WorldWideScience

Sample records for metabolic interaction affecting

  1. Roostocks/scion/ nitrogen interactions affect secondary metabolism in the grape berry

    Directory of Open Access Journals (Sweden)

    Aude Habran

    2016-08-01

    Full Text Available ABSTRACT : The present work investigates the interactions between soil content, rootstock and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS and Pinot Noir (PN varieties were grafted either on Riparia Gloire de Montpellier (RGM or 110 Richter (110R rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic and hydroxybenzoic acids. that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  2. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    Science.gov (United States)

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization.

  3. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    Directory of Open Access Journals (Sweden)

    Marie S A Palmnäs

    Full Text Available Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat or high fat (HF, 60% kcal fat and further into ad libitum water control (W or low-dose aspartame (A, 5-7 mg/kg/d in drinking water treatments for 8 week (n = 10-12 animals/treatment. Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (P<0.05. Within HF, aspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  4. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat.

    Science.gov (United States)

    Palmnäs, Marie S A; Cowan, Theresa E; Bomhof, Marc R; Su, Juliet; Reimer, Raylene A; Vogel, Hans J; Hittel, Dustin S; Shearer, Jane

    2014-01-01

    Aspartame consumption is implicated in the development of obesity and metabolic disease despite the intention of limiting caloric intake. The mechanisms responsible for this association remain unclear, but may involve circulating metabolites and the gut microbiota. Aims were to examine the impact of chronic low-dose aspartame consumption on anthropometric, metabolic and microbial parameters in a diet-induced obese model. Male Sprague-Dawley rats were randomized into a standard chow diet (CH, 12% kcal fat) or high fat (HF, 60% kcal fat) and further into ad libitum water control (W) or low-dose aspartame (A, 5-7 mg/kg/d in drinking water) treatments for 8 week (n = 10-12 animals/treatment). Animals on aspartame consumed fewer calories, gained less weight and had a more favorable body composition when challenged with HF compared to animals consuming water. Despite this, aspartame elevated fasting glucose levels and an insulin tolerance test showed aspartame to impair insulin-stimulated glucose disposal in both CH and HF, independently of body composition. Fecal analysis of gut bacterial composition showed aspartame to increase total bacteria, the abundance of Enterobacteriaceae and Clostridium leptum. An interaction between HF and aspartame was also observed for Roseburia ssp wherein HF-A was higher than HF-W (Paspartame attenuated the typical HF-induced increase in the Firmicutes:Bacteroidetes ratio. Serum metabolomics analysis revealed aspartame to be rapidly metabolized and to be associated with elevations in the short chain fatty acid propionate, a bacterial end product and highly gluconeogenic substrate, potentially explaining its negative affects on insulin tolerance. How aspartame influences gut microbial composition and the implications of these changes on the development of metabolic disease require further investigation.

  5. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    OpenAIRE

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gom?s, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    ABSTRACT : The present work investigates the interactions between soil content, rootstock and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake ...

  6. Does methamphetamine affect bone metabolism?

    International Nuclear Information System (INIS)

    Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu

    2014-01-01

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10 mg/kg METH groups (n = 6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5 mg/kg METH showed an increased locomotor activity, whereas those receiving 10 mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5 mg/kg METH group, but not in the 10 mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5 mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10 mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that

  7. Does methamphetamine affect bone metabolism?

    Science.gov (United States)

    Tomita, Masafumi; Katsuyama, Hironobu; Watanabe, Yoko; Okuyama, Toshiko; Fushimi, Shigeko; Ishikawa, Takaki; Nata, Masayuki; Miyamoto, Osamu

    2014-05-07

    There is a close relationship between the central nervous system activity and bone metabolism. Therefore, methamphetamine (METH), which stimulates the central nervous system, is expected to affect bone turnover. The aim of this study was to investigate the role of METH in bone metabolism. Mice were divided into 3 groups, the control group receiving saline injections, and the 5 and 10mg/kg METH groups (n=6 in each group). All groups received an injection of saline or METH every other day for 8 weeks. Bone mineral density (BMD) was assessed by X-ray computed tomography. We examined biochemical markers and histomorphometric changes in the second cancellous bone of the left femoral distal end. The animals that were administered 5mg/kg METH showed an increased locomotor activity, whereas those receiving 10mg/kg displayed an abnormal and stereotyped behavior. Serum calcium and phosphorus concentrations were normal compared to the controls, whereas the serum protein concentration was lower in the METH groups. BMD was unchanged in all groups. Bone formation markers such as alkaline phosphatase and osteocalcin significantly increased in the 5mg/kg METH group, but not in the 10mg/kg METH group. In contrast, bone resorption markers such as C-terminal telopeptides of type I collagen and tartrate-resistant acid phosphatase 5b did not change in any of the METH groups. Histomorphometric analyses were consistent with the biochemical markers data. A significant increase in osteoblasts, especially in type III osteoblasts, was observed in the 5mg/kg METH group, whereas other parameters of bone resorption and mineralization remained unchanged. These results indicate that bone remodeling in this group was unbalanced. In contrast, in the 10mg/kg METH group, some parameters of bone formation were significantly or slightly decreased, suggesting a low turnover metabolism. Taken together, our results suggest that METH had distinct dose-dependent effects on bone turnover and that METH might

  8. Interactions between genetic variants of folate metabolism genes and lifestyle affect plasma homocysteine concentrations in the Boston Puerto Rican Population

    Science.gov (United States)

    Results of studies investigating relationships between lifestyle factors and elevated plasma homocysteine (Hcy), an independent risk factor for cardiovascular disease, are conflicting. The objective of this study was to investigate genetic and lifestyle factors and their interactions on plasma Hcy c...

  9. Interaction of pathogens with host cholesterol metabolism.

    Science.gov (United States)

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  10. Affective Computing and Intelligent Interaction

    CERN Document Server

    2012-01-01

    2012 International Conference on Affective Computing and Intelligent Interaction (ICACII 2012) was the most comprehensive conference focused on the various aspects of advances in Affective Computing and Intelligent Interaction. The conference provided a rare opportunity to bring together worldwide academic researchers and practitioners for exchanging the latest developments and applications in this field such as Intelligent Computing, Affective Computing, Machine Learning, Business Intelligence and HCI.   This volume is a collection of 119 papers selected from 410 submissions from universities and industries all over the world, based on their quality and relevancy to the conference. All of the papers have been peer-reviewed by selected experts.  

  11. Metabolic interactions between cysteamine and epigallocatechin gallate.

    Science.gov (United States)

    Izzo, Valentina; Pietrocola, Federico; Sica, Valentina; Durand, Sylvère; Lachkar, Sylvie; Enot, David; Bravo-San Pedro, José Manuel; Chery, Alexis; Esposito, Speranza; Raia, Valeria; Maiuri, Luigi; Maiuri, Maria Chiara; Kroemer, Guido

    2017-02-01

    Phase II clinical trials indicate that the combination of cysteamine plus epigallocatechin gallate (EGCG) is effective against cystic fibrosis in patients bearing the most frequent etiological mutation (CFTRΔF508). Here, we investigated the interaction between both agents on cultured respiratory epithelia cells from normal and CFTRΔF508-mutated donors. We observed that the combination of both agents affected metabolic circuits (and in particular the tricarboxylic acid cycle) in a unique way and that cysteamine plus EGCG reduced cytoplasmic protein acetylation more than each of the 2 components alone. In a cell-free system, protein cross-linking activity of EGCG was suppressed by cysteamine. Finally, EGCG was able to enhance the conversion of cysteamine into taurine in metabolic flux experiments. Altogether, these results indicate that multiple pharmacological interactions occur between cysteamine and EGCG, suggesting that they contribute to the unique synergy of both agents in restoring the function of mutated CFTRΔF508.

  12. AMPK Activation Affects Glutamate Metabolism in Astrocytes

    DEFF Research Database (Denmark)

    Voss, Caroline Marie; Pajęcka, Kamilla; Stridh, Malin H

    2015-01-01

    acid (TCA) cycle was studied using high-performance liquid chromatography analysis supplemented with gas chromatography-mass spectrometry technology. It was found that AMPK activation had profound effects on the pathways involved in glutamate metabolism since the entrance of the glutamate carbon...... on glutamate metabolism in astrocytes was studied using primary cultures of these cells from mouse cerebral cortex during incubation in media containing 2.5 mM glucose and 100 µM [U-(13)C]glutamate. The metabolism of glutamate including a detailed analysis of its metabolic pathways involving the tricarboxylic...... skeleton into the TCA cycle was reduced. On the other hand, glutamate uptake into the astrocytes as well as its conversion to glutamine catalyzed by glutamine synthetase was not affected by AMPK activation. Interestingly, synthesis and release of citrate, which are hallmarks of astrocytic function, were...

  13. Urban Interaction and Affective Experience

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Brynskov, Martin

    2008-01-01

    As interactive digital technologies become a still more integrated and complex part of the everyday physical, social and cultural spaces we inhabit, research into these spaces’ dynamics and struc-tures needs to formulate adequate methods of analysis and dis-course. In this position paper we argue...... in favor of three points in that direction: First we argue that interaction – and the definition of interaction – is central to unfold the potential of digital urban media, from big, shared screens and media facades to small pri-vate, networked mobile and embedded platforms. Then we argue that an affective...... approach holds potential to address important aspects of the design of such blended digital spaces, extending beyond traditional interaction design. And finally we argue for the importance of construction, i.e. actual interventions of consider-able scale....

  14. Come, See and Experience Affective Interactive Art

    NARCIS (Netherlands)

    Nijholt, Antinus; Bialoskorski, Leticia S.S.; Westerink, Joyce H.D.M.; Reidsma, Dennis; van den Broek, Egon; Hondorp, G.H.W.

    2009-01-01

    The progress in the field of affective computing enables the realization of affective consumer products, affective games, and affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on

  15. Flavanol plasma bioavailability is affected by metabolic syndrome in rats

    NARCIS (Netherlands)

    Margalef, M.; Pons, Z.; Iglesias-Carres, L.; Bravo, F.I.; Muguerza, B.; Arola-Arnal, A.

    2017-01-01

    Flavanols, which exert several health benefits, are metabolized after ingestion. Factors such as the host physiological condition could affect the metabolism and bioavailability of flavanols, influencing their bioactivities. This study aimed to qualitatively evaluate whether a pathological state

  16. Mood Swings: An Affective Interactive Art System

    Science.gov (United States)

    Bialoskorski, Leticia S. S.; Westerink, Joyce H. D. M.; van den Broek, Egon L.

    The progress in the field of affective computing enables the realization of affective consumer products, affective games, and affective art. This paper describes the affective interactive art system Mood Swings, which interprets and visualizes affect expressed by a person. Mood Swings is founded on the integration of a framework for affective movements and a color model. This enables Mood Swings to recognize affective movement characteristics as expressed by a person and display a color that matches the expressed emotion. With that, a unique interactive system is introduced, which can be considered as art, a game, or a combination of both.

  17. Enantiomeric metabolic interactions and stereoselective human methadone metabolism.

    Science.gov (United States)

    Totah, Rheem A; Allen, Kyle E; Sheffels, Pamela; Whittington, Dale; Kharasch, Evan D

    2007-04-01

    Methadone is administered as a racemate, although opioid activity resides in the R-enantiomer. Methadone disposition is stereoselective, with considerable unexplained variability in clearance and plasma R/S ratios. N-Demethylation of methadone in vitro is predominantly mediated by cytochrome P450 CYP3A4 and CYP2B6 and somewhat by CYP2C19. This investigation evaluated stereoselectivity, models, and kinetic parameters for methadone N-demethylation by recombinant CYP2B6, CYP3A4, and CYP2C19, and the potential for interactions between enantiomers during racemate metabolism. CYP2B6 metabolism was stereoselective. CYP2C19 was less active, and stereoselectivity was opposite that for CYP2B6. CYP3A4 was not stereoselective. With all three isoforms, enantiomer N-dealkylation rates in the racemate were lower than those of (R)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (R-methadone) or (S)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (S-methadone) alone, suggesting an enantiomeric interaction and mutual metabolic inhibition. For CYP2B6, the interaction between enantiomers was stereoselective, with S-methadone as a more potent inhibitor of R-methadone N-demethylation than R-of S-methadone. In contrast, enantiomer interactions were not stereoselective with CYP2C19 or CYP3A4. For all three cytochromes P450, methadone N-demethylation was best described by two-site enzyme models with competitive inhibition. There were minor model differences between cytochromes P450 to account for stereoselectivity of metabolism and enantiomeric interactions. Changes in plasma R/S methadone ratios observed after rifampin or troleandomycin pretreatment in humans in vivo were successfully predicted by CYP2B6- but not CYP3A4-catalyzed methadone N-demethylation. CYP2B6 is a predominant catalyst of stereoselective methadone metabolism in vitro. In vivo, CYP2B6 may be a major determinant of methadone metabolism and disposition, and CYP2B6 activity and stereoselective metabolic

  18. Urban Interaction and Affective Experience

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Brynskov, Martin

    2008-01-01

    As interactive digital technologies become a still more integrated and complex part of the everyday physical, social and cultural spaces we inhabit, research into these spaces’ dynamics and struc-tures needs to formulate adequate methods of analysis and dis-course. In this position paper we argue...... approach holds potential to address important aspects of the design of such blended digital spaces, extending beyond traditional interaction design. And finally we argue for the importance of construction, i.e. actual interventions of consider-able scale....

  19. Nonverbal synchrony and affect in dyadic interactions

    Directory of Open Access Journals (Sweden)

    Wolfgang eTschacher

    2014-11-01

    Full Text Available In an experiment on dyadic social interaction, we invited participants to verbal interactions in cooperative, competitive, and 'fun task' conditions. We focused on the link between interactants' affectivity and their nonverbal synchrony, and explored which further variables contributed to affectivity: interactants' personality traits, sex, and the prescribed interaction tasks. Nonverbal synchrony was quantified by the coordination of interactants' body movement, using an automated video-analysis algorithm (Motion Energy Analysis, MEA. Traits were assessed with standard questionnaires of personality, attachment, interactional style, psychopathology and interpersonal reactivity. We included 168 previously unacquainted individuals who were randomly allocated to same-sex dyads (84 females, 84 males, mean age 27.3 years. Dyads discussed four topics of general interest drawn from an urn of eight topics, and finally engaged in a fun interaction. Each interaction lasted five minutes. In between interactions, participants repeatedly assessed their affect. Using hierarchical linear modeling, we found moderate to strong effect sizes for synchrony to occur, especially in competitive and fun task conditions. Positive affect was associated positively with synchrony, negative affect was associated negatively. As for causal direction, data supported the interpretation that synchrony entailed affect rather than vice versa. The link between nonverbal synchrony and affect was strongest in female dyads. The findings extend previous reports of synchrony and mimicry associated with emotion in relationships and suggest a possible mechanism of the synchrony-affect correlation.

  20. Human Metabolism and Interactions of Deployment-Related Chemicals

    National Research Council Canada - National Science Library

    Hodgson, Ernest

    2003-01-01

    This study examines the human-metabolism and metabolic interactions of a subset of deployment-related chemicals, including chlorpyrifos, DEET, permethrin, pyridostigmine bromide, and sulfur mustard metabolites...

  1. The Affective Regulation of Social Interaction

    Science.gov (United States)

    Clore, Gerald L.; Pappas, Jesse

    2007-01-01

    The recent publication of David Heise's "Expressive Order" (2007) provides an occasion for discussing some of the key ideas in Affect Control Theory. The theory proposes that a few dimensions of affective meaning provide a common basis for interrelating personal identities and social actions. It holds that during interpersonal interactions, social…

  2. Facial Affect Reciprocity in Dyadic Interactions

    Science.gov (United States)

    2012-09-01

    regulators of social interaction. In the developmental literature, this concept has been investigated under the rubric of social referencing...The communication of affects in monkeys: Cooperative reward conditioning. Journal of Genetic Psychology, 108, 121– 134. Miller, R. E., Banks, J

  3. Affect in Human-Robot Interaction

    Science.gov (United States)

    2014-01-01

    Werry, I., Rae, J., Dickerson, P., Stribling, P., & Ogden, B. (2002). Robotic Playmates: Analysing Interactive Competencies of Children with Autism ...WE-4RII. IEEE International Conference on Intelligent Robots and Systems, Edmonton, Canada. 35. Moravec, H. (1988). Mind Children : The Future of...and if so when and where? • What approaches, theories , representations, and experimental methods inform affective HRI research? Report Documentation

  4. Affective loop experiences: designing for interactional embodiment.

    Science.gov (United States)

    Höök, Kristina

    2009-12-12

    Involving our corporeal bodies in interaction can create strong affective experiences. Systems that both can be influenced by and influence users corporeally exhibit a use quality we name an affective loop experience. In an affective loop experience, (i) emotions are seen as processes, constructed in the interaction, starting from everyday bodily, cognitive or social experiences; (ii) the system responds in ways that pull the user into the interaction, touching upon end users' physical experiences; and (iii) throughout the interaction the user is an active, meaning-making individual choosing how to express themselves-the interpretation responsibility does not lie with the system. We have built several systems that attempt to create affective loop experiences with more or less successful results. For example, eMoto lets users send text messages between mobile phones, but in addition to text, the messages also have colourful and animated shapes in the background chosen through emotion-gestures with a sensor-enabled stylus pen. Affective Diary is a digital diary with which users can scribble their notes, but it also allows for bodily memorabilia to be recorded from body sensors mapping to users' movement and arousal and placed along a timeline. Users can see patterns in their bodily reactions and relate them to various events going on in their lives. The experiences of building and deploying these systems gave us insights into design requirements for addressing affective loop experiences, such as how to design for turn-taking between user and system, how to create for 'open' surfaces in the design that can carry users' own meaning-making processes, how to combine modalities to create for a 'unity' of expression, and the importance of mirroring user experience in familiar ways that touch upon their everyday social and corporeal experiences. But a more important lesson gained from deploying the systems is how emotion processes are co-constructed and experienced

  5. Affective processes in human-automation interactions.

    Science.gov (United States)

    Merritt, Stephanie M

    2011-08-01

    This study contributes to the literature on automation reliance by illuminating the influences of user moods and emotions on reliance on automated systems. Past work has focused predominantly on cognitive and attitudinal variables, such as perceived machine reliability and trust. However, recent work on human decision making suggests that affective variables (i.e., moods and emotions) are also important. Drawing from the affect infusion model, significant effects of affect are hypothesized. Furthermore, a new affectively laden attitude termed liking is introduced. Participants watched video clips selected to induce positive or negative moods, then interacted with a fictitious automated system on an X-ray screening task At five time points, important variables were assessed including trust, liking, perceived machine accuracy, user self-perceived accuracy, and reliance.These variables, along with propensity to trust machines and state affect, were integrated in a structural equation model. Happiness significantly increased trust and liking for the system throughout the task. Liking was the only variable that significantly predicted reliance early in the task. Trust predicted reliance later in the task, whereas perceived machine accuracy and user self-perceived accuracy had no significant direct effects on reliance at any time. Affective influences on automation reliance are demonstrated, suggesting that this decision-making process may be less rational and more emotional than previously acknowledged. Liking for a new system may be key to appropriate reliance, particularly early in the task. Positive affect can be easily induced and may be a lever for increasing liking.

  6. Metabolic interrelationships software application: Interactive learning tool for intermediary metabolism

    NARCIS (Netherlands)

    A.J.M. Verhoeven (Adrie); M. Doets (Mathijs); J.M.J. Lamers (Jos); J.F. Koster (Johan)

    2005-01-01

    textabstractWe developed and implemented the software application titled Metabolic Interrelationships as a self-learning and -teaching tool for intermediary metabolism. It is used by undergraduate medical students in an integrated organ systems-based and disease-oriented core curriculum, which

  7. Plant interactions alter the predictions of metabolic scaling theory.

    Directory of Open Access Journals (Sweden)

    Yue Lin

    Full Text Available Metabolic scaling theory (MST is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of -4/3 between mean individual biomass and density during density-dependent mortality (self-thinning. Empirical tests have produced variable results, and the validity of MST is intensely debated. MST focuses on organisms' internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric, and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than -4/3 if competition was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive.

  8. Metabolic and affective consequences of fatherhood in male California mice.

    Science.gov (United States)

    Zhao, Meng; Garland, Theodore; Chappell, Mark A; Andrew, Jacob R; Saltzman, Wendy

    2017-08-01

    Physiological and affective condition can be modulated by the social environment and parental state in mammals. However, in species in which males assist with rearing offspring, the metabolic and affective effects of pair bonding and fatherhood on males have rarely been explored. In this study we tested the hypothesis that fathers, like mothers, experience energetic costs as well as behavioral and affective changes (e.g., depression, anxiety) associated with parenthood. We tested this hypothesis in the monogamous, biparental California mouse (Peromyscus californicus). Food intake, blood glucose and lipid levels, blood insulin and leptin levels, body composition, pain sensitivity, and depression-like behavior were compared in males from three reproductive groups: virgin males (VM, housed with another male), non-breeding males (NB, housed with a tubally ligated female), and breeding males (BM, housed with a female and their first litter). We found statistically significant (Pfatherhood influences several metabolic, morphological, and affective measures in male California mice. Overall, the changes we observed in breeding males were minor, but stronger effects might occur in long-term breeding males and/or under more challenging environmental conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism[S

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M. Airanthi K.; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-01-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. PMID:27389691

  10. Risk factors that affect metabolic health status in obese children.

    Science.gov (United States)

    Elmaogullari, Selin; Demirel, Fatma; Hatipoglu, Nihal

    2017-01-01

    While some obese children are metabolically healthy (MHO), some have additional health problems, such as hypertension, dyslipidemia, insulin resistance, and hepatosteatosis, which increase mortality and morbidity related to cardiovascular diseases (CVD) during adulthood. These children are metabolically unhealthy obese (MUO) children. In this study we assessed the factors that affect metabolic health in obesity and the clinical and laboratory findings that distinguish between MHO and MUO children. In total, 1085 patients aged 6-18 years, with age- and sex-matched BMI exceeding the 95th percentile were included in the study (mean 11.1±2.9 years, 57.6% female, 59.7% pubertal). Patients without dyslipidemia, insulin resistance, hepatosteatosis, or hypertension were considered as MHO. Dyslipidemia was defined as total cholesterol level over 200 mg/dL, triglyceride over 150 mg/dL, LDL over 130 mg/dL, or HDL under 40 mg/dL. Insulin resistance was calculated using the homeostasis model of assesment for insulin resistance (HOMA-IR) index. Hepatosteatosis was evaluated with abdominal ultrasound. Duration of obesity, physical activity and nutritional habits, screen time, and parental obesity were questioned. Thyroid and liver function tests were performed. Six hundred and forty-two cases (59.2%) were MUO. Older age, male sex, increased BMI-SDS, and sedentary lifestyle were associated with MUO. Excessive junk food consumption was associated with MUO particularly among the prepubertal obese patients. Our results revealed that the most important factors that affect metabolic health in obesity are age and BMI. Positive effects of an active lifestyle and healthy eating habits are prominent in the prepubertal period and these habits should be formed earlier in life.

  11. Interactions between epigenetics and metabolism in cancers

    International Nuclear Information System (INIS)

    Yun, Jihye; Johnson, Jared L.; Hanigan, Christin L.; Locasale, Jason W.

    2012-01-01

    Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. While it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, most of the enzymatic machinery of epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.

  12. Interactions between epigenetics and metabolism in cancers

    Directory of Open Access Journals (Sweden)

    Jihye eYun

    2012-11-01

    Full Text Available Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. Although it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA, are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, many enzymes that carry out post-translational modifications that alter epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.

  13. Mood swings: design and evaluation of affective interactive art

    NARCIS (Netherlands)

    Bialoskorski, Leticia S.S.; Westerink, Joyce H.D.M.; van den Broek, Egon

    2009-01-01

    The field of affective computing is concerned with developing emphatic products, such as affective consumer products, affective games, and affective art. This paper describes Mood Swings, an affective interactive art system, which interprets and visualizes affect expressed by a person. Mood Swings

  14. An Affect-Responsive Interactive Photo Frame

    NARCIS (Netherlands)

    Dibeklioğlu, H.; Kosunen, I.; Ortega Hortas, M.; Salah, A.A.; Zuzánek, P.; Salah, A.A.; Gevers, T.

    2010-01-01

    We develop an interactive photo-frame system in which a series of videos of a single person are automatically segmented and a response logic is derived to interact with the user in real-time. The system is composed of five modules. The first module analyzes the uploaded videos and prepares segments

  15. Black leaf streak disease affects starch metabolism in banana fruit.

    Science.gov (United States)

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots.

  16. The Choice of Euthanasia Method Affects Metabolic Serum Biomarkers.

    Science.gov (United States)

    Pierozan, Paula; Jernerén, Fredrik; Ransome, Yusuf; Karlsson, Oskar

    2017-08-01

    The impact of euthanasia methods on endocrine and metabolic parameters in rodent tissues and biological fluids is highly relevant for the accuracy and reliability of the data collected. However, few studies concerning this issue are found in the literature. We compared the effects of three euthanasia methods currently used in animal experimentation (i.e. decapitation, CO 2 inhalation and pentobarbital injection) on the serum levels of corticosterone, insulin, glucose, triglycerides, cholesterol and a range of free fatty acids in rats. The corticosterone and insulin levels were not significantly affected by the euthanasia protocol used. However, euthanasia by an overdose of pentobarbital (120 mg/kg intraperitoneal injection) increased the serum levels of glucose, and decreased cholesterol, stearic and arachidonic acids levels compared with euthanasia by CO 2 inhalation and decapitation. CO 2 inhalation appears to increase the serum levels of triglycerides, while euthanasia by decapitation induced no individual discrepant biomarker level. We conclude that choice of the euthanasia methods is critical for the reliability of serum biomarkers and indicate the importance of selecting adequate euthanasia methods for metabolic analysis in rodents. Decapitation without anaesthesia may be the most adequate method of euthanasia when taking both animal welfare and data quality in consideration. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  17. Exploring NAD+ metabolism in host-pathogen interactions.

    Science.gov (United States)

    Mesquita, Inês; Varela, Patrícia; Belinha, Ana; Gaifem, Joana; Laforge, Mireille; Vergnes, Baptiste; Estaquier, Jérôme; Silvestre, Ricardo

    2016-03-01

    Nicotinamide adenine dinucleotide (NAD(+)) is a vital molecule found in all living cells. NAD(+) intracellular levels are dictated by its synthesis, using the de novo and/or salvage pathway, and through its catabolic use as co-enzyme or co-substrate. The regulation of NAD(+) metabolism has proven to be an adequate drug target for several diseases, including cancer, neurodegenerative or inflammatory diseases. Increasing interest has been given to NAD(+) metabolism during innate and adaptive immune responses suggesting that its modulation could also be relevant during host-pathogen interactions. While the maintenance of NAD(+) homeostatic levels assures an adequate environment for host cell survival and proliferation, fluctuations in NAD(+) or biosynthetic precursors bioavailability have been described during host-pathogen interactions, which will interfere with pathogen persistence or clearance. Here, we review the double-edged sword of NAD(+) metabolism during host-pathogen interactions emphasizing its potential for treatment of infectious diseases.

  18. Affective Dynamics in Triadic Peer Interactions in Early Childhood

    NARCIS (Netherlands)

    Lavictoire, L.A.; Snyder, J.; Stoolmiller, M.; Hollenstein, T.P.

    2012-01-01

    In interpersonal interaction research, moving beyond dyadic to triadic dynamics can be analytically daunting. We explored the affective states expressed during triadic peer interactions to understand how patterns were associated with childhood psychopathology and sociometric status. High-risk

  19. How Urbanization Affects Employment and Social Interactions

    OpenAIRE

    Sato, Yasuhiro; Zenou, Yves

    2014-01-01

    We develop a model where the unemployed workers in the city can find a job either directly or through weak or strong ties. We show that, in denser areas, individuals choose to interact with more people and meet more random encounters (weak ties) than in sparsely populated areas. We also demonstrate that, for a low urbanization level, there is a unique steady-state equilibrium where workers do not interact with weak ties, while, for a high level of urbanization, there is a unique steady-state ...

  20. How Urbanization Affect Employment and Social Interactions

    OpenAIRE

    Sato, Yasuhiro; Zenou, Yves

    2014-01-01

    We develop a model where the unemployed workers in the city can find a job either directly or through weak or strong ties. We show that, in denser areas, individuals choose to interact with more people and meet more random encounters (weak ties) than in sparsely populated areas. We also demonstrate that, for a low urbanization level, there is a unique steady-state equilibrium where workers do not interact with weak ties, while, for a high level of urbanization, there is a unique steady-state ...

  1. Negative Affect in Human Robot Interaction

    DEFF Research Database (Denmark)

    Rehm, Matthias; Krogsager, Anders

    2013-01-01

    The vision of social robotics sees robots moving more and more into unrestricted social environments, where robots interact closely with users in their everyday activities, maybe even establishing relationships with the user over time. In this paper we present a field trial with a robot in a semi...

  2. Hyperthyroidism affects lipid metabolism in lactating and suckling rats.

    Science.gov (United States)

    Varas, S M; Jahn, G A; Giménez, M S

    2001-08-01

    Two per thousand pregnant women have hyperthyroidism (HT), and although the symptoms are attenuated during pregnancy, they rebound after delivery, affecting infant development. To examine the effects of hyperthyroidism on lactation, we studied lipid metabolism in maternal mammary glands and livers of hyperthyroid rats and their pups. Thyroxine (10 microg/100 g body weight/d) or vehicle-treated rats were made pregnant 2 wk after commencement of treatment and sacrificed on days 7, 14, and 21 of lactation with the litters. Circulating triiodothyronine and tetraiodothyronine concentrations in the HT mothers were increased on all days. Hepatic esterified cholesterol (EC) and free cholesterol (FC) and triglyceride (TG) concentrations were diminished on days 14 and 21. Lipid synthesis, measured by incorporation of [3H]H2O into EC, FC, and TG, fatty acid synthase, and acetyl CoA carboxylase activities increased at day 14, while incorporation into FC and EC decreased at days 7 and 21, respectively. Mammary FC and TG concentrations were diminished at day 14; incorporation of [3H]H2O into TG decreased at days 7 and 21, and incorporation of [3H]H2O into FC increased at day 14. In the HT pups, growth rate was diminished, tetraiodothyronine concentration rose at days 7 and 14 of lactation, and triiodothyronine increased only at day 14. Liver TG concentrations increased at day 7 and fell at day 14, while FC increased at day 14 and only acetyl CoA carboxylase activity fell at day 14. Thus, hyperthyroidism changed maternal liver and mammary lipid metabolism, with decreased lipid concentration in spite of increased liver rate of synthesis and decreases in mammary synthesis. These changes, along with the mild hyperthyroidism of the litters, may have contributed to their reduced growth rate.

  3. Does vitamin D affects components of the metabolic syndrome?

    OpenAIRE

    Sevil Karahan Yılmaz; Aylin Ayaz

    2015-01-01

    Metabolic syndrome is a major public health problem which has become increasingly common worlwide with cardiometabolic complications and have high morbidity and mortality. In addition to some genetical features, environmental factors such sedentary lifestyle, improper eating habits constitutes a risk factor for metabolic syndrome. Important components of the metabolic syndrome are dyslipidemia (low HDL levels, high triglycerides level), hyperglycemia, elevated blood...

  4. Dabigatran - Metabolism, Pharmacologic Properties and Drug Interactions.

    Science.gov (United States)

    Antonijevic, Nebojsa M; Zivkovic, Ivana D; Jovanovic, Ljubica M; Matic, Dragan M; Kocica, Mladen J; Mrdovic, Igor B; Kanjuh, Vladimir I; Culafic, Milica D

    2017-01-01

    The superiority of dabigatran has been well proven in the standard dosing regimen in prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation (NVAF) and extended venous thromboembolism (VTE) treatment. Dabigatran, an anticoagulant with a good safety profile, reduces intracranial bleeding in patients with atrial fibrillation and decreases major and clinically relevant non-major bleeding in acute VTE treatment. However, several important clinical issues are not fully covered by currently available directions with regard to dabigatran administration. The prominent one is reflected in the fact that dynamic impairment in renal function due to dehydratation may lead to haemorragic complications on the one hand, while on the other hand glomerular hyperfiltration may be a possible cause of dabigatran subdosing, hence reducing the drug's efficacy. Furthermore, limitations of the Cockcroft-Gault formula, considered a standard equation for assessing the renal function, may imply that other calculations are likely to obtain more accurate estimates of the kidney function in specific patient populations. Method and Conclusions: Although not routinely recommended, a possibility of monitoring dabigatran in special clinical settings adds to optimization of its dosage regimens, timely perioperative care and administration of urgently demanded thrombolytic therapy, therefore significantly improving this drug's safety profile. Despite the fact that dabigatran has fewer reported interactions with drugs, food constituents, and dietary supplements, certain interactions still remain, requiring considerable caution, notably in elderly, high bleeding risk patients, patients with decreased renal function and those on complex drug regimens. Additionally, upon approval of idarucizumab, an antidote to dabigatran solution, hitherto being a major safety concern, has been finally reached, which plays a vital role in life-threatening bleeding and emergency

  5. Interactive affective sharing versus non-interactive affective sharing in work groups : Comparative effects of group affect on work group performance and dynamics

    NARCIS (Netherlands)

    Klep, Annefloor; Wisse, Barbara; Van Der Flier, Henk

    This study explores whether the dynamic path to group affect, which is characterized by interactive affective sharing processes, yields different effects on task performance and group dynamics than the static path to group affect, which arises from non-interactive affective sharing. The results of

  6. Interactive affective sharing versus non-interactive affective sharing in work groups: Comparative effects of group affect on work group performance and dynamics

    NARCIS (Netherlands)

    Klep, A.H.M.; Wisse, B.M.; van der Flier, H.

    2011-01-01

    This study explores whether the dynamic path to group affect, which is characterized by interactive affective sharing processes, yields different effects on task performance and group dynamics than the static path to group affect, which arises from non-interactive affective sharing. The results of

  7. Interactions of polyhalogenated aromatic hydrocarbons with thyroid hormone metabolism

    NARCIS (Netherlands)

    Schuur, A.G.

    1998-01-01

    This thesis deals with the possible interactions of polyhalogenated aromatic hydrocarbons and/or their metabolites with thyroid hormone metabolism. This chapter summarizes firstly the effects of thyroid hormone on the induction of biotransformation enzymes by PHAHs. Secondly, the results on

  8. Affective Computing used in an imaging interaction paradigm

    DEFF Research Database (Denmark)

    Schultz, Nette

    2003-01-01

    This paper combines affective computing with an imaging interaction paradigm. An imaging interaction paradigm means that human and computer communicates primarily by images. Images evoke emotions in humans, so the computer must be able to behave emotionally intelligent. An affective image selection...

  9. Affective Interface Adaptations in the Musickiosk Interactive Entertainment Application

    Science.gov (United States)

    Malatesta, L.; Raouzaiou, A.; Pearce, L.; Karpouzis, K.

    The current work presents the affective interface adaptations in the Musickiosk application. Adaptive interaction poses several open questions since there is no unique way of mapping affective factors of user behaviour to the output of the system. Musickiosk uses a non-contact interface and implicit interaction through emotional affect rather than explicit interaction where a gesture, sound or other input directly maps to an output behaviour - as in traditional entertainment applications. PAD model is used for characterizing the different affective states and emotions.

  10. Endocrine and metabolic changes in transition dairy cows are affected by prepartum infusions of a serotonin precursor

    DEFF Research Database (Denmark)

    Hernandez Castellano, Lorenzo E; Hernandez, Laura L.; Sauerwein, Helga

    2017-01-01

    Serotonin (5-HT) has been shown to be involved in calcium homeostasis, modulating calcium concentration in blood. In addition, 5-HT participates in a variety of metabolic pathways, mainly through the modulation of glucose and lipid metabolism. The hypothesis of the present study...... was that the prepartum administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, would affect endocrine systems related to calcium homeostasis, and interact with other endocrine and metabolic pathways during the transition period. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental...... homeostasis independent of PTH. The lack of treatment effects on IgG and on other hormones and metabolites indicates that 5-HTP did not affect these other metabolic pathways and the IgG concentration during the transition period....

  11. Apolipoproteins E and CIII interact to regulate HDL metabolism and coronary heart disease risk

    DEFF Research Database (Denmark)

    Morton, Allyson M; Koch, Manja; Mendivil, Carlos O

    2018-01-01

    cholesterol transport, which may protect against atherosclerosis. ApoCIII on HDL strongly attenuates these metabolic actions of HDL apoE. In the epidemiological study, the relation between HDL apoE concentration and CHD significantly differed depending on whether apoCIII was present. HDL apoE was associated...... significantly with lower risk of CHD only in the HDL subspecies lacking apoCIII. CONCLUSIONS: ApoE and apoCIII on HDL interact to affect metabolism and CHD. ApoE promotes metabolic steps in reverse cholesterol transport and is associated with lower risk of CHD. ApoCIII, when coexisting with apoE on HDL......, abolishes these benefits. Therefore, differences in metabolism of HDL subspecies pertaining to reverse cholesterol transport are reflected in differences in association with CHD. TRIAL REGISTRATION: Clinicaltrials.gov NCT01399632. FUNDING: This work was supported by NIH grant R01HL095964 to FMS...

  12. Isotopic labeling affects 1,25-dihydroxyvitamin D metabolism

    International Nuclear Information System (INIS)

    Halloran, B.P.; Bikle, D.D.; Castro, M.E.; Gee, E.

    1989-01-01

    Isotope substitution can change the biochemical properties of vitamin D. To determine the effect of substituting 3H for 1H on the metabolism of 1,25(OH)2D3, we measured the metabolic clearance rate and renal metabolism of unlabeled and 3H-labeled 1,25(OH)2D3. Substitution of 3H for 1H on carbons 26 and 27 [1,25(OH)2[26,27(n)-3H]D3] or on carbons 23 and 24 [1,25(OH)2[23,24(n)-3H]D3] reduced the in vivo metabolic clearance rate of 1,25(OH)2D3 by 36% and 37%, respectively, and reduced the in vitro renal catabolism of 1,25(OH)2D3 by 11% and 54%, respectively. Substitutions of 3H for 1H on carbons 23 and 24 as opposed to carbons 26 and 27 reduced conversion of [3H]1,25(OH)2D3 to [3H]1,24,25(OH)2D3 by 25% and to putative 24-oxo-1,23,25-dihydroxyvitamin D3 by 1600%. These results indicate that substitution of 3H for 1H on carbons 26 and 27 or on carbons 23 and 24 can reduce the metabolic clearance rate and in vitro metabolism of 1,25(OH)2D3 and quantitatively alter the pattern of metabolic products produced

  13. Metabolic aspects of Neuronal – Oligodendrocytic - Astrocytic (NOA interactions

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2013-05-01

    Full Text Available Whereas astrocytes have been in the limelight on the metabolic glucose interaction scene for a while, oligodendrocytes are still waiting for a place. We would like to call oligodendrocyte interaction with astrocytes and neurons: NOA (neuron – oligodendrocyte – astrocyte interactions. One of the reasons to find out more about oligodendrocyte interaction with neurons and astrocytes is to detect markers of healthy oligodendrocyte metabolism, to be used in diagnosis and treatment assessment in diseases such as Perinatal hypoxic-ischemic encephalopathy and multiple sclerosis in which oligodendrocyte function is impaired, possibly due to glutamate toxicity. Glutamate receptors are expressed in oligodendrocytes and also vesicular glutamate release in the white matter has received considerable attention. It is also important to establish if the glial precursor cells recruited to damaged areas are developing oligodendrocyte characteristics or those of astrocytes. Thus, it is important to study astrocytes and oligodendrocytes separately to be able to differentiate between them. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present review summarizes the not very extensive information published on glucose metabolism in oligodendrocytes in an attempt to stimulate research into this important field.

  14. Metabolic Interaction of Helicobacter pylori Infection and Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Yao-Jong Yang

    2016-02-01

    Full Text Available As a barrier, gut commensal microbiota can protect against potential pathogenic microbes in the gastrointestinal tract. Crosstalk between gut microbes and immune cells promotes human intestinal homeostasis. Dysbiosis of gut microbiota has been implicated in the development of many human metabolic disorders like obesity, hepatic steatohepatitis, and insulin resistance in type 2 diabetes (T2D. Certain microbes, such as butyrate-producing bacteria, are lower in T2D patients. The transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, but the exact pathogenesis remains unclear. H. pylori in the human stomach cause chronic gastritis, peptic ulcers, and gastric cancers. H. pylori infection also induces insulin resistance and has been defined as a predisposing factor to T2D development. Gastric and fecal microbiota may have been changed in H. pylori-infected persons and mice to promote gastric inflammation and specific diseases. However, the interaction of H. pylori and gut microbiota in regulating host metabolism also remains unknown. Further studies aim to identify the H. pylori-microbiota-host metabolism axis and to test if H. pylori eradication or modification of gut microbiota can improve the control of human metabolic disorders.

  15. Molecular Interaction of Bone Marrow Adipose Tissue with Energy Metabolism.

    Science.gov (United States)

    Suchacki, Karla J; Cawthorn, William P

    2018-01-01

    The last decade has seen a resurgence in the study of bone marrow adipose tissue (BMAT) across diverse fields such as metabolism, haematopoiesis, skeletal biology and cancer. Herein, we review the most recent developments of BMAT research in both humans and rodents, including the distinct nature of BMAT; the autocrine, paracrine and endocrine interactions between BMAT and various tissues, both in physiological and pathological scenarios; how these interactions might impact energy metabolism; and the most recent technological advances to quantify BMAT. Though still dwarfed by research into white and brown adipose tissues, BMAT is now recognised as endocrine organ and is attracting increasing attention from biomedical researchers around the globe. We are beginning to learn the importance of BMAT both within and beyond the bone, allowing us to better appreciate the role of BMAT in normal physiology and disease.

  16. Ketogenic diet and astrocyte/neuron metabolic interactions

    OpenAIRE

    Vamecq Joseph; Maurois Pierre; Bac Pierre; Delplanque Bernadette; Pages Nicole

    2007-01-01

    The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90%) being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic ac...

  17. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.

    Science.gov (United States)

    He, Tianliang; Li, Hongyun; Zhang, Xiaobo

    2017-07-11

    Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. IMPORTANCE Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found

  18. The glycaemic index values of foods containing fructose are affected by metabolic differences between subjects.

    Science.gov (United States)

    Wolever, T M S; Jenkins, A L; Vuksan, V; Campbell, J

    2009-09-01

    Glycaemic responses are influenced by carbohydrate absorption rate, type of monosaccharide absorbed and the presence of fat; the effect of some of these factors may be modulated by metabolic differences between subjects. We hypothesized that glycaemic index (GI) values are affected by the metabolic differences between subjects for foods containing fructose or fat, but not for starchy foods. The GI values of white bread (WB), fruit leather (FL) and chocolate-chip cookies (CCC) (representing starch, fructose and fat, respectively) were determined in subjects (n=77) recruited to represent all 16 possible combinations of age (40 years), sex (male, female), ethnicity (Caucasian, non-Caucasian) and body mass index (BMI) (25 kg/m2) using glucose as the reference. At screening, fasting insulin, lipids, c-reactive protein (CRP), aspartate transaminase (AST) and waist circumference (WC) were measured. There were no significant main effects of age, sex, BMI or ethnicity on GI, but there were several food x subject-factor interactions. Different factors affected each food's area under the curve (AUC) and GI. The AUC after oral glucose was related to ethnicity, age and triglycerides (r 2=0.27); after WB to ethnicity, age, triglycerides, sex and CRP (r 2=0.43); after CCC to age and weight (r 2=0.18); and after FL to age and CRP (r 2=0.12). GI of WB was related to ethnicity (r 2=0.12) and of FL to AST, insulin and WC (r 2=0.23); but there were no significant correlations for CCC. The GI values of foods containing fructose might be influenced by metabolic differences between -subjects, whereas the GI of starchy foods might be affected by ethnicity. However, the proportion of variation explained by subject factors is small.

  19. Metabolic interaction between toluene, trichloroethylene and n-hexane in humans

    DEFF Research Database (Denmark)

    Bælum, Jesper; Mølhave, Lars; Hansen, S H

    1998-01-01

    This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane.......This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane....

  20. Genetic alterations affecting cholesterol metabolism and human fertility.

    Science.gov (United States)

    DeAngelis, Anthony M; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-11-01

    Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. © 2014 by the Society for the Study of Reproduction, Inc.

  1. How coffee affects metabolic syndrome and its components.

    Science.gov (United States)

    Baspinar, B; Eskici, G; Ozcelik, A O

    2017-06-21

    Metabolic syndrome, with its increasing prevalence, is becoming a major public health problem throughout the world. Many risk factors including nutrition play a role in the emergence of metabolic syndrome. Of the most-consumed beverages in the world, coffee contains more than 1000 components such as caffeine, chlorogenic acid, diterpenes and trigonelline. It has been proven in many studies that coffee consumption has a positive effect on chronic diseases. In this review, starting from the beneficial effects of coffee on health, the relationship between coffee consumption and metabolic syndrome and its components has been investigated. There are few studies investigating the relationship between coffee and metabolic syndrome, and the existing ones put forward different findings. The factors leading to the differences are thought to stem from coffee variety, the physiological effects of coffee elements, and the nutritional ingredients (such as milk and sugar) added to coffee. It is reported that consumption of coffee in adults up to three cups a day reduces the risk of Type-2 diabetes and metabolic syndrome.

  2. DEPTOR in POMC neurons affects liver metabolism but is dispensable for the regulation of energy balance.

    Science.gov (United States)

    Caron, Alexandre; Labbé, Sébastien M; Mouchiroud, Mathilde; Huard, Renaud; Lanfray, Damien; Richard, Denis; Laplante, Mathieu

    2016-06-01

    We have recently demonstrated that specific overexpression of DEP-domain containing mTOR-interacting protein (DEPTOR) in the mediobasal hypothalamus (MBH) protects mice against high-fat diet-induced obesity, revealing DEPTOR as a significant contributor to energy balance regulation. On the basis of evidence that DEPTOR is expressed in the proopiomelanocortin (POMC) neurons of the MBH, the present study aimed to investigate whether these neurons mediate the metabolic effects of DEPTOR. Here, we report that specific DEPTOR overexpression in POMC neurons does not recapitulate any of the phenotypes observed when the protein was overexpressed in the MBH. Unlike the previous model, mice overexpressing DEPTOR only in POMC neurons 1) did not show differences in feeding behavior, 2) did not exhibit changes in locomotion activity and oxygen consumption, 3) did not show an improvement in systemic glucose metabolism, and 4) were not resistant to high-fat diet-induced obesity. These results support the idea that other neuronal populations are responsible for these phenotypes. Nonetheless, we observed a mild elevation in fasting blood glucose, insulin resistance, and alterations in liver glucose and lipid homeostasis in mice overexpressing DEPTOR in POMC neurons. Taken together, these results show that DEPTOR overexpression in POMC neurons does not affect energy balance regulation but could modulate metabolism through a brain-liver connection. Copyright © 2016 the American Physiological Society.

  3. Ketogenic diet and astrocyte/neuron metabolic interactions

    Directory of Open Access Journals (Sweden)

    Vamecq Joseph

    2007-05-01

    Full Text Available The ketogenic diet is an anticonvulsant diet enriched in fat. It provides the body with a minimal protein requirement and a restricted carbohydrate supply, the vast majority of calories (more than 80-90% being given by fat. Though anticonvulsant activity of ketogenic diet has been well documented by a large number of experimental and clinical studies, underlying mechanisms still remain partially unclear. Astrocyte-neuron interactions, among which metabolic shuttles, may influence synaptic activity and hence anticonvulsant protection. The astrocyte-neuron metabolic shuttles may be themselves influenced by the availability in energetic substrates such as hydrates of carbon and fats. Historically, ketogenic diet had been designed to mimic changes such as ketosis occurring upon starvation, a physiological state already known to exhibit anticonvulsant protection and sometimes referred to as “water diet”. For this reason, a special attention should be paid to metabolic features shared in common by ketogenic diet and starvation and especially those features that might result in anticonvulsant protection. Compared to feeding by usual mixed diet, starvation and ketogenic diet are both characterised by increased fat, lowered glucose and aminoacid supplies to cells. The resulting impact of these changes in energetic substrates on astrocyte/neuron metabolic shuttles might have anticonvulsant and/or neuroprotective properties. This is the aim of this communication to review some important astrocyte/neuron metabolic interactions (astrocyte/neuron lactate shuttle, glutamateinduced astrocytic glycolysis activation, glutamate/glutamine cycle along with the neurovascular coupling and the extent to which the way of their alteration by starvation and/or ketogenic diet might result in seizure and/or brain protection.

  4. Metabolomics Reveals Cryptic Interactive Effects of Species Interactions and Environmental Stress on Nitrogen and Sulfur Metabolism in Seagrass

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Castorani, Max C. N.; Glud, Ronnie N.

    2016-01-01

    Eutrophication of estuaries and coastal seas is accelerating, increasing light stress on subtidal marine plants and changing their interactions with other species. To date, we have limited understanding of how such variations in environmental and biological stress modify the impact of interactions...... among foundational species and eventually affect ecosystem health. Here, we used metabolomics to assess the impact of light reductions on interactions between the seagrass Zostera marina, an important habitat-forming marine plant, and the abundant and commercially important blue mussel Mytilus edulis....... Plant performance varied with light availability but was unaffected by the presence of mussels. Metabolomic analysis, on the other hand, revealed an interaction between light availability and presence of M. edulis on seagrass metabolism. Under high light, mussels stimulated seagrass nitrogen and energy...

  5. Best of Affective Computing and Intelligent Interaction 2013 in Multimodal Interactions

    NARCIS (Netherlands)

    Soleymani, Mohammad; Soleymani, M.; Pun, T.; Pun, Thierry; Nijholt, Antinus

    The fifth biannual Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII 2013) was held in Geneva, Switzerland. This conference featured the recent advancement in affective computing and relevant applications in education, entertainment and health. A number of

  6. Do diabetes and obesity affect the metabolic response to exercise?

    Science.gov (United States)

    Plomgaard, Peter; Weigert, Cora

    2017-07-01

    Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. Poor glycemic control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent on the glucagon/insulin ratio and the exercise-induced increase in hepatokines such as fibroblast growth factor 21 and follistatin is impaired in type 2 diabetes and obesity, but consequences for the benefit from exercise are unknown yet. Severe metabolic dysregulation can reduce the benefit from exercise, but the intact response of key metabolic regulators in exercising skeletal muscle of diabetic patients demonstrates the effectiveness of exercise programs to treat the disease.

  7. Interaction of propionate and carnitine metabolism in isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Brass, E.P.; Beyerinck, R.A.

    1987-01-01

    Propionate (P) and its metabolic products P-CoA and methylmalonyl-CoA can disrupt normal hepatic metabolism. Carnitine (Cn) has been shown to partially restore cellular function in the presence of P. This effect of Cn may result from removal of propionyl groups as propionylcarnitine (P-Cn). The present study examined the kinetics of P-Cn formation in rat hepatocytes, and the consequence of P-Cn formation on P and Cn metabolism. 14 C-P was converted to CO 2 , glucose and P-Cn in the hepatocyte system. Increasing concentrations of Cn up to 10.0 mM increased P-Cn formation from P without affecting CO 2 or glucose formation. Thus, 10.0 mM Cn increased total P metabolism by 40%. Metabolism of P was associated with a decrease in Cn concentration and an increase in short chain acylcarnitines (SCCn). In the absence of added Cn, 60 min incubation with P decreased Cn from 6.8 to 2.5 μM with a corresponding increase in SCCn. This effect of P to deplete free Cn was not seen to the same degree with butyrate in place of P. Similar increases in the formation of SCCn in the presence of P at the expense of free Cn were seen when the incubation Cn concentration was increased to 50 μM or 150 μM. HPLC methodologies to study specific acylcarnitines demonstrated the accumulation of large amounts of P-Cn in the incubations containing P, accounting for the depletion of free Cn

  8. Thiacloprid affects trophic interaction between gammarids and mayflies

    International Nuclear Information System (INIS)

    Englert, D.; Bundschuh, M.; Schulz, R.

    2012-01-01

    Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator–prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption of Gammarus fossarum (Amphipoda) were assessed over 96 h (n = 13–17) in conjunction with its predation on Baetis rhodani (Ephemeroptera) nymphs. The predation by Gammarus increased significantly at 0.50–1.00 μg/L. Simultaneously, its leaf consumption decreased with increasing thiacloprid concentration. As a consequence of the increased predation at 1.00 μg/L, gammarids' dry weight rose significantly by 15% compared to the control. At 4.00 μg/L, the reduced leaf consumption was not compensated by an increase in predation causing a significantly reduced dry weight of Gammarus (∼20%). These results may finally suggest that thiacloprid adversely affects trophic interactions, potentially translating into alterations in ecosystem functions, like leaf litter breakdown and aquatic-terrestrial subsidies. - Highlights: ► Field relevant thiacloprid concentrations affected gammarid and mayfly interaction. ► Gammarus leaf consumption and predation success is adversely affected. ► Gammarus growth increased due to higher predation at 1.0 μg thiacloprid/L. ► The study's results are discussed in the context of ecosystem functions. - Field relevant thiacloprid concentrations affect species interactions, which may translate to alterations in ecosystem functions.

  9. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism.

    Science.gov (United States)

    Lairon, Denis; Play, Barbara; Jourdheuil-Rahmani, Dominique

    2007-04-01

    The balance between fats and carbohydrates in the human diet is still a matter of very active debate. Indeed, the processing of ordinary mixed meals involves complex processes within the lumen of the upper digestive tract for digestion, in the small intestine mucosa for absorption and resecretion, and in peripheral tissues and in the circulation for final handling. The purpose of this review is to focus on available knowledge on the interactions of digestible or indigestible carbohydrates with lipid and lipoprotein metabolism in the postprandial state. The observations made in humans after test meals are reported and interpreted in the light of recent findings on the cellular and molecular levels regarding possible interplays between carbohydrates and lipid moieties in some metabolic pathways. Digestible carbohydrates, especially readily digestible starches or fructose, have been shown to exacerbate and/or delay postprandial lipemia, whereas some fiber sources can lower it. While interactions between dietary fibers and the process of lipid digestion and absorption have been studied mainly in the last decades, recent studies have shown that dietary carbohydrate moieties (e.g., glucose) can stimulate the intestinal uptake of cholesterol and lipid resecretion. In addition to the well-known glucose/fructose transporters, a number of transport proteins have recently been involved in intestinal lipid processing, whose implications in such interactions are discussed. The potential importance of postprandial insulinemia in these processes is also evaluated in the light of recent findings. The interactions of carbohydrates and lipid moieties in the postprandial state may result from both acute and chronic effects, both at transcriptional and posttranscriptional levels.

  10. Do diabetes and obesity affect the metabolic response to exercise?

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Weigert, Cora

    2017-01-01

    control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation...... of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent......PURPOSE OF REVIEW: Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. RECENT FINDINGS: Poor glycemic...

  11. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions.

    Science.gov (United States)

    Berger, Susanne; Sinha, Alok K; Roitsch, Thomas

    2007-01-01

    Phytopathogen infection leads to changes in secondary metabolism based on the induction of defence programmes as well as to changes in primary metabolism which affect growth and development of the plant. Therefore, pathogen attack causes crop yield losses even in interactions which do not end up with disease or death of the plant. While the regulation of defence responses has been intensively studied for decades, less is known about the effects of pathogen infection on primary metabolism. Recently, interest in this research area has been growing, and aspects of photosynthesis, assimilate partitioning, and source-sink regulation in different types of plant-pathogen interactions have been investigated. Similarly, phytopathological studies take into consideration the physiological status of the infected tissues to elucidate the fine-tuned infection mechanisms. The aim of this review is to give a summary of recent advances in the mutual interrelation between primary metabolism and pathogen infection, as well as to indicate current developments in non-invasive techniques and important strategies of combining modern molecular and physiological techniques with phytopathology for future investigations.

  12. Effects of Metabolic Cage Housing on Rat Behavior and Performance in the Social Interaction Test.

    Science.gov (United States)

    Whittaker, Alexandra L; Lymn, Kerry A; Howarth, Gordon S

    2016-01-01

    Although the metabolic cage is commonly used for housing nonhuman animals in the laboratory, it has been recognized as constituting a unique stressor. Such an environment would be expected to affect behavioral change in animals housed therein. However, few studies have specifically addressed the nature or magnitude of this change. The current study sought to characterize the behavioral time budget of rats in metabolic cage housing in comparison to that of individually housed animals in standard open-top cages. Rats in metabolic cages spent less time moving, manipulating enrichment, and carrying out rearing behaviors, and there was a corresponding shift toward inactivity. In an applied Social Interaction Test, behavioral scoring implied that metabolic cage housing had an anxiogenic effect. In conclusion, metabolic cage housing produces measurable effects on spontaneous and evoked behavior in rats in the laboratory. These behavioral changes may lead to a negative emotional state in these animals, which could have negative welfare consequences. Further research is needed to quantify the existence and magnitude of such an effect on rat well being.

  13. Affective Interaction with a Virtual Character through an fNIRS Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Gabor Aranyi

    2016-07-01

    Full Text Available Affective Brain-Computer Interfaces (BCI harness Neuroscience knowledge to develop affective interaction from first principles. In this paper, we explore affective engagement with a virtual agent through Neurofeedback (NF. We report an experiment where subjects engage with a virtual agent by expressing positive attitudes towards her under a NF paradigm. We use for affective input the asymmetric activity in the dorsolateral prefrontal cortex (DL-PFC, which has been previously found to be related to the high-level affective-motivational dimension of approach/avoidance. The magnitude of left-asymmetric DL-PFC activity, measured using fNIRS and treated as a proxy for approach, is mapped onto a control mechanism for the virtual agent’s facial expressions, in which Action Units are activated through a neural network. We carried out an experiment with 18 subjects, which demonstrated that subjects are able to successfully engage with the virtual agent by controlling their mental disposition through NF, and that they perceived the agent’s responses as realistic and consistent with their projected mental disposition. This interaction paradigm is particularly relevant in the case of affective BCI as it facilitates the volitional activation of specific areas normally not under conscious control. Overall, our contribution reconciles a model of affect derived from brain metabolic data with an ecologically valid, yet computationally controllable, virtual affective communication environment.

  14. Coping, affect, and the metabolic syndrome in older men: how does coping get under the skin?

    Science.gov (United States)

    Yancura, Loriena A; Aldwin, Carolyn M; Levenson, Michael R; Spiro, Avron

    2006-09-01

    The metabolic syndrome is a complex construct with interrelated factors of obesity, blood pressure, lipids, and glucose. It is a risk factor for a number of chronic diseases in late life. This study tested a model in which the relationship between stress and the metabolic syndrome was mediated by appraisal, coping, and affect. Data were collected from 518 male participants in the Normative Aging Study (X(age) = 68.17 years). The model was partially confirmed. Relationships among stress, appraisal, coping, and affect were valenced along positive and negative pathways. However, affect was not directly related to the metabolic syndrome. The metabolic syndrome was related to positive coping as operationalized by self-regulatory strategies. The results of this study suggest that the influence of coping on physical health may occur through emotional regulation.

  15. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    Science.gov (United States)

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-01-01

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health. PMID:24336061

  16. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis.

    Science.gov (United States)

    Ward, Diane M; Chen, Opal S; Li, Liangtao; Kaplan, Jerry; Bhuiyan, Shah Alam; Natarajan, Selvamuthu K; Bard, Martin; Cox, James E

    2018-05-17

    Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial Fe metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29. Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increase mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Spastin binds to lipid droplets and affects lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Chrisovalantis Papadopoulos

    2015-04-01

    Full Text Available Mutations in SPAST, encoding spastin, are the most common cause of autosomal dominant hereditary spastic paraplegia (HSP. HSP is characterized by weakness and spasticity of the lower limbs, owing to progressive retrograde degeneration of the long corticospinal axons. Spastin is a conserved microtubule (MT-severing protein, involved in processes requiring rearrangement of the cytoskeleton in concert to membrane remodeling, such as neurite branching, axonal growth, midbody abscission, and endosome tubulation. Two isoforms of spastin are synthesized from alternative initiation codons (M1 and M87. We now show that spastin-M1 can sort from the endoplasmic reticulum (ER to pre- and mature lipid droplets (LDs. A hydrophobic motif comprised of amino acids 57 through 86 of spastin was sufficient to direct a reporter protein to LDs, while mutation of arginine 65 to glycine abolished LD targeting. Increased levels of spastin-M1 expression reduced the number but increased the size of LDs. Expression of a mutant unable to bind and sever MTs caused clustering of LDs. Consistent with these findings, ubiquitous overexpression of Dspastin in Drosophila led to bigger and less numerous LDs in the fat bodies and increased triacylglycerol levels. In contrast, Dspastin overexpression increased LD number when expressed specifically in skeletal muscles or nerves. Downregulation of Dspastin and expression of a dominant-negative variant decreased LD number in Drosophila nerves, skeletal muscle and fat bodies, and reduced triacylglycerol levels in the larvae. Moreover, we found reduced amount of fat stores in intestinal cells of worms in which the spas-1 homologue was either depleted by RNA interference or deleted. Taken together, our data uncovers an evolutionarily conserved role of spastin as a positive regulator of LD metabolism and open up the possibility that dysfunction of LDs in axons may contribute to the pathogenesis of HSP.

  18. Childhood obesity affects adult metabolic syndrome and diabetes.

    Science.gov (United States)

    Liang, Yajun; Hou, Dongqing; Zhao, Xiaoyuan; Wang, Liang; Hu, Yuehua; Liu, Junting; Cheng, Hong; Yang, Ping; Shan, Xinying; Yan, Yinkun; Cruickshank, J Kennedy; Mi, Jie

    2015-09-01

    We seek to observe the association between childhood obesity by different measures and adult obesity, metabolic syndrome (MetS), and diabetes. Thousand two hundred and nine subjects from "Beijing Blood Pressure Cohort Study" were followed 22.9 ± 0.5 years in average from childhood to adulthood. We defined childhood obesity using body mass index (BMI) or left subscapular skinfold (LSSF), and adult obesity as BMI ≥ 28 kg/m(2). MetS was defined according to the joint statement of International Diabetes Federation and American Heart Association with modified waist circumference (≥ 90/85 cm for men/women). Diabetes was defined as fasting plasma glucose ≥ 7.0 mmol/L or blood glucose 2 h after oral glucose tolerance test ≥ 11.1 mmol/L or currently using blood glucose-lowering agents. Multiple linear and logistic regression models were used to assess the association. The incidence of adult obesity was 13.4, 60.0, 48.3, and 65.1 % for children without obesity, having obesity by BMI only, by LSSF only, and by both, respectively. Compared to children without obesity, children obese by LSSF only or by both had higher risk of diabetes. After controlling for adult obesity, childhood obesity predicted independently long-term risks of diabetes (odds ratio 2.8, 95 % confidence interval 1.2-6.3) or abdominal obesity (2.7, 1.6-4.7) other than MetS as a whole (1.2, 0.6-2.4). Childhood obesity predicts long-term risk of adult diabetes, and the effect is independent of adult obesity. LSSF is better than BMI in predicting adult diabetes.

  19. Metabolic factors affecting enhanced phosphorus uptake by activated sludge.

    Science.gov (United States)

    Boughton, W H; Gottfried, R J; Sinclair, N A; Yall, I

    1971-10-01

    Activated sludges obtained from the Rilling Road plant located at San Antonio, Tex., and from the Hyperion treatment plant located at Los Angeles, Calif., have the ability to remove all of the orthophosphate normally present in Tucson sewage within 3 hr after being added to the waste water. Phosphorus removal was independent of externally supplied sources of energy and ions, since orthophosphate and (32)P radioactivity were readily removed from tap water, glass-distilled water, and deionized water. Phosphorus uptake by Rilling sludge in the laboratory appears to be wholly biological, as it has an optimum pH range (7.7 to 9.7) and an optimum temperature range (24 to 37 C). It was inhibited by HgCl(2), iodoacetic acid, p-chloromercuribenzoic acid, NaN(3), and 2, 4-dinitrophenol (compounds that affect bacterial membrane permeability, sulfhydryl enzymes, and adenosine triphosphate synthesis). Uptake was inhibited by 1% NaCl but was not affected by 10(-3)m ethylenediaminetetraacetic acid disodium salt (a chelating agent for many metallic ions).

  20. Immersion in a virtual world interactive drama and affective sciences

    CERN Document Server

    Mayr, Simon

    2014-01-01

    Interactive drama is more than just a new breed of entertainment software. As different research projects have shown, these systems can also be used for pedagogical and therapeutic purposes. The goal of these systems is to teach sophisticated problem solving skills by allowing the user to interact with compelling stories that have didactic purpose.One of the main attractions of narratives, independent of the medium in which they are presented, is that they elicit emotional response in their audiences. They have an affective impact and only engineers and authors who understand how the emotion s

  1. Plant interactions alter the predictions of metabolic scaling theory

    DEFF Research Database (Denmark)

    Lin, Yue; Berger, Uta; Grimm, Volker

    2013-01-01

    Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of 24/3 between mean individual biomass and density during densitydependent mortality (self-thinning). Empirical tests have...... processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive....... of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories...

  2. Interaction of Salmonella Gallinarum infection and zinc metabolism in chicks

    International Nuclear Information System (INIS)

    Hill, C.H.

    1986-01-01

    The purpose of the experiments to be reported was to determine whether or not the response of zinc metabolism to infection in chicks was similar to that reported for mammals and to determine the effect of maintaining serum zinc at normal levels in infected animals on the outcome of infection as determined by mortality. Within 48 hours after administration of the organism serum zinc concentrations declined to ca. half of the control value. The serum zinc concentrations remained depressed throughout the experimental infection (12 days). Isotope studies with 65 Zn indicated that the infection had no effect on absorption. The infection resulted in a sequestering of zinc in the liver, the kidney being relatively inert in this system. Fractionation of liver homogenates by column chromatography with Seph. G-75 revealed that the zinc in the livers of the infected animals eluted in a volume characteristic of metallothionein, while that of the control animals was associated with higher molecular weight proteins. Increasing the serum levels of zinc by injecting 200 μg Zn/100 g body weight twice a day for 5 days had no effect on mortality from the infection. They conclude that zinc metabolism in the chick is affected by infection in a manner similar to that reported for mammals and that the decrease in serum zinc concentration per se has no survival value for the chick in this infection

  3. Factors affecting quality of social interaction park in Jakarta

    Science.gov (United States)

    Mangunsong, N. I.

    2018-01-01

    The existence of social interactions park in Jakarta is an oasis in the middle of a concrete jungle. Parks is a response to the need for open space as a place of recreation and community interaction. Often the social interaction parks built by the government does not function as expected, but other functions such as a place to sell, trash, unsafe so be rarely visited by visitors. The purpose of this study was to analyze the factors that affect the quality of social interaction parks in Jakarta by conducting descriptive analysis and correlation analysis of the variables assessment. The results of the analysis can give an idea of social interactions park based on community needs and propose the development of social interactioncity park. The object of study are 25 social interaction parks in 5 municipalities of Jakarta. The method used is descriptive analysis method, correlation analysis using SPSS 19 and using crosstab, chi-square tests. The variables are 5 aspects of Design, Plants composition: Selection type of plant (D); the beauty and harmony (Ind); Maintenance and fertility (P); Cleanliness and Environmental Health (BS); Specificity (Drainage, Multi Function garden, Means, Concern/Mutual cooperation, in dense settlements) (K). The results of analysis show that beauty is the most significant correlation with the value of the park followed by specificity, cleanliness and maintenance. Design was not the most significant variable affecting the quality of the park. The results of this study can be used by the Department of Parks and Cemeteries as input in managing park existing or to be developed and to improve the quality of social interaction park in Jakarta.

  4. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    Science.gov (United States)

    Norambuena, Fernando; Morais, Sofia; Emery, James A; Turchini, Giovanni M

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  5. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature.

    Directory of Open Access Journals (Sweden)

    Fernando Norambuena

    Full Text Available Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3, with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad-time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher

  6. Does family history of metabolic syndrome affect the metabolic profile phenotype in young healthy individuals?

    Science.gov (United States)

    Lipińska, Anna; Koczaj-Bremer, Magdalena; Jankowski, Krzysztof; Kaźmierczak, Agnieszka; Ciurzyński, Michał; Ou-Pokrzewińska, Aisha; Mikocka, Ewelina; Lewandowski, Zbigniew; Demkow, Urszula; Pruszczyk, Piotr

    2014-01-01

    Early identification of high-risk individuals is key for the prevention of cardiovascular disease (CVD). The aim of this study was to assess the potential impact of a family history of metabolic syndrome (fhMetS) on the risk of metabolic disorders (abnormal body mass, lipid profile, glucose metabolism, insulin resistance, and blood pressure) in healthy young individuals. We studied CVD risk factors in 90 healthy volunteers, aged 27-39 years; of these, 78 had fhMetS and 12 were without fhMetS (control group). Fasting serum lipids, glucose, and insulin levels were assayed, and anthropometric parameters and blood pressure using, an ambulatory blood pressure monitoring system, were measured. Nutritional and physical activity habits were assessed. Despite similar nutritional and physical activity habits, abnormal body mass was found in 53.2% of the fhMetS participants and 46.1% of the control participants (p = 0.54). The occurrence of obesity was 19.4% and 0%, respectively (p = 0.69). Compared to the control participants, fhMetS was associated with significantly higher total cholesterol (5.46 mmol/L vs. 4.69 mmol/L, p family history of MetS.

  7. Dynamic metabolic exchange governs a marine algal-bacterial interaction.

    Science.gov (United States)

    Segev, Einat; Wyche, Thomas P; Kim, Ki Hyun; Petersen, Jörn; Ellebrandt, Claire; Vlamakis, Hera; Barteneva, Natasha; Paulson, Joseph N; Chai, Liraz; Clardy, Jon; Kolter, Roberto

    2016-11-18

    Emiliania huxleyi is a model coccolithophore micro-alga that generates vast blooms in the ocean. Bacteria are not considered among the major factors influencing coccolithophore physiology. Here we show through a laboratory model system that the bacterium Phaeobacter inhibens , a well-studied member of the Roseobacter group, intimately interacts with E. huxleyi. While attached to the algal cell, bacteria initially promote algal growth but ultimately kill their algal host. Both algal growth enhancement and algal death are driven by the bacterially-produced phytohormone indole-3-acetic acid. Bacterial production of indole-3-acetic acid and attachment to algae are significantly increased by tryptophan, which is exuded from the algal cell. Algal death triggered by bacteria involves activation of pathways unique to oxidative stress response and programmed cell death. Our observations suggest that bacteria greatly influence the physiology and metabolism of E. huxleyi. Coccolithophore-bacteria interactions should be further studied in the environment to determine whether they impact micro-algal population dynamics on a global scale.

  8. Pesticide interactions with soils affected by olive oil mill wastewater

    Science.gov (United States)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  9. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles

    Science.gov (United States)

    Tataranni, Tiziana; Agriesti, Francesca; Ruggieri, Vitalba; Mazzoccoli, Carmela; Simeon, Vittorio; Laurenzana, Ilaria; Scrima, Rosella; Pazienza, Valerio; Capitanio, Nazzareno; Piccoli, Claudia

    2017-01-01

    An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism. PMID:28476035

  10. Using Mixed Reality
to Bring interactivity to Metabolism Teaching

    Directory of Open Access Journals (Sweden)

    J.C; M.L.; E. Vega Garzón; Magrini; Galembeck

    2017-07-01

    Full Text Available Visual literacy is the ability to understand (read and use (write images and to think and learn regarding images (both static and moving. Visual literacy and visualization are key learning components in the biochemistry because that science uses models of molecules to explain how cells work. Many studies have shown that visualization technologies (VT can be useful to develop essential visual literacy. The term “mixed reality” can be defined as the merging of real and virtual worlds to produce new environments and visualizations where physical and digital objects co-exist and interact in real time. The VT taps the brain's inherent ability to process visual information rapidly, identify patterns and sense order in complex situations generally making the complex simpler. OBJECTIVES: Design a Mixed Reality (MR application named VRMET to help the development of visual literacy skills to understand and represent biochemical concepts. MATERIALS AND METHODS: VRMET app was developed using Unity3D, Vuforia Augmented Reality SDK and Google VR SDK for Unity. 3D molecules were obtained from Protein Data Bank and ChemSpider and optimized using Blender. VRMET uses a 3D scaled animal cell model. RESULTS AND DISCUSSION: VRMET requires a device with a camera. The user can get the App from the Google Play Store. VRMET has two different scenes: the Augmented reality (AR scene and the Virtual Reality (VR scene. AR Allows visualizing, from various angles, a scale model of an animal cell. VR allows one to realize a biochemical route within the cellular model, visualizing each one of the organelles and observing each of the reactions of glycolysis and the Krebs cycle. CONCLUSIONS: VRMET allows students to visualize the molecular structure of substrates and products, thus perceiving changes in each molecule along the metabolic pathway. It also allows observing where in the cell each metabolic pathway occurs.

  11. Plastome-Genome Interactions Affect Plastid Transmission in Oenothera

    Science.gov (United States)

    Chiu, W. L.; Sears, B. B.

    1993-01-01

    Plastids of Oenothera, the evening primrose, can be transmitted to the progeny from both parents. In a constant nuclear background, the frequency of biparental plastid transmission is determined by the types of plastid genomes (plastomes) involved in the crosses. In this study, the impact of nuclear genomes on plastid inheritance was analyzed. In general, the transmission efficiency of each plastome correlated strongly with its compatibility with the nuclear genome of the progeny, suggesting that plastome-genome interactions can influence plastid transmission by affecting the efficiency of plastid multiplication after fertilization. Lower frequencies of plastid transmission from the paternal side were observed when the pollen had poor vigor due to an incompatible plastome-genome combination, indicating that plastome-genome interactions may also affect the input of plastids at fertilization. Parental traits that affect the process of fertilization can also have an impact on plastid transmission. Crosses using maternal parents with long styles or pollen with relatively low growth capacity resulted in reduced frequencies of paternal plastid transmission. These observations suggest that degeneration of pollen plastids may occur as the time interval between pollination and fertilization is lengthened. PMID:8462856

  12. The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease: results from a randomized controlled trial

    NARCIS (Netherlands)

    Rijpma, A.; Graaf, M. van der; Lansbergen, M.M.; Meulenbroek, O.V.; Cetinyurek-Yavuz, A.; Sijben, J.W.; Heerschap, A.; Olde Rikkert, M.G.M.

    2017-01-01

    BACKGROUND: Synaptic dysfunction contributes to cognitive impairment in Alzheimer's disease and may be countered by increased intake of nutrients that target brain phospholipid metabolism. In this study, we explored whether the medical food Souvenaid affects brain phospholipid metabolism in patients

  13. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men

    NARCIS (Netherlands)

    Bisschop, PH; de Sain-van der Velden, MGM; Stellaard, F; Kuipers, F; Meijer, AJ; Sauerwein, HP; Romijn, JA

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets

  14. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men

    NARCIS (Netherlands)

    Bisschop, P. H.; de Sain-van der Velden, M. G. M.; Stellaard, F.; Kuipers, F.; Meijer, A. J.; Sauerwein, H. P.; Romijn, J. A.

    2003-01-01

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets

  15. Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases.

    Science.gov (United States)

    Clark, Melissa; Hoenig, Margarethe

    2016-09-01

    Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism

    DEFF Research Database (Denmark)

    Caesar, Robert; Nygren, Heli; Orešič, Matej

    2016-01-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene...... of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl...... esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota...

  17. Chlamydia pneumoniae acute liver infection affects hepatic cholesterol and triglyceride metabolism in mice.

    Science.gov (United States)

    Marangoni, Antonella; Fiorino, Erika; Gilardi, Federica; Aldini, Rita; Scotti, Elena; Nardini, Paola; Foschi, Claudio; Donati, Manuela; Montagnani, Marco; Cevenini, Monica; Franco, Placido; Roda, Aldo; Crestani, Maurizio; Cevenini, Roberto

    2015-08-01

    Chlamydia pneumoniae has been linked to atherosclerosis, strictly associated with hyperlipidemia. The liver plays a central role in the regulation of lipid metabolism. Since in animal models C. pneumoniae can be found at hepatic level, this study aims to elucidate whether C. pneumoniae infection accelerates atherosclerosis by affecting lipid metabolism. Thirty Balb/c mice were challenged intra-peritoneally with C. pneumoniae elementary bodies and thirty with Chlamydia trachomatis, serovar D. Thirty mice were injected with sucrose-phosphate-glutamate buffer, as negative controls. Seven days after infection, liver samples were examined both for presence of chlamydia and expression of genes involved in inflammation and lipid metabolism. C. pneumoniae was isolated from 26 liver homogenates, whereas C. trachomatis was never re-cultivated (P triglycerides levels compared both with negative controls (P metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Differential glucose metabolism in mice and humans affected by McArdle disease

    DEFF Research Database (Denmark)

    Krag, Thomas O; Pinós, Tomàs; Nielsen, Tue L

    2016-01-01

    McArdle disease (muscle glycogenosis type V) is a disease caused by myophosphorylase deficiency leading to "blocked" glycogen breakdown. A significant but varying glycogen accumulation in especially distal hind limb muscles of mice affected by McArdle disease has recently been demonstrated......, which could lead to lower glycogen accumulation. In comparison, tibialis anterior, extensor digitorum longus, and soleus had massive glycogen accumulation, but few, if any, changes or adaptations in glucose metabolism compared with wild-type mice. The findings suggest plasticity in glycogen metabolism....... In this study, we investigated how myophosphorylase deficiency affects glucose metabolism in hind limb muscle of 20-wk-old McArdle mice and vastus lateralis muscles from patients with McArdle disease. Western blot analysis and activity assay demonstrated that glycogen synthase was inhibited in glycolytic muscle...

  19. Human Metabolism and Interactions of Deployment-Related Chemicals

    Science.gov (United States)

    2008-08-01

    stimulated by CPO (Fig. 6). Coincidently, α- naphthoflavone inhibited CYP1A2 metabolism of flavonoids /23/ and stimulated CYP3A4 metabolism of...by flavonoids of benzo[a]pyrene hydroxylation by cytochrome P-450 isozymes from rabbit liver microsomes, J. Biol. Chem. 1981; 256: 10897-10901. 17...P450-mediated metabolism of dietary flavonoids , Food Chem. Toxicol. 2002; 40: 609-616. 24. Cameron MD, Wen B, Allen KE, Roberts AG, Schuman JT

  20. Human Metabolism and Interactions of Deployment-Related Chemicals

    National Research Council Canada - National Science Library

    Hodgson, Ernest; Brimfield, Alan A; Goldstein, Joyce E; Rose, Randy L; Wallace, Andrew D

    2008-01-01

    .... The metabolism of chlorpyrifos, DEET, permethrin, pyridostigmine bromide, sulfur mustard, naphthalene and nonane as well as a number of their metabolites and related chemicals was investigated...

  1. Vascular affection in relation to oxidative DNA damage in metabolic syndrome.

    Science.gov (United States)

    Abd El Aziz, Rokayaa; Fawzy, Mary Wadie; Khalil, Noha; Abdel Atty, Sahar; Sabra, Zainab

    2018-02-01

    Obesity has become an important issue affecting both males and females. Obesity is now regarded as an independent risk factor for atherosclerosis-related diseases. Metabolic syndrome is associated with increased risk for development of cardiovascular disease. Urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine concentration has been used to express oxidation status. Twenty-seven obese patients with metabolic syndrome, 25 obese patients without metabolic syndrome and 31 healthy subjects were included in our study. They were subjected to full history and clinical examination; fasting blood sugar (FBS), 2 hour post prandial blood sugar (2HPP), lipid profile, urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine and carotid duplex, A/B index and tibial diameters were all assessed. There was a statistically significant difference ( p = 0.027) in diameter of the right anterior tibial artery among the studied groups, with decreased diameter of the right anterior tibial artery in obese patients with metabolic syndrome compared to those without metabolic syndrome; the ankle brachial index revealed a lower index in obese patients with metabolic syndrome compared to those without metabolic syndrome. There was a statistically insignificant difference ( p = 0.668) in the 8-oxodG in the studied groups. In obese patients with metabolic syndrome there was a positive correlation between 8-oxodG and total cholesterol and LDL. Urinary 8-oxodG is correlated to total cholesterol and LDL in obese patients with metabolic syndrome; signifying its role in the mechanism of dyslipidemia in those patients. Our study highlights the importance of anterior tibial artery diameter measurement and ankle brachial index as an early marker of atherosclerosis, and how it may be an earlier marker than carotid intima-media thickness.

  2. Plant functional diversity affects climate-vegetation interaction

    Science.gov (United States)

    Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin

    2018-04-01

    We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the green Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.

  3. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    Directory of Open Access Journals (Sweden)

    Thais de Castro Barbosa

    2016-03-01

    Conclusion: Our results provide insight into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations.

  4. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism.

    Science.gov (United States)

    Palczewski, Grzegorz; Widjaja-Adhi, M Airanthi K; Amengual, Jaume; Golczak, Marcin; von Lintig, Johannes

    2016-09-01

    Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health. However, knowledge about their biological action and the consequences of their dietary accumulation in mammals is limited. Progress in this research field is limited by the expeditious metabolism of carotenoids in rodents and the confounding production of apocarotenoid signaling molecules. Herein, we established a mouse model lacking the enzymes responsible for carotenoid catabolism and apocarotenoid production, fed on either a β-carotene- or a zeaxanthin-enriched diet. Applying a genome wide microarray analysis, we assessed the effects of the parent carotenoids on the liver transcriptome. Our analysis documented changes in pathways for liver lipid metabolism and mitochondrial respiration. We biochemically defined these effects, and observed that β-carotene accumulation resulted in an elevation of liver triglycerides and liver cholesterol, while zeaxanthin accumulation increased serum cholesterol levels. We further show that carotenoids were predominantly transported within HDL particles in the serum of mice. Finally, we provide evidence that carotenoid accumulation influenced whole-body respiration and energy expenditure. Thus, we observed that accumulation of parent carotenoids interacts with lipid metabolism and that structurally related carotenoids display distinct biological functions in mammals. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  5. Acclimation temperature affects the metabolic response of amphibian skeletal muscle to insulin.

    Science.gov (United States)

    Petersen, Ann M; Gleeson, Todd T

    2011-09-01

    Frog skeletal muscle mainly utilizes the substrates glucose and lactate for energy metabolism. The goal of this study was to determine the effect of insulin on the uptake and metabolic fate of lactate and glucose at rest in skeletal muscle of the American bullfrog, Lithobates catesbeiana, under varying temperature regimens. We hypothesize that lactate and glucose metabolic pathways will respond differently to the presence of insulin in cold versus warm acclimated frog tissues, suggesting an interaction between temperature and metabolism under varying environmental conditions. We employed radiolabeled tracer techniques to measure in vitro uptake, oxidation, and incorporation of glucose and lactate into glycogen by isolated muscles from bullfrogs acclimated to 5 °C (cold) or 25 °C (warm). Isolated bundles from Sartorius muscles were incubated at 5 °C, 15 °C, or 25 °C, and in the presence and absence of 0.05 IU/mL bovine insulin. Insulin treatment in the warm acclimated and incubated frogs resulted in an increase in glucose incorporation into glycogen, and an increase in intracellular [glucose] of 0.5 μmol/g (Pmuscle. When compared to the warm treatment group, cold acclimation and incubation resulted in increased rates of glucose oxidation and glycogen synthesis, and a reduction in free intracellular glucose levels (Pmuscles from either acclimation group were incubated at an intermediate temperature of 15 °C, insulin's effect on substrate metabolism was attenuated or even reversed. Therefore, a significant interaction between insulin and acclimation condition in controlling skeletal muscle metabolism appears to exist. Our findings further suggest that one of insulin's actions in frog muscle is to increase glucose incorporation into glycogen, and to reduce reliance on lactate as the primary metabolic fuel. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Diet-microbiota interactions as moderators of human metabolism

    DEFF Research Database (Denmark)

    Sonnenburg, Justin L; Bäckhed, Gert Fredrik

    2016-01-01

    It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity...

  7. Short-term fructose ingestion affects the brain independently from establishment of metabolic syndrome.

    Science.gov (United States)

    Jiménez-Maldonado, Alberto; Ying, Zhe; Byun, Hyae Ran; Gomez-Pinilla, Fernando

    2018-01-01

    Chronic fructose ingestion is linked to the global epidemic of metabolic syndrome (MetS), and poses a serious threat to brain function. We asked whether a short period (one week) of fructose ingestion potentially insufficient to establish peripheral metabolic disorder could impact brain function. We report that the fructose treatment had no effect on liver/body weight ratio, weight gain, glucose tolerance and insulin sensitivity, was sufficient to reduce several aspects of hippocampal plasticity. Fructose consumption reduced the levels of the neuronal nuclear protein NeuN, Myelin Basic Protein, and the axonal growth-associated protein 43, concomitant with a decline in hippocampal weight. A reduction in peroxisome proliferator-activated receptor gamma coactivator-1 alpha and Cytochrome c oxidase subunit II by fructose treatment is indicative of mitochondrial dysfunction. Furthermore, the GLUT5 fructose transporter was increased in the hippocampus after fructose ingestion suggesting that fructose may facilitate its own transport to brain. Fructose elevated levels of ketohexokinase in the liver but did not affect SIRT1 levels, suggesting that fructose is metabolized in the liver, without severely affecting liver function commensurable to an absence of metabolic syndrome condition. These results advocate that a short period of fructose can influence brain plasticity without a major peripheral metabolic dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Coordinated and interactive expression of genes of lipid metabolism and inflammation in adipose tissue and liver during metabolic overload.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available BACKGROUND: Chronic metabolic overload results in lipid accumulation and subsequent inflammation in white adipose tissue (WAT, often accompanied by non-alcoholic fatty liver disease (NAFLD. In response to metabolic overload, the expression of genes involved in lipid metabolism and inflammatory processes is adapted. However, it still remains unknown how these adaptations in gene expression in expanding WAT and liver are orchestrated and whether they are interrelated. METHODOLOGY/PRINCIPAL FINDINGS: ApoE*3Leiden mice were fed HFD or chow for different periods up to 12 weeks. Gene expression in WAT and liver over time was evaluated by micro-array analysis. WAT hypertrophy and inflammation were analyzed histologically. Bayesian hierarchical cluster analysis of dynamic WAT gene expression identified groups of genes ('clusters' with comparable expression patterns over time. HFD evoked an immediate response of five clusters of 'lipid metabolism' genes in WAT, which did not further change thereafter. At a later time point (>6 weeks, inflammatory clusters were induced. Promoter analysis of clustered genes resulted in specific key regulators which may orchestrate the metabolic and inflammatory responses in WAT. Some master regulators played a dual role in control of metabolism and inflammation. When WAT inflammation developed (>6 weeks, genes of lipid metabolism and inflammation were also affected in corresponding livers. These hepatic gene expression changes and the underlying transcriptional responses in particular, were remarkably similar to those detected in WAT. CONCLUSION: In WAT, metabolic overload induced an immediate, stable response on clusters of lipid metabolism genes and induced inflammatory genes later in time. Both processes may be controlled and interlinked by specific transcriptional regulators. When WAT inflammation began, the hepatic response to HFD resembled that in WAT. In all, WAT and liver respond to metabolic overload by

  9. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running.

    Directory of Open Access Journals (Sweden)

    Thomas K Uchida

    Full Text Available Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2-5 m/s with tendon force-strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2-3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail.

  10. Xylitol Affects the Intestinal Microbiota and Metabolism of Daidzein in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Motoi Tamura

    2013-12-01

    Full Text Available This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group and those fed a 0.05% daidzein-containing control diet (CD group for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p < 0.05. Urinary amounts of equol were significantly higher in the XD group than in the CD group (p < 0.05. The fecal lipid contents (% dry weight were significantly greater in the XD group than in the CD group (p < 0.01. The cecal microbiota differed between the two dietary groups. The occupation ratios of Bacteroides were significantly greater in the CD than in the XD group (p < 0.05. This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  11. Xylitol affects the intestinal microbiota and metabolism of daidzein in adult male mice.

    Science.gov (United States)

    Tamura, Motoi; Hoshi, Chigusa; Hori, Sachiko

    2013-12-10

    This study examined the effects of xylitol on mouse intestinal microbiota and urinary isoflavonoids. Xylitol is classified as a sugar alcohol and used as a food additive. The intestinal microbiota seems to play an important role in isoflavone metabolism. Xylitol feeding appears to affect the gut microbiota. We hypothesized that dietary xylitol changes intestinal microbiota and, therefore, the metabolism of isoflavonoids in mice. Male mice were randomly divided into two groups: those fed a 0.05% daidzein with 5% xylitol diet (XD group) and those fed a 0.05% daidzein-containing control diet (CD group) for 28 days. Plasma total cholesterol concentrations were significantly lower in the XD group than in the CD group (p XD group than in the CD group (p XD group than in the CD group (p XD group (p < 0.05). This study suggests that xylitol has the potential to affect the metabolism of daidzein by altering the metabolic activity of the intestinal microbiota and/or gut environment. Given that equol affects bone health, dietary xylitol plus isoflavonoids may exert a favorable effect on bone health.

  12. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing.

    Science.gov (United States)

    Ko, Minsam; Yeo, Jaeryong; Lee, Juyeong; Lee, Uichin; Jang, Young Jae

    2016-01-01

    Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers' online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans' interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users.

  13. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing.

    Directory of Open Access Journals (Sweden)

    Minsam Ko

    Full Text Available Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers' online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans' interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users.

  14. What Makes Sports Fans Interactive? Identifying Factors Affecting Chat Interactions in Online Sports Viewing

    Science.gov (United States)

    Yeo, Jaeryong; Lee, Juyeong

    2016-01-01

    Sports fans are able to watch games from many locations using TV services while interacting with other fans online. In this paper, we identify the factors that affect sports viewers’ online interactions. Using a large-scale dataset of more than 25 million chat messages from a popular social TV site for baseball, we extract various game-related factors, and investigate the relationships between these factors and fans’ interactions using a series of multiple regression analyses. As a result, we identify several factors that are significantly related to viewer interactions. In addition, we determine that the influence of these factors varies according to the user group; i.e., active vs. less active users, and loyal vs. non-loyal users. PMID:26849568

  15. Interactions between host metabolism, immune regulation, and the gut microbiota in diet-associated obesity and metabolic dysfunction

    DEFF Research Database (Denmark)

    Andersen, Daniel

    The increase in the prevalence of obesity and obesity-associated complications such as the metabolic syndrome is becoming a global challenge. Dietary habits and nutrient consumption modulates host homeostasis, which manifests in various diet-induced complications marked by changes in host...... metabolism and immune regulation, which are intricately linked. In addition, diet effectively shapes the gut microbiota composition and activity, which in turn interacts with the host to modulate host metabolism and immune regulation. In the three studies included in this PhD thesis, we have explored...... the impact of specific dietary components on host metabolic function, immune regulation and gut microbiota composition and activity. In the first study, we have characterized the effect of a combined high-fat and gliadin-rich diet, since dietary gliadin has been reported to be associated with intestinal...

  16. Factors affecting high-sensitivity cardiac troponin T elevation in Japanese metabolic syndrome patients

    Directory of Open Access Journals (Sweden)

    Hitsumoto T

    2015-03-01

    Full Text Available Takashi Hitsumoto,1 Kohji Shirai2 1Hitsumoto Medical Clinic, Yamaguchi, Japan; 2Department of Vascular Function (donated, Sakura Hospital, Toho University School of Medicine, Chiba, Japan Purpose: The blood concentration of cardiac troponin T (ie, high-sensitivity cardiac troponin T [hs-cTnT], measured using a highly sensitive assay, represents a useful biomarker for evaluating the pathogenesis of heart failure or predicting cardiovascular events. However, little is known about the clinical significance of hs-cTnT in metabolic syndrome. The aim of this study was to examine the factors affecting hs-cTnT elevation in Japanese metabolic syndrome patients. Patients and methods: We enrolled 258 metabolic syndrome patients who were middle-aged males without a history of cardiovascular events. We examined relationships between hs-cTnT and various clinical parameters, including diagnostic parameters of metabolic syndrome. Results: There were no significant correlations between hs-cTnT and diagnostic parameters of metabolic syndrome. However, hs-cTnT was significantly correlated with age (P<0.01, blood concentrations of brain natriuretic peptide (P<0.01, reactive oxygen metabolites (markers of oxidative stress, P<0.001, and the cardio–ankle vascular index (marker of arterial function, P<0.01. Furthermore, multiple regression analysis revealed that these factors were independent variables for hs-cTnT as a subordinate factor. Conclusion: The findings of this study indicate that in vivo oxidative stress and abnormality of arterial function are closely associated with an increase in hs-cTnT concentrations in Japanese metabolic syndrome patients. Keywords: troponin, metabolic syndrome, risk factor, oxidative stress, cardio–ankle vascular index

  17. Physical activity and metabolic disease among people with affective disorders: Prevention, management and implementation.

    Science.gov (United States)

    Vancampfort, Davy; Stubbs, Brendon

    2017-12-15

    One in ten and one in three of people with affective disorders experience diabetes and metabolic syndrome respectively. Physical activity (PA) and sedentary behaviour (SB) are key risk factors that can ameliorate the risk of metabolic disease among this population. However, PA is often seen as luxury and/or a secondary component within the management of people with affective disorders. The current article provides a non-systematic best-evidence synthesis of the available literature, detailing a number of suggestions for the implementation of PA into clinical practice. Whilst the evidence is unequivocal for the efficacy of PA to prevent and manage metabolic disease in the general population, it is in its infancy in this patient group. Nonetheless, action must be taken now to ensure that PA and reducing SB are given a priority to prevent and manage metabolic diseases and improve wider health outcomes. PA should be treated as a vital sign and all people with affective disorders asked about their activity levels and if appropriate advised to increase this. There is a need for investment in qualified exercise specialists in clinical practice such as physiotherapists to undertake and oversee PA in practice. Behavioural strategies such as the self-determined theory should be employed to encourage adherence. Funding is required to develop the evidence base and elucidate the optimal intervention characteristics. PA interventions should form an integral part of the multidisciplinary management of people with affective disorders and our article outlines the evidence and strategies to implement this in practice. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Sulek, Karolina; Skov, Kasper

    2014-01-01

    (NCFM) on the intestinal metabolome (jejunum, caecum, and colon) in mice by comparing NCFM mono-colonized (MC) mice with GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice...... by deconjugation and dehydroxylation of bile acids. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine. Especially, the digestion of larger carbohydrates (penta- and tetrasaccharides) was increased in MC mice. Interestingly, we also found vitamin E (α...

  19. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Siegfried Ussar

    2016-09-01

    Major conclusions: Understanding these complex interactions will help in the development of novel treatments for microbiome-related metabolic diseases. This article is part of a special issue on microbiota.

  20. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    Directory of Open Access Journals (Sweden)

    Daniel M V Santos

    Full Text Available Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (p<0.001 for waist circumference, systolic blood pressure, glucose, total cholesterol and triglycerides. For waist circumference, glucose, total cholesterol and triglycerides, the significant GxEE interaction was due to rejection of the variance homogeneity hypothesis. For waist circumference and glucose, GxEE was also significant by the rejection of the genetic correlation hypothesis. The results showed that metabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  1. Perinatal exposure to perfluorooctane sulfonate affects glucose metabolism in adult offspring.

    Directory of Open Access Journals (Sweden)

    Hin T Wan

    Full Text Available Perfluoroalkyl acids (PFAAs are globally present in the environment and are widely distributed in human populations and wildlife. The chemicals are ubiquitous in human body fluids and have a long serum elimination half-life. The notorious member of PFAAs, perfluorooctane sulfonate (PFOS is prioritized as a global concerning chemical at the Stockholm Convention in 2009, due to its harmful effects in mammals and aquatic organisms. PFOS is known to affect lipid metabolism in adults and was found to be able to cross human placenta. However the effects of in utero exposure to the susceptibility of metabolic disorders in offspring have not yet been elucidated. In this study, pregnant CD-1 mice (F0 were fed with 0, 0.3 or 3 mg PFOS/kg body weight/day in corn oil by oral gavage daily throughout gestational and lactation periods. We investigated the immediate effects of perinatal exposure to PFOS on glucose metabolism in both maternal and offspring after weaning (PND 21. To determine if the perinatal exposure predisposes the risk for metabolic disorder to the offspring, weaned animals without further PFOS exposure, were fed with either standard or high-fat diet until PND 63. Fasting glucose and insulin levels were measured while HOMA-IR index and glucose AUCs were reported. Our data illustrated the first time the effects of the environmental equivalent dose of PFOS exposure on the disturbance of glucose metabolism in F1 pups and F1 adults at PND 21 and 63, respectively. Although the biological effects of PFOS on the elevated levels of fasting serum glucose and insulin levels were observed in both pups and adults of F1, the phenotypes of insulin resistance and glucose intolerance were only evident in the F1 adults. The effects were exacerbated under HFD, highlighting the synergistic action at postnatal growth on the development of metabolic disorders.

  2. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    Science.gov (United States)

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  3. Glucagon-insulin interaction on fat cell metabolism using c14 glucose

    International Nuclear Information System (INIS)

    Zewail, M.A.; Nielsen, J.H.

    1984-01-01

    Glucagon is known to stimulate the lipolysis in isolated fat cells from young rats, but not in fat cells from old heavy rate (Manganiello 1972). Insulin is known to counteract the lipolytic effect and to stimulate the synthesis of fatty acids from glucose. However, little is known about the interaction between the two hormones on the glucose metabolism. Experiments based on the use of various inhibitors of lipolysis have however, clearly shown that glucagon can also stimulate the entry and overall oxidation of glucose by mechanism which is distinct from its lipolysis stimulating mechanism (M. Blecher et al. 1969). Fat cells from old heavy rats are known to be less responsive to both the lipogenic action of insulin and the lipolytic action of glucagon than fat cells from young lean rats (E.G. Hansen, Nielsen and Gliemann, 1974). The aim of the present study was to see how glucagon affects glucose metabolism in fat cells, and whether this effect was dependent on the lipolytic action of glucagon

  4. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    Science.gov (United States)

    de Bruin, Wieke; Oerlemans, Frank; Wieringa, Bé

    2004-07-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand management of proliferating cells, AK1 and AK1beta were expressed in mouse neuroblastoma N2a cells and in human colon carcinoma SW480 cells. Glucose deprivation, galactose feeding, and metabolic inhibitor tests revealed a differential energy dependency for these two cell lines. N2a cells showed a faster proliferation rate and strongest coupling to mitochondrial activity, SW480 proliferation was more dependent on glycolysis. Despite these differences, ectopic expression of AK1 or AK1beta did not affect their growth characteristics under normal conditions. Also, no differential effects were seen under metabolic stress upon treatment with mitochondrial and glycolytic inhibitors in in vitro culture or in solid tumors grown in vivo. Although many intimate connections have been revealed between cell death and metabolism, our results suggest that AK1- or AK1beta-mediated high-energy phosphoryl transfer is not a modulating factor in the survival of tumor cells during episodes of metabolic crisis.

  5. Comprehensive assessment of variables affecting metabolic control in patients with type 2 diabetes mellitus in Jordan.

    Science.gov (United States)

    Qteishat, Rola Reyad; Ghananim, Abdel Rahman Al

    2016-01-01

    The aim of the study was to identify variables affecting metabolic control among diabetic patients treated at diabetes and endocrine clinic in Jordan. A total of 200 patients were studied by using a cross sectional study design. Data were collected from patients' medical records, glycemic control tests and prestructured questionnaires about variables that were potentially important based on previous researches and clinical judgment: Adherence evaluation, Patients' knowledge about drug therapy and non-pharmacological therapy, Anxiety and depression, Beliefs about diabetes treatment (benefits and barriers of treatment), Knowledge about treatment goals, Knowledge about diabetes, Self efficacy, and Social support. The mean (±SD) age was 53.5 (±10.38) years and mean HbA1c was 8.4 (±1.95). In the multivariate analysis, education level, and self efficacy found to have significantly independent association with metabolic control (Pknowledge and high self efficacy was significant in patients with good metabolic control. Emphasizing the importance of continuous educational programs and improving the self efficacy as well, could warrant achieving good metabolic control. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  6. Affective affordances: Improving interface characters engagement through interaction.

    NARCIS (Netherlands)

    Van Vugt, H.C.; Hoorn, J.F.; Konijn, E.A.; De Bie Dimitriadou, A.

    2006-01-01

    The nature of humans interacting with interface characters (e.g. embodied agents) is not well understood. The I-PEFiC model provides an integrative perspective on human-character interaction, assuming that the processes of engagement and user interaction exchange information in explaining user

  7. Affective affordances: Improving interface character engagement through interaction

    NARCIS (Netherlands)

    van Vugt, H.C.; Hoorn, J.F.; Konijn, E.A.; de Bie Dimitriadou, A.

    2006-01-01

    The nature of humans interacting with interface characters (e.g. embodied agents) is not well understood. The I-PEFiC model provides an integrative perspective on human-character interaction, assuming that the processes of engagement and user interaction exchange information in explaining user

  8. Hepatitis C, human immunodeficiency virus and metabolic syndrome: interactions.

    Science.gov (United States)

    Kotler, Donald P

    2009-03-01

    Significant concerns have been raised about the metabolic effects of antiretroviral medication, including the classic triad of dyslipidaemia, insulin resistance (IR) and characteristic alterations in fat distribution (lipoatrophy and lipohypertrophy). Co-infection with hepatitis C appears to exacerbate IR, reduce serum lipids and induce prothrombotic changes in the treated human immunodeficiency virus patient. The effects of co-infection are complex. While combination antiretroviral therapy has been shown to be associated with an increased risk of cardiovascular events through promotion of dyslipidaemia, IR and fat redistribution, co-infection exacerbates IR while reducing serum lipids. Co-infection also promotes a prothrombotic state characterized by endothelial dysfunction and platelet activation, which may enhance risk for cardiovascular disease. Consideration must be given to selection of appropriate treatment regimens and timing of therapy in co-infected patients to minimize metabolic derangements and, ultimately, reduce cardiovascular risk.

  9. Phytosterol supplementation does not affect plasma antioxidant capacity in patients with metabolic syndrome.

    Science.gov (United States)

    Sialvera, Theodora-Eirini; Koutelidakis, Antonios E; Richter, Dimitris J; Yfanti, Georgia; Kapsokefalou, Maria; Micha, Renata; Goumas, Giorgos; Diamantopoulos, Emmanouil; Zampelas, Antonis

    2013-02-01

    Several studies have observed decreased levels of lipophilic antioxidants after supplementation with phytosterols and stanols. The aim of this study was to examine the effect of phytosterol supplementation on plasma total antioxidant capacity in patients with metabolic syndrome. In a parallel arm, randomized placebo-controlled design, 108 patients with metabolic syndrome were assigned to consume yogurt beverage which provided 4 g of phytosterols per day or yogurt beverage without phytosterols. The duration of the study was 2 months and the patients in both groups followed their habitual westernized type diet. Blood samples were drawn at baseline and after 2 months, and the total antioxidant capacity of plasma was measured using the ferric reducing antioxidant power of plasma and oxygen radical absorbance capacity assays. After 2 months of intervention, plasma total antioxidant capacity did not differ between and within the intervention and the control groups. Phytosterol supplementation does not affect plasma antioxidant status.

  10. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Angela M Liu

    Full Text Available In contrast to normal differentiated cells that depend on mitochondrial oxidative phosphorylation for energy production, cancer cells have evolved to utilize aerobic glycolysis (Warburg's effect, with benefit of providing intermediates for biomass production. MicroRNA-122 (miR-122 is highly expressed in normal liver tissue regulating a wide variety of biological processes including cellular metabolism, but is reduced in hepatocellular carcinoma (HCC. Overexpression of miR-122 was shown to inhibit cancer cell proliferation, metastasis, and increase chemosensitivity, but its functions in cancer metabolism remains unknown. The present study aims to identify the miR-122 targeted genes and to investigate the associated regulatory mechanisms in HCC metabolism. We found the ectopic overexpression of miR-122 affected metabolic activities of HCC cells, evidenced by the reduced lactate production and increased oxygen consumption. Integrated gene expression analysis in a cohort of 94 HCC tissues revealed miR-122 level tightly associated with a battery of glycolytic genes, in which pyruvate kinase (PK gene showed the strongest anti-correlation coefficient (Pearson r = -0.6938, p = <0.0001. In addition, reduced PK level was significantly associated with poor clinical outcomes of HCC patients. We found isoform M2 (PKM2 is the dominant form highly expressed in HCC and is a direct target of miR-122, as overexpression of miR-122 reduced both the mRNA and protein levels of PKM2, whereas PKM2 re-expression abrogated the miR-122-mediated glycolytic activities. The present study demonstrated the regulatory role of miR-122 on PKM2 in HCC, having an implication of therapeutic intervention targeting cancer metabolic pathways.

  11. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    Science.gov (United States)

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  12. Metabolic Interaction between Urea Cycle and Citric Acid Cycle Shunt: A Guided Approach

    Science.gov (United States)

    Pesi, Rossana; Balestri, Francesco; Ipata, Piero L.

    2018-01-01

    This article is a guided pedagogical approach, devoted to postgraduate students specializing in biochemistry, aimed at presenting all single reactions and overall equations leading to the metabolic interaction between ureagenesis and citric acid cycle to be incorporated into a two-three lecture series about the interaction of urea cycle with other…

  13. Salmonella Typhimurium metabolism affects virulence in the host – A mini-review

    DEFF Research Database (Denmark)

    Herrero-fresno, Ana; Olsen, John Elmerdhahl

    2018-01-01

    Salmonella enterica remains an important food borne pathogen in all regions of the world with S. Typhimurium as one of the most frequent serovars causing food borne disease. Since the majority of human cases are caused by food of animal origin, there has been a high interest in understanding how S....... Typhimurium interacts with the animal host, mostly focusing on factors that allow it to breach host barriers and to manipulate host cells to the benefit of itself. Up to recently, such studies have ignored the metabolic factors that allow the bacteria to multiply in the host, but this is changing rapidly...

  14. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  15. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    Science.gov (United States)

    Santos, Daniel M V; Katzmarzyk, Peter T; Diego, Vincent P; Souza, Michele C; Chaves, Raquel N; Blangero, John; Maia, José A R

    2013-01-01

    Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (pmetabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  16. Toxicokinetics of the food-toxin IQ in human placental perfusion is not affected by ABCG2 or xenobiotic metabolism

    DEFF Research Database (Denmark)

    Immonen, E; Kummu, M; Petsalo, A

    2010-01-01

    Metabolizing enzymes and transporters affect toxicokinetics of foreign compounds (e.g. drugs and carcinogens) in human placenta. The heterocyclic amine, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a food-borne carcinogen being metabolically activated by cytochrome P450 (CYP) enzymes, especial...

  17. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism.

    Science.gov (United States)

    Mourtzakis, M; Graham, T E; González-Alonso, J; Saltin, B

    2008-08-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (PTCA cycle intermediates. In the UT thigh, peak exercise (vs. rest) induced an increase in fumarate (0.33+/-0.07 vs. 0.02+/-0.01 mmol/kg dry wt (dw), PTCA cycle, glutamate and TCA cycle intermediates do not directly affect VO2peak in either trained or untrained muscle.

  18. Interaction of metabolic and respiratory acidosis with α and β-adrenoceptor stimulation in rat myocardium.

    Science.gov (United States)

    Biais, Matthieu; Jouffroy, Romain; Carillion, Aude; Feldman, Sarah; Jobart-Malfait, Aude; Riou, Bruno; Amour, Julien

    2012-12-01

    The effects of acute respiratory versus metabolic acidosis on the myocardium and their consequences on adrenoceptor stimulation remain poorly described. We compared the effects of metabolic and respiratory acidosis on inotropy and lusitropy in rat myocardium and their effects on the responses to α- and β-adrenoceptor stimulations. The effects of acute respiratory and metabolic acidosis (pH 7.10) and their interactions with α and β-adrenoceptor stimulations were studied in isolated rat left ventricular papillary muscle (n=8 per group). Intracellular pH was measured using confocal microscopy and a pH-sensitive fluorophore in isolated rat cardiomyocytes. Data are mean percentages of baseline±SD. Respiratory acidosis induced more pronounced negative inotropic effects than metabolic acidosis did both in isotonic (45±3 versus 63±6%, Prespiratory or metabolic acidosis. The inotropic response to β-adrenergic stimulation was impaired only in metabolic acidosis (137±12 versus 200±33%, Pacidosis. The lusitropic response to β-adrenergic stimulation was not modified by respiratory or metabolic acidosis. Acute metabolic and respiratory acidosis induce different myocardial effects related to different decreases in intracellular pH. Only metabolic acidosis impairs the positive inotropic effect of β-adrenergic stimulation.

  19. The fungicide triadimefon affects beer flavor and composition by influencing Saccharomyces cerevisiae metabolism

    Science.gov (United States)

    Kong, Zhiqiang; Li, Minmin; An, Jingjing; Chen, Jieying; Bao, Yuming; Francis, Frédéric; Dai, Xiaofeng

    2016-09-01

    Despite the fact that beer is produced on a large scale, the effects of pesticide residues on beer have been rarely investigated. In this study, we used micro-brewing settings to determine the effect of triadimefon on the growth of Saccharomyces cerevisiae and beer flavor. The yeast growth in medium was significantly inhibited (45%) at concentrations higher than 5 mg L-1, reaching 80% and 100% inhibition at 10 mg L-1 and 50 mg L-1, respectively. There were significant differences in sensory quality between beer samples fermented with and without triadimefon based on data obtained with an electronic tongue and nose. Such an effect was most likely underlain by changes in yeast fermentation activity, including decreased utilization of maltotriose and most amino acids, reduced production of isobutyl and isoamyl alcohols, and increased ethyl acetate content in the fungicide treated samples. Furthermore, yeast metabolic profiling by phenotype microarray and UPLC/TOF-MS showed that triadimefon caused significant changes in the metabolism of glutathione, phenylalanine and sphingolipids, and in sterol biosynthesis. Thus, triadimefon negatively affects beer sensory qualities by influencing the metabolic activity of S. cerevisiae during fermentation, emphasizing the necessity of stricter control over fungicide residues in brewing by the food industry.

  20. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    Science.gov (United States)

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. © 2016 The Author(s).

  1. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Science.gov (United States)

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  2. Diet-gene interactions between dietary fat intake and common polymorphisms in determining lipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Corella, D.

    2009-07-01

    Current dietary guidelines for fat intake have not taken into consideration the possible genetic differences underlying the individual variability in responsiveness to dietary components. Genetic variability has been identified in humans for all the known lipid metabolism-related genes resulting in a plethora of candidate genes and genetic variants to examine in diet-gene interaction studies focused on fat consumption. Some examples of fat-gene interaction are reviewed. These include: the interaction between total intake and the 14C/T in the hepatic lipase gene promoter in determining high-density lipoprotein cholesterol (HDL-C) metabolism; the interaction between polyunsaturated fatty acids (PUFA) and the 5G/A polymorphism in the APOA1 gene plasma HDL-C concentrations; the interaction between PUFA and the L162V polymorphism in the PPARA gene in determining triglycerides and APOC3 concentrations; and the interaction between PUFA intake and the -1131T>C in the APOA5 gene in determining triglyceride metabolism. Although hundreds of diet-gene interaction studies in lipid metabolism have been published, the level of evidence to make specific nutritional recommendations to the population is still low and more research in nutrigenetics has to be undertaken. (Author) 31 refs.

  3. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria

    DEFF Research Database (Denmark)

    Stams, A.J.; Oude Elferink, S.J.; Westermann, Peter

    2003-01-01

    Most types of anaerobic respiration are able to outcompete methanogenic consortia for common substrates if the respective electron acceptors are present in sufficient amounts. Furthermore, several products or intermediate compounds formed by anaerobic respiring bacteria are toxic to methanogenic...... consortia. Despite the potentially adverse effects, only few inorganic electron acceptors potentially utilizable for anaerobic respiration have been investigated with respect to negative interactions in anaerobic digesters. In this chapter we review competitive and inhibitory interactions between anaerobic...... respiring populations and methanogenic consortia in bioreactors. Due to the few studies in anaerobic digesters, many of our discussions are based upon studies of defined cultures or natural ecosystems...

  4. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions.

    Science.gov (United States)

    Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula; Ghose, Romi

    2017-06-01

    Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.

  5. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles

    Energy Technology Data Exchange (ETDEWEB)

    Maradonna, F.; Nozzi, V. [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); Santangeli, S. [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Traversi, I. [Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, 16132 Genova (Italy); Gallo, P. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Napoli (Italy); Fattore, E. [Dipartimento Ambiente e Salute, IRCCS–Istituto di Ricerche Farmacologiche “Mario Negri”, 20156 Milano (Italy); Mita, D.G. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Mandich, A. [INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy); Dipartimento di Scienze della Terra, dell’Ambiente e della Vita, Università di Genova, 16132 Genova (Italy); Carnevali, O., E-mail: o.carnevali@univpm.it [Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona (Italy); INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma (Italy)

    2015-10-15

    Highlights: • Diets contaminated with NP, BPA, or t-OP affect lipid metabolism. • Xenobiotic-contaminated diets induce metabolic disorders. • Hepatic metabolic disorders may be related to environmental pollution. - Abstract: The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes

  6. Xenobiotic-contaminated diets affect hepatic lipid metabolism: Implications for liver steatosis in Sparus aurata juveniles

    International Nuclear Information System (INIS)

    Maradonna, F.; Nozzi, V.; Santangeli, S.; Traversi, I.; Gallo, P.; Fattore, E.; Mita, D.G.; Mandich, A.; Carnevali, O.

    2015-01-01

    Highlights: • Diets contaminated with NP, BPA, or t-OP affect lipid metabolism. • Xenobiotic-contaminated diets induce metabolic disorders. • Hepatic metabolic disorders may be related to environmental pollution. - Abstract: The metabolic effects induced by feed contaminated with a lower or a higher concentration of -nonylpnenol (NP), 4-tert-octylphenol (t-OP) or bisphenol A (BPA), three environmental endocrine disruptors, were assessed in juvenile sea bream liver. Histological analysis demonstrated that all these three xenobiotics induced hepatic lipid accumulation and steatosis. These findings prompted analysis of the expression of the major molecules involved in lipid metabolism: peroxisome proliferator activated receptors (which is encoded by ppars), fatty acid synthase (encoded by fas), lipoprotein lipase (encoded by lpl) and hormone-sensitive lipase (encoded by hsl). The enzymes encoded by ppars and fas are in fact responsible for lipid accumulation, whereas lpl- and hsl- encoded proteins play a pivotal role in fat mobilization. The three xenobiotics modulated ppar mRNA expression: pparα mRNA expression was induced by the higher dose of each contaminant; pparβ mRNA expression was upregulated by the lower doses and in BPA2 fish ppary mRNA overexpression was induced by all pollutants. These data agreed with the lipid accumulation profiles documented by histology. Fas mRNA levels were modulated by the two NP doses and the higher BPA concentration. Lpl mRNA was significantly upregulated in all experimental groups except for BPA1 fish while hsl mRNA was significantly downregulated in all groups except for t-OP2 and BPA1 fish. The plasma concentrations of cortisol, the primary stress biomarker, were correlated with the levels of pepck mRNA level. This gene encodes phosphoenolpyruvate carboxykinase which is one of the key enzymes of gluconeogenesis. Pepck mRNA was significantly overexpressed in fish exposed to NP2 and both t-OP doses. Finally, the genes

  7. DEVELOPMENT OF AN INTERACTIVE SOFTWARE TO STUDY ENERGETIC METABOLISM

    Directory of Open Access Journals (Sweden)

    Emanuella da Silva Cardoso

    2016-11-01

    Full Text Available INTRODUCTION: Technology allows the creation of dynamic interfaces and graphics, which enables the construction of different scenarios that simulate biochemical events at cellular and molecular level. Furthermore, games have the ability to amuse and stimulate students and thus keeping them interested and receptive. Therefore, digital games must be explored as teaching aids once they have features that enhance the teaching process. OBJECTIVES: This project aimed to develop an educational software that contributes to the understanding of various events taking place in energetic metabolism. MATERIALS AND METHODS: We developed a downloadable educational game in Java, divided into two levels, each of which tackle issues about the Krebs cycle, the respiratory chain and oxidative phosphorylation. Initially, the names of the components of the metabolic process appear randomly on computer screen and the user must follow clues to place them in the right sequence, until all the biochemical reactions are complete. In next phase, there is a quiz about details and clinical correlates related to the theme of the game. Finally, students have to answer a form in order to verify acceptance and relevance of the game. DISCUSSION AND RESULTS: The game was applied to 40 medical students from UFF. The game’s subject matter and its difficulty were analyzed and more than 40% of students classified both respiratory chain and Krebs cycle as difficult. These findings highlight the need to establish new methods to enhance the teaching and learning processes and decrease the students’ difficulties, which is the game’s purpose. The game was very highly rated by students once they evaluated the game as an excellent educational aid and 92% of students agreed that it complements the content discussed in classroom. Finally, 97,5% of students said they would play again. CONCLUSION: Therefore, educational games could be an excellent tool to optimize learning.

  8. Experimental reduction in interaction intensity strongly affects biotic selection.

    Science.gov (United States)

    Sletvold, Nina; Ågren, Jon

    2016-11-01

    The link between biotic interaction intensity and strength of selection is of fundamental interest for understanding biotically driven diversification and predicting the consequences of environmental change. The strength of selection resulting from biotic interactions is determined by the strength of the interaction and by the covariance between fitness and the trait under selection. When the relationship between trait and absolute fitness is constant, selection strength should be a direct function of mean population interaction intensity. To test this prediction, we excluded pollinators for intervals of different length to induce five levels of pollination intensity within a single plant population. Pollen limitation (PL) increased from 0 to 0.77 across treatments, accompanied by a fivefold increase in the opportunity for selection. Trait-fitness covariance declined with PL for number of flowers, but varied little for other traits. Pollinator-mediated selection on plant height, corolla size, and spur length increased by 91%, 34%, and 330%, respectively, in the most severely pollen-limited treatment compared to open-pollinated plants. The results indicate that realized biotic selection can be predicted from mean population interaction intensity when variation in trait-fitness covariance is limited, and that declines in pollination intensity will strongly increase selection on traits involved in the interaction. © 2016 by the Ecological Society of America.

  9. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  10. Litter environment affects behavior and brain metabolic activity of adult knockout mice

    Directory of Open Access Journals (Sweden)

    David Crews

    2009-08-01

    Full Text Available In mammals, the formative environment for social and anxiety-related behaviors is the family unit; in the case of rodents, this is the litter and the mother-young bond. A deciding factor in this environment is the sex ratio of the litter and, in the case of mice lacking functional copies of gene(s, the ratio of the various genotypes in the litter. Both Sex and Genotype ratios of the litter affect the nature and quality of the individual’s behavior later in adulthood, as well as metabolic activity in brain nuclei that underlie these behaviors. Mice were raised in litters reconstituted shortly after to birth to control for Sex ratio and Genotype ratio (wild type pups vs. pups lacking a functional estrogen receptor α. In both males and females the Sex and Genotype of siblings in the litter affected aggressive behaviors as well as patterns of metabolic activity in limbic nuclei in the social behavior network later in adulthood. Further, this pattern in males varied depending upon the Genotype of their brothers and sisters. Principal Components Analysis revealed two components comprised of several amygdalar and hypothalamic nuclei; the VMH showed strong correlations in both clusters, suggesting its pivotal nature in the organization of two neural networks.

  11. Nonsense mutations in the human β-globin gene affect mRNA metabolism

    International Nuclear Information System (INIS)

    Baserga, S.J.; Benz, E.J. Jr.

    1988-01-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human α- and β-globin genes. Studies on mRNA isolated from patients with β 0 -thalassemia have shown that for both the β-17 and the β-39 mutations less than normal levels of β-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human β-globin mRNA). In vitro studies using the cloned β-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human β-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation

  12. Mobile Education: Towards Affective Bi-modal Interaction for Adaptivity

    Directory of Open Access Journals (Sweden)

    Efthymios Alepis

    2009-04-01

    Full Text Available One important field where mobile technology can make significant contributions is education. However one criticism in mobile education is that students receive impersonal teaching. Affective computing may give a solution to this problem. In this paper we describe an affective bi-modal educational system for mobile devices. In our research we describe a novel approach of combining information from two modalities namely the keyboard and the microphone through a multi-criteria decision making theory.

  13. Endocrine and metabolic changes in transition dairy cows are affected by prepartum infusions of a serotonin precursor.

    Science.gov (United States)

    Hernández-Castellano, Lorenzo E; Hernandez, Laura L; Sauerwein, Helga; Bruckmaier, Rupert M

    2017-06-01

    Serotonin (5-HT) has been shown to be involved in calcium homeostasis, modulating calcium concentration in blood. In addition, 5-HT participates in a variety of metabolic pathways, mainly through the modulation of glucose and lipid metabolism. The hypothesis of the present study was that the prepartum administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, would affect endocrine systems related to calcium homeostasis, and interact with other endocrine and metabolic pathways during the transition period. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental groups. Both groups received a daily i.v. infusion of 1 L of either 0.9% NaCl (control group; n = 10) or 0.9% NaCl containing 1 mg of 5-HTP/kg of BW (5-HTP group, n = 10). Infusions started d 10 before estimated parturition date and ended the day of parturition, resulting in a minimum of 4 d of infusion (8.4 ± 0.7 d of infusion). Until parturition, blood samples were collected before the daily infusions, and postpartum daily until d 7, and on d 30. Plasma concentrations of parathyroid hormone (PTH) were transiently increased at parturition and on d 1 in control cows. In the 5-HTP group PTH remained unchanged. The concentration of pyridinoline (PYD), an established marker for calcium release from the bone to the bloodstream, increased on d 1 postpartum only in the 5-HTP group. In control cows, PYD concentrations did not change on d 1 postpartum. Melatonin concentrations were slightly but significantly increased in the 5-HTP group compared with the control group. Insulin concentrations decreased in both groups postpartum. Before parturition, leptin concentrations decreased in both groups and remained at this level until d 30 postpartum. Plasma IgG concentrations decreased in both groups on d -1 postpartum. Haptoglobin increased in both groups on d -1 and remained at this level until d 7 postpartum. No differences between groups were observed for insulin, glucagon, IgG, leptin

  14. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    Science.gov (United States)

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  15. Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model.

    Science.gov (United States)

    Maggini, Valentina; De Leo, Marinella; Mengoni, Alessio; Gallo, Eugenia Rosaria; Miceli, Elisangela; Reidel, Rose Vanessa Bandeira; Biffi, Sauro; Pistelli, Luisa; Fani, Renato; Firenzuoli, Fabio; Bogani, Patrizia

    2017-12-05

    The influence of the interaction(s) between the medicinal plant Echinacea purpurea (L.) Moench and its endophytic communities on the production of alkamides is investigated. To mimic the in vivo conditions, we have set up an infection model of axenic in vitro E. purpurea plants inoculated with a pool of bacterial strains isolated from the E. purpurea stems and leaves. Here we show different alkamide levels between control (not-inoculated) and inoculated plants, suggesting that the alkamide biosynthesis may be modulated by the bacterial infection. Then, we have analysed the branched-chain amino acids (BCCA) decarboxylase gene (GenBank Accession #LT593930; the enzymatic source for the amine moiety formation of the alkamides) expression patterns. The expression profile shows a higher expression level in the inoculated E. purpurea tissues than in the control ones. These results suggest that the plant-endophyte interaction can influence plant secondary metabolism affecting the therapeutic properties of E. purpurea.

  16. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome.

    Science.gov (United States)

    Ussar, Siegfried; Griffin, Nicholas W; Bezy, Olivier; Fujisaka, Shiho; Vienberg, Sara; Softic, Samir; Deng, Luxue; Bry, Lynn; Gordon, Jeffrey I; Kahn, C Ronald

    2015-09-01

    Obesity, diabetes, and metabolic syndrome result from complex interactions between genetic and environmental factors, including the gut microbiota. To dissect these interactions, we utilized three commonly used inbred strains of mice-obesity/diabetes-prone C57Bl/6J mice, obesity/diabetes-resistant 129S1/SvImJ from Jackson Laboratory, and obesity-prone but diabetes-resistant 129S6/SvEvTac from Taconic-plus three derivative lines generated by breeding these strains in a new, common environment. Analysis of metabolic parameters and gut microbiota in all strains and their environmentally normalized derivatives revealed strong interactions between microbiota, diet, breeding site, and metabolic phenotype. Strain-dependent and strain-independent correlations were found between specific microbiota and phenotypes, some of which could be transferred to germ-free recipient animals by fecal transplantation. Environmental reprogramming of microbiota resulted in 129S6/SvEvTac becoming obesity resistant. Thus, development of obesity/metabolic syndrome is the result of interactions between gut microbiota, host genetics, and diet. In permissive genetic backgrounds, environmental reprograming of microbiota can ameliorate development of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Measuring Engagement: Affective and Social Cues in Interactive Media

    NARCIS (Netherlands)

    Nijholt, Antinus; Vinciarelli, Alessandro; Spink, A.J.; Grieco, F; Krips, O.E.; Loijens, L.W.S.; Noldus, L.P.J.J.; Zimmerman, P.H.

    2012-01-01

    The aim of this special session at Measuring Behavior 2012 is to look at engagement and ways to measure engagement in situations where users are not glued to their chair and keyboard, that is, in sensor-equipped environments that are able to perceive nonverbal interaction behavior. And, moreover, we

  18. Legumes affect alpine tundra community composition via multiple biotic interactions

    NARCIS (Netherlands)

    Soudzilovskaia, N.A.; Aksenova, A.A.; Makarov, M.I.; Onipchenko, V.G.; Logvinenko, O.A.; Braak, ter C.J.F.; Cornelissen, J.H.C.

    2012-01-01

    The soil engineering function of legumes in natural ecosystems is paramount but associated solely with soil nitrogen (N) subsidies, ignoring concomitant biotic interactions such as competitive or inhibitory effects and exchange between mycorrhizas and rhizobia. We aim to (1) disentangle legume

  19. Association between social interaction and affect in nursing home residents with dementia.

    Science.gov (United States)

    Jao, Ying-Ling; Loken, Eric; MacAndrew, Margaret; Van Haitsma, Kimberly; Kolanowski, Ann

    2018-06-01

    Social interactions that lead to positive affect are fundamental to human well-being. However, individuals with dementia are challenged to achieve positive social interaction. It is unclear how social interactions influence affect in people with dementia. This study examined the association between social interactions and affect in nursing home residents with dementia. This repeated measures study used baseline data from a clinical trial in which 126 residents from 12 nursing homes were enrolled. Participants were video recorded twice daily on five days. Ratings of social interaction and affect were taken from the videotapes using the Interacting with People subscale of the Passivity in Dementia and the Philadelphia Geriatric Center Apparent Affect Rating Scale. Linear mixed models were used for analysis. Social interaction was significantly related to higher interest and pleasure at within- and between-person levels. Social interaction significantly predicted anxiety and sadness at the between-person level only. Residents with higher cognitive function also displayed greater pleasure. Greater interest and anxiety was evident during the afternoon hours. This study supports the impact of social interactions on positive and negative affect. Findings can guide intervention development, aimed at promoting positive social interactions and improving affect for people with dementia.

  20. Chronic contamination with 137Cesium affects Vitamin D3 metabolism in rats

    International Nuclear Information System (INIS)

    Tissandie, E.; Gueguen, Y.; Lobaccaro, J.M.A.; Aigueperse, J.; Gourmelon, P.; Paquet, F.; Souidi, M.

    2006-01-01

    Twenty years after Chernobyl disaster, many people are still chronically exposed to low dose of 137 Cs, mainly through the food consumption. A large variety of diseases have been described in highly exposed people with 137 Cs, which include bone disorders. The aim of this work was to investigate the biological effects of a chronic exposure to 137 Cs on Vitamin D 3 metabolism, a hormone essential in bone homeostasis. Rats were exposed to 137 Cs in their drinking water for 3 months at a dose of 6500 Bq/l (approximately 150 Bq/rat/day), a similar concentration ingested by the population living in contaminated territories in the former USSR countries. Cytochromes P450 enzymes involved in Vitamin D 3 metabolism, related nuclear receptors and Vitamin D 3 target genes were assessed by real time PCR in liver, kidney and brain. Vitamin D, PTH, calcium and phosphate levels were measured in plasma. An increase in the expression level of cyp2r1 (40%, p 137 Cs-exposed rats. However a significant decrease of Vitamin D (1,25(OH)D 3 ) plasma level (53%, p = 0.02) was observed. In brain, cyp2r1 mRNA level was decreased by 20% (p 137 Cs contamination. In conclusion, this study showed for the first time that chronic exposure with post-accidental doses of 137 Cs affects Vitamin D 3 active form level and induces molecular modifications of CYPs enzymes involved its metabolism in liver and brain, without leading to mineral homeostasis disorders

  1. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Directory of Open Access Journals (Sweden)

    Stephanie P Cartwright

    Full Text Available The dipeptide L-carnosine (β-alanyl-L-histidine has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose, 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol, L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  2. Methyl salicylate production in tomato affects biotic interactions.

    Science.gov (United States)

    Ament, Kai; Krasikov, Vladimir; Allmann, Silke; Rep, Martijn; Takken, Frank L W; Schuurink, Robert C

    2010-04-01

    The role of methyl salicylate (MeSA) production was studied in indirect and direct defence responses of tomato (Solanum lycopersicum) to the spider mite Tetranychus urticae and the root-invading fungus Fusarium oxysporum f. sp. lycopersici, respectively. To this end, we silenced the tomato gene encoding salicylic acid methyl transferase (SAMT). Silencing of SAMT led to a major reduction in SAMT expression and MeSA emission upon herbivory by spider mites, without affecting the induced emission of other volatiles (terpenoids). The predatory mite Phytoseiulus persimilis, which preys on T. urticae, could not discriminate between infested and non-infested SAMT-silenced lines, as it could for wild-type tomato plants. Moreover, when given the choice between infested SAMT-silenced and infested wild-type plants, they preferred the latter. These findings are supportive of a major role for MeSA in this indirect defence response of tomato. SAMT-silenced tomato plants were less susceptible to a virulent strain of F. oxysporum f. sp. lycopersici, indicating that the direct defense responses in the roots are also affected in these plants. Our studies show that the conversion of SA to MeSA can affect both direct and indirect plant defence responses.

  3. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.

    Science.gov (United States)

    Stams, A J M; Plugge, C M; de Bok, F A M; van Houten, B H G W; Lens, P; Dijkman, H; Weijma, J

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.

  4. The degree of saturation of fatty acids in dietary fats does not affect the metabolic response to ingested carbohydrate.

    Science.gov (United States)

    Radulescu, Angela; Hassan, Youssef; Gannon, Mary C; Nuttall, Frank Q

    2009-06-01

    We are interested in the metabolic response to ingested macronutrients, and the interaction between macronutrients in meals. Previously, we and others reported that the postprandial rise in serum glucose following ingestion of 50 g carbohydrate, consumed as potato, was markedly attenuated when butter was ingested with the carbohydrate, whereas the serum insulin response was little affected by the combination. To determine whether a similar response would be observed with three other dietary fats considerably different in fatty acid composition. Nine healthy subjects received lard, twelve received olive oil and eleven received safflower oil as a test meal. The subjects ingested meals of 25 g fat (lard, olive oil or safflower oil), 50 g CHO (potato), 25 g fat with 50 g CHO or water only. Glucose, C peptide, insulin, triacylglycerols and nonesterified fatty acids were determined. Ingestion of lard, olive oil or safflower oil with potato did not affect the quantitative glucose and insulin responses to potato alone. However, the responses were delayed, diminished and prolonged. All three fats when ingested alone modestly increased the insulin concentration when compared to ingestion of water alone. When either lard, olive oil or safflower oil was ingested with the potato, there was an accelerated rise in triacylglycerols. This was most dramatic with safflower oil. Our data indicate that the glucose and insulin response to butter is unique when compared with the three other fat sources varying in their fatty acid composition.

  5. Food odors trigger an endocrine response that affects food ingestion and metabolism.

    Science.gov (United States)

    Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R

    2015-08-01

    Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.

  6. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    Directory of Open Access Journals (Sweden)

    Brian R Granger

    2016-04-01

    Full Text Available The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space, a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  7. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    Science.gov (United States)

    Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-04-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  8. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    DEFF Research Database (Denmark)

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle...... HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  9. GENOME-BASED MODELING AND DESIGN OF METABOLIC INTERACTIONS IN MICROBIAL COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Mahadevan

    2012-10-01

    With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.

  10. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    Science.gov (United States)

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  11. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses.

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Metabonomics Approach to Assessing the Metabolism Variation and Endoexogenous Metabolic Interaction of Ginsenosides in Cold Stress Rats.

    Science.gov (United States)

    Zhang, Zhihao; Wang, Xiaoyan; Wang, Jingcheng; Jia, Zhiying; Liu, Yumin; Xie, Xie; Wang, Chongchong; Jia, Wei

    2016-06-03

    Metabolic profiling technology, a massive information provider, has promoted the understanding of the metabolism of multicomponent medicines and its interactions with endogenous metabolites, which was previously a challenge in clarification. In this study, an untargeted GC/MS-based approach was employed to investigate the urinary metabolite profile in rats with oral administration of ginsenosides and the control group. Significant changes of urinary metabolites contents were observed in the total ginsenosides group, revealing the impact of ginsenosides as indicated by the up- or down-regulation of several pathways involving neurotransmitter-related metabolites, tricarboxylic acid (TCA) cycle, fatty acids β-oxidation, and intestinal microflora metabolites. Meanwhile, a targeted UPLC-QQQ/MS-based metabonomic approach was developed to investigate the changes of urinary ginsenoside metabolites during the process of acute cold stress. Metabolic analysis indicated that upstream ginsenosides (rg1, re, and rf) increased significantly, whereas downstream ginsenosides (ck, ppd, and ppt) decreased correspondingly after cold exposure. Finally, the relationships between ginsenosides and significantly changed metabolites were investigated by correlation analysis.

  13. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats

    Directory of Open Access Journals (Sweden)

    Motoyama Caio SM

    2011-09-01

    Full Text Available Abstract Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H or the alternation of chow (C and an H diet (CH regimen induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.

  14. Interaction affective et expressive. Compagnon artificiel-humain

    OpenAIRE

    Riviere , Jérémy

    2012-01-01

    The aim of this thesis is to make an Embodied Conversational Agent (ECA) sincere in order to, on one hand, improve its believability from the human's point of view, and on the other hand make it acceptable in an affective relationship between an artificial companion and a human. The first part of this work consists in creating a Multimodal Conversation Language (MCL) for an ECA, made up of Multimodal Conversation Acts (MCA) such as promise, apologise or demand. These MCA allow the agent to ap...

  15. Metabolic investigation of host/pathogen interaction using MS2-infected Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jain Rishi

    2009-12-01

    Full Text Available Abstract Background RNA viruses are responsible for a variety of illnesses among people, including but not limited to the common cold, the flu, HIV, and ebola. Developing new drugs and new strategies for treating diseases caused by these viruses can be an expensive and time-consuming process. Mathematical modeling may be used to elucidate host-pathogen interactions and highlight potential targets for drug development, as well providing the basis for optimizing patient treatment strategies. The purpose of this work was to determine whether a genome-scale modeling approach could be used to understand how metabolism is impacted by the host-pathogen interaction during a viral infection. Escherichia coli/MS2 was used as the host-pathogen model system as MS2 is easy to work with, harmless to humans, but shares many features with eukaryotic viruses. In addition, the genome-scale metabolic model of E. coli is the most comprehensive model at this time. Results Employing a metabolic modeling strategy known as "flux balance analysis" coupled with experimental studies, we were able to predict how viral infection would alter bacterial metabolism. Based on our simulations, we predicted that cell growth and biosynthesis of the cell wall would be halted. Furthermore, we predicted a substantial increase in metabolic activity of the pentose phosphate pathway as a means to enhance viral biosynthesis, while a break down in the citric acid cycle was predicted. Also, no changes were predicted in the glycolytic pathway. Conclusions Through our approach, we have developed a technique of modeling virus-infected host metabolism and have investigated the metabolic effects of viral infection. These studies may provide insight into how to design better drugs. They also illustrate the potential of extending such metabolic analysis to higher order organisms, including humans.

  16. From metabolism to ecology: cross-feeding interactions shape the balance between polymicrobial conflict and mutualism.

    Science.gov (United States)

    Estrela, Sylvie; Trisos, Christopher H; Brown, Sam P

    2012-11-01

    Polymicrobial interactions are widespread in nature and play a major role in maintaining human health and ecosystems. Whenever one organism uses metabolites produced by another organism as energy or nutrient sources, it is called cross-feeding. The ecological outcomes of cross-feeding interactions are poorly understood and potentially diverse: mutualism, competition, exploitation, or commensalism. A major reason for this uncertainty is the lack of theoretical approaches linking microbial metabolism to microbial ecology. To address this issue, we explore the dynamics of a one-way interspecific cross-feeding interaction in which food can be traded for a service (detoxification). Our results show that diverse ecological interactions (competition, mutualism, exploitation) can emerge from this simple cross-feeding interaction and can be predicted by the metabolic, demographic, and environmental parameters that govern the balance of the costs and benefits of association. In particular, our model predicts stronger mutualism for intermediate by-product toxicity because the resource-service exchange is constrained to the service being neither too vital (high toxicity impairs resource provision) nor dispensable (low toxicity reduces need for service). These results support the idea that bridging microbial ecology and metabolism is a critical step toward a better understanding of the factors governing the emergence and dynamics of polymicrobial interactions.

  17. Copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats

    NARCIS (Netherlands)

    Yu, S.

    1993-01-01

    This thesis describes various studies on copper metabolism and its interactions with selected dietary trace elements in rats. The rats were fed purified diets throughout. High intakes of iron or tin reduced copper concentrations in plasma, liver and kidneys. The dietary treatments also

  18. Metabolic drug interactions - the impact of prescribed drug regimens on the medication safety.

    NARCIS (Netherlands)

    Fialova, D.; Vrbensky, K.; Topinkova, E.; Vlcek, J.; Soerbye, L.W.; Wagner, C.; Bernabei, R.

    2005-01-01

    Background and objective: Risk/benefit profile of prescribed drug regimens is unkown. Over 60% of commonly used medications interact on metabolic pathways (cytochrom P450 (CYP450), uridyl-glucuronyl tranferasis (UGT I, II) and P-glycoprotein (PGP) transport). Using an up-to-date knowledge on

  19. The interaction between nutrition and metabolism in West African dwarf goats, infected with trypanosomes

    NARCIS (Netherlands)

    Dam, van J.T.P.

    1996-01-01

    In a series of experiments the interaction between nutrition and energy- and nitrogen metabolism of West African Dwarf goats, infected with trypanosomes was studied. Animals were injected with trypanosomes, and feed intake, energy and nitrogen balance and blood metabolites and hormones were measured

  20. Integrative Metabolism: An Interactive Learning Tool for Nutrition, Biochemistry, and Physiology

    Science.gov (United States)

    Carey, Gale

    2010-01-01

    Metabolism is a dynamic, simultaneous, and integrative science that cuts across nutrition, biochemistry, and physiology. Teaching this science can be a challenge. The use of a scenario-based, visually appealing, interactive, computer-animated CD may overcome the limitations of learning "one pathway at a time" and engage two- and…

  1. Arsenic-Microbe-Mineral Interactions in Mining-Affected Environments

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson-Edwards

    2013-10-01

    Full Text Available The toxic element arsenic (As occurs widely in solid and liquid mine wastes. Aqueous forms of arsenic are taken up in As-bearing sulfides, arsenides, sulfosalts, oxides, oxyhydroxides, Fe-oxides, -hydroxides, -oxyhydroxides and -sulfates, and Fe-, Ca-Fe- and other arsenates. Although a considerable body of research has demonstrated that microbes play a significant role in the precipitation and dissolution of these As-bearing minerals, and in the alteration of the redox state of As, in natural and simulated mining environments, the molecular-scale mechanisms of these interactions are still not well understood. Further research is required using traditional and novel mineralogical, spectroscopic and microbiological techniques to further advance this field, and to help design remediation schemes.

  2. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  3. The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease: results from a randomized controlled trial

    OpenAIRE

    Rijpma, A.; Graaf, M. van der; Lansbergen, M.M.; Meulenbroek, O.V.; Cetinyurek-Yavuz, A.; Sijben, J.W.; Heerschap, A.; Olde Rikkert, M.G.M.

    2017-01-01

    Background Synaptic dysfunction contributes to cognitive impairment in Alzheimer?s disease and may be countered by increased intake of nutrients that target brain phospholipid metabolism. In this study, we explored whether the medical food Souvenaid affects brain phospholipid metabolism in patients with Alzheimer?s disease. Methods Thirty-four drug-naive patients with mild Alzheimer?s disease (Mini Mental State Examination score ?20) were enrolled in this exploratory, double-blind, randomized...

  4. Toward affective brain-computer interfaces : exploring the neurophysiology of affect during human media interaction

    NARCIS (Netherlands)

    Mühl, C.

    2012-01-01

    Affective Brain-Computer Interfaces (aBCI), the sensing of emotions from brain activity, seems a fantasy from the realm of science fiction. But unlike faster-than-light travel or teleportation, aBCI seems almost within reach due to novel sensor technologies, the advancement of neuroscience, and the

  5. Do the interactions between glucocorticoids and sex hormones regulate the development of the Metabolic Syndrome?

    Directory of Open Access Journals (Sweden)

    Marià eAlemany

    2012-02-01

    Full Text Available The metabolic syndrome is basically a maturity-onset disease. Typically, its manifestations begin to flourish years after the initial dietary or environmental aggression began. Since most hormonal, metabolic or defense responses are practically immediate, the procrastinated response don't seem justified. Only in childhood, the damages of the metabolic syndrome appear with minimal delay. Sex affects the incidence of the metabolic syndrome, but this is more an effect of timing than absolute gender differences, females holding better than males up to menopause, when the differences between sexes tend to disappear. The metabolic syndrome is related to an immune response, countered by a permanent increase in glucocorticoids, which keep the immune system at bay but also induce insulin resistance, alter the lipid metabolism, favor fat deposition, mobilize protein and decrease androgen synthesis. Androgens limit the operation of glucocorticoids, which is also partly blocked by estrogens, since they decrease inflammation (which enhances glucocorticoid release. These facts suggest that the appearance of the metabolic syndrome symptoms depends on the strength (i.e. levels of androgens and estrogens. The predominance of glucocorticoids and the full manifestation of the syndrome in men are favored by decreased androgen activity. Low androgens can be found in infancy, maturity, advanced age, or because of their inhibition by glucocorticoids (inflammation, stress, medical treatment. Estrogens decrease inflammation and reduce the glucocorticoid response. Low estrogen (infancy, menopause again allow the predominance of glucocorticoids and the manifestation of the metabolic syndrome. It is postulated that the equilibrium between sex hormones and glucocorticoids may be a critical element in the timing of the manifestation of metabolic syndrome-related pathologies.

  6. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch......Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...

  7. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...... in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch...

  8. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  9. Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio).

    Science.gov (United States)

    Al-Habsi, Aziz A; Massarsky, Andrey; Moon, Thomas W

    2016-09-01

    The commonly used lipid-lowering pharmaceuticals gemfibrozil (GEM) and atorvastatin (ATV) are detected in the aquatic environment; however, their potential effects on non-target fish species are yet to be fully understood. This study examined the effects of GEM and/or ATV on female and male adult zebrafish after a 30d dietary exposure. The exposure led to changes in several biochemical parameters, including reduction in cholesterol, triglycerides, cortisol, testosterone, and estradiol. Changes in cholesterol and triglycerides were also associated with changes in transcript levels of key genes involved with cholesterol and lipid regulation, including SREBP2, HMGCR1, PPARα, and SREBP1. We also noted higher CYP3A65 and atrogin1 mRNA levels in drug-treated male fish. Sex differences were apparent in some of the examined parameters at both biochemical and molecular levels. This study supports these drugs affecting cholesterol metabolism and steroid production in adult zebrafish. We conclude that the reduction in cortisol may impair the ability of these fish to mount a suitable stress response, whereas the reduction of sex steroids may negatively affect reproduction. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Temporal factors affecting somatosensory-auditory interactions in speech processing

    Directory of Open Access Journals (Sweden)

    Takayuki eIto

    2014-11-01

    Full Text Available Speech perception is known to rely on both auditory and visual information. However, sound specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009. In the present study we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory-auditory interaction in speech perception. We examined the changes in event-related potentials in response to multisensory synchronous (simultaneous and asynchronous (90 ms lag and lead somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the event-related potential was reliably different from the two unisensory potentials. More importantly, the magnitude of the event-related potential difference varied as a function of the relative timing of the somatosensory-auditory stimulation. Event-related activity change due to stimulus timing was seen between 160-220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory-auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production.

  11. Road transport and diet affect metabolic response to exercise in horses.

    Science.gov (United States)

    Connysson, M; Muhonen, S; Jansson, A

    2017-11-01

    This study investigated the effects of transport and diet on metabolic response during a subsequent race-like test in Standardbred horses in training fed a forage-only diet and a 50:50 forage:oats diet. Six trained and raced Standardbred trotter mares were used. Two diets, 1 forage-only diet (FONLY) and 1 diet with 50% of DM intake from forage and 50% from oats (FOATS), were fed for two 29-d periods in a crossover design. At Day 21, the horses were subjected to transport for 100 km before and after they performed an exercise test (transport test [TT]). At Day 26, the horses performed a control test (CT), in which they were kept in their stall before and after the exercise test. Blood samples were collected throughout the study, and heart rate and water intake were recorded. Heart rate and plasma cortisol, glucose, and NEFA concentrations were greater for the TT than for the CT ( = 0.008, = 0.020, = 0.010, and = 0.0002, respectively) but were not affected by diet. Plasma acetate concentration was lower during the TT than during the CT ( = 0.034) and greater for the FONLY than for the FOATS ( = 0.003). There were no overall effects of the TT compared with the CT on total plasma protein concentration (TPP), but TPP was lower with the FONLY than with the FOATS ( = 0.016). There was no overall effect of the TT compared with the CT on water intake, but water intake was greater with the FONLY than the FOATS ( = 0.011). There were no overall effects of transport or diet on BW, plasma lactate, or plasma urea concentration. It was concluded that both transport and diet affect metabolic response during exercise in horses. Aerobic energy supply was most likely elevated by transportation and by the FONLY. The FONLY also decreased exercise-induced effects on extracellular fluid regulation. These results highlight the importance of experimental design in nutrition studies. If the aim is to examine how a diet affects exercise response in competition horses, transport should

  12. Physiological and molecular implications of plant polyamine metabolism during biotic interactions

    Directory of Open Access Journals (Sweden)

    Juan Francisco Jiménez Bremont

    2014-03-01

    Full Text Available During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrated the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.

  13. Multidirectional vector pathways of vitamin D metabolism as modifiers of its interaction with drugs

    Directory of Open Access Journals (Sweden)

    O.M. Nikolova

    2018-02-01

    Full Text Available Background. The comorbid pathology characteristic of the elderly and senile people may lead to polypharmacy. The leading role in the metabolism of drugs is played by the cytochrome (CY P450 system. The use of vitamin D in geriatric patients is of particular importance taking into account their age-specific features of metabolism. The purpose of the review was to analyse the international contemporary information content on the interaction of vitamin D with the system of metabolism of the drugs. Materials and methods. Analysis of American and European scientific sources was performed. Results. More than 11,500 proteins of the CYP system are currently described. In the metabolism of medicines, the following six are involved: CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP2E1, CYP3A4, which provide biotransformation of drugs through oxidation. CYP450 is a hemoprotein that provides binding of the substrate molecules with activation of oxygens, resulting in the formation of oxidation, a more hydrophilic product and water molecule. The insufficiency of hydroxylation capacity of the liver and kidneys can lead to D-hypovitaminosis in the body of patients. CYP11A1, СYР27А1, СYР27В1, СYР24А1 are responsible for vitamin D metabolism. Conducted studies have shown that these cytochromes metabolize a number of other drugs that can act as their inhibitors and inducers. Conclusions. The system of cytochrome P450 influences the formation of vitamin D metabolites. Taking into account the physiological ways of its metabolism, multidirectional results of interaction are formed.

  14. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model

    Science.gov (United States)

    Martin, Francois-Pierre J; Wang, Yulan; Sprenger, Norbert; Yap, Ivan K S; Lundstedt, Torbjörn; Lek, Per; Rezzi, Serge; Ramadan, Ziad; van Bladeren, Peter; Fay, Laurent B; Kochhar, Sunil; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy K

    2008-01-01

    The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short-chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top-down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino-acid metabolism, methylamines and SCFAs. The novel application of hierarchical-principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top-down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics. PMID:18197175

  15. Acidosis, but Not Alkalosis, Affects Anaerobic Metabolism and Performance in a 4-km Time Trial.

    Science.gov (United States)

    Correia-Oliveira, Carlos Rafaell; Lopes-Silva, João Paulo; Bertuzzi, Romulo; McConell, Glenn K; Bishop, David John; Lima-Silva, Adriano Eduardo; Kiss, Maria Augusta Peduti Dal'molin

    2017-09-01

    This study aimed to determine the effect of preexercise metabolic acidosis and alkalosis on power output (PO) and aerobic and anaerobic energy expenditure during a 4-km cycling time trial (TT). Eleven recreationally trained cyclists (V˙O2peak 54.1 ± 9.3 mL·kg·min) performed a 4-km TT 100 min after ingesting in a double-blind matter 0.15 g·kg of body mass of ammonium chloride (NH4Cl, acidosis), 0.3 g·kg of sodium bicarbonate (NaHCO3, alkalosis), or 0.15 g·kg of CaCO3 (placebo). A preliminary study (n = 7) was conducted to establish the optimal doses to promote the desirable preexercise blood pH alterations without gastrointestinal distress. Data for PO, aerobic and anaerobic energy expenditure, and blood and respiratory parameters were averaged for each 1 km and compared between conditions using two-way repeated-measures ANOVA (condition and distance factors). Gastrointestinal discomfort was analyzed qualitatively. Compared with placebo (pH 7.37 ± 0.02, [HCO3]: 27.5 ± 2.6 mmol·L), the NaHCO3 ingestion resulted in a preexercise blood alkalosis (pH +0.06 ± 0.04, [HCO3]: +4.4 ± 2.0 mmol·L, P 0.05). Minimal gastrointestinal distress was noted in all conditions. Preexercise acidosis, but not alkalosis, affects anaerobic metabolism and PO during a 4-km cycling TT.

  16. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... amino acid taken up during exercise and recovery. Alanine and glutamine were also associated...... with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism...

  17. Obesity and Cancer Metabolism: A Perspective on Interacting Tumor-Intrinsic and Extrinsic Factors.

    Science.gov (United States)

    Doerstling, Steven S; O'Flanagan, Ciara H; Hursting, Stephen D

    2017-01-01

    Obesity is associated with increased risk and poor prognosis of many types of cancers. Several obesity-related host factors involved in systemic metabolism can influence tumor initiation, progression, and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. Such host factors include systemic metabolic regulators including insulin, insulin-like growth factor 1, adipokines, inflammation-related molecules, and steroid hormones, as well as the cellular and structural components of the tumor microenvironment, particularly adipose tissue. These secreted and structural host factors are extrinsic to, and interact with, the intrinsic metabolic characteristics of cancer cells to influence their growth and spread. This review will focus on the interplay of these tumor cell-intrinsic and extrinsic factors in the context of energy balance, with the objective of identifying new intervention targets for preventing obesity-associated cancer.

  18. Leader charisma and affective team climate: the moderating role of the leader's influence and interaction.

    Science.gov (United States)

    Hernández Baeza, Ana; Araya Lao, Cristina; García Meneses, Juliana; González Romá, Vicente

    2009-11-01

    In this study, we evaluate the role of leader charisma in fostering positive affective team climate and preventing negative affective climate. The analysis of a longitudinal database of 137 bank branches by means of hierarchical moderated regression shows that leader charisma has a stronger effect on team optimism than on team tension. In addition, the leader's influence and the frequency of leader-team interaction moderate the relationship between charisma and affective climate. However, whereas the leader's influence enhances the relationship between leader charisma and positive affective climate, the frequency of interaction has counterproductive effects.

  19. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    DEFF Research Database (Denmark)

    de Castro Barbosa, Thais; Ingerslev, Lars R; Alm, Petter S

    2016-01-01

    OBJECTIVES: Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. METHODS: F0-male rats fed either HFD or chow diet......1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. CONCLUSION: Our results provide insight...... into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations....

  20. The Dynamic Reactance Interaction - How Vested Interests Affect People's Experience, Behavior, and Cognition in Social Interactions.

    Science.gov (United States)

    Steindl, Christina; Jonas, Eva

    2015-01-01

    In social interactions, individuals may sometimes pursue their own interests at the expense of their interaction partner. Such self-interested behaviors impose a threat to the interaction partner's freedom to act. The current article investigates this threat in the context of interdependence and reactance theory. We explore how vested interests influence reactance process stages of an advisor-client interaction. We aim to explore the interactional process that evolves. In two studies, participants took the perspective of a doctor (advisor) or a patient (client). In both studies we incorporated a vested interest. In Study 1 (N = 82) we found that in response to a vested interest of their interaction partner, patients indicated a stronger experience of reactance, more aggressive behavioral intentions, and more biased cognitions than doctors. A serial multiple mediation revealed that a vested interest engendered mistrust toward the interaction partner and this mistrust led to an emerging reactance process. Study 2 (N = 207) further demonstrated that doctors expressed their reactance in a subtle way: they revealed a classic confirmation bias when searching for additional information on their preliminary decision preference, indicating stronger defense motivation. We discuss how these findings can help us to understand how social interactions develop dynamically.

  1. Dietary fatty acids early in life affect lipid metabolism and adiposity in young rats.

    Science.gov (United States)

    Silva, Ana Paula S; Guimarães, Daniella E D; Mizurini, Daniella M; Maia, Ingrid C; Ortiz-Costa, Susana; Sardinha, Fátima L; do Carmo, Maria G Tavares

    2006-06-01

    The purpose of this study was to evaluate the effects of four isoenergetic diets of differing fat composition on blood lipid profile and adiposity in young rats. Diets containing different lipid sources--partially hydrogenated vegetable oil (PHVO), palm oil (PO), canola oil (CO), and soy oil (SO)--were fed to lactating rats during the 21 days of lactation, and then fed to young males following weaning until the 45th day of life. In vivo lipogenesis rate (LR), lipid content (LC), relative level of FA, and the activity of lipoprotein lipase (LPL) enzyme were measured in epididymal adipose tissue (EPI). Fasting blood lipoproteins and LC in the carcass were also appraised. Body weight of PO and PHVO groups was significantly higher than CO and SO groups from day 14 of lactation to day 45, despite the lower food intake in the PHVO group. PO and PHVO groups presented higher LR and LC in EPI than SO and CO groups. Carcass fat content was significantly higher in PHVO and PO groups than in CO and SO groups. The LPL activity in EPI was unaffected by dietary lipids. PHVO group had increased total cholesterol and TAG concentrations in comparison with the PO group, and significantly lower HDL level compared with the other groups. These results show that the kind of FA in the dietary lipid offered early in life can affect lipid metabolism and adiposity.

  2. Metabolic syndrome prevalence in different affective temperament profiles in bipolar-I disorder

    Directory of Open Access Journals (Sweden)

    Kursat Altinbas

    2013-06-01

    Full Text Available Objective: Temperament originates in the brain structure, and individual differences are attributable to neural and physiological function differences. It has been suggested that temperament is associated with metabolic syndrome (MetS markers, which may be partly mediated by lifestyle and socioeconomic status. Therefore, we aim to compare MetS prevalence between different affective temperamental profiles for each season in bipolar patients. Methods: Twenty-six bipolar type-I patients of a specialized outpatient mood disorder unit were evaluated for MetS according to new definition proposed by the International Diabetes Federation in the four seasons of a year. Temperament was assessed using the Temperament Evaluation of Memphis, Pisa, Paris and San Diego - autoquestionnaire version (TEMPS-A. Results: The proportions of MetS were 19.2, 23.1, 34.6, and 38.5% in the summer, fall, spring, and winter, respectively. Only depressive temperament scores were higher (p = 0.002 during the winter in patients with MetS. Conclusion: These data suggest that depressive temperament profiles may predispose an individual to the development of MetS in the winter.

  3. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Directory of Open Access Journals (Sweden)

    Anastasia V. Ponasenko

    2017-01-01

    Full Text Available Infective endocarditis (IE is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE.

  4. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Science.gov (United States)

    Rutkovskaya, Natalia V.; Kondyukova, Natalia V.; Odarenko, Yuri N.; Kazachek, Yana V.; Tsepokina, Anna V.; Barbarash, Leonid S.

    2017-01-01

    Infective endocarditis (IE) is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE. PMID:28659664

  5. Acute Consumption of Flavan-3-ol-Enriched Dark Chocolate Affects Human Endogenous Metabolism.

    Science.gov (United States)

    Ostertag, Luisa M; Philo, Mark; Colquhoun, Ian J; Tapp, Henri S; Saha, Shikha; Duthie, Garry G; Kemsley, E Kate; de Roos, Baukje; Kroon, Paul A; Le Gall, Gwénaëlle

    2017-07-07

    Flavan-3-ols and methylxanthines have potential beneficial effects on human health including reducing cardiovascular risk. We performed a randomized controlled crossover intervention trial to assess the acute effects of consumption of flavan-3-ol-enriched dark chocolate, compared with standard dark chocolate and white chocolate, on the human metabolome. We assessed the metabolome in urine and blood plasma samples collected before and at 2 and 6 h after consumption of chocolates in 42 healthy volunteers using a nontargeted metabolomics approach. Plasma samples were assessed and showed differentiation between time points with no further separation among the three chocolate treatments. Multivariate statistics applied to urine samples could readily separate the postprandial time points and distinguish between the treatments. Most of the markers responsible for the multivariate discrimination between the chocolates were of dietary origin. Interestingly, small but significant level changes were also observed for a subset of endogenous metabolites. 1 H NMR revealed that flavan-3-ol-enriched dark chocolate and standard dark chocolate reduced urinary levels of creatinine, lactate, some amino acids, and related degradation products and increased the levels of pyruvate and 4-hydroxyphenylacetate, a phenolic compound of bacterial origin. This study demonstrates that an acute chocolate intervention can significantly affect human metabolism.

  6. How interactions between top-down and bottom-up controls on carbon cycling affect fluxes within and from lakes

    Science.gov (United States)

    Sadro, S.; Piovia-Scott, J.; Nelson, C.; Sickman, J. O.; Knapp, R.

    2017-12-01

    While the role of inland waters in global carbon cycling has grown clearer in recent decades, the extent to which top-down and bottom-up mechanisms interact to regulate dynamics at the catchment scale is not well understood. The degree to which lakes process, export, or store terrestrial carbon is influenced by hydrological variability, variation in the magnitude of terrestrial organic matter (t-OM) entering a system, the efficiency with which such material is metabolized by bacterioplankton, the extent to which it is incorporated into secondary consumer biomass, and by the effects of food-web structure, such as the presence or absence of top predators. However, how these processes interact to mediate carbon fluxes between terrestrial, aquatic, and atmospheric reservoirs remains unclear. We develop a conceptual model that explores how interactions among these factors ultimately affects carbon dynamics using data from lakes located in the Sierra Nevada mountains of California. The Sierra are an excellent system for studies of carbon cycling because elevation-induced landscape gradients in soil development and vegetation cover provide large natural variation in terrestrial inputs to lakes, while variation in confounding factors such as lake morphometry or trophic state is comparatively small. Dissolved organic carbon concentrations increase 100 fold in lakes spanning the alpine to montane elevation gradient found in the Sierra, and fluorescence characteristics reflect an increasingly terrestrial signature with decreasing elevation. Bacterioplankton make up a large proportion of total ecosystem metabolism in these systems, and their metabolic efficiency is tightly coupled to the composition of dissolved organic matter. Stable isotope food web data (δ13C, Δ14C, and δ2H) and measurements of pCO2 from lakes indicate the magnitude of allochthony, rates if carbon cycling, and ecosystem heterotrophy all increase with the increasingly terrestrial signature of dissolved

  7. Dietary folate and choline status differentially affect lipid metabolism and behavior-mediated neurotransmitters in young rats

    Science.gov (United States)

    The relationship between choline and folate metabolisms is an important issue due to the essential role of these nutrients in brain plasticity and cognitive functions. Present study was designed to investigate whether modification of the dietary folate-choline status in young rats would affect brain...

  8. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  9. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians.

    Science.gov (United States)

    Kim, Sangkyu; Myers, Leann; Ravussin, Eric; Cherry, Katie E; Jazwinski, S Michal

    2016-08-01

    Energy expenditure decreases with age, but in the oldest-old, energy demand for maintenance of body functions increases with declining health. Uncoupling proteins have profound impact on mitochondrial metabolic processes; therefore, we focused attention on mitochondrial uncoupling protein genes. Alongside resting metabolic rate (RMR), two SNPs in the promoter region of UCP2 were associated with healthy aging. These SNPs mark potential binding sites for several transcription factors; thus, they may affect expression of the gene. A third SNP in the 3'-UTR of UCP3 interacted with RMR. This UCP3 SNP is known to impact UCP3 expression in tissue culture cells, and it has been associated with body weight and mitochondrial energy metabolism. The significant main effects of the UCP2 SNPs and the interaction effect of the UCP3 SNP were also observed after controlling for fat-free mass (FFM) and physical-activity related energy consumption. The association of UCP2/3 with healthy aging was not found in males. Thus, our study provides evidence that the genetic risk factors for healthy aging differ in males and females, as expected from the differences in the phenotypes associated with healthy aging between the two sexes. It also has implications for how mitochondrial function changes during aging.

  10. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome

    OpenAIRE

    Ussar, Siegfried; Griffin, Nicholas W.; Bezy, Olivier; Fujisaka, Shiho; Vienberg, Sara; Softic, Samir; Deng, Luxue; Bry, Lynn; Gordon, Jeffrey I.; Kahn, C. Ronald

    2015-01-01

    Obesity, diabetes and metabolic syndrome result from complex interactions between genetic and environmental factors, including the gut microbiota. To dissect these interactions, we utilized three commonly-used inbred strains of mice – obesity/diabetes-prone C57Bl/6J mice, obesity/diabetes-resistant 129S1/SvImJ, from Jackson Laboratory and obesity-prone, but diabetes resistant 129S6/SvEvTac from Taconic - plus three derivative lines generated by breeding these strains in a new, common environm...

  11. SOCIAL INTERACTIONS, STRESSFUL EVENTS AND NEGATIVE AFFECT AT WORK - A MICROANALYTIC APPROACH

    NARCIS (Netherlands)

    PEETERS, MCW; BUUNK, BP; SCHAUFELI, WB

    1995-01-01

    In the present study a daily event-recording method, the DIRO (Daily Interaction Record in Organizations), was employed for assessing social interactions, stressful events and negative affect at work. Forty-one secretaries filled out the records during the course of a week. This made it possible to

  12. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

    Science.gov (United States)

    Bedarida, Tatiana; Domingues, Alison; Baron, Stephanie; Ferreira, Chrystophe; Vibert, Francoise; Cottart, Charles-Henry; Paul, Jean-Louis; Escriou, Virginie; Bigey, Pascal; Gaussem, Pascale; Leguillier, Teddy; Nivet-Antoine, Valerie

    2018-06-01

    Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP fl/fl cdh5 cre ). Control (TXNIP fl/fl ) and TXNIP fl/fl cdh5 cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIP fl/fl and TXNIP fl/fl cdh5 cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIP fl/fl cdh5 cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

  13. Metabolism of early-lactation dairy cows as affected by dietary starch and monensin supplementation.

    Science.gov (United States)

    McCarthy, M M; Yasui, T; Ryan, C M; Pelton, S H; Mechor, G D; Overton, T R

    2015-05-01

    The objective of this study was to evaluate the effect of dietary starch content and monensin (MON) on metabolism of dairy cows during early lactation. Before parturition, primiparous (n=21) and multiparous (n=49) Holstein cows were fed a common controlled-energy close-up diet with a daily topdress of either 0 or 400mg/d monensin. From d 1 to 21 postpartum, cows were fed a high-starch (HS; 26.2% starch, 34.3% neutral detergent fiber, 22.7% acid detergent fiber, 15.5% crude protein) or low-starch (LS; 21.5% starch, 36.9% neutral detergent fiber, 25.2% acid detergent fiber, 15.4% crude protein) total mixed ration with a daily topdress of either 0mg/d monensin (CON) or 450mg/d monensin (MON), continuing with prepartum topdress assignment. From d 22 through 63 postpartum, all cows were fed HS and continued with the assigned topdress treatment until d 63. Cows fed HS had higher plasma glucose and insulin and lower nonesterified fatty acids (NEFA) than cows fed LS during d 1 to 21 postpartum. Cows fed LS had elevated early-lactation β-hydroxybutyrate (BHBA) compared with cows fed HS. Cows fed HS had greater insulin resistance and increased plasma haptoglobin in the early lactation period. There was no effect of MON on postpartum plasma NEFA. Cows fed MON had higher plasma glucose compared with CON cows, which was driven by a MON × parity interaction in which primiparous cows fed MON had greater plasma glucose concentrations than cows fed CON. Cows fed MON had lower plasma BHBA compared with CON, which was contributed to by a MON × parity interaction in which primiparous cows fed MON had lower BHBA concentrations than CON. Starch treatment had no effect on overall liver triglyceride content. Primiparous cows fed MON had increased liver triglyceride content compared with CON primiparous cows, and multiparous cows fed MON had decreased liver triglyceride content compared with CON cows. Multiparous cows fed LS with MON had higher liver glycogen content than multiparous

  14. Free fatty acids and their metabolism affect function and survival of podocytes

    Directory of Open Access Journals (Sweden)

    Jonas eSieber

    2014-10-01

    Full Text Available Podocyte injury and loss critically contribute to the pathogenesis of proteinuric kidney diseases including diabetic nephropathy. Deregulated lipid metabolism with disturbed free fatty acid (FFA metabolism is a characteristic of metabolically unhealthy obesity and type 2 diabetes and likely contributes to end-stage kidney disease irrespective of the underlying kidney disease. In the current review we summarize recent findings related to FFAs and altered renal FFA metabolism with a special focus on podocytes. We will outline the opposing effects of saturated and monounsaturated FFAs and a particular emphasis will be given to the underlying molecular mechanisms involving insulin resistance and endoplasmic reticulum homeostasis. Finally, recent data suggesting a critical role of renal FFA metabolism to adapt to an altered lipid environment will be discussed.

  15. Genome-based Modeling and Design of Metabolic Interactions in Microbial Communities.

    Science.gov (United States)

    Mahadevan, Radhakrishnan; Henson, Michael A

    2012-01-01

    Biotechnology research is traditionally focused on individual microbial strains that are perceived to have the necessary metabolic functions, or the capability to have these functions introduced, to achieve a particular task. For many important applications, the development of such omnipotent microbes is an extremely challenging if not impossible task. By contrast, nature employs a radically different strategy based on synergistic combinations of different microbial species that collectively achieve the desired task. These natural communities have evolved to exploit the native metabolic capabilities of each species and are highly adaptive to changes in their environments. However, microbial communities have proven difficult to study due to a lack of suitable experimental and computational tools. With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynamic extensions of the static modeling approach are described, and then applications of genome-scale models for design of synthetic microbial communities are reviewed. The review concludes with a summary of metagenomic tools for analyzing community metabolism and an outlook for future research.

  16. Metabolic Syndrome as a Factor Affecting Systemic Inflammation in Patients with Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Rubinsztajn, R; Przybyłowski, T; Maskey-Warzęchowska, M; Paplińska-Goryca, M; Nejman-Gryz, P; Karwat, K; Chazan, R

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) is a systemic disease which may be associated with other comorbidities. The aim of the study was to estimate the incidence of metabolic syndrome (MS) in COPD patients and to assess its impact on systemic inflammation and lung function. MS was diagnosed in accordance with the recommendations of the Polish Forum for the Prevention of Cardiovascular Diseases. The study group consisted of 267 patients with stable COPD in all stages of severity. All patients underwent spirometry with bronchial reversibility testing and 6 min walk test (6MWT). The following blood tests were evaluated: lipid profile, glucose and C-reactive protein as well as serum concentration of IL-6, leptin, adiponectin, and endothelin. MS was diagnosed in 93 patients (35.8%). No differences were observed in the incidence of MS in relation to airflow limitation severity (mild; moderate; severe and very severe: 38.9; 36.3; 35.2 and 25.0%, respectively). FEV 1 (% predicted), FVC (% predicted), 6MWT distance (6MWD), age, and the number of pack-years were similar in patients with and without MS. MS was more frequent in males than females (38.7 vs. 28.4%, p > 0.05). Serum concentrations of IL-6, endothelin, leptin, and CRP were higher in the MS group, contrary to adiponectin concentration which was lower (p < 0.01). MS was more frequent in male COPD patients, but there were no differences in its frequency between patients with different severity of airflow limitation. We conclude that MS, as a comorbidity, occurs in all COPD stages and affects systemic inflammation. MS incidence does not depend on COPD severity.

  17. Sugar Allocation to Metabolic Pathways is Tightly Regulated and Affects the Virulence of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Miki Kawada-Matsuo

    2016-12-01

    Full Text Available Bacteria take up and metabolize sugar as a carbohydrate source for survival. Most bacteria can utilize many sugars, including glucose, sucrose, and galactose, as well as amino sugars, such as glucosamine and N-acetylglucosamine. After entering the cytoplasm, the sugars are mainly allocated to the glycolysis pathway (energy production and to various bacterial component biosynthesis pathways, including the cell wall, nucleic acids and amino acids. Sugars are also utilized to produce several virulence factors, such as capsule and lipoteichoic acid. Glutamine-fructose-6-phosphate aminotransferase (GlmS and glucosamine-6-phosphate deaminase (NagB have crucial roles in sugar distribution to the glycolysis pathway and to cell wall biosynthesis. In Streptococcus mutans, a cariogenic pathogen, the expression levels of glmS and nagB are coordinately regulated in response to the presence or absence of amino sugars. In addition, the disruption of this regulation affects the virulence of S. mutans. The expression of nagB and glmS is regulated by NagR in S. mutans, but the precise mechanism underlying glmS regulation is not clear. In Staphylococcus aureus and Bacillus subtilis, the mRNA of glmS has ribozyme activity and undergoes self-degradation at the mRNA level. However, there is no ribozyme activity region on glmS mRNA in S. mutans. In this review article, we summarize the sugar distribution, particularly the coordinated regulation of GlmS and NagB expression, and its relationship with the virulence of S. mutans.

  18. Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees.

    Science.gov (United States)

    Domec, Jean-Christophe; Pruyn, Michele L

    2008-10-01

    Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.

  19. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism

    DEFF Research Database (Denmark)

    Mourtzakis, M.; Graham, T.E.; Gonzalez-Alonso, J.

    2008-01-01

    Muscle glutamate is central to reactions producing 2-oxoglutarate, a tricarboxylic acid (TCA) cycle intermediate that essentially expands the TCA cycle intermediate pool during exercise. Paradoxically, muscle glutamate drops approximately 40-80% with the onset of exercise and 2-oxoglutarate...... declines in early exercise. To investigate the physiological relationship between glutamate, oxidative metabolism, and TCA cycle intermediates (i.e., fumarate, malate, 2-oxoglutarate), healthy subjects trained (T) the quadriceps of one thigh on the single-legged knee extensor ergometer (1 h/day at 70......% maximum workload for 5 days/wk), while their contralateral quadriceps remained untrained (UT). After 5 wk of training, peak oxygen consumption (VO2peak) in the T thigh was greater than that in the UT thigh (Pglutamate infusion. Peak...

  20. Complex metabolic interactions between benzo(a)pyrene and tributyltin in presence of dichlorodiphenyltrichloroethane in South American catfish Rhamdia quelen.

    Science.gov (United States)

    Oliveira, Heloísa H P; Babin, Mathieu; Garcia, Juan Ramon Esquivel; Filipak Neto, Francisco; Randi, Marco A F; Oliveira Ribeiro, Ciro A; Pelletier, Émilien

    2013-10-01

    In an attempt to explore complex metabolic interactions between toxicants present in polluted freshwater, hepatic metabolism of benzo(a)pyrene (BaP) and tributyltin (TBT) in fish was investigated when these compounds were administrated alone, mixed together and along with dichlorodiphenyltrichloroethane (DDT). Ten Rhamdia quelen per group were treated with a single intra-peritoneal (IP) dose (5-day experiment) or three successive doses (15-day experiment) either containing BaP (0.3; 3 or 30mgkg(-1)) or TBT (0.03; 0.3 or 3mgkg(-1)) or a combination of BaP+TBT, BaP+DDT, TBT+DDT and BaP+TBT+DDT under their respective lower doses, with DDT dose kept at 0.03mgkg(-1). Tetrahydroxy-benzo(a)pyrene (BaP-tetrol-I), and dibutyltin (DBT) and monobutyltin (MBT) were analyzed to assess BaP and TBT hepatic metabolism, respectively. A significant difference in BaP-tetrol-I concentration was observed in liver and bile between the lowest and the highest doses of BaP in both 5 and 15-day experiments. In the 15-day experiment, the presence of TBT with BaP reduced the amount of BaP-tetrol-I in bile compared to the BaP alone. The time of exposure and the number of doses affected BaP-tetrol-I concentration in the bile of fish exposed to BaP 0.3mgkg(-1) and BaP+DDT. TBT and its metabolites concentrations showed a dose-dependent increase in the liver in both experiments and in the bile in the 5-day experiment. TBT at its lowest dose was completely metabolized into DBT and MBT in the liver in the 15-day experiment. No TBT metabolites were detected in the bile of fish exposed to the mixtures in the 5-day experiment, except for a small MBT amount found in BaP+TBT+DDT. This study strengthens the hypothesis of a metabolic interaction between BaP and TBT in fish and suggests DDT as an important third player when present in the mixture. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Ordinary Social Interaction and the Main Effect Between Perceived Support and Affect.

    Science.gov (United States)

    Lakey, Brian; Vander Molen, Randy J; Fles, Elizabeth; Andrews, Justin

    2016-10-01

    Relational regulation theory hypothesizes that (a) the main effect between perceived support and mental health primarily reflects ordinary social interaction rather than conversations about stress and how to cope with it, and (b) the extent to which a provider regulates a recipient's mental health primarily reflects the recipient's personal taste (i.e., is relational), rather than the provider's objective supportiveness. In three round-robin studies, participants rated each other on supportiveness and the quality of ordinary social interaction, as well as their own affect when interacting with each other. Samples included marines about to deploy to Afghanistan (N = 100; 150 dyads), students sharing apartments (N = 64; 96 dyads), and strangers (N = 48; 72 dyads). Perceived support and ordinary social interaction were primarily relational, and most of perceived support's main effect on positive affect was redundant with ordinary social interaction. The main effect between perceived support and affect emerged among strangers after brief text conversations, and these links were partially verified by independent observers. Findings for negative affect were less consistent with theory. Ordinary social interaction appears to be able to explain much of the main effect between perceived support and positive affect. © 2015 Wiley Periodicals, Inc.

  2. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Science.gov (United States)

    Deluc, Laurent G; Quilici, David R; Decendit, Alain; Grimplet, Jérôme; Wheatley, Matthew D; Schlauch, Karen A; Mérillon, Jean-Michel; Cushman, John C; Cramer, Grant R

    2009-01-01

    Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1) transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation. Chardonnay berries, which lack any

  3. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Directory of Open Access Journals (Sweden)

    Deluc Laurent G

    2009-05-01

    Full Text Available Abstract Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1 transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation

  4. Genome-centric resolution of microbial diversity, metabolism and interactions in anaerobic digestion.

    Science.gov (United States)

    Vanwonterghem, Inka; Jensen, Paul D; Rabaey, Korneel; Tyson, Gene W

    2016-09-01

    Our understanding of the complex interconnected processes performed by microbial communities is hindered by our inability to culture the vast majority of microorganisms. Metagenomics provides a way to bypass this cultivation bottleneck and recent advances in this field now allow us to recover a growing number of genomes representing previously uncultured populations from increasingly complex environments. In this study, a temporal genome-centric metagenomic analysis was performed of lab-scale anaerobic digesters that host complex microbial communities fulfilling a series of interlinked metabolic processes to enable the conversion of cellulose to methane. In total, 101 population genomes that were moderate to near-complete were recovered based primarily on differential coverage binning. These populations span 19 phyla, represent mostly novel species and expand the genomic coverage of several rare phyla. Classification into functional guilds based on their metabolic potential revealed metabolic networks with a high level of functional redundancy as well as niche specialization, and allowed us to identify potential roles such as hydrolytic specialists for several rare, uncultured populations. Genome-centric analyses of complex microbial communities across diverse environments provide the key to understanding the phylogenetic and metabolic diversity of these interactive communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Investigating host-pathogen behavior and their interaction using genome-scale metabolic network models.

    Science.gov (United States)

    Sadhukhan, Priyanka P; Raghunathan, Anu

    2014-01-01

    Genome Scale Metabolic Modeling methods represent one way to compute whole cell function starting from the genome sequence of an organism and contribute towards understanding and predicting the genotype-phenotype relationship. About 80 models spanning all the kingdoms of life from archaea to eukaryotes have been built till date and used to interrogate cell phenotype under varying conditions. These models have been used to not only understand the flux distribution in evolutionary conserved pathways like glycolysis and the Krebs cycle but also in applications ranging from value added product formation in Escherichia coli to predicting inborn errors of Homo sapiens metabolism. This chapter describes a protocol that delineates the process of genome scale metabolic modeling for analysing host-pathogen behavior and interaction using flux balance analysis (FBA). The steps discussed in the process include (1) reconstruction of a metabolic network from the genome sequence, (2) its representation in a precise mathematical framework, (3) its translation to a model, and (4) the analysis using linear algebra and optimization. The methods for biological interpretations of computed cell phenotypes in the context of individual host and pathogen models and their integration are also discussed.

  6. Responsive eLearning exercises to enhance student interaction with metabolic pathways.

    Science.gov (United States)

    Roesler, William J; Dreaver-Charles, Kristine

    2018-05-01

    Successful learning of biochemistry requires students to engage with the material. In the past this often involved students writing out pathways by hand, and more recently directing students to online resources such as videos, songs, and animated slide presentations. However, even these latter resources do not really provide students an opportunity to engage with the material in an active fashion. As part of an online introductory metabolism course that was developed at our university, we created a series of twelve online interactive activities using Adobe Captivate 9. These activities targeted glycolysis, gluconeogenesis, the pentose phosphate pathway, glycogen metabolism, the citric acid cycle, and fatty acid oxidation. The interactive exercises consisted of two types. One involved dragging objects such as names of enzymes or allosteric modifiers to their correct drop locations such as a particular point in a metabolic pathway, a specific enzyme, and so forth. A second type involved clicking on objects, locations within a pathway, and so forth, in response to a particular question. In both types of exercises, students received feedback on their decisions in order to enhance learning. The student feedback received on these activities was very positive, and indicated that they found them to increase their confidence in the material and that they had learned the key principles of each pathway. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):223-229, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  7. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep.

    Science.gov (United States)

    Veiga-Lopez, Almudena; Moeller, Jacob; Sreedharan, Rohit; Singer, Kanakadurga; Lumeng, Carey; Ye, Wen; Pease, Anthony; Padmanabhan, Vasantha

    2016-02-01

    Among potential contributors for the increased incidence of metabolic diseases is the developmental exposure to endocrine-disrupting chemicals such as bisphenol A (BPA). BPA is an estrogenic chemical used in a variety of consumer products. Evidence points to interactions of BPA with the prevailing environment. The aim of this study was to assess the effects of prenatal exposure to BPA on postnatal metabolic outcomes, including insulin resistance, adipose tissue distribution, adipocyte morphometry, and expression of inflammatory markers in adipose tissue as well as to assess whether postnatal overfeeding would exacerbate these effects. Findings indicate that prenatal BPA exposure leads to insulin resistance in adulthood in the first breeder cohort (study 1), but not in the second cohort (study 2), which is suggestive of potential differences in genetic susceptibility. BPA exposure induced adipocyte hypertrophy in the visceral fat depot without an accompanying increase in visceral fat mass or increased CD68, a marker of macrophage infiltration, in the subcutaneous fat depot. Cohens effect size analysis found the ratio of visceral to subcutaneous fat depot in the prenatal BPA-treated overfed group to be higher compared with the control-overfed group. Altogether, these results suggest that exposure to BPA during fetal life at levels found in humans can program metabolic outcomes that lead to insulin resistance, a forerunner of type 2 diabetes, with postnatal obesity failing to manifest any interaction with prenatal BPA relative to insulin resistance and adipocyte hypertrophy. Copyright © 2016 the American Physiological Society.

  8. MCT expression and lactate influx/efflux in tanycytes involved in glia-neuron metabolic interaction.

    Directory of Open Access Journals (Sweden)

    Christian Cortés-Campos

    Full Text Available Metabolic interaction via lactate between glial cells and neurons has been proposed as one of the mechanisms involved in hypothalamic glucosensing. We have postulated that hypothalamic glial cells, also known as tanycytes, produce lactate by glycolytic metabolism of glucose. Transfer of lactate to neighboring neurons stimulates ATP synthesis and thus contributes to their activation. Because destruction of third ventricle (III-V tanycytes is sufficient to alter blood glucose levels and food intake in rats, it is hypothesized that tanycytes are involved in the hypothalamic glucose sensing mechanism. Here, we demonstrate the presence and function of monocarboxylate transporters (MCTs in tanycytes. Specifically, MCT1 and MCT4 expression as well as their distribution were analyzed in Sprague Dawley rat brain, and we demonstrate that both transporters are expressed in tanycytes. Using primary tanycyte cultures, kinetic analyses and sensitivity to inhibitors were undertaken to confirm that MCT1 and MCT4 were functional for lactate influx. Additionally, physiological concentrations of glucose induced lactate efflux in cultured tanycytes, which was inhibited by classical MCT inhibitors. Because the expression of both MCT1 and MCT4 has been linked to lactate efflux, we propose that tanycytes participate in glucose sensing based on a metabolic interaction with neurons of the arcuate nucleus, which are stimulated by lactate released from MCT1 and MCT4-expressing tanycytes.

  9. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R; Wilson, Ian D; Somsen, Govert W; de Jong, Gerhardus J

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared

  10. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R.; Wilson, Ian D.; Somsen, Govert W.; de Jong, Gerhardus J.

    2014-01-01

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared

  11. Respiratory muscle strength and muscle endurance are not affected by acute metabolic acidemia.

    NARCIS (Netherlands)

    Nizet, T.A.C.; Heijdra, Y.F.; Elshout, F.J.J. van den; Ven, M.J.T. van de; Bosch, F.H.; Mulder, P.H.M. de; Folgering, H.T.M.

    2009-01-01

    Respiratory muscle fatigue in asthma and chronic obstructive lung disease (COPD) contributes to respiratory failure with hypercapnia, and subsequent respiratory acidosis. Therapeutic induction of acute metabolic acidosis further increases the respiratory drive and, therefore, may diminish

  12. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.

    Science.gov (United States)

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-07-01

    Running-specific prostheses enable athletes with lower limb amputations to run by emulating the spring-like function of biological legs. Current prosthetic stiffness and height recommendations aim to mitigate kinematic asymmetries for athletes with unilateral transtibial amputations. However, it is unclear how different prosthetic configurations influence the biomechanics and metabolic cost of running. Consequently, we investigated how prosthetic model, stiffness, and height affect the biomechanics and metabolic cost of running. Ten athletes with unilateral transtibial amputations each performed 15 running trials at 2.5 or 3.0 m/s while we measured ground reaction forces and metabolic rates. Athletes ran using three different prosthetic models with five different stiffness category and height combinations per model. Use of an Ottobock 1E90 Sprinter prosthesis reduced metabolic cost by 4.3 and 3.4% compared with use of Freedom Innovations Catapult [fixed effect (β) = -0.177; P Run (β = -0.139; P = 0.002) prostheses, respectively. Neither prosthetic stiffness ( P ≥ 0.180) nor height ( P = 0.062) affected the metabolic cost of running. The metabolic cost of running was related to lower peak (β = 0.649; P = 0.001) and stance average (β = 0.772; P = 0.018) vertical ground reaction forces, prolonged ground contact times (β = -4.349; P = 0.012), and decreased leg stiffness (β = 0.071; P running. Instead, an optimal prosthetic model, which improves overall biomechanics, minimizes the metabolic cost of running for athletes with unilateral transtibial amputations. NEW & NOTEWORTHY The metabolic cost of running for athletes with unilateral transtibial amputations depends on prosthetic model and is associated with lower peak and stance average vertical ground reaction forces, longer contact times, and reduced leg stiffness. Metabolic cost is unrelated to prosthetic stiffness, height, and stride kinematic symmetry. Unlike nonamputees who decrease leg stiffness with

  13. Activity of carbohydrate metabolism enzymes of bone marrow cells of rats affected by radiation

    International Nuclear Information System (INIS)

    Sukhomlinov, B.F.; Grinyuk, Yu.S.; Sibirnaya, N.A.; Starikovich, L.S.; Khmil', M.V.

    1990-01-01

    The influence of ionizing radiation (154.8 mC/kg on activity of some carbohydrate metabolism dehydrogenases in cells of the whole and fractionated rat bone marrow has been investigated. Different glucose metabolism units differently responded to radiation, the highest radiation response being exhibited by pentosophosphate cycle processes. The pattern of changes in the enzyme activity of different myelocaryocyte populations was shown to depend directly on the functional specilization of cells and the energy exchange types predominated in them

  14. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  15. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology.

    Science.gov (United States)

    Li, Y; Xu, C; Xia, C; Zhang, Hy; Sun, Lw; Gao, Y

    2014-01-01

    Ketosis in dairy cattle is an important metabolic disorder. Currently, the plasma metabolic profile of ketosis as determined using liquid chromatography-mass spectrometry (LC/MS) has not been reported. To investigate plasma metabolic profiles from cows with clinical ketosis in comparison to control cows. Twenty Holstein dairy cows were divided into two groups based on clinical signs and plasma β-hydroxybutyric acid and glucose concentrations 7-21 days postpartum: clinical ketosis and control cows. Plasma metabolic profiles were analyzed using LC/MS. Data were processed using principal component analysis and orthogonal partial least-squares discriminant analysis. Compared to control cows, the levels of valine, glycine, glycocholic, tetradecenoic acid, and palmitoleic acid increased significantly in clinical ketosis. On the other hand, the levels of arginine, aminobutyric acid, leucine/isoleucine, tryptophan, creatinine, lysine, norcotinine, and undecanoic acid decreased markedly. Our results showed that the metabolic changes in cows with clinical ketosis involve complex metabolic networks and signal transduction. These results are important for future studies elucidating the pathogenesis, diagnosis, and prevention of clinical ketosis in dairy cows.

  16. Respiratory and metabolic acidosis differentially affect the respiratory neuronal network in the ventral medulla of neonatal rats.

    Science.gov (United States)

    Okada, Yasumasa; Masumiya, Haruko; Tamura, Yoshiyasu; Oku, Yoshitaka

    2007-11-01

    Two respiratory-related areas, the para-facial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pre-Bötzinger complex/ventral respiratory group (preBötC/VRG), are thought to play key roles in respiratory rhythm. Because respiratory output patterns in response to respiratory and metabolic acidosis differ, we hypothesized that the responses of the medullary respiratory neuronal network to respiratory and metabolic acidosis are different. To test these hypotheses, we analysed respiratory-related activity in the pFRG/RTN and preBötC/VRG of the neonatal rat brainstem-spinal cord in vitro by optical imaging using a voltage-sensitive dye, and compared the effects of respiratory and metabolic acidosis on these two populations. We found that the spatiotemporal responses of respiratory-related regional activities to respiratory and metabolic acidosis are fundamentally different, although both acidosis similarly augmented respiratory output by increasing respiratory frequency. PreBötC/VRG activity, which is mainly inspiratory, was augmented by respiratory acidosis. Respiratory-modulated pixels increased in the preBötC/VRG area in response to respiratory acidosis. Metabolic acidosis shifted the respiratory phase in the pFRG/RTN; the pre-inspiratory dominant pattern shifted to inspiratory dominant. The responses of the pFRG/RTN activity to respiratory and metabolic acidosis are complex, and involve either augmentation or reduction in the size of respiratory-related areas. Furthermore, the activation pattern in the pFRG/RTN switched bi-directionally between pre-inspiratory/inspiratory and post-inspiratory. Electrophysiological study supported the results of our optical imaging study. We conclude that respiratory and metabolic acidosis differentially affect activities of the pFRG/RTN and preBötC/VRG, inducing switching and shifts of the respiratory phase. We suggest that they differently influence the coupling states between the pFRG/RTN and preBötC/VRG.

  17. Recent developments in systems biology and metabolic engineering of plant microbe interactions

    Directory of Open Access Journals (Sweden)

    Vishal Kumar

    2016-09-01

    Full Text Available Microorganisms play a crucial role in the sustainability of the various ecosystems. The characterization of various interactions between microorganisms and other biotic factors is a necessary footstep to understand the association and functions of microbial communities. Among the different microbial interactions in an ecosystem, plant-microbe interaction plays an important role to balance the ecosystem. The present review explores plant microbe interactions using gene editing and system biology tools towards the comprehension in improvement of plant traits. Further, system biology tools like FBA, OptKnock and constrain based modeling helps in understanding such interactions as a whole. In addition, various gene editing tools have been summarized and a strategy has been hypothesized for the development of disease free plants. Furthermore, we have tried to summarize the predictions through data retrieved from various types of sources such as high throughput sequencing data (e.g. single nucleotide polymorphism (SNP detection, RNA-seq, proteomics and metabolic models have been reconstructed from such sequences for species communities. It is well known fact that systems biology approaches and modeling of biological networks will enable us to learn the insight of such network and will also help further in understanding these interactions.

  18. Automatic Control of Contextual Interaction Integrated with Affection and Architectural Attentional Control

    Directory of Open Access Journals (Sweden)

    Yanrong Jiang

    2013-03-01

    Full Text Available It is still a challenge for robots to interact with complex environments in a smooth and natural manner. The robot should be aware of its surroundings and inner status to make decisions accordingly and appropriately. Contexts benefit the interaction a lot, such as avoiding frequent interruptions (e.g., the explicit inputting requests and thus are essential for interaction. Other challenges, such as shifting attentional focus to a more important stimulus, etc., are also crucial in interaction control. This paper presents a hybrid automatic control approach for interaction, as well as its integration, with these multiple important factors, aiming at performing natural, human-like interactions in robots. In particular, a novel approach of architectural attentional control, based on affection is presented, which attempts to shift the attentional focus in a natural manner. Context-aware computing is combined with interaction to endow the robot with proactive abilities. The long-term interaction control approaches are described. Emotion and personality are introduced into the interaction and their influence mechanism on interaction is explored. We implemented the proposal in an interactive head robot (IHR and the experimental results indicate the effectiveness.

  19. Gene-Gene Interactions in the Folate Metabolic Pathway and the Risk of Conotruncal Heart Defects

    Directory of Open Access Journals (Sweden)

    Philip J. Lupo

    2010-01-01

    Full Text Available Conotruncal and related heart defects (CTRD are common, complex malformations. Although there are few established risk factors, there is evidence that genetic variation in the folate metabolic pathway influences CTRD risk. This study was undertaken to assess the association between inherited (i.e., case and maternal gene-gene interactions in this pathway and the risk of CTRD. Case-parent triads (n=727, ascertained from the Children's Hospital of Philadelphia, were genotyped for ten functional variants of nine folate metabolic genes. Analyses of inherited genotypes were consistent with the previously reported association between MTHFR A1298C and CTRD (adjusted P=.02, but provided no evidence that CTRD was associated with inherited gene-gene interactions. Analyses of the maternal genotypes provided evidence of a MTHFR C677T/CBS 844ins68 interaction and CTRD risk (unadjusted P=.02. This association is consistent with the effects of this genotype combination on folate-homocysteine biochemistry but remains to be confirmed in independent study populations.

  20. Metabolic syndrome enhances endoplasmic reticulum, oxidative stress and leukocyte-endothelium interactions in PCOS.

    Science.gov (United States)

    Bañuls, Celia; Rovira-Llopis, Susana; Martinez de Marañon, Aranzazu; Veses, Silvia; Jover, Ana; Gomez, Marcelino; Rocha, Milagros; Hernandez-Mijares, Antonio; Victor, Victor M

    2017-06-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance, which can lead to metabolic syndrome (MetS). Oxidative stress and leukocyte-endothelium interactions are related to PCOS. Our aim was to evaluate whether the presence of MetS in PCOS patients can influence endoplasmic reticulum (ER) and oxidative stress and leukocyte-endothelium interactions. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 148 PCOS women (116 without/32 with MetS) and 112 control subjects (87 without / 25 with MetS). Metabolic parameters, reactive oxygen species (ROS) production, ER stress markers (GRP78, sXBP1, ATF6), leukocyte-endothelium interactions, adhesion molecules (VCAM-1, ICAM-1, E-Selectin), TNF-α and IL-6 were determined. Total ROS, inflammatory parameters and adhesion molecules were enhanced in the presence of MetS (pPCOS+MetS group showed higher levels of IL-6 and ICAM-1 than controls (pPCOS and PCOS+MetS groups vs their respective controls (pPCOS groups (pPCOS+MetS patients exhibited higher GRP78 and ATF6 levels than controls and PCOS patients without MetS (pPCOS women, HOMA-IR was positively correlated with ICAM-1 (r=0.501; pPCOS, all of which are related to vascular complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut.

    Science.gov (United States)

    Miller, Aaron W; Dearing, Denise

    2013-12-06

    Oxalate-degrading bacteria comprise a functional group of microorganisms, commonly found in the gastrointestinal tract of mammals. Oxalate is a plant secondary compound (PSC) widely produced by all major taxa of plants and as a terminal metabolite by the mammalian liver. As a toxin, oxalate can have a significant impact on the health of mammals, including humans. Mammals do not have the enzymes required to metabolize oxalate and rely on their gut microbiota for this function. Thus, significant metabolic interactions between the mammalian host and a complex gut microbiota maintain the balance of oxalate in the body. Over a dozen species of gut bacteria are now known to degrade oxalate. This review focuses on the host-microbe and microbe-microbe interactions that regulate the degradation of oxalate by the gut microbiota. We discuss the pathways of oxalate throughout the body and the mammalian gut as a series of differentiated ecosystems that facilitate oxalate degradation. We also explore the mechanisms and functions of microbial oxalate degradation along with the implications for the ecological and evolutionary interactions within the microbiota and for mammalian hosts. Throughout, we consider questions that remain, as well as recent technological advances that can be employed to answer them.

  2. The modulation of the symbiont/host interaction between Wolbachia pipientis and Aedes fluviatilis embryos by glycogen metabolism.

    Directory of Open Access Journals (Sweden)

    Mariana da Rocha Fernandes

    Full Text Available Wolbachia pipientis, a maternally transmitted bacterium that colonizes arthropods, may affect the general aspects of insect physiology, particularly reproduction. Wolbachia is a natural endosymbiont of Aedes fluviatilis, whose effects in embryogenesis and reproduction have not been addressed so far. In this context, we investigated the correlation between glucose metabolism and morphological alterations during A. fluviatilis embryo development in Wolbachia-positive (W+ and Wolbachia-negative (W- mosquito strains. While both strains do not display significant morphological and larval hatching differences, larger differences were observed in hexokinase activity and glycogen contents during early and mid-stages of embryogenesis, respectively. To investigate if glycogen would be required for parasite-host interaction, we reduced Glycogen Synthase Kinase-3 (GSK-3 levels in adult females and their eggs by RNAi. GSK-3 knock-down leads to embryonic lethality, lower levels of glycogen and total protein and Wolbachia reduction. Therefore, our results suggest that the relationship between A. fluviatilis and Wolbachia may be modulated by glycogen metabolism.

  3. With love, from me to you: Embedding social interactions in affective neuroscience.

    Science.gov (United States)

    Gilam, Gadi; Hendler, Talma

    2016-09-01

    Human emotional experiences naturally occur while interacting in a spontaneous, dynamic and response contingent fashion with other humans. This resonates with both theoretical considerations as well as neuroimaging findings that illustrate the nexus between the "social" and "emotional" brain suggesting a domain-general organization of the brain. Nevertheless, most knowledge in affective neuroscience stems from studying the brain in isolation from its natural social environment. Whether social interactions are constitutive or not to the understanding of other people's intentions, incorporating such interactions is clearly required for ecological validity. Moreover, since interpersonal interactions may influence emotional experiences and expressions, interactive paradigms may advance the theoretical understanding of what emotions are and what about them is social, and will correspondingly characterize their underlying neural substrates. We highlight the recent conceptual and experimental advances of bringing realistic social interactions into the neuroimaging lab; review emotion-induction paradigms and consider their congruency with features of social interactions; and emphasize the importance of embedding such spontaneous and dynamic interactive paradigms in the field of affective neuroscience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Interaction between CYP450 enzymes and metabolism of traditional Chinese medicine as well as enzyme activity assay].

    Science.gov (United States)

    Lu, Tu-lin; Su, Lian-lin; Ji, De; Gu, Wei; Mao, Chun-qin

    2015-09-01

    Drugs are exogenous compounds for human bodies, and will be metabolized by many enzymes after administration. CYP450 enzyme, as a major metabolic enzyme, is an important phase I drug metabolizing enzyme. In human bodies, about 75% of drug metabolism is conducted by CYP450 enzymes, and CYP450 enzymes is the key factor for drug interactions between traditional Chinese medicine( TCM) -TCM, TCM-medicine and other drug combination. In order to make clear the interaction between metabolic enzymes and TCM metabolism, we generally chose the enzymatic activity as an evaluation index. That is to say, the enhancement or reduction of CYP450 enzyme activity was used to infer the inducing or inhibitory effect of active ingredients and extracts of traditional Chinese medicine on enzymes. At present, the common method for measuring metabolic enzyme activity is Cocktail probe drugs, and it is the key to select the suitable probe substrates. This is of great significance for study drug's absorption, distribution, metabolism and excretion (ADME) process in organisms. The study focuses on the interaction between TCMs, active ingredients, herbal extracts, cocktail probe substrates as well as CYP450 enzymes, in order to guide future studies.

  5. Intracerebroventricular ghrelin treatment affects lipid metabolism in liver of rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Velasco, Cristina; Librán-Pérez, Marta; Otero-Rodiño, Cristina; López-Patiño, Marcos A; Míguez, Jesús M; Soengas, José L

    2016-03-01

    We aimed to elucidate in rainbow trout (Oncorhynchus mykiss) the effects of central ghrelin (GHRL) treatment on the regulation of liver lipid metabolism, and the possible modulatory effect of central GHRL treatment on the simultaneous effects of raised levels of oleate. Thus, we injected intracerebroventricularly (ICV) rainbow trout GHRL in the presence or absence of oleate and evaluated in liver variables related to lipid metabolism. Oleate treatment elicited in liver of rainbow trout decreased lipogenesis and increased oxidative capacity in agreement with previous studies. Moreover, as demonstrated for the first time in fish in the present study, GHRL also acts centrally modulating lipid metabolism in liver, resulting in increased potential for lipogenesis and decreased potential for fatty acid oxidation, i.e. the converse effects to those elicited by central oleate treatment. The simultaneous treatment of GHRL and oleate confirmed these counteractive effects. Thus, the nutrient sensing mechanisms present in hypothalamus, particularly those involved in sensing of fatty acid, are involved in the control of liver energy metabolism in fish, and this control is modulated by the central action of GHRL. These results give support to the notion of hypothalamus as an integrative place for the regulation of peripheral energy metabolism in fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Designing and determining validity and reliability of a questionnaire to identify factors affecting nutritional behavior among patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Naseh Esmaeili

    2017-06-01

    Full Text Available Background : A number of studies have shown a clear relationship between diet and component of metabolic syndrome. Based on the Theory of Reasoned Action (TRA, attitude and subjective norm are factors affecting behavioral intention and subsequently behavior. The aim of the present study is to design a valid questionnaire identifying factors affecting nutritional behavior among patients with metabolic syndrome. Materials and Methods: Via literature review, six focus group discussion and interview with nutrition specialists were performed to develop an instrument based on the theory of reasoned action. To determine validity of the instrument, content and face validity analyses with 15 expert panels conducted and also to determine reliability, Cronbach’s Alpha coefficient performed. Results: A draft of 100 items questionnaire was developed and after evaluation of validity and reliability, final questionnaire included 46 items: 17 items for attitude, 13 items for subjective norms and 16 items for behavioral intention. For the final questionnaire average of content validity index was 0/92 and Cronbach’s Alpha coefficient was 0/85. Conclusion: Based on the results of the current study the developed questionnaire is a valid and reliable instrument and it can be used to identify factors affecting nutritional behavior among people with metabolic syndrome based on the theory of reasoned action.

  7. How social factors and behavioural strategies affect feeding and social interaction patterns in pigs.

    Science.gov (United States)

    Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; Bokkers, Eddie A M

    2018-04-26

    Animals living in groups compete for food resources and face food conflicts. These conflicts are affected by social factors (e.g. competition level) and behavioural strategies (e.g. avoidance). This study aimed to deepen our understanding of the complex interactions between social factors and behavioural strategies affecting feeding and social interaction patterns in animals. We focused on group-housed growing pigs, Sus scrofa, which typically face conflicts around the feeder, and of which patterns in various competitive environments (i.e. pig:feeder ratio) have been documented soundly. An agent-based model was developed to explore how interactions among social factors and behavioural strategies can affect various feeding and social interaction patterns differently under competitive situations. Model results show that pig and diet characteristics interact with group size and affect daily feeding patterns (e.g. feed intake and feeding time) and conflicts around the feeder. The level of competition can cause a turning point in feeding and social interaction patterns. Beyond a certain point of competition, meal-based (e.g. meal frequency) and social interaction patterns (e.g. displacements) are determined mainly by behavioural strategies. The average daily feeding time can be used to predict the group size at which this turning point occurs. Under the model's assumptions, social facilitation was relatively unimportant in the causation of behavioural patterns in pigs. To validate our model, simulated patterns were compared with empirical patterns in conventionally housed pigs. Similarities between empirical and model patterns support the model results. Our model can be used as a tool in further research for studying the effects of social factors and group dynamics on individual variation in feeding and social interaction patterns in pigs, as well as in other animal species. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. The effect of pathological narcissism on interpersonal and affective processes in social interactions.

    Science.gov (United States)

    Wright, Aidan G C; Stepp, Stephanie D; Scott, Lori N; Hallquist, Michael N; Beeney, Joseph E; Lazarus, Sophie A; Pilkonis, Paul A

    2017-10-01

    Narcissism has significant interpersonal costs, yet little research has examined behavioral and affective patterns characteristic of narcissism in naturalistic settings. Here we studied the effect of narcissistic features on the dynamic processes of interpersonal behavior and affect in daily life. We used interpersonal theory to generate transactional models of social interaction (i.e., linkages among perceptions of others' behavior, affect, and one's own behavior) predicted to be characteristic of narcissism. Psychiatric outpatients (N = 102) completed clinical interviews and a 21-day ecological momentary assessment protocol using smartphones. After social interactions (N = 5,781), participants reported on perceptions of their interaction partner's behavior (scored along the dimensions of dominant-submissive and affiliative-quarrelsome), their own affect, and their own behavior. Multilevel structural equation modeling was used to examine dynamic links among behavior and affect across interactions, and the role of narcissism in moderating these links. Results showed that perceptions of others' dominance did not predict dominant behavior, but did predict quarrelsome behavior, and this link was potentiated by narcissism. Furthermore, the link between others' dominance and one's own quarrelsome behavior was mediated by negative affect. Moderated mediation was also found: Narcissism amplified the link between ratings of others' dominance and one's own quarrelsomeness and negative affect. Narcissism did not moderate the link between other dominance and own dominance, nor the link between other affiliation and own affiliation. These results suggest that narcissism is associated with specific interpersonal and affective processes, such that sensitivity to others' dominance triggers antagonistic behavior in daily life. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Situational Motivation and Perceived Intensity: Their Interaction in Predicting Changes in Positive Affect from Physical Activity

    OpenAIRE

    Eva Guérin; Michelle S. Fortier

    2012-01-01

    There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE)] i...

  10. Case-only study of interactions between metabolic enzymes and smoking in colorectal cancer

    International Nuclear Information System (INIS)

    Fan, Chunhong; Jin, Mingjuan; Chen, Kun; Zhang, Yongjing; Zhang, Shuangshuang; Liu, Bing

    2007-01-01

    Gene-gene and gene-environment interactions involved in the metabolism of carcinogens may increase the risk of cancer. Our objective was to measure the interactions between common polymorphisms of P450 (CYP1A2, CYP1B1, CYP2E1), GSTM1 and T1, SULT1A1 and cigarette smoking in colorectal cancer (CRC). A case-only design was conducted in a Chinese population including 207 patients with sporadic CRC. Unconditional logistic regression analysis was performed adjusting for age, gender, alcohol consumption, and cigarette smoking. The interaction odds ratio (COR) for the gene-gene interaction between CYP1B1 1294G and SULT1A1 638A allele was 2.68 (95% CI: 1.16–6.26). The results of the gene-environment analyses revealed that an interaction existed between cigarette smoking and the CYP1B1 1294G allele for CRC (COR = 2.62, 95%CI: 1.01–6.72), the COR for the interaction of CYP1B1 1294G and smoking history > 35 pack-years was 3.47 (95%CI: 1.12–10.80). No other significant gene-gene and gene-environment interactions were observed. Our results showed that the interaction between polymorphisms in CYP1B1 1294G and SULT1A1*2 may play a significant role on CRC in the Chinese population. Also, it is suggested that the association between cigarette smoking and CRC could be differentiated by the CYP1B1 1294G allele

  11. Glucose metabolism and astrocyte-neuron interactions in the neonatal brain.

    Science.gov (United States)

    Brekke, Eva; Morken, Tora Sund; Sonnewald, Ursula

    2015-03-01

    Glucose is essentially the sole fuel for the adult brain and the mapping of its metabolism has been extensive in the adult but not in the neonatal brain, which is believed to rely mainly on ketone bodies for energy supply. However, glucose is absolutely indispensable for normal development and recent studies have shed light on glycolysis, the pentose phosphate pathway and metabolic interactions between astrocytes and neurons in the 7-day-old rat brain. Appropriately (13)C labeled glucose was used to distinguish between glycolysis and the pentose phosphate pathway during development. Experiments using (13)C labeled acetate provided insight into the GABA-glutamate-glutamine cycle between astrocytes and neurons. It could be shown that in the neonatal brain the part of this cycle that transfers glutamine from astrocytes to neurons is operating efficiently while, in contrast, little glutamate is shuttled from neurons to astrocytes. This lack of glutamate for glutamine synthesis is compensated for by anaplerosis via increased pyruvate carboxylation relative to that in the adult brain. Furthermore, compared to adults, relatively more glucose is prioritized to the pentose phosphate pathway than glycolysis and pyruvate dehydrogenase activity. The reported developmental differences in glucose metabolism and neurotransmitter synthesis may determine the ability of the brain at various ages to resist excitotoxic insults such as hypoxia-ischemia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Interaction of Pubertal Development and Metabolic Control in Adolescents with Type 1 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    M. Plamper

    2017-01-01

    Full Text Available Background. In T1DM, delayed pubertal development and reduced final height are associated with inadequate metabolic control. Objective. To assess whether T1DM affects pubertal growth spurt and whether metabolic control during puberty is gender-related. Methods. Using a large multicentre database, longitudinal data from 1294 patients were analysed. Inclusion criteria: complete records of height and HbA1c from the age of seven to 16 years. Exclusion criteria: other significant chronic diseases and medications, T1DM duration less than three months, and initial BMI 97th percentile. Results. Growth velocity (GV was impaired with a significant reduction of peak GV by 1.2 cm in boys. HbA1c increase during male puberty was lower except for a period of 1.5 years. The highest HbA1c increase in boys coincided with maximum growth spurt. In girls, the highest HbA1c increase was observed during late puberty. Even though there is impaired GV, both sexes reach a height at 16 years of age which corresponds to the background population height. Conclusion. Worsening of metabolic control is sex-discordant and associated with gender-specific alterations of GV. However, the vast majority of boys and girls with T1DM seems to reach normal height at the age of 16 years.

  13. Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism

    NARCIS (Netherlands)

    Soeters, Maarten R.; Lammers, Nicolette M.; Dubbelhuis, Peter F.; Ackermans, Mariëtte T.; Jonkers-Schuitema, Cora F.; Fliers, Eric; Sauerwein, Hans P.; Aerts, Johannes M.; Serlie, Mireille J.

    2009-01-01

    Background: Intermittent fasting (IF) was shown to increase whole-body insulin sensitivity, but it is uncertain whether IF selectively influences intermediary metabolism. Such selectivity might be advantageous when adapting to periods of food abundance and food shortage. Objective: The objective was

  14. Metabolic syndrome in a cohort of affectively ill patients, a naturalistic study

    DEFF Research Database (Denmark)

    Vinberg, Maj; Madsen, Maiken; Breum, Leif

    2012-01-01

    at a Mood Disorder Clinic. Methods: Patients were evaluated for the presence of metabolic syndrome (MeS) according to modified NCEP ATP III criteria. Results: Of the 143 patients eligible for participation, 100 patients participated in the study (32% male, mean age 43.6 ± 14.2); the prevalence of MeS was 26...

  15. Eucalypt plants are physiologically and metabolically affected by infection with Ceratocystis fimbriata.

    Science.gov (United States)

    da Silva, André Costa; de Oliveira Silva, Franklin Magnum; Milagre, Jocimar Caiafa; Omena-Garcia, Rebeca Patricia; Abreu, Mário Castro; Mafia, Reginaldo Gonçalves; Nunes-Nesi, Adriano; Alfenas, Acelino Couto

    2018-02-01

    Ceratocystis wilt, caused by Ceratocystis fimbriata, is currently one of the most important disease in eucalypt plantations. Plants infected by C. fimbriata have lower volumetric growth, lower pulp yields and reduced timber values. The physiological bases of infection induced by this pathogen in eucalypt plant are not known. Therefore, this study aims to assess the physiological and metabolic changes in eucalypt clones that are resistant and susceptible to C. fimbriata. Once, we evaluated in detail their leaf gas exchange, chlorophyll a fluorescence, water potential, metabolite profiling and growth-related parameters. When inoculated, the susceptible clone displayed reduced water potential, CO 2 assimilation rate, stomatal conductance, transpiration rate, photochemical quenching coefficient, electron transport rate, and root biomass. Inoculated resistant and susceptible clones both presented higher respiration rates than healthy plants. Many compounds of primary and secondary metabolism were significantly altered after fungal infection in both clones. These results suggest that, C. fimbriata interferes in the primary and secondary metabolism of plants that may be linked to the induction of defense mechanisms and that, due to water restrictions caused by the fungus in susceptible plants, there is a partial closure of the stomata to prevent water loss and a consequent reduction in photosynthesis and the transpiration rate, which in turn, leads to a decrease in the plant's growth-related. These results combined, allowed for a better understanding of the physiological and metabolic changes following the infectious process of C. fimbriata, which limit eucalypt plant growth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Does acute tryptophan depletion affect peripheral serotonin metabolism in the intestine?

    NARCIS (Netherlands)

    Keszthelyi, D.; Troost, F.J.; Jonkers, D.M.; Donkelaar, van E.L.; Dekker, J.; Buurman, W.A.; Masclee, A.A.

    2012-01-01

    Background: Serotonin (5-hydroxytryptamine; 5-HT), a tryptophan metabolite, plays an important regulatory role in the human central nervous system and in the gastrointestinal tract. Acute tryptophan depletion (ATD) is currently the most widely established method to investigate 5-HT metabolism.

  17. Situational Motivation and Perceived Intensity: Their Interaction in Predicting Changes in Positive Affect from Physical Activity

    Directory of Open Access Journals (Sweden)

    Eva Guérin

    2012-01-01

    Full Text Available There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P<.05 but not between RPE and identified regulation or intrinsic motivation. At low levels of introjection, the influence of RPE on the change in positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed.

  18. Situational motivation and perceived intensity: their interaction in predicting changes in positive affect from physical activity.

    Science.gov (United States)

    Guérin, Eva; Fortier, Michelle S

    2012-01-01

    There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE)] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed.

  19. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera).

    Science.gov (United States)

    Mao, Wenfu; Schuler, Mary A; Berenbaum, May R

    2017-03-07

    Cytochrome P450 monooxygenases (P450) in the honey bee, Apis mellifera , detoxify phytochemicals in honey and pollen. The flavonol quercetin is found ubiquitously and abundantly in pollen and frequently at lower concentrations in honey. Worker jelly consumed during the first 3 d of larval development typically contains flavonols at very low levels, however. RNA-Seq analysis of gene expression in neonates reared for three days on diets with and without quercetin revealed that, in addition to up-regulating multiple detoxifying P450 genes, quercetin is a negative transcriptional regulator of mitochondrion-related nuclear genes and genes encoding subunits of complexes I, III, IV, and V in the oxidative phosphorylation pathway. Thus, a consequence of inefficient metabolism of this phytochemical may be compromised energy production. Several P450s metabolize quercetin in adult workers. Docking in silico of 121 pesticide contaminants of American hives into the active pocket of CYP9Q1, a broadly substrate-specific P450 with high quercetin-metabolizing activity, identified six triazole fungicides, all fungal P450 inhibitors, that dock in the catalytic site. In adults fed combinations of quercetin and the triazole myclobutanil, the expression of five of six mitochondrion-related nuclear genes was down-regulated. Midgut metabolism assays verified that adult bees consuming quercetin with myclobutanil metabolized less quercetin and produced less thoracic ATP, the energy source for flight muscles. Although fungicides lack acute toxicity, they may influence bee health by interfering with quercetin detoxification, thereby compromising mitochondrial regeneration and ATP production. Thus, agricultural use of triazole fungicides may put bees at risk of being unable to extract sufficient energy from their natural food.

  20. Metabolic syndrome, diabetes and atherosclerosis: Influence of gene-environment interaction

    International Nuclear Information System (INIS)

    Andreassi, Maria Grazia

    2009-01-01

    Despite remarkable progress in diagnosis and understanding of risk factors, cardiovascular disease (CVD) remains still the leading cause of morbidity and mortality in the world's developed countries. The metabolic syndrome, a cluster of risk factors (visceral obesity, insulin resistance, dyslipidaemia, and hypertension), is increasingly being recognized as a new risk factor for type 2 diabetes and atherosclerotic cardiovascular disease. Nevertheless, there is wide variation in both the occurrence of disease and age of onset, even in individuals who display very similar risk profiles. There is now compelling evidence that a complex interplay between genetic determinants and environmental factors (still largely unknown) is the reason for this large inter-individual variation in disease susceptibility. The purpose of the present review is to describe the current status of our knowledge concerning the gene-environment interactions potentially implicated in the pathogenesis of metabolic syndrome, diabetes and cardiovascular disease. It focuses predominantly on studies of genes (peroxisome proliferator-activated receptor-gamma, alcohol dehydrogenase type 1C, apolipoprotein E, glutathione S-transferases T1 and M1) that are known to be modified by dietary and lifestyle habits (fat diet, intake of alcohol and smoking habit). It also describes the limited current understanding of the role of genetic variants of xenobiotic metabolizing enzymes and their interactions with environmental toxicants. Additional studies are needed in order to clarify whether inter-individual differences in detoxification of environmental toxicants may have an essential role in the development of CVD and contribute to the emerging field of 'environmental cardiology'. Such knowledge may be particularly relevant for improving cardiovascular risk stratification and conceiving the development of 'personalized intervention program'.

  1. Metabolic syndrome, diabetes and atherosclerosis: Influence of gene-environment interaction

    Energy Technology Data Exchange (ETDEWEB)

    Andreassi, Maria Grazia, E-mail: andreas@ifc.cnr.it [CNR Institute of Clinical Physiology, G. Pasquinucci Hospital, Via Aurelia Sud, Massa (Italy)

    2009-07-10

    Despite remarkable progress in diagnosis and understanding of risk factors, cardiovascular disease (CVD) remains still the leading cause of morbidity and mortality in the world's developed countries. The metabolic syndrome, a cluster of risk factors (visceral obesity, insulin resistance, dyslipidaemia, and hypertension), is increasingly being recognized as a new risk factor for type 2 diabetes and atherosclerotic cardiovascular disease. Nevertheless, there is wide variation in both the occurrence of disease and age of onset, even in individuals who display very similar risk profiles. There is now compelling evidence that a complex interplay between genetic determinants and environmental factors (still largely unknown) is the reason for this large inter-individual variation in disease susceptibility. The purpose of the present review is to describe the current status of our knowledge concerning the gene-environment interactions potentially implicated in the pathogenesis of metabolic syndrome, diabetes and cardiovascular disease. It focuses predominantly on studies of genes (peroxisome proliferator-activated receptor-gamma, alcohol dehydrogenase type 1C, apolipoprotein E, glutathione S-transferases T1 and M1) that are known to be modified by dietary and lifestyle habits (fat diet, intake of alcohol and smoking habit). It also describes the limited current understanding of the role of genetic variants of xenobiotic metabolizing enzymes and their interactions with environmental toxicants. Additional studies are needed in order to clarify whether inter-individual differences in detoxification of environmental toxicants may have an essential role in the development of CVD and contribute to the emerging field of 'environmental cardiology'. Such knowledge may be particularly relevant for improving cardiovascular risk stratification and conceiving the development of 'personalized intervention program'.

  2. Chronic and Daily Stressors Along With Negative Affect Interact to Predict Daily Tiredness.

    Science.gov (United States)

    Hartsell, Elizabeth N; Neupert, Shevaun D

    2017-11-01

    The present study examines the within-person relationship of daily stressors and tiredness and whether this depends on daily negative affect and individual differences in chronic stress. One hundred sixteen older adult participants were recruited via Amazon's Mechanical Turk for a 9-day daily diary study. Daily tiredness, daily stressors, and negative affect were measured each day, and chronic stress was measured at baseline. Daily stressors, daily negative affect, and chronic stress interacted to predict daily tiredness. People with high chronic stress who experienced an increase in daily negative affect were the most reactive to daily stressors in terms of experiencing an increase in daily tiredness. We also found that people with low levels of chronic stress were the most reactive to daily stressors when they experienced low levels of daily negative affect. Our results highlight the need for individualized and contextualized approaches to combating daily tiredness in older adults.

  3. Interaction between Task Oriented and Affective Information Processing in Cognitive Robotics

    Science.gov (United States)

    Haazebroek, Pascal; van Dantzig, Saskia; Hommel, Bernhard

    There is an increasing interest in endowing robots with emotions. Robot control however is still often very task oriented. We present a cognitive architecture that allows the combination of and interaction between task representations and affective information processing. Our model is validated by comparing simulation results with empirical data from experimental psychology.

  4. Affective and Behavioral Features of Jealousy Protest: Associations with Child Temperament, Maternal Interaction Style, and Attachment

    Science.gov (United States)

    Hart, Sybil L.; Behrens, Kazuko Y.

    2013-01-01

    This study explored variation in affective and behavioral components of infants' jealousy protests during an eliciting condition in which mother and an experimenter directed differential attention exclusively toward a rival. Variation was examined in relation to child temperamental emotionality, maternal interaction style, and attachment security.…

  5. Foreword 3rd International Conference on Affective Computing and Intelligent Interaction - ACII 2009

    NARCIS (Netherlands)

    Cohn, Jeffrey; Cohn, Jeffrey; Nijholt, Antinus; Pantic, Maja

    2009-01-01

    It is a pleasure and an honor to have organized the Third International Conference on Affective Computing and Intelligent Interaction (ACII). The conference will be held from 10th – 12th September 2009 in Amsterdam, The Netherlands. The conference series is the premier forum for presenting research

  6. User Experience of Mobile Interactivity: How Do Mobile Websites Affect Attitudes and Relational Outcomes?

    Science.gov (United States)

    Dou, Xue

    2013-01-01

    Mobile media offer new opportunities for fostering communications between individuals and companies. Corporate websites are being increasingly accessed via smart phones and companies are scrambling to offer a mobile-friendly user experience on their sites. However, very little is known about how interactivity in the mobile context affects user…

  7. Resistin, an adipokine, may affect the improvement of insulin sensitivity in the metabolic syndrome patient treated with metformin.

    Science.gov (United States)

    Yuan, Hong; Weng, Chunyan; Yang, Youbo; Huang, Lihua; Xing, Xiaowei

    2013-12-01

    The metabolic syndrome (MS) is a cluster of metabolic disorders arising from insulin resistance, characterized by the presence of central obesity, impaired fasting glucose level, dyslipidemia and hypertension. As the first-line medication, metformin is commonly used for MS to reduce insulin resistance. Comparing with rosiglitazone, metformin does not increase cardiovascular mortality risk in patients with MS. However, metformin is not good enough in improving insulin sensitivity. Its molecular mechanism is still not clear. Recent studies have demonstrated that resistin, an adipokine, could induce IR by both AMPK-dependent and AMPK-independent pathways. Though there were conflicting findings of resistin in metabolic syndrome or type 2 diabetes mellitus in different studies, resistin was significant decreased in the rosiglitazone treated patients than in the metformin-treated patients in most of studies. Here, we hypothesized that resistin, an adipokine, may affect the improvement of insulin sensitivity in the metabolic syndrome patient treated with metformin. This hypothesis could explain why rosiglitazone is superior to metformin in enhancement of insulin sensitivity. Copyright © 2013. Published by Elsevier Ltd.

  8. Dopamine D4 Receptor Polymorphism and Sex Interact to Predict Children's Affective Knowledge

    Directory of Open Access Journals (Sweden)

    Sharon eBen-Israel

    2015-06-01

    Full Text Available Affective knowledge, the ability to understand others’ emotional states, is considered to be a fundamental part in efficient social interaction. Affective knowledge can be seen as related to cognitive empathy, and in the framework of Theory of Mind (ToM as affective ToM. Previous studies found that cognitive empathy and ToM are heritable, yet little is known regarding the specific genes involved in individual variability in affective knowledge. Investigating the genetic basis of affective knowledge is important for understanding brain mechanisms underlying socio-cognitive abilities. The 7-repeat (7R allele within the third exon of the Dopamine D4 receptor gene (DRD4-III has been a focus of interest, due to accumulated knowledge regarding its relevance to individual differences in prosocial behavior. A recent study suggests that an interaction between the DRD4-III polymorphism and sex is associated with cognitive empathy among adults. We aimed to examine the same association in two childhood age groups. Children (N = 280, age 3.5 years, N = 283, age 5 years participated as part of the Longitudinal Israel Study of Twins (LIST. Affective knowledge was assessed through children’s responses to an illustrated story describing different emotional situations, told in a laboratory setting. The findings suggest a significant interaction between sex and the DRD4-III polymorphism, replicated in both age groups. Boy carriers of the 7R allele had higher affective knowledge scores than girls, whereas in the absence of the 7R there was no significant sex effect on affective knowledge. The results support the importance of DRD4-III polymorphism and sex differences to social development. Possible explanations for differences from adult findings are discussed, as are pathways for future studies.

  9. Emotion in languaging: Language and emotion as affective, adaptive and flexible behavior in social interaction

    Directory of Open Access Journals (Sweden)

    Thomas Wiben Jensen

    2014-07-01

    Full Text Available This article argues for a view on languaging as inherently affective. Informed by recent ecological tendencies within cognitive science and distributed language studies a distinction between first order languaging (language as whole-body sense making and second order language (language as system like constraints is put forward. Contrary to common assumptions within linguistics and communication studies separating language-as-a-system from language use (resulting in separations between language vs. body-language and verbal vs. non-verbal communication etc. the first/second order distinction sees language as emanating from behavior making it possible to view emotion and affect as integral parts languaging behavior. Likewise, emotion and affect are studied, not as inner mental states, but as processes of organism-environment interactions. Based on video recordings of interaction between 1 children with special needs, and 2 couple in therapy and the therapist patterns of reciprocal influences between interactants are examined. Through analyzes of affective stance and patterns of inter-affectivity it is exemplified how language and emotion should not be seen as separate phenomena combined in language use, but rather as completely intertwined phenomena in languaging behavior constrained by second order patterns.

  10. Radiolabeled hydroxamate-based matrix metalloproteinase inhibitors: How chemical modifications affect pharmacokinetics and metabolic stability

    International Nuclear Information System (INIS)

    Hugenberg, Verena; Hermann, Sven; Galla, Fabian; Schäfers, Michael

    2016-01-01

    Introduction: Dysregulated MMP expression or activation is associated with several diseases. To study MMP activity in vivo by means of PET a radiolabeled MMP inhibitor (MMPI) functioning as radiotracer has been developed by our group based on the lead structure CGS 25966. Materials and methods: Aiming at the modification of the pharmacokinetics of this lipophilic model tracer a new class of MMPIs has been discovered, consisting of additional fluorinated hydrophilic substructures, such as mini-PEG and/or 1,2,3-triazole units. To identify the best candidate for further clinical applications, radiofluorinated compounds of each subgroup have been (radio) synthesized and evaluated regarding their biodistribution behavior and their metabolic stability. Results: Radiosyntheses of different triazole based MMPIs could be realized using two step “click chemistry” procedures. Compared to lead structure [ 18 F]FEtO-CGS 25966 ([ 18 F]1e, log D(exp) = 2.02, IC 50 = 2–50 nM) all selected candidates showed increased hydrophilicities and inhibition potencies (log D(exp) = 0.23–1.25, IC 50 = 0.006–6 nM). Interestingly, despite different hydrophilicities most triazole based MMPIs showed no significant differences in their in vivo biodistribution behavior and were cleared predominantly via the hepatobiliary excretion route. Biostability and metabolism studies in vitro and in vivo revealed significant higher metabolic stability for the triazole moiety compared to the benzyl ring in the lead structure. Cleavage of ethylene glycol subunits of the mini-PEG chain led to a faster metabolism of mini-PEG containing MMPIs. Conclusion: The introduction of hydrophilic groups such as mini-PEG and 1,2,3-triazole units did not lead to a significant shift of the hepatobiliary elimination towards renal clearance. Particularly the introduction of mini-PEG chains led to an intense metabolic decomposition. Substitution of the benzyl moiety in lead structure 1e by a 1,2,3-trizole ring resulted

  11. Acidification and warming affect both a calcifying predator and prey, but not their interaction

    DEFF Research Database (Denmark)

    Landes, Anja; Zimmer, Martin

    2012-01-01

    Both ocean warming and acidification have been demonstrated to affect the growth, performance and reproductive success of calcifying invertebrates. However, relatively little is known regarding how such environmental change may affect interspecific interactions. We separately treated green crabs...... to environmental change. Acidification negatively affected the closer-muscle length of the crusher chela and correspondingly the claw-strength increment in C. maenas. The effects of warming and/or acidification on L. littorea were less consistent but indicated weaker shells in response to acidification...... Carcinus maenas and periwinkles Littorina littorea under conditions that mimicked either ambient conditions (control) or warming and acidification, both separately and in combination, for 5 mo. After 5 mo, the predators, prey and predator-prey interactions were screened for changes in response...

  12. Gene-diet-interactions in folate-mediated one-carbon metabolism modify colon cancer risk.

    Science.gov (United States)

    Liu, Amy Y; Scherer, Dominique; Poole, Elizabeth; Potter, John D; Curtin, Karen; Makar, Karen; Slattery, Martha L; Caan, Bette J; Ulrich, Cornelia M

    2013-04-01

    The importance of folate-mediated one-carbon metabolism (FOCM) in colorectal carcinogenesis is emphasized by observations that high dietary folate intake is associated with decreased risk of colon cancer (CC) and its precursors. Additionally, polymorphisms in FOCM-related genes have been repeatedly associated with risk, supporting a causal relationship between folate and colorectal carcinogenesis. We investigated ten candidate polymorphisms with defined or probable functional impact in eight FOCM-related genes (SHMT1, DHFR, DNMT1, MTHFD1, MTHFR, MTRR, TCN2, and TDG) in 1609 CC cases and 1974 controls for association with CC risk and for interaction with dietary factors. No polymorphism was statistically significantly associated with overall risk of CC. However, statistically significant interactions modifying CC risk were observed for DNMT1 I311V with dietary folate, methionine, vitamin B2 , and vitamin B12 intake and for MTRR I22M with dietary folate, a predefined one-carbon dietary pattern, and vitamin B6 intake. We observed statistically significant gene-diet interactions with five additional polymorphisms. Our results provide evidence that FOCM-related dietary intakes modify the association between CC risk and FOCM allelic variants. These findings add to observations showing that folate-related gene-nutrient interactions play an important role in modifying the risk of CC. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism.

    Science.gov (United States)

    Cao, Yixuan; Wang, Yongqiang; Sprangers, Sara; Picavet, Daisy I; Glogauer, Michael; McCulloch, Christopher A; Everts, Vincent

    2017-08-01

    Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP + osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm 2 ; p structure but not to bone metabolism in vivo.

  14. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K+ Rather than Glutamate.

    Science.gov (United States)

    DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia

    2017-01-01

    Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na + /K + ATPase, which hydrolyzes 1 ATP to move 3 Na + outside and 2 K + inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na + and K + ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13 C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na + and K + fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na + /K + ions per glutamate released. We found that astrocytes are stimulated by the extracellular K + exiting neurons in excess of the 3/2 Na + /K + ratio underlying Na + /K + ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K + uptake, but not astrocytic Na + -coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K + in stimulating the activation of

  15. The Endocannabinoid System Affects Myocardial Glucose Metabolism in the DOCA-Salt Model of Hypertension

    Directory of Open Access Journals (Sweden)

    Agnieszka Polak

    2018-03-01

    Full Text Available Background/Aims: Recent interest in the use of cannabinoids as therapeutic agents has revealed the involvement of the endogenous cannabinoid system (ECS in the regulation of the cardiovascular system in hypertension. Abnormalities in glucose metabolism and insulin action are commonly detected in hypertensive animals. Thus, potential antihypertensive drugs should be investigated with respect to modulation of glucose homeostasis. Therefore, the aim of the present study was to evaluate the effects of the ECS activation after chronic fatty acid amide hydrolase inhibitor (URB597 administration on plasma glucose and insulin concentrations as well as parameters of myocardial glucose metabolism in the deoxycorticosterone acetate (DOCA-salt hypertensive rats, an animal model of secondary hypertension. Methods: Hypertension was induced by DOCA (25mg/kg injections and addition of 1% NaCl in the drinking water for six weeks. Chronic activation of the ECS was performed by URB597 (1mg/kg injections for two weeks. We examined fasting plasma levels of insulin (ELISA, glucose and intramyocardial glycogen (colorimetric method. Expressions of glucose transporters (GLUT1, 4 and selected proteins engaged in GLUT translocation as well as glucose metabolism were determined using Western blotting. Results: Hypertension induced hypoinsulinemia with concomitant lack of significant changes in glycemia, reduced intramyocardial glycogen content and increased pyruvate dehydrogenase (PDH expression in the cardiac muscle. Importantly, chronic URB597 administration in the hypertensive rats increased insulin concentration, elevated plasmalemmal GLUT1 and GLUT4 expression and concomitantly improved myocardial glycogen storage. Conclusion: Chronic administration of fatty acid amide hydrolase (FAAH inhibitor has potential protective properties on myocardial glucose metabolism in hypertension.

  16. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    Science.gov (United States)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  17. Dim Light at Night Disrupts Molecular Circadian Rhythms and Affects Metabolism

    Science.gov (United States)

    Fonken, Laura K.; Aubrecht, Taryn G.; Meléndez-Fernández, O. Hecmarie; Weil, Zachary M.; Nelson, Randy J.

    2014-01-01

    With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms which are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electrical lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to nighttime light and investigated changes in the circadian system and body weight. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night attenuate core circadian clock rhythms in the SCN at both the gene and protein level. Moreover, circadian clock rhythms were perturbed in the liver by nighttime light exposure. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide mechanistic evidence for how mild changes in environmental lighting can alter circadian and metabolic function. PMID:23929553

  18. Interactive effects of trait and state affect on top-down control of attention.

    Science.gov (United States)

    Hur, Juyoen; Miller, Gregory A; McDavitt, Jenika R B; Spielberg, Jeffrey M; Crocker, Laura D; Infantolino, Zachary P; Towers, David N; Warren, Stacie L; Heller, Wendy

    2015-08-01

    Few studies have investigated how attentional control is affected by transient affective states while taking individual differences in affective traits into consideration. In this study, participants completed a color-word Stroop task immediately after undergoing a positive, neutral or negative affective context manipulation (ACM). Behavioral performance was unaffected by any ACM considered in isolation. For individuals high in trait negative affect (NA), performance was impaired by the negative but not the positive or neutral ACM. Neuroimaging results indicate that activity in primarily top-down control regions of the brain (inferior frontal gyrus and dorsal anterior cingulate cortex) was suppressed in the presence of emotional arousal (both negative and positive ACMs). This effect appears to have been exacerbated or offset by co-occurring activity in other top-down control regions (parietal) and emotion processing regions (orbitofrontal cortex, amygdala and nucleus accumbens) as a function of the valence of state affect (positive or negative) and trait affect (trait NA or trait PA). Neuroimaging results are consistent with behavioral findings. In combination, they indicate both additive and interactive influences of trait and state affect on top-down control of attention. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. The medical food Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease: results from a randomized controlled trial.

    Science.gov (United States)

    Rijpma, Anne; van der Graaf, Marinette; Lansbergen, Marieke M; Meulenbroek, Olga; Cetinyurek-Yavuz, Aysun; Sijben, John W; Heerschap, Arend; Olde Rikkert, Marcel G M

    2017-07-26

    Synaptic dysfunction contributes to cognitive impairment in Alzheimer's disease and may be countered by increased intake of nutrients that target brain phospholipid metabolism. In this study, we explored whether the medical food Souvenaid affects brain phospholipid metabolism in patients with Alzheimer's disease. Thirty-four drug-naive patients with mild Alzheimer's disease (Mini Mental State Examination score ≥20) were enrolled in this exploratory, double-blind, randomized controlled study. Before and after 4-week intervention with Souvenaid or an isocaloric control product, phosphorus and proton magnetic resonance spectroscopy (MRS) was performed to assess surrogate measures of phospholipid synthesis and breakdown (phosphomonoesters [PME] and phosphodiesters [PDEs]), neural integrity (N-acetyl aspartate), gliosis (myo-inositol), and choline metabolism (choline-containing compounds [tCho]). The main outcome parameters were PME and PDE signal intensities and the PME/PDE ratio. MRS data from 33 patients (60-86 years old; 42% males; Souvenaid arm n = 16; control arm n = 17) were analyzed. PME/PDE and tCho were higher after 4 weeks of Souvenaid compared with control (PME/PDE least squares [LS] mean difference [95% CI] 0.18 [0.06-0.30], p = 0.005; tCho LS mean difference [95% CI] 0.01 [0.00-0.02], p = 0.019). No significant differences were observed in the other MRS outcome parameters. MRS reveals that Souvenaid affects brain phospholipid metabolism in mild Alzheimer's disease, in line with findings in preclinical studies. Netherlands Trial Register, NTR3346 . Registered on 13 March 2012.

  20. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction.

    Directory of Open Access Journals (Sweden)

    Enise Bagci

    Full Text Available Thyroid hormone (TH balance is essential for vertebrate development. Deiodinase type 1 (D1 and type 2 (D2 increase and deiodinase type 3 (D3 decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray, biochemistry, morphology and physiology using morpholino (MO knockdown. Knockdown of D1+D2 (D1D2MO and knockdown of D3 (D3MO both resulted in transcriptional regulation of energy metabolism and (muscle development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct

  1. Affective interactions using virtual reality: the link between presence and emotions.

    Science.gov (United States)

    Riva, Giuseppe; Mantovani, Fabrizia; Capideville, Claret Samantha; Preziosa, Alessandra; Morganti, Francesca; Villani, Daniela; Gaggioli, Andrea; Botella, Cristina; Alcañiz, Mariano

    2007-02-01

    Many studies showed the ability of movies and imagery techniques to elicit emotions. Nevertheless, it is less clear how to manipulate the content of interactive media to induce specific emotional responses. In particular, this is true for the emerging medium virtual reality (VR), whose main feature is the ability to induce a feeling of "presence" in the computer-generated world experienced by the user. The main goal of this study was to analyze the possible use of VR as an affective medium. Within this general goal, the study also analyzed the relationship between presence and emotions. The results confirmed the efficacy of VR as affective medium: the interaction with "anxious" and "relaxing" virtual environments produced anxiety and relaxation. The data also showed a circular interaction between presence and emotions: on one side, the feeling of presence was greater in the "emotional" environments; on the other side, the emotional state was influenced by the level of presence. The significance of these results for the assessment of affective interaction is discussed.

  2. Nutritional Ketosis Affects Metabolism and Behavior in Sprague-Dawley Rats in Both Control and Chronic Stress Environments

    Directory of Open Access Journals (Sweden)

    Milene L. Brownlow

    2017-05-01

    Full Text Available Nutritional ketosis may enhance cerebral energy metabolism and has received increased interest as a way to improve or preserve performance and resilience. Most studies to date have focused on metabolic or neurological disorders while anecdotal evidence suggests that ketosis may enhance performance in the absence of underlying dysfunction. Moreover, decreased availability of glucose in the brain following stressful events is associated with impaired cognition, suggesting the need for more efficient energy sources. We tested the hypotheses that ketosis induced by endogenous or exogenous ketones could: (a augment cognitive outcomes in healthy subjects; and (b prevent stress-induced detriments in cognitive parameters. Adult, male, Sprague Dawley rats were used to investigate metabolic and behavioral outcomes in 3 dietary conditions: ketogenic (KD, ketone supplemented (KS, or NIH-31 control diet in both control or chronic stress conditions. Acute administration of exogenous ketones resulted in reduction in blood glucose and sustained ketosis. Chronic experiments showed that in control conditions, only KD resulted in pronounced metabolic alterations and improved performance in the novel object recognition test. The hypothalamic-pituitary-adrenal (HPA axis response revealed that KD-fed rats maintained peripheral ketosis despite increases in glucose whereas no diet effects were observed in ACTH or CORT levels. Both KD and KS-fed rats decreased escape latencies on the third day of water maze, whereas only KD prevented stress-induced deficits on the last testing day and improved probe test performance. Stress-induced decrease in hippocampal levels of β-hydroxybutyrate was attenuated in KD group while both KD and KS prevented stress effects on BDNF levels. Mitochondrial enzymes associated with ketogenesis were increased in both KD and KS hippocampal samples and both endothelial and neuronal glucose transporters were affected by stress but only in the

  3. Diet-gene interactions between dietary fat intake and common polymorphisms in determining lipid metabolism

    Directory of Open Access Journals (Sweden)

    Corella, Dolores

    2009-03-01

    Full Text Available Current dietary guidelines for fat intake have not taken into consideration the possible genetic differences underlying the individual variability in responsiveness to dietary components. Genetic variability has been identified in humans for all the known lipid metabolim-related genes resulting in a plethora of candidate genes and genetic variants to examine in diet-gene interaction studies focused on fat consumption. Some examples of fat-gene interaction are reviewed. These include: the interaction between total intake and the 514C/T in the hepatic lipase gene promoter in determining high-density lipoprotein cholesterol (HDL-C metabolism; the interaction between polyunsaturated fatty acids (PUFA and the 75G/A polymorphism in the APOA1 gene plasma HDL-C concentrations; the interaction between PUFA and the L162V polymorphism in the PPARA gene in determining triglycerides and APOC3 concentrations; and the interaction between PUFA intake and the 1131TC in the APOA5 gene in determining triglyceride metabolism. Although hundreds of diet-gene interaction studies in lipid metabolism have been published, the level of evidence to make specific nutritional recommendations to the population is still low and more research in nutrigenetics has to be undertaken.Las recomendaciones dietéticas actuales referentes al consumo de grasas en la dieta han sido realizadas sin tener en cuenta las posibles diferencias genéticas de las personas que podrían ser las responsables de las diferentes respuestas interindividuales que frecuentemente se observan ante la misma dieta. La presencia de variabilidad genética ha sido puesta de manifiesto para todos los genes relacionados con el metabolismo lipídico, por lo que existe un ingente número de genes y de variantes genéticas para ser incluidas en los estudios sobre interacciones dieta-genotipo en el ámbito específico del consumo de grasas y aceites. Se revisarán algunos ejemplos sobre interacciones grasa

  4. Does vagal nerve stimulation affect body composition and metabolism? Experimental study of a new potential technique in bariatric surgery.

    Science.gov (United States)

    Sobocki, Jacek; Fourtanier, Gilles; Estany, Joan; Otal, Phillipe

    2006-02-01

    It has been shown that vagal nerve stimulation (VNS) can affect body mass. The aim of this study was to evaluate effect of VNS on body mass, body composition, metabolic rate, and plasma leptin and IGF-I levels. Eight female pigs were included in the study. Under general anesthesia, a bipolar electrode was implanted on the anterior vagal nerve by laparoscopy. Group A was treated by VNS, and group B was the control. After 4 weeks, stimulation was discontinued in group A and started in group B. The following parameters were evaluated: body mass, body composition, metabolic rate, plasma leptin and IGF-1 levels and intramuscular fat content (IMF). VNS attenuated body weight gain (2.28 +/- 3.47 kg vs 14.04 +/- 6.75 kg; P = .0112, for stimulation and nonstimulation periods, respectively), backfat gain (0.04 +/- 0.26 mm vs 2.31 +/- 1.12 mm) and IMF gain (-3.76 +/- 6.06 mg/g MS vs 7.24 +/- 12.90 mg/g MS; P = .0281). VNS resulted in lower backfat depth/loin muscle area ratio (0.33 +/- 0.017 vs 0.38 +/- 0.35; P = .0476). Lower plasma IGF-I concentration was found after VNS (-3.67 +/- -11.55 ng/mL vs 9.86 +/- 10.74 ng/mL; P = .0312). No significant changes in other parameters were observed. VNS affects body weight mainly at the expense of body fat resources; however, metabolic rate is not affected.

  5. Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    Directory of Open Access Journals (Sweden)

    Patrick Lyn

    2009-10-01

    Full Text Available Abstract Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body.

  6. Heat exposure of Cannabis sativa extracts affects the pharmacokinetic and metabolic profile in healthy male subjects.

    Science.gov (United States)

    Eichler, Martin; Spinedi, Luca; Unfer-Grauwiler, Sandra; Bodmer, Michael; Surber, Christian; Luedi, Markus; Drewe, Juergen

    2012-05-01

    The most important psychoactive constituent of CANNABIS SATIVA L. is Δ (9)-tetrahydrocannabinol (THC). Cannabidiol (CBD), another important constituent, is able to modulate the distinct unwanted psychotropic effect of THC. In natural plant extracts of C. SATIVA, large amounts of THC and CBD appear in the form of THCA-A (THC-acid-A) and CBDA (cannabidiolic acid), which can be transformed to THC and CBD by heating. Previous reports of medicinal use of cannabis or cannabis preparations with higher CBD/THC ratios and use in its natural, unheated form have demonstrated that pharmacological effects were often accompanied with a lower rate of adverse effects. Therefore, in the present study, the pharmacokinetics and metabolic profiles of two different C. SATIVA extracts (heated and unheated) with a CBD/THC ratio > 1 were compared to synthetic THC (dronabinol) in a double-blind, randomized, single center, three-period cross-over study involving 9 healthy male volunteers. The pharmacokinetics of the cannabinoids was highly variable. The metabolic pattern was significantly different after administration of the different forms: the heated extract showed a lower median THC plasma AUC (24 h) than the unheated extract of 2.84 vs. 6.59 pmol h/mL, respectively. The later was slightly higher than that of dronabinol (4.58 pmol h/mL). On the other hand, the median sum of the metabolites (THC, 11-OH-THC, THC-COOH, CBN) plasma AUC (24 h) was higher for the heated than for the unheated extract. The median CBD plasma AUC (24 h) was almost 2-fold higher for the unheated than for the heated extract. These results indicate that use of unheated extracts may lead to a beneficial change in metabolic pattern and possibly better tolerability. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Phenobarbital and neonatal seizures affect cerebral oxygen metabolism: a near-infrared spectroscopy study.

    Science.gov (United States)

    Sokoloff, Max D; Plegue, Melissa A; Chervin, Ronald D; Barks, John D E; Shellhaas, Renée A

    2015-07-01

    Near-infrared spectroscopy (NIRS) measures oxygen metabolism and is increasingly used for monitoring critically ill neonates. The implications of NIRS-recorded data in this population are poorly understood. We evaluated NIRS monitoring for neonates with seizures. In neonates monitored with video-electroencephalography, NIRS-measured cerebral regional oxygen saturation (rSO2) and systemic O2 saturation were recorded every 5 s. Mean rSO2 was extracted for 1-h blocks before, during, and after phenobarbital doses. For each electrographic seizure, mean rSO2 was extracted for a period of three times the duration of the seizure before and after the ictal pattern, as well as during the seizure. Linear mixed models were developed to assess the impact of phenobarbital administration and of seizures on rSO2 and fractional tissue oxygen extraction. For 20 neonates (estimated gestational age: 39.6 ± 1.5 wk), 61 phenobarbital doses and 40 seizures were analyzed. Cerebral rSO2 rose (P = 0.005), and fractional tissue oxygen extraction declined (P = 0.018) with increasing phenobarbital doses. rSO2 declined during seizures, compared with baseline and postictal phases (baseline 81.2 vs. ictal 77.7 vs. postictal 79.4; P = 0.004). Fractional tissue oxygen extraction was highest during seizures (P = 0.002). Cerebral oxygen metabolism decreases after phenobarbital administration and increases during seizures. These small, but clear, changes in cerebral oxygen metabolism merit assessment for potential clinical impact.

  8. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes.

    Directory of Open Access Journals (Sweden)

    Przemysław eKaczor

    2015-04-01

    Full Text Available GABA is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poorly understood, mechanisms of the cross-talk between GABAergic currents and astrocytes is metabolism including neurotransmitter homeostasis. In particular, how modulation of GABAergic currents by astrocytes depends on key enzymes involved in cellular metabolism remains largely unknown. To address this issue, we have considered two simple models of neuronal cultures: nominally astrocyte-free neuronal culture (NC and neuronal-astrocytic co-cultures (ANCC and miniature Inhibitory Postsynaptic Currents (mIPSCs were recorded in control conditions and in the presence of respective enzyme blockers. We report that enrichment of neuronal culture with astrocytes results in a marked increase in mIPSC frequency. This enhancement of GABAergic activity was accompanied by increased number of GAD65 and vGAT puncta, indicating that at least a part of the frequency enhancement was due to increased number of synaptic contacts. Inhibition of glutamine synthetase (with MSO strongly reduced mIPSC frequency in ANCC but had no effect in NC. Moreover, treatment of ANCC with inhibitor of glycogen phosphorylase (BAYU6751 or with selective inhibitor of astrocytic Krebs cycle,fluoroacetate, resulted in a marked reduction of mIPSC frequency in ANCC having no effect in NC. We conclude that GABAergic synaptic transmission strongly depends on neuron-astrocyte interaction in a manner dependent on key metabolic enzymes as well as on the Krebs cycle.

  9. Diet-Gene Interactions and PUFA Metabolism: A Potential Contributor to Health Disparities and Human Diseases

    Directory of Open Access Journals (Sweden)

    Floyd H. Chilton

    2014-05-01

    Full Text Available The “modern western” diet (MWD has increased the onset and progression of chronic human diseases as qualitatively and quantitatively maladaptive dietary components give rise to obesity and destructive gene-diet interactions. There has been a three-fold increase in dietary levels of the omega-6 (n-6 18 carbon (C18, polyunsaturated fatty acid (PUFA linoleic acid (LA; 18:2n-6, with the addition of cooking oils and processed foods to the MWD. Intense debate has emerged regarding the impact of this increase on human health. Recent studies have uncovered population-related genetic variation in the LCPUFA biosynthetic pathway (especially within the fatty acid desaturase gene (FADS cluster that is associated with levels of circulating and tissue PUFAs and several biomarkers and clinical endpoints of cardiovascular disease (CVD. Importantly, populations of African descent have higher frequencies of variants associated with elevated levels of arachidonic acid (ARA, CVD biomarkers and disease endpoints. Additionally, nutrigenomic interactions between dietary n-6 PUFAs and variants in genes that encode for enzymes that mobilize and metabolize ARA to eicosanoids have been identified. These observations raise important questions of whether gene-PUFA interactions are differentially driving the risk of cardiovascular and other diseases in diverse populations, and contributing to health disparities, especially in African American populations.

  10. Effect of fatty acid interaction on myoglobin oxygen affinity and triglyceride metabolism.

    Science.gov (United States)

    Jue, Thomas; Simond, Gregory; Wright, Traver J; Shih, Lifan; Chung, Youngran; Sriram, Renuka; Kreutzer, Ulrike; Davis, Randall W

    2016-08-01

    Recent studies have suggested myoglobin (Mb) may have other cellular functions in addition to storing and transporting O 2 . Indeed, NMR experiments have shown that the saturated fatty acid (FA) palmitate (PA) can interact with myoglobin (Mb) in its ligated state (MbCO and MbCN) but does not interact with Mb in its deoxygenated state. The observation has led to the hypothesis that Mb can also serve as a fatty acid transporter. The present study further investigates fatty acid interaction with the physiological states of Mb using the more soluble but unsaturated fatty acid, oleic acid (OA). OA binds to MbCO but does not bind to deoxy Mb. OA binding to Mb, however, does not alter its O 2 affinity. Without any Mb, muscle has a significantly lower level of triglyceride (TG). In Mb knock-out (MbKO) mice, both heart and skeletal muscles have lower level of TG relative to the control mice. Training further decreases the relative TG in the MbKO skeletal muscle. Nevertheless, the absence of Mb and lower TG level in muscle does not impair the MbKO mouse performance as evidenced by voluntary wheel running measurements. The results support the hypothesis of a complex physiological role for Mb, especially with respect to fatty acid metabolism.

  11. Normal and mutant HTT interact to affect clinical severity and progression in Huntington disease

    DEFF Research Database (Denmark)

    Aziz, N A; Jurgens, C K; Landwehrmeyer, G B

    2009-01-01

    OBJECTIVE: Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by a CAG repeat expansion in the HD gene (HTT). We aimed to assess whether interaction between CAG repeat sizes in the mutant and normal allele could affect disease severity and progression. METHODS: Using...... with less severe symptoms and pathology. CONCLUSIONS: Increasing CAG repeat size in normal HTT diminishes the association between mutant CAG repeat size and disease severity and progression in Huntington disease. The underlying mechanism may involve interaction of the polyglutamine domains of normal...

  12. Network Regulation and Support Schemes - How Policy Interactions Affect the Integration of Distributed Generation

    DEFF Research Database (Denmark)

    Ropenus, Stephanie; Jacobsen, Henrik; Schröder, Sascha Thorsten

    2011-01-01

    This article seeks to investigate the interactions between the policy dimensions of support schemes and network regulation and how they affect distributed generation. Firstly, the incentives of distributed generators and distribution system operators are examined. Frequently there exists a trade......-off between the incentives for these two market agents to facilitate the integration of distributed generation. Secondly, the interaction of these policy dimensions is analyzed, including case studies based on five EU Member States. Aspects of operational nature and investments in grid and distributed...

  13. [The study on metabolic difference of human body affected by active stress and passive stress under special events].

    Science.gov (United States)

    Guo, Guang-hong; Gu, Feng; Dong, Zhen-nan; Yuan, Xin-hong; Wang, Ling; Tian, Ya-ping

    2010-05-01

    To study the metabolic difference of body influenced by active stress and passive stress under special events. To detect serum multiple biochemistry index of 57 earthquake rescue medical team and 13 victims of a natural calamity in Wenchuan earthquake by using Hitachi 7600 automatic analyzer. Stress affected biochemistry index deeply. To compared with rescue medical team, the serum ADA, ALP and TG of victims increased obviously and TP, ALB, MAO, Cr, UA, K, Na, Cl, Ca, ApoA1 and HDL decreased obviously. Many biochemistry index have been changed under stress and it relate with stress extent. The human body function status was better in active stress than in passive stress.

  14. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    Science.gov (United States)

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Affect

    NARCIS (Netherlands)

    Cetinic, M.; Diamanti, J.; Szeman, I.; Blacker, S.; Sully, J.

    2017-01-01

    This chapter historicizes four divergent but historically contemporaneous genres of affect theory – romantic, realist, speculative, and materialist. While critics credited with the turn to affect in the 1990s wrote largely in the wake of poststructuralism from the perspective of gender and queer

  16. Unsupportive social interactions and affective states: examining associations of two oxytocin-related polymorphisms.

    Science.gov (United States)

    McInnis, Opal A; McQuaid, Robyn J; Matheson, Kimberly; Anisman, Hymie

    2017-01-01

    Two single-nucleotide polymorphisms (SNPs) on oxytocin-related genes, specifically the oxytocin receptor (OXTR) rs53576 and the CD38 rs3796863 variants, have been associated with alterations in prosocial behaviors. A cross-sectional study was conducted among undergraduate students (N = 476) to examine associations between the OXTR and CD38 polymorphisms and unsupportive social interactions and mood states. Results revealed no association between perceived levels of unsupportive social interactions and the OXTR polymorphism. However, A carriers of the CD38 polymorphism, a variant previously associated with elevated oxytocin, reported greater perceived peer unsupportive interactions compared to CC carriers. As expected, perceived unsupportive interactions from peers was associated with greater negative affect, which was moderated by the CD38 polymorphism. Specifically, this relation was stronger among CC carriers of the CD38 polymorphism (a variant thought to be linked to lower oxytocin). When examining whether the OXTR polymorphism moderated the relation between unsupportive social interactions from peers and negative affect there was a trend toward significance, however, this did not withstand multiple testing corrections. These findings are consistent with the perspective that a variant on an oxytocin polymorphism that may be tied to lower oxytocin is related to poor mood outcomes in association with negative social interactions. At the same time, having a genetic constitution presumed to be associated with higher oxytocin was related to increased perceptions of unsupportive social interactions. These seemingly paradoxical findings could be related to previous reports in which variants associated with prosocial behaviors were also tied to relatively more effective coping styles to deal with challenges.

  17. Mito-Nuclear Interactions Affecting Lifespan and Neurodegeneration in a Drosophila Model of Leigh Syndrome.

    Science.gov (United States)

    Loewen, Carin A; Ganetzky, Barry

    2018-04-01

    Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions in vivo are sparse. Here we describe the characterization of a mutation in Drosophila ND23 , a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the ND23 mutant phenotype. ND23 mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology, and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of ND23 A key feature of Leigh syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of ND23 mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant ND23 , including a variant affecting a mitochondrially encoded component of complex I. Thus, our work provides an in vivo demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease. Copyright © 2018 by the Genetics Society of America.

  18. Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia

    Science.gov (United States)

    Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

    2012-01-01

    Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

  19. Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction.

    Science.gov (United States)

    Araújo, Welington Luiz; Santos, Daiene Souza; Dini-Andreote, Francisco; Salgueiro-Londoño, Jennifer Katherine; Camargo-Neves, Aline Aparecida; Andreote, Fernando Dini; Dourado, Manuella Nóbrega

    2015-10-01

    The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in

  20. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism.

    Science.gov (United States)

    Hoover, Shelley E R; Ladley, Jenny J; Shchepetkina, Anastasia A; Tisch, Maggie; Gieseg, Steven P; Tylianakis, Jason M

    2012-03-01

    Environmental changes threaten plant-pollinator mutualisms and their critical ecosystem service. Drivers such as land use, invasions and climate change can affect pollinator diversity or species encounter rates. However, nitrogen deposition, climate warming and CO(2) enrichment could interact to disrupt this crucial mutualism by altering plant chemistry in ways that alter floral attractiveness or even nutritional rewards for pollinators. Using a pumpkin model system, we show that these drivers non-additively affect flower morphology, phenology, flower sex ratios and nectar chemistry (sugar and amino acids), thereby altering the attractiveness of nectar to bumble bee pollinators and reducing worker longevity. Alarmingly, bees were attracted to, and consumed more, nectar from a treatment that reduced their survival by 22%. Thus, three of the five major drivers of global environmental change have previously unknown interactive effects on plant-pollinator mutualisms that could not be predicted from studies of individual drivers in isolation. © 2012 Blackwell Publishing Ltd/CNRS.

  1. Interactive effects of music tempi and intensities on grip strength and subjective affect.

    Science.gov (United States)

    Karageorghis, C I; Cheek, P; Simpson, S D; Bigliassi, M

    2018-03-01

    Pretask music is widely used by athletes albeit there is scant empirical evidence to support its use. The present study extended a line of work into pretask music by examining the interactive effects of music tempo and intensity (volume) on the performance of a simple motor skill and subjective affect. A 2 × 2 within-subjects factorial design was employed with an additional no-music control, the scores from which were used as a covariate. A sample of 52 male athletes (M age  = 26.1 ± 4.8 years) was exposed to five conditions: fast/loud (126 bpm/80 dBA), fast/quiet (126 bpm/70 dBA), slow/loud (87 bpm/80 dBA), slow/quiet (87 bpm/70 dBA) music, and a no-music control. Dependent variables were grip strength, measured with a handgrip dynamometer, and subjective affect, assessed by use of the Affect Grid. The tempo and intensity components of music had interactive effects for grip strength but only main effects for subjective affect. Fast-tempo music played at a high intensity yielded the highest grip strength, while fast-tempo music played at a low-intensity resulted in much lower grip strength (M diff.  = -1.11 Force kg). For affective valence, there were main effects of tempo and intensity, with fast and loud music yielding the highest scores. For affective arousal, there was no difference between tempi although there was between intensities, with the high-intensity condition yielding higher scores. The present findings indicate the utility of fast/loud pretask music in enhancing affective valence and arousal in preparation for a simple or gross motor task. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. BIOCHEMICAL PARAMETERS OF LIPID METABOLISM IN ANIMALS AFFECTED BY HEAVY METAL SALTS AND TREATED WITH CARNITINE CHLORIDE AND SODIUM ALGINATE

    Directory of Open Access Journals (Sweden)

    I. R. Bekus

    2017-02-01

    Full Text Available Background. Lipid metabolism disorders in the organism affected by environmental pollutants, including poisoning with cadmium and lead salts are of topical matter nowadays. Objective. The study was aimed to examine biochemical features of lipid metabolism in rats subjected to toxic damage by lead and cadmium salts and treated with carnitine chloride and Algigel. Methods. Experiments were carried out on white mature outbred male rats weighing 180-200 g. To cause the toxic damage the animals were administered with aqueous solution of cadmium chloride and lead acetate daily for the period of 30 days using intra-gastric lavage. The indices of lipid metabolism were detected by biochemical methods. Results. In animals treated with cadmium chloride and lead acetate the following changes were observed: HDL-cholesterol concentrations significantly decreased, resulting in 87% of the levels in the intact animals on the third day, 84% on the fifth and 80% on the seventh day. Conversely, concentrations of HDL-cholesterol and VLDL-cholesterol significantly increased during the experiment. Respectively, the ratios for HDL-cholesterol are 240%, 352%, and 388%; and for VLDL-cholesterol 108%, 116%, and 132%. Conclusions. Lipids profile of the rats displayed changes in the levels of cholesterol, triglycerides and lipoproteins of low, high and very low density.

  3. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles.

    Science.gov (United States)

    Zaya, Renee M; Amini, Zakariya; Whitaker, Ashley S; Ide, Charles F

    2011-08-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p=0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule, also

  4. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    International Nuclear Information System (INIS)

    Zaya, Renee M.; Amini, Zakariya; Whitaker, Ashley S.; Ide, Charles F.

    2011-01-01

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 μg/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 μg/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 μg/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 μg/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor β (PPAR-β) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid β-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-β, an energy homeostasis regulatory molecule

  5. Exposure to atrazine affects the expression of key genes in metabolic pathways integral to energy homeostasis in Xenopus laevis tadpoles

    Energy Technology Data Exchange (ETDEWEB)

    Zaya, Renee M., E-mail: renee.zaya@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Amini, Zakariya, E-mail: zakariya.amini@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Whitaker, Ashley S., E-mail: ashley.s.whitaker@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States); Ide, Charles F., E-mail: charles.ide@wmich.edu [Great Lakes Environmental and Molecular Sciences Center, Department of Biological Sciences, 3425 Wood Hall, Western Michigan University, 1903 West Michigan Avenue, Kalamazoo, MI 49008 (United States)

    2011-08-15

    In our laboratory, Xenopus laevis tadpoles exposed throughout development to 200 or 400 {mu}g/L atrazine, concentrations reported to periodically occur in puddles, vernal ponds and runoff soon after application, were smaller and had smaller fat bodies (the tadpole's lipid storage organ) than controls. It was hypothesized that these changes were due to atrazine-related perturbations of energy homeostasis. To investigate this hypothesis, selected metabolic responses to exposure at the transcriptional and biochemical levels in atrazine-exposed tadpoles were measured. DNA microarray technology was used to determine which metabolic pathways were affected after developmental exposure to 400 {mu}g/L atrazine. From these data, genes representative of the affected pathways were selected for assay using quantitative real time polymerase chain reaction (qRT-PCR) to measure changes in expression during a 2-week exposure to 400 {mu}g/L. Finally, ATP levels were measured from tadpoles both early in and at termination of exposure to 200 and 400 {mu}g/L. Microarray analysis revealed significant differential gene expression in metabolic pathways involved with energy homeostasis. Pathways with increased transcription were associated with the conversion of lipids and proteins into energy. Pathways with decreased transcription were associated with carbohydrate metabolism, fat storage, and protein synthesis. Using qRT-PCR, changes in gene expression indicative of an early stress response to atrazine were noted. Exposed tadpoles had significant decreases in acyl-CoA dehydrogenase (AD) and glucocorticoid receptor protein (GR) mRNA after 24 h of exposure, and near-significant (p = 0.07) increases in peroxisome proliferator-activated receptor {beta} (PPAR-{beta}) mRNA by 72 h. Decreases in AD suggested decreases in fatty acid {beta}-oxidation while decreases in GR may have been a receptor desensitization response to a glucocorticoid surge. Involvement of PPAR-{beta}, an energy

  6. Diketo modification of curcumin affects its interaction with human serum albumin.

    Science.gov (United States)

    Shaikh, Shaukat Ali M; Singh, Beena G; Barik, Atanu; Ramani, Modukuri V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Indira Priyadarsini, K

    2018-06-15

    Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3×10 5 , 8.4×10 5 and 2.5×10 5 M -1 , which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Diketo modification of curcumin affects its interaction with human serum albumin

    Science.gov (United States)

    Shaikh, Shaukat Ali M.; Singh, Beena G.; Barik, Atanu; Ramani, Modukuri V.; Balaji, Neduri V.; Subbaraju, Gottumukkala V.; Naik, Devidas B.; Indira Priyadarsini, K.

    2018-06-01

    Curcumin isoxazole (CI) and Curcumin pyrazole (CP), the diketo modified derivatives of Curcumin (CU) are metabolically more stable and are being explored for pharmacological properties. One of the requirements in such activities is their interaction with circulatory proteins like human serum albumin (HSA). To understand this, the interactions of CI and CP with HSA have been investigated employing absorption and fluorescence spectroscopy and the results are compared with that of CU. The respective binding constants of CP, CI and CU with HSA were estimated to be 9.3 × 105, 8.4 × 105 and 2.5 × 105 M-1, which decreased with increasing salt concentration in the medium. The extent of decrease in the binding constant was the highest in CP followed by CI and CU. This revealed that along with hydrophobic interaction other binding modes like electrostatic interactions operate between CP/CI/CU with HSA. Fluorescence quenching studies of HSA with these compounds suggested that both static and dynamic quenching mechanisms operate, where the contribution of static quenching is higher for CP and CI than that for CU. From fluorescence resonance energy transfer studies, the binding site of CU, CI and CP was found to be in domain IIA of HSA. CU was found to bind in closer proximity with Trp214 as compared to CI and CP and the same was responsible for efficient energy transfer and the same was also established by fluorescence anisotropy measurements. Furthermore docking simulation complemented the experimental observation, where both electrostatic as well as hydrophobic interactions were indicated between HSA and CP, CI and CU. This study is useful in designing more stable CU derivatives having suitable binding properties with proteins like HSA.

  8. "Predictability of body mass index for diabetes: Affected by the presence of metabolic syndrome?"

    Directory of Open Access Journals (Sweden)

    Khalili Davood

    2011-05-01

    Full Text Available Abstract Background Metabolic syndrome (MetS and body mass index (BMI, kg.m-2 are established independent risk factors in the development of diabetes; we prospectively examined their relative contributions and joint relationship with incident diabetes in a Middle Eastern cohort. Method participants of the ongoing Tehran lipid and glucose study are followed on a triennial basis. Among non-diabetic participants aged≥ 20 years at baseline (8,121 those with at least one follow-up examination (5,250 were included for the current study. Multivariate logistic regression models were used to estimate sex-specific adjusted odd ratios (ORs and 95% confidence intervals (CIs of baseline BMI-MetS categories (normal weight without MetS as reference group for incident diabetes among 2186 men and 3064 women, aged ≥ 20 years, free of diabetes at baseline. Result During follow up (median 6.5 years; there were 369 incident diabetes (147 in men. In women without MetS, the multivariate adjusted ORs (95% CIs for overweight (BMI 25-30 kg/m2 and obese (BMI≥30 participants were 2.3 (1.2-4.3 and 2.2 (1.0-4.7, respectively. The corresponding ORs for men without MetS were 1.6 (0.9-2.9 and 3.6 (1.5-8.4 respectively. As compared to the normal-weight/without MetS, normal-weight women and men with MetS, had a multivariate-adjusted ORs for incident diabetes of 8.8 (3.7-21.2 and 3.1 (1.3-7.0, respectively. The corresponding ORs for overweight and obese women with MetS reached to 7.7 (4.0-14.9 and 12.6 (6.9-23.2 and for men reached to 3.4(2.0-5.8 and 5.7(3.9-9.9, respectively. Conclusion This study highlights the importance of screening for MetS in normal weight individuals. Obesity increases diabetes risk in the absence of MetS, underscores the need for more stringent criteria to define healthy metabolic state among obese individuals. Weight reduction measures, thus, should be encouraged in conjunction with achieving metabolic targets not addressed by current definition of

  9. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    Science.gov (United States)

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Interaction between leucine and phosphodiesterase 5 inhibition in modulating insulin sensitivity and lipid metabolism

    Directory of Open Access Journals (Sweden)

    Fu L

    2015-05-01

    Full Text Available Lizhi Fu,1 Fenfen Li,1 Antje Bruckbauer,2 Qiang Cao,1 Xin Cui,1 Rui Wu,1 Hang Shi,1 Bingzhong Xue,1 Michael B Zemel21Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA, 2NuSirt Biopharma Inc., Nashville, TN, USA Purpose: Leucine activates SIRT1/AMP-activated protein kinase (AMPK signaling and markedly potentiates the effects of other sirtuin and AMPK activators on insulin signaling and lipid metabolism. Phosphodiesterase 5 inhibition increases nitric oxide–cGMP signaling, which in turn exhibits a positive feedback loop with both SIRT1 and AMPK, thus amplifying peroxisome proliferator-activated receptor γ co-activator α (PGC1α-mediated effects. Methods: We evaluated potential synergy between leucine and PDE5i on insulin sensitivity and lipid metabolism in vitro and in diet-induced obese (DIO mice. Results: Leucine (0.5 mM exhibited significant synergy with subtherapeutic doses (0.1–10 nM of PDE5-inhibitors (sildenafil and icariin on fat oxidation, nitric oxide production, and mitochondrial biogenesis in hepatocytes, adipocytes, and myotubes. Effects on insulin sensitivity, glycemic control, and lipid metabolism were then assessed in DIO-mice. DIO-mice exhibited fasting and postprandial hyperglycemia, insulin resistance, and hepatic steatosis, which were not affected by the addition of leucine (24 g/kg diet. However, the combination of leucine and a subtherapeutic dose of icariin (25 mg/kg diet for 6 weeks reduced fasting glucose (38%, P<0.002, insulin (37%, P<0.05, area under the glucose tolerance curve (20%, P<0.01, and fully restored glucose response to exogenous insulin challenge. The combination also inhibited hepatic lipogenesis, stimulated hepatic and muscle fatty acid oxidation, suppressed hepatic inflammation, and reversed high-fat diet-induced steatosis. Conclusion: These robust improvements in insulin sensitivity, glycemic control, and lipid metabolism indicate therapeutic potential for

  11. When sad groups expect to meet again : Interactive affective sharing and future interaction expectation as determinants of work groups' analytical and creative task performance

    NARCIS (Netherlands)

    Klep, Annefloor H. M.; Wisse, Barbara; van der Flier, Henk

    2013-01-01

    The present study examines the moderating role of future interaction expectation in the relationship between affective sharing and work groups' task performance. We argue that group affect, a group defining characteristic, becomes more salient to its members when it is interactively shared, and that

  12. Hydrological Conditions Affect the Interspecific Interaction between Two Emergent Wetland Species

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2018-01-01

    Full Text Available Hydrological conditions determine the distribution of plant species in wetlands, where conditions such as water depth and hydrological fluctuations are expected to affect the interspecific interactions among emergent wetland species. To test such effects, we conducted a greenhouse experiment with three treatment categories, interspecific interaction (mixed culture or monoculture, water depth (10 or 30 cm depth, and hydrological fluctuation (static or fluctuating water level, and two common emergent wetland plant species, Scirpus planiculumis Fr. (Cyperaceae and Phragmites australis var. baiyangdiansis (Gramineae. An increase in the water depth significantly restrained the growth of both S. planiculumis and P. australis, while hydrological fluctuations did not obviously alter the growth of either species. In addition, both water depth and hydrological fluctuations significantly affected the interspecific interaction between these two wetland species. P. australis benefited from interspecific interaction under increasing water depth and hydrological fluctuations, and the RII values were clearly positive for plants grown at a water depth that fluctuated around 30 cm. The results may have some implications for understanding how S. planiculumis and P. australis, as well as wetland communities, respond to the natural variation or human modification of hydrological conditions.

  13. Electrical stimulation affects metabolic enzyme phosphorylation, protease activation and meat tenderization in beef

    DEFF Research Database (Denmark)

    Li, C.B.; Li, J.; Zhou, G.H.

    2012-01-01

    The objective of this study was to investigate the response of sarcoplasmic proteins in bovine longissimus muscle to low-voltage electrical stimulation (ES, 80 V, 35 s) after dressing and its contribution to meat tenderization at early postmortem time. Proteome analysis showed that ES resulted...... muscles up to 24 h. Immunohistochemistry and transmission electron microscopy further indicated that lysosomal enzymes were released at early postmortem time. ES also induced ultrastructural disruption of sarcomeres. In addition, ES accelerated (P ..., as well as pH decline and more preferred pH/temperature decline mode. Finally, ES accelerated meat tenderization with lower (P time. A possible relationship was suggested between change in phosphorylation level of energy metabolic enzymes and postmortem...

  14. Transferrin Receptor 2 Dependent Alterations of Brain Iron Metabolism Affect Anxiety Circuits in the Mouse

    Science.gov (United States)

    Pellegrino, Rosa Maria; Boda, Enrica; Montarolo, Francesca; Boero, Martina; Mezzanotte, Mariarosa; Saglio, Giuseppe; Buffo, Annalisa; Roetto, Antonella

    2016-01-01

    The Transferrin Receptor 2 (Tfr2) modulates systemic iron metabolism through the regulation of iron regulator Hepcidin (Hepc) and Tfr2 inactivation causes systemic iron overload. Based on data demonstrating Tfr2 expression in brain, we analysed Tfr2-KO mice in order to examine the molecular, histological and behavioural consequences of Tfr2 silencing in this tissue. Tfr2 abrogation caused an accumulation of iron in specific districts in the nervous tissue that was not accompanied by a brain Hepc response. Moreover, Tfr2-KO mice presented a selective overactivation of neurons in the limbic circuit and the emergence of an anxious-like behaviour. Furthermore, microglial cells showed a particular sensitivity to iron perturbation. We conclude that Tfr2 is a key regulator of brain iron homeostasis and propose a role for Tfr2 alpha in the regulation of anxiety circuits. PMID:27477597

  15. Sucrose, glucose and fructose have similar genotoxicity in the rat colon and affect the metabolism

    DEFF Research Database (Denmark)

    Hansen, Max; Baunsgaard, D.; Autrup, H.

    2008-01-01

    We have shown previously that a high sucrose intake increases the background level of somatic mutations and the level of bulky DNA adducts in the colon epithelium of rats. The mechanism may involve either glucose or fructose formed by hydrolysis of sucrose. Male Big Blue (R) rats were fed 30......% sucrose, glucose, fructose or potato starch as part of the diet. Mutation rates and bulky DNA adduct levels were determined in colon and liver. The concentration of short-chain fatty acids and pH were deter-mined in caecum, C-peptide was determined in plasma, biomarkers for oxidative damage....... The metabonomic studies indicated disturbed amino acid metabolism and decrease in plasma and urinary acetate as a common feature for all sugars and confirmed triglyceridemic effects of fructose. In conclusion, the genotoxicity may be related to the altered chemical environment in the caecum and thereby also...

  16. Programming of intermediate metabolism in young lambs affected by late gestational maternal undernourishment

    DEFF Research Database (Denmark)

    Husted, Sanne; Nielsen, Mette Olaf; Tygesen, Malin Plumhoff

    2007-01-01

    Effects of moderate maternal undernourishment during late gestation on the intermediary metabolism and maturational changes in young lambs were investigated. 20 twin-bearing sheep, bred to two different rams, were randomly allocated the last 6 wk of gestation to either a NORM diet [barley, protein...... supplement, and silage ad libitum ˜ 15 MJ metabolizable energy (ME/day] or a LOW diet (50% of ME intake in NORM, offered exclusively as silage ¨7 MJ ME/day). Post partum, ewes were fed to requirement. After weaning, lambs were fed concentrate and hay ad libitum. At 10 and 19 wk of age, lambs wee subjected...... to an intravenous glucose tolerance test (IGTT) followed by 24 h of fasting. Heat energy (HE) was determined in a respiration chamber at 9 or 20 wk of age. LOW lambs had a lower birth weight and continued to be lighter throughout the experiment. Glucose tolerance did not differ between groups. However, 19-wk...

  17. Dietary Selenium (Se) and Copper (Cu) Interact to Affect Homocysteine Metabolism in Rats

    Science.gov (United States)

    Our previous studies have shown that selenium (Se) is protective against dimethylhydrazine (DMH)-induced preneoplastic colon cancer lesions, and protection against DNA damage has been hypothesized to be one mechanism for the anticancer effect of Se. The present study was designed to determine whethe...

  18. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    Science.gov (United States)

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  19. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    Science.gov (United States)

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety.

  20. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism.

    Science.gov (United States)

    Casas, François; Fouret, Gilles; Lecomte, Jérome; Cortade, Fabienne; Pessemesse, Laurence; Blanchet, Emilie; Wrutniak-Cabello, Chantal; Coudray, Charles; Feillet-Coudray, Christine

    2018-02-01

    Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43-/-), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43-/- mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43-/- mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.

  1. Foliar nitrogen metabolism of adult Douglas-fir trees is affected by soil water availability and varies little among provenances.

    Science.gov (United States)

    Du, Baoguo; Kreuzwieser, Jürgen; Dannenmann, Michael; Junker, Laura Verena; Kleiber, Anita; Hess, Moritz; Jansen, Kirstin; Eiblmeier, Monika; Gessler, Arthur; Kohnle, Ulrich; Ensminger, Ingo; Rennenberg, Heinz; Wildhagen, Henning

    2018-01-01

    The coniferous forest tree Douglas-fir (Pseudotsuga menziesii) is native to the pacific North America, and is increasingly planted in temperate regions worldwide. Nitrogen (N) metabolism is of great importance for growth, resistance and resilience of trees. In the present study, foliar N metabolism of adult trees of three coastal and one interior provenance of Douglas-fir grown at two common gardens in southwestern Germany (Wiesloch, W; Schluchsee, S) were characterized in two subsequent years. Both the native North American habitats of the seed sources and the common garden sites in Germany differ in climate conditions. Total and mineral soil N as well as soil water content were higher in S compared to W. We hypothesized that i) provenances differ constitutively in N pool sizes and composition, ii) N pools are affected by environmental conditions, and iii) that effects of environmental factors on N pools differ among interior and coastal provenances. Soil water content strongly affected the concentrations of total N, soluble protein, total amino acids (TAA), arginine and glutamate. Foliar concentrations of total N, soluble protein, structural N and TAA of trees grown at W were much higher than in trees at S. Provenance effects were small but significant for total N and soluble protein content (interior provenance showed lowest concentrations), as well as arginine, asparagine and glutamate. Our data suggest that needle N status of adult Douglas-fir is independent from soil N availability and that low soil water availability induces a re-allocation of N from structural N to metabolic N pools. Small provenance effects on N pools suggest that local adaptation of Douglas-fir is not dominated by N conditions at the native habitats.

  2. Intraspecies Volatile Interactions Affect Growth Rates and Exometabolomes in Aspergillus oryzae KCCM 60345.

    Science.gov (United States)

    Singh, Digar; Lee, Choong Hwan

    2018-02-28

    Volatile organic compounds (VOCs) are increasingly been recognized as the chemical mediators of mold interactions, shaping their community dynamics, growth, and metabolism. Herein, we selectively examined the time-correlated (0 D-11 D, where D = incubation days) effects of intraspecies VOC-mediated interactions (VMI) on Aspergillus oryzae KCCM 60345 (S1), following co-cultivation with partner strain A. oryzae KACC 44967 (S2), in a specially designed twin plate assembly. The comparative evaluation of S1 VMI (S1 subjected to VMI with S2) and its control (S1 Con ) showed a notable disparity in their radial growth (S1 VMI S1 Con ) at 3-5 D, amylase activity (S1 VMI S1 Con ) at 3 D. Furthermore, we observed a distinct clustering pattern for gas chromatography-time of flight-mass spectrometry datasets from 5 D extracts of S1 VMI and S1 Con in principle component analysis (PC1: 30.85%; PC2: 10.31%) and partial least squares discriminant analysis (PLS-DA) (PLS1: 30.77; PLS2: 10.15%). Overall, 43 significantly discriminant metabolites were determined for engendering the metabolic variance based on the PLS-DA model (VIP > 0.7, p S1 Con ) at 5 D, organic acids (S1 VMI > S1 Con ) at 5 D, and kojic acid (S1 VMI < S1 Con ) at 5-7 D were observed. Examining the headspace VOCs shared between S1 and S2 in the twin plate for 5 D incubated samples, we observed the relatively higher abundance of C-8 VOCs (1-octen-3-ol, (5Z)-octa-1,5-dien-3-ol, 3-octanone, 1-octen-3-ol acetate) having known semiochemical functions. The present study potentially illuminates the effects of VMI on commercially important A. oryzae's growth and biochemical phenotypes with subtle details of altered metabolomes.

  3. Lifestyle Factors and Metabolic Syndrome among Workers: The Role of Interactions between Smoking and Alcohol to Nutrition and Exercise.

    Science.gov (United States)

    Huang, Jui-Hua; Li, Ren-Hau; Huang, Shu-Ling; Sia, Hon-Ke; Chen, Yu-Ling; Tang, Feng-Cheng

    2015-12-16

    This study aimed to investigate (1) relations of smoking and alcohol to metabolic syndrome (MetS) and its components, with nutrition and exercise controlled; and (2) interactions between smoking/alcohol and nutrition/exercise on MetS. This cross-sectional study enrolled 4025 workers. Self-reported lifestyles, anthropometric values, blood pressure (BP), and biochemical determinations were obtained. Among males, smoking significantly increased the risk of low high-density lipoprotein cholesterol (HDL-C), high triglyceride, abdominal obesity (AO), and MetS. Additionally, smoking showed significant interaction effects with nutrition on high BP, AO, and MetS; after further analysis, nutrition did not decrease above-mentioned risks for smokers. However, there was no significant interaction of smoking with exercise on any metabolic parameter. Alcohol increased the risk of AO, but decreased low HDL-C. It also showed an interaction effect with exercise on AO; after further analysis, exercise decreased AO risk for drinkers. Among females, alcohol significantly decreased the risk of high fasting blood glucose, but did not show significant interaction with nutrition/exercise on any metabolic parameter. In conclusion, in males, smoking retained significant associations with MetS and its components, even considering benefits of nutrition; exercise kept predominance on lipid parameters regardless of smoking status. Alcohol showed inconsistencies on metabolic parameters for both genders.

  4. Lifestyle Factors and Metabolic Syndrome among Workers: The Role of Interactions between Smoking and Alcohol to Nutrition and Exercise

    Directory of Open Access Journals (Sweden)

    Jui-Hua Huang

    2015-12-01

    Full Text Available This study aimed to investigate (1 relations of smoking and alcohol to metabolic syndrome (MetS and its components, with nutrition and exercise controlled; and (2 interactions between smoking/alcohol and nutrition/exercise on MetS. This cross-sectional study enrolled 4025 workers. Self-reported lifestyles, anthropometric values, blood pressure (BP, and biochemical determinations were obtained. Among males, smoking significantly increased the risk of low high-density lipoprotein cholesterol (HDL-C, high triglyceride, abdominal obesity (AO, and MetS. Additionally, smoking showed significant interaction effects with nutrition on high BP, AO, and MetS; after further analysis, nutrition did not decrease above-mentioned risks for smokers. However, there was no significant interaction of smoking with exercise on any metabolic parameter. Alcohol increased the risk of AO, but decreased low HDL-C. It also showed an interaction effect with exercise on AO; after further analysis, exercise decreased AO risk for drinkers. Among females, alcohol significantly decreased the risk of high fasting blood glucose, but did not show significant interaction with nutrition/exercise on any metabolic parameter. In conclusion, in males, smoking retained significant associations with MetS and its components, even considering benefits of nutrition; exercise kept predominance on lipid parameters regardless of smoking status. Alcohol showed inconsistencies on metabolic parameters for both genders.

  5. Dietary fat interacts with PCBs to induce changes in lipid metabolism in LDL receptor deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, B.; Reiterer, G.; Toborek, M.; Matveev, S.V.; Daugherty, A.; Smart, E. [Univ. of Kentucky, Lexington (United States); Robertson, L.W. [Univ. of Iowa, Iowa City (United States)

    2004-09-15

    From epidemiological studies, there is substantial evidence that cardiovascular diseases are linked to environmental pollution and that exposure to polycyclic and/or polyhalogenated aromatic hydrocarbons can lead to human cardiovascular toxicity. A major route of exposure to PCBs in humans is via oral ingestion of contaminated food products. Therefore, circulating environmental contaminants derived from diets, such as PCBs, are in intimate contact with the vascular endothelium. Endothelial activation and dysfunction is an important factor in the overall regulation of vascular lesion pathology. In addition to endothelial barrier dysfunction, another functional change in atherosclerosis is the activation of the endothelium that is manifested as an increase in the expression of specific cytokines and adhesion molecules. These cytokines and adhesion molecules are proposed to mediate the inflammatory aspects of the disease by regulating the vascular entry of leukocytes. Alterations in lipid profile and lipid metabolism as a result of exposure to PCBs may be important components of endothelial cell dysfunction. Little is known about the interaction of dietary fats and PCBs in the pathology of atherosclerosis. We have reported a significant disruption in endothelial barrier function when cells were exposed to linoleic acid. In the current study we aimed to demonstrate the PCB-fatty acid interaction in vivo and hypothesized that PCB toxicity can be modulated by the type of fat consumed.

  6. Molybdate:sulfate ratio affects redox metabolism and viability of the dinoflagellate Lingulodinium polyedrum

    International Nuclear Information System (INIS)

    Barros, M.P.; Hollnagel, H.C.; Glavina, A.B.; Soares, C.O.; Ganini, D.; Dagenais-Bellefeuille, S.; Morse, D.; Colepicolo, P.

    2013-01-01

    Highlights: •Molybdenum (Mo) is a key micronutrient for nitrogen and redox metabolism in many microalgae. •Molybdate and (more abundant) sulfate anions compete for uptake, although proper mechanism is still obscure. •Higher concentrations of molybdate in culture medium diminish sulfur content in L. polyedrum. •Mo toxicity was monitored as a function of [Mo]:[sulfate] ratios in L. polyedrum and was linked to oxidative stress. •Induction of xanthine oxidase activity and/or depletion of thiol-dependent antioxidants are suggested as plausible mechanisms to explain Mo toxicity in dinoflagellates. -- Abstract: Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO 4 2− ), although MoO 4 2− uptake is thought to compete with uptake of the much more abundant sulfate anion (SO 4 2− , approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO 4 2− and SO 4 2− concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO 4 2− concentrations (from 0 to 200 μM) and three different SO 4 2− concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of the three major antioxidant enzymes (superoxide dismutase, catalase

  7. Molybdate:sulfate ratio affects redox metabolism and viability of the dinoflagellate Lingulodinium polyedrum

    Energy Technology Data Exchange (ETDEWEB)

    Barros, M.P., E-mail: marcelo.barros@cruzeirodosul.edu.br [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Hollnagel, H.C. [Pós-Graduação, Faculdade Mario Schenberg, 06710500 Cotia, SP (Brazil); Glavina, A.B. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Soares, C.O. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Department of Biochemistry, Instituto de Química, Universidade de São Paulo (IQ-USP), São Paulo (Brazil); Ganini, D. [Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP (Brazil); Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709 (United States); Dagenais-Bellefeuille, S.; Morse, D. [Departement de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montreal, QC H1X 2B2 (Canada); Colepicolo, P. [Department of Biochemistry, Instituto de Química, Universidade de São Paulo (IQ-USP), São Paulo (Brazil)

    2013-10-15

    Highlights: •Molybdenum (Mo) is a key micronutrient for nitrogen and redox metabolism in many microalgae. •Molybdate and (more abundant) sulfate anions compete for uptake, although proper mechanism is still obscure. •Higher concentrations of molybdate in culture medium diminish sulfur content in L. polyedrum. •Mo toxicity was monitored as a function of [Mo]:[sulfate] ratios in L. polyedrum and was linked to oxidative stress. •Induction of xanthine oxidase activity and/or depletion of thiol-dependent antioxidants are suggested as plausible mechanisms to explain Mo toxicity in dinoflagellates. -- Abstract: Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO{sub 4}{sup 2−}), although MoO{sub 4}{sup 2−} uptake is thought to compete with uptake of the much more abundant sulfate anion (SO{sub 4}{sup 2−}, approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO{sub 4}{sup 2−} and SO{sub 4}{sup 2−} concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO{sub 4}{sup 2−} concentrations (from 0 to 200 μM) and three different SO{sub 4}{sup 2−} concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of

  8. Maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants.

    Science.gov (United States)

    Pauwels, Sara; Ghosh, Manosij; Duca, Radu Corneliu; Bekaert, Bram; Freson, Kathleen; Huybrechts, Inge; Langie, Sabine A S; Koppen, Gudrun; Devlieger, Roland; Godderis, Lode

    2017-01-01

    Maternal nutrition during pregnancy and infant nutrition in the early postnatal period (lactation) are critically involved in the development and health of the newborn infant. The Maternal Nutrition and Offspring's Epigenome (MANOE) study was set up to assess the effect of maternal methyl-group donor intake (choline, betaine, folate, methionine) on infant DNA methylation. Maternal intake of dietary methyl-group donors was assessed using a food-frequency questionnaire (FFQ). Before and during pregnancy, we evaluated maternal methyl-group donor intake through diet and supplementation (folic acid) in relation to gene-specific ( IGF2 DMR, DNMT1 , LEP , RXRA ) buccal epithelial cell DNA methylation in 6 months old infants ( n  = 114) via pyrosequencing. In the early postnatal period, we determined the effect of maternal choline intake during lactation (in mothers who breast-fed for at least 3 months) on gene-specific buccal DNA methylation ( n  = 65). Maternal dietary and supplemental intake of methyl-group donors (folate, betaine, folic acid), only in the periconception period, was associated with buccal cell DNA methylation in genes related to growth ( IGF2 DMR), metabolism ( RXRA ), and appetite control ( LEP ). A negative association was found between maternal folate and folic acid intake before pregnancy and infant LEP (slope = -1.233, 95% CI -2.342; -0.125, p  = 0.0298) and IGF2 DMR methylation (slope = -0.706, 95% CI -1.242; -0.107, p  = 0.0101), respectively. Positive associations were observed for maternal betaine (slope = 0.875, 95% CI 0.118; 1.633, p  = 0.0241) and folate (slope = 0.685, 95% CI 0.245; 1.125, p  = 0.0027) intake before pregnancy and RXRA methylation. Buccal DNMT1 methylation in the infant was negatively associated with maternal methyl-group donor intake in the first and second trimester of pregnancy and negatively in the third trimester. We found no clear association between maternal choline intake

  9. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis.

    Directory of Open Access Journals (Sweden)

    Sunwoo Chun

    Full Text Available A high phosphorus (HP diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus or a HP diet (containing 1.2% phosphorus. Gene Ontology analysis of differentially expressed genes (DEGs revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα, a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054 in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty

  10. Interaction between valproic acid and aspirin in epileptic children: serum protein binding and metabolic effects.

    Science.gov (United States)

    Orr, J M; Abbott, F S; Farrell, K; Ferguson, S; Sheppard, I; Godolphin, W

    1982-05-01

    In five of six epileptic children who were taking 18 to 49 mg/kg/day valproic acid (VPA), the steady-state serum free fractions of VPA rose from 12% to 43% when antipyretic doses of aspirin were also taken. Mean total VPA half-life (t1/2) rose from 10.4 +/- 2.7 to 12.9 +/- 1.8 hr and mean free VPA t1/2 rose from 6.7 +/- to 2.1 to 8.9 +2- 3.0 hr when salicylate was present in the serum. The in vitro albumin binding association constant (ka) for VPA was decreased by salicylate, but the in vivo ka value was not affected. The 12-hr (trough) concentrations of both free and total VPA were higher in the presence of serum salicylate in five of six patients. Renal excretion of unchanged VPA decreased in five of six patients, but the VPA carboxyl conjugate metabolite-excretion patterns were not consistently affected. Salicylate appeared to displace VPA from serum albumin in vivo, but the increased VPA t1/2 and changes in VPA elimination patterns suggest that serum salicylate also altered VPA metabolism.

  11. The EGF repeat-specific O-GlcNAc-transferase Eogt interacts with notch signaling and pyrimidine metabolism pathways in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reto Müller

    Full Text Available The O-GlcNAc transferase Eogt modifies EGF repeats in proteins that transit the secretory pathway, including Dumpy and Notch. In this paper, we show that the Notch ligands Delta and Serrate are also substrates of Eogt, that mutation of a putative UDP-GlcNAc binding DXD motif greatly reduces enzyme activity, and that Eogt and the cytoplasmic O-GlcNAc transferase Ogt have distinct substrates in Drosophila larvae. Loss of Eogt is larval lethal and disrupts Dumpy functions, but does not obviously perturb Notch signaling. To identify novel genetic interactions with eogt, we investigated dominant modification of wing blister formation caused by knock-down of eogt. Unexpectedly, heterozygosity for several members of the canonical Notch signaling pathway suppressed wing blister formation. And importantly, extensive genetic interactions with mutants in pyrimidine metabolism were identified. Removal of pyrimidine synthesis alleles suppressed wing blister formation, while removal of uracil catabolism alleles was synthetic lethal with eogt knock-down. Therefore, Eogt may regulate protein functions by O-GlcNAc modification of their EGF repeats, and cellular metabolism by affecting pyrimidine synthesis and catabolism. We propose that eogt knock-down in the wing leads to metabolic and signaling perturbations that increase cytosolic uracil levels, thereby causing wing blister formation.

  12. Interactions between the metabolism of L-leucine and D-glucose in the pancreatic. beta. -cells

    Energy Technology Data Exchange (ETDEWEB)

    Gylfe, E; Sehlin, J [Umeaa Univ. (Sweden). Dept. of Histology

    1976-01-01

    ..beta..-cell-rich pancreatic islets microdissected from obese-hyperglycemic mice were used to study interactions between the metabolism of L-leucine and D-glucose. L-leucine reduced the islet content of aspartic acid whereas D-glucose, when added to L-leucine-incubated islets, increased the contents of aspartic acid and ..gamma..-aminobutyric acid (GABA). D-glucose also increased the incorporation of L-leucine carbon into aspartic acid, GABA and glutamic acid, suggesting stimulation of a malate shuttle mechanism. When expressed per mole of the individual amino acids, the incorporation of L-leucine carbon into GABA was 2.5 - 4 times higher than into glutamic acid indicating intracellular compartmentation of the latter amino acid. Both L-leucine and D-leucine stimulated /sup 14/CO/sub 2/ production from /sup 14/C-labelled D-glucose. L-leucine did not affect /sup 3/H/sub 2/O production from tritiated D-glucose. The present data do not indicate a role of other amino acids or D-glucose in L-leucine-stimulated insulin release.

  13. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    Science.gov (United States)

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars. © 2014 Scandinavian Plant Physiology Society.

  14. [Metabolism of thyroid gland cells as affected by prolactin and emotional-physical stress].

    Science.gov (United States)

    Strizhkov, V V

    1991-01-01

    A study was made of the role of prolactin (PRL) in the regulation of thyroid function in intact animals and in those exposed to stress (swimming was used as physical exercise). A single daily dose of 125 micrograms of PRL per 100 g of body mass was injected subcutaneously in 0.5 ml of saline solution during a week to male rats (control: intact rats; injection of 0.5 ml of saline solution subcutaneously). Redox enzymes; succinate dehydrogenase, lactate dehydrogenase, glucose-6-phosphate dehydrogenase, NAD.H2 and NADP.H2, ATPase and monoamine oxidase, total protein, RNA and glycogen in glandular cells were investigated histochemically 24 h after the last injection of PRL or saline, 30 min., 1, 2, 3, 5 and 7 hours after swimming or right after complete fatigue (in the presence of experimental hyperprolactinemia). A conclusion has been made that one of the most important mechanisms of the adaptive effect of PRL is its ability to suppress thyroid function, thus decreasing the metabolism level, which results in reduction of oxygen consumption and improves body tolerance to stress.

  15. Aminocarnitine and acylaminocarnitines: Carnitine acyltransferase inhibitors affecting long-chain fatty acid and glucose metabolism

    International Nuclear Information System (INIS)

    Clark, D.J.

    1989-01-01

    DL-Aminocarnitine (DL-3-amino-4-trimethylaminobutyrate) and the acylaminocarnitines acetyl-, decanoyl- and palmitoyl-DL-aminocarnitine have been synthesized and tested as inhibitors of carnitine palmitoyl-transferase and carnitine acetyltransferase in vitro and in vivo. Acetyl-DL-aaminocarnitine is the most potent reversible inhibitor of carnitine acetyltransferase reported to date, and is competitive with respect to acetyl-L-carnitine. Mice given acetyl-DL-aminocarnitine metabolize [U- 14 C]acetyl-L-carnitine at about 60% of the rate of control mice. Palmitoyl-DL-aminocarnitine is the most potent reversible inhibitor of carnitine palmitoyltransferase reported to date. Decanoyl-DL-aminocarnitine and DL-aminocarnitine are also very potent inhibitors; all compounds inhibit the catabolism of [ 14 C]palmitate to 14 CO 2 in intact mice by at least 50%. Carnitine palmitoyltransferase controls the entry of long-chain fatty acids into the mitochondrial matrix for β-oxidation. The inhibition of carnitine palmitoyltransferase by aminocarnitine or acylaminocarnitines in vivo prevents or reverses ketogenesis in fasted mice, and causes the reversible accumulation of triglycerides in liver, kidney and plasma. Administration of DL-aminocarnitine to streptozotocindiabetic mice lowers plasma glucose levels and improves the glucose tolerance test

  16. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    Science.gov (United States)

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Motion and emotion: depression reduces psychomotor performance and alters affective movements in caregiving interactions

    Directory of Open Access Journals (Sweden)

    Katherine S Young

    2015-02-01

    Full Text Available Background: Impaired social functioning is a well-established feature of depression. Evidence to date suggests that disrupted processing of emotional cues may constitute part of this impairment. Beyond processing of emotional cues, fluent social interactions require that people physically move in synchronised, contingent ways. Disruptions to physical movements are a diagnostic feature of depression (psychomotor disturbance but have not previously been assessed in the context of social functioning. Here we investigated the impact of psychomotor disturbance in depression on physical responsive behaviour in both an experimental and observational setting.Methods: In Experiment 1, we examined motor disturbance in depression in response to salient emotional sounds, using a laboratory-based effortful motor task. In Experiment 2, we explored whether psychomotor disturbance was apparent in real-life social interactions. Using mother-infant interactions as a model affective social situation, we compared physical behaviours of mothers with and without postnatal depression (PND.Results: We found impairments in precise, controlled psychomotor performance in adults with depression relative to healthy adults (Experiment 1. Despite this disruption, all adults showed enhanced performance following exposure to highly salient emotional cues (infant cries. Examining real-life interactions, we found differences in physical movements, namely reduced affective touching, in mothers with PND responding to their infants, compared to healthy mothers (Experiment 2.Conclusions: Together, these findings suggest that psychomotor disturbance may be an important feature of depression that can impair social functioning. Future work investigating whether improvements in physical movement in depression could have a positive impact on social interactions would be of much interest.

  18. Isolation of a Genomic Region Affecting Most Components of Metabolic Syndrome in a Chromosome-16 Congenic Rat Model.

    Directory of Open Access Journals (Sweden)

    Lucie Šedová

    Full Text Available Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16 and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx into the genomic background of the spontaneously hypertensive rat (SHR strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference and diastolic (10-15 mmHg difference blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001. The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1. Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic

  19. BRCA1 affects lipid synthesis through its interaction with acetyl-CoA carboxylase.

    Science.gov (United States)

    Moreau, Karen; Dizin, Eva; Ray, Hind; Luquain, Céline; Lefai, Etienne; Foufelle, Fabienne; Billaud, Marc; Lenoir, Gilbert M; Venezia, Nicole Dalla

    2006-02-10

    Germ line alterations in BRCA1 (breast cancer susceptibility gene 1) are associated with an increased susceptibility to breast and ovarian cancer. BRCA1 acts as a scaffold protein implicated in multiple cellular functions, such as transcription, DNA repair, and ubiquitination. However, the molecular mechanisms responsible for tumorigenesis are not yet fully understood. We have recently demonstrated that BRCA1 interacts in vivo with acetyl coenzyme A carboxylase alpha (ACCA) through its tandem of BRCA1 C terminus (BRCT) domains. To understand the biological function of the BRCA1.ACCA complex, we sought to determine whether BRCA1 is a regulator of lipogenesis through its interaction with ACCA. We showed here that RNA inhibition-mediated down-regulation of BRCA1 expression induced a marked increase in the fatty acid synthesis. We then delineated the biochemical characteristics of the complex and found that BRCA1 interacts solely with the phosphorylated and inactive form of ACCA (P-ACCA). Finally, we demonstrated that BRCA1 affects lipid synthesis by preventing P-ACCA dephosphorylation. These results suggest that BRCA1 affects lipogenesis through binding to P-ACCA, providing a new mechanism by which BRCA1 may exert a tumor suppressor function.

  20. Seasonal Influences on Ground-Surface Water Interactions in an Arsenic-Affected Aquifer in Cambodia

    Science.gov (United States)

    Richards, L. A.; Magnone, D.; Van Dongen, B.; Bryant, C.; Boyce, A.; Ballentine, C. J.; Polya, D. A.

    2015-12-01

    Millions of people in South and Southeast Asia consume drinking water daily which contains dangerous levels of arsenic exceeding health-based recommendations [1]. A key control on arsenic mobilization in aquifers in these areas has been controversially identified as the interaction of 'labile' organic matter contained in surface waters with groundwaters and sediments at depth [2-4], which may trigger the release of arsenic from the solid- to aqueous-phase via reductive dissolution of iron-(hyr)oxide minerals [5]. In a field site in Kandal Province, Cambodia, which is an arsenic-affected area typical to others in the region, there are strong seasonal patterns in groundwater flow direction, which are closely related to monsoonal rains [6] and may contribute to arsenic release in this aquifer. The aim of this study is to explore the implications of the high susceptibility of this aquifer system to seasonal changes on potential ground-surface water interactions. The main objectives are to (i) identify key zones where there are likely ground-surface water interactions, (ii) assess the seasonal impact of such interactions and (iii) quantify the influence of interactions using geochemical parameters (such as As, Fe, NO3, NH4, 14C, 3T/3He, δ18O, δ2H). Identifying the zones, magnitude and seasonal influence of ground-surface water interactions elucidates new information regarding potential locations/pathways of arsenic mobilization and/or transport in affected aquifers and may be important for water management strategies in affected areas. This research is supported by NERC (NE/J023833/1) to DP, BvD and CJB and a NERC PhD studentship (NE/L501591/1) to DM. References: [1] World Health Organization, 2008. [2] Charlet & Polya (2006), Elements, 2, 91-96. [3] Harvey et al. (2002), Science, 298, 1602-1606. [4] Lawson et al. (2013), Env. Sci. Technol. 47, 7085 - 7094. [5] Islam et al. (2004), Nature, 430, 68-71. [6] Benner et al. (2008) Appl. Geochem. 23(11), 3072 - 3087.

  1. Mathematics for Maths Anxious Tertiary Students: Integrating the cognitive and affective domains using interactive multimedia

    Directory of Open Access Journals (Sweden)

    Janet Taylor

    2011-04-01

    Full Text Available Today, commencing university students come from a diversity of backgrounds and have a broad range of abilities and attitudes. It is well known that attitudes towards mathematics, especially mathematics anxiety, can affect students’ performance to the extent that mathematics is often seen as a barrier to success by many. This paper reports on the design, development and evaluation of an interactive multimedia resource designed to explicitly address students’ beliefs and attitudes towards mathematics by following five characters as they progress through the highs and low of studying a preparatory mathematics course. The resource was built within two theoretical frameworks, one related to effective numeracy teaching (Marr and Helme 1991 and the other related to effective educational technology development (Laurillard 2002. Further, it uses a number of multimedia alternatives (video, audio, animations, diarying, interactive examples and self assessment to encourage students to feel part of a group, to reflect on their feelings and beliefs about mathematics, to expose students to authentic problem solving and generally build confidence through practice and self-assessment. Evaluation of the resource indicated that it encouraged students to value their own mathematical ability and helped to build confidence, while developing mathematical problem solving skills. The evaluation clearly demonstrated that it is possible to address the affective domain through multimedia initiatives and that this can complement the current focus on computer mediated communication as the primary method of addressing affective goals within the online environment.

  2. Daily interactions with aging parents and adult children: Associations with negative affect and diurnal cortisol.

    Science.gov (United States)

    Birditt, Kira S; Manalel, Jasmine A; Kim, Kyungmin; Zarit, Steven H; Fingerman, Karen L

    2017-09-01

    Midlife adults report greater investment in their children than in their parents, and these ties have important implications for well-being. To date, little research has addressed daily experiences in these ties. The present study examines daily experiences (negative and positive) with aging parents and adult children and their associations with daily negative affect and diurnal cortisol rhythms. Participants were middle-aged adults (N = 156; 56% women) from Wave 2 of the Family Exchanges Study, conducted in 2013, who completed a 7-day daily diary study, which included assessments of daily negative and positive social encounters and negative affect, and 4 days of saliva collection, which was collected 3 times a day (upon waking, 30 min after waking, and at bedtime) and assayed for cortisol. Multilevel models revealed that individuals were more likely to have contact with adult children than with parents but more likely to have negative experiences (negative interactions, avoidance, negative thoughts) with parents than with adult children. Nevertheless, contact and negative experiences with adult children were more consistently associated with negative affect and daily cortisol patterns than were interactions with parents. Findings are consistent with the intergenerational stake hypothesis, which suggests that individuals have a greater stake in their children than in their parents. Indeed, negative experiences with adult children may be more salient because tensions with adult children occur less frequently than do tensions with parents. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Consortium analysis of gene and gene–folate interactions in purine and pyrimidine metabolism pathways with ovarian carcinoma risk

    DEFF Research Database (Denmark)

    Kelemen, Linda E; Terry, Kathryn L; Goodman, Marc T

    2014-01-01

    SCOPE: We reevaluated previously reported associations between variants in pathways of one-carbon (1-C) (folate) transfer genes and ovarian carcinoma (OC) risk, and in related pathways of purine and pyrimidine metabolism, and assessed interactions with folate intake. METHODS AND RESULTS: Odds rat...

  4. Ecdysteroids affect in vivo protein metabolism of the flight muscle of the tobacco hornworm (Manduca sexta)

    Science.gov (United States)

    Tischler, M. E.; Wu, M.; Cook, P.; Hodsden, S.

    1990-01-01

    Ecdysteroid growth promotion of the dorsolongitudinal flight muscle of Manduca sexta was studied by measuring in vivo protein metabolism using both "flooding-dose" and "non-carrier" techniques. These procedures differ in that the former method includes injection of non-labelled phenylalanine (30 micromoles/insect) together with the [3H]amino acid. Injected radioactivity plateaued in the haemolymph within 7 min. With the flooding-dose method, haemolymph and intramuscular specific radioactivities were similar between 15 min and 2 h. Incorporation of [3H]phenylalanine into muscle protein was linear with either method between 30 and 120 min. Fractional rates (%/12 h) of synthesis with the flooding-dose technique were best measured after 1 h because of the initial delay in radioactivity equilibration. Estimation of body phenylalanine turnover with the non-carrier method showed 24-53%/h which was negligible with the flooding-dose method. Since the two methods yielded similar rates of protein synthesis, the large injection of non-labelled amino acid did not alter the rate of synthesis. Because the flooding-dose technique requires only a single time point measurement, it is the preferred method. The decline and eventual cessation of flight-muscle growth was mostly a consequence of declining protein synthesis though degradation increased between 76-86 h before eclosion and was relatively rapid. This decline in muscle growth could be prevented by treating pupae with 20-hydroxyecdysone (10 micrograms/insect). Protein accretion was promoted by a decline of up to 80% in protein breakdown, which was offset in part by a concurrent though much smaller decrease in protein synthesis. Therefore, ecdysteroids may increase flight-muscle growth by inhibiting proteolysis.

  5. [Metabolic Syndrome and Bipolar Affective Disorder: A Review of the Literature].

    Science.gov (United States)

    Jaramillo, Carlos López; Mejía, Adelaida Castaño; Velásquez, Alicia Henao; Restrepo Palacio, Tomás Felipe; Zuluaga, Julieta Osorio

    2013-09-01

    Bipolar disorder (BD) is a chronic psychiatric disorder that is found within the first ten causes of disability and premature mortality. The metabolic syndrome (MS) is a group of risk factors (RF) that predispose to cardiovascular disease (CV), diabetes and early mortality. Both diseases generate high costs to the health system. Major studies have shown that MS has a higher prevalence in patients with mental disorders compared to the general population. The incidence of MS in BD is multifactorial, and due to iatrogenic, genetic, economic, psychological, and behavioral causes related to the health system. The most common RF found is these patients was an increased abdominal circumference, and it was found that the risk of suffering this disease was greater in women and Hispanic patients. As regards the increase in RF to develop a CV in patients with BD, there have been several explanations based on the risky behavior of patients with mental illness, included tobacco abuse, physical inactivity and high calorie diets. An additional explanation described in literature is the view of BD as a multisystemic inflammatory illness, supported by the explanation that inflammation is a crucial element in atherosclerosis, endothelial dysfunction, platelet rupture, and thrombosis. The pathophysiology of MS and BD include factors such as adrenal, thyroid and sympathetic nervous system dysfunction, as well as poor lifestyle and medication common in these patients. This article attempts to give the reader an overall view of the information published in literature to date, as regards the association between BD and MS. Copyright © 2013 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  6. Does exercise training affect resting metabolic rate in adolescents with obesity?

    Science.gov (United States)

    Alberga, Angela S; Prud'homme, Denis; Sigal, Ronald J; Goldfield, Gary S; Hadjiyannakis, Stasia; Gougeon, Réjeanne; Phillips, Penny; Malcolm, Janine; Wells, George A; Doucette, Steve; Ma, Jinhui; Kenny, Glen P

    2017-01-01

    We evaluated the hypothesis that resistance exercise training performed alone or in combination with aerobic exercise training would increase resting metabolic rate (RMR) relative to aerobic-only and nonexercising control groups. Postpubertal adolescents (N = 304) aged 14-18 years with obesity (body mass index (BMI) ≥ 95th percentile) or overweight (BMI ≥ 85th percentile + additional diabetes risk factor(s)) were randomized to 4 groups for 22 weeks: Aerobic exercise training, Resistance exercise training, Combined aerobic and resistance exercise training, or Control. All participants received dietary counselling targeting a daily energy deficit of 250 kcal. RMR was measured by indirect calorimetry and body composition by magnetic resonance imaging. There was no significant change in RMR in any group, in spite of significant within-group increases in fat-free mass in the Aerobic, Resistance, and Combined exercise training groups. RMR at baseline and 6 months were Aerobic: 1972 ± 38 and 1990 ± 41; Resistance: 2024 ± 37 and 1992 ± 41; Combined: 2023 ± 38 and 1995 ± 38; Control: 2075 ± 38 and 2073 ± 39 kcal/day (p > 0.05). There were no between-group differences in RMR after adjustment for total body weight or fat-free mass between groups over time. Per-protocol analyses including only participants with ≥70% adherence, and analyses stratified by sex, also showed no within- or between-group differences in RMR. In conclusion, despite an increase in fat-free mass in all exercise groups, 6 months of aerobic, resistance, or combined training with modest dietary restriction did not increase RMR compared with diet only in adolescents with obesity.

  7. Experimentally increased temperature and hypoxia affect stability of social hierarchy and metabolism of the Amazonian cichlid Apistogramma agassizii.

    Science.gov (United States)

    Kochhann, Daiani; Campos, Derek Felipe; Val, Adalberto Luis

    2015-12-01

    The primary goal of this study was to understand how changes in temperature and oxygen could influence social behaviour and aerobic metabolism of the Amazonian dwarf cichlid Apistogramma agassizii. Social hierarchies were established over a period of 96h by observing the social interactions, feeding behaviour and shelter use in groups of four males. In the experimental environment, temperature was increased to 29°C in the high-temperature treatment, and oxygen lowered to 1.0mg·L(-1)O2 in the hypoxia treatment. Fish were maintained at this condition for 96h. The control was maintained at 26°C and 6.6mg·L(-1)O2. After the experimental exposure, metabolism was measured as routine metabolic rate (RMR) and electron transport system (ETS) activity. There was a reduction in hierarchy stability at high-temperature. Aggression changed after environmental changes. Dominant and subdominant fish at high temperatures increased their biting, compared with control-dominant. In contrast, hypoxia-dominant fish decreased their aggressive acts compared with all other fish. Shelter use decreased in control and hypoxic dominant fish. Dominant fish from undisturbed environments eat more than their subordinates. There was a decrease of RMR in fish exposed to the hypoxic environment when compared with control or high-temperature fish, independent of social position. Control-dominant fish had higher RMR than their subordinates. ETS activity increased in fish exposed to high temperatures; however, there was no effect on social rank. Our study reinforces the importance of environmental changes for the maintenance of hierarchies and their characteristics and highlights that most of the changes occur in the dominant position. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction.

    Science.gov (United States)

    Pierce, Brandon L; Tong, Lin; Argos, Maria; Gao, Jianjun; Farzana, Jasmine; Roy, Shantanu; Paul-Brutus, Rachelle; Rahaman, Ronald; Rakibuz-Zaman, Muhammad; Parvez, Faruque; Ahmed, Alauddin; Quasem, Iftekhar; Hore, Samar K; Alam, Shafiul; Islam, Tariqul; Harjes, Judith; Sarwar, Golam; Slavkovich, Vesna; Gamble, Mary V; Chen, Yu; Yunus, Mohammad; Rahman, Mahfuzar; Baron, John A; Graziano, Joseph H; Ahsan, Habibul

    2013-12-01

    Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.

  9. Markers of bone metabolism are affected by renal function and growth hormone therapy in children with chronic kidney disease.

    Science.gov (United States)

    Doyon, Anke; Fischer, Dagmar-Christiane; Bayazit, Aysun Karabay; Canpolat, Nur; Duzova, Ali; Sözeri, Betül; Bacchetta, Justine; Balat, Ayse; Büscher, Anja; Candan, Cengiz; Cakar, Nilgun; Donmez, Osman; Dusek, Jiri; Heckel, Martina; Klaus, Günter; Mir, Sevgi; Özcelik, Gül; Sever, Lale; Shroff, Rukshana; Vidal, Enrico; Wühl, Elke; Gondan, Matthias; Melk, Anette; Querfeld, Uwe; Haffner, Dieter; Schaefer, Franz

    2015-01-01

    The extent and relevance of altered bone metabolism for statural growth in children with chronic kidney disease is controversial. We analyzed the impact of renal dysfunction and recombinant growth hormone therapy on a panel of serum markers of bone metabolism in a large pediatric chronic kidney disease cohort. Bone alkaline phosphatase (BAP), tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin and C-terminal FGF-23 (cFGF23) normalized for age and sex were analyzed in 556 children aged 6-18 years with an estimated glomerular filtration rate (eGFR) of 10-60 ml/min/1.73 m2. 41 children receiving recombinant growth hormone therapy were compared to an untreated matched control group. Standardized levels of BAP, TRAP5b and cFGF-23 were increased whereas sclerostin was reduced. BAP was correlated positively and cFGF-23 inversely with eGFR. Intact serum parathormone was an independent positive predictor of BAP and TRAP5b and negatively associated with sclerostin. BAP and TRAP5B were negatively affected by increased C-reactive protein levels. In children receiving recombinant growth hormone, BAP was higher and TRAP5b lower than in untreated controls. Sclerostin levels were in the normal range and higher than in untreated controls. Serum sclerostin and cFGF-23 independently predicted height standard deviation score, and BAP and TRAP5b the prospective change in height standard deviation score. Markers of bone metabolism indicate a high-bone turnover state in children with chronic kidney disease. Growth hormone induces an osteoanabolic pattern and normalizes osteocyte activity. The osteocyte markers cFGF23 and sclerostin are associated with standardized height, and the markers of bone turnover predict height velocity.

  10. The Role of Cognitive and Affective Empathy in Spouses' Support Interactions: An Observational Study

    Science.gov (United States)

    Verhofstadt, Lesley; Devoldre, Inge; Buysse, Ann; Stevens, Michael; Hinnekens, Céline; Ickes, William; Davis, Mark

    2016-01-01

    The present study examined how support providers’ empathic dispositions (dispositional perspective taking, empathic concern, and personal distress) as well as their situational empathic reactions (interaction-based perspective taking, empathic concern, and personal distress) relate to the provision of spousal support during observed support interactions. Forty-five committed couples provided questionnaire data and participated in two ten-minute social support interactions designed to assess behaviors when partners are offering and soliciting social support. A video-review task was used to assess situational forms of perspective taking (e.g., empathic accuracy), empathic concern and personal distress. Data were analyzed by means of the multi-level Actor-Partner Interdependence Model. Results revealed that providers scoring higher on affective empathy (i.e., dispositional empathic concern), provided lower levels of negative support. In addition, for male partners, scoring higher on cognitive empathy (i.e., situational perspective taking) was related to lower levels of negative support provision. For both partners, higher scores on cognitive empathy (i.e., situational perspective taking) correlated with more instrumental support provision. Male providers scoring higher on affective empathy (i.e., situational personal distress) provided higher levels of instrumental support. Dispositional perspective taking was related to higher scores on emotional support provision for male providers. The current study furthers our insight into the empathy-support link, by revealing differential effects (a) for men and women, (b) of both cognitive and affective empathy, and (c) of dispositional as well as situational empathy, on different types of support provision. PMID:26910769

  11. Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem

    Science.gov (United States)

    Zaller, Johann G.; Heigl, Florian; Ruess, Liliane; Grabmaier, Andrea

    2014-01-01

    Herbicides containing glyphosate are widely used in agriculture and private gardens, however, surprisingly little is known on potential side effects on non-target soil organisms. In a greenhouse experiment with white clover we investigated, to what extent a globally-used glyphosate herbicide affects interactions between essential soil organisms such as earthworms and arbuscular mycorrhizal fungi (AMF). We found that herbicides significantly decreased root mycorrhization, soil AMF spore biomass, vesicles and propagules. Herbicide application and earthworms increased soil hyphal biomass and tended to reduce soil water infiltration after a simulated heavy rainfall. Herbicide application in interaction with AMF led to slightly heavier but less active earthworms. Leaching of glyphosate after a simulated rainfall was substantial and altered by earthworms and AMF. These sizeable changes provide impetus for more general attention to side-effects of glyphosate-based herbicides on key soil organisms and their associated ecosystem services. PMID:25005713

  12. Maternal interaction style in affective disordered, physically ill, and normal women.

    Science.gov (United States)

    Hamilton, E B; Jones, M; Hammen, C

    1993-09-01

    Affective style (AS) and communication deviance (CD) have been suggested as markers of dysfunctional family environments that may be associated with psychiatric illness. Studies have focused mainly on parental responses during family interactions when an offspring is the identified patient. The present study is unique in examining AS and CD in mothers with unipolar depression, bipolar disorder, or chronic physical illness, and in normal controls. The sample consisted of 64 mothers with children ages 8 to 16. Unipolar mothers were more likely to show negative AS than were any other maternal group. There were no group differences for CD. Chronic stress, few positive life events, and single parenting were associated with AS. CD was associated solely with lower socioeconomic status. Results suggest that dysfunctional interactions are determined not only by maternal psychopathology, but also by an array of contextual factors that are related to the quality of the family environment.

  13. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    Science.gov (United States)

    Domin, Hanna; Zurita-Gutiérrez, Yazmín H.; Scotti, Marco; Buttlar, Jann; Hentschel Humeida, Ute; Fraune, Sebastian

    2018-01-01

    The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community. PMID:29740401

  14. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    Directory of Open Access Journals (Sweden)

    Hanna Domin

    2018-04-01

    Full Text Available The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community.

  15. Glucagon-Like Peptide 2 Stimulates Postresection Intestinal Adaptation in Preterm Pigs by Affecting Proteins Related to Protein, Carbohydrate, and Sulphur Metabolism

    DEFF Research Database (Denmark)

    Jiang, Pingping; Vegge, Andreas; Thymann, Thomas

    2017-01-01

    cellular structural proteins, while the added GLP-2 treatment affected proteins involved in protein processing and the metabolism of protein, carbohydrate, and sulphur. CONCLUSION: In the first days following resection, proteins affected by resection plus GLP-2 treatment differed markedly from those...

  16. GlmS and NagB regulate amino sugar metabolism in opposing directions and affect Streptococcus mutans virulence.

    Directory of Open Access Journals (Sweden)

    Miki Kawada-Matsuo

    Full Text Available Streptococcus mutans is a cariogenic pathogen that produces an extracellular polysaccharide (glucan from dietary sugars, which allows it to establish a reproductive niche and secrete acids that degrade tooth enamel. While two enzymes (GlmS and NagB are known to be key factors affecting the entrance of amino sugars into glycolysis and cell wall synthesis in several other bacteria, their roles in S. mutans remain unclear. Therefore, we investigated the roles of GlmS and NagB in S. mutans sugar metabolism and determined whether they have an effect on virulence. NagB expression increased in the presence of GlcNAc while GlmS expression decreased, suggesting that the regulation of these enzymes, which functionally oppose one another, is dependent on the concentration of environmental GlcNAc. A glmS-inactivated mutant could not grow in the absence of GlcNAc, while nagB-inactivated mutant growth was decreased in the presence of GlcNAc. Also, nagB inactivation was found to decrease the expression of virulence factors, including cell-surface protein antigen and glucosyltransferase, and to decrease biofilm formation and saliva-induced S. mutans aggregation, while glmS inactivation had the opposite effects on virulence factor expression and bacterial aggregation. Our results suggest that GlmS and NagB function in sugar metabolism in opposing directions, increasing and decreasing S. mutans virulence, respectively.

  17. Emotionally laden impulsivity interacts with affect in predicting addictive use of online sexual activity in men.

    Science.gov (United States)

    Wéry, Aline; Deleuze, Jory; Canale, Natale; Billieux, Joël

    2018-01-01

    The interest in studying addictive use of online sexual activities (OSA) has grown sharply over the last decade. Despite the burgeoning number of studies conceptualizing the excessive use of OSA as an addictive disorder, few have tested its relations to impulsivity, which is known to constitute a hallmark of addictive behaviors. To address this missing gap in the literature, we tested the relationships between addictive OSA use, impulsivity traits, and affect among a convenience sample of men (N=182; age, M=29.17, SD = 9.34), building upon a theoretically driven model that distinguishes the various facets of impulsivity. Results showed that negative urgency (an impulsivity trait reflecting the tendency to act rashly in negative emotional states) and negative affect interact in predicting addictive OSA use. These results highlight the pivotal role played by negative urgency and negative affect in addictive OSA use, supporting the relevance of psychological interventions that focus on improving emotional regulation (e.g., to reduce negative affect and learn healthier coping strategies) to mitigate excessive use of OSA. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism

    DEFF Research Database (Denmark)

    Christensen, Lise-Lotte; True, Kirsten; Hamilton, Mark P.

    2016-01-01

    It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA-sequencing demonstrated that the snoRNA host...... gene 16 (SNHG16) is significantly up-regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt-regulated transcription factors, including ASCL2, ETS2, and c-Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16...... indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved...

  19. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage.

    Science.gov (United States)

    Cosme Silva, Gláucia Michelle; Silva, Willian Batista; Medeiros, David B; Salvador, Acácio Rodrigues; Cordeiro, Maria Helena Menezes; da Silva, Natália Martins; Santana, Diederson Bortolini; Mizobutsi, Gisele Polete

    2017-12-15

    Mango is a highly perishable fruit with a short post-harvest time due to the intense metabolic activity after harvesting. In attempt to evaluate the effects of chitosan in mango fruits, it was treated with 0%, 1%, 2% or 3% of chitosan solutions, placed into plastic trays, and stored at room temperature. Changes in physical and chemical parameters were evaluated. Chitosan delayed the climacteric peak, water loss and firmness. Further, few changes in soluble solid content, titratable acidity, pH of the pulp as well as in sugar content and decreased starch degradation were observed. Altogether, our results suggest chitosan edible coating effectively prolongs the quality attributes, affecting basic mitochondrial respiration and starch degradation rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Targeting P-selectin glycoprotein ligand-1/P-selectin interactions as a novel therapy for metabolic syndrome.

    Science.gov (United States)

    Patel, Madhukar S; Miranda-Nieves, David; Chen, Jiaxuan; Haller, Carolyn A; Chaikof, Elliot L

    2017-05-01

    Obesity-induced insulin resistance and metabolic syndrome continue to pose an important public health challenge worldwide as they significantly increase the risk of type 2 diabetes and atherosclerotic cardiovascular disease. Advances in the pathophysiologic understanding of this process has identified that chronic inflammation plays a pivotal role. In this regard, given that both animal models and human studies have demonstrated that the interaction of P-selectin glycoprotein ligand-1 (PSGL-1) with P-selectin is not only critical for normal immune response but also is upregulated in the setting of metabolic syndrome, PSGL-1/P-selectin interactions provide a novel target for preventing and treating resultant disease. Current approaches of interfering with PSGL-1/P-selectin interactions include targeted antibodies, recombinant immunoglobulins that competitively bind P-selectin, and synthetic molecular therapies. Experimental models as well as clinical trials assessing the role of these modalities in a variety of diseases have continued to contribute to the understanding of PSGL-1/P-selectin interactions and have demonstrated the difficulty in creating clinically relevant therapeutics. Most recently, however, computational simulations have further enhanced our understanding of the structural features of PSGL-1 and related glycomimetics, which are responsible for high-affinity selectin interactions. Leveraging these insights for the design of next generation agents has thus led to development of a promising synthetic method for generating PSGL-1 glycosulfopeptide mimetics for the treatment of metabolic syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    Science.gov (United States)

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.

  2. Metabolic interaction between toluene, trichloroethylene and n-hexane in humans

    DEFF Research Database (Denmark)

    Bælum, Jesper; Mølhave, Lars; Hansen, Steen Honoré

    1998-01-01

    OBJECTIVES: This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane. METHODS: Eight healthy male volunteers were exposed to combinations of toluene (1.5 or 4 mg/min), trichloroethylene (1.5 or 4 mg/min), and n-hexane (0.3 or 1.0 mg......: When the low dose rates were combined, the end exhaled concentrations were at or below the detection limit, while an increase in the dose rate of toluene increased the area under the end exhaled air concentration curve (AUC) of toluene, trichloroethylene, and n-hexane by factors of 44 (16......-117) [geometric mean and 95% confidence interval], 12.8 (4.1-40.0), and 2.2 (1.2-4.1), respectively. Trichloroethylene, in turn, increased the AUC 5.0 (1.9-13.4), 25.8 (8.2-80.8) and 2.9 (1.6-5.4), respectively, whereas the corresponding values for n-hexane were 1.9 (0.7-5.1), 1.5 (0.5-4.6), and 3.2 (1...

  3. Interaction between ractopamine and growth hormone in the metabolism of hypophysectomized female rats

    Directory of Open Access Journals (Sweden)

    Bianca Sacramento Barros

    2013-11-01

    Full Text Available Ractopamine and growth hormone have been extensively studied due to their ability to generate a better partition of nutrients in the body, providing an increased muscle protein synthesis and lipolysis in adipose tissue. Thus, this article aims to check the effects of interaction between these substances on the metabolism of hypophysectomized female rats, and their individual effects on the body composition of these animals. Thirty Fisher rats were distributed into five treatments, one of them was a normal control group, one was a hypophysectomized control group, and the other three were hypophysectomized animal groups treated with ractopamine (80 mg/kg/day, with growth hormone (4 mg/kg/day, and with a combination of them, all with six replicates in each group. The association between these substances provided a higher percentage of protein and decreased ether extract in the animals’ carcass. Furthermore, it caused an increase in water intake, in urine production, and decreased relative weight of kidneys, liver, and spleen when compared to the control group. The use of growth hormone provided a higher final weight gain and feeding effectiveness, lower heart weight and increased blood glucose level, and the use of ractopamine resulted in a higher lung weight, increased total cholesterol and IGF-1, and decreased peptide C concentration.

  4. Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments.

    Science.gov (United States)

    Lüttge, Ulrich

    2010-01-01

    Single stressors such as scarcity of water and extreme temperatures dominate the struggle for life in severely dry desert ecosystems or cold polar regions and at high elevations. In contrast, stress in the tropics typically arises from a dynamic network of interacting stressors, such as availability of water, CO(2), light and nutrients, temperature and salinity. This requires more plastic spatio-temporal responsiveness and versatility in the acquisition and defence of ecological niches. The mode of photosynthesis of crassulacean acid metabolism (CAM) is described and its flexible expression endows plants with powerful strategies for both acclimation and adaptation. Thus, CAM plants are able to inhabit many diverse habitats in the tropics and are not, as commonly thought, successful predominantly in dry, high-insolation habitats. Typical tropical CAM habitats or ecosystems include exposed lava fields, rock outcrops of inselbergs, salinas, savannas, restingas, high-altitude páramos, dry forests and moist forests. Morphotypical and physiotypical plasticity of CAM phenotypes allow a wide ecophysiological amplitude of niche occupation in the tropics. Physiological and biochemical plasticity appear more responsive by having more readily reversible variations in performance than do morphological adaptations. This makes CAM plants particularly fit for the multi-factor stressor networks of tropical forests. Thus, while the physiognomy of semi-deserts outside the tropics is often determined by tall succulent CAM plants, tropical forests house many more CAM plants in terms of quantity (biomass) and quality (species diversity).

  5. Cre-Mediated Stress Affects Sirtuin Expression Levels, Peroxisome Biogenesis and Metabolism, Antioxidant and Proinflammatory Signaling Pathways

    Science.gov (United States)

    Xiao, Yu; Karnati, Srikanth; Qian, Guofeng; Nenicu, Anca; Fan, Wei; Tchatalbachev, Svetlin; Höland, Anita; Hossain, Hamid; Guillou, Florian; Lüers, Georg H.; Baumgart-Vogt, Eveline

    2012-01-01

    Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts), inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14) as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase). In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2) and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7) in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt) with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  6. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica M. V. Pino

    2017-05-01

    Full Text Available Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR or with normal diet (CTL for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological

  7. Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways.

    Directory of Open Access Journals (Sweden)

    Yu Xiao

    Full Text Available Cre-mediated excision of loxP sites is widely used in mice to manipulate gene function in a tissue-specific manner. To analyze phenotypic alterations related to Cre-expression, we have used AMH-Cre-transgenic mice as a model system. Different Cre expression levels were obtained by investigation of C57BL/6J wild type as well as heterozygous and homozygous AMH-Cre-mice. Our results indicate that Cre-expression itself in Sertoli cells already has led to oxidative stress and lipid peroxidation (4-HNE lysine adducts, inducing PPARα/γ, peroxisome proliferation and alterations of peroxisome biogenesis (PEX5, PEX13 and PEX14 as well as metabolic proteins (ABCD1, ABCD3, MFP1, thiolase B, catalase. In addition to the strong catalase increase, a NRF2- and FOXO3-mediated antioxidative response (HMOX1 of the endoplasmic reticulum and mitochondrial SOD2 and a NF-κB activation were noted. TGFβ1 and proinflammatory cytokines like IL1, IL6 and TNFα were upregulated and stress-related signaling pathways were induced. Sertoli cell mRNA-microarray analysis revealed an increase of TNFR2-signaling components. 53BP1 recruitment and expression levels for DNA repair genes as well as for p53 were elevated and the ones for related sirtuin deacetylases affected (SIRT 1, 3-7 in Sertoli cells. Under chronic Cre-mediated DNA damage conditions a strong downregulation of Sirt1 was observed, suggesting that the decrease of this important coordinator between DNA repair and metabolic signaling might induce the repression release of major transcription factors regulating metabolic and cytokine-mediated stress pathways. Indeed, caspase-3 was activated and increased germ cell apoptosis was observed, suggesting paracrine effects. In conclusion, the observed wide stress-induced effects and metabolic alterations suggest that it is essential to use the correct control animals (Cre/Wt with matched Cre expression levels to differentiate between Cre-mediated and specific gene-knock out

  8. Possible drug–drug interaction in dogs and cats resulted from alteration in drug metabolism: A mini review

    Directory of Open Access Journals (Sweden)

    Kazuaki Sasaki

    2015-05-01

    Full Text Available Pharmacokinetic drug–drug interactions (in particular at metabolism may result in fatal adverse effects in some cases. This basic information, therefore, is needed for drug therapy even in veterinary medicine, as multidrug therapy is not rare in canines and felines. The aim of this review was focused on possible drug–drug interactions in dogs and cats. The interaction includes enzyme induction by phenobarbital, enzyme inhibition by ketoconazole and fluoroquinolones, and down-regulation of enzymes by dexamethasone. A final conclusion based upon the available literatures and author’s experience is given at the end of the review.

  9. The Western Diet–Microbiome-Host Interaction and Its Role in Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Marit K. Zinöcker

    2018-03-01

    Full Text Available The dietary pattern that characterizes the Western diet is strongly associated with obesity and related metabolic diseases, but biological mechanisms supporting these associations remain largely unknown. We argue that the Western diet promotes inflammation that arises from both structural and behavioral changes in the resident microbiome. The environment created in the gut by ultra-processed foods, a hallmark of the Western diet, is an evolutionarily unique selection ground for microbes that can promote diverse forms of inflammatory disease. Recognizing the importance of the microbiome in the development of diet-related disease has implications for future research, public dietary advice as well as food production practices. Research into food patterns suggests that whole foods are a common denominator of diets associated with a low level of diet-related disease. Hence, by studying how ultra-processing changes the properties of whole foods and how these foods affect the gut microbiome, more useful dietary guidelines can be made. Innovations in food production should be focusing on enabling health in the super-organism of man and microbe, and stronger regulation of potentially hazardous components of food products is warranted.

  10. A gut feeling: Microbiome-brain-immune interactions modulate social and affective behaviors.

    Science.gov (United States)

    Sylvia, Kristyn E; Demas, Gregory E

    2018-03-01

    The expression of a wide range of social and affective behaviors, including aggression and investigation, as well as anxiety- and depressive-like behaviors, involves interactions among many different physiological systems, including the neuroendocrine and immune systems. Recent work suggests that the gut microbiome may also play a critical role in modulating behavior and likely functions as an important integrator across physiological systems. Microbes within the gut may communicate with the brain via both neural and humoral pathways, providing numerous avenues of research in the area of the gut-brain axis. We are now just beginning to understand the intricate relationships among the brain, microbiome, and immune system and how they work in concert to influence behavior. The effects of different forms of experience (e.g., changes in diet, immune challenge, and psychological stress) on the brain, gut microbiome, and the immune system have often been studied independently. Though because these systems do not work in isolation, it is essential to shift our focus to the connections among them as we move forward in our investigations of the gut-brain axis, the shaping of behavioral phenotypes, and the possible clinical implications of these interactions. This review summarizes the recent progress the field has made in understanding the important role the gut microbiome plays in the modulation of social and affective behaviors, as well as some of the intricate mechanisms by which the microbiome may be communicating with the brain and immune system. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Interaction of IFNL3 with insulin resistance, steatosis and lipid metabolism in chronic hepatitis C virus infection.

    Science.gov (United States)

    Eslam, Mohammed; Booth, David R; George, Jacob; Ahlenstiel, Golo

    2013-11-07

    Metabolic changes are inextricably linked to chronic hepatitis C (CHC). Recently polymorphisms in the IFNL3 (IL28B) region have been shown to be strongly associated with spontaneous and treatment induced recovery from hepatitis C virus (HCV) infection. Further, circumstantial evidence suggests a link between IFNL3 single nucleotide polymorphisms and lipid metabolism, steatosis and insulin resistance in CHC. The emerging picture suggests that the responder genotypes of IFNL3 polymorphisms are associated with a higher serum lipid profile, and less frequent steatosis and insulin resistance. This review analyzes the current data regarding this interaction and its meaning for HCV pathogenesis and disease progression.

  12. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    Science.gov (United States)

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed.

  13. Ammonium-related metabolic changes affect somatic embryogenesis in pumpkin (Cucurbita pepo L.).

    Science.gov (United States)

    Mihaljević, Snježana; Radić, Sandra; Bauer, Nataša; Garić, Rade; Mihaljević, Branka; Horvat, Gordana; Leljak-Levanić, Dunja; Jelaska, Sibila

    2011-11-01

    Somatic embryogenesis in pumpkin can be induced on auxin-containing medium and also on hormone-free medium containing 1mM ammonium (NH(4)(+)) as the sole source of nitrogen. Growth of NH(4)(+)-induced embryogenic tissue was slow and caused considerable acidification of the culture medium. Small spherical cells with dense cytoplasma formed proembryogenic cell clusters that could not develop into late stage embryos. Buffering of NH(4)(+) medium with 25mM 2-(N-morpholino)-ethane-sulfonic acid enhanced tissue proliferation, but no further differentiation was observed. Later stage embryos developed only after re-supply of nitrogen in form of nitrate or l-glutamine. Effects of nitrogen status and pH of culture media on ammonium assimilation were analyzed by following the activity of glutamine synthetase (GS) in relation to phenylalanine ammonia-lyase (PAL). Increased activity of GS and PAL in NH(4)(+) induced tissue coincided with significantly higher activity of stress-related enzymes superoxide dismutase (SOD) and soluble peroxidase (POD), indicating oxidative stress response of embryogenic tissue to NH(4)(+) as the sole source of nitrogen. In addition, considerable increase was observed in callose accumulation and esterase activity, the early markers of somatic embryogenesis. Activity of stress-related enzymes decreased after the re-supply of nitrate (20mM) or Gln (10mM) in combination with NH(4)(+) (1mM), which subsequently triggered globular embryo development. Together, these results suggest that stress responses, as affected by nitrogen supply, contribute to the regulation of embryogenic competence in pumpkin. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  15. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions

    International Nuclear Information System (INIS)

    Akandeh, M.; Kocheili, F.; Rasekh, A.; Soufbaf, M.

    2017-01-01

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions. (author)

  16. Gamma irradiation on canola seeds affects herbivore-plant and host-parasitoid interactions

    Energy Technology Data Exchange (ETDEWEB)

    Akandeh, M.; Kocheili, F.; Rasekh, A. [Dept. of Entomology, Shahid Chamran Univ of Ahvaz (Iran, Islamic Republic of); Soufbaf, M., E-mail: msoufbaf@nrcam.org [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of)

    2017-06-15

    As an agricultural modernization, gamma irradiation is an important method for enhancing crop yield and quality. Nevertheless, its use can alter other plant traits such as nutrition and resistance to different biotic/abiotic stresses that consequently affect plant-insect interactions. A tritrophic system was utilized based on two canola mutant lines produced through gamma irradiation (RGS 8-1 and Talaye 8-3). Plutella xylostella (L.), as a worldwide pest of Brassicaceae and Cotesia vestalis (Holiday) as a key biocontrol agent of P. xylostella were examined for the potential indirect effects of canola seed irradiation on the experimental insects' performance when acting on the respective mutant lines. This study showed that physical mutation did not affect plant nitrogen and herbivore-damaged total phenolics; however, phenolic compounds showed greater concentration in damaged leaves than undamaged leaves of both mutant and control plants. The relative growth rate and pupal weight of P. xylostella reared on RGS 8-1 were significantly higher than those reared on the control RGS. There was no significant difference by performance parameters of the parasitoid, C. vestalis, including total pre-oviposition period, adult longevity, adult fresh body weight of males and females, pupal weight, forewing area, and total longevity of both sexes on tested canola cultivars in comparison with their mutant lines. Life table parameters of C. vestalis on mutant lines of both cultivars, RGS and Talaye, were not significantly different from their control treatments. Comprehensive studies should be conducted to find out the mechanisms under which gamma rays affect plant-insect interactions. (author)

  17. Some interactive factors affecting trench-cover integrity on low-level waste sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Lane, L.J.; Steger, J.G.; DePoorter, G.L.

    1982-01-01

    This paper describes important mechanisms by which radionuclide can be transported from low-level waste disposal sites into biological pathways, discuss interactions of abiotic and biotic processes, and recommends environmental characteristics that should be measured to design sites that minimize this transport. Past experience at shallow land burial sites for low-level radioactive wastes suggest that occurrences of waste exposure and radionuclide transport are often related to inadequate trench cover designs. Meeting performance standards at low-level waste sites can only be achieved by recognizing that physical, chemical, and biological processes operating on and in a trench cover profile are highly interactive. Failure to do so can lead to improper design criteria and subsequent remedial action procedures that can adversely affect site stability. Based upon field experiments and computer modeling, recommendations are made on site characteristics that require measurement in order to design systems that reduce surface runoff and erosion, manage soil moisture and biota in the cover profile to maximize evapotranspiration and minimize percolation, and place bounds on the intrusion potential of plants and animals into the waste material. Major unresolved problems include developing probabilistic approaches that include climatic variability, improved knowledge of soil-water-plant-erosion relationships, development of practical vegetation establishment and maintenance procedures, prediction and quantification of site potential and plant succession, and understanding the interaction of processes occurring on and in the cover profile with deeper subsurface processes

  18. Physiological and endocrino-metabolic factors affecting serum myoglobin levels assayed by a radioimmunological method

    International Nuclear Information System (INIS)

    Clerico, A.; Giampietro, O.; Del Chicca, M.G.

    1984-01-01

    Only recently with the introduction of accurate and sensitive RIA methods it has been possible to detect significant amounts of myoglobin (M) in human sera. We studied serum M levels by a RIA in normal subjects and athletes with different age, sex and muscle mass, at rest and in different hours of the day, and after physical training, in hypothyroid and acromegalic patients before and after therapy, with the aim to evidentiate the possible factors affecting serum M levels. We used for M assay a very sensitive RIA method. We studied 62 normal adult persons (32 men and 30 women, 16-62 years of age), 93 children (0-12 year old), 15 neonates and 9 athletes. In addition, in 21 normal adult subjects (11 men, 10 women) circadian profiles of M concentrations were studied at rest. A significant circadian rhythm was found in 18 out 21 subjects studied, with higher M levels in the morning hours. Children showed low M concentrations (10.8 - 6.1 ng/ml), while in neonates higher M levels were found. Adult men showed significantly higher M levels (26.2 +- 10.3 ng/ml) than women (19.1 +- 7.3 ng/ml) at 8-10 a.m. A significant correlation between body mass and M levels was found in nonobese-adult men, women and athletes (r=0.7195, n=60, p<0.001) at 8-10 a.m. This correlation was also clearly evident at every hour of the day in the 21 subjects studied for circadian profiles. Myoglobin levels greatly increased after physical training. In 6 of 10 hypothyroid patients M was cleary elevated before substitutive therapy; a significant inverse correlation was found between serum M levels and circulating peripheral (free and total) thyroid hormones. Before treatment, in all acromegalics basal M levels were found to be slightly higher than normal, with significant circadian rhythm, as in normals. In addition, a 'biphasic' pattern of M levels in relation to the behaviour of serum GH concentrations was observed. (Author)

  19. Interactions Between Industrial Yeasts and Chemical Contaminants in Grape Juice Affect Wine Composition Profile

    Directory of Open Access Journals (Sweden)

    Etjen Bizaj

    2014-01-01

    Full Text Available The interaction between four industrial wine yeast strains and grape juice chemical contaminants during alcoholic fermentation was studied. Industrial strains of Saccharomyces cerevisiae (AWRI 0838, S. cerevisiae mutant with low H2S production phenotype (AWRI 1640, interspecies hybrid of S. cerevisiae and S. kudriavzevii (AWRI 1539 and a hybrid of AWRI 1640 and AWRI 1539 (AWRI 1810 were exposed separately to fungicides pyrimethanil (Pyr, 10 mg/L and fenhexamid (Fhx, 10 mg/L, as well as to the most common toxin produced by moulds on grapes, ochratoxin A (OTA, 5 μg/L, during alcoholic fermentation of Vitis vinifera L. cv. Sauvignon blanc juice. Contaminants were found to strongly impair fermentation performance and metabolic activity of all yeast strains studied. The chemical profile of wine was analyzed by HPLC (volatile acidity, concentrations of ethanol, fructose, glucose, glycerol and organic acids and the aromatic profile was analyzed using a stable isotope dilution technique using GC/MS (ethyl esters, acetates and aromatic alcohols and Kitagawa tubes (H2S. The chemical composition of wine with added contaminants was in all cases significantly different from the control. Of particular note is that the quantity of aromatic compounds produced by yeast was significantly lower. Yeast’s capacity to remove contaminants from wine at the end of the alcoholic fermentation, and after extended contact (7 days was determined. All the strains were able to remove contaminants from the media, moreover, after extended contact, the concentration of contaminants was in most cases lower.

  20. Neural systems supporting cognitive-affective interactions in adolescence: The role of puberty and implications for affective disorders

    Directory of Open Access Journals (Sweden)

    Cecile D. Ladouceur

    2012-08-01

    Full Text Available Evidence from longitudinal studies suggests that adolescence may represent a period of vulnerability that, in the context of adverse events, could contribute to developmental trajectories toward behavioral and emotional health problems, including affective disorders. Adolescence is also a sensitive period for the development of neural systems supporting cognitive-affective processes, which have been implicated in the pathophysiology of affective disorders such as anxiety and mood disorders. In particular, the onset of puberty brings about a cascade of physical, hormonal, psychological, and social changes that contribute in complex ways to the development of these systems. This article provides a brief overview of neuroimaging research pertaining to the development of cognitive-affective processes in adolescence. It also includes a brief review of evidence from animal and human neuroimaging studies suggesting that sex steroids influence the connectivity between prefrontal cortical and subcortical limbic regions in ways that contribute to increased reactivity to emotionally salient stimuli. We integrate these findings in the context of a developmental affective neuroscience framework suggesting that the impact of rising levels of sex steroids during puberty on fronto-limbic connectivity may be even greater in the context of protracted development of prefrontal cortical regions in adolescence. We conclude by discussing the implications of these findings for future research aimed at identifying neurodevelopmental markers of risk for future onset of affective disorders.

  1. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water.

    Science.gov (United States)

    Chen, Baowei; Arnold, Lora L; Cohen, Samuel M; Thomas, David J; Le, X Chris

    2011-12-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic (iAs) producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated arsenicals may contribute to toxicity associated with exposure to inorganic arsenic. Here, adult female wild-type (WT) C57BL/6 mice and female As3mt knockout (KO) mice received drinking water that contained 1, 10, or 25 ppm (mg/l) of arsenite for 33 days and blood, liver, kidney, and lung were taken for arsenic speciation. Genotype markedly affected concentrations of arsenicals in tissues. Summed concentrations of arsenicals in plasma were higher in WT than in KO mice; in red blood cells, summed concentrations of arsenicals were higher in KO than in WT mice. In liver, kidney, and lung, summed concentrations of arsenicals were greater in KO than in WT mice. Although capacity for arsenic methylation is much reduced in KO mice, some mono-, di-, and tri-methylated arsenicals were found in tissues of KO mice, likely reflecting the activity of other tissue methyltransferases or preabsorptive metabolism by the microbiota of the gastrointestinal tract. These results show that the genotype for arsenic methylation determines the phenotypes of arsenic retention and distribution and affects the dose- and organ-dependent toxicity associated with exposure to inorganic arsenic.

  2. The interactive effects of mercury and selenium on metabolic profiles, gene expression and antioxidant enzymes in halophyte Suaeda salsa.

    Science.gov (United States)

    Liu, Xiaoli; Lai, Yongkai; Sun, Hushan; Wang, Yiyan; Zou, Ning

    2016-04-01

    Suaeda salsa is the pioneer halophyte in the Yellow River Delta and was consumed as a popular vegetable. Mercury has become a highly risky contaminant in the sediment of intertidal zones of the Yellow River Delta. In this work, we investigated the interactive effects of mercury and selenium in S. salsa on the basis of metabolic profiling, antioxidant enzyme activities and gene expression quantification. Our results showed that mercury exposure (20 μg L(-1)) inhibited plant growth of S. salsa and induced significant metabolic responses and altered expression levels of INPS, CMO, and MDH in S. salsa samples, together with the increased activities of antioxidant enzymes including SOD and POD. Overall, these results indicated osmotic and oxidative stresses, disturbed protein degradation and energy metabolism change in S. salsa after mercury exposures. Additionally, the addition of selenium could induce both antagonistic and synergistic effects including alleviating protein degradation and aggravating osmotic stress caused by mercury. © 2014 Wiley Periodicals, Inc.

  3. Bacillus subtilis affects miRNAs and flavanoids production in Agrobacterium-Tobacco interaction.

    Science.gov (United States)

    Nazari, Fahimeh; Safaie, Naser; Soltani, Bahram Mohammad; Shams-Bakhsh, Masoud; Sharifi, Mohsen

    2017-09-01

    Agrobacterium tumefaciens is a very destructive plant pathogen. Selection of effective biological agents against this pathogen depends on more insight into molecular plant defence responses during the biocontrol agent-pathogen interaction. Auxin as a phytohormone is a key contributor in pathogenesis and plant defence and accumulation of auxin transport carriers are accompanied by increasing in flavonoid and miRNAs concentrations during plant interactions with bacteria. The aim of this research was molecular analysis of Bacillus subtilis (ATCC21332) biocontrol effect against A. tumefaciens (IBRC-M10701) pathogen interacting with Nicotiana tabacum plants. Tobacco plants were either treated with both or one of the challenging bacteria and the expression of miRNAs inside the plants were analysed through qRT-PCR. The results indicated that the bacterial treatments affect expression level of nta-miRNAs. In tobacco plants treated only with A. tumefaciens the expression of nta-miR393 was more than that was recorded for nta-miR167 (3.8 folds, P subtilis (2.1 folds, P subtilis alone, was similar to the amount recorded for the plants challenged with the both bacteria. This study suggests a relationship between the upregulation of nta-miR167, nta-miR393 and accumulation of flavanoid compounds. Overall, the expression of these miRNAs as well as flavonoid derivatives has the potential of being used as biomarkers for the interaction of B. subtilis and A. tumefaciens model system in N. tabacum. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    Science.gov (United States)

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  5. Interactions of bluff-body obstacles with turbulent airflows affecting evaporative fluxes from porous surfaces

    Science.gov (United States)

    Haghighi, Erfan; Or, Dani

    2015-11-01

    Bluff-body obstacles interacting with turbulent airflows are common in many natural and engineering applications (from desert pavement and shrubs over natural surfaces to cylindrical elements in compact heat exchangers). Even with obstacles of simple geometry, their interactions within turbulent airflows result in a complex and unsteady flow field that affects surface drag partitioning and transport of scalars from adjacent evaporating surfaces. Observations of spatio-temporal thermal patterns on evaporating porous surfaces adjacent to bluff-body obstacles depict well-defined and persistent zonation of evaporation rates that were used to construct a simple mechanistic model for surface-turbulence interactions. Results from evaporative drying of sand surfaces with isolated cylindrical elements (bluff bodies) subjected to constant turbulent airflows were in good agreement with model predictions for localized exchange rates. Experimental and theoretical results show persistent enhancement of evaporative fluxes from bluff-rough surfaces relative to smooth flat surfaces under similar conditions. The enhancement is attributed to formation of vortices that induce a thinner boundary layer over part of the interacting surface footprint. For a practical range of air velocities (0.5-4.0 m/s), low-aspect ratio cylindrical bluff elements placed on evaporating sand surfaces enhanced evaporative mass losses (relative to a flat surface) by up to 300% for high density of elements and high wind velocity, similar to observations reported in the literature. Concepts from drag partitioning were used to generalize the model and upscale predictions to evaporation from surfaces with multiple obstacles for potential applications to natural bluff-rough surfaces.

  6. Astragalus membranaceus-Polysaccharides Ameliorates Obesity, Hepatic Steatosis, Neuroinflammation and Cognition Impairment without Affecting Amyloid Deposition in Metabolically Stressed APPswe/PS1dE9 Mice

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Huang

    2017-12-01

    Full Text Available Astragalus membranaceus is commonly used in traditional Chinese medicine for strengthening the host defense system. Astragalus membranaceus-polysaccharides is an effective component with various important bioactivities, such as immunomodulation, antioxidant, anti-diabetes, anti-inflammation and neuroprotection. In the present study, we determine the effects of Astragalus membranaceus-polysaccharides on metabolically stressed transgenic mice in order to develop this macromolecules for treatment of sporadic Alzheimer’s disease, a neurodegenerative disease with metabolic risk factors. Transgenic mice, at 10 weeks old prior to the appearance of senile plaques, were treated in combination of administrating high-fat diet and injecting low-dose streptozotocin to create the metabolically stressed mice model. Astragalus membranaceus-polysaccharides was administrated starting at 14 weeks for 7 weeks. We found that Astragalus membranaceus-polysaccharides reduced metabolic stress-induced increase of body weight, insulin and insulin and leptin level, insulin resistance, and hepatic triglyceride. Astragalus membranaceus-polysaccharides also ameliorated metabolic stress-exacerbated oral glucose intolerance, although the fasting blood glucose was only temporally reduced. In brain, metabolic stress-elicited astrogliosis and microglia activation in the vicinity of plaques was also diminished by Astragalus membranaceus-polysaccharides administration. The plaque deposition, however, was not significantly affected by Astragalus membranaceus-polysaccharides administration. These findings suggest that Astragalus membranaceus-polysaccharides may be used to ameliorate metabolic stress-induced diabesity and the subsequent neuroinflammation, which improved the behavior performance in metabolically stressed transgenic mice.

  7. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-07-26

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.

  8. Effect of Microbial Interaction on Urea Metabolism in Chinese Liquor Fermentation

    NARCIS (Netherlands)

    Wu, Qun; Lin, Jianchun; Cui, Kaixiang; Du, Rubin; Zhu, Yang; Xu, Yan

    2017-01-01

    Urea is the primary precursor of the carcinogen ethyl carbamate in fermented foods. Understanding urea metabolism is important for controlling ethyl carbamate production. Using Chinese liquor as a model system, we used metatranscriptome analysis to investigate urea metabolism in spontaneous food

  9. A Physiologically-Based Pharmacokinetic (PBPK) Model With Metabolic Interactions of Chloroform (CHCL3) and Trichloroethylene

    Science.gov (United States)

    Exposure to mixtures is frequent, but biologic pathways such as metabolic inhibition, are poorly understood. CHCl3 and TCE are model volatiles frequently co-occurring; combined exposure results in less than additive hepatotoxicity. Here, we explore the underlying metabolic inte...

  10. Low temperature and defoliation affect fructan-metabolizing enzymes in different regions of the rhizophores of Vernonia herbacea.

    Science.gov (United States)

    Portes, Maria Teresa; Figueiredo-Ribeiro, Rita de Cássia L; de Carvalho, Maria Angela M

    2008-10-09

    In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 degrees C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions

  11. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking.

    Science.gov (United States)

    Zelik, Karl E; Collins, Steven H; Adamczyk, Peter G; Segal, Ava D; Klute, Glenn K; Morgenroth, David C; Hahn, Michael E; Orendurff, Michael S; Czerniecki, Joseph M; Kuo, Arthur D

    2011-08-01

    Lower-limb amputees expend more energy to walk than non-amputees and have an elevated risk of secondary disabilities. Insufficient push-off by the prosthetic foot may be a contributing factor. We aimed to systematically study the effect of prosthetic foot mechanics on gait, to gain insight into fundamental prosthetic design principles. We varied a single parameter in isolation, the energy-storing spring in a prototype prosthetic foot, the controlled energy storage and return (CESR) foot, and observed the effect on gait. Subjects walked on the CESR foot with three different springs. We performed parallel studies on amputees and on non-amputees wearing prosthetic simulators. In both groups, spring characteristics similarly affected ankle and body center-of-mass (COM) mechanics and metabolic cost. Softer springs led to greater energy storage, energy return, and prosthetic limb COM push-off work. But metabolic energy expenditure was lowest with a spring of intermediate stiffness, suggesting biomechanical disadvantages to the softest spring despite its greater push-off. Disadvantages of the softest spring may include excessive heel displacements and COM collision losses. We also observed some differences in joint kinetics between amputees and non-amputees walking on the prototype foot. During prosthetic push-off, amputees exhibited reduced energy transfer from the prosthesis to the COM along with increased hip work, perhaps due to greater energy dissipation at the knee. Nevertheless, the results indicate that spring compliance can contribute to push-off, but with biomechanical trade-offs that limit the degree to which greater push-off might improve walking economy. © 2011 IEEE

  12. Negative Affectivity Predicts Lower Quality of Life and Metabolic Control in Type 2 Diabetes Patients: A Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Chiara Conti

    2017-05-01

    Full Text Available Introduction: It is essential to consider the clinical assessment of psychological aspects in patients with Diabetes Mellitus (DM, in order to prevent potentially adverse self-management care behaviors leading to diabetes-related complications, including declining levels of Quality of Life (QoL and negative metabolic control.Purpose: In the framework of Structural Equation Modeling (SEM, the specific aim of this study is to evaluate the influence of distressed personality factors as Negative Affectivity (NA and Social Inhibition (SI on diabetes-related clinical variables (i.e., QoL and glycemic control.Methods: The total sample consists of a clinical sample, including 159 outpatients with Type 2 Diabetes Mellitus (T2DM, and a control group composed of 102 healthy respondents. All participants completed the following self- rating scales: The Type D Scale (DS14 and the World Health Organization QoL Scale (WHOQOLBREF. Furthermore, the participants of the clinical group were assessed for HbA1c, disease duration, and BMI. The observed covariates were BMI, gender, and disease duration, while HbA1c was considered an observed variable.Results: SEM analysis revealed significant differences between groups in regards to the latent construct of NA and the Environmental dimension of QoL. For the clinical sample, SEM showed that NA had a negative impact on both QoL dimensions and metabolic control.Conclusions: Clinical interventions aiming to improve medication adherence in patients with T2DM should include the psychological evaluation of Type D Personality traits, by focusing especially on its component of NA as a significant risk factor leading to negative health outcomes.

  13. Glucokinase regulatory protein genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Pablo Perez-Martinez

    Full Text Available Glucokinase Regulatory Protein (GCKR plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3 PUFA have been of considerable interest, due to their potential to reduce metabolic syndrome (MetS risk.To examine whether genetic variability at the GCKR gene locus was associated with the degree of insulin resistance, plasma concentrations of C-reactive protein (CRP and n-3 PUFA in MetS subjects.Homeostasis model assessment of insulin resistance (HOMA-IR, HOMA-B, plasma concentrations of C-peptide, CRP, fatty acid composition and the GCKR rs1260326-P446L polymorphism, were determined in a cross-sectional analysis of 379 subjects with MetS participating in the LIPGENE dietary cohort.Among subjects with n-3 PUFA levels below the population median, carriers of the common C/C genotype had higher plasma concentrations of fasting insulin (P = 0.019, C-peptide (P = 0.004, HOMA-IR (P = 0.008 and CRP (P = 0.032 as compared with subjects carrying the minor T-allele (Leu446. In contrast, homozygous C/C carriers with n-3 PUFA levels above the median showed lower plasma concentrations of fasting insulin, peptide C, HOMA-IR and CRP, as compared with individuals with the T-allele.We have demonstrated a significant interaction between the GCKR rs1260326-P446L polymorphism and plasma n-3 PUFA levels modulating insulin resistance and inflammatory markers in MetS subjects. Further studies are needed to confirm this gene-diet interaction in the general population and whether targeted dietary recommendations can prevent MetS in genetically susceptible individuals.ClinicalTrials.gov NCT00429195.

  14. Albendazole-praziquantel interaction in healthy volunteers: kinetic disposition, metabolism and enantioselectivity

    Science.gov (United States)

    Lima, Renata Monteiro; Ferreira, Maria Augusta Drago; de Jesus Ponte Carvalho, Teresa Maria; Dumêt Fernandes, Bruno José; Takayanagui, Osvaldo Massaiti; Garcia, Hector Hugo; Coelho, Eduardo Barbosa; Lanchote, Vera Lucia

    2011-01-01

    AIM This study investigated the kinetic disposition, metabolism and enantioselectivity of albendazole (ABZ) and praziquantel (PZQ) administered alone and in combination to healthy volunteers. METHODS A randomized crossover study was carried out in three phases (n = 9), in which some volunteers started in phase 1 (400 mg ABZ), others in phase 2 (1500 mg PZQ), and the remaining volunteers in phase 3 (400 mg ABZ + 1500 mg PZQ). Serial blood samples were collected from 0–48 h after drug administration. Pharmacokinetic parameters were calculated using a monocompartmental model with lag time and were analyzed using the Wilcoxon test; P≤ 0.05. RESULTS The administration of PZQ increased the plasma concentrations of (+)-ASOX (albendazole sulphoxide) by 264% (AUC 0.99 vs. 2.59 µg ml−1 h), (−)-ASOX by 358% (0.14 vs. 0.50 µg ml−1 h) and albendazole sulfone (ASON) by 187% (0.17 vs. 0.32 µg ml−1 h). The administration of ABZ did not change the kinetic disposition of (+)-(S)-PZQ (–)-(R)-4-OHPZQ or (+)-(S)-4-OHPZQ, but increased the plasma concentration of (–)-(R)-PZQ by 64.77% (AUC 0.52 vs. 0.86 µg ml−1 h). CONCLUSIONS The pharmacokinetic interaction between ABZ and PZQ in healthy volunteers was demonstrated by the observation of increased plasma concentrations of ASON, both ASOX enantiomers and (–)-(R)-PZQ. Clinically, the combination of ABZ and PZQ may improve the therapeutic efficacy as a consequence of higher concentration of both active drugs. On the other hand, the magnitude of this elevation may represent an increased risk of side effects, requiring, certainly, reduction of the dosage. However, further studies are necessary to evaluate the efficacy and safety of this combination. PMID:21395645

  15. A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model

    Science.gov (United States)

    Martin, François-Pierre J; Dumas, Marc-Emmanuel; Wang, Yulan; Legido-Quigley, Cristina; Yap, Ivan K S; Tang, Huiru; Zirah, Séverine; Murphy, Gerard M; Cloarec, Olivier; Lindon, John C; Sprenger, Norbert; Fay, Laurent B; Kochhar, Sunil; van Bladeren, Peter; Holmes, Elaine; Nicholson, Jeremy K

    2007-01-01

    Symbiotic gut microorganisms (microbiome) interact closely with the mammalian host's metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by 1H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography–mass spectrometry and short-chain fatty acids in cecum by GC-FID. Top-down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the host's ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro-conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level. PMID:17515922

  16. Metabolic physiology of the invasive clam, Potamocorbula amurensis: the interactive role of temperature, salinity, and food availability.

    Science.gov (United States)

    Miller, Nathan A; Chen, Xi; Stillman, Jonathon H

    2014-01-01

    In biological systems energy serves as the ultimate commodity, often determining species distributions, abundances, and interactions including the potential impact of invasive species on native communities. The Asian clam Potamocorbula amurensis invaded the San Francisco Estuary (SFE) in 1986 and is implicated in the decline of native fish species through resource competition. Using a combined laboratory/field study we examined how energy expenditure in this clam is influenced by salinity, temperature and food availability. Measures of metabolism were made at whole organism (metabolic rate) and biochemical (pyruvate kinase (PK) and citrate synthase (CS) enzyme activities) levels. We found in the field, over the course of a year, the ratio of PK to CS was typically 1.0 suggesting that aerobic and fermentative metabolism were roughly equivalent, except for particular periods characterized by low salinity, higher temperatures, and intermediate food availabilities. In a 30-day laboratory acclimation experiment, however, neither metabolic rate nor PK:CS ratio was consistently influenced by the same variables, though the potential for fermentative pathways did predominate. We conclude that in field collected animals, the addition of biochemical measures of energetic state provide little additional information to the previously measured whole organism metabolic rate. In addition, much of the variation in the laboratory remained unexplained and additional variables, including reproductive stage or body condition may influence laboratory-based results. Further study of adult clams must consider the role of organismal condition, especially reproductive state, in comparisons of laboratory experiments and field observations.

  17. The interactions among impact factors affecting 131I treatment efficacy of Graves' disease

    International Nuclear Information System (INIS)

    Wang Peng; Tan Jian; Zhang Guizhi; He Yajing; Dong Feng; Wang Renfei; Xiao Qian

    2011-01-01

    Objective: To evaluate the possible interactions among different impact factors possibly affecting the treatment efficacy of 131 I in Graves' disease (GD). Methods: Six hundred and thirty two GD patients that had been treated by 131 I, with or without antithyroid drugs (ATD), were included in this study. The impact factors were pre-defined as age (x 1 ), sex (x 2 ), mass of thyroid (x 3 ), course of disease (x 4 ), initial symptom (x 5 ), condition of disease (x 6 ), ATD treatment duration (x 7 ), effective half life time (x 8 ), maximum 131 I uptake rate (x 9 ), total dose of 131 I (x 10 ), dose of 131 I per gram of thyroid (x 11 ), TRAb (x 12 ), TSI (x 13 ), TgAb (x 14 ), and thyroid microsomal antibody(TMAb) level (x 15 ). Interactions among different impact factors were studied by t-test, χ 2 test and multi-variant logistic regression. Results: Age, mass of thyroid, ATD treatment duration, maximum 131 I uptake rate, dose of 131 I per gram of thyroid tissue and TSI level were identified as independent impact factors affecting the 131 I treatment efficacy on GD (χ 2 =6.908, t=-4.063, χ 2 =13.558, t=-2.553, t=4.528, χ 2 =9.716, all P 131 I uptake rate (likelihood χ 2 =8.176, P>0.05; F=2.928, 1.992, 2.629, 2.215, all P 131 I treatment, which might guide the prescription of 131 I dosage for GD treatment. (authors)

  18. Aging and a genetic KIBRA polymorphism interactively affect feedback- and observation-based probabilistic classification learning.

    Science.gov (United States)

    Schuck, Nicolas W; Petok, Jessica R; Meeter, Martijn; Schjeide, Brit-Maren M; Schröder, Julia; Bertram, Lars; Gluck, Mark A; Li, Shu-Chen

    2018-01-01

    Probabilistic category learning involves complex interactions between the hippocampus and striatum that may depend on whether acquisition occurs via feedback or observation. Little is known about how healthy aging affects these processes. We tested whether age-related behavioral differences in probabilistic category learning from feedback or observation depend on a genetic factor known to influence individual differences in hippocampal function, the KIBRA gene (single nucleotide polymorphism rs17070145). Results showed comparable age-related performance impairments in observational as well as feedback-based learning. Moreover, genetic analyses indicated an age-related interactive effect of KIBRA on learning: among older adults, the beneficial T-allele was positively associated with learning from feedback, but negatively with learning from observation. In younger adults, no effects of KIBRA were found. Our results add behavioral genetic evidence to emerging data showing age-related differences in how neural resources relate to memory functions, namely that hippocampal and striatal contributions to probabilistic category learning may vary with age. Our findings highlight the effects genetic factors can have on differential age-related decline of different memory functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Exploring the relationships among humility, negative interaction in the church, and depressed affect.

    Science.gov (United States)

    Krause, Neal

    2014-01-01

    The purpose of this study is to test three hypotheses involving humility. The first hypothesis specifies that people who are more deeply involved in religion will be more humble than individuals who are not as involved in religion. The second hypothesis predicts that humility will offset the effects of negative interaction in the church on depressed affect scores. The third hypothesis specifies that there will be a positive relationship between age and humility. The data come from the Religion, Aging, and Health Survey, a nationwide survey of middle-aged and older Christians who attend church on a regular basis (N = 1154). The findings suggest that people who are more committed to their faith tend to be more humble. The results also reveal that negative interaction in the church is greater for people with lower humility scores than individuals with higher humility scores. In contrast, the data indicate that older adults are not more humble than middle-aged people. The findings are noteworthy because they identify a source of resilience that may help middle-aged and older adults cope more effectively with the effects of stress.

  20. Use of multiple correspondence analysis (MCA) to identify interactive meteorological conditions affecting relative throughfall

    Science.gov (United States)

    Van Stan, John T.; Gay, Trent E.; Lewis, Elliott S.

    2016-02-01

    Forest canopies alter rainfall reaching the surface by redistributing it as throughfall. Throughfall supplies water and nutrients to a variety of ecohydrological components (soil microbial communities, stream water discharge/chemistry, and stormflow pathways) and is controlled by canopy structural interactions with meteorological conditions across temporal scales. This work introduces and applies multiple correspondence analyses (MCAs) to a range of meteorological thresholds (median intensity, median absolute deviation (MAD) of intensity, median wind-driven droplet inclination angle, and MAD of wind speed) for an example throughfall problem: identification of interacting storm conditions corresponding to temporal concentration in relative throughfall beyond the median observation (⩾73% of rain). MCA results from the example show that equalling or exceeding rain intensity thresholds (median and MAD) corresponded with temporal concentration of relative throughfall across all storms. Under these intensity conditions, two wind mechanisms produced significant correspondences: (1) high, steady wind-driven droplet inclination angles increased surface wetting; and (2) sporadic winds shook entrained droplets from surfaces. A discussion is provided showing that these example MCA findings agree well with previous work relying on more historically common methods (e.g., multiple regression and analytical models). Meteorological threshold correspondences to temporal concentration of relative throughfall at our site may be a function of heavy Tillandsia usneoides coverage. Applications of MCA within other forests may provide useful insights to how temporal throughfall dynamics are affected for drainage pathways dependent on different structures (leaves, twigs, branches, etc.).

  1. Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops

    Directory of Open Access Journals (Sweden)

    Sara G. Prado

    2015-06-01

    Full Text Available Aphidius colemani Viereck (Hymenoptera: Braconidae is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies and abiotic (climate and lighting. For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels.

  2. Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops.

    Science.gov (United States)

    Prado, Sara G; Jandricic, Sarah E; Frank, Steven D

    2015-06-11

    Aphidius colemani Viereck (Hymenoptera: Braconidae) is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies) and abiotic (climate and lighting). For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids) can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness) seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels.

  3. Interactions between sleep, stress, and metabolism: From physiological to pathological conditions

    Directory of Open Access Journals (Sweden)

    Camila Hirotsu

    2015-11-01

    Full Text Available Poor sleep quality due to sleep disorders and sleep loss is highly prevalent in the modern society. Underlying mechanisms show that stress is involved in the relationship between sleep and metabolism through hypothalamic–pituitary–adrenal (HPA axis activation. Sleep deprivation and sleep disorders are associated with maladaptive changes in the HPA axis, leading to neuroendocrine dysregulation. Excess of glucocorticoids increase glucose and insulin and decrease adiponectin levels. Thus, this review provides overall view of the relationship between sleep, stress, and metabolism from basic physiology to pathological conditions, highlighting effective treatments for metabolic disturbances.

  4. Dim light at night interacts with intermittent hypoxia to alter cognitive and affective responses.

    Science.gov (United States)

    Aubrecht, Taryn G; Weil, Zachary M; Magalang, Ulysses J; Nelson, Randy J

    2013-07-01

    Obstructive sleep apnea (OSA) and dim light at night (dLAN) have both been independently associated with alterations in mood and cognition. We aimed to determine whether dLAN would interact with intermittent hypoxia (IH), a condition characteristic of OSA, to alter the behavioral, cognitive, and affective responses. Adult male mice were housed in either standard lighting conditions (14:10-h light-dark cycle; 150 lux:0 lux) or dLAN (150 lux:5 lux). Mice were then exposed to IH (15 cycles/h, 8 h/day, FiO2 nadir of 5%) for 3 wk, then tested in assays of affective and cognitive responses; brains were collected for dendritic morphology and PCR analysis. Exposure to dLAN and IH increased anxiety-like behaviors, as assessed in the open field, elevated plus maze, and the light/dark box. dLAN and IH increased depressive-like behaviors in the forced swim test. IH impaired learning and memory performance in the passive avoidance task; however, no differences were observed in spatial working memory, as assessed by y-maze or object recognition. IH combined with dLAN decreased cell body area in the CA1 and CA3 regions of the hippocampus. Overall, IH decreased apical spine density in the CA3, whereas dLAN decreased spine density in the CA1 of the hippocampus. TNF-α gene expression was not altered by IH or lighting condition, whereas VEGF expression was increased by dLAN. The combination of IH and dLAN provokes negative effects on hippocampal dendritic morphology, affect, and cognition, suggesting that limiting nighttime exposure to light in combination with other established treatments may be of benefit to patients with OSA.

  5. Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?

    Science.gov (United States)

    Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan

    2016-12-01

    Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and

  6. Glucose Metabolism and AMPK Signaling Regulate Dopaminergic Cell Death Induced by Gene (α-Synuclein)-Environment (Paraquat) Interactions.

    Science.gov (United States)

    Anandhan, Annadurai; Lei, Shulei; Levytskyy, Roman; Pappa, Aglaia; Panayiotidis, Mihalis I; Cerny, Ronald L; Khalimonchuk, Oleh; Powers, Robert; Franco, Rodrigo

    2017-07-01

    While environmental exposures are not the single cause of Parkinson's disease (PD), their interaction with genetic alterations is thought to contribute to neuronal dopaminergic degeneration. However, the mechanisms involved in dopaminergic cell death induced by gene-environment interactions remain unclear. In this work, we have revealed for the first time the role of central carbon metabolism and metabolic dysfunction in dopaminergic cell death induced by the paraquat (PQ)-α-synuclein interaction. The toxicity of PQ in dopaminergic N27 cells was significantly reduced by glucose deprivation, inhibition of hexokinase with 2-deoxy-D-glucose (2-DG), or equimolar substitution of glucose with galactose, which evidenced the contribution of glucose metabolism to PQ-induced cell death. PQ also stimulated an increase in glucose uptake, and in the levels of glucose transporter type 4 (GLUT4) and Na + -glucose transporters isoform 1 (SGLT1) proteins, but only inhibition of GLUT-like transport with STF-31 or ascorbic acid reduced PQ-induced cell death. Importantly, while autophagy protein 5 (ATG5)/unc-51 like autophagy activating kinase 1 (ULK1)-dependent autophagy protected against PQ toxicity, the inhibitory effect of glucose deprivation on cell death progression was largely independent of autophagy or mammalian target of rapamycin (mTOR) signaling. PQ selectively induced metabolomic alterations and adenosine monophosphate-activated protein kinase (AMPK) activation in the midbrain and striatum of mice chronically treated with PQ. Inhibition of AMPK signaling led to metabolic dysfunction and an enhanced sensitivity of dopaminergic cells to PQ. In addition, activation of AMPK by PQ was prevented by inhibition of the inducible nitric oxide syntase (iNOS) with 1400W, but PQ had no effect on iNOS levels. Overexpression of wild type or A53T mutant α-synuclein stimulated glucose accumulation and PQ toxicity, and this toxic synergism was reduced by inhibition of glucose metabolism

  7. Seawater pH Predicted for the Year 2100 Affects the Metabolic Response to Feeding in Copepodites of the Arctic Copepod Calanus glacialis.

    Science.gov (United States)

    Thor, Peter; Bailey, Allison; Halsband, Claudia; Guscelli, Ella; Gorokhova, Elena; Fransson, Agneta

    2016-01-01

    Widespread ocean acidification (OA) is transforming the chemistry of the global ocean, and the Arctic is recognised as a region where the earliest and strongest impacts of OA are expected. In the present study, metabolic effects of OA and its interaction with food availability was investigated in Calanus glacialis from the Kongsfjord, West Spitsbergen. We measured metabolic rates and RNA/DNA ratios (an indicator of biosynthesis) concurrently in fed and unfed individuals of copepodite stages CII-CIII and CV subjected to two different pH levels representative of present day and the "business as usual" IPCC scenario (RCP8.5) prediction for the year 2100. The copepods responded more strongly to changes in food level than to decreasing pH, both with respect to metabolic rate and RNA/DNA ratio. However, significant interactions between effects of pH and food level showed that effects of pH and food level act in synergy in copepodites of C. glacialis. While metabolic rates in copepodites stage CII-CIII increased by 78% as a response to food under present day conditions (high pH), the increase was 195% in CII-CIIIs kept at low pH-a 2.5 times greater increase. This interaction was absent for RNA/DNA, so the increase in metabolic rates were clearly not a reaction to changing biosynthesis at low pH per se but rather a reaction to increased metabolic costs per unit of biosynthesis. Interestingly, we did not observe this difference in costs of growth in stage CV. A 2.5 times increase in metabolic costs of growth will leave the copepodites with much less energy for growth. This may infer significant changes to the C. glacialis population during future OA.

  8. Altitude, pasture type, and sheep breed affect bone metabolism and serum 25-hydroxyvitamin D in grazing lambs.

    Science.gov (United States)

    Willems, Helen; Leiber, Florian; Kohler, Martina; Kreuzer, Michael; Liesegang, Annette

    2013-05-15

    This study aimed to investigate the bone development of two mountain sheep breeds during natural summer grazing either in the lowlands or on different characteristic alpine pastures. Pasture types differed in topographic slope, plant species composition, general nutritional feeding value, Ca and P content, and Ca:P ratio of herbage. Twenty-seven Engadine sheep (ES) lambs and 27 Valaisian Black Nose sheep (VS) lambs were divided into four groups of 6 to 7 animals per breed and allocated to three contrasting alpine pasture types and one lowland pasture type. The lambs were slaughtered after 9 wk of experimental grazing. The steep alpine pastures in combination with a high (4.8) to very high (13.6) Ca:P ratio in the forage decreased total bone mineral content as measured in the middle of the left metatarsus of the lambs from both breeds, and cortical bone mineral content and cortical bone mineral density of ES lambs. Breed × pasture type interactions occurred in the development of total and cortical bone mineral content, and in cortical thickness, indicating that bone metabolism of different genotypes obviously profited differently from the varying conditions. An altitude effect occurred for 25-hydroxyvitamin D with notably higher serum concentrations on the three alpine sites, and a breed effect led to higher concentrations for ES than VS. Despite a high variance, there were pasture-type effects on serum markers of bone formation and resorption.

  9. Kinetics of metabolism of glucose, propionate and CO2 in steers as affected by injecting phlorizin and feeding propionate

    International Nuclear Information System (INIS)

    Veenhuizen, J.J.; Russell, R.W.; Young, J.W.

    1988-01-01

    Effects of injecting phlorizin subcutaneously and/or feeding propionate on metabolism of glucose, propionate and CO2 were determined for four steers used in a 4 x 4 Latin square design. Isotope dilution techniques were used to determine a four-pool kinetic solution for the flux of carbon among plasma glucose, rumen propionate, blood CO2 and rumen CO2. Injecting 1 g of phlorizin twice daily for 19 d resulted in 7.1 mol glucose C/d being excreted in urine. The basal glucose production of 13.4 mol C/d was increased to 17.9 mol C/d with phlorizin. There was no change in glucose oxidation or propionate production. The percentage of plasma glucose derived from propionate was unaffected by phlorizin, but 54 +/- 0.4% of total propionate was converted to plasma glucose during phlorizin treatment versus 40 +/- 0.6% during the basal treatment. When propionate was fed (18.3 mol C/d) glucose production increased to 21.2 mol C/d from the basal value of 13.4 mol C/d, and propionate oxidation to CO2 increased to 14.9 mol C/d from the basal value of 4.1 mol C/d. Glucose derived from propionate was 43 +/- 5% for the basal treatment and 67 +/- 3% during propionate feeding. The percentage of propionate converted to plasma glucose and blood and rumen CO2 was not affected by feeding propionate. An increased need for glucose, because of glucose excretion during phlorizin treatment, caused an increased utilization of propionate for gluconeogenesis, but an increased availability of propionate caused an increase in glucose production without affecting the relative distribution of carbon from propionate

  10. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis.

    Science.gov (United States)

    Schlüter, Urte; Mascher, Martin; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Fahnenstich, Holger; Sonnewald, Uwe

    2012-11-01

    Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.

  11. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice.

    Directory of Open Access Journals (Sweden)

    Bert Avau

    Full Text Available Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/- mice became less obese than wild type (WT mice when fed a high-fat diet (HFD. White adipose tissue (WAT mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB or quinine (Q during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB, but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.

  12. An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation.

    Science.gov (United States)

    Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Sawicki, Grzegorz; Woźniak, Mieczysław

    2016-03-01

    The primary issue undertaken in this study was to test the hypothesis that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to HAdV31 infection. To prove that, the metabolic and molecular mechanisms responsible for HAdV31-induced adipogenesis were examined. 3T3L1 cells (mouse embryonic fibroblast, adipose like cell line) were used as a surrogate model to analyze an increased proliferation, differentiation, and maturation of preadipocytes infected with human adenovirus. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP, and fatty acid synthase genes, intracellular lipid accumulation as well as cytokine release from the fat cells were assessed. Data showed that HAdV31 increased an expression of C/EBP-β and PPAR-γ genes leading to an enhanced differentiation of preadipocytes into fat cells. Besides, overexpression of GAPDH and fatty acid synthase, and decreased expression of leptin caused an increased accumulation of intracellular lipids. Secretion of TNF-α and IL-6 from HAdV31-infected cells was strongly decreased, leading to unlimited virus replication. The results obtained from this study provided the evidences that HAdV31, likewise previously documented HAdV36, is a subsequent human adenovirus affecting the differentiation and lipid accumulation of 3T3L1 cells. © 2015 Wiley Periodicals, Inc.

  13. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Trey K Sato

    2016-10-01

    Full Text Available The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3, a component of MAP Kinase (MAPK signaling (HOG1, a regulator of Protein Kinase A (PKA signaling (IRA2, and a scaffolding protein for mitochondrial iron-sulfur (Fe-S cluster biogenesis (ISU1. Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  14. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    Science.gov (United States)

    Sato, Trey K; Tremaine, Mary; Parreiras, Lucas S; Hebert, Alexander S; Myers, Kevin S; Higbee, Alan J; Sardi, Maria; McIlwain, Sean J; Ong, Irene M; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; McGee, Mick A; Dickinson, Quinn; La Reau, Alex; Xie, Dan; Tian, Mingyuan; Reed, Jennifer L; Zhang, Yaoping; Coon, Joshua J; Hittinger, Chris Todd; Gasch, Audrey P; Landick, Robert

    2016-10-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  15. Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types.

    Science.gov (United States)

    Schweiger, R; Heise, A-M; Persicke, M; Müller, C

    2014-07-01

    The phytohormones jasmonic acid (JA) and salicylic acid (SA) mediate induced plant defences and the corresponding pathways interact in a complex manner as has been shown on the transcript and proteine level. Downstream, metabolic changes are important for plant-herbivore interactions. This study investigated metabolic changes in leaf tissue and phloem exudates of Plantago lanceolata after single and combined JA and SA applications as well as consequences on chewing-biting (Heliothis virescens) and piercing-sucking (Myzus persicae) herbivores. Targeted metabolite profiling and untargeted metabolic fingerprinting uncovered different categories of plant metabolites, which were influenced in a specific manner, indicating points of divergence, convergence, positive crosstalk and pronounced mutual antagonism between the signaling pathways. Phytohormone-specific decreases of primary metabolite pool sizes in the phloem exudates may indicate shifts in sink-source relations, resource allocation, nutrient uptake or photosynthesis. Survival of both herbivore species was significantly reduced by JA and SA treatments. However, the combined application of JA and SA attenuated the negative effects at least against H. virescens suggesting that mutual antagonism between the JA and SA pathway may be responsible. Pathway interactions provide a great regulatory potential for the plant that allows triggering of appropriate defences when attacked by different antagonist species. © 2013 John Wiley & Sons Ltd.

  16. Metabolic regulation in meagre, Argyrosomus regius (Asso, 1801: Study of gene-diet interactions on lipid metabolism

    Directory of Open Access Journals (Sweden)

    Francisca Silva-Brito

    2014-06-01

    stimulates the expression of the fads2. In contrast, Elovl5 is very efficient to convert the desaturated products of ∆6/∆8 and so Elovl5 expression is not enhanced, since the activity of this enzyme is already higher. These findings may explain the differences in the expression of two genes, between hepatic fads2 and elovl5. Furthermore, increased hepatic fads2 expression between FO-S and VO-S treatments was 114 fold. Such induction was much greater than observed in Salmo salad (Zheng et al., 2005. However, Salmo salad has separate and distinct genes for ∆6 and ∆5 desaturases (Zheng et al., 2005 and, due to genome duplication, it has two genes with ∆6 activity (Monroig et al., 2010. Moreover, lipid peroxidation in liver increases with the number of fatty acid (FA double bonds (Haggag, Elsanhoty & Ramadan, 2014. D'Aquino et al. (1991 observed that rats fed diets with fish oil had increased lipid peroxidation. Our results indicate that, in FO-S, selenium may have protected FA from peroxidation, thus dietary HUFA seemed to have been sufficient to maintain the phospholipid turnover and induction of FA metabolism genes did not occur. In FO-NS diet membranes were not protected efficiently from lipid peroxidation, and therefore a higher expression of FA metabolism genes was necessary to offset the damage, consequently, biosynthesis of HUFA was more stimulated. ROS-induced oxidative stress has been associated with expression and protein levels of transcription factors (Okuno et al., 2012. A reduction of ROS (Reactive Oxygen Species has been observed in fish fed VO with selenium, when compared to VO without selenium (data not presented. It is plausible to infer that a stimulation of expression and level of protein SREBP-1 by a reduction of ROS. SREBP-1 play a role on the regulation of genes involved in biosynthesis of HUFA, as fads2 and elovl5 (Jump, Tripathy & Depner, 2013. In conclusion, our results showed that vegetable oils have an effect on expression level of genes

  17. Theobromine does not affect postprandial lipid metabolism and duodenal gene expression, but has unfavorable effects on postprandial glucose and insulin responses in humans

    NARCIS (Netherlands)

    Smolders, Lotte; Mensink, Ronald P.; Boekschoten, Mark V.; Ridder, de Rogier J.J.; Plat, Jogchum

    2018-01-01

    Background & aims: Chocolate consumption is associated with a decreased risk for CVD. Theobromine, a compound in cocoa, may explain these effects as it favorably affected fasting serum lipids. However, long-term effects of theobromine on postprandial metabolism as well as underlying mechanisms

  18. The dynamic reactance interaction – How vested interests affect people’s experience, behavior, and cognition in social interactions

    Directory of Open Access Journals (Sweden)

    Christina eSteindl

    2015-11-01

    Full Text Available In social interactions, individuals may sometimes pursue their own interests at the expense of their interaction partner. Such self-interested behaviors impose a threat to the interaction partner’s freedom to act. The current article investigates this threat in the context of interdependence and reactance theory. We explore how vested interests influence reactance process stages of an advisor-client interaction. We aim to explore the interactional process that evolves. In two studies, participants took the perspective of a doctor (advisor or a patient (client. In both studies we incorporated a vested interest. In Study 1 (N=82 we found that in response to a vested interest of their interaction partner, patients indicated a stronger experience of reactance, more aggressive behavioral intentions, and more biased cognitions than doctors. A serial multiple mediation revealed that a vested interest engendered mistrust toward the interaction partner and this mistrust led to an emerging reactance process. Study 2 (N=207 further demonstrated that doctors expressed their reactance in a subtle way: They revealed a classic confirmation bias when searching for additional information on their preliminary decision preference, indicating stronger defense motivation. We discuss how these findings can help us to understand how social interactions develop dynamically.

  19. The Dynamic Reactance Interaction – How Vested Interests Affect People’s Experience, Behavior, and Cognition in Social Interactions

    Science.gov (United States)

    Steindl, Christina; Jonas, Eva

    2015-01-01

    In social interactions, individuals may sometimes pursue their own interests at the expense of their interaction partner. Such self-interested behaviors impose a threat to the interaction partner’s freedom to act. The current article investigates this threat in the context of interdependence and reactance theory. We explore how vested interests influence reactance process stages of an advisor–client interaction. We aim to explore the interactional process that evolves. In two studies, participants took the perspective of a doctor (advisor) or a patient (client). In both studies we incorporated a vested interest. In Study 1 (N = 82) we found that in response to a vested interest of their interaction partner, patients indicated a stronger experience of reactance, more aggressive behavioral intentions, and more biased cognitions than doctors. A serial multiple mediation revealed that a vested interest engendered mistrust toward the interaction partner and this mistrust led to an emerging reactance process. Study 2 (N = 207) further demonstrated that doctors expressed their reactance in a subtle way: they revealed a classic confirmation bias when searching for additional information on their preliminary decision preference, indicating stronger defense motivation. We discuss how these findings can help us to understand how social interactions develop dynamically. PMID:26640444

  20. N-3 polyunsaturated fatty acids supplementation does not affect changes of lipid metabolism induced in rats by altered thyroid status.

    Science.gov (United States)

    Rauchová, H; Vokurková, M; Pavelka, S; Behuliak, M; Tribulová, N; Soukup, T

    2013-07-01

    Epidemiological studies have demonstrated that n-3 polyunsaturated fatty acid (PUFA) consumption is associated with a reduced risk of atherosclerosis and hyperlipidemia. It is well known that lipid metabolism is also influenced by thyroid hormones. The aim of our study was to test whether n-3 PUFA supplementation (200 mg/kg of body weight/day for 6 weeks given intragastrically) would affect lipid metabolism in Lewis male rats with altered thyroid status. Euthyroid, hypothyroid, and hyperthyroid status of experimental groups was well defined by plasma levels of triiodothyronine, the activity of liver mitochondrial glycerol-3-phosphate dehydrogenase, and by relative heart weight. Fasting blood glucose levels were significantly higher in the hyperthyroid compared to the euthyroid and hypothyroid rats (5.0±0.2 vs. 3.7±0.4 and 4.4±0.2 mmol/l, respectively). In hyperthyroid animals, the concentration of plasma postprandial triglycerides was also increased compared to euthyroid and hypothyroid rats (0.9±0.1 vs. 0.5±0.1 and 0.4±0.1 mmol/l, respectively). On the other hand, hypothyroidism compared to euthyroid and hyperthyroid status was associated with elevated plasma levels of total cholesterol (2.6±0.2 vs. 1.5±0.1 and 1.6±0.1 mmol/l, respectively), LDL cholesterol (0.9±0.1 vs. 0.4±0.1 and 0.2±0.1 mmol/l, respectively) as well as HDL cholesterol (1.6±0.1 vs. 1.0±0.1 and 1.3±0.1 mmol/l, respectively). Supplementation of n-3 PUFA in the present study did not significantly modify either relative heart weight or glucose and lipid levels in any thyroid status. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Interaction between Shadoo and PrP Affects the PrP-Folding Pathway.

    Science.gov (United States)

    Ciric, Danica; Richard, Charles-Adrien; Moudjou, Mohammed; Chapuis, Jérôme; Sibille, Pierre; Daude, Nathalie; Westaway, David; Adrover, Miguel; Béringue, Vincent; Martin, Davy; Rezaei, Human

    2015-06-01

    Prion diseases are characterized by conformational changes of a cellular prion protein (PrP(C)) into a β-sheet-enriched and aggregated conformer (PrP(Sc)). Shadoo (Sho), a member of the prion protein family, is expressed in the central nervous system (CNS) and is highly conserved among vertebrates. On the basis of histoanatomical colocalization and sequence similarities, it is suspected that Sho and PrP may be functionally related. The downregulation of Sho expression during prion pathology and the direct interaction between Sho and PrP, as revealed by two-hybrid analysis, suggest a relationship between Sho and prion replication. Using biochemical and biophysical approaches, we demonstrate that Sho forms a 1:1 complex with full-length PrP with a dissociation constant in the micromolar range, and this interaction consequently modifies the PrP-folding pathway. Using a truncated PrP that mimics the C-terminal C1 fragment, an allosteric binding behavior with a Hill number of 4 was observed, suggesting that at least a tetramerization state occurs. A cell-based prion titration assay performed with different concentrations of Sho revealed an increase in the PrP(Sc) conversion rate in the presence of Sho. Collectively, our observations suggest that Sho can affect the prion replication process by (i) acting as a holdase and (ii) interfering with the dominant-negative inhibitor effect of the C1 fragment. Since the inception of the prion theory, the search for a cofactor involved in the conversion process has been an active field of research. Although the PrP interactome presents a broad landscape, candidates corresponding to specific criteria for cofactors are currently missing. Here, we describe for the first time that Sho can affect PrP structural dynamics and therefore increase the prion conversion rate. A biochemical characterization of Sho-PrP indicates that Sho acts as an ATP-independent holdase. Copyright © 2015, American Society for Microbiology. All Rights

  2. Morphine decreases social interaction of adult male rats, while THC does not affect it.

    Science.gov (United States)

    Šlamberová, R; Mikulecká, A; Macúchová, E; Hrebíčková, I; Ševčíková, M; Nohejlová, K; Pometlová, M

    2016-12-22

    The aim of the present study was to compare effect of three low doses of morphine (MOR) and delta9-tetrahydrocannabinol (THC) on social behavior tested in Social interaction test (SIT). 45 min prior to testing adult male rats received one of the drugs or solvents: MOR (1; 2.5; 5 mg/kg); saline as a solvent for MOR; THC (0.5; 1; 2 mg/kg); ethanol as a solvent for THC. Occurrence and time spent in specific patterns of social interactions (SI) and non-social activities (locomotion and rearing) was video-recorded for 5 min and then analyzed. MOR in doses of 1 and 2.5 mg/kg displayed decreased SI in total. Detailed analysis of specific patterns of SI revealed decrease in mutual sniffing and allo-grooming after all doses of MOR. The highest dose (5 mg/kg) of MOR decreased following and increased genital investigation. Rearing activity was increased by lower doses of MOR (1 and 2.5 mg/kg). THC, in each of the tested doses, did not induce any specific changes when compared to matching control group (ethanol). However, an additional statistical analysis showed differences between all THC groups and their ethanol control group when compared to saline controls. There was lower SI in total, lower mutual sniffing and allo-grooming, but higher rearing in THC and ethanol groups than in saline control group. Thus, changes seen in THC and ethanol groups are seemed to be attributed mainly to the effect of the ethanol. Based on the present results we can assume that opioids affect SI more than cannabinoid.

  3. Keeper-Animal Interactions: Differences between the Behaviour of Zoo Animals Affect Stockmanship.

    Science.gov (United States)

    Ward, Samantha J; Melfi, Vicky

    2015-01-01

    Stockmanship is a term used to describe the management of animals with a good stockperson someone who does this in a in a safe, effective, and low-stress manner for both the stock-keeper and animals involved. Although impacts of unfamiliar zoo visitors on animal behaviour have been extensively studied, the impact of stockmanship i.e familiar zoo keepers is a new area of research; which could reveal significant ramifications for zoo animal behaviour and welfare. It is likely that different relationships are formed dependant on the unique keeper-animal dyad (human-animal interaction, HAI). The aims of this study were to (1) investigate if unique keeper-animal dyads were formed in zoos, (2) determine whether keepers differed in their interactions towards animals regarding their attitude, animal knowledge and experience and (3) explore what factors affect keeper-animal dyads and ultimately influence animal behaviour and welfare. Eight black rhinoceros (Diceros bicornis), eleven Chapman's zebra (Equus burchellii), and twelve Sulawesi crested black macaques (Macaca nigra) were studied in 6 zoos across the UK and USA. Subtle cues and commands directed by keepers towards animals were identified. The animals latency to respond and the respective behavioural response (cue-response) was recorded per keeper-animal dyad (n = 93). A questionnaire was constructed following a five-point Likert Scale design to record keeper demographic information and assess the job satisfaction of keepers, their attitude towards the animals and their perceived relationship with them. There was a significant difference in the animals' latency to appropriately respond after cues and commands from different keepers, indicating unique keeper-animal dyads were formed. Stockmanship style was also different between keepers; two main components contributed equally towards this: "attitude towards the animals" and "knowledge and experience of the animals". In this novel study, data demonstrated unique dyads

  4. Critical issues in benzene toxicity and metabolism: the effect of interactions with other organic chemicals on risk assessment.

    Science.gov (United States)

    Medinsky, M A; Schlosser, P M; Bond, J A

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes, such as enzymatic oxidation, and deactivation processes, like conjugation and excretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Can role-play with interactive simulations enhance climate change knowledge, affect and intent to act?

    Science.gov (United States)

    Rooney-varga, J. N.; Sterman, J.; Fracassi, E. P.; Franck, T.; Kapmeier, F.; Kurker, V.; Jones, A.; Rath, K.

    2017-12-01

    The strong scientific consensus about the reality and risks of anthropogenic climate change stands in stark contrast to widespread confusion and complacency among the public. Many efforts to close that gap, grounded in the information deficit model of risk communication, provide scientific information on climate change through reports and presentations. However, research shows that showing people research does not work: the gap between scientific and public understanding of climate change remains wide. Tools that are rigorously grounded in the science and motivate action on climate change are urgently needed. Here we assess the impact of one such tool, an interactive, role-play simulation, World Climate. Participants take the roles of delegates to the UN climate negotiations and are challenged to create an agreement limiting warming to no more than 2°C. The C-ROADS climate simulation model then provides participants with immediate feedback about the expected impacts of their decisions. Participants use C-ROADS to explore the climate system and use the results to refine their negotiating positions, learning about climate change while experiencing the social dynamics of negotiations and decision-making. Pre- and post-survey results from 21 sessions in eight nations showed significant gains in participants' climate change knowledge, affective engagement, intent to take action, and desire to learn. Contrary to the deficit model, gains in participants' desire to learn more and intention to act were associated with gains in affective engagement, particularly feelings of urgency and hope, but not climate knowledge. Gains were just as strong among participants who oppose government regulation, suggesting the simulation's potential to reach across political divides. Results indicate that simulations like World Climate offer a climate change communication tool that enables people to learn and feel for themselves, which together have the potential to motivate action informed

  6. Investigating the Neural Correlates of Emotion–Cognition Interaction Using an Affective Stroop Task

    Directory of Open Access Journals (Sweden)

    Nora M. Raschle

    2017-09-01

    Full Text Available The human brain has the capacity to integrate various sources of information and continuously adapts our behavior according to situational needs in order to allow a healthy functioning. Emotion–cognition interactions are a key example for such integrative processing. However, the neuronal correlates investigating the effects of emotion on cognition remain to be explored and replication studies are needed. Previous neuroimaging studies have indicated an involvement of emotion and cognition related brain structures including parietal and prefrontal cortices and limbic brain regions. Here, we employed whole brain event-related functional magnetic resonance imaging (fMRI during an affective number Stroop task and aimed at replicating previous findings using an adaptation of an existing task design in 30 healthy young adults. The Stroop task is an indicator of cognitive control and enables the quantification of interference in relation to variations in cognitive load. By the use of emotional primes (negative/neutral prior to Stroop task performance, an emotional variation is added as well. Behavioral in-scanner data showed that negative primes delayed and disrupted cognitive processing. Trials with high cognitive demand furthermore negatively influenced cognitive control mechanisms. Neuronally, the emotional primes consistently activated emotion-related brain regions (e.g., amygdala, insula, and prefrontal brain regions while Stroop task performance lead to activations in cognition networks of the brain (prefrontal cortices, superior temporal lobe, and insula. When assessing the effect of emotion on cognition, increased cognitive demand led to decreases in neural activation in response to emotional stimuli (negative > neutral within prefrontal cortex, amygdala, and insular cortex. Overall, these results suggest that emotional primes significantly impact cognitive performance and increasing cognitive demand leads to reduced neuronal activation in

  7. How Levels of Interactivity in Tutorials Affect Students' Learning of Modeling Transportation Problems in a Spreadsheet

    Science.gov (United States)

    Seal, Kala Chand; Przasnyski, Zbigniew H.; Leon, Linda A.

    2010-01-01

    Do students learn to model OR/MS problems better by using computer-based interactive tutorials and, if so, does increased interactivity in the tutorials lead to better learning? In order to determine the effect of different levels of interactivity on student learning, we used screen capture technology to design interactive support materials for…

  8. Metabolic fingerprinting of gilthead seabream (Sparus aurata liver to track interactions between dietary factors and seasonal temperature variations

    Directory of Open Access Journals (Sweden)

    Tomé S. Silva

    2014-08-01

    Full Text Available Farmed gilthead seabream is sometimes affected by a metabolic syndrome, known as the “winter disease”, which has a significant economic impact in the Mediterranean region. It is caused, among other factors, by the thermal variations that occur during colder months and there are signs that an improved nutritional status can mitigate the effects of this thermal stress. For this reason, a trial was undertaken where we assessed the effect of two different diets on gilthead seabream physiology and nutritional state, through metabolic fingerprinting of hepatic tissue. For this trial, four groups of 25 adult gilthead seabream were reared for 8 months, being fed either with a control diet (CTRL, low-cost commercial formulation or with a diet called “Winter Feed” (WF, high-cost improved formulation. Fish were sampled at two time-points (at the end of winter and at the end of spring, with liver tissue being taken for FT-IR spectroscopy. Results have shown that seasonal temperature variations constitute a metabolic challenge for gilthead seabream, with hepatic carbohydrate stores being consumed over the course of the inter-sampling period. Regarding the WF diet, results point towards a positive effect in terms of performance and improved nutritional status. This diet seems to have a mitigating effect on the deleterious impact of thermal shifts, confirming the hypothesis that nutritional factors can affect the capacity of gilthead seabream to cope with seasonal thermal variations and possibly contribute to prevent the onset of “winter disease”.

  9. Effect of Microbial Interaction on Urea Metabolism in Chinese Liquor Fermentation.

    Science.gov (United States)

    Wu, Qun; Lin, Jianchun; Cui, Kaixiang; Du, Rubin; Zhu, Yang; Xu, Yan

    2017-12-20

    Urea is the primary precursor of the carcinogen ethyl carbamate in fermented foods. Understanding urea metabolism is important for controlling ethyl carbamate production. Using Chinese liquor as a model system, we used metatranscriptome analysis to investigate urea metabolism in spontaneous food fermentation processes. Saccharomyces cerevisiae was dominant in gene transcription for urea biosynthesis and degradation. Lysinibacillus sphaericus was dominant for urea degradation. S. cerevisiae degraded 18% and L. sphaericus degraded 13% of urea in their corresponding single cultures, whereas they degraded 56% of urea in coculture after 12 h. Compared to single cultures, transcription of CAR1, DAL2, and argA, which are related to urea biosynthesis, decreased by 51, 36, and 69% in coculture, respectively. Transcription of DUR1 and ureA, which are related to urea degradation, increased by 227 and 70%, respectively. Thus, coexistence of the two strains promoted degradation of urea via transcriptional regulation of genes related to urea metabolism.

  10. Persistent abnormal coronary flow reserve in association with abnormal glucose metabolism affects prognosis in acute myocardial infarction

    DEFF Research Database (Denmark)

    Løgstrup, Brian B; Høfsten, Dan E; Christophersen, Thomas B

    2011-01-01

    baseline CFR (P = 0.004), S' (P = 0.045) and abnormal glucose metabolism (P = 0.001) were predictors of a decreased CFR at 3 months of follow-up. In multivariate analyses abnormal glucose metabolism (OR: 5.3; 95%CI: 1.9-14.4; P = 0.001) remained a predictor of decreased CFR at follow-up, furthermore...

  11. The fading affect bias: Effects of social disclosure to an interactive versus non-responsive listener.

    Science.gov (United States)

    Muir, Kate; Brown, Charity; Madill, Anna

    2015-01-01

    The intensity of negative emotions associated with event memories fades to a greater extent over time than positive emotions (fading affect bias or FAB). In this study, we examine how the presence and behaviour of a listener during social disclosure influences the FAB and the linguistic characteristics of event narratives. Participants recalled pleasant and unpleasant events and rated each event for its emotional intensity. Recalled events were then allocated to one of three experimental conditions: no disclosure, private verbal disclosure without a listener or social disclosure to another participant whose behaviour was experimentally manipulated. Participants again rated the emotional intensity of the events immediately after these manipulations and after a one-week delay. Verbal disclosure alone was not sufficient to enhance the FAB. However, social disclosure increased positive emotional intensity, regardless of the behaviour of the listener. Whilst talking to an interactive listener led unpleasant event memories to decrease in emotional intensity, talking to a non-responsive listener increased their negative emotional intensity. Further, listener behaviour influenced the extent of emotional expression in written event narratives. This study provides original evidence that listener behaviour during social disclosure is an important factor in the effects of social disclosure in the FAB.

  12. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense.

    Science.gov (United States)

    Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing

    2016-12-01

    Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.

  13. Obesity-metabolic derangement exacerbates cardiomyocyte loss distal to moderate coronary artery stenosis in pigs without affecting global cardiac function.

    Science.gov (United States)

    Li, Zi-Lun; Ebrahimi, Behzad; Zhang, Xin; Eirin, Alfonso; Woollard, John R; Tang, Hui; Lerman, Amir; Wang, Shen-Ming; Lerman, Lilach O

    2014-04-01

    Obesity associated with metabolic derangements (ObM) worsens the prognosis of patients with coronary artery stenosis (CAS), but the underlying cardiac pathophysiologic mechanisms remain elusive. We tested the hypothesis that ObM exacerbates cardiomyocyte loss distal to moderate CAS. Obesity-prone pigs were randomized to four groups (n = 6 each): lean-sham, ObM-sham, lean-CAS, and ObM-CAS. Lean and ObM pigs were maintained on a 12-wk standard or atherogenic diet, respectively, and left circumflex CAS was then induced by placing local-irritant coils. Cardiac structure, function, and myocardial oxygenation were assessed 4 wk later by computed-tomography and blood oxygenation level dependent (BOLD) MRI, the microcirculation with micro-computed-tomography, and injury mechanisms by immunoblotting and histology. ObM pigs showed obesity, dyslipidemia, and insulin resistance. The degree of CAS (range, 50-70%) was similar in lean and ObM pigs, and resting myocardial perfusion and global cardiac function remained unchanged. Increased angiogenesis distal to the moderate CAS observed in lean was attenuated in ObM pigs, which also showed microvascular dysfunction and increased inflammation (M1-macrophages, TNF-α expression), oxidative stress (gp91), hypoxia (BOLD-MRI), and fibrosis (Sirius-red and trichrome). Furthermore, lean-CAS showed increased myocardial autophagy, which was blunted in ObM pigs (downregulated expression of unc-51-like kinase-1 and autophagy-related gene-12; P < 0.05 vs. lean CAS) and associated with marked apoptosis. The interaction diet xstenosis synergistically inhibited angiogenic, autophagic, and fibrogenic activities. ObM exacerbates structural and functional myocardial injury distal to moderate CAS with preserved myocardial perfusion, possibly due to impaired cardiomyocyte turnover.

  14. Influence of the hypothalamic-pituitary-adrenal axis dysregulation on the metabolic profile of patients affected by diabetes mellitus-associated late onset hypogonadism.

    Science.gov (United States)

    Tirabassi, G; Chelli, F M; Ciommi, M; Lenzi, A; Balercia, G

    2016-01-01

    Functional hypercortisolism (FH) is generated by clinical states able to chronically activate the hypothalamic-pituitary-adrenal (HPA) axis [e.g. diabetes mellitus (DM)]. No study has evaluated FH influence in worsening the metabolic profile of male patients affected by DM-associated hypogonadism. In this retrospective work, we assess the possible association between HPA axis-dysregulation and cardiovascular risk factors in men simultaneously affected by DM and late-onset hypogonadism (LOH). Fourteen DM and LOH subjects affected by FH (Hypercort-DM-LOH) and fourteen DM and LOH subjects who were not suffering from FH (Normocort-DM-LOH) were retrospectively considered. Clinical, hormonal and metabolic parameters were retrieved. All metabolic parameters, except for systolic blood pressure, were significantly worse in Hypercort-DM-LOH than in Normocort-DM-LOH. After adjustment for body mass index, waist and total testosterone, Hypercort-DM-LOH subjects showed significantly worse metabolic parameters than Normocort-DM-LOH ones. In Normocort-DM-LOH, no significant correlation between general/hormonal parameters and metabolic variables was present. In Hypercort-DM-LOH, positive and significant correlations of cortisol area under the curve (AUC) after corticotropin releasing hormone with glycemia, triglycerides and blood pressure were evident; on the other hand, negative and significant correlation was present between cortisol AUC and high density lipoprotein (HDL) cholesterol. The associations of AUC cortisol with glycemia, HDL cholesterol and diastolic blood pressure (DBP) were further confirmed at quantile regression after adjustment for therapy. FH may determine a worsening of the metabolic profile in DM-associated hypogonadism. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by

  15. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    Science.gov (United States)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  16. The effects of maternal and post-weaning diet interaction on glucose metabolism and gut microbiota in male mice offspring

    Science.gov (United States)

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Qi, Cuijuan; Wang, Tong

    2016-01-01

    Substantial studies demonstrated that maternal nutrition can significantly determine the susceptibility to developing some metabolic diseases in offspring. However, investigations into the later-life effects of these diets on gut microbiota in the offspring are limited. Our objective was to explore the effects of maternal and post-weaning diet interaction on offspring's gut microbiota and glucose metabolism in later life. The male offspring of dams fed on either a high-fat (HF) diet or control (C) diet and then weaned to either a HF or C diet, generating four groups: C–C, HF–C, C–HF and HF–HF (n=8 in each group). The C–C offspring had lower body weight than C–HF group at 16 weeks of age (Pblood glucose (BG) levels of the male offspring from the C and HF dams weaned HF diet were significantly higher at 30 min, 60 min and 120 min (Pglucose administration compared with those of the C–C group. The C–HF group had higher BG at 30 min than HF–HF group (Pcurve (AUC) in C–HF and HF–HF groups was also significantly larger than C–C group (Pglucose response to a glucose load (Pglucose metabolism and alterations of gut microbiota in later life. Our study is novel in focusing on the effects of maternal and post-weaning diet interaction on offspring gut microbiota and glucose metabolism in later life. PMID:27129301

  17. Glucose and Intermediary Metabolism and Astrocyte-Neuron Interactions Following Neonatal Hypoxia-Ischemia in Rat.

    Science.gov (United States)

    Brekke, Eva; Berger, Hester Rijkje; Widerøe, Marius; Sonnewald, Ursula; Morken, Tora Sund

    2017-01-01

    Neonatal hypoxia-ischemia (HI) and the delayed injury cascade that follows involve excitotoxicity, oxidative stress and mitochondrial failure. The susceptibility to excitotoxicity of the neonatal brain may be related to the capacity of astrocytes for glutamate uptake. Furthermore, the neonatal brain is vulnerable to oxidative stress, and the pentose phosphate pathway (PPP) may be of particular importance for limiting this kind of injury. Also, in the neonatal brain, neurons depend upon de novo synthesis of neurotransmitters via pyruvate carboxylase in astrocytes to increase neurotransmitter pools during normal brain development. Several recent publications describing intermediary brain metabolism following neonatal HI have yielded interesting results: (1) Following HI there is a prolonged depression of mitochondrial metabolism in agreement with emerging evidence of mitochondria as vulnerable targets in the delayed injury cascade. (2) Astrocytes, like neurons, are metabolically impaired following HI, and the degree of astrocytic malfunction may be an indicator of the outcome following hypoxic and hypoxic-ischemic brain injury. (3) Glutamate transfer from neurons to astrocytes is not increased following neonatal HI, which may imply that astrocytes fail to upregulate glutamate uptake in response to the massive glutamate release during HI, thus contributing to excitotoxicity. (4) In the neonatal brain, the activity of the PPP is reduced following HI, which may add to the susceptibility of the neonatal brain to oxidative stress. The present review aims to discuss the metabolic temporal alterations observed in the neonatal brain following HI.

  18. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model

    NARCIS (Netherlands)

    Martin, F.P.J.; Wang, Y.; Sprenger, N.; Yap, K.S.; Rezzi, S.; Ramadan, Z.; Peré-Trepat, E.; Rochat, F.; Cherbut, C.; Bladeren, van P.J.; Fay, L.B.; Kochhar, S.; LindOn, J.C.; Holmes, E.; Nicholson, J.K.

    2008-01-01

    The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse

  19. Costly neighbours: Heterospecific competitive interactions increase metabolic rates in dominant species

    Czech Academy of Sciences Publication Activity Database

    Janča, M.; Gvoždík, Lumír

    2017-01-01

    Roč. 7, č. 5177 (2017), č. článku 5177. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA15-07140S Institutional support: RVO:68081766 Keywords : interference competition * intraspecific variation * terrestrial salamander * energy metabolism * natural selection * newts Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 4.259, year: 2016

  20. [Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study)].

    Science.gov (United States)

    García-Artero, Enrique; Ortega, Francisco B; Ruiz, Jonatan R; Mesa, José L; Delgado, Manuel; González-Gross, Marcela; García-Fuentes, Miguel; Vicente-Rodríguez, Germán; Gutiérrez, Angel; Castillo, Manuel J

    2007-06-01

    To determine whether the level of physical activity or physical fitness (i.e., aerobic capacity and muscle strength) in Spanish adolescents influences lipid and metabolic profiles. From a total of 2859 Spanish adolescents (age 13.0-18.5 years) taking part in the AVENA (Alimentación y Valoración del Estado Nutricional en Adolescentes) study, 460 (248 male, 212 female) were randomly selected for blood analysis. Their level of physical activity was determined by questionnaire. Aerobic capacity was assessed using the Course-Navette test. Muscle strength was evaluated using manual dynamometry, the long jump test, and the flexed arm hang test. A lipid-metabolic cardiovascular risk index was derived from the levels of triglycerides, low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and glucose. No relationship was found between the level of physical activity and lipid-metabolic index in either sex. In contrast, there was an inverse relationship between the lipid-metabolic index and aerobic capacity in males (P=.003) after adjustment for physical activity level and muscle strength. In females, a favorable lipid-metabolic index was associated with greater muscle strength (P=.048) after adjustment for aerobic capacity. These results indicate that, in adolescents, physical fitness, and not physical activity, is related to lipid and metabolic cardiovascular risk. Higher aerobic capacity in males and greater muscle strength in females were associated with lower lipid and metabolic risk factors for cardiovascular disease.

  1. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.

    Science.gov (United States)

    Galle, Samuel; Malcolm, Philippe; Collins, Steven Hartley; De Clercq, Dirk

    2017-04-27

    Powered ankle-foot exoskeletons can reduce the metabolic cost of human walking to below normal levels, but optimal assistance properties remain unclear. The purpose of this study was to test the effects of different assistance timing and power characteristics in an experiment with a tethered ankle-foot exoskeleton. Ten healthy female subjects walked on a treadmill with bilateral ankle-foot exoskeletons in 10 different assistance conditions. Artificial pneumatic muscles assisted plantarflexion during ankle push-off using one of four actuation onset timings (36, 42, 48 and 54% of the stride) and three power levels (average positive exoskeleton power over a stride, summed for both legs, of 0.2, 0.4 and 0.5 W∙kg -1 ). We compared metabolic rate, kinematics and electromyography (EMG) between conditions. Optimal assistance was achieved with an onset of 42% stride and average power of 0.4 W∙kg -1 , leading to 21% reduction in metabolic cost compared to walking with the exoskeleton deactivated and 12% reduction compared to normal walking without the exoskeleton. With suboptimal timing or power, the exoskeleton still reduced metabolic cost, but substantially less so. The relationship between timing, power and metabolic rate was well-characterized by a two-dimensional quadratic function. The assistive mechanisms leading to these improvements included reducing muscular activity in the ankle plantarflexors and assisting leg swing initiation. These results emphasize the importance of optimizing exoskeleton actuation properties when assisting or augmenting human locomotion. Our optimal assistance onset timing and average power levels could be used for other exoskeletons to improve assistance and resulting benefits.

  2. Effect of genetic variants and traits related to glucose metabolism and their interaction with obesity on breast and colorectal cancer risk among postmenopausal women.

    Science.gov (United States)

    Jung, Su Yon; Sobel, Eric M; Papp, Jeanette C; Zhang, Zuo-Feng

    2017-04-26

    Impaired glucose metabolism-related genetic variants and traits likely interact with obesity and related lifestyle factors, influencing postmenopausal breast and colorectal cancer (CRC), but their interconnected pathways are not fully understood. By stratifying via obesity and lifestyles, we partitioned the total effect of glucose metabolism genetic variants on cancer risk into two putative mechanisms: 1) indirect (risk-associated glucose metabolism genetic variants mediated by glucose metabolism traits) and 2) direct (risk-associated glucose metabolism genetic variants through pathways other than glucose metabolism traits) effects. Using 16 single-nucleotide polymorphisms (SNPs) associated with glucose metabolism and data from 5379 postmenopausal women in the Women's Health Initiative Harmonized and Imputed Genome-Wide Association Studies, we retrospectively assessed the indirect and direct effects of glucose metabolism-traits (fasting glucose, insulin, and homeostatic model assessment-insulin resistance [HOMA-IR]) using two quantitative tests. Several SNPs were associated with breast cancer and CRC risk, and these SNP-cancer associations differed between non-obese and obese women. In both strata, the direct effect of cancer risk associated with the SNP accounted for the majority of the total effect for most SNPs, with roughly 10% of cancer risk due to the SNP that was from an indirect effect mediated by glucose metabolism traits. No apparent differences in the indirect (glucose metabolism-mediated) effects were seen between non-obese and obese women. It is notable that among obese women, 50% of cancer risk was mediated via glucose metabolism trait, owing to two SNPs: in breast cancer, in relation to GCKR through glucose, and in CRC, in relation to DGKB/TMEM195 through HOMA-IR. Our findings suggest that glucose metabolism genetic variants interact with obesity, resulting in altered cancer risk through pathways other than those mediated by glucose metabolism traits.

  3. Affiliation and control in marital interaction: interpersonal complementarity is present but is not associated with affect or relationship quality.

    Science.gov (United States)

    Cundiff, Jenny M; Smith, Timothy W; Butner, Jonathan; Critchfield, Kenneth L; Nealey-Moore, Jill

    2015-01-01

    The principle of complementarity in interpersonal theory states that an actor's behavior tends to "pull, elicit, invite, or evoke" responses from interaction partners who are similar in affiliation (i.e., warmth vs. hostility) and opposite in control (i.e., dominance vs. submissiveness). Furthermore, complementary interactions are proposed to evoke less negative affect and promote greater relationship satisfaction. These predictions were examined in two studies of married couples. Results suggest that complementarity in affiliation describes a robust general pattern of marital interaction, but complementarity in control varies across contexts. Consistent with behavioral models of marital interaction, greater levels of affiliation and lower control by partners-not complementarity in affiliation or control-were associated with less anger and anxiety and greater relationship quality. Partners' levels of affiliation and control combined in ways other than complementarity-mostly additively, but sometimes synergistically-to predict negative affect and relationship satisfaction. © 2014 by the Society for Personality and Social Psychology, Inc.

  4. Interactivity in brand web sites: cognitive, affective, and behavioral responses explained by consumers’ online flow experience

    NARCIS (Netherlands)

    van Noort, G.; Voorveld, H.A.M.; van Reijmersdal, E.A.

    2012-01-01

    Web site interactivity creates numerous opportunities for marketers to persuade online consumers and receives extensive attention in the marketing literature. However, research on cognitive and behavioral responses to web site interactivity is scarce, and more importantly, it does not provide

  5. Ecological Momentary Assessment of social functioning in schizophrenia: impact of performance appraisals and affect on social interactions.

    Science.gov (United States)

    Granholm, Eric; Ben-Zeev, Dror; Fulford, Daniel; Swendsen, Joel

    2013-04-01

    Research concerning the complex interplay between factors that contribute to poor social functioning in schizophrenia has been hampered by limitations of traditional measures, most notably the ecological validity and accuracy of retrospective self-report and interview measures. Computerized Ecological Momentary Assessment (EMAc) permits the real-time assessment of relationships between daily life experiences, thoughts, feelings, and behaviors. In the current study, EMAc was used to record daily social interactions, subjective performance appraisals of these interactions (e.g., "I succeeded/failed"; "I was liked/rejected"), and affect in 145 individuals with schizophrenia or schizoaffective disorder. Participants completed electronic questionnaires on a personal digital assistant (PDA) four times per day for one week. Time-lagged multilevel modeling of the data revealed that more positive interaction appraisals at any point in a day were associated with greater positive affect which, in turn, was a strong predictor of more social interactions over subsequent hours. Social functioning, therefore, was linked to positive performance beliefs about social interactions that were associated with greater positive affect. The findings suggest a useful treatment target for cognitive behavioral therapy and other psychosocial interventions that can be used to challenge defeatist beliefs and increase positive affect to enhance social functioning in schizophrenia. Published by Elsevier B.V.

  6. Ecological interactions affecting population-level responses to chemical stress in Mesocyclops leuckarti.

    Science.gov (United States)

    Kulkarni, Devdutt; Hommen, Udo; Schäffer, Andreas; Preuss, Thomas G

    2014-10-01

    Higher tiers of ecological risk assessment (ERA) consider population and community-level endpoints. At the population level, the phenomenon of density dependence is one of the most important ecological processes that influence population dynamics. In this study, we investigated how different mechanisms of density dependence would influence population-level ERA of the cyclopoid copepod Mesocyclops leuckarti under toxicant exposure. We used a combined approach of laboratory experiments and individual-based modelling. An individual-based model was developed for M. leuckarti to simulate population dynamics under triphenyltin exposure based on individual-level ecological and toxicological data from laboratory experiments. The study primarily aimed to-(1) determine which life-cycle processes, based on feeding strategies, are most significant in determining density dependence (2) explore how these mechanisms of density dependence affect extrapolation from individual-level effects to the population level under toxicant exposure. Model simulations showed that cannibalism of nauplii that were already stressed by TPT exposure contributed to synergistic effects of biotic and abiotic factors and led to a twofold stress being exerted on the nauplii, thereby resulting in a higher population vulnerability compared to the scenario without cannibalism. Our results suggest that in population-level risk assessment, it is easy to underestimate toxicity unless underlying ecological interactions including mechanisms of population-level density regulation are considered. This study is an example of how a combined approach of experiments and mechanistic modelling can lead to a thorough understanding of ecological processes in ecotoxicology and enable a more realistic ERA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    Energy Technology Data Exchange (ETDEWEB)

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  8. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2012-06-01

    Full Text Available Honey bees (Apis mellifera provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses usually feed the brood and other adult bees inside the nest, while older bees (foragers forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg and juvenile hormone (JH. However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1, the adipokinetic hormone receptor (AKHR, and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor. Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH, and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  9. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    Science.gov (United States)

    Wang, Ying; Brent, Colin S; Fennern, Erin; Amdam, Gro V

    2012-06-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  10. Interactions of Lipid Genetic Risk Scores with Estimates of Metabolic Health in a Danish Population

    DEFF Research Database (Denmark)

    Justesen, Johanne M; Allin, Kristine H; Sandholt, Camilla H

    2015-01-01

    Background—There are several well-established lifestyle factors influencing dyslipidemia and currently; 157 genetic susceptibility loci have been reported to be associated with serum lipid levels at genome-wide statistical significance. However, the interplay between lifestyle risk factors...... and these susceptibility loci has not been fully elucidated. We tested whether genetic risk scores (GRS) of lipid-associated single nucleotide polymorphisms associate with fasting serum lipid traits and whether the effects are modulated by lifestyle factors or estimates of metabolic health. Methods and Results—The single......-cholesterol, high-density lipoprotein-cholesterol, or triglyceride, 4 weighted GRS were constructed. In a cross-sectional design, we investigated whether the effect of these weighted GRSs on lipid levels were modulated by diet, alcohol consumption, physical activity, and smoking or the individual metabolic health...

  11. Neuron-astrocyte interaction enhance GABAergic synaptic transmission in a manner dependent on key metabolic enzymes.

    OpenAIRE

    Przemysław eKaczor; Dariusz eRakus; Jerzy Władysław Mozrzymas; Jerzy Władysław Mozrzymas

    2015-01-01

    GABA is the major inhibitory neurotransmitter in the adult brain and mechanisms of GABAergic inhibition have been intensely investigated in the past decades. Recent studies provided evidence for an important role of astrocytes in shaping GABAergic currents. One of the most obvious, but yet poorly understood, mechanisms of the cross-talk between GABAergic currents and astrocytes is metabolism including neurotransmitter homeostasis. In particular, how modulation of GABAergic currents by astrocy...

  12. Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments

    Directory of Open Access Journals (Sweden)

    Yang Zamin K

    2010-05-01

    Full Text Available Abstract Background Communities of microorganisms control the rates of key biogeochemical cycles, and are important for biotechnology, bioremediation, and industrial microbiological processes. For this reason, we constructed a model microbial community comprised of three species dependent on trophic interactions. The three species microbial community was comprised of Clostridium cellulolyticum, Desulfovibrio vulgaris Hildenborough, and Geobacter sulfurreducens and was grown under continuous culture conditions. Cellobiose served as the carbon and energy source for C. cellulolyticum, whereas D. vulgaris and G. sulfurreducens derived carbon and energy from the metabolic products of cellobiose fermentation and were provided with sulfate and fumarate respectively as electron acceptors. Results qPCR monitoring of the culture revealed C. cellulolyticum to be dominant as expected and confirmed the presence of D. vulgaris and G. sulfurreducens. Proposed metabolic modeling of carbon and electron flow of the three-species community indicated that the growth of C. cellulolyticum and D. vulgaris were electron donor limited whereas G. sulfurreducens was electron acceptor limited. Conclusions The results demonstrate that C. cellulolyticum, D. vulgaris, and G. sulfurreducens can be grown in coculture in a continuous culture system in which D. vulgaris and G. sulfurreducens are dependent upon the metabolic byproducts of C. cellulolyticum for nutrients. This represents a step towards developing a tractable model ecosystem comprised of members representing the functional groups of a trophic network.

  13. Complex interactions between dietary and genetic factors impact lycopene metabolism and distribution

    Science.gov (United States)

    Moran, Nancy E.; Erdman, John W.; Clinton, Steven K.

    2013-01-01

    Intake of lycopene, a red, tetraterpene carotenoid found in tomatoes is epidemiologically associated with a decreased risk of chronic disease processes, and lycopene has demonstrated bioactivity in numerous in vitro and animal models. However, our understanding of absorption, tissue distribution, and biological impact in humans remains very limited. Lycopene absorption is strongly impacted by dietary composition, especially the amount of fat. Concentrations of circulating lycopene in lipoproteins may be further influenced by a number of variations in genes related to lipid absorption and metabolism. Lycopene is not uniformly distributed among tissues, with adipose, liver, and blood being the major body pools, while the testes, adrenals, and liver have the greatest concentrations compared to other organs. Tissue concentrations of lycopene are likely dictated by expression of and genetic variation in lipoprotein receptors, cholesterol transporters, and carotenoid metabolizing enzymes, thus impacting lycopene accumulation at target sites of action. The novel application of genetic evaluation in concert with lycopene tracers will allow determination of which genes and polymorphisms define individual lycopene metabolic phenotypes, response to dietary variables, and ultimately determine biological and clinical outcomes. A better understanding of the relationship between diet, genetics, and lycopene distribution will provide necessary information to interpret epidemiological findings more accurately and to design effective, personalized clinical nutritional interventions addressing hypotheses regarding health outcomes. PMID:23845854

  14. Affect recognition and the quality of mother-infant interaction: understanding parenting difficulties in mothers with schizophrenia.

    Science.gov (United States)

    Healy, Sarah J; Lewin, Jona; Butler, Stephen; Vaillancourt, Kyla; Seth-Smith, Fiona

    2016-02-01

    This study investigated the quality of mother-infant interaction and maternal ability to recognise adult affect in three study groups consisting of mothers with a diagnosis of schizophrenia, mothers with depression and healthy controls. Sixty-four mothers were recruited from a Mother and Baby Unit and local children's centres. A 5-min mother-infant interaction was coded on a number of caregiving variables. Affect recognition and discrimination abilities were tested via a series of computerised tasks. Group differences were found both in measures of affect recognition and in the mother-infant interaction. Mothers with schizophrenia showed consistent impairments across most of the parenting measures and all measures of affect recognition and discrimination. Mothers with depression fell between the mothers with schizophrenia and healthy controls on most measures. However, depressed women's parenting was not significantly poorer than controls on any of the measures, and only showed trends for differences with mothers with schizophrenia on a few measures. Regression analyses found impairments in affect recognition and a diagnosis of schizophrenia to predict the occurrence of odd or unusual speech in the mother-infant interaction. Results add to the growing body of knowledge on the mother-infant interaction in mothers with schizophrenia and mothers with depression compared to healthy controls, suggesting a need for parenting interventions aimed at mothers with these conditions. While affect recognition impairments were not found to fully explain differences in parenting among women with schizophrenia, further research is needed to understand the psychopathology of parenting disturbances within this clinical group.

  15. Interactions between urinary 4-tert-octylphenol levels and metabolism enzyme gene variants on idiopathic male infertility.

    Directory of Open Access Journals (Sweden)

    Yufeng Qin

    Full Text Available Octylphenol (OP and Trichlorophenol (TCP act as endocrine disruptors and have effects on male reproductive function. We studied the interactions between 4-tert-Octylphenol (4-t-OP, 4-n- Octylphenol (4-n-OP, 2,3,4-Trichlorophenol (2,3,4-TCP, 2,4,5-Trichlorophenol (2,4,5-TCP urinary exposure levels and polymorphisms in selected xenobiotic metabolism enzyme genes among 589 idiopathic male infertile patients and 396 controls in a Han-Chinese population. Ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS was used to measure alkylphenols and chlorophenols in urine. Polymorphisms were genotyped using the SNPstream platform and the Taqman method. Among four phenols that were detected, we found that only exposure to 4-t-OP increased the risk of male infertility (P(trend = 1.70×10(-7. The strongest interaction was between 4-t-OP and rs4918758 in CYP2C9 (P(inter = 6.05×10(-7. It presented a significant monotonic increase in risk estimates for male infertility with increasing 4-t-OP exposure levels among men with TC/CC genotype (low level compared with non-exposed, odds ratio (OR = 2.26, 95% confidence intervals (CI = 1.06, 4.83; high level compared with non-exposed, OR = 9.22, 95% CI = 2.78, 30.59, but no associations observed among men with TT genotype. We also found interactions between 4-t-OP and rs4986894 in CYP2C19, and between rs1048943 in CYP1A1, on male infertile risk (P(inter = 8.09×10(-7, P(inter = 3.73×10(-4, respectively.We observed notable interactions between 4-t-OP exposure and metabolism enzyme gene polymorphisms on idiopathic infertility in Han-Chinese men.

  16. Polychlorinated Biphenyl-Xenobiotic Nuclear Receptor Interactions Regulate Energy Metabolism, Behavior, and Inflammation in Non-alcoholic-Steatohepatitis.

    Science.gov (United States)

    Wahlang, Banrida; Prough, Russell A; Falkner, K Cameron; Hardesty, Josiah E; Song, Ming; Clair, Heather B; Clark, Barbara J; States, J Christopher; Arteel, Gavin E; Cave, Matthew C

    2016-02-01

    Polychlorinated biphenyls (PCBs) are environmental pollutants associated with non-alcoholic-steatohepatitis (NASH), diabetes, and obesity. We previously demonstrated that the PCB mixture, Aroclor 1260, induced steatohepatitis and activated nuclear receptors in a diet-induced obesity mouse model. This study aims to evaluate PCB interactions with the pregnane-xenobiotic receptor (Pxr: Nr1i2) and constitutive androstane receptor (Car: Nr1i3) in NASH. Wild type C57Bl/6 (WT), Pxr(-/-) and Car(-/-) mice were fed the high fat diet (42% milk fat) and exposed to a single dose of Aroclor 1260 (20 mg/kg) in this 12-week study. Metabolic phenotyping and analysis of serum, liver, and adipose was performed. Steatohepatitis was pathologically similar in all Aroclor-exposed groups, while Pxr(-/-) mice displayed higher basal pro-inflammatory cytokine levels. Pxr repressed Car expression as evident by increased basal Car/Cyp2b10 expression in Pxr(-/-) mice. Both Pxr(-/-) and Car(-/-) mice showed decreased basal respiratory exchange rate (RER) consistent with preferential lipid metabolism. Aroclor increased RER and carbohydrate metabolism, associated with increased light cycle activity in both knockouts, and decreased food consumption in the Car(-/-) mice. Aroclor exposure improved insulin sensitivity in WT mice but not glucose tolerance. The Aroclor-exposed, Pxr(-/-) mice displayed increased gluconeogenic gene expression. Lipid-oxidative gene expression was higher in WT and Pxr(-/-) mice although RER was not changed, suggesting PCB-mediated mitochondrial dysfunction. Therefore, Pxr and Car regulated inflammation, behavior, and energy metabolism in PCB-mediated NASH. Future studies should address the 'off-target' effects of PCBs in steatohepatitis. Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.

  17. COOPERATIVE PLAY AFFECTS SOCIAL INTERACTION OF CHILDREN WHO HAVE INTROVERT PERSONALITY

    OpenAIRE

    Ira Rahmawati; Ah. Yusuf; Ilya Krisnana

    2017-01-01

    Introduction: One of school age children may developing task is learning to interact with their peer groups. The introvert have problem with their social interaction. One ways that can increase the social skill is play activities with social situation. So social play activities: cooperative play can be one of alternative solution to increase social interaction of children with introvert symptom. This study was aimed to explain effect of social play activities: cooperative play on social inter...

  18. Oxidative metabolism of monensin in rat liver microsomes and interactions with tiamulin and other chemotherapeutic agents: evidence for the involvement of cytochrome P-450 3A subfamily.

    Science.gov (United States)

    Nebbia, C; Ceppa, L; Dacasto, M; Carletti, M; Nachtmann, C

    1999-09-01

    Monensin (MON) is an ionophore antibiotic widely used in veterinary practice as a coccidiostatic or a growth promoter. The aims of this study were to characterize the P-450 isoenzyme(s) involved in the biotransformation of the ionophore and to investigate how this process may be affected by tiamulin and other chemotherapeutic agents known to produce toxic interactions with MON when administered concurrently in vivo. In liver microsomes from untreated rats (UT) or from rats pretreated, respectively, with ethanol (ETOH), beta-naphthoflavone (betaNAF), phenobarbital (PB), pregnenolone 16alpha-carbonitrile (PCN), or dexamethasone (DEX), the rate of MON O-demethylation was the following: DEX > PCN > PB > UT = ETOH > betaNAF; similar results were obtained by measuring total MON metabolism. In addition, the extent of triacetyloleandomycin-mediated P-450 complexes was greatly reduced by the prior addition of 100 microM MON. In DEX-treated microsomes, MON O-demethylation was found to fit monophasic Michaelis-Menten kinetics (K(M) = 67.6 +/- 0.01 microM; V(max) = 4.75 +/- 0.76 nmol/min/mg protein). Tiamulin markedly inhibited this activity in an apparent competitive manner, with a calculated K(i) (Dixon plot) of 8.2 microM and an IC(50) of about 25 microM. At the latter concentration, only ketoconazole or metyrapone, which can bind P-450 3A, inhibited MON O-demethylase to a greater extent than tiamulin, whereas alpha-naphthoflavone, chloramphenicol, or sulphametasine was less effective. These results suggest that P-450 3A plays an important role in the oxidative metabolism of MON and that compounds capable of binding or inhibiting this isoenzyme could be expected to give rise to toxic interactions with the ionophore.

  19. The influence of prejudice and stereotypes on anticipated affect : feelings about a potentially negative interaction with another ethnic group

    NARCIS (Netherlands)

    Gordijn, Ernestine; Finchilescu, Gillian; Brix, Louise; Wijnants, Nienke; Koomen, Willem

    2008-01-01

    In this research we investigated whether feelings about an imagined potentially negative interaction with a member of another ethnic group was affected more by valence than content of stereotypes, and whether the differential influence of perception and meta-perception was similar for dominant and

  20. Soil fauna and organic amendment interactions affect soil carbon and crop performance in semi-arid West Africa

    NARCIS (Netherlands)

    Ouédraogo, E.; Brussaard, L.; Stroosnijder, L.

    2007-01-01

    A field experiment was conducted at Kaibo in southern Burkina Faso on an Eutric Cambisol during the 2000 rainy season to assess the interaction of organic amendment quality and soil fauna, affecting soil organic carbon and sorghum ( Sorghum bicolor L. Moench) performance. Plots were treated with the

  1. Type 2 diabetes mellitus interacts with obesity and common variations in PLTP to affect plasma phospholipid transfer protein activity

    NARCIS (Netherlands)

    Dullaart, R. P. F.; Vergeer, M.; de Vries, R.; Kappelle, P. J. W. H.; Dallinga-Thie, G. M.

    2012-01-01

    Dullaart RPF, Vergeer M, de Vries R, Kappelle PJWH, Dallinga-Thie GM (University Medical Center Groningen, University of Groningen, Groningen; and Academic Medical Center Amsterdam, Amsterdam; The Netherlands). Type 2 diabetes mellitus interacts with obesity and common variations in PLTP to affect

  2. Do Core Interpersonal and Affective Traits of PCL-R Psychopathy Interact with Antisocial Behavior and Disinhibition to Predict Violence?

    Science.gov (United States)

    Kennealy, Patrick J.; Skeem, Jennifer L.; Walters, Glenn D.; Camp, Jacqueline

    2010-01-01

    The utility of psychopathy measures in predicting violence is largely explained by their assessment of social deviance (e.g., antisocial behavior; disinhibition). A key question is whether social deviance "interacts" with the core interpersonal-affective traits of psychopathy to predict violence. Do core psychopathic traits multiply the (already…

  3. Genotype-environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes

    NARCIS (Netherlands)

    El-Soda, M.; Boer, M.P.; Bagheri, H.; Hanhart, C.J.; Koornneef, M.; Aarts, M.G.M.

    2014-01-01

    Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop

  4. Interactions between polymorphisms in the aryl hydrocarbon receptor signalling pathway and exposure to persistent organochlorine pollutants affect human semen quality

    DEFF Research Database (Denmark)

    Brokken, L J S; Lundberg, P J; Spanò, M

    2014-01-01

    Persistent organic pollutants (POPs) may affect male reproductive function. Many dioxin-like POPs exert their effects by activation of the aryl hydrocarbon receptor (AHR) signalling pathway. We analysed whether gene-environment interactions between polymorphisms in AHR (R554K) and AHR repressor (...

  5. The Multigenerational Workforce within Two-Year Public Community Colleges: A Study of Generational Factors Affecting Employee Learning and Interaction

    Science.gov (United States)

    Starks, Florida Elizabeth

    2014-01-01

    The purpose of this quantitative study is to broaden multigenerational workforce research involving factors affecting employee learning and interaction by using a population of Baby Boomer, Generation X, and Millennial faculty and staff age cohorts employed at two-year public community college organizations. Researchers have studied…

  6. Do core interpersonal and affective traits of PCL-R psychopathy interact with antisocial behavior and disinhibition to predict violence?

    Science.gov (United States)

    Kennealy, Patrick J; Skeem, Jennifer L; Walters, Glenn D; Camp, Jacqueline

    2010-09-01

    The utility of psychopathy measures in predicting violence is largely explained by their assessment of social deviance (e.g., antisocial behavior; disinhibition). A key question is whether social deviance interacts with the core interpersonal-affective traits of psychopathy to predict violence. Do core psychopathic traits multiply the (already high) risk of violence among disinhibited individuals with a dense history of misbehavior? This meta-analysis of 32 effect sizes (N = 10,555) tested whether an interaction between the Psychopathy Checklist-Revised (PCL-R; R. D. Hare, 2003) Interpersonal-Affective and Social Deviance scales predicted violence beyond the simple additive effects of each scale. Results indicate that Social Deviance is more uniquely predictive of violence (d = .40) than Interpersonal-Affective traits (d = .11), and these two scales do not interact (d = .00) to increase power in predicting violence. In fact, Social Deviance alone would predict better than the Interpersonal-Affective scale and any interaction in 81% and 96% of studies, respectively. These findings have fundamental practical implications for risk assessment and theoretical implications for some conceptualizations of psychopathy.

  7. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory.

    Science.gov (United States)

    Fernandez Espejo, Emilio

    2003-03-01

    Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (ploss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short

  8. Age Differences in Affective and Cardiovascular Responses to a Negative Social Interaction: The Role of Goals, Appraisals, and Emotion Regulation

    Science.gov (United States)

    Luong, Gloria; Charles, Susan T.

    2014-01-01

    Older adults often report less affective reactivity to interpersonal tensions than younger individuals, but few studies have directly investigated mechanisms explaining this effect. The current study examined whether older adults’ differential endorsement of goals, appraisals, and emotion regulation strategies (i.e., conflict avoidance/de-escalation, self-distraction) during a controlled negative social interaction may explain age differences in affective and cardiovascular responses to the conflict discussion. Participants (N=159; 80 younger adults, 79 older adults) discussed hypothetical dilemmas with disagreeable confederates. Throughout the laboratory session, participants’ subjective emotional experience, blood pressure, and pulse rate were assessed. Older adults generally exhibited less reactivity (negative affect reactivity, diastolic blood pressure reactivity, and pulse rate reactivity) to the task, and more pronounced positive and negative affect recovery following the task, than did younger adults. Older adults appraised the task as more enjoyable and the confederate as more likeable, and more strongly endorsed goals to perform well on the task, which mediated age differences in negative affect reactivity, pulse rate reactivity, and positive affect recovery (i.e., increases in post-task positive affect), respectively. In addition, younger adults showed increased negative affect reactivity with greater use of self-distraction, whereas older adults did not. Together, findings suggest that older adults respond less negatively to unpleasant social interactions than younger adults, and these responses are explained in part by older adults’ pursuit of different motivational goals, less threatening appraisals of the social interaction, and more effective use of self-distraction, compared to younger adults. PMID:24773101

  9. Differences between silica and limestone concretes that may affect their interaction with corium

    International Nuclear Information System (INIS)

    Journeau, C.; Haquet, J. F.; Piluso, P.; Bonnet, J. M.

    2008-01-01

    Recent Molten Core Concrete Interaction tests performed at Argonne National Laboratory and at CEA Cadarache have shown that, whereas the ablation of limestone-rich concretes is almost isotropic, the ablation of silica-rich concretes is much faster towards the sides than towards the bottom of the cavity. The following differences exists between limestone-rich and silica-rich concretes: limestone concretes liberate about twice as much gas, at a given ablation rate than siliceous concretes (more than 50% more at constant heat flux) and this can affect pool hydraulics and crust stability: limestone concrete has a higher liquidus temperature than siliceous concrete a