are useful to assess liver steatosis, further studies are needed to validate to follow progression of the diseases and to control therapeutic response.

  19. Plasma hydroxy-metronidazole/ metronidazole ratio in hepatitis C virus-induced liver disease

    Directory of Open Access Journals (Sweden)

    M.A.M. Marchioretto

    2005-03-01

    Full Text Available It has been suggested that the measurement of metronidazole clearance is a sensitive method for evaluating liver function. The aim of this study was to evaluate the usefulness of plasma hydroxy-metronidazole/metronidazole ratios as indicators of dynamic liver function to detect changes resulting from the various forms of chronic hepatitis C virus (HCV infection. A total of 139 individuals were studied: 14 healthy volunteers, 22 healthy, asymptomatic, consecutive anti-HCV-positive HCV-RNA negative subjects, 81 patients with chronic hepatitis C (49 with moderate/severe chronic hepatitis and 34 with mild hepatitis, and 20 patients with cirrhosis of the liver. HCV status was determined by the polymerase chain reaction. Plasma concentrations of metronidazole and its hydroxy-metabolite were measured by reverse-phase high-performance liquid chromatography with ultraviolet detection in a blood sample collected 10 min after the end of a metronidazole infusion. Anti-HCV-positive HCV-RNA-negative individuals demonstrated a significantly reduced capacity to metabolize intravenously infused metronidazole compared to healthy individuals (0.0478 ± 0.0044 vs 0.0742 ± 0.0232. Liver cirrhosis patients also had a reduced plasma hydroxy-metronidazole/metronidazole ratio when compared to the other groups of anti-HCV-positive individuals (0.0300 ± 0.0032 vs 0.0438 ± 0.0027 (moderate/severe chronic hepatitis vs 0.0455 ± 0.0026 (mild chronic hepatitis and vs 0.0478 ± 0.0044 (anti-HCV-positive, HCV-RNA-negative individuals. These results suggest an impairment of the metronidazole metabolizing system induced by HCV infection that lasts after viral clearance. In those patients with chronic hepatitis C, this impairment is paralleled by progression of the disease to liver cirrhosis.

  20. Polycystic liver disease with right pleural effusion

    Science.gov (United States)

    Anggreini, A. Y.; Dairi, L. B.

    2018-03-01

    Polycystic liver disease (PCLD) is a condition in which multiple cysts form in the hepatic parenchyma. The polycystic liver disease is also an autosomal dominant disorder (ADPLD) caused by a mutation in a gene that encodes a protein hepatocystin. PCLD has a prevalence count of 1:200,000 people in the people of America. PCLD occurs ± 24% of patients in the third decade of age to 80% by the sixth decade. Women tend to get larger cysts and more and correlated with the number of pregnancies. The following case report of a woman, 51-years-old who was treated at Haji Adam Malik hospital Medan with a diagnosis of polycystic liver disease with right pleural effusion. Some literature has reported complications of the polycystic liver disease but rarely reported with pleural effusion presentation. The patient had already undergone a puncture of pleural fluid and after three weeks of treatment condition of the patient improved and permitted to be outgoing patient.

  1. Recipient But Not Donor Adiponectin Polymorphisms Are Associated With Early Posttransplant Hepatic Steatosis in Patients Transplanted for Non-Nonalcoholic Fatty Liver Disease Indications.

    Science.gov (United States)

    John, Binu V; Aiken, Taylor; Garber, Ari; Thomas, Dawn; Lopez, Rocio; Patil, Deepa; Konjeti, Venkata Rajesh; Fung, John J; McCollough, Arthur J; Askar, Medhat

    2018-06-01

    De novo steatosis after liver transplant is common and can occur in up to one-third of patients who are transplanted for liver disease other than for nonalcoholic fatty liver disease. Genetic factors may influence posttransplant steatosis; in a posttransplant setting, donor or recipient genetic factors could also play roles. Genetic polymorphisms in the adiponectin gene have been associated with metabolic syndrome in the pretransplant setting. We aimed to assess the association between donor and recipient adiponectin polymorphisms and early posttransplant hepatic steatosis identified on liver biopsies. Clinical data were collected for 302 liver transplant patients who underwent protocol biopsies for hepatitis C. Of these, 111 patients had available biopsies and donor/recipient DNA. Patients with grade 1 steatosis or greater (35% of patients) were compared with patients without posttransplant steatosis with respect to clinical features and donor/recipient adiponectin polymorphism genotypes. Patients who developed posttransplant steatosis and those without steatosis were similar with respect to individual components of metabolic syndrome. The adiponectin polymorphisms rs1501299 G/G and rs17300539 G/G genotypes in recipients were associated with early posttransplant graft steatosis. We found no associations between graft steatosis and donor adiponectin polymorphisms. Genetic polymorphisms in the adiponectin gene of recipients (but not donors) are associated with early de novo posttransplant hepatic steatosis, independent of components of metabolic syndrome.

  2. Nonalcoholic fatty liver disease and risk of diabetes and cardiovascular disease: What is important for primary care physicians?

    Directory of Open Access Journals (Sweden)

    Mohamed H Ahmed

    2015-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is emerging as the most common chronic liver condition in Western World and across the globe. NAFLD prevalence is estimated to be around one-third of the total population. There are no published data that project the future prevalence of NAFLD, but with an increase in epidemic of diabetes and obesity, it is possible to suggest an increase in a number of individuals with NAFLD. NAFLD is associated with insulin resistance and occurs with an increase in cluster of features of metabolic syndrome and type 2 diabetes. Therefore, it is important to exclude the possibility of diabetes in those individuals with evidence of fatty liver. The global diabetes epidemic continues to grow, and it is estimated that the number of people with diabetes will double by year 2030. NAFLD is also a risk factor for an increase in cardiovascular incidence independent of age, sex, low-density lipoprotein-cholesterol, smoking, and cluster of metabolic syndromes. It is expected that NAFLD will be an important challenge for health providers in the near future. Taking all these factors into consideration, we believe that increasing awareness of metabolic and cardiovascular impact of NAFLD among general practitioners and health authorities may decrease the serious consequences of late diagnosis of NAFLD. Importantly, the collaboration between medical specialties is vital in decreasing the impact of the epidemic of NAFLD. The focus of this review is in the role of primary care physician in diagnosis, treatment and prevention of NAFLD and patients education.

  3. The acute effects of ethanol on acetanilide disposition in normal subjects, and in patients with liver disease.

    Science.gov (United States)

    McKay, J; Rawlings, M D; Cobden, I; James, O F

    1982-10-01

    1 The effects of single doses (25 g and 50 g) oral ethanol on the disposition of acetanilide (50 mg/kg metabolic active mass) has been studied in normal subjects, and in patients with chronic non-alcoholic liver disease. 2 In normal subjects, ethanol produced a dose-dependent increase in acetanilide half-life, and a decrease in acetenilide clearance. There was a significant correlation (rs = 0.71, P less than 0.01) between the 90 min blood ethanol concentration and the reduction in acetanilide clearance. 3 In patients with liver disease, ethanol produced a similar proportional change in acetanilide half-life and clearance, but these were less consistent. Moreover, liver disease itself was associated with an increase in acetenilide half-life, and a reduction in clearance. 4 It is concluded that single oral doses of ethanol, comparable to those consumed during social drinking, may inhibit some forms of microsomal oxidation and thus have important clinical implications.

  4. Dietary modification dampens liver inflammation and fibrosis in obesity-related fatty liver disease.

    Science.gov (United States)

    Larter, Claire Z; Yeh, Matthew M; Haigh, W Geoffrey; Van Rooyen, Derrick M; Brooling, John; Heydet, Deborah; Nolan, Christopher J; Teoh, Narci C; Farrell, Geoffrey C

    2013-06-01

    Alms1 mutant (foz/foz) mice develop hyperphagic obesity, diabetes, metabolic syndrome, and fatty liver (steatosis). High-fat (HF) feeding converts pathology from bland steatosis to nonalcoholic steatohepatitis (NASH) with fibrosis, which leads to cirrhosis in humans. We sought to establish how dietary composition contributes to NASH pathogenesis. foz/foz mice were fed HF diet or chow 24 weeks, or switched HF to chow after 12 weeks. Serum ALT, NAFLD activity score (NAS), fibrosis severity, neutrophil, macrophage and apoptosis immunohistochemistry, uncoupling protein (UCP)2, ATP, NF-κB activation/expression of chemokines/adhesion molecules/fibrogenic pathways were determined. HF intake upregulated liver fatty acid and cholesterol transporter, CD36. Dietary switch expanded adipose tissue and decreased hepatomegaly by lowering triglyceride, cholesterol ester, free cholesterol and diacylglyceride content of liver. There was no change in lipogenesis or fatty acid oxidation pathways; instead, CD36 was suppressed. These diet-induced changes in hepatic lipids improved NAS, reduced neutrophil infiltration, normalized UCP2 and increased ATP; this facilitated apoptosis with a change in macrophage phenotype favoring M2 cells. Dietary switch also abrogated NF-κB activation and chemokine/adhesion molecule expression, and arrested fibrosis by dampening stellate cell activation. Reversion to a physiological dietary composition after HF feeding in foz/foz mice alters body weight distribution but not obesity. This attenuates NASH severity and fibrotic progression by suppressing NF-κB activation and reducing neutrophil and macrophage activation. However, adipose inflammation persists and is associated with continuing apoptosis in the residual fatty liver disease. Taken together, these findings indicate that other measures, such as weight reduction, may be required to fully reverse obesity-related NASH. Copyright © 2013 The Obesity Society.

  5. The State of Pancreatobiliary System and Intestinal Microflora in Children with Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    N.Yu. Zavgorodnya

    2016-11-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD combines with a variety of liver pathologies, including hepatic steatosis, nonalcoholic steatohepatitis, fibrosis and cirrhosis, and acts as hepatic manifestation of metabolic syndrome. Not only the liver is a target organ in the formation of metabolic syndrome: also exist a possibility of gallbladder, pancreas and biliary tract steatosis. Fatty infiltration of the pancreatobiliary system associates with disturbance of digestive processes that promotes dysbiotic changes and intestinal disorders. Changes in intestinal microbiota, in turn, may induce systemic inflammatory response and promote NAFLD development and progression. Objective: to explore the structural and functional state of the pancreatobiliary system and changes of the enteric microflora in children with NAFLD. Methods. In 34 children with disorders of the gastrointestinal tract, we have determined controlled attenuation parameter by means of FibroScan. Assessment of functional status of biliary tract was performed using an ultrasound examination of the abdominal organs with test meal in order to determine gallbladder contractility and the sphincter of Oddi function. To characterize the state of the enteric microbiota, there was carried out a hydrogen breath test with glucose or lactose loading. Children were divided into groups according to the the transient elastography of the liver (FibroScan: the control group was represented by 21 patients without liver steatosis, the main group — 13 patients with liver steatosis. Results. Children with nonalcoholic fatty liver disease had signs of not only liver pathology, but also of the bile ducts and the pancreas. Biliary tract dysfunction in patients with NAFLD more often manifested as hypotension of the sphincter of Oddi and the gallbladder hypokinesia. Lesions of the pancreas function in children with NAFLD can be explained by the sphincter of Oddi disorders and manifestations of pancreatic

  6. The spleen-to-liver ratios in hepatic diseases

    International Nuclear Information System (INIS)

    Vorne, M.; Jurvelin, J.; Vaehaetalo, S.; Himanka, E.

    1984-01-01

    We compared light pen (LPEN) and Region of Interest (ROI) computer methods in determining spleen-to-liver (S/L) ratios both in anterior and posterior images in various liver diseases. The S/L ratio was independent of age or type of colloid used (equal particle size provided). Results with corresponding LPEN and ROI programs did not differ significantly from each other. The sensitivity and specificity were tested and the anterior view yielded somewhat better results than the posterior view but the best results were obtained when both projections were used. The sensitivity for all liver diseases was 60% and the corresponding specificity 93%. In hepatocellular diseases the sensitivity was 80-100%, but the S/L ratio had only 37% sensitivity for hepatic metastases. Hepatomegaly in the anterior view was found in 67% of fatty liver cases, in 25% of cirrhosis cases, in 20% of hepatitis and in 25% of metastatic livers. Splenomegaly was noted in 39-54% of patients with hepatocellular diseases but only in 4-10% of metastatic diseases. (orig.) [de

  7. Vitex agnus-castus L. (Verbenaceae) Improves the Liver Lipid Metabolism and Redox State of Ovariectomized Rats

    OpenAIRE

    Moreno, Franciele Neves; Campos-Shimada, Lilian Brites; da Costa, Silvio Claudio; Garcia, Ros?ngela Fernandes; Cecchini, Alessandra Louren?o; Natali, Maria Raquel Mar?al; Vitoriano, Adriana de Souza; Ishii-Iwamoto, Emy Luiza; Salgueiro-Pagadigorria, Clairce Luzia

    2015-01-01

    Vitex agnus-castus (VAC) is a plant that has recently been used to treat the symptoms of menopause, by its actions on the central nervous system. However, little is known about its actions on disturbances in lipid metabolism and nonalcoholic fat liver disease (NAFLD), frequently associated with menopause. Ovariectomized (OVX) rats exhibit increased adiposity and NAFLD 13 weeks after ovary removal and were used as animal models of estrogen deficiency. The rats were treated with crude extract (...

  8. Genetics Home Reference: non-alcoholic fatty liver disease

    Science.gov (United States)

    ... individual is considered to have a fatty liver (hepatic steatosis) if the liver contains more than 5 to ... Resources Genetic Testing (2 links) Genetic Testing Registry: Fatty liver disease, nonalcoholic 1 Genetic Testing Registry: Fatty liver ...

  9. Saturation of retinol-binding protein correlates closely to the severity of alcohol-induced liver disease

    DEFF Research Database (Denmark)

    Wagnerberger, S.; Schäfer, C.; Bode, C.

    2006-01-01

    Impaired metabolism of retinol has been shown to occur in alcohol-induced liver disease (ALD). The purpose of the present study was to investigate the saturation of retinol-binding protein (RBP) in 6 patients with different stages of ALD. Hospitalized alcohol consumers (n=118) with different stages......: 43.5+/-6.2%; ALD3: 29.0+/-5.1%). The present study indicates that plasma concentrations of retinol and RBP per se do not correlate to severity of ALD, but rather that the retinol/RBP ratio links to the severity of alcohol-induced liver damage. From these results, a reduced availability of retinol...

  10. Liver cell-targeted delivery of therapeutic molecules.

    Science.gov (United States)

    Kang, Jeong-Hun; Toita, Riki; Murata, Masaharu

    2016-01-01

    The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies.

  11. Long-term prognosis of fatty liver: risk of chronic liver disease and death

    DEFF Research Database (Denmark)

    Dam-Larsen, S.; Franzmann, M.; Andersen, I.B.

    2004-01-01

    BACKGROUND AND AIMS: Fatty liver is a common histological finding in human liver biopsy specimens. It affects 10-24% of the general population and is believed to be a marker of risk of later chronic liver disease. The present study examined the risk of development of cirrhotic liver disease...... and the risk of death in a cohort diagnosed with pure fatty liver without inflammation. METHODS: A total of 215 patients who had a liver biopsy performed during the period 1976-1987 were included in the study. The population consisted of 109 non-alcoholic and 106 alcoholic fatty liver patients. Median follow...... up time was 16.7 (0.2-21.9) years in the non-alcoholic and 9.2 (0.6-23.1) years in the alcoholic group. Systematic data collection was carried out by review of all medical records. All members of the study cohort were linked through their unique personal identification number to the National Registry...

  12. Cordyceps militaris alleviates non-alcoholic fatty liver disease in ob/ob mice

    OpenAIRE

    Choi, Ha-Neul; Jang, Yang-Hee; Kim, Min-Joo; Seo, Min Jeong; Kang, Byoung Won; Jeong, Yong Kee; Kim, Jung-In

    2014-01-01

    BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is becoming an important public health problem as metabolic syndrome and type 2 diabetes have become epidemic. In this study we investigated the protective effect of Cordyceps militaris (C. militaris) against NAFLD in an obese mouse model. MATERIALS/METHODS Four-week-old male ob/ob mice were fed an AIN-93G diet or a diet containing 1% C. militaris water extract for 10 weeks after 1 week of adaptation. Serum glucose, insulin, free...

  13. Increased circulating zonulin in children with biopsy-proven nonalcoholic fatty liver disease.

    Science.gov (United States)

    Pacifico, Lucia; Bonci, Enea; Marandola, Lidia; Romaggioli, Sara; Bascetta, Stefano; Chiesa, Claudio

    2014-12-07

    To investigate the potential association of circulating zonulin with the stage of liver disease in obese children with biopsy-confirmed nonalcoholic fatty liver disease (NAFLD). A case-control study was performed. Cases were 40 obese children with NAFLD. The diagnosis of NAFLD was based on magnetic resonance imaging (MRI) with high hepatic fat fraction (HFF ≥ 5%), and confirmed by liver biopsy with ≥ 5% of hepatocytes containing macrovesicular fat. Controls were selected from obese children with normal levels of aminotransferases, and without MRI evidence of fatty liver as well as of other causes of chronic liver diseases. Controls were matched (1-to 1) with the cases on age, gender, pubertal stage and as closely as possible on body mass index- standard deviation score. All participants underwent clinical examination, laboratory tests including zonulin, inflammatory and metabolic parameters, and MRI for measurement of HFF and visceral adipose tissue. Zonulin values were significantly greater in obese subjects with NAFLD than in those without NAFLD [median (interquartile range), 4.23 (3.18-5.89) vs 3.31 (2.05-4.63), P zonulin concentrations increased significantly with the severity of steatosis and the Spearman's coefficient revealed a positive correlation between zonulin values and steatosis (r = 0.372, P zonulin and lobular inflammation (P = 0.23), ballooning (P = 0.10), fibrosis score (P = 0.18), or presence of nonalcoholic steatohepatitis (P = 0.17). Within the entire study population, zonulin levels were positively associated with gamma-glutamyl transferase, 2-h insulin, HFF, and negatively associated with whole-body insulin sensitivity index (WBISI), after adjustment for age, gender and pubertal status. When the associations were restricted to the group of NAFLD patients, 2-h insulin, hepatic fat, and WBISI retained statistical significance. Circulating zonulin is increased in children and adolescents with NAFLD and correlates with the severity of

  14. Simultaneous liver-pancreas transplantation for cystic fibrosis-related liver disease : A multicenter experience

    NARCIS (Netherlands)

    Bandsma, R. H. J.; Bozic, M. A.; Fridell, J. A.; Crull, M. H.; Molleston, J.; Avitzur, Y.; Mozer-Glassberg, Y.; Gonzalez-Peralta, R. P.; Hodik, M.; Fecteau, A.; de Angelis, M.; Durie, P.; Ng, V. L.

    Background: Diabetes is associated with increased morbidity and mortality in patients with cystic fibrosis (CF). While liver transplantation is well established for CF-related liver disease (CFLD), the role of simultaneous liver pancreas transplantation is less understood. Methods: We polled 81

  15. Perioperative liver and spleen elastography in patients without chronic liver disease.

    Science.gov (United States)

    Eriksson, Sam; Borsiin, Hanna; Öberg, Carl-Fredrik; Brange, Hannes; Mijovic, Zoran; Sturesson, Christian

    2018-02-27

    To investigate changes in hepatic and splenic stiffness in patients without chronic liver disease during liver resection for hepatic tumors. Patients scheduled for liver resection for hepatic tumors were considered for enrollment. Tissue stiffness measurements on liver and spleen were conducted before and two days after liver resection using point shear-wave elastography. Histological analysis of the resected liver specimen was conducted in all patients and patients with marked liver fibrosis were excluded from further study analysis. Patients were divided into groups depending on size of resection and whether they had received preoperative chemotherapy or not. The relation between tissue stiffness and postoperative biochemistry was investigated. Results are presented as median (interquartile range). 35 patients were included. The liver stiffness increased in patients undergoing a major resection from 1.41 (1.24-1.63) m/s to 2.20 (1.72-2.44) m/s ( P = 0.001). No change in liver stiffness in patients undergoing a minor resection was found [1.31 (1.15-1.52) m/s vs 1.37 (1.12-1.77) m/s, P = 0.438]. A major resection resulted in a 16% (7%-33%) increase in spleen stiffness, more ( P = 0.047) than after a minor resection [2 (-1-13) %]. Patients who underwent preoperative chemotherapy ( n = 20) did not differ from others in preoperative right liver lobe [1.31 (1.16-1.50) vs 1.38 (1.12-1.56) m/s, P = 0.569] or spleen [2.79 (2.33-3.11) vs 2.71 (2.37-2.86) m/s, P = 0.515] stiffness. Remnant liver stiffness on the second postoperative day did not show strong correlations with maximum postoperative increase in bilirubin ( R 2 = 0.154, Pearson's r = 0.392, P = 0.032) and international normalized ratio ( R 2 = 0.285, Pearson's r = 0.534, P = 0.003). Liver and spleen stiffness increase after a major liver resection for hepatic tumors in patients without chronic liver disease.

  16. Mitochondrial alterations in children with chronic liver disease

    African Journals Online (AJOL)

    Rabah M. Shawky

    chondrial function and structure in livers from humans with chronic liver disease ... ease, 2 with lipid storage disease, one with type I autoimmune hepatitis, one ..... a classification scheme for mitochondrial hepatopathies into primary and ...

  17. Liver Disease in Cystic Fibrosis: an Update

    Science.gov (United States)

    Parisi, Giuseppe Fabio; Di Dio, Giovanna; Franzonello, Chiara; Gennaro, Alessia; Rotolo, Novella; Lionetti, Elena; Leonardi, Salvatore

    2013-01-01

    Context Cystic fibrosis (CF) is the most widespread autosomal recessive genetic disorder that limits life expectation amongst the Caucasian population. As the median survival has increased related to early multidisciplinary intervention, other manifestations of CF have emergedespecially for the broad spectrum of hepatobiliary involvement. The present study reviews the existing literature on liver disease in cystic fibrosis and describes the key issues for an adequate clinical evaluation and management of patients, with a focus on the pathogenetic, clinical and diagnostic-therapeutic aspects of liver disease in CF. Evidence Acquisition A literature search of electronic databases was undertaken for relevant studies published from 1990 about liver disease in cystic fibrosis. The databases searched were: EMBASE, PubMed and Cochrane Library. Results CF is due to mutations in the gene on chromosome 7 that encodes an amino acidic polypeptide named CFTR (cystic fibrosis transmembrane regulator). The hepatic manifestations include particular changes referring to the basic CFTR defect, iatrogenic lesions or consequences of the multisystem disease. Even though hepatobiliary disease is the most common non-pulmonary cause ofmortalityin CF (the third after pulmonary disease and transplant complications), only about the 33%ofCF patients presents clinically significant hepatobiliary disease. Conclusions Liver disease will have a growing impact on survival and quality of life of cystic fibrosis patients because a longer life expectancy and for this it is important its early recognition and a correct clinical management aimed atdelaying the onset of complications. This review could represent an opportunity to encourage researchers to better investigate genotype-phenotype correlation associated with the development of cystic fibrosis liver disease, especially for non-CFTR genetic polymorphisms, and detect predisposed individuals. Therapeutic trials are needed to find strategies of

  18. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice

    Directory of Open Access Journals (Sweden)

    Eun-Young Park

    2015-11-01

    Full Text Available Ecklonia cava (E. cava; CA is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA on nonalcoholic fatty liver disease (NAFLD in high-fat diet (HFD-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1, the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism.

  19. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions

    Science.gov (United States)

    Clemente, Maria Grazia; Mandato, Claudia; Poeta, Marco; Vajro, Pietro

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) in children is becoming a major health concern. A “multiple-hit” pathogenetic model has been suggested to explain the progressive liver damage that occurs among children with NAFLD. In addition to the accumulation of fat in the liver, insulin resistance (IR) and oxidative stress due to genetic/epigenetic background, unfavorable lifestyles, gut microbiota and gut-liver axis dysfunction, and perturbations of trace element homeostasis have been shown to be critical for disease progression and the development of more severe inflammatory and fibrotic stages [non-alcoholic steatohepatitis (NASH)]. Simple clinical and laboratory parameters, such as age, history, anthropometrical data (BMI and waist circumference percentiles), blood pressure, surrogate clinical markers of IR (acanthosis nigricans), abdominal ultrasounds, and serum transaminases, lipids and glucose/insulin profiles, allow a clinician to identify children with obesity and obesity-related conditions, including NAFLD and cardiovascular and metabolic risks. A liver biopsy (the “imperfect” gold standard) is required for a definitive NAFLD/NASH diagnosis, particularly to exclude other treatable conditions or when advanced liver disease is expected on clinical and laboratory grounds and preferably prior to any controlled trial of pharmacological/surgical treatments. However, a biopsy clearly cannot represent a screening procedure. Advancements in diagnostic serum and imaging tools, especially for the non-invasive differentiation between NAFLD and NASH, have shown promising results, e.g., magnetic resonance elastography. Weight loss and physical activity should be the first option of intervention. Effective pharmacological treatments are still under development; however, drugs targeting IR, oxidative stress, proinflammatory pathways, dyslipidemia, gut microbiota and gut liver axis dysfunction are an option for patients who are unable to comply with the recommended

  20. The role of insufficient copper in lipid synthesis and fatty-liver disease.

    Science.gov (United States)

    Morrell, Austin; Tallino, Savannah; Yu, Lei; Burkhead, Jason L

    2017-04-01

    The essential transition metal copper is important in lipid metabolism, redox balance, iron mobilization, and many other critical processes in eukaryotic organisms. Genetic diseases where copper homeostasis is disrupted, including Menkes disease and Wilson disease, indicate the importance of copper balance to human health. The severe consequences of insufficient copper supply are illustrated by Menkes disease, caused by mutation in the X-linked ATP7A gene encoding a protein that transports copper from intestinal epithelia into the bloodstream and across the blood-brain barrier. Inadequate copper supply to the body due to poor diet quality or malabsorption can disrupt several molecular level pathways and processes. Though much of the copper distribution machinery has been described and consequences of disrupted copper handling have been characterized in human disease as well as animal models, physiological consequences of sub-optimal copper due to poor nutrition or malabsorption have not been extensively studied. Recent work indicates that insufficient copper may be important in a number of common diseases including obesity, ischemic heart disease, and metabolic syndrome. Specifically, marginal copper deficiency (CuD) has been reported as a potential etiologic factor in diseases characterized by disrupted lipid metabolism such as non-alcoholic fatty-liver disease (NAFLD). In this review, we discuss the available data suggesting that a significant portion of the North American population may consume insufficient copper, the potential mechanisms by which CuD may promote lipid biosynthesis, and the interaction between CuD and dietary fructose in the etiology of NAFLD. © 2016 IUBMB Life, 69(4):263-270, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  1. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Weng-Yew Wong

    2012-10-01

    Full Text Available Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.

  2. Putrescine treatment reverses α-tocopherol-induced desynchronization of polyamine and retinoid metabolism during rat liver regeneration

    Directory of Open Access Journals (Sweden)

    Lourdes Sánchez-Sevilla

    2016-10-01

    Full Text Available Abstract Background The pre-treatment with α-tocopherol inhibits progression of rat liver proliferation induced by partial hepatectomy (PH, by decreasing and/or desynchronizing cyclin D1 expression and activation into the nucleus, activation and nuclear translocation of STAT-1 and -3 proteins and altering retinoid metabolism. Interactions between retinoic acid and polyamines have been reported in the PH-induced rat liver regeneration. Therefore, we evaluated the effect of low dosage of α-tocopherol on PH-induced changes in polyamine metabolism. Methods This study evaluated the participation of polyamine synthesis and metabolism during α-tocopherol-induced inhibition of rat liver regeneration. In PH-rats (Wistar treated with α-tocopherol and putrescine, parameters indicative of cell proliferation, lipid peroxidation, ornithine decarboxylase expression (ODC, and polyamine levels, were determined. Results Pre-treatment with α-tocopherol to PH-animals exerted an antioxidant effect, shifting earlier the increased ODC activity and expression, temporally affecting polyamine synthesis and ornithine metabolism. Whereas administration of putrescine induced minor changes in PH-rats, the concomitant treatment actually counteracted most of adverse actions exerted by α-tocopherol on the remnant liver, restituting its proliferative potential, without changing its antioxidant effect. Putrescine administration to these rats was also associated with lower ODC expression and activity in the proliferating liver, but the temporally shifting in the amount of liver polyamines induced by α-tocopherol, was also “synchronized” by the putrescine administration. The latter is supported by the fact that a close relationship was observed between fluctuations of polyamines and retinoids. Conclusions Putrescine counteracted most adverse actions exerted by α-tocopherol on rat liver regeneration, restoring liver proliferative potential and restituting the decreased

  3. Cranberry juice suppressed the diclofenac metabolism by human liver microsomes, but not in healthy human subjects

    Science.gov (United States)

    Ushijima, Kentarou; Tsuruoka, Shu-ichi; Tsuda, Hidetoshi; Hasegawa, Gohki; Obi, Yuri; Kaneda, Tae; Takahashi, Masaki; Maekawa, Tomohiro; Sasaki, Tomohiro; Koshimizu, Taka-aki; Fujimura, Akio

    2009-01-01

    AIM To investigate a potential interaction between cranberry juice and diclofenac, a substrate of CYP2C9. METHODS The inhibitory effect of cranberry juice on diclofenac metabolism was determined using human liver microsome assay. Subsequently, we performed a clinical trial in healthy human subjects to determine whether the repeated consumption of cranberry juice changed the diclofenac pharmacokinetics. RESULTS Cranberry juice significantly suppressed diclofenac metabolism by human liver microsomes. On the other hand, repeated consumption of cranberry juice did not influence the diclofenac pharmacokinetics in human subjects. CONCLUSIONS Cranberry juice inhibited diclofenac metabolism by human liver microsomes, but not in human subjects. Based on the present and previous findings, we think that although cranberry juice inhibits CYP2C9 activity in vitro, it does not change the pharmacokinetics of medications metabolized by CYP2C9 in clinical situations. PMID:19694738

  4. The hepatic stellate cell in sight : targeting antiproliferative drugs to the fibrotic liver

    NARCIS (Netherlands)

    Greupink, Albert Hendrikus

    2006-01-01

    Liver fibrosis is characterized by the accumulation of excessive amounts of scar tissue in response to chronic liver injury. Important causes of chronic liver injury are viral hepatitis, metabolic disorders such as Wilson’s disease, autoimmune diseases and chronic exposure to certain chemicals,

  5. COMPARISON OF CLINICAL PROFILE OF DIABETES MELLITUS PATIENTS WITH OR WITHOUT NON-ALCOHOLIC FATTY LIVER DISEASES

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2017-11-01

    Full Text Available BACKGROUND Non-alcoholic fatty liver disease represents a spectrum of conditions, which is characterised histologically by significant macrovesicular hepatic steatosis that occurs in those who do not consume alcohol in amounts considered to be harmful to liver and in the absence of known toxins, drugs, viral disease, etc. This disease is quite frequently seen in diabetes especially type 2 diabetes mellitus, which is probably related to altered glucose metabolism. The spectrum of non-alcoholic fatty liver disease is quite variable from mild alteration of transaminases, which is a benign disease to one with high morbidity and mortality. Type 2 diabetes mellitus is a risk factor for NAFLD and the prevalence of NAFLD in diabetic patients have been shown to be between 30-80%. MATERIALS AND METHODS In this study, normative survey technique was selected. Duration of the study was one year. The sample comprised of 100 diabetic patients age ranged 31-70 years. The sample was selected on the basis of inclusion and exclusion criteria. The tools such as clinical profile and checklist were administered. RESULTS The study found out that NAFLD is very common in diabetes mellitus. Diabetic patients with NAFLD has a longer duration of diabetes compared to that of diabetic patients without NAFLD diabetic patients with NAFLD had higher BMI, waist circumference and systolic blood pressure than that of patients without NAFLD. CONCLUSION All the patients within the spectrum of NAFLD should be considered potentially affected not only by a liver disease, but by a multisystem disease. Clinicians should be aware of the importance of a complete clinical evaluation for early diagnosis and treatment of liver disease as well as the different manifestations. All type 2 diabetic patients should be monitored for the development of NAFLD. Early diagnosis of NAFLD can prevent the progression to NASH and its complications.

  6. Excellent survival after liver transplantation for isolated polycystic liver disease: an European Liver Transplant Registry study

    DEFF Research Database (Denmark)

    van Keimpema, Loes; Nevens, Frederik; Adam, René

    2011-01-01

    Patients with end-stage isolated polycystic liver disease (PCLD) suffer from incapacitating symptoms because of very large liver volumes. Liver transplantation (LT) is the only curative option. This study assesses the feasibility of LT in PCLD. We used the European Liver Transplant Registry (ELTR......) database to extract demographics and outcomes of 58 PCLD patients. We used Kaplan-Meier survival analysis for survival rates. Severe abdominal pain (75%) was the most prominent symptom, while portal hypertension (35%) was the most common complication in PCLD. The explantation of the polycystic liver...

  7. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  8. Micronutrient Antioxidants and Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Guanliang Chen

    2016-08-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is one of the most important chronic liver diseases worldwide and has garnered increasing attention in recent decades. NAFLD is characterized by a wide range of liver changes, from simple steatosis to nonalcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. The blurred pathogenesis of NAFLD is very complicated and involves lipid accumulation, insulin resistance, inflammation, and fibrogenesis. NAFLD is closely associated with complications such as obesity, diabetes, steatohepatitis, and liver fibrosis. During the progression of NAFLD, reactive oxygen species (ROS are activated and induce oxidative stress. Recent attempts at establishing effective NAFLD therapy have identified potential micronutrient antioxidants that may reduce the accumulation of ROS and finally ameliorate the disease. In this review, we present the molecular mechanisms involved in the pathogenesis of NAFLD and introduce some dietary antioxidants that may be used to prevent or cure NAFLD, such as vitamin D, E, and astaxanthin.

  9. Inherent lipid metabolic dysfunction in glycogen storage disease IIIa.

    Science.gov (United States)

    Li, Xin-Hua; Gong, Qi-Ming; Ling, Yun; Huang, Chong; Yu, De-Min; Gu, Lei-Lei; Liao, Xiang-Wei; Zhang, Dong-Hua; Hu, Xi-Qi; Han, Yue; Kong, Xiao-Fei; Zhang, Xin-Xin

    2014-12-05

    We studied two patients from a nonconsanguineous family with life-long abnormal liver function, hepatomegaly and abnormal fatty acid profiles. Abnormal liver function, hypoglycemia and muscle weakness are observed in various genetic diseases, including medium-chain acyl-CoA dehydrogenase (MCAD) deficiency and glycogen storage diseases. The proband showed increased free fatty acids, mainly C8 and C10, resembling fatty acid oxidation disorder. However, no mutation was found in ACADM and ACADL gene. Sequencing of theamylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) gene showed that both patients were compound heterozygotes for c.118C > T (p.Gln40X) and c.753_756 del CAGA (p.Asp251Glufsx29), whereas their parents were each heterozygous for one of these mutations. The AGL protein was undetectable in EBV-B cells from the two patients. Transcriptome analysis demonstrated a significant different pattern of gene expression in both of patients’ cells, including genes involving in the PPAR signaling pathway, fatty acid biosynthesis, lipid synthesis and visceral fat deposition and metabolic syndrome. This unique gene expression pattern is probably due to the absence of AGL, which potentially accounts for the observed clinical phenotypes of hyperlipidemia and hepatocyte steatosis in glycogen storage disease type IIIa.

  10. Nutritional support of children with chronic liver disease

    African Journals Online (AJOL)

    The effect that chronic liver disease has on a child's nutritional status and ... even children with less severe liver disease require nutritional .... Reduced muscle bulk .... pain and fractures, palpation of the spine and assessment of pubertal stage.

  11. Protective effects of glycyrrhizic acid against non-alcoholic fatty liver disease in mice.

    Science.gov (United States)

    Sun, Xue; Duan, Xingping; Wang, Changyuan; Liu, Zhihao; Sun, Pengyuan; Huo, Xiaokui; Ma, Xiaodong; Sun, Huijun; Liu, Kexin; Meng, Qiang

    2017-07-05

    Non-alcoholic fatty liver disease (NAFLD) has become a predictive factor of death from many diseases. The purpose of the present study is to investigate the protective effect of glycyrrhizic acid (GA), a natural triterpene glycoside, on NAFLD induced by a high-fat diet (HFD) in mice, and further to elucidate the mechanisms underlying GA protection. GA treatment significantly reduced the relative liver weight, serum ALT, AST activities, levels of serum lipid, blood glucose and insulin. GA suppressed lipid accumulation in liver. Further mechanism investigation indicated that GA reduced hepatic lipogenesis via downregulating SREBP-1c, FAS and SCD1 expression, increased fatty acids β-oxidation via an increase in PPARα, CPT1α and ACADS, and promoted triglyceride metabolism through inducing LPL activity. Furthermore, GA reduced gluconeogenesis through repressing PEPCK and G6Pase, and increased glycogen synthesis through an induction in gene expression of PDase and GSK3β. In addition, GA increased insulin sensitivity through upregulating phosphorylation of IRS-1 and IRS-2. In conclusion, GA produces protective effect against NAFLD, due to regulation of genes involved in lipid, glucose homeostasis and insulin sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Metabolism and disease

    National Research Council Canada - National Science Library

    Grodzicker, Terri; Stewart, David J; Stillman, Bruce

    2011-01-01

    ...), cellular, organ system (cardiovascular, bone), and organismal (timing and life span) scales. Diseases impacted by metabolic imbalance or dysregulation that were covered in detail included diabetes, obesity, metabolic syndrome, and cancer...

  13. Coffee: The magical bean for liver diseases

    OpenAIRE

    Heath, Ryan D; Brahmbhatt, Mihir; Tahan, Asli C; Ibdah, Jamal A; Tahan, Veysel

    2017-01-01

    Coffee has long been recognized as having hepatoprotective properties, however, the extent of any beneficial effect is still being elucidated. Coffee appears to reduce risk of hepatocellular carcinoma, reduce advancement of fibrotic disease in a variety of chronic liver diseases, and perhaps reduce ability of hepatitis C virus to replicate. This review aims to catalog the evidence for coffee as universally beneficial across a spectrum of chronic liver diseases, as well as spotlight opportunit...

  14. Circulating level of CTRP1 in patients with nonalcoholic fatty liver disease (NAFLD: is it through insulin resistance?

    Directory of Open Access Journals (Sweden)

    Parisa Shabani

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is considered as one of the most common liver diseases. It is robustly linked to obesity and insulin resistance and is regarded as hepatic manifestation of metabolic syndrome (MetS. Adipokines are involved in the pathophysiology of liver diseases. The aim of this study was to evaluate the plasma concentrations of CTRP1 (complement-C1q TNF-related protein 1 in 22 patients with NAFLD, 22 patients with type 2 diabetes mellitus (T2DM, 22 patients with NAFLD+T2DM and 21 healthy controls, as well as their correlation with the level of metabolic and hepatic parameters. Plasma concentration of CTRP1 was measured with ELISA method. Plasma concentration of CTRP1 in patients with NAFLD, T2DM and NAFLD+T2DM were significantly higher than healthy subjects (p<0.0001. Moreover, we observed significant positive correlations between plasma level of CTRP1 and fasting blood glucose (FBG (p<0.001, homeostasis model assessment of insulin resistance (HOMA-IR (p<0.001, body mass index (BMI (p = 0.001, alanine amino transferase (ALT (p = 0.002, gamma glutamyl transferase (γ-GT (p<0.001 and liver stiffness (LS (p<0.001. Our results indicate the strong association of CTRP1 with insulin resistance in NAFLD. Also, it seems that CTRP1 can be considered as an emerging biomarker for NAFLD, however, more studies are necessary to unravel the role of CTRP1 in NAFLD pathogenesis.

  15. When can nutritional therapy impact liver disease?

    Science.gov (United States)

    Bozeman, Matthew C; Benns, Matthew V; McClave, Stephen A; Miller, Keith R; Jones, Christopher M

    2014-10-01

    This article reviews the current literature regarding nutritional therapy in liver disease, with an emphasis on patients progressing to liver failure as well as surgical patients. Mechanisms of malnutrition and sarcopenia in liver failure patients as well as nutritional assessment, nutritional requirements of this patient population, and goals and methods of therapy are discussed. Additionally, recommendations for feeding, micronutrient, branched chain amino acid supplementation, and the use of pre- and probiotics are included. The impact of these methods can have on patients with advanced disease and those undergoing surgical procedures will be emphasized.

  16. Global Liver Gene Expression Analysis on a Murine Metabolic Syndrome Model Treated by Low-molecular-weight Lychee Fruit Polyphenol (Oligonol®).

    Science.gov (United States)

    Uchiyama, Hironobu; Uehara, Kaori; Nagashima, Takayuki; Nakata, Akifumi; Sato, Keisuke; Mihara, Yoshihiro; Komatsu, Ken-Ich; Takanari, Jun; Shimizu, Shigeomi; Wakame, Koji

    2016-07-01

    Oligonol® (OLG) is a low-molecular-weight lychee fruit polyphenol mainly containing catechin-type monomers and oligomers of proanthocyanidins. Dietary OLG supplementation reportedly improves lipid metabolism disorder and lowers the visceral fat level in animal and human studies. Thus, we investigated the mechanism behind the protective and beneficial effects of OLG on a Western diet (WD)-induced metabolic syndrome (MetS) of a murine model. Using the C57BL/6J mouse for the MetS model, mice were divided into three groups: control (normal diet: ND), Western diet (WD) and WD + 0.5% OLG (OLG) groups. The WD group was fed a high-calorie (high fructose plus high fat) diet for 12 weeks to develop MetS. At week 12, all mice were sacrificed and the blood and liver were obtained for histological and biological examinations and RNA sequencing (RNA-Seq). Body weight, liver weight, plasma triglycerides (TG), total cholesterol (T-Cho) and alanine aminotransferase (ATS) levels of both OLG groups were significantly lower than those of the WD group. On histological examination of the liver, the area of fatty deposits was shown to be suppressed by OLG administration. Expression gene analysis in the liver of WD- versus OLG-fed mice by RNA-Seq showed that 464/45,706 genes exhibited a significant change of expression (corrected p-value metabolism-related genes Lpin1, Adig and Cidea were regulated by OLG administration. OLG may function to suppress MetS and the progression of geriatric diseases in WD-fed mice by regulating the expression of lipid metabolism, inflammation and tumor-related genes in the liver. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Characterization of liver changes in ZSF1 rats, an animal model of metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Marta Borges-Canha

    Full Text Available Background: The non-alcoholic fatty liver disease is the hepatic counterpart of the metabolic syndrome. ZSF1 rats are a metabolic syndrome animal model in which liver changes have not been described yet. Aim: The characterization of liver histological and innate immunity changes in ZSF1 rats. Methods: Five groups of rats were included (n = 7 each group: healthy Wistar-Kyoto control rats (Ctrl, hypertensive ZSF1 lean (Ln, ZSF1 obese rats with a normal diet (Ob, ZSF1 obese rates with a high-fat diet (Ob-HFD, and ZSF1 obese rats with low-intensity exercise training (Ob-Ex. The animals were sacrificed at 20 weeks of age, their livers were collected for: a measurements of the area of steatosis, fibrosis and inflammation (histomorphological analysis; and b innate immunity (toll-like receptor [TLR] 2, TLR4, peroxisome proliferator-activated receptor γ [PPARγ], toll interacting protein [TOLLIP] and inflammatory marker (tumor necrosis factor-alpha [TNFvs], interleukin 1 [IL-1] expression analysis by real-time PCR. Results: Ob, Ob-HFD and Ob-Ex were significantly heavier than Ln and Ctrl animals. Ob, Ob-HFD and Ob-Ex animals had impaired glucose tolerance and insulin resistance. ZSF1 Ob, Ob-HFD and Ob-Ex presented a higher degree of steatosis (3,5x; p < 0.05 than Ctrl or ZSF1 Ln rats. Steatohepatitis and fibrosis were not observed in any of the groups. No differences in expression were observed between Ctrl, Ln and Ob animals (except for the significantly higher expression of TOLLIP observed in the Ob vs Ln comparison. Ob-HFD and Ob-Ex rats showed increased expression of PPARγ and TOLLIP as compared to other groups. However, both groups also showed increased expression of TLR2 and TLR4. Nevertheless, this did not translate into a differential expression of TNFα or IL-1 in any of the groups. Conclusion: The ZSF1 model is associated with liver steatosis but not with steatohepatitis or a significantly increased expression of innate immunity or

  18. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Davide Povero

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common chronic liver disease in both adult and children. Currently there are no reliable methods to determine disease severity, monitor disease progression, or efficacy of therapy, other than an invasive liver biopsy.Choline Deficient L-Amino Acid (CDAA and high fat diets were used as physiologically relevant mouse models of NAFLD. Circulating extracellular vesicles were isolated, fully characterized by proteomics and molecular analyses and compared to control groups. Liver-related microRNAs were isolated from purified extracellular vesicles and liver specimens.We observed statistically significant differences in the level of extracellular vesicles (EVs in liver and blood between two control groups and NAFLD animals. Time-course studies showed that EV levels increase early during disease development and reflect changes in liver histolopathology. EV levels correlated with hepatocyte cell death (r2 = 0.64, p<0.05, fibrosis (r2 = 0.66, p<0.05 and pathological angiogenesis (r2 = 0.71, p<0.05. Extensive characterization of blood EVs identified both microparticles (MPs and exosomes (EXO present in blood of NAFLD animals. Proteomic analysis of blood EVs detected various differentially expressed proteins in NAFLD versus control animals. Moreover, unsupervised hierarchical clustering identified a signature that allowed for discrimination between NAFLD and controls. Finally, the liver appears to be an important source of circulating EVs in NAFLD animals as evidenced by the enrichment in blood with miR-122 and 192--two microRNAs previously described in chronic liver diseases, coupled with a corresponding decrease in expression of these microRNAs in the liver.These findings suggest a potential for using specific circulating EVs as sensitive and specific biomarkers for the noninvasive diagnosis and monitoring of NAFLD.

  19. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    Science.gov (United States)

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  20. Honokiol Improves Liver Steatosis in Ovariectomized Mice

    Directory of Open Access Journals (Sweden)

    Yeon-Hui Jeong

    2018-01-01

    Full Text Available Nonalcoholic fatty liver disease (NAFLD is the most common liver disease, and is associated with the development of metabolic syndrome. Postmenopausal women with estrogen deficiency are at a higher risk of progression to NAFLD. Estrogen has a protective effect against the progression of the disease. Currently, there are no safe and effective treatments for these liver diseases in postmenopausal women. Honokiol (Ho, a bioactive natural product derived from Magnolia spp, has anti-inflammatory, anti-angiogenic, and anti-oxidative properties. In our study, we investigated the beneficial effects of Ho on NAFLD in ovariectomized (OVX mice. We divided the mice into four groups, as follows: SHAM, OVX, OVX+β-estradiol (0.4 mg/kg of bodyweight, and OVX+Ho (50 mg/kg of diet. Mice were fed diets with/without Ho for 12 weeks. The bodyweight, epidermal fat, and weights of liver tissue were lower in the OVX group than in the other groups. Ho improved hepatic steatosis and reduced proinflammatory cytokine levels. Moreover, Ho markedly downregulated plasma lipid levels. Our results indicate that Ho ameliorated OVX-induced fatty liver and inflammation, as well as associated lipid metabolism. These findings suggest that Ho may be hepatoprotective against NAFLD in postmenopausal women.