WorldWideScience

Sample records for metabolic fuel previously

  1. Fruit bats (Pteropodidae) fuel their metabolism rapidly and directly with exogenous sugars.

    Science.gov (United States)

    Amitai, O; Holtze, S; Barkan, S; Amichai, E; Korine, C; Pinshow, B; Voigt, C C

    2010-08-01

    Previous studies reported that fed bats and birds mostly use recently acquired exogenous nutrients as fuel for flight, rather than endogenous fuels, such as lipids or glycogen. However, this pattern of fuel use may be a simple size-related phenomenon because, to date, only small birds and bats have been studied with respect to the origin of metabolized fuel, and because small animals carry relatively small energy reserves, considering their high mass-specific metabolic rate. We hypothesized that approximately 150 g Egyptian fruit bats (Rousettus aegyptiacus Pteropodidae), which are more than an order of magnitude heavier than previously studied bats, also catabolize dietary sugars directly and exclusively to fuel both rest and flight metabolism. We based our expectation on the observation that these animals rapidly transport ingested dietary sugars, which are absorbed via passive paracellular pathways in the intestine, to organs of high energy demand. We used the stable carbon isotope ratio in exhaled CO(2) (delta(13)C(breath)) to assess the origin of metabolized substrates in 16 Egyptian fruit bats that were maintained on a diet of C3 plants before experiments. First, we predicted that in resting bats delta(13)C(breath) remains constant when bats ingest C3 sucrose, but increases and converges on the dietary isotopic signature when C4 sucrose and C4 glucose are ingested. Second, if flying fruit bats use exogenous nutrients exclusively to fuel flight, we predicted that delta(13)C(breath) of flying bats would converge on the isotopic signature of the C4 sucrose they were fed. Both resting and flying Egyptian fruit bats, indeed, directly fuelled their metabolism with freshly ingested exogenous substrates. The rate at which the fruit bats oxidized dietary sugars was as fast as in 10 g nectar-feeding bats and 5 g hummingbirds. Our results support the notion that flying bats, irrespective of their size, catabolize dietary sugars directly, and possibly exclusively, to

  2. Engineering yeast metabolism for production of fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2016-01-01

    faster development of metabolically engineered strains that can be used for production of fuels and chemicals. The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel industrial...... as for metabolic design. In this lecture it will be demonstrated how the Design-Build-Test cycle of metabolic engineering has allowed for development of yeast cell factories for production of a range of different fuels and chemicals. Some examples of different technologies will be presented together with examples......Metabolic engineering relies on the Design-Build-Test cycle. This cycle includes technologies like mathematical modeling of metabolism, genome editing and advanced tools for phenotypic characterization. In recent years there have been advances in several of these technologies, which has enabled...

  3. Metabolic fuel and clinical implications for female reproduction.

    Science.gov (United States)

    Mircea, Carmen N; Lujan, Marla E; Pierson, Roger A

    2007-11-01

    Reproduction is a physiologically costly process that consumes significant amounts of energy. The physiological mechanisms controlling energy balance are closely linked to fertility. This close relationship ensures that pregnancy and lactation occur only in favourable conditions with respect to energy. The primary metabolic cue that modulates reproduction is the availability of oxidizable fuel. An organism's metabolic status is transmitted to the brain through metabolic fuel detectors. There are many of these detectors at both the peripheral (e.g., leptin, insulin, ghrelin) and central (e.g., neuropeptide Y, melanocortin, orexins) levels. When oxidizable fuel is scarce, the detectors function to inhibit the release of gonadotropin-releasing hormone and luteinizing hormone, thereby altering steroidogenesis, reproductive cyclicity, and sexual behaviour. Infertility can also result when resources are abundant but food intake fails to compensate for increased energy demands. Examples of these conditions in women include anorexia nervosa and exercise-induced amenorrhea. Infertility associated with obesity appears to be less related to an effect of oxidizable fuel on the hypothalamic-pituitary-ovarian axis. Impaired insulin sensitivity may play a role in the etiology of these conditions, but their specific etiology remains unresolved. Research into the metabolic regulation of reproductive function has implications for elucidating mechanisms of impaired pubertal development, nutritional amenorrhea, and obesity-related infertility. A better understanding of these etiologies has far-reaching implications for the prevention and management of reproductive dysfunction and its associated comorbidities.

  4. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...... and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals......, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable...

  5. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  7. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  8. Metabolic fuels: regulating fluxes to select mix.

    Science.gov (United States)

    Weber, Jean-Michel

    2011-01-15

    Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.

  9. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Shuobo Shi

    2017-11-01

    Full Text Available Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  10. Cancer cell metabolism and mitochondria: Nutrient plasticity for TCA cycle fueling.

    Science.gov (United States)

    Corbet, Cyril; Feron, Olivier

    2017-08-01

    Warburg's hypothesis that cancer cells take up a lot of glucose in the presence of ambient oxygen but convert pyruvate into lactate due to impaired mitochondrial function led to the misconception that cancer cells rely on glycolysis as their major source of energy. Most recent 13 C-based metabolomic studies, including in cancer patients, indicate that cancer cells may also fully oxidize glucose. In addition to glucose-derived pyruvate, lactate, fatty acids and amino acids supply substrates to the TCA cycle to sustain mitochondrial metabolism. Here, we discuss how the metabolic flexibility afforded by these multiple mitochondrial inputs allows cancer cells to adapt according to the availability of the different fuels and the microenvironmental conditions such as hypoxia and acidosis. In particular, we focused on the role of the TCA cycle in interconnecting numerous metabolic routes in order to highlight metabolic vulnerabilities that represent attractive targets for a new generation of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion.

    Science.gov (United States)

    Sousa, Cristovão M; Biancur, Douglas E; Wang, Xiaoxu; Halbrook, Christopher J; Sherman, Mara H; Zhang, Li; Kremer, Daniel; Hwang, Rosa F; Witkiewicz, Agnes K; Ying, Haoqiang; Asara, John M; Evans, Ronald M; Cantley, Lewis C; Lyssiotis, Costas A; Kimmelman, Alec C

    2016-08-25

    Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease characterized by an intense fibrotic stromal response and deregulated metabolism. The role of the stroma in PDAC biology is complex and it has been shown to play critical roles that differ depending on the biological context. The stromal reaction also impairs the vasculature, leading to a highly hypoxic, nutrient-poor environment. As such, these tumours must alter how they capture and use nutrients to support their metabolic needs. Here we show that stroma-associated pancreatic stellate cells (PSCs) are critical for PDAC metabolism through the secretion of non-essential amino acids (NEAA). Specifically, we uncover a previously undescribed role for alanine, which outcompetes glucose and glutamine-derived carbon in PDAC to fuel the tricarboxylic acid (TCA) cycle, and thus NEAA and lipid biosynthesis. This shift in fuel source decreases the tumour’s dependence on glucose and serum-derived nutrients, which are limited in the pancreatic tumour microenvironment. Moreover, we demonstrate that alanine secretion by PSCs is dependent on PSC autophagy, a process that is stimulated by cancer cells. Thus, our results demonstrate a novel metabolic interaction between PSCs and cancer cells, in which PSC-derived alanine acts as an alternative carbon source. This finding highlights a previously unappreciated metabolic network within pancreatic tumours in which diverse fuel sources are used to promote growth in an austere tumour microenvironment.

  12. Effect of previous exhaustive exercise on metabolism and fatigue development during intense exercise in humans

    DEFF Research Database (Denmark)

    Iaia, F. M.; Perez-Gomez, J.; Nordsborg, Nikolai

    2010-01-01

    The present study examined how metabolic response and work capacity are affected by previous exhaustive exercise. Seven subjects performed an exhaustive cycle exercise ( approximately 130%-max; EX2) after warm-up (CON) and 2 min after an exhaustive bout at a very high (VH; approximately 30 s), high...

  13. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering.

    Science.gov (United States)

    Harvey, Benjamin G; Meylemans, Heather A; Gough, Raina V; Quintana, Roxanne L; Garrison, Michael D; Bruno, Thomas J

    2014-05-28

    Biosynthetic valencene, premnaspirodiene, and natural caryophyllene were hydrogenated and evaluated as high performance fuels. The parent sesquiterpenes were then isomerized to complex mixtures of hydrocarbons with the heterogeneous acid catalyst Nafion SAC-13. High density fuels with net heats of combustion ranging from 133-141 000 Btu gal(-1), or up to 13% higher than commercial jet fuel could be generated by this approach. The products of caryophyllene isomerization were primarily tricyclic hydrocarbons which after hydrogenation increased the fuel density by 6%. The isomerization of valencene and premnaspirodiene also generated a variety of sesquiterpenes, but in both cases the dominant product was δ-selinene. Ab initio calculations were conducted to determine the total electronic energies for the reactants and products. In all cases the results were in excellent agreement with the experimental distribution of isomers. The cetane numbers for the sesquiterpane fuels ranged from 20-32 and were highly dependent on the isomer distribution. Specific distillation cuts may have the potential to act as high density diesel fuels, while use of these hydrocarbons as additives to jet fuel will increase the range and/or time of flight of aircraft. In addition to the ability to generate high performance renewable fuels, the powerful combination of metabolic engineering and heterogeneous catalysis will allow for the preparation of a variety of sesquiterpenes with potential for pharmaceutical, flavor, and fragrance applications.

  14. Marked augmentation of PLGA nanoparticle-induced metabolically beneficial impact of γ-oryzanol on fuel dyshomeostasis in genetically obese-diabetic ob/ob mice.

    Science.gov (United States)

    Kozuka, Chisayo; Shimizu-Okabe, Chigusa; Takayama, Chitoshi; Nakano, Kaku; Morinaga, Hidetaka; Kinjo, Ayano; Fukuda, Kotaro; Kamei, Asuka; Yasuoka, Akihito; Kondo, Takashi; Abe, Keiko; Egashira, Kensuke; Masuzaki, Hiroaki

    2017-11-01

    Our previous works demonstrated that brown rice-specific bioactive substance, γ-oryzanol acts as a chaperone, attenuates exaggerated endoplasmic reticulum (ER) stress in brain hypothalamus and pancreatic islets, thereby ameliorating metabolic derangement in high fat diet (HFD)-induced obese diabetic mice. However, extremely low absorption efficiency from intestine of γ-oryzanol is a tough obstacle for the clinical application. Therefore, in this study, to overcome extremely low bioavailability of γ-oryzanol with super-high lipophilicity, we encapsulated γ-oryzanol in polymer poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Nano-Orz), and evaluated its metabolically beneficial impact in genetically obese-diabetic ob/ob mice, the best-known severest diabetic model in mice. To our surprise, Nano-Orz markedly ameliorated fuel metabolism with an unexpected magnitude (∼1000-fold lower dose) compared with regular γ-oryzanol. Furthermore, such a conspicuous impact was achievable by its administration once every 2 weeks. Besides the excellent impact on dysfunction of hypothalamus and pancreatic islets, Nano-Orz markedly decreased ER stress and inflammation in liver and adipose tissue. Collectively, nanotechnology-based developments of functional foods oriented toward γ-oryzanol shed light on the novel approach for the treatment of a variety of metabolic diseases in humans.

  15. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.

    Science.gov (United States)

    Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R

    2015-07-01

    The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas.

    Science.gov (United States)

    Humphreys, Christopher M; Minton, Nigel P

    2018-04-01

    The future sustainable production of chemicals and fuels from non-petrochemical sources, while at the same time reducing greenhouse gas (GHG) emissions, represent two of society's greatest challenges. Microbial chassis able to grow on waste carbon monoxide (CO) and carbon dioxide (CO 2 ) can provide solutions to both. Ranging from the anaerobic acetogens, through the aerobic chemoautotrophs to the photoautotrophic cyanobacteria, they are able to convert C1 gases into a range of chemicals and fuels which may be enhanced and extended through appropriate metabolic engineering. The necessary improvements will be facilitated by the increasingly sophisticated gene tools that are beginning to emerge as part of the Synthetic Biology revolution. These tools, in combination with more accurate metabolic and genome scale models, will enable C1 chassis to deliver their full potential. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Metabolites from inhalation of aerosolized S-8 synthetic jet fuel in rats.

    Science.gov (United States)

    Tremblay, Raphael T; Martin, Sheppard A; Fisher, Jeffrey W

    2011-01-01

    Alternative fuels are being considered for civilian and military uses. One of these is S-8, a replacement jet fuel synthesized using the Fischer-Tropsch process, which contains no aromatic compounds and is mainly composed of straight and branched alkanes. Metabolites of S-8 fuel in laboratory animals have not been identified. The goal of this study was to identify metabolic products from exposure to aerosolized S-8 and a designed straight-chain alkane/polyaromatic mixture (decane, undecane, dodecane, tridecane, tetradecane, pentadecane, naphthalene, and 2-methylnaphthalene) in male Fischer 344 rats. Collected blood and tissue samples were analyzed for 70 straight and branched alcohols and ketones ranging from 7 to 15 carbons. No fuel metabolites were observed in the blood, lungs, brain, and fat following S-8 exposure. Metabolites were detected in the liver, urine, and feces. Most of the metabolites were 2- and 3-position alcohols and ketones of prominent hydrocarbons with very few 1- or 4-position metabolites. Following exposure to the alkane mixture, metabolites were observed in the blood, liver, and lungs. Interestingly, heavy metabolites (3-tridecanone, 2-tridecanol, and 2-tetradecanol) were observed only in the lung tissues possibly indicating that metabolism occurred in the lungs. With the exception of these heavy metabolites, the metabolic profiles observed in this study are consistent with previous studies reporting on the metabolism of individual alkanes. Further work is needed to determine the potential metabolic interactions of parent, primary, and secondary metabolites and identify more polar metabolites. Some metabolites may have potential use as biomarkers of exposure to fuels.

  18. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    Energy Technology Data Exchange (ETDEWEB)

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  19. Ovariectomy induces a shift in fuel availability and metabolism in the hippocampus of the female transgenic model of familial Alzheimer's.

    Science.gov (United States)

    Ding, Fan; Yao, Jia; Zhao, Liqin; Mao, Zisu; Chen, Shuhua; Brinton, Roberta Diaz

    2013-01-01

    Previously, we demonstrated that reproductive senescence in female triple transgenic Alzheimer's (3×TgAD) mice was paralleled by a shift towards a ketogenic profile with a concomitant decline in mitochondrial activity in brain, suggesting a potential association between ovarian hormone loss and alteration in the bioenergetic profile of the brain. In the present study, we investigated the impact of ovariectomy and 17β-estradiol replacement on brain energy substrate availability and metabolism in a mouse model of familial Alzheimer's (3×TgAD). Results of these analyses indicated that ovarian hormones deprivation by ovariectomy (OVX) induced a significant decrease in brain glucose uptake indicated by decline in 2-[(18)F]fluoro-2-deoxy-D-glucose uptake measured by microPET-imaging. Mechanistically, OVX induced a significant decline in blood-brain-barrier specific glucose transporter expression, hexokinase expression and activity. The decline in glucose availability was accompanied by a significant rise in glial LDH5 expression and LDH5/LDH1 ratio indicative of lactate generation and utilization. In parallel, a significant rise in ketone body concentration in serum occurred which was coupled to an increase in neuronal MCT2 expression and 3-oxoacid-CoA transferase (SCOT) required for conversion of ketone bodies to acetyl-CoA. In addition, OVX-induced decline in glucose metabolism was paralleled by a significant increase in Aβ oligomer levels. 17β-estradiol preserved brain glucose-driven metabolic capacity and partially prevented the OVX-induced shift in bioenergetic substrate as evidenced by glucose uptake, glucose transporter expression and gene expression associated with aerobic glycolysis. 17β-estradiol also partially prevented the OVX-induced increase in Aβ oligomer levels. Collectively, these data indicate that ovarian hormone loss in a preclinical model of Alzheimer's was paralleled by a shift towards the metabolic pathway required for metabolism of

  20. Fuel use and metabolic response to endurance exercise : a wind tunnel study of a long-distance migrant shorebird

    NARCIS (Netherlands)

    Jenni-Eiermann, Susanne; Jenni, Lukas; Kvist, Anders; Lindström, Åke; Piersma, Theunis; Visser, G. Henk

    This study examines fuel use and metabolism in a group of long-distance migrating birds, red knots Calidris canutus (Scolopacidae), flying under controlled conditions in a wind tunnel for up to 10 h. Data are compared with values for resting birds fasting for the same time. Plasma levels of free

  1. Metabolic response to 6-week aerobic exercise training and dieting in previously sedentary overweight and obese pre-menopausal women: A randomized trial

    Directory of Open Access Journals (Sweden)

    Petri Wiklund

    2014-09-01

    Conclusion: Our results indicate that small weight loss does not produce measurable health benefits, whereas short-term regular aerobic exercise can improve glucose and lipid metabolism even in the absence of weight loss in previously sedentary overweight and obese women.

  2. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  3. Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals

    Directory of Open Access Journals (Sweden)

    Benjamin M Zeldes

    2015-11-01

    Full Text Available Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye towards potential technological

  4. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    Science.gov (United States)

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  5. Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer.

    Science.gov (United States)

    Marshall, Stephen

    2006-08-01

    Traditionally, nutrients such as glucose and amino acids have been viewed as substrates for the generation of high-energy molecules and as precursors for the biosynthesis of macromolecules. However, it is now apparent that nutrients also function as signaling molecules in functionally diverse signal transduction pathways. Glucose and amino acids trigger signaling cascades that regulate various aspects of fuel and energy metabolism and control the growth, proliferation, and survival of cells. Here, we provide a functional and regulatory overview of three well-established nutrient signaling pathways-the hexosamine signaling pathway, the mTOR (mammalian target of rapamycin) signaling pathway, and the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Nutrient signaling pathways are interconnected, coupled to insulin signaling, and linked to the release of metabolic hormones from adipose tissue. Thus, nutrient signaling pathways do not function in isolation. Rather, they appear to serve as components of a larger "metabolic regulatory network" that controls fuel and energy metabolism (at the cell, tissue, and whole-body levels) and links nutrient availability with cell growth and proliferation. Understanding the diverse roles of nutrients and delineating nutrient signaling pathways should facilitate drug discovery research and the search for novel therapeutic compounds to prevent and treat various human diseases such as diabetes, obesity, and cancer.

  6. Biological fuel cells and their applications

    OpenAIRE

    Shukla, AK; Suresh, P; Berchmans, S; Rajendran, A

    2004-01-01

    One type of genuine fuel cell that does hold promise in the long-term is the biological fuel cell. Unlike conventional fuel cells, which employ hydrogen, ethanol and methanol as fuel, biological fuel cells use organic products produced by metabolic processes or use organic electron donors utilized in the growth processes as fuels for current generation. A distinctive feature of biological fuel cells is that the electrode reactions are controlled by biocatalysts, i.e. the biological redox-reac...

  7. Profiling of Plasma Metabolites Suggests Altered Mitochondrial Fuel Usage and Remodeling of Sphingolipid Metabolism in Individuals With Type 2 Diabetes and Kidney Disease

    Directory of Open Access Journals (Sweden)

    Jian-Jun Liu

    2017-05-01

    Discussion: DKD is associated with altered fuel substrate use and remodeling of sphingolipid metabolism in T2DM with DKD. Associations of albuminuria and impaired filtration function with distinct metabolomic signatures suggest different pathophysiology underlying these 2 manifestations of DKD.

  8. Famine versus feast: understanding the metabolism of tumors in vivo.

    Science.gov (United States)

    Mayers, Jared R; Vander Heiden, Matthew G

    2015-03-01

    To fuel unregulated proliferation, cancer cells alter metabolism to support macromolecule biosynthesis. Cell culture studies have revealed how different oncogenic mutations and nutrients impact metabolism. Glucose and glutamine are the primary fuels used in vitro; however, recent studies have suggested that utilization of other amino acids as well as lipids and protein can also be important to cancer cells. Early investigations of tumor metabolism are translating these findings to the biology of whole tumors and suggest that additional complexity exists beyond nutrient availability alone in vivo. Whole-body metabolism and tumor heterogeneity also influence the metabolism of tumor cells, and successful targeting of metabolism for cancer therapy will require an understanding of tumor metabolism in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Premigratory fat metabolism in hummingbirds: A rumsfeldian approach

    Directory of Open Access Journals (Sweden)

    Raul K. SUAREZ

    2013-06-01

    Full Text Available Hummingbird migration is a remarkable feat, given the small body sizes of migratory species, their high metabolic rates during flight and the long distances traveled using fat to fuel the effort. Equally remarkable is the ability of premigratory hummingbirds in the wild to accumulate fat, synthesized from sugar, at rates as high as 10% of body mass per day. This paper summarizes, using Rumsfeldian terminology, “known knowns” concerning the energetics of hummingbird migration and premigratory fattening. Energy metabolism during hover-feeding on floral nectar is fueled directly by dietary sugar through the pathway recently named the “sugar oxidation cascade”. However, flight without feeding for more than a few minutes requires shifting to fat as a fuel. It is proposed that behavior and metabolic fuel choice are coadapted to maximize the rate of fat deposition during premigratory fattening. The hummingbird liver appears to possess extraordinarily high capacities for fatty acid synthesis. The analysis of “known knowns” leads to identification of “known unknowns”, e.g., the fates of dietary glucose and fructose, the regulation of fat metabolism and metabolic interactions between liver and adipose tissue. The history of science behooves recognition of “unknown unknowns” that, when discovered serendipitously, might shed new light on fundamental mechanisms as well as human pathological conditions [Current Zoology 59 (3: 371–380, 2013].

  10. Fuel use and metabolic response to endurance exercise: a wind tunnel study of a long-distance migrant shorebird

    OpenAIRE

    Jenni-Eiermann, Susanne; Jenni, Lukas; Kvist, Anders; Lindström, Åke; Piersma, Theunis; Visser, G. Henk

    2002-01-01

    This study examines fuel use and metabolism in a group of long-distance migrating birds, red knots Calidris canutus (Scolopacidae), flying under controlled conditions in a wind tunnel for up to 10 h. Data are compared with values for resting birds fasting for the same time. Plasma levels of free fatty acids, glycerol and uric acid were elevated during flight, irrespective of flight duration (1–10 h). Triglyceride levels, the estimated concentration of very-low-density lipoproteins (VLDLs) and...

  11. Sugar Metabolism in Hummingbirds and Nectar Bats.

    Science.gov (United States)

    Suarez, Raul K; Welch, Kenneth C

    2017-07-12

    Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the "sugar oxidation cascade", the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.

  12. Sugar Metabolism in Hummingbirds and Nectar Bats

    Directory of Open Access Journals (Sweden)

    Raul K. Suarez

    2017-07-01

    Full Text Available Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the “sugar oxidation cascade”, the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.

  13. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat.

    Science.gov (United States)

    Martin, Sheppard A; Campbell, Jerry L; Tremblay, Raphael T; Fisher, Jeffrey W

    2012-01-01

    The pharmacokinetic behavior of the majority of jet fuel constituents has not been previously described in the framework of a physiologically based pharmacokinetic (PBPK) model for inhalation exposure. Toxic effects have been reported in multiple organ systems, though exposure methods varied across studies, utilizing either vaporized or aerosolized fuels. The purpose of this work was to assess the pharmacokinetics of aerosolized and vaporized fuels, and develop a PBPK model capable of describing both types of exposures. To support model development, n-tetradecane and n-octane exposures were conducted at 89 mg/m(3) aerosol+vapor and 1000-5000 ppm vapor, respectively. Exposures to JP-8 and S-8 were conducted at ~900-1000 mg/m(3), and ~200 mg/m(3) to a 50:50 blend of both fuels. Sub-models were developed to assess the behavior of representative constituents and grouped unquantified constituents, termed "lumps", accounting for the remaining fuel mass. The sub-models were combined into the first PBPK model for petroleum and synthetic jet fuels. Inhalation of hydrocarbon vapors was described with simple gas-exchange assumptions for uptake and exhalation. For aerosol droplets systemic uptake occurred in the thoracic region. Visceral tissues were described using perfusion and diffusion-limited equations. The model described kinetics at multiple fuel concentrations, utilizing a chemical "lumping" strategy to estimate parameters for fractions of speciated and unspeciated hydrocarbons and gauge metabolic interactions. The model more accurately simulated aromatic and lower molecular weight (MW) n-alkanes than some higher MW chemicals. Metabolic interactions were more pronounced at high (~2700-1000 mg/m(3)) concentrations. This research represents the most detailed assessment of fuel pharmacokinetics to date.

  14. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    Science.gov (United States)

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. In utero fuel homeostasis: Lessons for a clinician

    Directory of Open Access Journals (Sweden)

    P. N Suman Rao

    2013-01-01

    Full Text Available Fetus exists in a complex, dynamic, and yet intriguing symbiosis with its mother as far as fuel metabolism is concerned. Though the dependence on maternal fuel is nearly complete to cater for its high requirement, the fetus is capable of some metabolism of its own. The first half of gestation is a period of maternal anabolism and storage whereas the second half results in exponential fetal growth where maternal stores are mobilized. Glucose is the primary substrate for energy production in the fetus though capable of utilizing alternate sources like lactate, ketoacids, amino acids, fatty acids, and glycogen as fuel under special circumstances. Key transporters like glucose transporters (GLUT are responsible for preferential transfers, which are in turn regulated by complex interaction of maternal and fetal hormones. Amino acids are preferentially utilized for growth and essential fatty acids for development of brain and retina. Insulin, insulin like growth factors, glucagon, catecholamines, and letpin are the hormones implicated in this fascinating process. Hormonal regulation of metabolic substrate utilization and anabolism in the fetus is secondary to the supply of nutrient substrates. The knowledge of fuel homeostasis is crucial for a clinician caring for pregnant women and neonates to manage disorders of metabolism (diabetes, growth (intrauterine growth restriction, and transitional adaptation (hypoglycemia.

  16. Alternative Fuels in Epilepsy and Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Tefera, Tesfaye W; Tan, Kah Ni; McDonald, Tanya S; Borges, Karin

    2017-06-01

    This review summarises the recent findings on metabolic treatments for epilepsy and Amyotrophic Lateral Sclerosis (ALS) in honour of Professor Ursula Sonnewald. The metabolic impairments in rodent models of these disorders as well as affected patients are being discussed. In both epilepsy and ALS, there are defects in glucose uptake and reduced tricarboxylic acid (TCA) cycling, at least in part due to reduced amounts of C4 TCA cycle intermediates. In addition there are impairments in glycolysis in ALS. A reduction in glucose uptake can be addressed by providing the brain with alternative fuels, such as ketones or medium-chain triglycerides. As anaplerotic fuels, such as the triglyceride of heptanoate, triheptanoin, refill the TCA cycle C4/C5 intermediate pool that is deficient, they are ideal to boost TCA cycling and thus the oxidative metabolism of all fuels.

  17. Metabolic Effects of the Very-Low-Carbohydrate Diets: Misunderstood "Villains" of Human Metabolism

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2004-12-01

    Full Text Available Abstract During very low carbohydrate intake, the regulated and controlled production of ketone bodies causes a harmless physiological state known as dietary ketosis. Ketone bodies flow from the liver to extra-hepatic tissues (e.g., brain for use as a fuel; this spares glucose metabolism via a mechanism similar to the sparing of glucose by oxidation of fatty acids as an alternative fuel. In comparison with glucose, the ketone bodies are actually a very good respiratory fuel. Indeed, there is no clear requirement for dietary carbohydrates for human adults. Interestingly, the effects of ketone body metabolism suggest that mild ketosis may offer therapeutic potential in a variety of different common and rare disease states. Also, the recent landmark study showed that a very-low-carbohydrate diet resulted in a significant reduction in fat mass and a concomitant increase in lean body mass in normal-weight men. Contrary to popular belief, insulin is not needed for glucose uptake and utilization in man. Finally, both muscle fat and carbohydrate burn in an amino acid flame.

  18. Metabolic activity by {sup 18}F-FDG-PET/CT is predictive of early response after nivolumab in previously treated NSCLC

    Energy Technology Data Exchange (ETDEWEB)

    Kaira, Kyoichi; Altan, Bolag [Gunma University Graduate School of Medicine, Department of Oncology Clinical Development, Maebashi, Gunma (Japan); Higuchi, Tetsuya; Arisaka, Yukiko; Tokue, Azusa [Gunma University Graduate School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Maebashi, Gunma (Japan); Naruse, Ichiro [Hidaka Hospital, Department of Respiratory Medicine, Hidaka (Japan); Suda, Satoshi [Hidaka Hospital, Department of Radiology, Hidaka (Japan); Mogi, Akira; Shimizu, Kimihiro [Gunma University Graduate School of Medicine, Department of General Surgical Science, Maebashi, Gunma (Japan); Sunaga, Noriaki [Gunma University Hospital, Oncology Center, Maebashi, Gunma (Japan); Hisada, Takeshi [Gunma University Hospital, Department of Respiratory Medicine, Maebashi, Gunma (Japan); Kitano, Shigehisa [National Cancer Center Hospital, Department of Experimental Therapeutics, Tokyo (Japan); Obinata, Hideru; Asao, Takayuki [Gunma University Initiative for Advanced Research, Big Data Center for Integrative Analysis, Maebashi, Gunma (Japan); Yokobori, Takehiko [Gunma University Initiative for Advanced Research, Division of Integrated Oncology Research, Research Program for Omics-based Medical Science, Maebashi, Gunma (Japan); Mori, Keita [Clinical Research Support Center, Shizuoka Cancer Center, Suntou-gun (Japan); Nishiyama, Masahiko [Gunma University Graduate School of Medicine, Department of Molecular Pharmacology and Oncology, Maebashi, Gunma (Japan); Tsushima, Yoshihito [Gunma University Graduate School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Maebashi, Gunma (Japan); Gunma University Initiative for Advanced Research (GIAR), Research Program for Diagnostic and Molecular Imaging, Division of Integrated Oncology Research, Maebashi, Gunma (Japan)

    2018-01-15

    Nivolumab, an anti-programmed death-1 (PD-1) antibody, is administered in patients with previously treated non-small cell lung cancer. However, little is known about the established biomarker predicting the efficacy of nivolumab. Here, we conducted a preliminary study to investigate whether {sup 18}F-FDG-PET/CT could predict the therapeutic response of nivolumab at the early phase. Twenty-four patients were enrolled in this study. {sup 18}F-FDG-PET/CT was carried out before and 1 month after nivolumab therapy. SUV{sub max}, metabolic tumour volume (MTV), and total lesion glycolysis (TLG) were calculated. Immunohistochemical analysis of PD-L1 expression and tumour-infiltrating lymphocytes was conducted. Among all patients, a partial metabolic response to nivolumab was observed in 29% on SUV{sub max}, 25% on MTV, and 33% on TLG, whereas seven (29%) patients achieved a partial response (PR) based on RECIST v1.1. The predictive probability of PR (100% vs. 29%, p = 0.021) and progressive disease (100% vs. 22.2%, p = 0.002) at 1 month after nivolumab initiation was significantly higher in {sup 18}F-FDG on PET/CT than in CT scans. Multivariate analysis confirmed that {sup 18}F-FDG uptake after administration of nivolumab was an independent prognostic factor. PD-L1 expression and nivolumab plasma concentration could not precisely predict the early therapeutic efficacy of nivolumab. Metabolic response by {sup 18}F-FDG was effective in predicting efficacy and survival at 1 month after nivolumab treatment. (orig.)

  19. In utero fuel homeostasis: Lessons for a clinician

    OpenAIRE

    Rao, P. N. Suman; Shashidhar, A.; Ashok, C.

    2013-01-01

    Fetus exists in a complex, dynamic, and yet intriguing symbiosis with its mother as far as fuel metabolism is concerned. Though the dependence on maternal fuel is nearly complete to cater for its high requirement, the fetus is capable of some metabolism of its own. The first half of gestation is a period of maternal anabolism and storage whereas the second half results in exponential fetal growth where maternal stores are mobilized. Glucose is the primary substrate for energy production in th...

  20. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    Science.gov (United States)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  1. Studies in iodine metabolism: 33 year summary, 1948-1979 (as previously submitted) with appendix, 1979-1982

    International Nuclear Information System (INIS)

    Middlesworth, L.V.

    1982-01-01

    The results of research into iodine metabolism from 1948 to 1982 are summarized. Study areas included the monitoring of iodine 131 from fallout in the thyroid glands of cattle and humans, the biological functions and metabolism of thyroid hormones, and methods to reduce the retention of radioiodine in the thyroid

  2. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes.

    Science.gov (United States)

    Cox, Pete J; Kirk, Tom; Ashmore, Tom; Willerton, Kristof; Evans, Rhys; Smith, Alan; Murray, Andrew J; Stubbs, Brianna; West, James; McLure, Stewart W; King, M Todd; Dodd, Michael S; Holloway, Cameron; Neubauer, Stefan; Drawer, Scott; Veech, Richard L; Griffin, Julian L; Clarke, Kieran

    2016-08-09

    Ketosis, the metabolic response to energy crisis, is a mechanism to sustain life by altering oxidative fuel selection. Often overlooked for its metabolic potential, ketosis is poorly understood outside of starvation or diabetic crisis. Thus, we studied the biochemical advantages of ketosis in humans using a ketone ester-based form of nutrition without the unwanted milieu of endogenous ketone body production by caloric or carbohydrate restriction. In five separate studies of 39 high-performance athletes, we show how this unique metabolic state improves physical endurance by altering fuel competition for oxidative respiration. Ketosis decreased muscle glycolysis and plasma lactate concentrations, while providing an alternative substrate for oxidative phosphorylation. Ketosis increased intramuscular triacylglycerol oxidation during exercise, even in the presence of normal muscle glycogen, co-ingested carbohydrate and elevated insulin. These findings may hold clues to greater human potential and a better understanding of fuel metabolism in health and disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Early Decline in Glucose Transport and Metabolism Precedes Shift to Ketogenic System in Female Aging and Alzheimer's Mouse Brain: Implication for Bioenergetic Intervention

    Science.gov (United States)

    Ding, Fan; Yao, Jia; Rettberg, Jamaica R.; Chen, Shuhua; Brinton, Roberta Diaz

    2013-01-01

    We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3–15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6–9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential

  4. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer's mouse brain: implication for bioenergetic intervention.

    Science.gov (United States)

    Ding, Fan; Yao, Jia; Rettberg, Jamaica R; Chen, Shuhua; Brinton, Roberta Diaz

    2013-01-01

    We previously demonstrated that mitochondrial bioenergetic deficits in the female brain accompanied reproductive senescence and was accompanied by a shift from an aerobic glycolytic to a ketogenic phenotype. Herein, we investigated the relationship between systems of fuel supply, transport and mitochondrial metabolic enzyme expression/activity during aging (3-15 months) in the hippocampus of nontransgenic (nonTg) background and 3xTgAD female mice. Results indicate that during female brain aging, both nonTg and 3xTgAD brains undergo significant decline in glucose transport, as detected by FDG-microPET, between 6-9 months of age just prior to the transition into reproductive senescence. The deficit in brain metabolism was sustained thereafter. Decline in glucose transport coincided with significant decline in neuronal glucose transporter expression and hexokinase activity with a concomitant rise in phosphorylated/inactivated pyruvate dehydrogenase. Lactate utilization declined in parallel to the decline in glucose transport suggesting lactate did not serve as an alternative fuel. An adaptive response in the nonTg hippocampus was a shift to transport and utilization of ketone bodies as an alternative fuel. In the 3xTgAD brain, utilization of ketone bodies as an alternative fuel was evident at the earliest age investigated and declined thereafter. The 3xTgAD adaptive response was to substantially increase monocarboxylate transporters in neurons while decreasing their expression at the BBB and in astrocytes. Collectively, these data indicate that the earliest change in the metabolic system of the aging female brain is the decline in neuronal glucose transport and metabolism followed by decline in mitochondrial function. The adaptive shift to the ketogenic system as an alternative fuel coincided with decline in mitochondrial function. Translationally, these data provide insights into the earliest events in bioenergetic aging of the female brain and provide potential

  5. The prevalence of metabolic syndrome components, individually and in combination, in male patients admitted with acute coronary syndrome, without previous diagnosis of diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Abdurrazzak Gehani

    2013-03-01

    Full Text Available Background: Mortality from cardiovascular disease in the Middle East is projected to increase substantially in the coming decades. The prevalence of metabolic syndrome (MS in acute coronary syndrome (ACS continues to raise interest, but data from the Middle East is limited, especially in non-diabetic patients. This study was conducted to ascertain the prevalence of MS and frequency of its components, individually and in combination, in a male population presenting with ACS, but without a previous diagnosis of diabetes mellitus (DM. Methods: This is a prospective study of 467 consecutive male patients hospitalized for ACS. They were categorized according to the specific criteria stated in the latest joint statement for the global definition of MS. Results: The mean age was (49.7±10.7 years. Of the 467 patients, 324 (69.4% fulfilled the criteria for MS. ST-Elevation Myocardial Infarction (STEMI was identified in 178 patients (54.9%, and non-ST elevation ACS (NSTE-ACS in 146 patients (45.1%. These proportions were not significantly different from those without MS (STEMI 51.7% vs. NSTE-ACS 48.3%, respectively. However, patients with MS were older (50.6±10 vs. 47.9±11 years; p=0.012, and more than half of those with MS were above 50 years. The most common abnormal metabolic components were reduced high-density lipoprotein cholesterol (HDL-c; 94.1%, elevated fasting blood glucose (FBG; 89.8%, and elevated triglycerides (81.8%, followed by increased waist circumference (61.7% and raised blood pressure (40.4%. The majority of patients with MS had three or more metabolic components (326 patients, 69.4%, and 102 (21.8% had two components, but only 37 (8.4% had a single component. Conclusions: In ACS patients, without previous history of DM, MS is highly prevalent. Reduced HDL, elevated FBG and triglycerides were the most frequent metabolic components. The majority had multiple components. These findings raise alarm and show that drug therapy alone may

  6. Enzymes of energy metabolism in hatchlings of amazonian freshwater turtles (Testudines, Podocnemididae

    Directory of Open Access Journals (Sweden)

    WP. Duncan

    Full Text Available The metabolic profiles of selected tissues were analyzed in hatchlings of the Amazonian freshwater turtles Podocnemis expansa, P. unifilis and P. sextuberculata. Metabolic design in these species was judged based on the key enzymes of energy metabolism, with special emphasis on carbohydrate, lipid, amino acid and ketone body metabolism. All species showed a high glycolytic potential in all sampled tissues. Based on low levels of hexokinase, glycogen may be an important fuel for these species. The high lactate dehydrogenase activity in the liver may play a significant role in carbohydrate catabolism, possibly during diving. Oxidative metabolism in P. sextuberculata appears to be designed for the use of lipids, amino acids and ketone bodies. The maximal activities of 3-hydroxyacyl-CoA dehydrogenase, malate dehydrogenase, glutamine dehydrogenase, alanine aminotransferase and succinyl-CoA keto transferase display high aerobic potential, especially in muscle and liver tissues of this species. Although amino acids and ketone bodies may be important fuels for oxidative metabolism, carbohydrates and lipids are the major fuels used by P. expansa and P. unifilis. Our results are consistent with the food habits and lifestyle of Amazonian freshwater turtles. The metabolic design, based on enzyme activities, suggests that hatchlings of P. unifilis and P. expansa are predominately herbivorous, whereas P. sextuberculata rely on a mixed diet of animal matter and vegetation.

  7. A fuel response model for the design of spent fuel shipping casks

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Duffey, T.A.; Einziger, R.E.; Hobbins, R.R.; Jordon, H.; Rashid, Y.R.; Barrett, P.R.; Sanders, T.L.

    1989-01-01

    The radiological source terms pertinent to spent fuel shipping cask safety assessments are of three distinct origins. One of these concerns residual contamination within the cask due to handling operations and previous shipments. A second is associated with debris (''crud'') that had been deposited on the fuel rods in the course of reactor operation, and a third involves the radioactive material contained within the rods. Although the lattermost source of radiotoxic material overwhelms the others in terms of inventory, its release into the shipping cask, and thence into the biosphere, requires the breach of an additional release barrier, viz., the fuel rod cladding. Hence, except for the special case involving the transport of fuel rods containing previously breached claddings, considerations of the source terms due to material contained in the fuel rods are complicated by the need to address the likelihood of fuel cladding failure during transport. The purpose of this report is to describe a methodology for estimating the shipping cask source terms contribution due to radioactive material contained within the spent fuel rods. Thus, the probability of fuel cladding failure as well as radioactivity release is addressed. 8 refs., 2 tabs

  8. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  9. Glucose as the Sole Metabolic Fuel: The Possible Influence of Formal Teaching on the Establishment of a Misconception about Energy-Yielding Metabolism among Students from Rio de Janeiro, Brazil

    Science.gov (United States)

    Luz, Mauricio R. M. P.; de Oliveira, Gabriel Aguiar; de Sousa, Cristiane Ribeiro; Da Poian, Andrea T.

    2008-01-01

    Energy-yielding metabolism is an important biochemistry subject that is related to many daily experiences and health issues of students. An adequate knowledge of the general features of EYM is therefore important, both from an academic and social point of view. In a previous study, we have shown that high-school students present the misconception…

  10. Fuels derived from starch digestion have different effects on energy intake and metabolic responses of cows in the postpartum period.

    Science.gov (United States)

    Gualdrón-Duarte, Laura B; Allen, Michael S

    2018-03-07

    Absorbed fuels from the digestion of starch include propionic acid (PA) produced by ruminal fermentation and glucose (GLU) from intestinal digestion, which may be partially metabolized to lactic acid (LA) by intestinal tissues. Our objective was to evaluate the effects of these fuels on dry matter intake (DMI) and feeding behavior of cows in the postpartum period. We hypothesized that these fuels affect feed intake differently and that their effects are related to differences in their hepatic metabolism. Glucose was expected to have little effect on feed intake because little or no GLU is extracted from the blood by the liver. Whereas both LA and PA are anaplerotic and can stimulate oxidation of acetyl CoA in hepatocytes, hepatic extraction of PA is greater than LA, which depends on cytosolic redox state. Continuous isoenergetic infusions (150 kcal of ME/h) of PA, LA, or GLU or no infusion were administered abomasally to 8 ruminally cannulated multiparous Holstein cows (12.4 ± 6.2 d postpartum) in a duplicate 4 × 4 Latin square design experiment, with four 1-d infusion periods, balanced for carry-over effects. Treatment sequences were assigned to cows randomly, and treatments included control (CON, no infusion), PA (0.41 mol/h), LA (0.46 mol/h), and GLU (0.22 mol/h). Solutions containing treatments were infused at 500 mL/h for 22 h/d and provided ~3.3 Mcal/d. Feeding behavior was recorded by a computerized data acquisition system. Gross energy digestibility of the diet was determined for each cow and used to calculate metabolizable energy intake (MEI) from the diet. Total MEI was calculated as the sum of MEI from the diet plus energy from infusions. Data were analyzed statistically with a mixed model including the fixed effect of treatment and random effects of block and cow within block. Each treatment was compared with CON by contrasts. Compared with CON, PA decreased DMI by 24% (14.3 vs. 18.9 kg/d) and total MEI by 13% (34.8 vs. 40.2 Mcal/d) with a tendency to

  11. Consolidated fuel reprocessing program

    Science.gov (United States)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  12. Cerebral ketone body metabolism.

    Science.gov (United States)

    Morris, A A M

    2005-01-01

    Ketone bodies (KBs) are an important source of energy for the brain. During the neonatal period, they are also precursors for the synthesis of lipids (especially cholesterol) and amino acids. The rate of cerebral KB metabolism depends primarily on the concentration in blood; high concentrations occur during fasting and on a high-fat diet. Cerebral KB metabolism is also regulated by the permeability of the blood-brain barrier (BBB), which depends on the abundance of monocarboxylic acid transporters (MCT1). The BBB's permeability to KBs increases with fasting in humans. In rats, permeability increases during the suckling period, but human neonates have not been studied. Monocarboxylic acid transporters are also present in the plasma membranes of neurons and glia but their role in regulating KB metabolism is uncertain. Finally, the rate of cerebral KB metabolism depends on the activities of the relevant enzymes in brain. The activities vary with age in rats, but reliable results are not available for humans. Cerebral KB metabolism in humans differs from that in the rat in several respects. During fasting, for example, KBs supply more of the brain's energy in humans than in the rat. Conversely, KBs are probably used more extensively in the brain of suckling rats than in human neonates. These differences complicate the interpretation of rodent studies. Most patients with inborn errors of ketogenesis develop normally, suggesting that the only essential role for KBs is as an alternative fuel during illness or prolonged fasting. On the other hand, in HMG-CoA lyase deficiency, imaging generally shows asymptomatic white-matter abnormalities. The ability of KBs to act as an alternative fuel explains the effectiveness of the ketogenic diet in GLUT1 deficiency, but its effectiveness in epilepsy remains unexplained.

  13. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  14. Metabolism regulates the spontaneous firing of substantia nigra pars reticulata neurons via KATP and nonselective cation channels.

    Science.gov (United States)

    Lutas, Andrew; Birnbaumer, Lutz; Yellen, Gary

    2014-12-03

    Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons. Copyright © 2014 the authors 0270-6474/14/3416336-12$15.00/0.

  15. Examination of fuel reinsertion strategies for out-of core fuel management

    International Nuclear Information System (INIS)

    Comes, S.A.; Turinsky, P.J.

    1986-01-01

    A computer code for determining out-of-core fuel loading strategies in order to minimize levelized fuel cycle cost within constraints has been developed and previously reported by the authors. While past work in this area has dealt with optimizations during equilibrium operating conditions, this work has considered the more realistic conditions of nonequilibrium cycles. The code, called OCEON, seeks to determine a family of economically attractive fuel reload strategies through the optimum selection of feed batch sizes, enrichments, and partially burned fuel reinsertion strategies within operating constraints. This paper presents recent work on expanding the code to allow for different fuel reinsertion options when determining the family of near-optimum fuel reload strategies

  16. Respiratory gas exchange as a new aid to monitor acidosis in endotoxemic rats: relationship to metabolic fuel substrates and thermometabolic responses.

    Science.gov (United States)

    Steiner, Alexandre A; Flatow, Elizabeth A; Brito, Camila F; Fonseca, Monique T; Komegae, Evilin N

    2017-01-01

    This study introduces the respiratory exchange ratio (RER; the ratio of whole-body CO 2 production to O 2 consumption) as an aid to monitor metabolic acidosis during the early phase of endotoxic shock in unanesthetized, freely moving rats. Two serotypes of lipopolysaccharide (lipopolysaccharide [LPS] O55:B5 and O127:B8) were tested at shock-inducing doses (0.5-2 mg/kg). Phasic rises in RER were observed consistently across LPS serotypes and doses. The RER rise often exceeded the ceiling of the quotient for oxidative metabolism, and was mirrored by depletion of arterial bicarbonate and decreases in pH It occurred independently of ventilatory adjustments. These data indicate that the rise in RER results from a nonmetabolic CO 2 load produced via an acid-induced equilibrium shift in the bicarbonate buffer. Having validated this new experimental aid, we asked whether acidosis was interconnected with the metabolic and thermal responses that accompany endotoxic shock in unanesthetized rats. Contrary to this hypothesis, however, acidosis persisted regardless of whether the ambient temperature favored or prevented downregulation of mitochondrial oxidation and regulated hypothermia. We then asked whether the substrate that fuels aerobic metabolism could be a relevant factor in LPS-induced acidosis. Food deprivation was employed to divert metabolism away from glucose oxidation and toward fatty acid oxidation. Interestingly, this intervention attenuated the RER response to LPS by 58%, without suppressing other key aspects of systemic inflammation. We conclude that acid production in unanesthetized rats with endotoxic shock results from a phasic activation of glycolysis, which occurs independently of physiological changes in mitochondrial oxidation and body temperature. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Muscle Involvement in Preservation of Metabolic Flexibility by Treatment using n-3 PUFA or Rosiglitazone in Dietary-Obese Mice

    NARCIS (Netherlands)

    Medrikova, Dasa; Schothorst, van Evert; Bunschoten, Annelies; Flachs, Pavel; Kopecky, Jan; Keijer, Jaap

    2012-01-01

    Impaired resistance to insulin, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. The hampered metabolic adaptability triggers a further damage of insulin signaling. Since skeletal muscle is the

  18. De Novo Metabolic Engineering and the Promise of Synthetic DNA

    Science.gov (United States)

    Klein-Marcuschamer, Daniel; Yadav, Vikramaditya G.; Ghaderi, Adel; Stephanopoulos, Gregory N.

    The uncertain price and tight supply of crude oil and the ever-increasing demand for clean energy have prompted heightened attention to the development of sustainable fuel technologies that ensure continued economic development while maintaining stewardship of the environment. In the face of these enormous challenges, biomass has emerged as a viable alternative to petroleum for the production of energy, chemicals, and materials owing to its abundance, inexpensiveness, and carbon-neutrality. Moreover, the immense ease and efficiency of biological systems at converting biomass-derived feedstocks into fuels, chemicals, and materials has generated renewed interest in biotechnology as a replacement for traditional chemical processes. Aided by the ever-expanding repertoire of microbial genetics and plant biotechnology, improved understanding of gene regulation and cellular metabolism, and incessantly accumulating gene and protein data, scientists are now contemplating engineering microbial cell factories to produce fuels, chemical feedstocks, polymers and pharmaceuticals in an economically and environmentally sustainable way. This goal resonates with that of metabolic engineering - the improvement of cellular properties through the intelligent design, rational modification, or directed evolution of biochemical pathways, and arguably, metabolic engineering seems best positioned to achieve the concomittant goals of environmental stewardship and economic prolificity.

  19. Liquid fuels from alternative feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, S

    1984-01-01

    The problem of fuels and feedstocks is not technological but political and financial. Methanol is discussed as the lowest cost gasoline substitute to produce. There are two possibilities included for production of methanol: from coal or lignite - either in the US or in Europe, or from natural gas. Biologically produced fuels and feedstocks have the advantage of being renewable. The use of agricultural feedstocks are discussed but only sugar, starch and cellulose are suitable. In the microbiological field, only the metabolic waste product ethanol is cheap enough for use.

  20. Genome scale engineering techniques for metabolic engineering.

    Science.gov (United States)

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. HTGR Fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-05-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents

  2. Microglia energy metabolism in metabolic disorder.

    Science.gov (United States)

    Kalsbeek, Martin J T; Mulder, Laurie; Yi, Chun-Xia

    2016-12-15

    Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This non-signaling energy demand increases after activation by pathogens, neuronal damage or other kinds of stimulation. Of the three major energy substrates - glucose, fatty acids and glutamine - glucose is crucial for microglia survival and several glucose transporters are expressed to supply sufficient glucose influx. Fatty acids are another source of energy for microglia and have also been shown to strongly influence microglial immune activity. Glutamine, although possibly suitable for use as an energy substrate by microglia, has been shown to have neurotoxic effects when overloaded. Microglial fuel metabolism might be associated with microglial reactivity under different pathophysiological conditions and a microglial fuel switch may thus be the underlying cause of hypothalamic dysregulation, which is associated with obesity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. A quick look at biochemistry : Carbohydrate metabolism

    NARCIS (Netherlands)

    Dashty, Monireh

    2013-01-01

    In mammals, there are different metabolic pathways in cells that break down fuel molecules to transfer their energy into high energy compounds such as adenosine-5'-triphosphate (ATP), guanosine-5'-triphosphate (GTP), reduced nicotinamide adenine dinucleotide (NADH2), reduced flavin adenine

  4. Metabolic engineering tools in model cyanobacteria.

    Science.gov (United States)

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi.

    1979-01-01

    Purpose: To prevent scattering of gaseous fission products released from fuel assemblies stored in an fbr type reactor. Constitution; A cap provided with means capable of storing gas is adapted to amount to the assembly handling head, for example, by way of threading in a storage rack of spent fuel assemblies consisting of a bottom plate, a top plate and an assembly support mechanism. By previously eliminating the gas inside of the assembly and the cap in the storage rack, gaseous fission products upon loading, if released from fuel rods during storage, are stored in the cap and do not scatter in the storage rack. (Horiuchi, T.)

  6. Acute nutritional ketosis: implications for exercise performance and metabolism

    Science.gov (United States)

    2014-01-01

    Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics. PMID:25379174

  7. Muscle Involvement in Preservation of Metabolic Flexibility by a Combination Treatment using n-3 PUFA, and Rosiglitazone in Dietary-Obese Mice

    NARCIS (Netherlands)

    Medrikova, D.; Schothorst, van E.M.; Bunschoten, J.E.; Flachs, P.; Kopecky, J.; Keijer, J.

    2012-01-01

    Impaired resistance to insulin, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. The hampered metabolic adaptability triggers a further damage of insulin signaling. Since skeletal muscle is the

  8. Fueling and Imaging Brain Activation

    Directory of Open Access Journals (Sweden)

    Gerald A Dienel

    2012-05-01

    Full Text Available Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.

  9. Fueling and imaging brain activation

    Science.gov (United States)

    Dienel, Gerald A

    2012-01-01

    Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models. PMID:22612861

  10. Technical ability of new MTR high-density fuel alloys regarding the whole fuel cycle

    International Nuclear Information System (INIS)

    Durand, J.P.; Maugard, B.; Gay, A.

    1998-01-01

    The development of new fuel alloys could provide a good opportunity to improve drastically the fuel cycle on the neutronic performances and the reprocessing point of view. Nevertheless, those parameters can only be considered if the fuel manufacture feasibility has been previously demonstrated. As a matter of fact, a MTR work group involving French partners (CEA, CERCA, COGEMA) has been set up in order to evaluate the technical ability of new fuels considering the whole fuel cycle. In this paper CERCA is presenting the preliminary results of UMo and UNbZr fuel plate manufacture, CEA is comparing to U 3 Si 2 the neutronic performances of fuels such as UMo, UN, UNbZr, while COGEMA is dealing with the reprocessing feasibility. (author)

  11. Dermal exposure to jet fuel JP-8 significantly contributes to the production of urinary naphthols in fuel-cell maintenance workers.

    Science.gov (United States)

    Chao, Yi-Chun E; Kupper, Lawrence L; Serdar, Berrin; Egeghy, Peter P; Rappaport, Stephen M; Nylander-French, Leena A

    2006-02-01

    Jet propulsion fuel 8 (JP-8) is the major jet fuel used worldwide and has been recognized as a major source of chemical exposure, both inhalation and dermal, for fuel-cell maintenance workers. We investigated the contributions of dermal and inhalation exposure to JP-8 to the total body dose of U.S. Air Force fuel-cell maintenance workers using naphthalene as a surrogate for JP-8 exposure. Dermal, breathing zone, and exhaled breath measurements of naphthalene were obtained using tape-strip sampling, passive monitoring, and glass bulbs, respectively. Levels of urinary 1- and 2-naphthols were determined in urine samples and used as biomarkers of JP-8 exposure. Multiple linear regression analyses were conducted to investigate the relative contributions of dermal and inhalation exposure to JP-8, and demographic and work-related covariates, to the levels of urinary naphthols. Our results show that both inhalation exposure and smoking significantly contributed to urinary 1-naphthol levels. The contribution of dermal exposure was significantly associated with levels of urinary 2-naphthol but not with urinary 1-naphthol among fuel-cell maintenance workers who wore supplied-air respirators. We conclude that dermal exposure to JP-8 significantly contributes to the systemic dose and affects the levels of urinary naphthalene metabolites. Future work on dermal xenobiotic metabolism and toxicokinetic studies are warranted in order to gain additional knowledge on naphthalene metabolism in the skin and the contribution to systemic exposure.

  12. Selected Metabolic Responses to Skateboarding

    Science.gov (United States)

    Hetzler, Ronald K.; Hunt, Ian; Stickley, Christopher D.; Kimura, Iris F.

    2011-01-01

    Despite the popularity of skateboarding worldwide, the authors believe that no previous studies have investigated the metabolic demands associated with recreational participation in the sport. Although metabolic equivalents (METs) for skateboarding were published in textbooks, the source of these values is unclear. Therefore, the rise in…

  13. Investigations into the myocardial metabolism of 123-I-ω-HDA in patients showing the clinical signs and symptoms of mitral valve prolapse and previously proven to have no coronary heart disease

    International Nuclear Information System (INIS)

    Voth, E.

    1987-01-01

    In 53 patients showing the clinical signs and symptoms of mitral valve prolapse (MVP) where coronary heart disease (CHD) had previously been excluded by angiography the myocardial metabolism of fatty acids was examined at rest using metabolic myocardial scintigraphy (MMS) and 123-I-ω-HDA as tracer substance. The results were correlated with those obtained by other methods of investigation (findings at rest and during exercise from ECG recordings, tests using a flow-guided catheter and radionuclide ventriculography, further from echocardiography as well as myocardial Tl redistribution scintiscanning during exercise). For purposes of reference, MMS was additionally carried out in twelve normal individuals subjected to coronary angiography to exclude both MVP and CHD. The results of this study would appear to suggest that the pathological findings revealed by myocardial Tl scintigraphy in patients showing symptoms of MVP cannot invariably be classified as 'false' but are at least to some extent attributable to impaired myocardial perfusion, vitality or metabolism. (orig./MG) [de

  14. Fuel Cell Handbook, Fifth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  15. Fuel assembly spacer

    International Nuclear Information System (INIS)

    Shirakawa, Ken-etsu.

    1988-01-01

    Purpose: To reduce the pressure loss of coolants by fuel assembly spacers. Constitution: Spacers for supporting a fuel assembly are attached by means of a plurality of wires to an outer frame. The outer frame is made of shape memory alloy such that the wires are caused to slacken at normal temperature and the slacking of the wires is eliminated in excess of the transition temperature. Since the wires slacken at the normal temperature, fuel rods can be inserted easily. After the insertion of the fuel rods, when the entire portion or the outer frame is heated by water or gas at a predetermined temperature, the outer frame resumes its previously memorized shape to tighten the wires and, accordingly, the fuel rods can be supported firmly. In this way, since the fuel rods are inserted in the slacken state of the wires and, after the assembling, the outer frame resumes its memorized shape, the assembling work can be conducted efficiently. (Kamimura, M.)

  16. Impaired insulin-stimulated nonoxidative glucose metabolism in glucose-tolerant women with previous gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P; Vestergaard, H; Kühl, Carl Erik

    1996-01-01

    Our purpose was to investigate insulin sensitivity and insulin secretion in women with previous gestational diabetes.......Our purpose was to investigate insulin sensitivity and insulin secretion in women with previous gestational diabetes....

  17. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States

    Directory of Open Access Journals (Sweden)

    Dongya Jia

    2018-03-01

    Full Text Available Aerobic glycolysis, also referred to as the Warburg effect, has been regarded as the dominant metabolic phenotype in cancer cells for a long time. More recently, it has been shown that mitochondria in most tumors are not defective in their ability to carry out oxidative phosphorylation (OXPHOS. Instead, in highly aggressive cancer cells, mitochondrial energy pathways are reprogrammed to meet the challenges of high energy demand, better utilization of available fuels and macromolecular synthesis for rapid cell division and migration. Mitochondrial energy reprogramming is also involved in the regulation of oncogenic pathways via mitochondria-to-nucleus retrograde signaling and post-translational modification of oncoproteins. In addition, neoplastic mitochondria can engage in crosstalk with the tumor microenvironment. For example, signals from cancer-associated fibroblasts can drive tumor mitochondria to utilize OXPHOS, a process known as the reverse Warburg effect. Emerging evidence shows that cancer cells can acquire a hybrid glycolysis/OXPHOS phenotype in which both glycolysis and OXPHOS can be utilized for energy production and biomass synthesis. The hybrid glycolysis/OXPHOS phenotype facilitates metabolic plasticity of cancer cells and may be specifically associated with metastasis and therapy-resistance. Moreover, cancer cells can switch their metabolism phenotypes in response to external stimuli for better survival. Taking into account the metabolic heterogeneity and plasticity of cancer cells, therapies targeting cancer metabolic dependency in principle can be made more effective.

  18. CAN THE END PRODUCTS OF ANAEROBIC METABOLISM ...

    African Journals Online (AJOL)

    Exercise, primarily powered by the shell adductor muscle, was mainly fueled by ... in seawater) transportation stress of up to 36 h at 7 and 10°C, clearly showed that ... at 10°C), indicating that aerobic metabolism is impaired at an early stage of ...

  19. miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2016-07-01

    Full Text Available Understanding the fiber-type specification and metabolic switch in skeletal muscle provides insights into energy metabolism in physiology and diseases. Here, we show that miR-182 is highly expressed in fast-twitch muscle and negatively correlates with blood glucose level. miR-182 knockout mice display muscle loss, fast-to-slow fiber-type switching, and impaired glucose metabolism. Mechanistic studies reveal that miR-182 modulates glucose utilization in muscle by targeting FoxO1 and PDK4, which control fuel selection via the pyruvate dehydrogenase complex (PDHC. Short-term high-fat diet (HFD feeding reduces muscle miR-182 levels by tumor necrosis factor α (TNFα, which contributes to the upregulation of FoxO1/PDK4. Restoration of miR-182 expression in HFD-fed mice induces a faster muscle phenotype, decreases muscle FoxO1/PDK4 levels, and improves glucose metabolism. Together, our work establishes miR-182 as a critical regulator that confers robust and precise controls on fuel usage and glucose homeostasis. Our study suggests that a metabolic shift toward a faster and more glycolytic phenotype is beneficial for glucose control.

  20. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production.

    Science.gov (United States)

    Ko, Ja Kyong; Lee, Sun-Mi

    2018-04-01

    Cellulosic fuels are expected to have great potential industrial applications in the near future, but they still face technical challenges to become cost-competitive fuels, thus presenting many opportunities for improvement. The economical production of viable biofuels requires metabolic engineering of microbial platforms to convert cellulosic biomass into biofuels with high titers and yields. Fortunately, integrating traditional and novel engineering strategies with advanced engineering toolboxes has allowed the development of more robust microbial platforms, thus expanding substrate ranges. This review highlights recent trends in the metabolic engineering of microbial platforms, such as the industrial yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, for the production of renewable fuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Metabolic heat production by human and animal populations in cities

    Science.gov (United States)

    Stewart, Iain D.; Kennedy, Chris A.

    2017-07-01

    Anthropogenic heating from building energy use, vehicle fuel consumption, and human metabolism is a key term in the urban energy budget equation. Heating from human metabolism, however, is often excluded from urban energy budgets because it is widely observed to be negligible. Few reports for low-latitude cities are available to support this observation, and no reports exist on the contribution of domestic animals to urban heat budgets. To provide a more comprehensive view of metabolic heating in cities, we quantified all terms of the anthropogenic heat budget at metropolitan scale for the world's 26 largest cities, using a top-down statistical approach. Results show that metabolic heat release from human populations in mid-latitude cities (e.g. London, Tokyo, New York) accounts for 4-8% of annual anthropogenic heating, compared to 10-45% in high-density tropical cities (e.g. Cairo, Dhaka, Kolkata). Heat release from animal populations amounts to <1% of anthropogenic heating in all cities. Heat flux density from human and animal metabolism combined is highest in Mumbai—the world's most densely populated megacity—at 6.5 W m-2, surpassing heat production by electricity use in buildings (5.8 W m-2) and fuel combustion in vehicles (3.9 W m-2). These findings, along with recent output from global climate models, suggest that in the world's largest and most crowded cities, heat emissions from human metabolism alone can force measurable change in mean annual temperature at regional scale.

  2. Metabolic heat production by human and animal populations in cities.

    Science.gov (United States)

    Stewart, Iain D; Kennedy, Chris A

    2017-07-01

    Anthropogenic heating from building energy use, vehicle fuel consumption, and human metabolism is a key term in the urban energy budget equation. Heating from human metabolism, however, is often excluded from urban energy budgets because it is widely observed to be negligible. Few reports for low-latitude cities are available to support this observation, and no reports exist on the contribution of domestic animals to urban heat budgets. To provide a more comprehensive view of metabolic heating in cities, we quantified all terms of the anthropogenic heat budget at metropolitan scale for the world's 26 largest cities, using a top-down statistical approach. Results show that metabolic heat release from human populations in mid-latitude cities (e.g. London, Tokyo, New York) accounts for 4-8% of annual anthropogenic heating, compared to 10-45% in high-density tropical cities (e.g. Cairo, Dhaka, Kolkata). Heat release from animal populations amounts to heating in all cities. Heat flux density from human and animal metabolism combined is highest in Mumbai-the world's most densely populated megacity-at 6.5 W m -2 , surpassing heat production by electricity use in buildings (5.8 W m -2 ) and fuel combustion in vehicles (3.9 W m -2 ). These findings, along with recent output from global climate models, suggest that in the world's largest and most crowded cities, heat emissions from human metabolism alone can force measurable change in mean annual temperature at regional scale.

  3. Energy Metabolism in the Liver

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  4. Evolution of Tumor Metabolism might Reflect Carcinogenesis as a Reverse Evolution process (Dismantling of Multicellularity)

    Energy Technology Data Exchange (ETDEWEB)

    Alfarouk, Khalid O., E-mail: Alfarouk@Hala-alfarouk.org [Department of Evolution of Tumor Metabolism and Pharmacology, Hala Alfarouk Cancer Center, Khartoum 11123 (Sudan); Shayoub, Mohammed E.A. [Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111 (Sudan); Muddathir, Abdel Khalig [Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum 11111 (Sudan); Elhassan, Gamal O. [General Directorate of Pharmacy, Federal Ministry of Health, Khartoum 11111 (Sudan); Bashir, Adil H.H. [Department of Evolution of Tumor Metabolism and Pharmacology, Hala Alfarouk Cancer Center, Khartoum 11123 (Sudan); Al Jawda Medical Hospital, Khartoum 11111 (Sudan)

    2011-07-22

    Carcinogenesis occurs through a series of steps from normal into benign and finally malignant phenotype. This cancer evolutionary trajectory has been accompanied by similar metabolic transformation from normal metabolism into Pasteur and/or Crabtree-Effects into Warburg-Effect and finally Cannibalism and/or Lactate-Symbiosis. Due to lactate production as an end-product of glycolysis, tumor colonies acquire new phenotypes that rely on lactate as energetic fuel. Presence of Warburg-Effect indicates that some tumor cells undergo partial (if not complete) de-endosymbiosis and so cancer cells have been become unicellular microorganism (anti-Dollo's Law) specially when they evolve to develop cannibalism as way of metabolism while oxidative types of cells that rely on lactate, as their energetic fuel, might represent extra-endosymbiosis. Thus, at the end, the cancer colony could be considered as integrated metabolic ecosystem. Proper understanding of tumor metabolism will contribute to discover potential anticancer agents besides conventional chemotherapy.

  5. Sense and nonsense in metabolic control of reproduction.

    Science.gov (United States)

    Schneider, Jill E; Klingerman, Candice M; Abdulhay, Amir

    2012-01-01

    An exciting synergistic interaction occurs among researchers working at the interface of reproductive biology and energy homeostasis. Reproductive biologists benefit from the theories, experimental designs, and methodologies used by experts on energy homeostasis while they bring context and meaning to the study of energy homeostasis. There is a growing recognition that identification of candidate genes for obesity is little more than meaningless reductionism unless those genes and their expression are placed in a developmental, environmental, and evolutionary context. Reproductive biology provides this context because metabolic energy is the most important factor that controls reproductive success and gonadal hormones affect energy intake, storage, and expenditure. Reproductive hormone secretion changes during development, and reproductive success is key to evolutionary adaptation, the process that most likely molded the mechanisms that control energy balance. It is likely that by viewing energy intake, storage, and expenditure in the context of reproductive success, we will gain insight into human obesity, eating disorders, diabetes, and other pathologies related to fuel homeostasis. This review emphasizes the metabolic hypothesis: a sensory system monitors the availability of oxidizable metabolic fuels and orchestrates behavioral motivation to optimize reproductive success in environments where energy availability fluctuates or is unpredictable.

  6. Metabolic engineering in methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Nanofluidic fuel cell

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  8. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    Science.gov (United States)

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The Caramel fuel in OSIRIS

    International Nuclear Information System (INIS)

    Cherruau, Francois.

    1980-11-01

    This paper presents the main characteristics of the caramel fuel, a description of OSIRIS transformations that were decided in line with its conversion and the results of its operation since then. The Caramel fuel is made from sintered UO 2 pellets contained in zircaloy clads forming the plates of the fuel assembly reducing the enrichment need to as little as 3 to 10% instead of 93% enriched U/Al in the previous fuel. The first year of experience shows the capacity under a statistic scale of the caramel fuel to fulfil the most severe operation requirements for use in low and medium power research reactors

  10. Fuel consumption and emission on fuel mixer low-grade bioethanol fuelled motorcycle

    Directory of Open Access Journals (Sweden)

    Abikusna Setia

    2017-01-01

    Full Text Available Bioethanol is currently used as an alternative fuel for gasoline substitute (fossil fuel because it can reduce the dependence on fossil fuel and also emissions produced by fossil fuel which are CO2, HO, NOx. Bioethanol is usually used as a fuel mixed with gasoline with certain comparison. In Indonesia, the usage is still rare. Bioethanol that is commonly used is bioethanol anhydrous 99.5%. In the previous studies, bioethanol was distilled from low to high grade to produce ethanol anhydrous. But the result is only able to reach 95% or ethanol hydrous. This study is objected to design a simple mechanism in the mixing of bioethanol hydrous with the gasoline using a fuel mixer mechanism. By this mechanism, the fuel consumption and the resulting emissions from combustion engine can be analyzed. The fuel blend composition is prepared as E5, E10, and E15/E20, the result of fuel consumption and emission will be compared with pure gasoline. The using of bioethanol hydrous as a fuel mixture was tended to produce more stable bioethanol fuel consumption. However, the utilization of the mixture was found able to reduce the exhaust emissions (CO, HC, and NOx.

  11. Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice.

    Directory of Open Access Journals (Sweden)

    Olga Horakova

    Full Text Available Insulin resistance, the key defect in type 2 diabetes (T2D, is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the improvement of insulin sensitivity and metabolic adaptability of the muscle, the main site of whole-body glucose utilization. We have shown previously in mice fed an obesogenic high-fat diet that a combined use of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA and thiazolidinediones (TZDs, anti-diabetic drugs, preserved metabolic health and synergistically improved muscle insulin sensitivity. We investigated here whether n-3 LC-PUFA could elicit additive beneficial effects on metabolic flexibility when combined with a TZD drug rosiglitazone. Adult male C57BL/6N mice were fed an obesogenic corn oil-based high-fat diet (cHF for 8 weeks, or randomly assigned to various interventions: cHF with n-3 LC-PUFA concentrate replacing 15% of dietary lipids (cHF+F, cHF with 10 mg rosiglitazone/kg diet (cHF+ROSI, cHF+F+ROSI, or chow-fed. Indirect calorimetry demonstrated superior preservation of metabolic flexibility to carbohydrates in response to the combined intervention. Metabolomic and gene expression analyses in the muscle suggested distinct and complementary effects of the interventions, with n-3 LC-PUFA supporting complete oxidation of fatty acids in mitochondria and the combination with n-3 LC-PUFA and rosiglitazone augmenting insulin sensitivity by the modulation of branched-chain amino acid metabolism. These beneficial metabolic effects were associated with the activation of the switch between glycolytic and oxidative muscle fibers, especially in the cHF+F+ROSI mice. Our results further support the idea that the combined use of n-3 LC-PUFA and TZDs could improve the efficacy of the therapy of obese and diabetic patients.

  12. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration

    DEFF Research Database (Denmark)

    Zaldivar, Jesus; Nielsen, Jens; Olsson, Lisbeth

    2001-01-01

    and with the implementation of environmental protection laws in many countries, demand for this fuel is increasing. Efficient ethanol production processes and cheap substrates are needed. Current ethanol production processes using crops such as sugar cane and corn are well-established; however, utilization of a cheaper...... substrate such as lignocellulose could make bioethanol more competitive with fossil fuel. The processing and utilization of this substrate is complex, differing, in many aspects from crop-based ethanol production. One important requirement is an efficient microorganism able to ferment a variety of sugars......With industrial development growing rapidly, there is a need for environmentally sustainable energy sources. Bioethanol (ethanol from biomass) is an attractive, sustainable energy source to fuel transportation. Based on the premise that fuel bioethanol can contribute to a cleaner environment...

  13. Intermittent metabolic switching, neuroplasticity and brain health

    Science.gov (United States)

    Mattson, Mark P.; Moehl, Keelin; Ghena, Nathaniel; Schmaedick, Maggie; Cheng, Aiwu

    2018-01-01

    During evolution, individuals whose brains and bodies functioned well in a fasted state were successful in acquiring food, enabling their survival and reproduction. With fasting and extended exercise, liver glycogen stores are depleted and ketones are produced from adipose-cell-derived fatty acids. This metabolic switch in cellular fuel source is accompanied by cellular and molecular adaptations of neural networks in the brain that enhance their functionality and bolster their resistance to stress, injury and disease. Here, we consider how intermittent metabolic switching, repeating cycles of a metabolic challenge that induces ketosis (fasting and/or exercise) followed by a recovery period (eating, resting and sleeping), may optimize brain function and resilience throughout the lifespan, with a focus on the neuronal circuits involved in cognition and mood. Such metabolic switching impacts multiple signalling pathways that promote neuroplasticity and resistance of the brain to injury and disease. PMID:29321682

  14. Energy metabolism in the liver.

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases. © 2014 American Physiological Society.

  15. Altered metabolic signature in pre-diabetic NOD mice.

    Directory of Open Access Journals (Sweden)

    Rasmus Madsen

    Full Text Available Altered metabolism proceeding seroconversion in children progressing to Type 1 diabetes has previously been demonstrated. We tested the hypothesis that non-obese diabetic (NOD mice show a similarly altered metabolic profile compared to C57BL/6 mice. Blood samples from NOD and C57BL/6 female mice was collected at 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 and 15 weeks and the metabolite content was analyzed using GC-MS. Based on the data of 89 identified metabolites OPLS-DA analysis was employed to determine the most discriminative metabolites. In silico analysis of potential involved metabolic enzymes was performed using the dbSNP data base. Already at 0 weeks NOD mice displayed a unique metabolic signature compared to C57BL/6. A shift in the metabolism was observed for both strains the first weeks of life, a pattern that stabilized after 5 weeks of age. Multivariate analysis revealed the most discriminative metabolites, which included inosine and glutamic acid. In silico analysis of the genes in the involved metabolic pathways revealed several SNPs in either regulatory or coding regions, some in previously defined insulin dependent diabetes (Idd regions. Our result shows that NOD mice display an altered metabolic profile that is partly resembling the previously observation made in children progressing to Type 1 diabetes. The level of glutamic acid was one of the most discriminative metabolites in addition to several metabolites in the TCA cycle and nucleic acid components. The in silico analysis indicated that the genes responsible for this reside within previously defined Idd regions.

  16. Method of inserting fuel rod

    International Nuclear Information System (INIS)

    Kamimoto, Shuji; Imoo, Makoto; Tsuchida, Kenji.

    1991-01-01

    The present invention concerns a method of inserting a fuel rod upon automatic assembling, automatic dismantling and reassembling of a fuel assembly in a light water moderated reactor, as well as a device and components used therefor. That is, a fuel rod is inserted reliably to an aimed point of insertion by surrounding the periphery of the fuel rod to be inserted with guide rods, and thereby suppressing the movement of the fuel rod during insertion. Alternatively, a fuel rod is inserted reliably to a point of insertion by inserting guide rods at the periphery of the point of insertion for the fuel rod to be inserted thereby surrounding the point of insertion with the guide rods or fuel rods. By utilizing fuel rods already present in the fuel assembly as the guide rods described above, the fuel rod can be inserted reliably to the point of insertion with no additional devices. Dummy fuel rods are previously inserted in a fuel assembly which are then utilized as the above-mentioned guide rods to accurately insert the fuel rod to the point of insertion. (I.S.)

  17. Modelling socio-metabolic transitions: The historical take-off, the acceleration of fossil fuel use, and the 1970s oil price shock - the first trigger of a future decline?

    Science.gov (United States)

    Wiedenhofer, Dominik; Rovenskaya, Elena; Krausmann, Fridolin; Haas, Willi; Fischer-Kowalski, Marina

    2013-04-01

    By talking about socio-metabolic transitions, we talk about changes in the energy base of socio-economic systems, leading to fundamental changes in social and environmental relations. This refers to the historical shift from a biomass-based (agrarian) economy to a fossil fuel based (industrial) economy just as much as to a future shift from fossil fuels to renewable energy carriers. In our presentation, • We will first show that this pattern of transition can be identified for most high income industrial countries: the later the transition started, the faster it proceeded, and the turning point to stabilization of metabolic rates in all of them happened in the early 1970ies. Due to the inherent non-linearity of this process, two approaches will be aplied to estimate parameters for the starting point, transition speed and saturation level: firstly a combination of an expontential and a generalized logistic function and secondly a Gompertz function. For both an iterative test procedure is applied to find the global minimum of the residual error for the whole function and all its parameters. This theory-based approach allows us to apply a robust methodology across all cases, thereby yielding results which can be generalized. • Next, we will show that this was not just a "historical" socio-ecological transition, however. Currently, a substantial number of countries comprising more than half of the world's population are following a similar transitional pathway at an ever accelerating pace. Based on empirical data on physical resource use and the above sketched methodology, we can show that these so-called emerging economies are currently in the take-off or acceleration phase of the very same transition. • Apart from these "endogenous" processes of socio-metabolic transition, we will investigate the effect of external shocks and their impact on the dynamics of energy and materials use. The first such shock we will explore is the oil crisis of 1972 that possibly

  18. CO metabolism of carboxydothermus hydrogenoformans and archaeoglobus fulgidus

    NARCIS (Netherlands)

    Henstra, A.M.

    2006-01-01

    Microbial CO metabolism was studied in detail with the ultimate aim to assess the feasibility of a biotechnological process that could replace the existing water gas shift technology in the production of a fuel cell grade hydrogen gas from synthesis gas. It is expected that a biotechnological

  19. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients

    International Nuclear Information System (INIS)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results

  20. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    Science.gov (United States)

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  1. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    Science.gov (United States)

    Amoedo, N D; Obre, E; Rossignol, R

    2017-08-01

    The search for new drugs capable of blocking the metabolic vulnerabilities of human tumors has now entered the clinical evaluation stage, but several projects already failed in phase I or phase II. In particular, very promising in vitro studies could not be translated in vivo at preclinical stage and beyond. This was the case for most glycolysis inhibitors that demonstrated systemic toxicity. A more recent example is the inhibition of glutamine catabolism in lung adenocarcinoma that failed in vivo despite a strong addiction of several cancer cell lines to glutamine in vitro. Such contradictory findings raised several questions concerning the optimization of drug discovery strategies in the field of cancer metabolism. For instance, the cell culture models in 2D or 3D might already show strong limitations to mimic the tumor micro- and macro-environment. The microenvironment of tumors is composed of cancer cells of variegated metabolic profiles, supporting local metabolic exchanges and symbiosis, but also of immune cells and stroma that further interact with and reshape cancer cell metabolism. The macroenvironment includes the different tissues of the organism, capable of exchanging signals and fueling the tumor 'a distance'. Moreover, most metabolic targets were identified from their increased expression in tumor transcriptomic studies, or from targeted analyses looking at the metabolic impact of particular oncogenes or tumor suppressors on selected metabolic pathways. Still, very few targets were identified from in vivo analyses of tumor metabolism in patients because such studies are difficult and adequate imaging methods are only currently being developed for that purpose. For instance, perfusion of patients with [ 13 C]-glucose allows deciphering the metabolomics of tumors and opens a new area in the search for effective targets. Metabolic imaging with positron emission tomography and other techniques that do not involve [ 13 C] can also be used to evaluate tumor

  2. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.

    Science.gov (United States)

    Martinez-Outschoorn, Ubaldo; Sotgia, Federica; Lisanti, Michael P

    2014-04-01

    Metabolic synergy or metabolic coupling between glycolytic stromal cells (Warburg effect) and oxidative cancer cells occurs in human breast cancers and promotes tumor growth. The Warburg effect or aerobic glycolysis is the catabolism of glucose to lactate to obtain adenosine triphosphate (ATP). This review summarizes the main findings on this stromal metabolic phenotype, and the associated signaling pathways, as well as the critical role of oxidative stress and autophagy, all of which promote carcinoma cell mitochondrial metabolism and tumor growth. Loss of Caveolin 1 (Cav-1) and the upregulation of monocarboxylate transporter 4 (MCT4) in stromal cells are novel markers of the Warburg effect and metabolic synergy between stromal and carcinoma cells. MCT4 and Cav-1 are also breast cancer prognostic biomarkers. Reactive oxygen species (ROS) are key mediators of the stromal Warburg effect. High ROS also favors cancer cell mitochondrial metabolism and tumorigenesis, and anti-oxidants can reverse this altered stromal and carcinoma metabolism. A pseudo-hypoxic state with glycolysis and low mitochondrial metabolism in the absence of hypoxia is a common feature in breast cancer. High ROS induces loss of Cav-1 in stromal cells and is sufficient to generate a pseudo-hypoxic state. Loss of Cav-1 in the stroma drives glycolysis and lactate extrusion via HIF-1α stabilization and the upregulation of MCT4. Stromal cells with loss of Cav-1 and/or high expression of MCT4 also show a catabolic phenotype, with enhanced macroautophagy. This catabolic state in stromal cells is driven by hypoxia-inducible factor (HIF)-1α, nuclear factor κB (NFκB), and JNK activation and high ROS generation. A feed-forward loop in stromal cells regulates pseudo-hypoxia and metabolic synergy, with Cav-1, MCT4, HIF-1α, NFκB, and ROS as its key elements. Metabolic synergy also may occur between cancer cells and cells in distant organs from the tumor. Cancer cachexia, which is due to severe organismal

  3. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Keywords: Metabolic engineering, Fatty acid biosynthesis, Fatty acid derivatives, Saccharomyces cerevisiae

  4. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism

    Science.gov (United States)

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E.; Lin, Zhao; Lamb, Rebecca; Hulit, James; Howell, Anthony; Sotgia, Federica; Rubin, Emanuel; Lisanti, Michael P.

    2013-01-01

    Little is known about how alcohol consumption promotes the onset of human breast cancer(s). One hypothesis is that ethanol induces metabolic changes in the tumor microenvironment, which then enhances epithelial tumor growth. To experimentally test this hypothesis, we used a co-culture system consisting of human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts. Here, we show that ethanol treatment (100 mM) promotes ROS production and oxidative stress in cancer-associated fibroblasts, which is sufficient to induce myofibroblastic differentiation. Oxidative stress in stromal fibroblasts also results in the onset of autophagy/mitophagy, driving the induction of ketone body production in the tumor microenvironment. Interestingly, ethanol has just the opposite effect in epithelial cancer cells, where it confers autophagy resistance, elevates mitochondrial biogenesis and induces key enzymes associated with ketone re-utilization (ACAT1/OXCT1). During co-culture, ethanol treatment also converts MCF7 cells from an ER(+) to an ER(-) status, which is thought to be associated with “stemness,” more aggressive behavior and a worse prognosis. Thus, ethanol treatment induces ketone production in cancer-associated fibroblasts and ketone re-utilization in epithelial cancer cells, fueling tumor cell growth via oxidative mitochondrial metabolism (OXPHOS). This “two-compartment” metabolic model is consistent with previous historical observations that ethanol is first converted to acetaldehyde (which induces oxidative stress) and then ultimately to acetyl-CoA (a high-energy mitochondrial fuel), or can be used to synthesize ketone bodies. As such, our results provide a novel mechanism by which alcohol consumption could metabolically convert “low-risk” breast cancer patients to “high-risk” status, explaining tumor recurrence or disease progression. Hence, our findings have clear implications for both breast cancer prevention and therapy. Remarkably, our results

  5. Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis

    Directory of Open Access Journals (Sweden)

    Tsantili Ivi C

    2007-03-01

    Full Text Available Abstract Background The need for discovery of alternative, renewable, environmentally friendly energy sources and the development of cost-efficient, "clean" methods for their conversion into higher fuels becomes imperative. Ethanol, whose significance as fuel has dramatically increased in the last decade, can be produced from hexoses and pentoses through microbial fermentation. Importantly, plant biomass, if appropriately and effectively decomposed, is a potential inexpensive and highly renewable source of the hexose and pentose mixture. Recently, the engineered (to also catabolize pentoses anaerobic bacterium Zymomonas mobilis has been widely discussed among the most promising microorganisms for the microbial production of ethanol fuel. However, Z. mobilis genome having been fully sequenced in 2005, there is still a small number of published studies of its in vivo physiology and limited use of the metabolic engineering experimental and computational toolboxes to understand its metabolic pathway interconnectivity and regulation towards the optimization of its hexose and pentose fermentation into ethanol. Results In this paper, we reconstructed the metabolic network of the engineered Z. mobilis to a level that it could be modelled using the metabolic engineering methodologies. We then used linear programming (LP analysis and identified the Z. mobilis metabolic boundaries with respect to various biological objectives, these boundaries being determined only by Z. mobilis network's stoichiometric connectivity. This study revealed the essential for bacterial growth reactions and elucidated the association between the metabolic pathways, especially regarding main product and byproduct formation. More specifically, the study indicated that ethanol and biomass production depend directly on anaerobic respiration stoichiometry and activity. Thus, enhanced understanding and improved means for analyzing anaerobic respiration and redox potential in vivo are

  6. Fuel thermal conductivity (FTHCON). Status report

    International Nuclear Information System (INIS)

    Hagrman, D.L.

    1979-02-01

    An improvement of the fuel thermal conductivity subcode is described which is part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The original version was published in the Materials Properties (MATPRO) Handbook, Section A-2 (Fuel Thermal Conductivity). The improved version incorporates data which were not included in the previous work and omits some previously used data which are believed to come from cracked specimens. The models for the effect of porosity on thermal conductivity and for the electronic contribution to thermal coductivity have been completely revised in order to place these models on a more mechanistic basis. As a result of modeling improvements the standard error of the model with respect to its data base has been significantly reduced

  7. A decade of advances in metallic fuel

    International Nuclear Information System (INIS)

    Lahm, C.E.; Pahl, R.G.; Porter, D.L.; Tsai, H.; Seidel, B.R.; Batte, G.L.; Dodds, N.E.; Hofman, G.L.; Walters, L.C.

    1991-01-01

    Significant advances in the understanding of behavior and performance of metallic fuels to high burnup have been achieved over the past four decades. Metallic fuels were the first fuels for liquid-metal-cooled fast reactors (LMR) but in the late 1960's worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved. Now metallic fuels are recognized as a preferred viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last decade and highlights the behavior and performance features which have demonstrated a much greater potential than previously expected

  8. The emerging role and targetability of the TCA cycle in cancer metabolism.

    Science.gov (United States)

    Anderson, Nicole M; Mucka, Patrick; Kern, Joseph G; Feng, Hui

    2018-02-01

    The tricarboxylic acid (TCA) cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.

  9. The emerging role and targetability of the TCA cycle in cancer metabolism

    Directory of Open Access Journals (Sweden)

    Nicole M. Anderson

    2017-07-01

    Full Text Available ABSTRACT The tricarboxylic acid (TCA cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.

  10. Constraints to commercialization of algal fuels.

    Science.gov (United States)

    Chisti, Yusuf

    2013-09-10

    Production of algal crude oil has been achieved in various pilot scale facilities, but whether algal fuels can be produced in sufficient quantity to meaningfully displace petroleum fuels, has been largely overlooked. Limitations to commercialization of algal fuels need to be understood and addressed for any future commercialization. This review identifies the major constraints to commercialization of transport fuels from microalgae. Algae derived fuels are expensive compared to petroleum derived fuels, but this could change. Unfortunately, improved economics of production are not sufficient for an environmentally sustainable production, or its large scale feasibility. A low-cost point supply of concentrated carbon dioxide colocated with the other essential resources is necessary for producing algal fuels. An insufficiency of concentrated carbon dioxide is actually a major impediment to any substantial production of algal fuels. Sustainability of production requires the development of an ability to almost fully recycle the phosphorous and nitrogen nutrients that are necessary for algae culture. Development of a nitrogen biofixation ability to support production of algal fuels ought to be an important long term objective. At sufficiently large scale, a limited supply of freshwater will pose a significant limitation to production even if marine algae are used. Processes for recovering energy from the algal biomass left after the extraction of oil, are required for achieving a net positive energy balance in the algal fuel oil. The near term outlook for widespread use of algal fuels appears bleak, but fuels for niche applications such as in aviation may be likely in the medium term. Genetic and metabolic engineering of microalgae to boost production of fuel oil and ease its recovery, are essential for commercialization of algal fuels. Algae will need to be genetically modified for improved photosynthetic efficiency in the long term. Copyright © 2013 Elsevier B.V. All

  11. BWR fuel cycle optimization using neural networks

    International Nuclear Information System (INIS)

    Ortiz-Servin, Juan Jose; Castillo, Jose Alejandro; Pelta, David Alejandro

    2011-01-01

    Highlights: → OCONN a new system to optimize all nuclear fuel management steps in a coupled way. → OCON is based on an artificial recurrent neural network to find the best combination of partial solutions to each fuel management step. → OCONN works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. → Results show OCONN is able to find good combinations according the global objective function. - Abstract: In nuclear fuel management activities for BWRs, four combinatorial optimization problems are solved: fuel lattice design, axial fuel bundle design, fuel reload design and control rod patterns design. Traditionally, these problems have been solved in separated ways due to their complexity and the required computational resources. In the specialized literature there are some attempts to solve fuel reloads and control rod patterns design or fuel lattice and axial fuel bundle design in a coupled way. In this paper, the system OCONN to solve all of these problems in a coupled way is shown. This system is based on an artificial recurrent neural network to find the best combination of partial solutions to each problem, in order to maximize a global objective function. The new system works with a fuel lattices' stock, a fuel reloads' stock and a control rod patterns' stock, previously obtained with different heuristic techniques. The system was tested to design an equilibrium cycle with a cycle length of 18 months. Results show that the new system is able to find good combinations. Cycle length is reached and safety parameters are fulfilled.

  12. International symposium on fuel rod simulators: development and application

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W. (comp.)

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  13. Bio-fuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    European Union bio-fuel use for transport reached 12 million tonnes of oil equivalent (mtoe) threshold during 2009. The slowdown in the growth of European consumption deepened again. Bio-fuel used in transport only grew by 18.7% between 2008 and 2009, as against 30.3% between 2007 and 2008 and 41.8% between 2006 and 2007. The bio-fuel incorporation rate in all fuels used by transport in the E.U. is unlikely to pass 4% in 2009. We can note that: -) the proportion of bio-fuel in the German fuels market has plummeted since 2007: from 7.3% in 2007 to 5.5% in 2009; -) France stays on course with an incorporation rate of 6.25% in 2009; -) In Spain the incorporation rate reached 3.4% in 2009 while it was 1.9% in 2008. The European bio-diesel industry has had another tough year. European production only rose by 16.6% in 2009 or by about 9 million tonnes which is well below the previous year-on-year growth rate recorded (35.7%). France is leading the production of bio-ethanol fuels in Europe with an output of 1250 million liters in 2009 while the total European production reached 3700 million litters and the world production 74000 million liters. (A.C.)

  14. Experimental study of fuel sootiness effects on flashover

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Kuang-Chung, E-mail: tsaikc@ccms.nkfust.edu.tw [Dept. of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, 2 Juoyue Road, Nantzu, Kaohsiung 811, Taiwan (China); Chen, Hung-Hsiang [Dept. of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, 2 Juoyue Road, Nantzu, Kaohsiung 811, Taiwan (China)

    2010-06-15

    Previous fire safety studies have demonstrated that flashover can result in severe injure and death and heat radiating back to a fuel is an important mechanism. Fuel sootiness dominates in radiative heat transfer. However, empirical correlations from previous investigations did not consider the fuel sootiness but nevertheless generated reasonably good predictions of flashover. In this study, a series of experiments was employed to examine fuel sootiness effects on flashover. The fuels used, in the order of their sootiness, were gasoline, n-hexane, iso-propanol and methanol. These fuels were filled in circular pans 100-320 mm in diameter to generate fires with different heat release rates and levels of sootiness. The pans were in 1/3 the size of the ISO 9705 test chamber. After ignition, the heat release rate (HRR), temperature inside the chamber, as well as heat flux on the floor and time to flashover (t{sub fo}) were determined. Experimental data show that HRR at flashover and t{sub fo} were strongly corrected and their relationship was independent of the fuel burned. Although heat feedback to the floor increased as fuel sootiness increased, consequently enhancing the burning of sooty fuels, flashover occurs only when the HRR at flashover criterion is reached.

  15. Fission gas induced fuel swelling in low and medium burnup fuel during high temperature transients. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Vinjamuri, K.

    1980-01-01

    The behavior of light water reactor fuel elements under postulated accident conditions is being studied by the EG and G Idaho, Inc., Thermal Fuels Behavior Program for the Nuclear Regulatory Commission. As a part of this program, unirradiated and previously irradiated, pressurized-water-reactor type fuel rods were tested under power-cooling-mismatch (PCM) conditions in the Power Burst Facility (PBF). During these integral in-reactor experiments, film boiling was produced on the fuel rods which created high fuel and cladding temperatures. Fuel rod diameters increased in the film boiling region to a greater extent for irradiated rods than for unirradiated rods. The purpose of the study was to investigate and assess the fuel swelling which caused the fuel rod diameter increases and to evaluate the ability of an analytical code, the Gas Release and Swelling Subroutine - Steady-State and Transient (GRASS-SST), to predict the results.

  16. Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis

    Directory of Open Access Journals (Sweden)

    Kiyan Shabestary

    2016-12-01

    Full Text Available Chemical and fuel production by photosynthetic cyanobacteria is a promising technology but to date has not reached competitive rates and titers. Genome-scale metabolic modeling can reveal limitations in cyanobacteria metabolism and guide genetic engineering strategies to increase chemical production. Here, we used constraint-based modeling and optimization algorithms on a genome-scale model of Synechocystis PCC6803 to find ways to improve productivity of fermentative, fatty-acid, and terpene-derived fuels. OptGene and MOMA were used to find heuristics for knockout strategies that could increase biofuel productivity. OptKnock was used to find a set of knockouts that led to coupling between biofuel and growth. Our results show that high productivity of fermentation or reversed beta-oxidation derived alcohols such as 1-butanol requires elimination of NADH sinks, while terpenes and fatty-acid based fuels require creating imbalances in intracellular ATP and NADPH production and consumption. The FBA-predicted productivities of these fuels are at least 10-fold higher than those reported so far in the literature. We also discuss the physiological and practical feasibility of implementing these knockouts. This work gives insight into how cyanobacteria could be engineered to reach competitive biofuel productivities. Keywords: Cyanobacteria, Modeling, Flux balance analysis, Biofuel, MOMA, OptFlux, OptKnock

  17. BAD-Dependent Regulation of Fuel Metabolism and KATP Channel Activity Confers Resistance to Epileptic Seizures

    OpenAIRE

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K.; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R.; Lutas, Andrew; Yellen, Gary; Danial, Nika N.

    2012-01-01

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phospho-regulation of BAD and are independent of its apoptotic function. BAD modific...

  18. Food for thought: Impact of metabolism on neuronal excitability.

    Science.gov (United States)

    Katsu-Jiménez, Yurika; Alves, Renato M P; Giménez-Cassina, Alfredo

    2017-11-01

    Neuronal excitability is a highly demanding process that requires high amounts of energy and needs to be exquisitely regulated. For this reason, brain cells display active energy metabolism to support their activity. Independently of their roles as energy substrates, compelling evidence shows that the nature of the fuels that neurons use contribute to fine-tune neuronal excitability. Crosstalk of neurons with glial populations also plays a prominent role in shaping metabolic flow in the brain. In this review, we provide an overview on how different carbon substrates and metabolic pathways impact neurotransmission, and the potential implications for neurological disorders in which neuronal excitability is deregulated, such as epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A decade of advances in metallic fuel

    International Nuclear Information System (INIS)

    Seidel, B.R.; Batte, G.L.; Dodds, N.E.; Hofman, G.L.; Lahm, C.E.; Pahl, R.G.; Porter, D.L.; Tsai, H.; Walters, L.C.

    1990-01-01

    Significant advances in the understanding of behavior and performance of metallic fuels to high burnup have been achieved over the past four decades. Metallic fuels were the first fuels for liquid-metal-cooled fast reactors (LMR) but in the late 1960s worldwide interest turned toward ceramic fuels before the full potential of metallic fuel could be achieved. Now metallic fuels are recognized as a preferred viable option with regard to safety, integral fuel cycle, waste minimization and deployment economics. This paper reviews the key advances in the last decade and highlights the behavior and performance features which have demonstrated a much greater potential than previously expected. 28 refs., 2 figs., 1 tab

  20. Metabolic changes in malnutrition.

    Science.gov (United States)

    Emery, P W

    2005-10-01

    This paper is concerned with malnutrition caused by inadequate intake of all the major nutrients rather than deficiency diseases relating to a single micronutrient. Three common situations are recognised: young children in third world countries with protein-energy malnutrition; adults in the same countries who are chronically adapted to subsisting on marginally inadequate diets; and patients who become malnourished as a result of chronic diseases. In all these situations infectious diseases are often also present, and this complicates the interpretation of biochemical and physiological observations. The metabolic response to starvation is primarily concerned with maintaining a supply of water-soluble substrates to supply energy to the brain. Thus there is an initial rise in metabolic rate, reflecting gluconeogenic activity. As fasting progresses, gluconeogenesis is suppressed to minimise muscle protein breakdown and ketones become the main fuel for the brain. With chronic underfeeding the basal metabolic rate per cell appears to fall, but the mechanistic basis for this is not clear. The main adaptation to chronic energy deficiency is slow growth and low adult body size, although the reduction in energy requirement achieved by this is partially offset by the preservation of the more metabolically active organs at the expense of muscle, which has a lower metabolic rate. The interaction between malnutrition and the metabolic response to trauma has been studied using an animal model. The rise in energy expenditure and urinary nitrogen excretion following surgery were significantly attenuated in malnourished rats, suggesting that malnutrition impairs the ability of the body to mobilise substrates to support inflammatory and reparative processes. However, the healing process in wounded muscle remained unimpaired in malnutrition, suggesting that this process has a high biological priority.

  1. Predicting the Liquid Lengths of Heavy Hydrogen Fuels

    National Research Council Canada - National Science Library

    Hoogterp, Laura L

    2003-01-01

    .... Using models formulated by previous researchers as well as the thermodynamic properties for three fuel surrogates the liquid length can be determined for diesel fuel, JP8 as well as provide a model...

  2. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.

    Science.gov (United States)

    Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan

    2018-05-01

    Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

  3. Energy Harvesting From River Sediment Using a Microbial Fuel Cell: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Philippe Namour

    2014-05-01

    Full Text Available We have built a sedimentary fuel cell or Sediment Microbial Fuel Cell (SMFC. The device works on the principle of microbial fuel cells by exploiting directly the energy contained in sedimentary organic matter. It converts in electricity the sediment potential, thanks to microorganisms able to waste electrons from their metabolism directly to a solid anode instead of their natural electron acceptors, such as oxygen or nitrate. The sediment microbial fuel cell was made of a non-corrodible anode (graphite buried in anoxic sediments layer and connected via an electrical circuit to a cathode installed in surface water. We present the first results of laboratory sedimentary fuel cell and a prototype installed in the river.

  4. LEU fuel fabrication in Argentina

    International Nuclear Information System (INIS)

    Giorsetti, D.R.; Gomez, J.O.; Marajofsky, A.; Kohut, C.

    1985-01-01

    As an Institution, aiming to meet with its own needs, CNEA has been intensively developing reduced enriched fuel to use in its own research and test reactors. Development of the fabrication technology as well as the design, installation and operation of the manufacturing plant, have been carried out with its own funds. Irradiation and post-irradiation of test miniplates have been taking place within the framework of the RERTR program. During the last years, CNEA has developed three LEU fuel types. In the previous RERTR meetings, we presented the technological results obtained with these fuel types. This paper focuses on CNEA LEU fuel element manufacturing status and the trained personnel we can offer in design and manufacture fuel capability. CNEA has its own fuel manufacturing technology; the necessary facilities to start the fuel fabrication; qualified technicians and professionals for: fuel design and behaviour analysis; fuel manufacturing and QA; international recognition of its fuel development and manufacturing capability through its ORR miniplate irradiation; its own natural uranium and the future possibility to enrich up to 20% U 235 ; the probability to offer a competitive fuel manufacturing cost in the international market; the disposition to cooperate with all countries that wish to take part and aim to reach an self-sufficiency in their own fuel supply needs

  5. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  6. 40 CFR 80.512 - May an importer treat diesel fuel as blendstock?

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... fuel under §§ 80.593, 80.601, and 80.604. (4) If previously designated motor vehicle diesel fuel having... redesignate all the diesel fuel as 500 ppm sulfur motor vehicle diesel fuel for purposes of the temporary...

  7. Bioremediation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    Troy, M.A.; Jerger, D.E.

    1992-01-01

    Bioremediation techniques were successfully employed in the cost-effective cleanup of approximately 8400 gallons of diesel fuel which had been accidentally discharged at a warehouse in New Jersey. Surrounding soils were contaminated with the diesel fuel at concentrations exceeding 1,470 mg/kg total petroleum hydrocarbons as measured by infrared spectroscopy (TPH-IR, EPA method 418.1, modified for soils). This paper reports on treatment of the contaminated soils through enhanced biological land treatment which was chosen for the soil remediation pursuant to a New Jersey Pollutant Discharge Elimination System - Discharge to Ground Water (NJPDES-DGW) permit. Biological land treatment of diesel fuel focuses on the breakdown of the hydrocarbon fractions by indigenous aerobic microorganisms in the layers of soil where oxygen is made available. Metabolism by these microorganisms can ultimately reduce the hydrocarbons to innocuous end products. The purpose of biological land treatment was to reduce the concentration of the petroleum hydrocarbon constituents of the diesel fuel in the soil to 100 ppm total petroleum hydrocarbons (TPH)

  8. Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism

    Science.gov (United States)

    McWhorter, Todd J; Bakken, Bradley Hartman; Karasov, William H; del Rio, Carlos Martínez

    2005-01-01

    Twenty years ago, the highest active glucose transport rate and lowest passive glucose permeability in vertebrates were reported in Rufous and Anna's hummingbirds (Selasphorus rufus, Calypte anna). These first measurements of intestinal nutrient absorption in nectarivores provided an unprecedented physiological foundation for understanding their foraging ecology. They showed that physiological processes are determinants of feeding behaviour. The conclusion that active, mediated transport accounts for essentially all glucose absorption in hummingbirds influenced two decades of subsequent research on the digestive physiology and nutritional ecology of nectarivores. Here, we report new findings demonstrating that the passive permeability of hummingbird intestines to glucose is much higher than previously reported, suggesting that not all sugar uptake is mediated. Even while possessing the highest active glucose transport rates measured in vertebrates, hummingbirds must rely partially on passive non-mediated intestinal nutrient absorption to meet their high mass-specific metabolic demands. PMID:17148346

  9. Modelling the effects of transport policy levers on fuel efficiency and national fuel consumption

    International Nuclear Information System (INIS)

    Kirby, H.R.; Hutton, B.; McQuaid, R.W.; Napier Univ., Edinburgh; Raeside, R.; Napier Univ., Edinburgh; Zhang, Xiayoan; Napier Univ., Edinburgh

    2000-01-01

    The paper provides an overview of the main features of a Vehicle Market Model (VMM) which estimates changes to vehicle stock/kilometrage, fuel consumed and CO 2 emitted. It is disaggregated into four basic vehicle types. The model includes: the trends in fuel consumption of new cars, including the role of fuel price: a sub-model to estimate the fuel consumption of vehicles on roads characterised by user-defined driving cycle regimes; procedures that reflect distribution of traffic across different area/road types; and the ability to vary the speed (or driving cycle) from one year to another, or as a result of traffic growth. The most significant variable influencing fuel consumption of vehicles was consumption in the previous year, followed by dummy variables related to engine size. the time trend (a proxy for technological improvements), and then fuel price. Indeed the effect of fuel price on car fuel efficiency was observed to be insignificant (at the 95% level) in two of the three versions of the model, and the size of fuel price term was also the smallest. This suggests that the effectiveness of using fuel prices as a direct policy tool to reduce fuel consumption may he limited. Fuel prices may have significant indirect impacts (such as influencing people to purchase more fuel efficient cars and vehicle manufacturers to invest in developing fuel efficient technology) as may other factors such as the threat of legislation. (Author)

  10. Analysis of Virtual Sensors for Predicting Aircraft Fuel Consumption

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous research described the use of machine learning algorithms to predict aircraft fuel consumption. This technique, known as Virtual Sensors, models fuel...

  11. Development of biologically modified anodes for energy harvesting using microbial fuel cells

    Science.gov (United States)

    Sumner, James J.; Ganguli, Rahul; Chmelka, Brad

    2012-06-01

    Biological fuel cells hold promise as an alternative energy source to batteries for unattended ground sensor applications due to the fact that they can be extremely long lived. This lifetime can be extended over batteries by scavenging fuel from the deployed environment. Microbial fuel cells (MFC) are one class of such sources that produce usable energy from small organic compounds (i.e. sugars, alcohols, organic acids, and biopolymers) which can be easily containerized or scavenged from the environment. The use of microorganisms as the anodic catalysts is what makes these systems unique from other biofuel cell designs. One of the main drawbacks of engineering a sensor system powered by an MFC is that power densities and current flux are extremely low in currently reported systems. The power density is limited by the mass transfer of the fuel source to the catalyst, the metabolism of the microbial catalysts and the electron transfer from the organism to the anode. This presentation will focus on the development of a new style of microbially-modified anodes which will increase power density to a level where a practical power source can be engineered. This is being achieved by developing a three dimensional matrix as an artificial, conductive biofilm. These artificial biofilms will allow the capture of a consortium of microbes designed for efficient metabolism of the available fuel source. Also it will keep the microbes close to the electrode allowing ready access by fuel and providing a low resistance passage of the liberated electrons from fuel oxidation.

  12. BAD-dependent regulation of fuel metabolism and K(ATP) channel activity confers resistance to epileptic seizures.

    Science.gov (United States)

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R; Lutas, Andrew; Yellen, Gary; Danial, Nika N

    2012-05-24

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    Science.gov (United States)

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323

  14. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    OpenAIRE

    Jarboe, Laura R.; Zhang, Xueli; Wang, Xuan; Moore, Jonathan C.; Shanmugam, K. T.; Ingram, Lonnie O.

    2010-01-01

    Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibito...

  15. RA3: Application of a calculation model for fuel management with SEFE (Slightly Enriched Fuel Elements)

    International Nuclear Information System (INIS)

    Estryk, G.; Higa, M.

    1993-01-01

    The RA-3 (5 MW, MTR) reactor is mainly utilized to produce radioisotopes (Mo-99, I-131, etc.). It started operating with Low Enrichment Uranium (LEU) in 1990, and spends around 12 fuels per year. Although this consumption is small compared to a nuclear power station. It is important to do a good management of them. The present report describes: - A reactor model to perform the Fuel Shuffling. - Results of fuel management simulations for 2 and a half years of operation. Some features of the calculations can be summarized as follows: 1) A 3D calculation model is used with the code PUMA. It does not have experimental adjustments, except for some approximations in the reflector representation and predicts: power, flux distributions and reactivity of the core in an acceptable way. 2) Comparisons have been made with the measurements done in the commissioning with LEU fuels, and it has also been compared with the empirical method (the previous one) which had been used in the former times of operation with LEU fuel. 3) The number of points of the model is approximately 13500, an it can be run in 80386 personal computer. The present method has been verified as a good tool to perform the simulations for the fuel management of RA-3 reactor. It is expected to produce some economic advantages in: - Achieving a better utilization of the fuels. - Leaving more time of operation for radioisotopes production. The activation measurements through the whole core required by the previous method can be significantly reduced. (author)

  16. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.

    Science.gov (United States)

    Baumgard, L H; Rhoads, R P

    2012-06-01

    Heat stress compromises efficient animal production by marginalizing nutrition, management, and genetic selection efforts to maximize performance endpoints. Modifying farm infrastructure has yielded modest success in mitigating heat stress-related losses, yet poor production during the summer remains arguably the costliest issue facing livestock producers. Reduced output (e.g., milk yield and muscle growth) during heat stress was traditionally thought to result from decreased nutrient intake (i.e., a classic biological response shared by all animals during environmental-induced hyperthermia). Our recent observations have begun to challenge this belief and indicate heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independently of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident by increased basal and stimulated circulating insulin concentrations. Perhaps most intriguing given the energetic shortfall of the heat-stressed animal is the apparent lack of basal adipose tissue mobilization coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues. Interestingly, the systemic, cellular, and molecular changes appear conserved amongst different species and physiological states. Ultimately, these changes result in the reprioritization of fuel selection during heat stress, which appears to be primarily responsible for reduced ruminant animal productivity during the warm summer months.

  17. Detritus fuels ecosystem metabolism but not metazoan food webs in San Francisco estuary's freshwater delta

    Science.gov (United States)

    Sobczak, W.V.; Cloern, J.E.; Jassby, A.D.; Cole, B.E.; Schraga, T.S.; Arnsberg, A.

    2005-01-01

    Detritus from terrestrial ecosystems is the major source of organic matter in many streams, rivers, and estuaries, yet the role of detritus in supporting pelagic food webs is debated. We examined the importance of detritus to secondary productivity in the Sacramento and San Joaquin River Delta (California, United States), a large complex of tidal freshwater habitats. The Delta ecosystem has low primary productivity but large detrital inputs, so we hypothesized that detritus is the primary energy source fueling production in pelagic food webs. We assessed the sources, quantity, composition, and bioavailability of organic matter among a diversity of habitats (e.g., marsh sloughs, floodplains, tidal lakes, and deep river channels) over two years to test this hypothesis. Our results support the emerging principle that detritus dominates riverine and estuarine organic matter supply and supports the majority of ecosystem metabolism. Yet in contrast to prevailing ideas, we found that detritus was weakly coupled to the Delta's pelagic food web. Results from independent approaches showed that phytoplankton production was the dominant source of organic matter for the Delta's pelagic food web, even though primary production accounts for a small fraction of the Delta's organic matter supply. If these results are general, they suggest that the value of organic matter to higher trophic levels, including species targeted by programs of ecosystem restoration, is a function of phytoplankton production. ?? 2005 Estuarine Research Federation.

  18. Limitations of Commercializing Fuel Cell Technologies

    Science.gov (United States)

    Nordin, Normayati

    2010-06-01

    Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.

  19. Effect of fuels on exercise capacity in muscle phosphoglycerate mutase deficiency

    DEFF Research Database (Denmark)

    Vissing, John; Quistorff, Bjørn; Haller, Ronald G

    2005-01-01

    , it is unknown whether PGAMD is associated with a second-wind phenomenon during exercise, as in McArdle disease, and whether patients with PGAMD, like patients with PFKD and McArdle disease, benefit from supplementation with fuels that bypass the metabolic block. OBJECTIVE: To investigate whether fuels...... that bypass the metabolic block can improve exercise capacity or whether exercise capacity improves during sustained exercise. DESIGN: Single-blind, placebo-controlled investigation of the effects of glucose, lactate, and intralipid on work capacity in patients with PGAMD. SETTING: National University...... Hospital, University of Copenhagen, and Neuromuscular Center, Institute for Exercise and Environmental Medicine.Patients Two unrelated men (21 and 26 years old) with PGAMD who since their teens had experienced muscle cramps, muscle pain, and episodes of myoglobinuria provoked by brief vigorous exercise, 4...

  20. HTGR fuel performance basis

    International Nuclear Information System (INIS)

    Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

    1982-01-01

    The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600 0 C, and complete fuel failure occurs at 2660 0 C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents. The slow release of fission products over hundreds of hours allows for decay of short-lived isotopes. The slow and limited release of fission products under HTGR accident conditions results in very low off-site doses. The slow nature of the accident provides more time for operator action to mitigate the accident and for local and state authorities to respond. These features can be used to take advantage of close-in siting for process applications, flexibility in site selection, and emergency planning

  1. AECL's progress in DUPIC fuel development

    International Nuclear Information System (INIS)

    Sullivan, J.D.; Ryz, M.A.; Lee, J.W.

    1997-01-01

    Previous papers described progress in choosing a fabrication route for the DUPIC (Direct Use of Spent PWR Fuel in CANDU) fuel cycle [1], details of the OREOX (Oxidation Reduction of Oxide fuel) process, and preliminary results of out-cell and small-scale in-cell experiments [2]. AECL's project to develop the DUPIC fuel cycle has now progressed to the stage of fabricating DUPIC fuel elements for irradiation testing in a research reactor. Because of the high radiation fields around the spent PWR fuel, all work is being done in hot cells. The equipment used for fabrication of the DUPIC fuel elements is described in this paper. The commissioning, in-cell installation and current status of the fabrication process are also described and plans for the completion of this phase of the DUPIC project are outlined. The goal of this phase of the project is demonstration of the technical feasibility of the DUPIC fuel cycle. (author)

  2. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells

    OpenAIRE

    Yang, Jichun; Chi, Yujing; Burkhardt, Brant R.; Guan, Youfei; Wolf, Bryan A

    2010-01-01

    Leucine, a the branched-chain amino acids that must be supplied in daily diet, plays an important role in controlling protein synthesis and regulating cell metabolism in various cell types. In pancreatic β cells, leucine acutely stimulates insulin secretion by serving as both metabolic fuel and allosteric activator of glutamate dehydrogenase to enhance glutaminolysis. Leucine has also been shown to regulate gene transcription and protein synthesis in pancreatic islet β cells via both mTOR-dep...

  3. 75 FR 68185 - Airworthiness Directives; EADS CASA (Type Certificate Previously Held by Construcciones...

    Science.gov (United States)

    2010-11-05

    ... Airworthiness Directives; EADS CASA (Type Certificate Previously Held by Construcciones Aeronauticas, S.A...) that were, at that moment, defined in issue C of EADS-CASA document DT-0-C00-05001. That document has... implementation of the revised Fuel Airworthiness Limitations contained in issue D of EADS- CASA document DT-0-C00...

  4. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention.

    Science.gov (United States)

    Sanchez-Alvarez, Rosa; Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Lamb, Rebecca; Hulit, James; Howell, Anthony; Sotgia, Federica; Rubin, Emanuel; Lisanti, Michael P

    2013-01-15

    Little is known about how alcohol consumption promotes the onset of human breast cancer(s). One hypothesis is that ethanol induces metabolic changes in the tumor microenvironment, which then enhances epithelial tumor growth. To experimentally test this hypothesis, we used a co-culture system consisting of human breast cancer cells (MCF7) and hTERT-immortalized fibroblasts. Here, we show that ethanol treatment (100 mM) promotes ROS production and oxidative stress in cancer-associated fibroblasts, which is sufficient to induce myofibroblastic differentiation. Oxidative stress in stromal fibroblasts also results in the onset of autophagy/mitophagy, driving the induction of ketone body production in the tumor microenvironment. Interestingly, ethanol has just the opposite effect in epithelial cancer cells, where it confers autophagy resistance, elevates mitochondrial biogenesis and induces key enzymes associated with ketone re-utilization (ACAT1/OXCT1). During co-culture, ethanol treatment also converts MCF7 cells from an ER(+) to an ER(-) status, which is thought to be associated with "stemness," more aggressive behavior and a worse prognosis. Thus, ethanol treatment induces ketone production in cancer-associated fibroblasts and ketone re-utilization in epithelial cancer cells, fueling tumor cell growth via oxidative mitochondrial metabolism (OXPHOS). This "two-compartment" metabolic model is consistent with previous historical observations that ethanol is first converted to acetaldehyde (which induces oxidative stress) and then ultimately to acetyl-CoA (a high-energy mitochondrial fuel), or can be used to synthesize ketone bodies. As such, our results provide a novel mechanism by which alcohol consumption could metabolically convert "low-risk" breast cancer patients to "high-risk" status, explaining tumor recurrence or disease progression. Hence, our findings have clear implications for both breast cancer prevention and therapy. Remarkably, our results also show that

  5. Upgraded HFIR Fuel Element Welding System

    International Nuclear Information System (INIS)

    Sease, John D.

    2010-01-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  6. Telescope sipping the optimum fuel leak detection system

    International Nuclear Information System (INIS)

    Deleryd, R.

    1998-01-01

    The TELESCOPE Sipping technology is an evolutionary development from previous ABB fuel leak systems used in LWR reactors. The system utilizes the existing dynamics that cause numerous fission products to leak from a failed fuel rod when the fuel assembly is raised from a reactor core during core fuel alterations. The system can also be used by repair work in pool side inspection in order to detect leaking rods or to verify reconstituted assemblies as non leakers. (author)

  7. Method of measuring distance between fuel element

    International Nuclear Information System (INIS)

    Urata, Megumu.

    1991-01-01

    The distance between fuel elements contained in a pool is measured in a contactless manner even for a narrow distance less than 1 mm. That is, the equipment for measuring the distance between spent fuel elements of a spent fuel assembly in a nuclear reactor comprises a optical fiber scope, a lens, an industrial TV camera and a monitor TV. The top end of the optical fiber scope is inserted between fuel elements to be measured. The state thereof is displayed on the TV screen to measure the distance between the fuel elements. The measured results are compared with a previously formed calibration curve to determine the value between the fuel elements. Then, the distance between the fuel elements can be determined in the pool of a power plant without dismantling the fuel assembly, to investigate the state of the bending and estimate the fuel working life. (I.S.)

  8. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  9. Versatile Affordable Advanced Fuels and Combustion Technologies

    Science.gov (United States)

    2010-11-01

    Fuels, Vol. 22, No. 4, 2008 2415 165 elastomer is highly fluorinated and relatively inert, as evident by the very low percentage of volume swell. Previous...decomposition often include gums, varnishes , and coke, which are detrimental because they can foul and plug fuel system components, such as filters

  10. PET Metabolic Biomarkers for Cancer

    Directory of Open Access Journals (Sweden)

    Etienne Croteau

    2016-01-01

    Full Text Available The body's main fuel sources are fats, carbohydrates (glucose, proteins, and ketone bodies. It is well known that an important hallmark of cancer cells is the overconsumption of glucose. Positron emission tomography (PET imaging using the glucose analog 18 F-fluorodeoxyglucose ( 18 F-FDG has been a powerful cancer diagnostic tool for many decades. Apart from surgery, chemotherapy and radiotherapy represent the two main domains for cancer therapy, targeting tumor proliferation, cell division, and DNA replication–-all processes that require a large amount of energy. Currently, in vivo clinical imaging of metabolism is performed almost exclusively using PET radiotracers that assess oxygen consumption and mechanisms of energy substrate consumption. This paper reviews the utility of PET imaging biomarkers for the detection of cancer proliferation, vascularization, metabolism, treatment response, and follow-up after radiation therapy, chemotherapy, and chemotherapy-related side effects.

  11. Synthetic biology for engineering acetyl coenzyme a metabolism in yeast

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting...... chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl...

  12. Cyanobacterial metabolic engineering for biofuel and chemical production.

    Science.gov (United States)

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Glucose and fatty acid metabolism in normal and diabetic rabbit cerebral microvessels

    International Nuclear Information System (INIS)

    Hingorani, V.; Brecher, P.

    1987-01-01

    Rabbit cerebral microvessels were used to study fatty acid metabolism and its utilization relative to glucose. Microvessels were incubated with either [6- 14 C]glucose or [1- 14 C]oleic acid and the incorporation of radioactivity into 14 CO 2 , lactate, triglyceride, cholesterol ester, and phospholipid was determined. The inclusion of 5.5 mM glucose in the incubation mixture reduced oleate oxidation by 50% and increased esterification into both phospholipid and triglyceride. Glucose oxidation to CO 2 was reduced by oleate addition, whereas lactate production was unaffected. 2'-Tetradecylglycidic acid, an inhibitor of carnitine acyltransferase I, blocked oleic acid oxidation in the presence and absence of glucose. It did not effect fatty acid esterification when glucose was absent and eliminated the inhibition of oleate on glucose oxidation. Glucose oxidation to 14 CO 2 was markedly suppressed in microvessels from alloxan-treated diabetic rabbits but lactate formation was unchanged. Fatty acid oxidation to CO 2 and incorporation into triglyceride, phospholipid, and cholesterol ester remained unchanged in the diabetic state. The experiments show that both fatty acid and glucose can be used as a fuel source by the cerebral microvessels, and the interactions found between fatty acid and glucose metabolism are similar to the fatty acid-glucose cycle, described previously

  14. Response to ‘comment on recent modeling studies of astrocyte–neuron metabolic interactions': much ado about nothing

    OpenAIRE

    Mangia, Silvia; DiNuzzo, Mauro; Giove, Federico; Carruthers, Anthony; Simpson, Ian A; Vannucci, Susan J

    2011-01-01

    For many years, a tenet of cerebral metabolism held that glucose was the obligate energy substrate of the mammalian brain and that neuronal oxidative metabolism represented the majority of this glucose utilization. In 1994, Pellerin and Magistretti formulated the astrocyte–neuron lactate shuttle (ANLS) hypothesis, in which astrocytes, not neurons, metabolized glucose, with subsequent transport of the glycolytically derived lactate to fuel the energy needs of the neuron during neurotransmissio...

  15. Metabolic engineering of free-energy (ATP) conserving reactions in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    De Kok, S.

    2012-01-01

    Metabolic engineering – the improvement of cellular activities by manipulation of enzymatic, transport and regulatory functions of the cell – has enabled the industrial production of a wide variety of biological molecules from renewable resources. Microbial production of fuels and chemicals thereby

  16. Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis

    Directory of Open Access Journals (Sweden)

    Balagurunathan Balaji

    2012-02-01

    Full Text Available Abstract Background Fermentation of xylose, the major component in hemicellulose, is essential for economic conversion of lignocellulosic biomass to fuels and chemicals. The yeast Scheffersomyces stipitis (formerly known as Pichia stipitis has the highest known native capacity for xylose fermentation and possesses several genes for lignocellulose bioconversion in its genome. Understanding the metabolism of this yeast at a global scale, by reconstructing the genome scale metabolic model, is essential for manipulating its metabolic capabilities and for successful transfer of its capabilities to other industrial microbes. Results We present a genome-scale metabolic model for Scheffersomyces stipitis, a native xylose utilizing yeast. The model was reconstructed based on genome sequence annotation, detailed experimental investigation and known yeast physiology. Macromolecular composition of Scheffersomyces stipitis biomass was estimated experimentally and its ability to grow on different carbon, nitrogen, sulphur and phosphorus sources was determined by phenotype microarrays. The compartmentalized model, developed based on an iterative procedure, accounted for 814 genes, 1371 reactions, and 971 metabolites. In silico computed growth rates were compared with high-throughput phenotyping data and the model could predict the qualitative outcomes in 74% of substrates investigated. Model simulations were used to identify the biosynthetic requirements for anaerobic growth of Scheffersomyces stipitis on glucose and the results were validated with published literature. The bottlenecks in Scheffersomyces stipitis metabolic network for xylose uptake and nucleotide cofactor recycling were identified by in silico flux variability analysis. The scope of the model in enhancing the mechanistic understanding of microbial metabolism is demonstrated by identifying a mechanism for mitochondrial respiration and oxidative phosphorylation. Conclusion The genome

  17. Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study.

    Science.gov (United States)

    Shijo, Katsunori; Sutton, Richard L; Ghavim, Sima S; Harris, Neil G; Bartnik-Olson, Brenda L

    2017-01-01

    Administration of sodium pyruvate (SP; 9.08 μmol/kg, i.p.), ethyl pyruvate (EP; 0.34 μmol/kg, i.p.) or glucose (GLC; 11.1 μmol/kg, i.p.) to rats after unilateral controlled cortical impact (CCI) injury has been reported to reduce neuronal loss and improve cerebral metabolism. In the present study these doses of each fuel or 8% saline (SAL; 5.47 nmoles/kg) were administered immediately and at 1, 3, 6 and 23 h post-CCI. At 24 h all CCI groups and non-treated Sham injury controls were infused with [1,2 13 C] glucose for 68 min 13 C nuclear magnetic resonance (NMR) spectra were obtained from cortex + hippocampus tissues from left (injured) and right (contralateral) hemispheres. All three fuels increased lactate labeling to a similar degree in the injured hemisphere. The amount of lactate labeled via the pentose phosphate and pyruvate recycling (PPP + PR) pathway increased in CCI-SAL and was not improved by SP, EP, and GLC treatments. Oxidative metabolism, as assessed by glutamate labeling, was reduced in CCI-SAL animals. The greatest improvement in oxidative metabolism was observed in animals treated with SP and fewer improvements after EP or GLC treatments. Compared to SAL, all three fuels restored glutamate and glutamine labeling via pyruvate carboxylase (PC), suggesting improved astrocyte metabolism following fuel treatment. Only SP treatments restored the amount of [4 13 C] glutamate labeled by the PPP + PR pathway to sham levels. Milder injury effects in the contralateral hemisphere appear normalized by either SP or EP treatments, as increases in the total pool of 13 C lactate and labeling of lactate in glycolysis, or decreases in the ratio of PC/PDH labeling of glutamine, were found only for CCI-SAL and CCI-GLC groups compared to Sham. The doses of SP, EP and GLC examined in this study all enhanced lactate labeling and restored astrocyte-specific PC activity but differentially affected neuronal metabolism after CCI injury. The restoration of

  18. Reevaluating Metabolism in Alzheimer's Disease from the Perspective of the Astrocyte-Neuron Lactate Shuttle Model

    OpenAIRE

    Newington, Jordan T.; Harris, Richard A.; Cumming, Robert C.

    2013-01-01

    The conventional view of central nervous system (CNS) metabolism is based on the assumption that glucose is the main fuel source for active neurons and is processed in an oxidative manner. However, since the early 1990s research has challenged the idea that the energy needs of nerve cells are met exclusively by glucose and oxidative metabolism. This alternative view of glucose utilization contends that astrocytes metabolize glucose to lactate, which is then released and taken up by nearby neu...

  19. Poly-epiphyseal overgrowth: description of a previously unreported skeletal dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Pazzaglia, Ugo E.; Bonaspetti, Giovanni [University of Brescia, Orthopaedic Clinic, Brescia (Italy); Beluffi, Giampiero [Fondazione IRCCS Policlinico San Matteo, Department of Paediatric Radiology, Pavia (Italy); Marchi, Antonietta; Bozzola, Mauro; Savasta, Salvatore [Fondazione IRCCS Policlinico San Matteo, Paediatric Clinic, University of Pavia, Pavia (Italy)

    2007-10-15

    A skeletal dysplasia with previously unreported features is presented. Its evolution was characterized by growth abnormalities of bones without involvement of other organs. Advanced bone age, increased stature and irregular epiphyseal ossification with stippling of the main long bones were documented. Physeal overgrowth was massive in the left proximal humerus and femur. Furthermore, the hip joint appeared fused with an abundant mass of pathological calcific tissue extending from the femur to the ilium. Pathological epiphyses were characterized by anarchic cartilaginous proliferation with multiple ossification centres, while lamellar bone apposition and remodelling were normal. The observed bone changes were different from those in any previously reported syndrome, metabolic defect or bone dysplasia. However, they clearly indicated a defect of endochondral ossification with some resemblance to phenotypes observed in dysplasia epiphysealis hemimelica. (orig.)

  20. Poly-epiphyseal overgrowth: description of a previously unreported skeletal dysplasia

    International Nuclear Information System (INIS)

    Pazzaglia, Ugo E.; Bonaspetti, Giovanni; Beluffi, Giampiero; Marchi, Antonietta; Bozzola, Mauro; Savasta, Salvatore

    2007-01-01

    A skeletal dysplasia with previously unreported features is presented. Its evolution was characterized by growth abnormalities of bones without involvement of other organs. Advanced bone age, increased stature and irregular epiphyseal ossification with stippling of the main long bones were documented. Physeal overgrowth was massive in the left proximal humerus and femur. Furthermore, the hip joint appeared fused with an abundant mass of pathological calcific tissue extending from the femur to the ilium. Pathological epiphyses were characterized by anarchic cartilaginous proliferation with multiple ossification centres, while lamellar bone apposition and remodelling were normal. The observed bone changes were different from those in any previously reported syndrome, metabolic defect or bone dysplasia. However, they clearly indicated a defect of endochondral ossification with some resemblance to phenotypes observed in dysplasia epiphysealis hemimelica. (orig.)

  1. Characteristics of fuel CRUD from Ringhals Unit 4. A comparison of CRUD samples from ultrasonic fuel cleaning and fuel scrape

    International Nuclear Information System (INIS)

    Chen, Jiaxin; Eskhult, Jonas; Marks, Chuck; Dingee, John; Bengtsson, Bernt; Wells, Daniel

    2014-01-01

    The characteristics and behaviour of PWR fuel CRUD are closely related to plant radiation field build-up and the risks of CRUD-Induced Power Shifts (CIPS, previously AOA) and CRUD-Induced Localized Corrosion (CILC). At Ringhals NPP fuel scrape technology has frequently been used to collect fuel CRUD samples as a part of plant water chemistry monitoring programs. In 2012, high efficiency ultrasonic fuel cleaning (HE-UFC) technology was first used at Ringhals Unit 4 to reduce the risk of CIPS, which was expected to increase due to steam generator replacement and a subsequent power uprate. In the HE-UFC system a “first-of-a-kind” CRUD sampling system was installed for collecting fuel CRUD. It is of interest to compare the fuel CRUD samples collected by the two different CRUD sampling methods and to understand if HE-UFC crud sampling could be used to replace or supplement the fuel scrape method. This paper presents some preliminary results on isotopic compositions, elemental compositions, and phase compositions of fuel CRUD samples collected from similar fuel rods and assemblies by both methods during the 2012 refueling outage, one cycle after steam generator replacement at Ringhals Unit 4. The results show that the characteristics of fuel CRUD sampled by HE-UFC and fuel scrape, although not always identical, were similar or correlated to some extent in terms of weight ratios of Ni to Fe and Cr to Fe as well as specific activities of Co-58, Co-60 and Cr-51. However, due to the limited experience with the HE-UFC sampling method, more consideration is required if the statistical significance of the obtained data and indications are to be verified. (author)

  2. Transportation fuels of the future?

    International Nuclear Information System (INIS)

    Piel, W.J.

    2001-01-01

    Society is putting more emphasis on the mobile transportation sector to achieve future goals of sustainability and a cleaner environment. To achieve these goals, does society need to jump to a new combination of fuel and vehicle technology or can we just continue to improve on the current fuels and drive train technology that has powered us the past 70 or more years? Do we need to move to more exotic energy conversion technology (fuel cell vehicles?), or can improving fuel properties further allow us to continue using combustion engines to power our vehicles? What fuel properties can still be improved in gasoline and diesel? Besides removing sulfur, should there be less aromatics in fuels? Should aromatics be eliminated? Is there a role for oxygenates in gasoline and diesel? Do blending oxygenates in fuels help or hinder in achieving the environmental goals? Can we and should we reduce our dependency on crude oil for transportation energy? Why have not the previous government-sponsored Alternative Fuel programs displaced crude oil? The marketplace will determine which fuel and vehicle technology combination will eventually be used in the future. Does the information we know today give us insight to this future? This paper will attempt to address some of the key issues and questions on the role fuels may play in that marketplace decision

  3. Modeling constituent redistribution in U–Pu–Zr metallic fuel using the advanced fuel performance code BISON

    International Nuclear Information System (INIS)

    Galloway, J.; Unal, C.; Carlson, N.; Porter, D.; Hayes, S.

    2015-01-01

    Highlights: • An improved constituent distribution formulation in metallic nuclear fuels. • The new algorithm is implemented into the advanced fuel performance framework BISON. • Experimental Breeder Reactor-II data, T179, DP16, T459 are reanalyzed. • Phase dependent diffusion coefficients are improved. • Most influential phase is gamma, followed by alpha and thirdly the beta phase. - Abstract: An improved robust formulation for constituent distribution in metallic nuclear fuels is developed and implemented into the advanced fuel performance framework BISON. The coupled thermal diffusion equations are solved simultaneously to reanalyze the constituent redistribution in post irradiation data from fuel tests performed in Experimental Breeder Reactor-II (EBR-II). Deficiencies observed in previously published formulation and numerical implementations are also improved. The present model corrects an inconsistency between the enthalpies of solution and the solubility limit curves of the phase diagram while also adding an artificial diffusion term when in the 2-phase regime that stabilizes the standard Galerkin finite element (FE) method used by BISON. An additional improvement is in the formulation of zirconium flux as it relates to the Soret term. With these new modifications, phase dependent diffusion coefficients are revaluated and compared with the previously recommended values. The model validation included testing against experimental data from fuel pins T179, DP16 and T459, irradiated in EBR-II. A series of viable material properties for U–Pu–Zr based materials was determined through a sensitivity study, which resulted in three cases with differing parameters that showed strong agreement with one set of experimental data, rod T179. Subsequently a full-scale simulation of T179 was performed to reduce uncertainties, particularly relating to the temperature boundary condition for the fuel. In addition a new thermal conductivity model combining all

  4. CFD thermal-hydraulic analysis of a CANDU fuel channel with SEU43 type fuel bundle

    International Nuclear Information System (INIS)

    Catana, A.; Prisecaru, Ilie; Dupleac, D.; Danila, Nicolae

    2009-01-01

    This paper presents the numerical investigation of a CANDU fuel channel using CFD (Computational Fluid Dynamics) methodology approach, when SEU43 fuel bundles are used. Comparisons with STD37 fuel bundles are done in order to evaluate the influence of geometrical differences of the fuel bundle types on fluid flow properties. We adopted a strategy to analyze only the significant segments of fuel channel, namely : - the fuel bundle junctions with adjacent segments; - the fuel bundle spacer planes with adjacent segments; - the fuel bundle segments with turbulence enhancement buttons; - and the regular segments of fuel bundles. The computer code used is an academic version of FLUENT code, available from UPB. The complex flow domain of fuel bundles contained in pressure tube and operating conditions determine a high turbulence flow and in some parts of fuel channel also a multi-phase flow. Numerical simulation of the flow in the fuel channel has been achieved by solving the equations for conservation of mass, momentum and energy. For turbulence model the standard k-model is employed although other turbulence models can be used. In this paper we do not consider heat generation and heat transfer capabilities of CFD methods. Boundary conditions for CFD analysis are provided by system and sub-channel analysis. In this paper the discussion is focused on some flow parameters behaviour at the bundle junction, spacer's plane configuration, etc. of a SEU43 fuel bundle in conditions of a typical CANDU 6 fuel channel starting from some experience gained in a previous work. (authors)

  5. Fuel thermal conductivity (FTHCON). Status report. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D. L.

    1979-02-01

    An improvement of the fuel thermal conductivity subcode is described which is part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The original version was published in the Materials Properties (MATPRO) Handbook, Section A-2 (Fuel Thermal Conductivity). The improved version incorporates data which were not included in the previous work and omits some previously used data which are believed to come from cracked specimens. The models for the effect of porosity on thermal conductivity and for the electronic contribution to thermal coductivity have been completely revised in order to place these models on a more mechanistic basis. As a result of modeling improvements the standard error of the model with respect to its data base has been significantly reduced.

  6. Process and equipment for locating defective fuel rods of a reactor fuel element

    International Nuclear Information System (INIS)

    Jester, A.; Honig, H.

    1977-01-01

    By this equipment, well-known processes for determining defective fuel rods of a reactor fuel element are improved in such a fashion that defective fuel rods can be located individually, so that it is possible to replace them. The equipment consists of a cylindrical test vessel open above, which accommodates the element to be tested, so that an annular space is left between the latter's external circumference and the wall of the vessel, and so that the fuel rods project above the vessel. A bell in the shape of a frustrum of a cone is inverted over the test vessel, which has an infra-red measuring equipment at a certain distance above the tops of the fuel rods. The fuel element to be tested together with the test vessel and hood are immersed in a basin full of water, which displaces water by means of gas from the hood. The post-shutdown heat increases the temperature in the water space of the test vessel, which is stabilised at 100 0 C. In each defective fuel rod the water which has penetrated the defective fuel rod previously, or does so now, starts to boil. The steam rising in the fuel rod raises the temperature of the defective fuel rod compared to all the sound ones. The subsequent measurement easily determines this. Where one can expect interference with the measurement by appreciable amounts of gamma rays, the measuring equipment is removed from the path of radiation by mirror deflection in a suitably shaped measuring hood. (FW) [de

  7. Production of leu high density fuels at Babcock and Wilcox

    International Nuclear Information System (INIS)

    Freim, J.B.

    1983-01-01

    A large number of fuel elements of all types are produced for both international and domestic customers by Nuclear Fuel Division of Babcock and Wilcox. A brief history of the division, included previous and present research reactor fuel element fabrication experience is discussed. The manufacturing facilities are briefly described. The fabrication of LEU fuels and economic analysis of the production are included. (A.J.)

  8. The effect of fuel burnup and dispersed water intrusion on the criticality of spent high-level nuclear fuel in a geologic repository

    International Nuclear Information System (INIS)

    Culbreth, W.G.; Zielinski, P.R.

    1994-01-01

    Studies of the spent fuel waste package have been conducted through the use of a Monte-Carlo neutron simulation program to determine the ability of the fuel to sustain a chain reaction. These studies have included fuel burnup and the effect of water mists on criticality. Results were compared with previous studies. In many criticality studies of spent fuel waste packages, fresh fuel with an enrichment as high as 4.5% is used as the conservative (worst) case. The actual spent fuel has a certain amount of burnup that decreases the concentration of fissile uranium and increases the amount of radionuclides present. The LWR Radiological Data Base from OCRWM has been used to determine the relative radionuclide ratios and KENO 5.1 was used to calculate values of the effective multiplication factor, k eff . Spent fuel is not capable of sustaining a chain reaction unless a suitable moderator, such as water, is present. A completely flooded container has been treated as the worst case for criticality. Results of a previous report that demonstrated that k eff actually peaked at a water-to-mixture ratio of 13% were analyzed for validity. In the present study, these results did not occur in the SCP waste package container

  9. Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets.

    Science.gov (United States)

    Seyfried, Thomas N; Kiebish, Michael; Mukherjee, Purna; Marsh, Jeremy

    2008-11-01

    Information is presented on the calorically restricted ketogenic diet (CRKD) as an alternative therapy for brain cancer. In contrast to normal neurons and glia, which evolved to metabolize ketone bodies as an alternative fuel to glucose under energy-restricted conditions, brain tumor cells are largely glycolytic due to mitochondrial defects and have a reduced ability to metabolize ketone bodies. The CRKD is effective in managing brain tumor growth in animal models and in patients, and appears to act through antiangiogenic, anti-inflammatory, and proapoptotic mechanisms.

  10. DNA methylation in metabolic disorders

    DEFF Research Database (Denmark)

    Barres, Romain; Zierath, Juleen R

    2011-01-01

    DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports...... have provided evidence that environmental factors at all ages could modify DNA methylation in somatic tissues, which suggests that DNA methylation is a more dynamic process than previously appreciated. Because of the importance of lifestyle factors in metabolic disorders, DNA methylation provides...... a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders....

  11. Limited Influence of Oxygen on the Evolution of Chemical Diversity in Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    2013-10-01

    Full Text Available Oxygen is thought to promote species and biomolecule diversity. Previous studies have suggested that oxygen expands metabolic networks by acquiring metabolites with different chemical properties (higher hydrophobicity, for example. However, such conclusions are typically based on biased evaluation, and are therefore non-conclusive. Thus, we re-investigated the effect of oxygen on metabolic evolution using a phylogenetic comparative method and metadata analysis to reduce the bias as much as possible. Notably, we found no difference in metabolic network expansion between aerobes and anaerobes when evaluating phylogenetic relationships. Furthermore, we showed that previous studies have overestimated or underestimated the degrees of differences in the chemical properties (e.g., hydrophobicity between oxic and anoxic metabolites in metabolic networks of unicellular organisms; however, such overestimation was not observed when considering the metabolic networks of multicellular organisms. These findings indicate that the contribution of oxygen to increased chemical diversity in metabolic networks is lower than previously thought; rather, phylogenetic signals and cell-cell communication result in increased chemical diversity. However, this conclusion does not contradict the effect of oxygen on metabolic evolution; instead, it provides a deeper understanding of how oxygen contributes to metabolic evolution despite several limitations in data analysis methods.

  12. Research reactor fuel - an update

    International Nuclear Information System (INIS)

    Finlay, M.R.; Ripley, M.I.

    2003-01-01

    In the two years since the last ANA conference there have been marked changes in the research reactor fuel scene. A new low-enriched uranium (LEU) fuel, 'monolithic' uranium molybdenum, has shown such promise in initial trials that it may be suitable to meet the objectives of the Joint Declaration signed by Presidents Bush and Putin to commit to converting all US and Russian research reactors to LEU by 2012. Development of more conventional aluminium dispersion UMo LEU fuel has continued in the meantime and is entering the final qualification stage of multiple full sized element irradiations. Despite this progress, the original 2005 timetable for UMo fuel qualification has slipped and research reactors, including the RRR, may not convert from silicide to UMo fuel before 2007. The operators of the Swedish R2 reactor have been forced to pursue the direct route of qualifying a UMo lead test assembly (LTA) in order to meet spent fuel disposal requirements of the Swedish law. The LTA has recently been fabricated and is expected to be loaded shortly into the R2 reactor. We present an update of our previous ANA paper and details of the qualification process for UMo fuel

  13. Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress.

    Science.gov (United States)

    Pascual-Ahuir, Amparo; Manzanares-Estreder, Sara; Timón-Gómez, Alba; Proft, Markus

    2018-02-01

    Here, we review and update the recent advances in the metabolic control during the adaptive response of budding yeast to hyperosmotic and salt stress, which is one of the best understood signaling events at the molecular level. This environmental stress can be easily applied and hence has been exploited in the past to generate an impressively detailed and comprehensive model of cellular adaptation. It is clear now that this stress modulates a great number of different physiological functions of the cell, which altogether contribute to cellular survival and adaptation. Primary defense mechanisms are the massive induction of stress tolerance genes in the nucleus, the activation of cation transport at the plasma membrane, or the production and intracellular accumulation of osmolytes. At the same time and in a coordinated manner, the cell shuts down the expression of housekeeping genes, delays the progression of the cell cycle, inhibits genomic replication, and modulates translation efficiency to optimize the response and to avoid cellular damage. To this fascinating interplay of cellular functions directly regulated by the stress, we have to add yet another layer of control, which is physiologically relevant for stress tolerance. Salt stress induces an immediate metabolic readjustment, which includes the up-regulation of peroxisomal biomass and activity in a coordinated manner with the reinforcement of mitochondrial respiratory metabolism. Our recent findings are consistent with a model, where salt stress triggers a metabolic shift from fermentation to respiration fueled by the enhanced peroxisomal oxidation of fatty acids. We discuss here the regulatory details of this stress-induced metabolic shift and its possible roles in the context of the previously known adaptive functions.

  14. Life-history evolution and the microevolution of intermediary metabolism: activities of lipid-metabolizing enzymes in life-history morphs of a wing-dimorphic cricket.

    Science.gov (United States)

    Zera, Anthony J; Zhao, Zhangwu

    2003-03-01

    Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based co-variance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.

  15. Energy Return on Investment from Recycling Nuclear Fuel

    International Nuclear Information System (INIS)

    2011-01-01

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  16. Durability Testing of Biomass Based Oxygenated Fuel Components in a Compression Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baumgardner, Marc E. [Gonzaga University; Lakshminarayanan, Arunachalam [Colorado State University; Olsen, Daniel B. [Colorado State University; Marchese, Anthony J. [Colorado State University

    2017-10-18

    Blending cellulosic biofuels with traditional petroleum-derived fuels results in transportation fuels with reduced carbon footprints. Many cellulosic fuels rely on processing methods that produce mixtures of oxygenates which must be upgraded before blending with traditional fuels. Complete oxygenate removal is energy-intensive and it is likely that such biofuel blends will necessarily contain some oxygen content to be economically viable. Previous work by our group indicated that diesel fuel blends with low levels (<4%-vol) of oxygenates resulted in minimal negative effects on short-term engine performance and emissions. However, little is known about the long-term effects of these compounds on engine durability issues such as the impact on fuel injection, in-cylinder carbon buildup, and engine oil degradation. In this study, four of the oxygenated components previously tested were blended at 4%-vol in diesel fuel and tested with a durability protocol devised for this work consisting of 200 hrs of testing in a stationary, single-cylinder, Yanmar diesel engine operating at constant load. Oil samples, injector spray patterns, and carbon buildup from the injector and cylinder surfaces were analyzed. It was found that, at the levels tested, these fuels had minimal impact on the overall engine operation, which is consistent with our previous findings.

  17. Dry well storage of spent LWBR fuel

    International Nuclear Information System (INIS)

    Christensen, A.B.; Fielding, K.D.

    1985-01-01

    Recently, 50 dry wells were constructed at the Idaho Chemical Processing Plant (ICPP) to temporarily store the Light Water Breeder Reactor (LWBR) fuel. Over 400 dry wells of the same design are projected to be constructed in the next 5 yr at the ICPP to store unreprocessible fuels until a permanent repository becomes available. This summary describes the LWBR fuel storage dry wells and the enhancements made over the Peach Bottom fuel and Fermi blanket dry wells that have been in use for up to 4 yr. Dry well storage at the ICPP has historically been found to be a safe and efficient method of temporary fuel storage. The LWBR dry wells should be more reliable than the original dry wells and provide data not previously available

  18. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-01-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the ''front end'' and ''back end'' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of the Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  19. The safety of the nuclear fuel cycle

    International Nuclear Information System (INIS)

    2005-10-01

    The procurement and preparation of fuel for nuclear power reactors, followed by its recovery, processing and management subsequent to reactor discharge, are frequently referred to as the 'front end' and 'back end' of the nuclear fuel cycle. The facilities associated with these activities have an extensive and well-documented safety record accumulated over the past 50 years by technical experts and safety authorities. This information has enabled an in-depth analysis of the complete fuel cycle. Preceded by two previous editions in 1981 and 1993, this new edition of The Safety of the Nuclear Fuel Cycle represents the most up-to-date analysis of the safety aspects of the nuclear fuel cycle. It will be of considerable interest to nuclear safety experts, but also to those wishing to acquire extensive information about the fuel cycle more generally. (author)

  20. Dynamic scenario of metabolic pathway adaptation in tumors and therapeutic approach.

    Science.gov (United States)

    Peppicelli, Silvia; Bianchini, Francesca; Calorini, Lido

    2015-01-01

    Cancer cells need to regulate their metabolic program to fuel several activities, including unlimited proliferation, resistance to cell death, invasion and metastasis. The aim of this work is to revise this complex scenario. Starting from proliferating cancer cells located in well-oxygenated regions, they may express the so-called "Warburg effect" or aerobic glycolysis, meaning that although a plenty of oxygen is available, cancer cells choose glycolysis, the sole pathway that allows a biomass formation and DNA duplication, needed for cell division. Although oxygen does not represent the primary font of energy, diffusion rate reduces oxygen tension and the emerging hypoxia promotes "anaerobic glycolysis" through the hypoxia inducible factor-1α-dependent up-regulation. The acquired hypoxic phenotype is endowed with high resistance to cell death and high migration capacities, although these cells are less proliferating. Cells using aerobic or anaerobic glycolysis survive only in case they extrude acidic metabolites acidifying the extracellular space. Acidosis drives cancer cells from glycolysis to OxPhos, and OxPhos transforms the available alternative substrates into energy used to fuel migration and distant organ colonization. Thus, metabolic adaptations sustain different energy-requiring ability of cancer cells, but render them responsive to perturbations by anti-metabolic agents, such as inhibitors of glycolysis and/or OxPhos.

  1. SYSTEMS BIOLOGY AND METABOLIC ENGINEERING OF ARTHROSPIRA CELL FACTORIES

    Directory of Open Access Journals (Sweden)

    Amornpan Klanchui

    2012-10-01

    Full Text Available Arthrospira are attractive candidates to serve as cell factories for production of many valuable compounds useful for food, feed, fuel and pharmaceutical industries. In connection with the development of sustainable bioprocessing, it is a challenge to design and develop efficient Arthrospira cell factories which can certify effective conversion from the raw materials (i.e. CO2 and sun light into desired products. With the current availability of the genome sequences and metabolic models of Arthrospira, the development of Arthrospira factories can now be accelerated by means of systems biology and the metabolic engineering approach. Here, we review recent research involving the use of Arthrospira cell factories for industrial applications, as well as the exploitation of systems biology and the metabolic engineering approach for studying Arthrospira. The current status of genomics and proteomics through the development of the genome-scale metabolic model of Arthrospira, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies are discussed. At the end, the perspective and future direction on Arthrospira cell factories for industrial biotechnology are presented.

  2. Protein engineering for metabolic engineering: current and next-generation tools

    Science.gov (United States)

    Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.

    2014-01-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443

  3. Hearing Loss, Dizziness, and Carbohydrate Metabolism.

    Science.gov (United States)

    Albernaz, Pedro L Mangabeira

    2016-07-01

    Metabolic activity of the inner ear is very intense, and makes it sensitive to changes in the body homeostasis. This study involves a group of patients with inner ear disorders related to carbohydrate metabolism disturbances, including hearing loss, tinnitus, dizziness, and episodes of vertigo. To describe the symptoms of metabolic inner ear disorders and the examinations required to establish diagnoses. These symptoms are often the first to allow for an early diagnosis of metabolic disorders and diabetes. Retrospective study of 376 patients with inner ear symptoms suggestive of disturbances of carbohydrate metabolism. The authors present patientś clinical symptoms and clinical evaluations, with emphasis on the glucose and insulin essays. Authors based their conclusions on otolaryngological findings, diagnostic procedures and treatment principles. They found that auditory and vestibular symptoms usually occur prior to other manifestations of metabolic changes, leading to an early diagnosis of hyperinsulinemia, intestinal sugar malabsorption or diabetes. Previously undiagnosed diabetes mellitus type II was found in 39 patients. The identification of carbohydrate metabolism disturbances is important not only to minimize the patients' clinical symptoms, but also to help maintain their general health.

  4. Hearing Loss, Dizziness, and Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Albernaz, Pedro L. Mangabeira

    2015-07-01

    Full Text Available Introduction Metabolic activity of the inner ear is very intense, and makes it sensitive to changes in the body homeostasis. This study involves a group of patients with inner ear disorders related to carbohydrate metabolism disturbances, including hearing loss, tinnitus, dizziness, and episodes of vertigo. Objectives To describe the symptoms of metabolic inner ear disorders and the examinations required to establish diagnoses. These symptoms are often the first to allow for an early diagnosis of metabolic disorders and diabetes. Methods Retrospective study of 376 patients with inner ear symptoms suggestive of disturbances of carbohydrate metabolism. The authors present patientś clinical symptoms and clinical evaluations, with emphasis on the glucose and insulin essays. Results Authors based their conclusions on otolaryngological findings, diagnostic procedures and treatment principles. They found that auditory and vestibular symptoms usually occur prior to other manifestations of metabolic changes, leading to an early diagnosis of hyperinsulinemia, intestinal sugar malabsorption or diabetes. Previously undiagnosed diabetes mellitus type II was found in 39 patients. Conclusions The identification of carbohydrate metabolism disturbances is important not only to minimize the patients' clinical symptoms, but also to help maintain their general health.

  5. Fetal metabolic influences of neonatal anthropometry and adiposity.

    LENUS (Irish Health Repository)

    Donnelly, Jean M

    2015-01-01

    Large for gestational age infants have an increased risk of obesity, cardiovascular and metabolic complications during life. Knowledge of the key predictive factors of neonatal adiposity is required to devise targeted antenatal interventions. Our objective was to determine the fetal metabolic factors that influence regional neonatal adiposity in a cohort of women with previous large for gestational age offspring.

  6. Advanced nuclear fuel cycles and radioactive waste management

    International Nuclear Information System (INIS)

    2006-01-01

    This study analyses a range of advanced nuclear fuel cycle options from the perspective of their effect on radioactive waste management policies. It presents various fuel cycle options which illustrate differences between alternative technologies, but does not purport to cover all foreseeable future fuel cycles. The analysis extends the work carried out in previous studies, assesses the fuel cycles as a whole, including all radioactive waste generated at each step of the cycles, and covers high-level waste repository performance for the different fuel cycles considered. The estimates of quantities and types of waste arising from advanced fuel cycles are based on best available data and experts' judgement. The effects of various advanced fuel cycles on the management of radioactive waste are assessed relative to current technologies and options, using tools such as repository performance analysis and cost studies. (author)

  7. Alternatives to traditional transportation fuels: An overview

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  8. From 20th century metabolic wall charts to 21st century systems biology: database of mammalian metabolic enzymes.

    Science.gov (United States)

    Corcoran, Callan C; Grady, Cameron R; Pisitkun, Trairak; Parulekar, Jaya; Knepper, Mark A

    2017-03-01

    The organization of the mammalian genome into gene subsets corresponding to specific functional classes has provided key tools for systems biology research. Here, we have created a web-accessible resource called the Mammalian Metabolic Enzyme Database ( https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/MetabolicEnzymeDatabase.html) keyed to the biochemical reactions represented on iconic metabolic pathway wall charts created in the previous century. Overall, we have mapped 1,647 genes to these pathways, representing ~7 percent of the protein-coding genome. To illustrate the use of the database, we apply it to the area of kidney physiology. In so doing, we have created an additional database ( Database of Metabolic Enzymes in Kidney Tubule Segments: https://hpcwebapps.cit.nih.gov/ESBL/Database/MetabolicEnzymes/), mapping mRNA abundance measurements (mined from RNA-Seq studies) for all metabolic enzymes to each of 14 renal tubule segments. We carry out bioinformatics analysis of the enzyme expression pattern among renal tubule segments and mine various data sources to identify vasopressin-regulated metabolic enzymes in the renal collecting duct. Copyright © 2017 the American Physiological Society.

  9. The burnup dependence of light water reactor spent fuel oxidation

    International Nuclear Information System (INIS)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO 2 is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO 2 to higher oxides. The oxidation of UO 2 has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO 2 oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO 2 to UO 2.4 was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO 2.4 to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO 2 oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO 2 and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5)

  10. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Pomraning, Kyle R.; Baker, Scott E.

    2016-01-01

    Yarrowia lipolytica is a promising microbial cell factory for the production of lipids to be used as fuels and chemicals, but there are few studies on regulation of its metabolism. Here we performed the first integrated data analysis of Y. lipolytica grown in carbon and nitrogen limited chemostat...... is similar to the overflow metabolism observed in many other microorganisms, e.g. ethanol production by Sacchromyces cerevisiae at nitrogen limitation....

  11. Fuel octane effects in the partially premixed combustion regime in compression ignition engines

    NARCIS (Netherlands)

    Hildingsson, L.; Kalghatgi, G.T.; Tait, N.; Johansson, B.H.; Harrison, A.

    2009-01-01

    Previous work has showed that it may be advantageous to use fuels of lower cetane numbers compared to today's diesel fuels in compression ignition engines. The benefits come from the longer ignition delays that these fuels have. There is more time available for the fuel and air to mix before

  12. Body size, body composition, and metabolic profile explain higher energy expenditure in overweight children

    Science.gov (United States)

    Lower relative rates of energy expenditure (EE), increased energetic efficiency, and altered fuel utilization purportedly associated with obesity have not been demonstrated indisputably in overweight children. We hypothesized that differences in energy metabolism between nonoverweight and overweight...

  13. Test plan for K-Basin fuel handling tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1995-01-01

    The purpose of this document is to provide the test plan and procedures for the acceptance testing of the handling tools enveloped for the removal of an N-Reactor fuel element from its storage canister in the K-Basins storage pool and insertion into the Single fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools were required since previous fuel movement has involved grasping the fuel in a horizontal position. The 305 Building Cold Test Facility will be used to conduct the acceptance testing of the Fuel Handling Tools. Upon completion of this acceptance testing and any subsequent training of operators, the tools will be transferred to the 105 KW Basin for installation and use

  14. It must be my metabolism: Metabolic control of mind

    Directory of Open Access Journals (Sweden)

    Dana M Small

    2014-07-01

    relationship between the reinforcing potency of sugared solutions and the metabolic effects that follow their consumption (16, also see the abstract of I. de Araujo. We therefore hypothesized that metabolic response provides the critical signal necessary to condition preference. To test this prediction in humans we designed a flavor nutrient conditioning study in which participants first rated their liking for novel flavored beverages and then, over a three week-long conditioning protocol, alternately ingested one of the flavored beverages with 112.5 kcal from maltodextrin, a tasteless and odorless polysaccharide that breaks down into glucose, and another flavored beverage with no calories added. Plasma glucose was measured before and after each of the drinks’ consumption as a proxy measure of metabolic response, assuming that glucose oxidation depends upon the level of circulating glucose. For each participant flavor-calorie pairings were held constant but the identity of the conditioned flavors were counterbalanced across participants. Following the exposure phase, participants’ liking of, and brain responses to, non-caloric versions of the flavors were assessed. We predicted that change in plasma glucose produced by beverage consumption during the exposure sessions would be associated with neural responses in dopamine source and target regions to the calorie predictive flavor. As predicted, response in the ventral striatum and hypothalamus to the calorie-predictive flavor (CS+ vs. non the noncaloric-predictive flavor (CS- was strongly associated with the changes in plasma glucose levels produced by ingestion of these same beverages when consumed previously either with (CS+ or without (CS- calories (17. Specifically, the greater the increase in circulating glucose occurring post ingestion of the beverage containing 112.5 kcal from maltodextrin versus the noncaloric drink, the stronger was the brain response to the CS+ compared to the CS- flavor. Importantly, because each

  15. Metabolic Ride” - One Concept Evaluation Tool For Metabolic Biochemistry Teaching For Graduate Students In Biological Sciences And Related Areas.

    Directory of Open Access Journals (Sweden)

    H. H. Gaeta et al.

    2017-07-01

    Full Text Available Biochemistry subject in general has a high degree of difficulty and complexity. Therefore, application of playful and creative games as teaching methodology has spread in various disciplines of life sciences. "METABOLIC RIDE" board game is a conceptual and perceptual evaluation tool for metabolic biochemistry teaching, aiming to review concepts transmitted in classroom, promoting a competitive challenge to students without denying tools that are at their disposal, stimulating their skills. OBJECTIVES. Correlate metabolic routes importance and their interconnections to establish that metabolic pathways are interconnected, such as a railway map. MATERIAL AND METHODS. This game was developed based on a board game Ticket to Ride. Players purchase enzyme cards, which must be used to claim metabolic routes. The goal is to complete the route previously drawn to earn points and the player who builds the longest continuous route will also earn bonus points. In each turn, players can: buy more card, claim a route or pick up additional destination tickets. The game should be played in groups of 5 to 6 students in 6 to 8 groups. Previously there will be theoretical classes. The activity was designed to last 4 hours. Use of didatic books and internet by players are encouraged. RESULTS. This game proved to be an excellent tool for student’s complementary evaluation, which stimulated teamwork and competitiveness within classroom, which allowed to analyze student’s perception regarding metabolic subjects. On the other hand, for teacher and students participating in compulsory traineeship program this game demonstrated to students new ways to approach complex subjects in biochemistry using creativity. CONCLUSION: Overall, students had a good impression of “Metabolic Ride” game since it helped to secure and administer metabolism subject in a competitive and team work way.

  16. Proceedings of American Nuclear Society topical meeting on light water reactor fuel performance

    International Nuclear Information System (INIS)

    1979-01-01

    Separate abstracts are included for 32 of the 39 papers presented concerning fuel performance; fuel performance under transient and off-normal operations; fuel-cladding interactions; and fission product release. Seven papers have previously been input into the data base

  17. Zymomonas mobilis for fuel ethanol and higher value products.

    Science.gov (United States)

    Rogers, P L; Jeon, Y J; Lee, K J; Lawford, H G

    2007-01-01

    High oil prices, increasing focus on renewable carbohydrate-based feedstocks for fuels and chemicals, and the recent publication of its genome sequence, have provided continuing stimulus for studies on Zymomonas mobilis. However, despite its apparent advantages of higher yields and faster specific rates when compared to yeasts, no commercial scale fermentations currently exist which use Z. mobilis for the manufacture of fuel ethanol. This may change with the recent announcement of a Dupont/Broin partnership to develop a process for conversion of lignocellulosic residues, such as corn stover, to fuel ethanol using recombinant strains of Z. mobilis. The research leading to the construction of these strains, and their fermentation characteristics, are described in the present review. The review also addresses opportunities offered by Z. mobilis for higher value products through its metabolic engineering and use of specific high activity enzymes.

  18. Pseudomonas and Beyond : Polyamine metabolism, lignin degradation and potential applications in industrial biotechnology

    NARCIS (Netherlands)

    Bandounas, L.

    2011-01-01

    Renewable resources such as lignocellulosic biomass are promising feedstocks for the production of bio-fuels and value-added products. Biocatalysts are considered important tools in such processes. Pseudomonas putida S12 has a broad metabolic potential and is exceptionally tolerant towards a range

  19. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    Science.gov (United States)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  20. NASA fuel cell applications for space: Endurance test results on alkaline fuel cell electrolyzer components

    International Nuclear Information System (INIS)

    Sheibley, D.W.

    1984-01-01

    Fuel cells continue to play a major role in manned spacecraft power generation. The Gemini and Apollo programs used fuel cell power plants as the primary source of mission electrical power, with batteries as the backup. The current NASA use for fuel cells is in the Orbiter program. Here, low temperature alkaline fuel cells provide all of the on-board power with no backup power source. Three power plants per shipset are utilized; the original power plant contained 32-cell substacks connected in parallel. For extended life and better power performance, each power plant now contains three 32-cell substacks connected in parallel. One of the possible future applications for fuel cells will be for the proposed manned Space Station in low earth orbit (LEO)(1, 2, 3). By integrating a water electrolysis capability with a fuel cell (a regenerative fuel cell system), a multikilowatt energy storage capability ranging from 35 kW to 250 kW can be achieved. Previous development work on fuel cell and electrolysis systems would tend to minimize the development cost of this energy storage system. Trade studies supporting initial Space Station concept development clearly show regenerative fuel cell (RFC) storage to be superior to nickel-cadmium and nickel-hydrogen batteries with regard to subsystem weight, flexibility in design, and integration with other spacecraft systems when compared for an initial station power level ranging from 60 kW to 75 kW. The possibility of scavenging residual O 2 and H 2 from the Shuttle external tank for use in fuel cells for producing power also exists

  1. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.

    Science.gov (United States)

    Hong, Kuk-Ki; Nielsen, Jens

    2012-08-01

    Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.

  2. Ciclon: A neutronic fuel management program for PWR's consecutive cycles

    International Nuclear Information System (INIS)

    Aragones, J.M.

    1977-01-01

    The program description and user's manual of a new computer code is given. Ciclon performs the neutronic calculation of consecutive reload cycles for PWR's fuel management optimization. Fuel characteristics and burnup data, region or batch sizes, loading schemes and state of previously irradiated fuel are input to the code. Cycle lengths or feed enrichments and burnup sharing for each region or batch are calculate using different core neutronic models and printed or punched in standard fuel management format. (author) [es

  3. HTGR spent fuel storage study

    International Nuclear Information System (INIS)

    Burgoyne, R.M.; Holder, N.D.

    1979-04-01

    This report documents a study of alternate methods of storing high-temperature gas-cooled reactor (HTGR) spent fuel. General requirements and design considerations are defined for a storage facility integral to a fuel recycle plant. Requirements for stand-alone storage are briefly considered. Three alternate water-cooled storage conceptual designs (plug well, portable well, and monolith) are considered and compared to a previous air-cooled design. A concept using portable storage wells in racks appears to be the most favorable, subject to seismic analysis and economic evaluation verification

  4. Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling

    DEFF Research Database (Denmark)

    Hirst, Andrew G.; Glazier, Douglas S.; Atkinson, David

    2014-01-01

    Metabolism fuels all of life’s activities, from biochemical reactions to ecological interactions. According to two intensely debated theories, body size affects metabolism via geometrical influences on the transport of resources and wastes. However, these theories differ crucially in whether...... the size dependence of metabolism is derived from material transport across external surfaces, or through internal resource-transport networks. We show that when body shape changes during growth, these models make opposing predictions. These models are tested using pelagic invertebrates, because...... these animals exhibit highly variable intraspecific scaling relationships for metabolic rate and body shape. Metabolic scaling slopes of diverse integument-breathing species were significantly positively correlated with degree of body flattening or elongation during ontogeny, as expected from surface area...

  5. Metabolism of dimethylnitrosamine and 1,2-dimethylhydrazine in cultured human bronchi

    DEFF Research Database (Denmark)

    Harris, Curtis C.; Autrup, Herman; Stoner, Gary D.

    1977-01-01

    The metabolic activation of several chemical classes of procarcinogens is being studied in cultured human bronchi. Previous studies have shown that carcinogenic polynuclear aromatic hydrocarbons are metabolically activated by the bronchial epithelium. In the study reported here, dimethylnitrosami...

  6. Recent applications of synthetic biology tools for yeast metabolic engineering

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together...... with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed...... synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead....

  7. Burnup performance of rock-like oxide (ROX) fuel in small pebble bed reactor with accumulative fuel loading scheme

    International Nuclear Information System (INIS)

    Simanullang, Irwan Liapto; Obara, Toru

    2017-01-01

    Highlights: • Burnup performance using ROX fuel in PBR with accumulative fuel loading scheme was analyzed. • Initial excess reactivity was suppressed by reducing 235 U enrichment in the startup condition. • Negative temperature coefficient was achieved in all condition of PBR with accumulative fuel loading scheme using ROX fuel. • Core lifetime of PBR with accumulative fuel loading scheme using ROX fuel was shorter than with UO 2 fuel. • In PBR with accumulative fuel loading scheme using ROX fuel, achieved discharged burnup can be as high as that for UO 2 fuel. - Abstract: The Japan Atomic Energy Agency (JAEA) has proposed rock-like oxide (ROX) fuel as a new, once-through type fuel concept. Here, burnup performance using ROX fuel was simulated in a pebble bed reactor with an accumulative fuel loading scheme. The MVP-BURN code was used to simulate the burnup calculation. Fuel of 5 g-HM/pebble with 20% 235 U enrichment was selected as the optimum composition. Discharged burnup could reach up to 218 GWd/t, with a core lifetime of about 8.4 years. However, high excess reactivity occurred in the initial condition. Initial fuel enrichment was therefore reduced from 20% to 4.65% to counter the initial excess reactivity. The operation period was reduced by the decrease of initial fuel enrichment, but the maximum discharged burnup was 198 GWd/t. Burnup performance of ROX fuel in this reactor concept was compared with that of UO 2 fuel obtained previously. Discharged burnup for ROX fuel in the PBR with an accumulative fuel loading scheme was as high as UO 2 fuel. Maximum power density could be lowered by introducing ROX fuel compared to UO 2 fuel. However, PBR core lifetime was shorter with ROX fuel than with UO 2 fuel. A negative temperature coefficient was achieved for both UO 2 and ROX fuels throughout the operation period.

  8. Thermohydraulic analysis of assemblies containing up to 2/7 fuel rods

    International Nuclear Information System (INIS)

    Ferreira, W.J.; Luz, M.

    1985-01-01

    The COBRA IV-I computer code was tested using data from the Fast Flux Test Facility. Then this code was applied to the analysis of fuel assemblies from the Binary Breeder Reactor. Previously this analysis was carried out using the COBRA III-C code which allows only for the calculations of fuel assemblies having seven fuel pins. The COBRA IV-I permits the calculation of fuel assemblies containing up to 217 fuel pins and the inclusion of blanket and shielding effects. (F.E.) [pt

  9. MOX fuel fabrication technology in J-MOX

    International Nuclear Information System (INIS)

    Osaka, Shuichi; Yoshida, Ryouichi; Yamazaki, Yukiko; Ikeda, Hiroyuki

    2014-01-01

    Japan Nuclear Fuel Ltd. (JNFL) has constructed JNFL MOX Fuel Fabrication Plant (J-MOX) since 2010. The MIMAS process has been introduced in the powder mixing process from AREVA NC considering a lot of MOX fuel fabrication experiences at MELOX plant in France. The feed material of Pu for J-MOX is MH-MOX powder from Rokkasho Reprocessing Plant (RRP) in Japan. The compatibility of the MH-MOX powder with the MIMAS process was positively evaluated and confirmed in our previous study. This paper describes the influences of the UO2 powder and the recycled scrap powder on the MOX pellet density. (author)

  10. Work plan for development of K-Basin fuel handling tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1994-01-01

    The purpose of this document is to provide the engineering work plan for the development of handling tools for the removal of N-Reactor fuel elements from their storage canisters in the K-Basins storage pool and insertion into the Single Fuel Element Cans for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools are required since previous fuel movement has involved grasping the fuel in a horizontal position. These tools are required to lift an element from the storage canister

  11. The possibility of fuel cycle design for ABC/ATW complex with molten fuel on LiF-BeF2 basis

    International Nuclear Information System (INIS)

    Naumov, V.S.; Bychkov, A.V.

    1995-01-01

    The experience gained in the field of the development of molten salt reactors (MSR) can be made a basis of chemical processing of the ABC/ATW liquid fuel. The following combination of two processing principles are proposed for the ABC/ATW fuel (LiF-BeF 2 -PuF 3,(4) - MAF n ): - continious removal of radioactive gases, volatile impurities and 'noble fission products'; - portion-by-portion electrochemical processing with removal of rare earth elements and some other fission products at an autonomous plant. After processing the fuel salt is brought back to the blanket of the ABC/ATW complex. The analysis of information previously published in different countries allows for a safe assumption that the ABC/ATW fuel cycle with liquid fuel salt is feasible and can be demonstrated experimentally

  12. The possibility of fuel cycle design for ABC/ATW complex with molten fuel on LiF-BeF2 basis

    International Nuclear Information System (INIS)

    Naumov, V. S.; Bychkov, A. V.

    1995-01-01

    The experience gained in the field of the development of molten salt reactors (MSR) can be made a basis of chemical processing of the ABC/ATW liquid fuel. The following combination of two processing principles are proposed for the ABC/ATW fuel (LiF-BeF2-PuF3,(4)-MAFn): -continious removal of radioactive gases, volatile impurities and 'noble fission products'; -portion-by-portion electrochemical processing with removal of rare earth elements and some other fission products at an autonomous plant. After processing the fuel salt is brought back to the blanket of the ABC/ATW complex. The analysis of information previously published in different countries allows for a safe assumption that the ABC/ATW fuel cycle with liquid fuel salt is feasible and can be demonstrated experimentally

  13. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    Science.gov (United States)

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  14. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event.

    Science.gov (United States)

    Lydersen, Jamie M; Collins, Brandon M; Brooks, Matthew L; Matchett, John R; Shive, Kristen L; Povak, Nicholas A; Kane, Van R; Smith, Douglas F

    2017-10-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western United States. Given this increase, there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation, and water balance on fire-severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate-severity wildfire reduced the prevalence of high-severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high-severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. The proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high-severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate-severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience. © 2017 by the Ecological Society of America.

  15. Metabolic organization of freshwater, euryhaline, and marine elasmobranchs: implications for the evolution of energy metabolism in sharks and rays.

    Science.gov (United States)

    Speers-Roesch, B; Ip, Y K; Ballantyne, J S

    2006-07-01

    To test the hypothesis that the preference for ketone bodies rather than lipids as oxidative fuel in elasmobranchs evolved in response to the appearance of urea-based osmoregulation, we measured total non-esterified fatty acids (NEFA) in plasma as well as maximal activities of enzymes of intermediary metabolism in tissues from marine and freshwater elasmobranchs, including: the river stingray Potamotrygon motoro (shark Chiloscyllium punctatum (>300 mmol l(-1) plasma urea); and the euryhaline freshwater stingray Himantura signifer, which possesses intermediate levels of urea. H. signifer also were acclimated to half-strength seawater (15 per thousand) for 2 weeks to ascertain the metabolic effects of the higher urea level that results from salinity acclimation. Our results do not support the urea hypothesis. Enzyme activities and plasma NEFA in salinity-challenged H. signifer were largely unchanged from the freshwater controls, and the freshwater elasmobranchs did not show an enhanced capacity for extrahepatic lipid oxidation relative to the marine species. Importantly, and contrary to previous studies, extrahepatic lipid oxidation does occur in elasmobranchs, based on high carnitine palmitoyl transferase (CPT) activities in kidney and rectal gland. Heart CPT in the stingrays was detectable but low, indicating some capacity for lipid oxidation. CPT was undetectable in red muscle, and almost undetectable in heart, from C. punctatum as well as in white muscle from T. lymma. We propose a revised model of tissue-specific lipid oxidation in elasmobranchs, with high levels in liver, kidney and rectal gland, low or undetectable levels in heart, and none in red or white muscle. Plasma NEFA levels were low in all species, as previously noted in elasmobranchs. D-beta-hydroxybutyrate dehydrogenase (d-beta-HBDH) was high in most tissues confirming the importance of ketone bodies in elasmobranchs. However, very low d-beta-HBDH in kidney from T. lymma indicates that interspecific

  16. The use of medium enriched uranium fuel for research reactors

    International Nuclear Information System (INIS)

    1979-01-01

    The evaluation described in the present paper concerns the use of medium enriched uranium fuel for our research reactors. The underlying assumptions set up for the evaluation are as follows: (1) At first, the use of alternative fuel should not affect, even to a small extent, research and development programs in nuclear energy utilization, which were described in the previous paper. Hence the use of lower enrichment fuel should not cause any reduction in reactor performances. (2) The fuel cycle cost for operating research reactors with alternative fuel, excepting R and D cost for such fuel, should not increase beyond an acceptable limit. (3) The use of alternative fuel should be satisfactory with respect to non-proliferation purposes, to the almost same degree as the use of 20% enriched uranium fuel

  17. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels

    International Nuclear Information System (INIS)

    Hossain, Farhad M.; Nabi, Md. Nurun; Rainey, Thomas J.; Bodisco, Timothy; Rahman, Md. Mostafizur; Suara, Kabir; Rahman, S.M.A.; Van, Thuy Chu; Ristovski, Zoran; Brown, Richard J.

    2017-01-01

    Highlights: • Development of a microalgae HTL surrogate of biocrude fuel using chemical compounds. • Physiochemical properties of surrogate blends were analysed. • Experimentally investigated diesel engine performance and emissions using surrogate fuels. • No significant changes in engine performance were observed with HTL surrogate blends. • Major emissions including PM, PN and CO were reduced significantly with increasing of NOx emission. - Abstract: This paper builds on previous work using surrogate fuel to investigate advanced internal combustion engine fuels. To date, a surrogate fuel of this nature has not been used for microalgae hydrothermal liquefaction (HTL) biocrude. This research used five different chemical groups found in microalgae HTL biocrude to design a surrogate fuel. Those five chemical groups constitute around 65% (by weight) of a microalgae biocrude produced by HTL. Weight percentage of the microalgae HTL biocrude chemical compounds were used to design the surrogate fuel, which was miscible with diesel at all percentages. The engine experiments were conducted on a EURO IIIA turbocharged common-rail direct-injection six-cylinder diesel engine to test engine performance and emissions. Exhaust emissions, including particulate matter and other gaseous emissions, were measured with the surrogate fuel and a reference diesel fuel. Experimental results showed that without significantly deteriorating engine performance, lower particulate mass, particulate number and CO emissions were observed with a penalty in NOx emissions for all surrogate blends compared to those of the reference diesel.

  18. Metabolic and cardiac changes in high cholesterol-fructose-fed rats

    DEFF Research Database (Denmark)

    Axelsen, Lene N; Pedersen, Henrik D; Petersen, Jørgen S

    2010-01-01

    Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague-Dawley r......Introduction: High cholesterol-fructose (HCF) fed rats have previously been described as an animal model of impaired cardiac insulin signaling and decreased contractile performance. In this study, we evaluated the metabolic and cardiac effects of a HCF diet in rats. Methods: Male Sprague...

  19. Temporal expression-based analysis of metabolism.

    Directory of Open Access Journals (Sweden)

    Sara B Collins

    Full Text Available Metabolic flux is frequently rerouted through cellular metabolism in response to dynamic changes in the intra- and extra-cellular environment. Capturing the mechanisms underlying these metabolic transitions in quantitative and predictive models is a prominent challenge in systems biology. Progress in this regard has been made by integrating high-throughput gene expression data into genome-scale stoichiometric models of metabolism. Here, we extend previous approaches to perform a Temporal Expression-based Analysis of Metabolism (TEAM. We apply TEAM to understanding the complex metabolic dynamics of the respiratorily versatile bacterium Shewanella oneidensis grown under aerobic, lactate-limited conditions. TEAM predicts temporal metabolic flux distributions using time-series gene expression data. Increased predictive power is achieved by supplementing these data with a large reference compendium of gene expression, which allows us to take into account the unique character of the distribution of expression of each individual gene. We further propose a straightforward method for studying the sensitivity of TEAM to changes in its fundamental free threshold parameter θ, and reveal that discrete zones of distinct metabolic behavior arise as this parameter is changed. By comparing the qualitative characteristics of these zones to additional experimental data, we are able to constrain the range of θ to a small, well-defined interval. In parallel, the sensitivity analysis reveals the inherently difficult nature of dynamic metabolic flux modeling: small errors early in the simulation propagate to relatively large changes later in the simulation. We expect that handling such "history-dependent" sensitivities will be a major challenge in the future development of dynamic metabolic-modeling techniques.

  20. Drop testing of the Westinghouse fresh nuclear fuel package

    International Nuclear Information System (INIS)

    Shappert, L.B.; Sanders, C.F.

    1992-01-01

    In recent years, the Westinghouse Columbia Fuel Fabrication Facility has been faced with increasing pressure from utilities that wished to take the fuel in their nuclear power plants to higher burnups. To help accommodate this trend, Westinghouse has determined that it needs the ability to increase the enrichment of the fresh fuel it delivers to its customers. One critical step in this process is to certify a new (Type A, fissile) fresh fuel package design that has the capability to transport fuel with a higher enrichment than was previously available. A prototype package was tested in support of the Safety Analysis Report of the Packaging. This paper provides detailed information on those tests and their results

  1. Metabolic substrate use and the turnover of endogenous energy reserves in broad-tailed hummingbirds (Selasphorus platycercus).

    Science.gov (United States)

    Carleton, Scott A; Bakken, Bradley Hartman; Del Rio, Carlos Martínez

    2006-07-01

    We fed broad-tailed hummingbirds (Selasphorus platycercus) diets of contrasting carbon isotope composition and measured changes in the delta(13)C of expired breath through time. By measuring the delta(13)C in the breath of fed and fasted birds we were able to quantify the fraction of metabolism fueled by assimilated sugars and endogenous energy reserves. These measurements also allowed us to estimate the fractional turnover of carbon in the hummingbirds' energy reserves. When hummingbirds were feeding, they fueled their metabolism largely ( approximately 90%) with assimilated sugars. The rate of carbon isotope incorporation into the energy reserves of hummingbirds was higher when birds were gaining as opposed to losing body mass. The average residence time of a carbon atom in the hummingbirds' energy reserves ranged from 1 to 2 days.

  2. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders

    Directory of Open Access Journals (Sweden)

    Zhimin Chen

    2017-08-01

    Conclusions: Nrg4 exerts pleiotropic beneficial effects on energy balance and glucose and lipid metabolism to ameliorate obesity-associated metabolic disorders. Biologic therapeutics based on Nrg4 may improve both type 2 diabetes and non-alcoholic fatty liver disease (NAFLD in patients.

  3. U-Mo fuel qualification program in HANARO

    International Nuclear Information System (INIS)

    Lee, K.H.; Lee, C.S.; Kim, H.R.; Kuk, I.H.; Kim, C.K.

    2000-01-01

    Atomized U-Mo fuel has shown good performance from the results of previous out-of-pile tests and post-irradiation examinations. A qualification program of rod type U-Mo fuel is in progress and the fuel will be irradiated in HANARO. 6 gU/cm 3 U-7Mo, U-8Mo and U-9Mo are considered in this program. The laboratory test results of porosity, mechanical property, thermal conductivity, and thermal compatibility test are discussed in this paper. In parallel with this qualification program, the feasibility study on the core conversion from the present U 3 Si fuel to U-Mo in HANARO will be initiated to provide technical bases for the policy making. Several options of core conversion for HANARO are proposed and each option will be addressed briefly in terms of the operation policy, fuel management, and licensing of HANARO. (author)

  4. Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis

    Science.gov (United States)

    Broddrick, Jared T.; Rubin, Benjamin E.; Welkie, David G.; Du, Niu; Mih, Nathan; Diamond, Spencer; Lee, Jenny J.; Golden, Susan S.; Palsson, Bernhard O.

    2016-01-01

    The model cyanobacterium, Synechococcus elongatus PCC 7942, is a genetically tractable obligate phototroph that is being developed for the bioproduction of high-value chemicals. Genome-scale models (GEMs) have been successfully used to assess and engineer cellular metabolism; however, GEMs of phototrophic metabolism have been limited by the lack of experimental datasets for model validation and the challenges of incorporating photon uptake. Here, we develop a GEM of metabolism in S. elongatus using random barcode transposon site sequencing (RB-TnSeq) essential gene and physiological data specific to photoautotrophic metabolism. The model explicitly describes photon absorption and accounts for shading, resulting in the characteristic linear growth curve of photoautotrophs. GEM predictions of gene essentiality were compared with data obtained from recent dense-transposon mutagenesis experiments. This dataset allowed major improvements to the accuracy of the model. Furthermore, discrepancies between GEM predictions and the in vivo dataset revealed biological characteristics, such as the importance of a truncated, linear TCA pathway, low flux toward amino acid synthesis from photorespiration, and knowledge gaps within nucleotide metabolism. Coupling of strong experimental support and photoautotrophic modeling methods thus resulted in a highly accurate model of S. elongatus metabolism that highlights previously unknown areas of S. elongatus biology. PMID:27911809

  5. ARC System fuel cycle analysis capability, REBUS-2

    International Nuclear Information System (INIS)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation

  6. Performance of fuel system at different diesel temperature

    Science.gov (United States)

    Xu, Xiaoyong; Li, Xiaolu; Sun, Zai

    2010-08-01

    This paper presents the findings about performance of the fuel system of a diesel engine at different diesel temperature obtained through simulation and experiment. It can be seen from these findings that at the same rotational speed of fuel pump, the initial pressure in the fuel pipe remain unchanged as the fuel temperature increases, the peak pressure at the side of fuel pipe near the injector delays, and its largest value of pressure decreases. Meanwhile, at the same temperature, as the rotational speed increases, the initial pressure of fuel pipe is also essentially the same, the arrival of its peaks delays, and its largest value of pressure increases. The maximum fuel pressure at the side of fuel pipe near the injector has an increase of 28.9 %, 22.3%, and 13.9% respectively than the previous ones according to its conditions. At the same rotational speed, as the temperature increases, the injection quantity through the nozzle orifice decreases. At the same temperature, as the rotational speed increases, the injection quantity through the nozzle orifice increases. These experimental results are consistent with simulation results.

  7. ARC System fuel cycle analysis capability, REBUS-2

    Energy Technology Data Exchange (ETDEWEB)

    Hosteny, R.P.

    1978-10-01

    A detailed description is given of the ARC System fuel cycle modules FCI001, FCC001, FCC002, and FCC003 which form the fuel cycle analysis modules of the ARC System. These modules, in conjunction with certain other modules of the ARC System previously described in documents of this series, form the fuel cycle analysis system called REBUS-2. The physical model upon which the REBUS-2 fuel cycle modules are based and the calculational approach used in solving this model are discussed in detail. The REBUS-2 system either solves for the infinite time (i.e., equilibrium) operating conditions of a fuel recycle system under fixed fuel management conditions, or solves for the operating conditions during each of a series of explicitly specified (i.e., nonequilibrium) sequence of burn cycles. The code has the capability to adjust the fuel enrichment, the burn time, and the control poison requirements in order to satisfy user specified constraints on criticality, discharge fuel burnup, or to give the desired multiplication constant at some specified time during the reactor operation.

  8. Astrocyte glycogen and brain energy metabolism.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  9. Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data

    Energy Technology Data Exchange (ETDEWEB)

    Yacout, A. M. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-09-16

    The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of data were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.

  10. Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized C-13 magnetic resonance

    DEFF Research Database (Denmark)

    Mishkovsky, Mor; Anderson, Brian; Karlsson, Magnus

    2017-01-01

    The mammalian brain relies primarily on glucose as a fuel to meet its high metabolic demand. Among the various techniques used to study cerebral metabolism, C-13 magnetic resonance spectroscopy (MRS) allows following the fate of C-13-enriched substrates through metabolic pathways. We herein...... glucose is split into 3-carbon intermediates by aldolase. This unique method allows direct detection of glycolysis in vivo in the healthy brain in a noninvasive manner....... demonstrate that it is possible to measure cerebral glucose metabolism in vivo with sub-second time resolution using hyperpolarized C-13 MRS. In particular, the dynamic C-13-labeling of pyruvate and lactate formed from C-13-glucose was observed in real time. An ad-hoc synthesis to produce [2,3,4,6,6-H-2(5), 3...

  11. Preservation of Metabolic Flexibility in Skeletal Muscle by a Combined Use of n-3 PUFA and Rosiglitazone in Dietary Obese Mice

    NARCIS (Netherlands)

    Horakova, O.; Medrikova, D.; Schothorst, van E.M.; Bunschoten, A.; Keijer, J.

    2012-01-01

    Insulin resistance, the key defect in type 2 diabetes (T2D), is associated with a low capacity to adapt fuel oxidation to fuel availability, i.e., metabolic inflexibility. This, in turn, contributes to a further damage of insulin signaling. Effectiveness of T2D treatment depends in large part on the

  12. Transmutation of DUPIC spent fuel in the hyper system

    International Nuclear Information System (INIS)

    Kim, Y.H.; Song, T.Y.

    2005-01-01

    In this paper, the transmutation of TRUs of the DUPIC (Direct Use of Spent PWR Fuel in CANDU) spent fuel has been studied with the HYPER system, which is an LBE-cooled ADS. The DUPIC concept is a synergistic combination of PWRs and CANDUs, in which PWR spent fuels are directly re-utilized in CANDU reactors after a very simple re-fabrication process. In the DUPIC-HYPER fuel cycle, TRUs are recovered by using a pyro-technology and they are incinerated in a metallic fuel form of U-TRU-Zr. The objective of this study is to investigate the TRU transmutation potential of the HYPER core for the DUPIC-HYPER fuel cycle. All the previously-developed HYPER core design concepts were retained except that fuel is composed of TRU from the DUPIC spent fuel. In order to reduce the burnup reactivity swing, a B 4 C burnable absorber is used. The HYPER core characteristics have been analyzed with the REBUS-3/DIF3D code system. (authors)

  13. GCFR Fuels and Materials Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Neimark, L.A.; Greenberg, S.; Johnson, C.E.; Purohit, A.; Liu, Y.Y.; Rest, J.; Reimann, K.J.; McLennan, G.A.

    1979-01-01

    The F-5 fuel-pin irradiation experiment in EBR-II is a cornerstone of the GCFR program. It is the largest-scale fuel-pin experiment in the present program and will provide data on the performance of pins and a pin-support structure that are prototypic of the GCFR Demonstration Plant. The fuel pins are presently undergoing interim examination after successfully achieving 4.6 at.% burnup. Studies of the thermodynamics and kinetics of the U--Cs--O system, supplemented by analysis of the results of previously irradiated fuel pins, have led to the incorporation of fuel-design modifications in the F-5 experiment to insure adequate performance of the vented fuel. The effect of ribbing, as well as the ribbing process, on the short- and long-term structural performance of fuel-pin cladding is being evaluated via in-reactor and out-of-reactor tests and with the fuel-element modeling code LIFE-GCFR and the finite element program, ADINA

  14. Analysis of Aspergillus nidulans metabolism at the genome-scale

    DEFF Research Database (Denmark)

    David, Helga; Ozcelik, İlknur Ş; Hofmann, Gerald

    2008-01-01

    of relevant secondary metabolites, was reconstructed based on detailed metabolic reconstructions available for A. niger and Saccharomyces cerevisiae, and information on the genetics, biochemistry and physiology of A. nidulans. Thereby, it was possible to identify metabolic functions without a gene associated...... a function. Results: In this work, we have manually assigned functions to 472 orphan genes in the metabolism of A. nidulans, by using a pathway-driven approach and by employing comparative genomics tools based on sequence similarity. The central metabolism of A. nidulans, as well as biosynthetic pathways......, in an objective and systematic manner. The functional assignments served as a basis to develop a mathematical model, linking 666 genes (both previously and newly annotated) to metabolic roles. The model was used to simulate metabolic behavior and additionally to integrate, analyze and interpret large-scale gene...

  15. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    Science.gov (United States)

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia ( Alphaproteobacteria ; Rickettsiaceae ). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. IMPORTANCE A hallmark of obligate intracellular

  16. Acute aquatic toxicity and biodegradation potential of biodiesel fuels

    International Nuclear Information System (INIS)

    Haws, R.A.; Zhang, X.; Marshall, E.A.; Reese, D.L.; Peterson, C.L.; Moeller, G.

    1995-01-01

    Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO 2 and by observing the disappearance of test substance with gas chromatography. Additional BOD 5 and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicity tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population

  17. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus

    DEFF Research Database (Denmark)

    Colebatch, Gillian; Desbrosses, Guilhem; Ott, Thomas

    2004-01-01

    Research on legume nodule metabolism has contributed greatly to our knowledge of primary carbon and nitrogen metabolism in plants in general, and in symbiotic nitrogen fixation in particular. However, most previous studies focused on one or a few genes/enzymes involved in selected metabolic...

  18. FY04 Inspection Results for Wet Uruguay Fuel in L-Basin

    Energy Technology Data Exchange (ETDEWEB)

    VORMELKER, PHILIP

    2005-09-01

    The 2004 visual inspection of four Uruguay nuclear fuel assemblies stored in L-Basin was completed. This was the third inspection of this wet stored fuel since its arrival in the summer of 1998. Visual inspection photographs of the fuel from the previous and the recent inspections were compared and no evidence of significant corrosion was found on the individual fuel plate photographs. Fuel plates that showed areas of pitting in the cladding during the original receipt inspection were also identified during the 2004 inspection. However, a few pits were found on the non-fuel aluminum clamping plates that were not visible during the original and 2001 inspections.

  19. Technical assessment of continued wet storage of EBR-II fuel

    International Nuclear Information System (INIS)

    Pahl, R.G.; Franklin, E.M.; Ebner, M.A.

    1996-01-01

    A technical assessment of the continued wet storage of EBR-II fuel has been made. Previous experience has shown that in-basin cladding failure occurs by intergranular attack of sensitized cladding, likely assisted by basin water chlorides. Subsequent fuel oxidation is rapid and leads to loss of configuration and release of fission products. The current inventory of EBR-II fuel stored in the ICPP basins is at risk from similar corrosion reactions

  20. Autophagic pathways and metabolic stress.

    Science.gov (United States)

    Kaushik, S; Singh, R; Cuervo, A M

    2010-10-01

    Autophagy is an essential intracellular process that mediates degradation of intracellular proteins and organelles in lysosomes. Autophagy was initially identified for its role as alternative source of energy when nutrients are scarce but, in recent years, a previously unknown role for this degradative pathway in the cellular response to stress has gained considerable attention. In this review, we focus on the novel findings linking autophagic function with metabolic stress resulting either from proteins or lipids. Proper autophagic activity is required in the cellular defense against proteotoxicity arising in the cytosol and also in the endoplasmic reticulum, where a vast amount of proteins are synthesized and folded. In addition, autophagy contributes to mobilization of intracellular lipid stores and may be central to lipid metabolism in certain cellular conditions. In this review, we focus on the interrelation between autophagy and different types of metabolic stress, specifically the stress resulting from the presence of misbehaving proteins within the cytosol or in the endoplasmic reticulum and the stress following a lipogenic challenge. We also comment on the consequences that chronic exposure to these metabolic stressors could have on autophagic function and on how this effect may underlie the basis of some common metabolic disorders. © 2010 Blackwell Publishing Ltd.

  1. Fuel Exhaling Fuel Cell.

    Science.gov (United States)

    Manzoor Bhat, Zahid; Thimmappa, Ravikumar; Devendrachari, Mruthyunjayachari Chattanahalli; Kottaichamy, Alagar Raja; Shafi, Shahid Pottachola; Varhade, Swapnil; Gautam, Manu; Thotiyl, Musthafa Ottakam

    2018-01-18

    State-of-the-art proton exchange membrane fuel cells (PEMFCs) anodically inhale H 2 fuel and cathodically expel water molecules. We show an unprecedented fuel cell concept exhibiting cathodic fuel exhalation capability of anodically inhaled fuel, driven by the neutralization energy on decoupling the direct acid-base chemistry. The fuel exhaling fuel cell delivered a peak power density of 70 mW/cm 2 at a peak current density of 160 mA/cm 2 with a cathodic H 2 output of ∼80 mL in 1 h. We illustrate that the energy benefits from the same fuel stream can at least be doubled by directing it through proposed neutralization electrochemical cell prior to PEMFC in a tandem configuration.

  2. Metabolic engineering of volatile isoprenoids in plants and microbes.

    Science.gov (United States)

    Vickers, Claudia E; Bongers, Mareike; Liu, Qing; Delatte, Thierry; Bouwmeester, Harro

    2014-08-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids. © 2014 John Wiley & Sons Ltd.

  3. Metabolic engineering is key to a sustainable chemical industry.

    Science.gov (United States)

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon.

  4. Rethinking fat as a fuel for endurance exercise.

    Science.gov (United States)

    Volek, Jeff S; Noakes, Timothy; Phinney, Stephen D

    2015-01-01

    A key element contributing to deteriorating exercise capacity during physically demanding sport appears to be reduced carbohydrate availability coupled with an inability to effectively utilize alternative lipid fuel sources. Paradoxically, cognitive and physical decline associated with glycogen depletion occurs in the presence of an over-abundance of fuel stored as body fat that the athlete is apparently unable to access effectively. Current fuelling tactics that emphasize high-carbohydrate intakes before and during exercise inhibit fat utilization. The most efficient approach to accelerate the body's ability to oxidize fat is to lower dietary carbohydrate intake to a level that results in nutritional ketosis (i.e., circulating ketone levels >0.5 mmol/L) while increasing fat intake for a period of several weeks. The coordinated set of metabolic adaptations that ensures proper interorgan fuel supply in the face of low-carbohydrate availability is referred to as keto-adaptation. Beyond simply providing a stable source of fuel for the brain, the major circulating ketone body, beta-hydroxybutyrate, has recently been shown to act as a signalling molecule capable of altering gene expression, eliciting complementary effects of keto-adaptation that could extend human physical and mental performance beyond current expectation. In this paper, we review these new findings and propose that the shift to fatty acids and ketones as primary fuels when dietary carbohydrate is restricted could be of benefit for some athletes.

  5. Controlling cell-free metabolism through physiochemical perturbations.

    Science.gov (United States)

    Karim, Ashty S; Heggestad, Jacob T; Crowe, Samantha A; Jewett, Michael C

    2018-01-01

    Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of biosynthetic systems, we recently reported a new cell-free framework for pathway construction and testing. In this framework, multiple crude-cell extracts are selectively enriched with individual pathway enzymes, which are then mixed to construct full biosynthetic pathways on the time scale of a day. This rapid approach to building pathways aids in the study of metabolic pathway performance by providing a unique freedom of design to modify and control biological systems for both fundamental and applied biotechnology. The goal of this work was to demonstrate the ability to probe biosynthetic pathway performance in our cell-free framework by perturbing physiochemical conditions, using n-butanol synthesis as a model. We carried out three unique case studies. First, we demonstrated the power of our cell-free approach to maximize biosynthesis yields by mapping physiochemical landscapes using a robotic liquid-handler. This allowed us to determine that NAD and CoA are the most important factors that govern cell-free n-butanol metabolism. Second, we compared metabolic profile differences between two different approaches for building pathways from enriched lysates, heterologous expression and cell-free protein synthesis. We discover that phosphate from PEP utilization, along with other physiochemical reagents, during cell-free protein synthesis-coupled, crude-lysate metabolic system operation inhibits optimal cell-free n-butanol metabolism. Third, we show that non-phosphorylated secondary energy substrates can be used to fuel cell-free protein synthesis and n-butanol biosynthesis. Taken together, our work highlights the ease of using cell-free systems to explore

  6. 78 FR 13315 - Bridger-Teton National Forest; Wyoming; Teton to Snake Fuels Management Project

    Science.gov (United States)

    2013-02-27

    ... Fuels Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an...) to document the potential effects of the Teton to Snake Fuels Management Project. The analysis will... Caribou-Targhee National Forest. The Teton to Snake Fuels Management Project was previously scoped and...

  7. Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Brett A. Morris

    2016-11-01

    Full Text Available Increased breast density attributed to collagen I deposition is associated with a 4–6 fold increased risk of developing breast cancer. Here, we assessed cellular metabolic reprogramming of mammary carcinoma cells in response to increased collagen matrix density using an in vitro 3D model. Our initial observations demonstrated changes in functional metabolism in both normal mammary epithelial cells and mammary carcinoma cells in response to changes in matrix density. Further, mammary carcinoma cells grown in high density collagen matrices displayed decreased oxygen consumption and glucose metabolism via the tricarboxylic acid (TCA cycle compared to cells cultured in low density matrices. Despite decreased glucose entry into the TCA cycle, levels of glucose uptake, cell viability, and ROS were not different between high and low density matrices. Interestingly, under high density conditions the contribution of glutamine as a fuel source to drive the TCA cycle was significantly enhanced. These alterations in functional metabolism mirrored significant changes in the expression of metabolic genes involved in glycolysis, oxidative phosphorylation, and the serine synthesis pathway. This study highlights the broad importance of the collagen microenvironment to cellular expression profiles, and shows that changes in density of the collagen microenvironment can modulate metabolic shifts of cancer cells.

  8. Reuse of discharged fuel in Bohunice-1,2 units

    International Nuclear Information System (INIS)

    Chrapciak, V.; Majercik, J.; Kacmar, M.

    2003-01-01

    During the reconstruction of Bohunice-1,2 units (1997 - 2001), their cycle lengths dropped to very short values. Because of 4-year limit to fuel residence time, refuelling with fresh 2.4 % enriched assemblies seemed to be a solution of the problem. The paper describes the implementation of a final decision to reuse 3.6 % enriched fuel discharged after 3-year irradiation in previous cycles. This decision led to a large-scale moving of discharged assemblies from spent fuel pools back to reactors (Authors)

  9. Characteristics of fuel cycle waste

    International Nuclear Information System (INIS)

    Aquilina, C.A.; Everette, S.E.

    1982-01-01

    The Low-Level Waste Management System started in 1979 to describe and model the existing commercial low-level waste management system. The system description produced is based on the identification of the different elements making up both the fuel and non-fuel cycle and their relationships to each other. A systems model based on the system description can accurately reflect the flow of low-level waste from generator to disposal site and is only limited by the reliability of the information it uses. For both the fuel cycle and non-fuel cycle large quantities of information is required in order to allow the system to operate at its full potential. Work is ongoing to collect this information. Significant progress is being made in the fuel cycle area primarily because the majority of fuel cycle low-level radioactive waste is produced by commercial power reactor plant operations. The Low-Level Waste Management system is only beginning to derive the benefits to be obtained from an accurate low-level waste management information system. As data is verified and analyzed, results on a national as well as individual organization level will be gained. Comparisons to previous studies will be made. Accurate projections of waste volumes and activities to be produced, projected impacts of waste streams of treatment or management changes are only examples of information to be produced. 1 figure, 1 table

  10. Microbial activities in hydrocarbon-laden wastewaters: Impact on diesel fuel stability and the biocorrosion of carbon steel.

    Science.gov (United States)

    Liang, Renxing; Duncan, Kathleen E; Le Borgne, Sylvie; Davidova, Irene; Yakimov, Michail M; Suflita, Joseph M

    2017-08-20

    Anaerobic hydrocarbon biodegradation not only diminishes fuel quality, but also exacerbates the biocorrosion of the metallic infrastructure. While successional events in marine microbial ecosystems impacted by petroleum are well documented, far less is known about the response of communities chronically exposed to hydrocarbons. Shipboard oily wastewater was used to assess the biotransformation of different diesel fuels and their propensity to impact carbon steel corrosion. When amended with sulfate and an F76 military diesel fuel, the sulfate removal rate in the assay mixtures was elevated (26.8μM/d) relative to incubations receiving a hydroprocessed biofuel (16.1μM/d) or a fuel-unamended control (17.8μM/d). Microbial community analysis revealed the predominance of Anaerolineae and Deltaproteobacteria in F76-amended incubations, in contrast to the Beta- and Gammaproteobacteria in the original wastewater. The dominant Smithella-like sequences suggested the potential for syntrophic hydrocarbon metabolism. The general corrosion rate was relatively low (0.83 - 1.29±0.12mpy) and independent of the particular fuel, but pitting corrosion was more pronounced in F76-amended incubations. Desulfovibrionaceae constituted 50-77% of the sessile organisms on carbon steel coupons. Thus, chronically exposed microflora in oily wastewater were differentially acclimated to the syntrophic metabolism of traditional hydrocarbons but tended to resist isoalkane-laden biofuels. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Combustion of coal gas fuels in a staged combustor

    Science.gov (United States)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  12. Correlation between occurrence of leprosy and fossil fuels: role of fossil fuel bacteria in the origin and global epidemiology of leprosy.

    Science.gov (United States)

    Chakrabarty, A N; Dastidar, S G

    1989-06-01

    On the basis of correlative data on the global distribution of leprosy, its bacteria metabolizing fossil fuels (FF), and the FF themselves, the origin of leprosy in the world as a whole, and in the leprosy-free countries, in particular, as indigenous cases, appeared to be primarily due to a soil-to-man, and secondarily due to a man-to-man infection. These findings helped to elucidate similar problems of animal leprosies and nocardial diseases.

  13. The effects of anticholinergic drugs on regional cerebral blood flow, and oxygen metabolism in previously untreated patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Obara, Satoko; Takahashi, Satoshi; Yonezawa, Hisashi; Sato, Yoshitomo

    1998-01-01

    Regional cerebral blood flow (rCBF) and oxygen metabolism (rCMRO 2 ) were measured using the steady-state 15 O technique and positron emission tomography (PET) in six previously untreated patients with Parkinson's disease before and after trihexyphenidyl (THP) treatment. The patients comprised of 4 men and 2 women with Hoehn-Yahr stage II-III. Their ages at the onset of the study ranged from 46 to 57 years (mean±SD, 51.8±3.7) and the duration of the illness ranged from 10 to 48 months (mean±SD, 28.8±15.5). The PET study, assessments of the disability and cognitive function were undergone twice. The first time assessments were done was when the patients were not receiving any drugs, and the second time was one to three months after administration of 6 mg THP. All patients showed clinical improvement after THP treatment. The mean disability score of Unified Parkinson's Disease Rating Scale decreased from 35.1 (SD±11.3) to 25.7 (SD±11.6). The cognitive function assessed by Hasegawa's dementia rating scale-revised, Mini-Mental State Examination, Wechsler Adult Intelligence Scale-Revised, and Wechsler Memory Scale-Revised, were not significantly different before and after the THP treatment. After the THP treatment, rCBF and rCMRO 2 decreased significantly in the striatum (about 15%) and all cerebral cortices (about 10%) on both sides contralateral and ipsilateral to the predominantly symptomatic limbs. We conclude that an anticholinergic THP decreases the rCBF and rCMRO 2 significantly in the cerebral cortices without cognitive impairment in early untreated patients with Parkinson's disease. (author)

  14. Coutilization of D-Glucose, D-Xylose, and L-Arabinose in Saccharomyces cerevisiae by Coexpressing the Metabolic Pathways and Evolutionary Engineering

    Directory of Open Access Journals (Sweden)

    Chengqiang Wang

    2017-01-01

    Full Text Available Efficient and cost-effective fuel ethanol production from lignocellulosic materials requires simultaneous cofermentation of all hydrolyzed sugars, mainly including D-glucose, D-xylose, and L-arabinose. Saccharomyces cerevisiae is a traditional D-glucose fermenting strain and could utilize D-xylose and L-arabinose after introducing the initial metabolic pathways. The efficiency and simultaneous coutilization of the two pentoses and D-glucose for ethanol production in S. cerevisiae still need to be optimized. Previously, we constructed an L-arabinose-utilizing S. cerevisiae BSW3AP. In this study, we further introduced the XI and XR-XDH metabolic pathways of D-xylose into BSW3AP to obtain D-glucose, D-xylose, and L-arabinose cofermenting strain. Benefits of evolutionary engineering: the resulting strain BSW4XA3 displayed a simultaneous coutilization of D-xylose and L-arabinose with similar consumption rates, and the D-glucose metabolic capacity was not decreased. After 120 h of fermentation on mixed D-glucose, D-xylose, and L-arabinose, BSW4XA3 consumed 24% more amounts of pentoses and the ethanol yield of mixed sugars was increased by 30% than that of BSW3AP. The resulting strain BSW4XA3 was a useful chassis for further enhancing the coutilization efficiency of mixed sugars for bioethanol production.

  15. Multiple recycling of fuel in prototype fast breeder reactor in a closed ...

    Indian Academy of Sciences (India)

    Our previous study in this regard for the prototype fast breeder reactor ... This study aims at finding the feasibility of multiple recycling of PFBR fuel with external ...... maximum allowable Pu content in fuel based on chemistry/metallurgical ...

  16. Externalities of fuel cycles 'ExternE' project. Hydro fuel cycle. Estimation of physical impacts and monetary valuation for priority impact pathways

    International Nuclear Information System (INIS)

    Navrud, S.; Riise, J.; Strand, J.

    1994-01-01

    The aim of the External Costs of Fuel Cycles (ExternE) study is to develop methods to measure and monetize all the externalities associated with incremental investments in electric power production, taking account of the different stages of the fuel cycles. Since fuel cycle externalities are characterised by being very site-specific, the impact pathway damage function approach, developed in ExternE, has been implemented in different European countries for each of the selected fuel cycles. This is done to demonstrate that this methodological framework can be used at different locations, to motivate further development of the methods, and to look at the sensitivity of the estimates to different locations. Electricite de France (EdF) in France and ENCO Environmental Consultants a.s. in Norway have taken on a joint responsibility for adapting the methodological framework for hydroelectric fuel cycle analyses in Europe. We report the first implementation of the hydroelectric fuel cycle within ExternE. Choice of reference site and technology Two stages of the hydroelectric fuel cycle have been identified: 1. Electricity generation 2. Transmission There are three phases of each of these stages: construction, operation and dismantling. We have assumed a construction period of 5 years (starting in 1990) and an operation period of 40 years. Dismantling after 40 years is not a realistic option. Therefore, we have focused on the construction and operation phases, of both electricity generation and transmission. The Sauda Hydroelectric Development Project (SHDP) was selected, because it illustrates upgrading and extention of an existing hydro power project. Such projects are likely to be the dominating strategy for future hydroelectric development in Norway, many other European countries and in the U.S., due to the lack of new sites available for development. SHDP consists of an extention of a previously developed area (Basis project) and six new diversion projects. The

  17. The possibility of fuel cycle design for ABC/ATW complex with molten fuel on LiF-BeF{sub 2} basis

    Energy Technology Data Exchange (ETDEWEB)

    Naumov, V.S.; Bychkov, A.V. [Research Institute of Atomic Reactors, Dimitrovgrad (Russian Federation)

    1995-10-01

    The experience gained in the field of the development of molten salt reactors (MSR) can be made a basis of chemical processing of the ABC/ATW liquid fuel. The following combination of two processing principles are proposed for the ABC/ATW fuel (LiF-BeF{sub 2}-PuF{sub 3,(4)} - MAF{sub n}): - continious removal of radioactive gases, volatile impurities and {open_quotes}noble fission products{close_quotes}; - portion-by-portion electrochemical processing with removal of rare earth elements and some other fission products at an autonomous plant. After processing the fuel salt is brought back to the blanket of the ABC/ATW complex. The analysis of information previously published in different countries allows for a safe assumption that the ABC/ATW fuel cycle with liquid fuel salt is feasible and can be demonstrated experimentally.

  18. Dynamic characterization of the CAREM fuel element prototype

    International Nuclear Information System (INIS)

    Ghiselli, Alberto M.; Fiori, Jose M.; Ibanez, Luis A.

    2004-01-01

    As a previous step to make a complete test plan to evaluate the hydrodynamic behavior of the present configuration of the CAREM type fuel element, a dynamic characterization analysis is required, without the dynamic response induced by the flowing fluid. This paper presents the tests made, the methods and instrumentation used, and the results obtained in order to obtain a complete dynamic characterization of the CAREM type fuel element. (author)

  19. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation

    Science.gov (United States)

    Corseuil, Henry Xavier; Gomez, Diego E.; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J. J.

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  20. Reassessment of the basis for NRC fuel damage criteria for reactivity transients

    International Nuclear Information System (INIS)

    McCardell, R.K.

    1994-01-01

    The present basis for NRC Fuel Damage Criteria was obtained from experiments performed in the Special Power Excursion Reactor Test (SPERT) IV Reactor Capsule Driver Core (CDC) at the Idaho National Engineering Laboratory (INEL) between 1967 and 1970. Most of the CDC test fuel rods were previously unirradiated and the failure threshold for these unirradiated fuel rods was measured to be about 200 calories per gram of UO 2 radially averaged fuel enthalpy at the axial peak

  1. Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions.

    Science.gov (United States)

    Han, Ting-Li; Tumanov, Sergey; Cannon, Richard D; Villas-Boas, Silas G

    2013-01-01

    Phenylethyl alcohol was one of the first quorum sensing molecules (QSMs) identified in C. albicans. This extracellular signalling molecule inhibits the hyphal formation of C. albicans at high cell density. Little is known, however, about the underlying mechanisms by which this QSM regulates the morphological switches of C. albicans. Therefore, we have applied metabolomics and isotope labelling experiments to investigate the metabolic changes that occur in C. albicans in response to phenylethyl alcohol under defined hyphae-inducing conditions. Our results showed a global upregulation of central carbon metabolism when hyphal development was suppressed by phenylethyl alcohol. By comparing the metabolic changes in response to phenylethyl alcohol to our previous metabolomic studies, we were able to short-list 7 metabolic pathways from central carbon metabolism that appear to be associated with C. albicans morphogenesis. Furthermore, isotope-labelling data showed that phenylethyl alcohol is indeed taken up and catabolised by yeast cells. Isotope-labelled carbon atoms were found in the majority of amino acids as well as in lactate and glyoxylate. However, isotope-labelled carbon atoms from phenylethyl alcohol accumulated mainly in the pyridine ring of NAD(+)/NADH and NADP(-/)NADPH molecules, showing that these nucleotides were the main products of phenylethyl alcohol catabolism. Interestingly, two metabolic pathways where these nucleotides play an important role, nitrogen metabolism and nicotinate/nicotinamide metabolism, were also short-listed through our previous metabolomics works as metabolic pathways likely to be closely associated with C. albicans morphogenesis.

  2. Radiation dose rates from commercial PWR and BWR spent fuel elements

    International Nuclear Information System (INIS)

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel

  3. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  4. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation

    Science.gov (United States)

    Evans, Mark; Cogan, Karl E.

    2016-01-01

    Abstract Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β‐hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post‐exercise recovery period, and the ability to utilise ketone bodies is higher in exercise‐trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti‐lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. PMID:27861911

  5. Supply Security in Future Nuclear Fuel Markets

    Energy Technology Data Exchange (ETDEWEB)

    Seward, Amy M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wood, Thomas W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gitau, Ernest T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ford, Benjamin E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-11-18

    Previous PNNL work has shown the existing nuclear fuel markets to provide a high degree of supply security, including the ability to respond to supply disruptions that occur for technical and non-technical reasons. It is in the context of new reactor designs – that is, reactors likely to be licensed and market ready over the next several decades – that fuel supply security is most relevant. Whereas the fuel design and fabrication technology for existing reactors are well known, the construction of a new set of reactors could stress the ability of the existing market to provide adequate supply redundancy. This study shows this is unlikely to occur for at least thirty years, as most reactors likely to be built in the next three decades will be evolutions of current designs, with similar fuel designs to existing reactors.

  6. Supply Security in Future Nuclear Fuel Markets

    International Nuclear Information System (INIS)

    Seward, Amy M.; Wood, Thomas W.; Gitau, Ernest T.; Ford, Benjamin E.

    2013-01-01

    Previous PNNL work has shown the existing nuclear fuel markets to provide a high degree of supply security, including the ability to respond to supply disruptions that occur for technical and non-technical reasons. It is in the context of new reactor designs - that is, reactors likely to be licensed and market ready over the next several decades - that fuel supply security is most relevant. Whereas the fuel design and fabrication technology for existing reactors are well known, the construction of a new set of reactors could stress the ability of the existing market to provide adequate supply redundancy. This study shows this is unlikely to occur for at least thirty years, as most reactors likely to be built in the next three decades will be evolutions of current designs, with similar fuel designs to existing reactors.

  7. Corrosion in ICPP fuel storage basins

    International Nuclear Information System (INIS)

    Dirk, W.J.

    1993-09-01

    The Idaho Chemical Processing Plant currently stores irradiated nuclear fuel in fuel storage basins. Historically, fuel has been stored for over 30 years. During the 1970's, an algae problem occurred which required higher levels of chemical treatment of the basin water to maintain visibility for fuel storage operations. This treatment led to higher levels of chlorides than seen previously which cause increased corrosion of aluminum and carbon steel, but has had little effect on the stainless steel in the basin. Corrosion measurements of select aluminum fuel storage cans, aluminum fuel storage buckets, and operational support equipment have been completed. Aluminum has exhibited good general corrosion rates, but has shown accelerated preferential attack in the form of pitting. Hot dipped zinc coated carbon steel, which has been in the basin for approximately 40 years, has shown a general corrosion rate of 4 mpy, and there is evidence of large shallow pits on the surface. A welded Type 304 stainless steel corrosion coupon has shown no attack after 13 years exposure. Galvanic couples between carbon steel welded to Type 304 stainless steel occur in fuel storage yokes exposed to the basin water. These welded couples have shown galvanic attack as well as hot weld cracking and intergranular cracking. The intergranular stress corrosion cracking is attributed to crevices formed during fabrication which allowed chlorides to concentrate

  8. More Energy and Less Work, but New Crises: How the Societal Metabolism-Labour Nexus Changes from Agrarian to Industrial Societies

    Directory of Open Access Journals (Sweden)

    Willi Haas

    2017-06-01

    Full Text Available The scientific finding that humanity is overburdening nature and thus risks further ecological crises is almost uncontroversial. Main reason for the crises is the drastic increase in the societal metabolism, which is accomplished through labour. In this article, we examine the societal metabolism-labour nexus in two energy regimes: a valley in the Ethiopian highlands, typical of an agrarian society, and a village in Austria, typical of an industrial society. In the Ethiopian village, the supply of food demands almost the entire labour force, thus limiting the capacity to facilitate material flows beyond food provision. In the Austrian village, fewer working hours, lower workloads but 50 times higher useful energy allow to accumulate stocks like buildings 70 times higher than the Ethiopian case. With fossil energy, industrial societies decisively expand their energy supply and reduce labour hours at the cost of high carbon emissions, which are almost non-existent in the Ethiopian case. To overcome the resulting ecological crises, there is a call to drastically reduce fossil fuel consumption. Such an abandonment of fossil fuels might have as far reaching consequences for the societal metabolism-labour nexus and consequently human labour as the introduction of fossil fuels has had.

  9. Spent Nuclear Fuel Alternative Technology Decision Analysis

    International Nuclear Information System (INIS)

    Shedrow, C.B.

    1999-01-01

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology

  10. A dynamic simulation tool for the battery-hybrid hydrogen fuel cell vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.M. [Hawaii Natural Energy Institute, University of Hawaii, Manoa (United States); Ramaswamy, S.; Cunningham, J.M. [California Univ., Berkeley, CA (United States); Hauer, K.H. [xcellvision, Major-Hirst-Strasse 11, 38422 Wolfsburg (Germany)

    2006-10-15

    This paper describes a dynamic fuel cell vehicle simulation tool for the battery-hybrid direct-hydrogen fuel cell vehicle. The emphasis is on simulation of the hybridized hydrogen fuel cell system within an existing fuel cell vehicle simulation tool. The discussion is focused on the simulation of the sub-systems that are unique to the hybridized direct-hydrogen vehicle, and builds on a previous paper that described a simulation tool for the load-following direct-hydrogen vehicle. The configuration of the general fuel cell vehicle simulation tool has been previously presented in detail, and is only briefly reviewed in the introduction to this paper. Strictly speaking, the results provided in this paper only serve as an example that is valid for the specific fuel cell vehicle design configuration analyzed. Different design choices may lead to different results, depending strongly on the parameters used and choices taken during the detailed design process required for this highly non-linear and n-dimensional system. The primary purpose of this paper is not to provide a dynamic simulation tool that is the ''final word'' for the ''optimal'' hybrid fuel cell vehicle design. The primary purpose is to provide an explanation of a simulation method for analyzing the energetic aspects of a hybrid fuel cell vehicle. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in xylose metabolism

    Science.gov (United States)

    In conversion of biomass to fuels or chemicals, inhibitory compounds arising from physical-chemical pretreatment of the feedstock can interfere with fermentation of the sugars to product. Fungal strain Coniochaeta ligniaria NRRL30616, metabolizes the furan aldehydes furfural and 5-hydroxymethylfurfu...

  12. Loss-of-flow transient characterization in carbide-fueled LMFBRs

    International Nuclear Information System (INIS)

    Rothrock, R.B.; Morgan, M.M.; Baars, R.E.; Elson, J.S.; Wray, M.L.

    1985-01-01

    One of the benefits derived from the use of carbide fuel in advanced Liquid Metal Fast Breeder Reactors (LMFBRs) is a decreased vulnerability to certain accidents. This can be achieved through the combination of advanced fuel performance with the enhanced reactivity feedback effects and passive shutdown cooling systems characteristic of the current 'inherently safe' plant concepts. The calculated core response to an unprotected loss of flow (ULOF) accident has frequently been used as a benchmark test of these designs, and the advantages of a high-conductivity fuel in relation to this type of transient have been noted in previous analyses. To evaluate this benefit in carbide-fueled LMFBRs incorporating representative current plant design features, limited calculations have been made of a ULOF transient in a small ('modular') carbide-fueled LMFBR

  13. Metabolic characteristics of keto-adapted ultra-endurance runners.

    Science.gov (United States)

    Volek, Jeff S; Freidenreich, Daniel J; Saenz, Catherine; Kunces, Laura J; Creighton, Brent C; Bartley, Jenna M; Davitt, Patrick M; Munoz, Colleen X; Anderson, Jeffrey M; Maresh, Carl M; Lee, Elaine C; Schuenke, Mark D; Aerni, Giselle; Kraemer, William J; Phinney, Stephen D

    2016-03-01

    Many successful ultra-endurance athletes have switched from a high-carbohydrate to a low-carbohydrate diet, but they have not previously been studied to determine the extent of metabolic adaptations. Twenty elite ultra-marathoners and ironman distance triathletes performed a maximal graded exercise test and a 180 min submaximal run at 64% VO2max on a treadmill to determine metabolic responses. One group habitually consumed a traditional high-carbohydrate (HC: n=10, %carbohydrate:protein:fat=59:14:25) diet, and the other a low-carbohydrate (LC; n=10, 10:19:70) diet for an average of 20 months (range 9 to 36 months). Peak fat oxidation was 2.3-fold higher in the LC group (1.54±0.18 vs 0.67±0.14 g/min; P=0.000) and it occurred at a higher percentage of VO2max (70.3±6.3 vs 54.9±7.8%; P=0.000). Mean fat oxidation during submaximal exercise was 59% higher in the LC group (1.21±0.02 vs 0.76±0.11 g/min; P=0.000) corresponding to a greater relative contribution of fat (88±2 vs 56±8%; P=0.000). Despite these marked differences in fuel use between LC and HC athletes, there were no significant differences in resting muscle glycogen and the level of depletion after 180 min of running (-64% from pre-exercise) and 120 min of recovery (-36% from pre-exercise). Compared to highly trained ultra-endurance athletes consuming an HC diet, long-term keto-adaptation results in extraordinarily high rates of fat oxidation, whereas muscle glycogen utilization and repletion patterns during and after a 3 hour run are similar. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Skutnik, Steven E. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering

    2017-06-19

    processing, and depletion/decay solvers) can be self-contained into a single executable sequence. Further, to embed this capability into other software environments (such as the Cyclus fuel cycle simulator) requires that Origen’s capabilities be encapsulated into a portable, self-contained library which other codes can then call directly through function calls, thereby directly accessing the solver and data processing capabilities of Origen. Additional components relevant to this work include modernization of the reactor data libraries used by Origen for conducting nuclear fuel depletion calculations. This work has included the development of new fuel assembly lattices not previously available (such as for CANDU heavy-water reactor assemblies) as well as validation of updated lattices for light-water reactors updated to employ modern nuclear data evaluations. The CyBORG reactor analysis module as-developed under this workscope is fully capable of dynamic calculation of depleted fuel compositions from all commercial U.S. reactor assembly types as well as a number of international fuel types, including MOX, VVER, MAGNOX, and PHWR CANDU fuel assemblies. In addition, the Origen-based depletion engine allows for CyBORG to evaluate novel fuel assembly and reactor design types via creation of Origen reactor data libraries via SCALE. The establishment of this new modeling capability affords fuel cycle modelers a substantially improved ability to model dynamically-changing fuel cycle and reactor conditions, including recycled fuel compositions from fuel cycle scenarios involving material recycle into thermal-spectrum systems.

  15. Impact of advanced fuel cycle options on waste management policies

    International Nuclear Information System (INIS)

    Gordelier, Stan; Cavedon, Jean-Marc

    2006-01-01

    OECD/NEA has performed a study on the impact of advanced fuel cycle options on waste management policies with 33 experts from 12 member countries, 1 non-member country and 2 international organizations. The study extends a series of previous ones on partitioning and transmutation (P and T) issues, focusing on the performance assessments for repositories of high-level waste (HLW) arising from advanced fuel cycles. This study covers a broader spectrum than previous studies, from present industrial practice to fully closed cycles via partially closed cycles (in terms of transuranic elements); 9 fuel cycle schemes and 4 variants. Elements of fuel cycles are considered primarily as sources of waste, the internal mass flows of each scheme being kept for the sake of mass conservation. The compositions, activities and heat loads of all waste flows are also tracked. Their impact is finally assessed on the waste repository concepts. The study result confirms the findings from the previous NEA studies on P and T on maximal reduction of the waste source term and maximal use of uranium resources. In advanced fuel cycle schemes the activity of the waste is reduced by burning first plutonium and then minor actinides and also the uranium consumption is reduced, as the fraction of fast reactors in the park is increased to 100%. The result of the repository performance assessments, analysing the effect of different HLW isotopic composition on repository performance and on repository capacity, shows that the maximum dose released to biosphere at any time in normal conditions remains, for all schemes and for all the repository concepts examined, well below accepted radiation protection thresholds. The major impact is on the detailed concept of the repositories, through heat load and waste volume. Advanced fuel cycles could allow a repository to cover waste produced from 5 to 20 times more electricity generation than PWR once-through cycle. Given the flexibility of the advanced fuel

  16. Selective upregulation of lipid metabolism in skeletal muscle of foraging juvenile king penguins: an integrative study.

    Science.gov (United States)

    Teulier, Loic; Dégletagne, Cyril; Rey, Benjamin; Tornos, Jérémy; Keime, Céline; de Dinechin, Marc; Raccurt, Mireille; Rouanet, Jean-Louis; Roussel, Damien; Duchamp, Claude

    2012-06-22

    The passage from shore to marine life of juvenile penguins represents a major energetic challenge to fuel intense and prolonged demands for thermoregulation and locomotion. Some functional changes developed at this crucial step were investigated by comparing pre-fledging king penguins with sea-acclimatized (SA) juveniles (Aptenodytes patagonicus). Transcriptomic analysis of pectoralis muscle biopsies revealed that most genes encoding proteins involved in lipid transport or catabolism were upregulated, while genes involved in carbohydrate metabolism were mostly downregulated in SA birds. Determination of muscle enzymatic activities showed no changes in enzymes involved in the glycolytic pathway, but increased 3-hydroxyacyl-CoA dehydrogenase, an enzyme of the β-oxidation pathway. The respiratory rates of isolated muscle mitochondria were much higher with a substrate arising from lipid metabolism (palmitoyl-L-carnitine) in SA juveniles than in terrestrial controls, while no difference emerged with a substrate arising from carbohydrate metabolism (pyruvate). In vivo, perfusion of a lipid emulsion induced a fourfold larger thermogenic effect in SA than in control juveniles. The present integrative study shows that fuel selection towards lipid oxidation characterizes penguin acclimatization to marine life. Such acclimatization may involve thyroid hormones through their nuclear beta receptor and nuclear coactivators.

  17. Nuclear reactor fuel element

    International Nuclear Information System (INIS)

    D'Eye, R.W.M.; Shennan, J.V.; Ford, L.H.

    1977-01-01

    Fuel element with particles from ceramic fissionable material (e.g. uranium carbide), each one being coated with pyrolitically deposited carbon and all of them being connected at their points of contact by means of an individual crossbar. The crossbar consists of silicon carbide produced by reaction of silicon metal powder with the carbon under the influence of heat. Previously the silicon metal powder together with the particles was kneaded in a solvent and a binder (e.g. epoxy resin in methyl ethyl ketone plus setting agent) to from a pulp. The reaction temperature lies at 1750 0 C. The reaction itself may take place in a nitrogen atmosphere. There will be produced a fuel element with a high overall thermal conductivity. (DG) [de

  18. Performance study of sugar-yeast-ethanol bio-hybrid fuel cells

    Science.gov (United States)

    Jahnke, Justin P.; Mackie, David M.; Benyamin, Marcus; Ganguli, Rahul; Sumner, James J.

    2015-05-01

    Renewable alternatives to fossil hydrocarbons for energy generation are of general interest for a variety of political, economic, environmental, and practical reasons. In particular, energy from biomass has many advantages, including safety, sustainability, and the ability to be scavenged from native ecosystems or from waste streams. Microbial fuel cells (MFCs) can take advantage of microorganism metabolism to efficiently use sugar and other biomolecules as fuel, but are limited by low power densities. In contrast, direct alcohol fuel cells (DAFCs) take advantage of proton exchange membranes (PEMs) to generate electricity from alcohols at much higher power densities. Here, we investigate a novel bio-hybrid fuel cell design prepared using commercial off-the-shelf DAFCs. In the bio-hybrid fuel cells, biomass such as sugar is fermented by yeast to ethanol, which can be used to fuel a DAFC. A separation membrane between the fermentation and the DAFC is used to purify the fermentate while avoiding any parasitic power losses. However, shifting the DAFCs from pure alcohol-water solutions to filtered fermented media introduces complications related to how the starting materials, fermentation byproducts, and DAFC waste products affect both the fermentation and the long-term DAFC performance. This study examines the impact of separation membrane pore size, fermentation/fuel cell byproducts, alcohol and salt concentrations, and load resistance on fuel cell performance. Under optimized conditions, the performance obtained is comparable to that of a similar DAFC run with a pure alcohol-water mixture. Additionally, the modified DAFC can provide useable amounts of power for weeks.

  19. An experimental and numerical analysis of the HCCI auto-ignition process of primary reference fuels, toluene reference fuels and diesel fuel in an engine, varying the engine parameters

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim; Cavadias, Simeon [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr-I' Ecole (France); Gilbert, Philippe [UPMC Universite Paris 06, Institut Jean Le Rond D' Alembert, 2, place de la Gare de Ceinture, 78210 St Cyr-I' Ecole (France)

    2008-11-15

    For a future HCCI engine to operate under conditions that adhere to environmental restrictions, reducing fuel consumption and maintaining or increasing at the same time the engine efficiency, the choice of the fuel is crucial. For this purpose, this paper presents an auto-ignition investigation concerning the primary reference fuels, toluene reference fuels and diesel fuel, in order to study the effect of linear alkanes, branched alkanes and aromatics on the auto-ignition. The auto-ignition of these fuels has been studied at inlet temperatures from 25 to 120 C, at equivalence ratios from 0.18 to 0.53 and at compression ratios from 6 to 13.5, in order to extend the range of investigation and to assess the usability of these parameters to control the auto-ignition. It appeared that both iso-octane and toluene delayed the ignition with respect to n-heptane, while toluene has the strongest effect. This means that aromatics have higher inhibiting effects than branched alkanes. In an increasing order, the inlet temperature, equivalence ratio and compression ratio had a promoting effect on the ignition delays. A previously experimentally validated reduced surrogate mechanism, for mixtures of n-heptane, iso-octane and toluene, has been used to explain observations of the auto-ignition process. (author)

  20. Early anaerobic metabolisms

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity......Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were...... of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent...

  1. Physiological differentiation within a single-species biofilm fueled by serpentinization.

    Science.gov (United States)

    Brazelton, William J; Mehta, Mausmi P; Kelley, Deborah S; Baross, John A

    2011-01-01

    Carbonate chimneys at the Lost City hydrothermal field are coated in biofilms dominated by a single phylotype of archaea known as Lost City Methanosarcinales. In this study, we have detected surprising physiological complexity in single-species biofilms, which is typically indicative of multispecies biofilm communities. Multiple cell morphologies were visible within the biofilms by transmission electron microscopy, and some cells contained intracellular membranes that may facilitate methane oxidation. Both methane production and oxidation were detected at 70 to 80°C and pH 9 to 10 in samples containing the single-species biofilms. Both processes were stimulated by the presence of hydrogen (H(2)), indicating that methane production and oxidation are part of a syntrophic interaction. Metagenomic data included a sequence encoding AMP-forming acetyl coenzyme A synthetase, indicating that acetate may play a role in the methane-cycling syntrophy. A wide range of nitrogen fixation genes were also identified, many of which were likely acquired via lateral gene transfer (LGT). Our results indicate that cells within these single-species biofilms may have differentiated into multiple physiological roles to form multicellular communities linked by metabolic interactions and LGT. Communities similar to these Lost City biofilms are likely to have existed early in the evolution of life, and we discuss how the multicellular characteristics of ancient hydrogen-fueled biofilm communities could have stimulated ecological diversification, as well as unity of biochemistry, during the earliest stages of cellular evolution. Our previous work at the Lost City hydrothermal field has shown that its carbonate chimneys host microbial biofilms dominated by a single uncultivated "species" of archaea. In this paper, we integrate evidence from these previous studies with new data on the metabolic activity and cellular morphology of these archaeal biofilms. We conclude that the archaeal biofilm

  2. Genome-scale metabolic models as platforms for strain design and biological discovery.

    Science.gov (United States)

    Mienda, Bashir Sajo

    2017-07-01

    Genome-scale metabolic models (GEMs) have been developed and used in guiding systems' metabolic engineering strategies for strain design and development. This strategy has been used in fermentative production of bio-based industrial chemicals and fuels from alternative carbon sources. However, computer-aided hypotheses building using established algorithms and software platforms for biological discovery can be integrated into the pipeline for strain design strategy to create superior strains of microorganisms for targeted biosynthetic goals. Here, I described an integrated workflow strategy using GEMs for strain design and biological discovery. Specific case studies of strain design and biological discovery using Escherichia coli genome-scale model are presented and discussed. The integrated workflow presented herein, when applied carefully would help guide future design strategies for high-performance microbial strains that have existing and forthcoming genome-scale metabolic models.

  3. Hypoxia Induced Tumor Metabolic Switch Contributes to Pancreatic Cancer Aggressiveness

    Energy Technology Data Exchange (ETDEWEB)

    Vasseur, Sophie; Tomasini, Richard; Tournaire, Roselyne; Iovanna, Juan L. [INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, BP 915,13288 Marseille cedex 9 (France)

    2010-12-16

    Pancreatic ductal adenocarcinoma remains one of the most lethal of all solid tumors with an overall five-year survival rate of only 3–5%. Its aggressive biology and resistance to conventional and targeted therapeutic agents lead to a typical clinical presentation of incurable disease once diagnosed. The disease is characterized by the presence of a dense stroma of fibroblasts and inflammatory cells, termed desmoplasia, which limits the oxygen diffusion in the organ, creating a strong hypoxic environment within the tumor. In this review, we argue that hypoxia is responsible for the highly aggressive and metastatic characteristics of this tumor and drives pancreatic cancer cells to oncogenic and metabolic changes facilitating their proliferation. However, the molecular changes leading to metabolic adaptations of pancreatic cancer cells remain unclear. Cachexia is a hallmark of this disease and illustrates that this cancer is a real metabolic disease. Hence, this tumor must harbor metabolic pathways which are probably tied in a complex inter-organ dialog during the development of this cancer. Such a hypothesis would better explain how under fuel source limitation, pancreatic cancer cells are maintained, show a growth advantage, and develop metastasis.

  4. Hypoxia Induced Tumor Metabolic Switch Contributes to Pancreatic Cancer Aggressiveness

    International Nuclear Information System (INIS)

    Vasseur, Sophie; Tomasini, Richard; Tournaire, Roselyne; Iovanna, Juan L.

    2010-01-01

    Pancreatic ductal adenocarcinoma remains one of the most lethal of all solid tumors with an overall five-year survival rate of only 3–5%. Its aggressive biology and resistance to conventional and targeted therapeutic agents lead to a typical clinical presentation of incurable disease once diagnosed. The disease is characterized by the presence of a dense stroma of fibroblasts and inflammatory cells, termed desmoplasia, which limits the oxygen diffusion in the organ, creating a strong hypoxic environment within the tumor. In this review, we argue that hypoxia is responsible for the highly aggressive and metastatic characteristics of this tumor and drives pancreatic cancer cells to oncogenic and metabolic changes facilitating their proliferation. However, the molecular changes leading to metabolic adaptations of pancreatic cancer cells remain unclear. Cachexia is a hallmark of this disease and illustrates that this cancer is a real metabolic disease. Hence, this tumor must harbor metabolic pathways which are probably tied in a complex inter-organ dialog during the development of this cancer. Such a hypothesis would better explain how under fuel source limitation, pancreatic cancer cells are maintained, show a growth advantage, and develop metastasis

  5. In vitro phase I metabolism of gamabufotalin and arenobufagin: Reveal the effect of substituent group on metabolic stability.

    Science.gov (United States)

    Feng, Yujie; Wang, Chao; Tian, Xiangge; Huo, Xiaokui; Feng, Lei; Sun, Chengpeng; Ge, Guangbo; Yang, Ling; Ning, Jing; Ma, Xiaochi

    2017-09-01

    Bufadienolides are a major class of bioactive compounds derived from amphibian skin secretion. Gamabufotalin (GB) and arenobufagin (AB) are among the top of the intensively investigated natural bufadienolides for their outstanding biological activities. This study aimed to characterize the phase I metabolism of GB and AB with respect to the metabolic profiles, enzymes involved, and catalytic efficacy, thereafter tried to reveal substituent effects on metabolism. Two mono-hydroxylated products of GB and AB were detected in the incubation mixtures, and they were accurately identified as 1- and 5-hydroxylated bufadienolides by NMR and HPLC-MS techniques. Reaction phenotyping studies demonstrated that CYP3A mediated the metabolism of the two bufadienolides with a high specific selectivity. Further kinetic evaluation demonstrated that the metabolism stability of GB and AB were better than other reported bufadienolides. Additionally, the CYP3A5 preference for hydroxylation of AB was observed, which was different to the selectivity of CYP3As for bufadienolides suggested by our previous report. This study can provide important data for elucidating the phase I metabolism of GB and AB and can lead to a better understanding of the bufadienolide-CYP3A interaction which is helpful for preclinical development and rational use of bufadienolides. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Chronic treatment with olanzapine increases adiposity by changing fuel substrate and causes desensitization of the acute metabolic side effects

    NARCIS (Netherlands)

    Girault, Elodie M.; Guigas, Bruno; Alkemade, Anneke; Foppen, Ewout; Ackermans, Mariëtte T.; la Fleur, Susanne E.; Fliers, Eric; Kalsbeek, Andries

    2014-01-01

    Atypical antipsychotic drugs such as olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying these metabolic side-effects are unknown at the moment. In this study, we investigated the metabolic changes induced by a chronic

  7. Chronic treatment with olanzapine increases adiposity by changing fuel substrate and causes desensitization of the acute metabolic side effects

    NARCIS (Netherlands)

    Girault, Elodie M; Guigas, Bruno; Alkemade, Anneke; Foppen, Ewout; Ackermans, Mariëtte T; la Fleur, Susanne E; Fliers, Eric; Kalsbeek, A.

    Atypical antipsychotic drugs such as olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying these metabolic side-effects are unknown at the moment. In this study, we investigated the metabolic changes induced by a chronic

  8. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    Science.gov (United States)

    Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  9. Drying studies of simulated DOE aluminum plate fuels

    International Nuclear Information System (INIS)

    Lords, R.E.; Windes, W.E.; Crepeau, J.C.; Sidwell, R.W.

    1996-01-01

    Experiments have been conducted to validate the Idaho National Engineering Laboratory (INEL) drying procedures for preparation of corroded aluminum plate fuel for dry storage in an existing vented (and filtered) fuel storage facility. A mixture of hydrated aluminum oxide bound with a clay was used to model the aluminum corrosion product and sediment expected in these Department of Energy (DOE) owned fuel types. Previous studies demonstrated that the current drying procedures are adequate for removal of free water inside the storage canister and for transfer of this fuel to a vented dry storage facility. However, using these same drying procedures, the simulated corrosion product was found to be difficult to dry completely from between the aluminum clad plates of the fuel. Another related set of experiments was designed to ensure that the fuel would not be damaged during the drying process. Aluminum plate fuels are susceptible to pitting damage on the cladding that can result in a portion of UAl x fuel meat being disgorged. This would leave a water-filled void beneath the pit in the cladding. The question was whether bursting would occur when water in the void flashes to steam, causing separation of the cladding from the fuel, and/or possible rupture. Aluminum coupons were fabricated to model damaged fuel plates. These coupons do not rupture or sustain any visible damage during credible drying scenarios

  10. Metabolic anatomy of paraneoplastic cerebellar degeneration

    International Nuclear Information System (INIS)

    Anderson, N.E.; Posner, J.B.; Sidtis, J.J.; Moeller, J.R.; Strother, S.C.; Dhawan, V.; Rottenberg, D.A.

    1988-01-01

    Eleven patients with acquired cerebellar degeneration (10 of whom had paraneoplastic cerebellar degeneration [PCD]) were evaluated using neuropsychological tests and 18 F-fluorodeoxyglucose/positron emission tomography to (1) quantify motor, cognitive, and metabolic abnormalities; (2) determine if characteristic alterations in the regional cerebral metabolic rate for glucose (rCMRGlc) are associated with PCD; and (3) correlate behavioral and metabolic measures of disease severity. Eighteen volunteer subjects served as normal controls. Although some PCD neuropsychological test scores were abnormal, these results could not, in general, be dissociated from the effects of dysarthria and ataxia. rCMRGlc was reduced in patients with PCD (versus normal control subjects) in all regions except the brainstem. Analysis of patient and control rCMRGlc data using a mathematical model of regional metabolic interactions revealed two metabolic pattern descriptors, SSF1 and SSF2, which distinguished patients with PCD from normal control subjects; SSF2, which described a metabolic coupling between cerebellum, cuneus, and posterior temporal, lateral frontal, and paracentral cortex, correlated with quantitative indices of cerebellar dysfunction. Our inability to document substantial intellectual impairment in 7 of 10 patients with PCD contrasts with the 50% incidence of dementia in PCD reported by previous investigators. Widespread reductions in PCD rCMRGlc may result from the loss of cerebellar efferents to thalamus and forebrain structures, a reverse cerebellar diaschisis

  11. System-level perturbations of cell metabolism using CRISPR/Cas9

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Jensen, Michael Krogh; Keasling, Jay

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied...... previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering....

  12. Review of the nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Hatcher, S.R.

    1980-06-01

    Progress over the previous year in the nuclear fuel waste management program is reviewed. Universities, industry and consultants have become increasingly involved, and the work is being overseen by a Technical Advisory Committee. The program has also been investigated by Ontario's Porter Commission and Select Committe on Ontario Hydro Affairs. A public information program has been extended to cover most of the Canadian Shield region of Ontario. Ontario Hydro is studying spent fuel storage and transportation, while AECL is covering immobilization of spent fuel or processing wastes, geotechnical and geochemical research in the laboratory and in the field, design of disposal facilities, and environmental and safety assessments. (L.L.)

  13. Load-following performance and assessment of CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, M.; Floyd, M.; Rattan, D.; Xu, Z.; Manzer, A.; Lau, J. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Kohn, E. [Ontario Power Generation, Fuel and Fuel Channel Analysis Dept., Toronto, Ontario (Canada)

    1999-09-01

    Load following of nuclear reactors is now becoming an economic necessity in some countries. When nuclear power stations are operated in a load-following mode, the reactor and the fuel may be subjected to step changes in power on a weekly, daily, or even hourly basis, depending on the grid's needs. This paper updates the previous surveys of load-following capability of CANDU fuel, focusing mainly on the successful experience at the Bruce B station. As well, initial analytical assessments are provided that illustrate the capability of CANDU fuel to survive conditions other than those for which direct in-reactor evidence is available. (author)

  14. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  15. Fuel and nuclear fuel cycle

    International Nuclear Information System (INIS)

    Prunier, C.

    1998-01-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  16. Spent fuel dry storage technology development: thermal evaluation of three adjacent drywells (each containing a 0.6 kW PWR spent fuel assembly)

    International Nuclear Information System (INIS)

    Unterzuber, R.; Hanson, J.P.

    1981-09-01

    A spent fuel Adjacent Drywell Test was conducted at the Engine-Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site utilizing three nearly identical pressurized water reactor spent fuel assemblies each having a decay heat level of approximately 0.6 kW. Each fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in an instrumented near-surface drywell storage cell for thermal testing. Each fuel assembly was sealed inside a 14-in. diam, 168-in.-long stainless steel canister and attached to a concrete-filled, 20-in.-diam, 34-in.-long, shield plug. The canister assembly was then placed in a carbon steel drywell liner which had been grouted into a hole drilled in the soil adjacent to E-MAD. The three drywells were located 25 feet apart in a linear array. Thermocouples, provided to measure canister, liner and soil temperatures, were inserted into tubes on the outside of the canister and drywell liner and were attached to plastic pipes which were grouted into holes in the soil. Temperatures from the three drywells and the adjacent soil were recorded throughout the Adjacent Drywell Test. Drywell thermal data showed virtually no thermal interaction between adjacent drywells. However, peak temperatures reached by the three drywells did show a fairly significant difference. Peak canister and drywell liner temperatures were reached in August 1981 for all three drywells. The two previously unused drywells responded similarly with peak canister and liner temperatures reaching 199 0 F and 158 0 F, respectively. Comparable peak temperatures for the third drywell which had previously contained spent fuel for nearly 21 months prior to the Adjacent Drywell Test reached 210 0 F for the canister and 169 0 F for the drywell liner. This difference is attributed to a decrease in soil thermal conductivity caused by the dryout of soil around the drywell used for previous spent fuel testing

  17. The low-enrichment fuel development program

    International Nuclear Information System (INIS)

    Stahl, D.

    1993-01-01

    In the 1950s and 1960s, low-power research reactors were built around the world utilized MTR-type fuel elements containing 20% enriched uranium. However, the demand for higher specific power created a need for greater uranium-235 concentrations. Early difficulties in increasing uranium content led to the substitution of highly enriched uranium in place of the 20% enriched fuel previously utilized. The highly enriched material also yielded other benefits including longer core residence time, higher specific reactivity, and somewhat lower cost. Highly enriched material then became readily available and was used for high-power reactors as well as in low-power reactors where 20% enriched material would have sufficed. The trend toward higher and higher specific power also led to the development of the dispersion-type fuels which utilized highly enriched uranium at a concentration of about 40 wt%. In the 1970's, however, concerns were raised about the proliferation resistance of fuels and fuel cycles. As a consequence, the U.S. Department of State has recently prohibited the foreign shipment of highly enriched material, except where prior contractual obligation or special merit exists. This will impact on the availability and utilization of highly enriched uranium for research and test reactor fuel. It has also stimulated development programs on fuels with higher uranium content which would allow the use of uranium of lower enrichment. The purpose of this report is to briefly describe the overall fuel-development program which is coordinated by Argonne National Laboratory for the Department of Energy, and to indicate the current and potential uranium loadings. Other reports will address the individual fuel-development activities in greater detail

  18. Nuclear fuel concept for the 21st century

    International Nuclear Information System (INIS)

    Tulenko, J.S.; Schoessow, G.

    1996-01-01

    In a previous paper, the author presented his rationale for the fuel cycle for the 21st century. This cycle, driven by both environmental and economic factors, required that the fuel should be able to operate in a range from 90 000 MWd/tonne of heavy metal and above. Such an operation would require the development of a cladding material that would not undergo waterside corrosion at these ultrahigh burnups. The University of Florida is proposing a new fuel arrangement that the authors feel meets the demands of high burnup and provides a safer fuel assembly. It is believed that the liquid-metal bond concept combined with a silicon carbide composite cladding and the collapsible fission gas plenum offers outstanding potential for ultrahigh burnup fuels while providing a potentially ultrasafe reactor operation. Efforts at various facilities are under way to determine the radiation stability of silicon carbide fuel and to fabricate SiC materials that will provide the radiation stability needed. Other parameters offer strong incentives to successfully develop silicon carbide as a cladding material

  19. Guidebook on destructive examination of water reactor fuel

    International Nuclear Information System (INIS)

    1997-01-01

    As a result of common efforts of fuel vendors, utilities and research institutes the average burnup pf design batch fuels was increased for both PWRs and BWRs and the fuel failure rate has been reduced. The previously published Guidebook on Non-Destructive Examination of Water Reactor Fuel recommended that more detailed destructive techniques are required for complete understanding of fuel performance. On the basis of contributions of the 14 participants in the ED-WARF-II CRP and proceedings of IAEA Technical Committee on Recent Developments in Post-irradiation Examination Techniques for Water Reactor Fuel this guidebook was compiled. It gives a complete survey of destructive techniques available to date worldwide. The following examination techniques are described in detailed including major principles of equipment design: microstructural studies; elemental analysis; isotopic analysis; measurement of physical properties; measurement of mechanical properties. Besides the examination techniques, methods for refabrication of experimental rods from high burnup power reactor rods as well as methods for verification of non-destructive techniques by using destructive techniques is included

  20. The Role of Lipid Metabolism in T Lymphocyte Differentiation and Survival

    Directory of Open Access Journals (Sweden)

    Duncan Howie

    2018-01-01

    Full Text Available The differentiation and effector functions of both the innate and adaptive immune system are inextricably linked to cellular metabolism. The features of metabolism which affect both arms of the immune system include metabolic substrate availability, expression of enzymes, transport proteins, and transcription factors which control catabolism of these substrates, and the ability to perform anabolic metabolism. The control of lipid metabolism is central to the appropriate differentiation and functions of T lymphocytes, and ultimately to the maintenance of immune tolerance. This review will focus on the role of fatty acid (FA metabolism in T cell differentiation, effector function, and survival. FAs are important sources of cellular energy, stored as triglycerides. They are also used as precursors to produce complex lipids such as cholesterol and membrane phospholipids. FA residues also become incorporated into hormones and signaling moieties. FAs signal via nuclear receptors and their channeling, between storage as triacyl glycerides or oxidation as fuel, may play a role in survival or death of the cell. In recent years, progress in the field of immunometabolism has highlighted diverse roles for FA metabolism in CD4 and CD8 T cell differentiation and function. This review will firstly describe the sensing and modulation of the environmental FAs and lipid intracellular signaling and will then explore the key role of lipid metabolism in regulating the balance between potentially damaging pro-inflammatory and anti-inflammatory regulatory responses. Finally the complex role of extracellular FAs in determining cell survival will be discussed.

  1. Jet Fuel Kerosene is not Immunosuppressive in Mice or Rats Following Inhalation for 28 Days

    OpenAIRE

    White, Kimber L.; DeLorme, Michael P.; Beatty, Patrick W.; Smith, Matthew J.; Peachee, Vanessa L.

    2013-01-01

    Previous reports indicated that inhalation of JP-8 aviation turbine fuel is immunosuppressive. However, in some of those studies, the exposure concentrations were underestimated, and percent of test article as vapor or aerosol was not determined. Furthermore, it is unknown whether the observed effects are attributable to the base hydrocarbon fuel (jet fuel kerosene) or to the various fuel additives in jet fuels. The present studies were conducted, in compliance with Good Laboratory Practice (...

  2. An evaluation of once-through homogeneous thorium fuel cycle for light water reactors

    International Nuclear Information System (INIS)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.

    2002-01-01

    The other ways enhancing the economic potential of thorium fuel has been assessed ; the utilization of lower enriched uranium in thorium-uranium fuel, duplex thorium fuel concept, thorium utilization in the mixed core with uranium fuel assembly and thorium blanket utilization in the uranium core. The fuel economics of the proposed ways of thorium fuel increased compared to the previous homogeneous thorium fuel cycle. Compared to uranium fuel cycle, however, they do not show any economic incentives. From the view of proliferation resistance potential, thorium fuel option has the advantage to reduce the inventory of plutonium production. Any of proposed thorium options are less economical than uranium fuel option, the thorium fuel option has the potential to be utilized in the future for the sake of the effective consumption of excessive plutonium and the preparation against the using up of uranium resource

  3. Advanced fuel technology and performance: Current status and trends

    International Nuclear Information System (INIS)

    1990-11-01

    During the last years the Nuclear Fuel Cycle and Waste Management Division of the IAEA has been giving great attention to the collection, analysis and exchange of information in the field of reactor fuel technology. Most of these activities are being conducted in the framework of the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT). The purpose of this Advisory Group Meeting on Advanced Fuel Technology and Performance was to update and to continue the previous work, and to review the experience of advanced fuel technology, its performance with regard to all types of reactors and to outline the future trends on the basis of national experience and discussions during the meeting. As a result of the meeting a Summary Report was prepared which reflected the status of the advanced nuclear fuel technology up to 1990. The 10 papers presented by participants of this meeting are also published here. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  4. Constraining Genome-Scale Models to Represent the Bow Tie Structure of Metabolism for 13C Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Tyler W. H. Backman

    2018-01-01

    Full Text Available Determination of internal metabolic fluxes is crucial for fundamental and applied biology because they map how carbon and electrons flow through metabolism to enable cell function. 13 C Metabolic Flux Analysis ( 13 C MFA and Two-Scale 13 C Metabolic Flux Analysis (2S- 13 C MFA are two techniques used to determine such fluxes. Both operate on the simplifying approximation that metabolic flux from peripheral metabolism into central “core” carbon metabolism is minimal, and can be omitted when modeling isotopic labeling in core metabolism. The validity of this “two-scale” or “bow tie” approximation is supported both by the ability to accurately model experimental isotopic labeling data, and by experimentally verified metabolic engineering predictions using these methods. However, the boundaries of core metabolism that satisfy this approximation can vary across species, and across cell culture conditions. Here, we present a set of algorithms that (1 systematically calculate flux bounds for any specified “core” of a genome-scale model so as to satisfy the bow tie approximation and (2 automatically identify an updated set of core reactions that can satisfy this approximation more efficiently. First, we leverage linear programming to simultaneously identify the lowest fluxes from peripheral metabolism into core metabolism compatible with the observed growth rate and extracellular metabolite exchange fluxes. Second, we use Simulated Annealing to identify an updated set of core reactions that allow for a minimum of fluxes into core metabolism to satisfy these experimental constraints. Together, these methods accelerate and automate the identification of a biologically reasonable set of core reactions for use with 13 C MFA or 2S- 13 C MFA, as well as provide for a substantially lower set of flux bounds for fluxes into the core as compared with previous methods. We provide an open source Python implementation of these algorithms at https://github.com/JBEI/limitfluxtocore.

  5. The search for putative unifying genetic factors for components of the metabolic syndrome

    DEFF Research Database (Denmark)

    Sjögren, M; Lyssenko, V; Jonsson, Anna Elisabet

    2008-01-01

    The metabolic syndrome is a cluster of factors contributing to increased risk of cardiovascular disease and type 2 diabetes but unifying mechanisms have not been identified. Our aim was to study whether common variations in 17 genes previously associated with type 2 diabetes or components...... of the metabolic syndrome and variants in nine genes with inconsistent association with at least two components of the metabolic syndrome would also predict future development of components of the metabolic syndrome, individually or in combination....

  6. Study of a plutonium oxide fuel inhalation case

    International Nuclear Information System (INIS)

    Foster, P.P.

    1991-01-01

    Lung retention, urine excretion and faecal excretion levels of plutonium fuel have been measured for an employee following a known inhalation. The employee has had no subsequent contact with the fuel material. The retention and excretion patterns are, however, complicated by a long previous history of suspected small exposures. The monitoring data are presented together with an interpretation of the data which can be compared directly with single intake retention and excretion function as given in ICRP 54. (author)

  7. Chronic fuel oil toxicity in American mink (Mustela vison): systemic and hematological effects of ingestion of a low-concentration of bunker C fuel oil

    International Nuclear Information System (INIS)

    Schwartz, Julie A.; Aldridge, Brian M.; Lasley, Bill L.; Snyder, Paul W.; Stott, Jeff L.; Mohr, F. Charles

    2004-01-01

    Petroleum oil enters the coastal marine environment through various sources; marine mammals such as sea otters that inhabit this environment may be exposed to low concentrations of petroleum hydrocarbons through ingestion of contaminated prey. The inability to perform controlled studies in free-ranging animals hinders investigations of the effects of chronic petroleum oil exposure on sea otter morbidity and mortality, necessitating the development of a reliable laboratory model. We examined the effects of oral exposure to 500 ppm bunker C fuel oil over 113-118 days on American mink, a species phylogenetically related to the sea otter. Hematological parameters and organs were examined for fuel oil-associated changes. Hepatic cytochrome P4501A1 mRNA expression and fecal cortisol concentrations were also measured. Ingestion of fuel oil was associated with a decrease in erythrocyte count, hemoglobin concentration (Hgb), hematocrit (HCT), and an increase in mean corpuscular volume (MCV). Total leukocytes were elevated in the fuel oil group from increases in neutrophils, lymphocytes, and monocytes. Significant interactions between fuel oil and antigen challenge were found for erythrocyte parameters, monocyte and lymphocyte counts. Liver and adrenal weights were increased although mesenteric lymph node weights were decreased in the fuel oil group. Hepatic cytochrome P4501A1 mRNA was elevated in the fuel oil group. Fecal cortisol concentration did not vary between the two groups. Our findings show that fuel oil exposure alters circulating leukocyte numbers, erythrocyte homeostasis, hepatic metabolism and adrenal physiology and establish a framework to use mink as a model for sea otters in studying the systemic effects of marine contaminants

  8. Spent Nuclear Fuel Alternative Technology Decision Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  9. Effects of independently altering body weight and body mass on the metabolic cost of running.

    Science.gov (United States)

    Teunissen, Lennart P J; Grabowski, Alena; Kram, Rodger

    2007-12-01

    The metabolic cost of running is substantial, despite the savings from elastic energy storage and return. Previous studies suggest that generating vertical force to support body weight and horizontal forces to brake and propel body mass are the major determinants of the metabolic cost of running. In the present study, we investigated how independently altering body weight and body mass affects the metabolic cost of running. Based on previous studies, we hypothesized that reducing body weight would decrease metabolic rate proportionally, and adding mass and weight would increase metabolic rate proportionally. Further, because previous studies show that adding mass alone does not affect the forces generated on the ground, we hypothesized that adding mass alone would have no substantial effect on metabolic rate. We manipulated the body weight and body mass of 10 recreational human runners and measured their metabolic rates while they ran at 3 m s(-1). We reduced weight using a harness system, increased mass and weight using lead worn about the waist, and increased mass alone using a combination of weight support and added load. We found that net metabolic rate decreased in less than direct proportion to reduced body weight, increased in slightly more than direct proportion to added load (added mass and weight), and was not substantially different from normal running with added mass alone. Adding mass alone was not an effective method for determining the metabolic cost attributable to braking/propelling body mass. Runners loaded with mass alone did not generate greater vertical or horizontal impulses and their metabolic costs did not substantially differ from those of normal running. Our results show that generating force to support body weight is the primary determinant of the metabolic cost of running. Extrapolating our reduced weight data to zero weight suggests that supporting body weight comprises at most 74% of the net cost of running. However, 74% is probably an

  10. The energy metabolism of megacities

    International Nuclear Information System (INIS)

    Facchini, Angelo; Kennedy, Chris; Stewart, Iain; Mele, Renata

    2017-01-01

    Highlights: • Energy metabolism leads to a better management of energy use in megacities. • Insights on strategies to improve energy efficiency and reduce resource consumption. • We find a regionalization of energy flows and sectoral energy use. • Scaling law for energy Vs density suggests strategies for compact cities planning. • Supports development of models to reduce GHG emissions and increase resilience. - Abstract: Due to their sheer size and complexity, megacities are extreme examples in which both negative and positive aspects of urbanization co-exist and are amplified. Especially in emerging countries they are becoming the dominant paradigm of the future urbanization, representing a sustainability challenge both from the point of view of energy and resource consumption, and from the point of view of climate change adaptation and mitigation. In this paper we compare the energy metabolism in 27 of the world’s megacities including details of mobile and stationary energy consumption patterns, fuels used, as well as end-use patterns and electricity generation mix. Our results show that per capita total energy consumption scales with urban population density according to a power law characterized by the universal −3/4 scaling, pointing out that compact cities are more energy efficient with respect to dispersed cities. By comparing energy sources and sectoral end use, also focusing on electricity use and generation source, we found a significant regionalization of energy metabolism, and we discuss the implication for resilience, infrastructure planning, GHG emissions, and policies for infrastructure decarbonization. The comparison of the energy metabolism can lead to a more appropriate management of energy use patterns and electricity generation mix in megacities, giving insights on strategies to improve urban energy efficiency and reducing environmental pressure of megacities.

  11. Associations between APOE variants and metabolic traits and the impact of psychological stress

    DEFF Research Database (Denmark)

    Kring, Sofia Inez Iqbal; Barefoot, John; Brummett, Berverly H.

    2011-01-01

    In a previous study, we observed that associations between APOE rs439401 and metabolic traits were moderated by chronic stress. Thus, in a population of stressed and non-stressed Danish men, we examined whether associations between APOE rs439401 and a panel of metabolic quantitative traits, all m...... metabolic traits which may lead to T2D and CVD were moderated by psychological stress....

  12. Acute fatal metabolic complications in alkaptonuria.

    Science.gov (United States)

    Davison, A S; Milan, A M; Gallagher, J A; Ranganath, L R

    2016-03-01

    Alkaptonuria (AKU) is a rare inherited metabolic disorder of tyrosine metabolism that results from a defect in an enzyme called homogentisate 1,2-dioxygenase. The result of this is that homogentisic acid (HGA) accumulates in the body. HGA is central to the pathophysiology of this disease and the consequences observed; these include spondyloarthropathy, rupture of ligaments/muscle/tendons, valvular heart disease including aortic stenosis and renal stones. While AKU is considered to be a chronic progressive disorder, it is clear from published case reports that fatal acute metabolic complications can also occur. These include oxidative haemolysis and methaemoglobinaemia. The exact mechanisms underlying the latter are not clear, but it is proposed that disordered metabolism within the red blood cell is responsible for favouring a pro-oxidant environment that leads to the life threatening complications observed. Herein the role of red blood cell in maintaining the redox state of the body is reviewed in the context of AKU. In addition previously reported therapeutic strategies are discussed, specifically with respect to why reported treatments had little therapeutic effect. The potential use of nitisinone for the management of patients suffering from the acute metabolic decompensation in AKU is proposed as an alternative strategy.

  13. A new coupled system for BWR nuclear fuel management

    International Nuclear Information System (INIS)

    Castillo, A.; Ortiz-Servin, J.J.; Montes-Tadeo, J.L.; Perusquia, R.; Rizos, R.L.M.

    2015-01-01

    In this work, a system to solve four stages of the fuel management problem is showed.The system uses different heuristic techniques to solve each stage of that area, and this problem is solved in a coupled way. Considered problems correspond to the following designs: fuel lattice, fuel assembly, fuel reload and control rod patterns. Even though, each stage of the problem can have its own objective function, the complete problem was solved using a multi-objective function. The solution strategy is to solve each stage of design in an iterative process, taking into account previous results for the next stage, until to achieve a complete solution. The solution strategy to solve the coupled problem is the following: the first solved stage is the fuel lattice design, the second one is fuel assembly design, finally an internal loop between both fuel reload design and control rod pattern design is carried out.For this internal loop, a seed reload using Haling principle is generated. The obtained results showed the advantage to solve the whole problem in a coupled way. (author)

  14. Framatome experience in fuel assembly repair and reconstitution

    International Nuclear Information System (INIS)

    Leroy, G.

    1998-01-01

    Since 1985, FRAMATOME has build up extensive experience in the poolside replacement of fuel rods for repair or R and D purposes and the reconstitution of fuel assemblies (i.e. replacement of a damaged structure to enable reuse of the fuel rod bundle). This experience feedback enables FRAMATOME to improve in steps the technical process and the equipment used for the above operations in order to enhance their performance in terms of setup, flexibility, operating time and safety. In parallel, the fuel assembly and fuel rod designs have been modified to meet the same goals. The paper will describe: - the overall experience of FRAMATOME with UO 2 fuel as well as MOX fuel; the usual technical process used for fuel replacement and the corresponding equipment set; - the usual technical process for fuel assembly reconstitution and the corresponding equipment set. This process is rather unique since it takes profit of the specific FRAMATOME fuel assembly design with removable top and bottom nozzles, so that fuel rods insertion by pulling through in the new structure is similar to what is done in the manufacturing plant; - the usual inspections done on the fuel rods and/or the fuel assembly; - the design of the new reconstitution equipment (STAR) compared with the previous one as well as their comparative performance. The final section will be a description of the alternative reconstitution process and equipment used by FRAMATOME in reactors in which the process cannot be used for several reasons such as compatibility or administrative authorization. This process involves the pushing of fuel rods into the new structure, requiring further precautions. (author)

  15. American Society for Metabolic and Bariatric Surgery estimation of metabolic and bariatric procedures performed in the United States in 2016.

    Science.gov (United States)

    English, Wayne J; DeMaria, Eric J; Brethauer, Stacy A; Mattar, Samer G; Rosenthal, Raul J; Morton, John M

    2018-03-01

    Bariatric surgery, despite being the most successful long-lasting treatment for morbid obesity, remains underused as only approximately 1% of all patients who qualify for surgery actually undergo surgery. To determine if patients in need are receiving appropriate therapy, the American Society for Metabolic and Bariatric Surgery created a Numbers Taskforce to specify annual rate of use for obesity treatment interventions. The objective of this study was to determine metabolic and bariatric procedure trends since 2011 and to provide the best estimate of the number of procedures performed in the United States in 2016. United States. We reviewed data from the Metabolic and Bariatric Surgery Accreditation and Quality Improvement Program, National Surgical Quality Improvement Program, Bariatric Outcomes Longitudinal Database, and Nationwide Inpatient Sample. In addition, data from industry and outpatient centers were used to estimate outpatient center activity. Data from 2016 were compared with the previous 5 years of data. Compared with 2015, the total number of metabolic and bariatric procedures performed in 2016 increased from approximately 196,000 to 216,000. The sleeve gastrectomy trend is increasing, and it continues to be the most common procedure. The gastric bypass and gastric band trends continued to decrease as seen in previous years. The percentage of revision procedures and biliopancreatic diversion with duodenal switch procedures increased slightly. Finally, intragastric balloons placement emerged as a significant contributor to the cumulative total number of procedures performed. There is increasing use of metabolic and bariatric procedures performed in the United States from 2011 to 2016, with a nearly 10% increase noted from 2015 to 2016. Copyright © 2018 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  16. RERTR program progress in qualifying reduced-enrichment fuels

    International Nuclear Information System (INIS)

    Snelgrove, James L.

    1983-01-01

    In order to provide the technical means for reducing the enrichment of uranium used to fuel research and test reactors, the U.S. Reduced Enrichment Research and Test Reactor (RERTR) Program has been engaged in the development and testing of higher-uranium-density fuels than had been used previously. This fuel development effort included work to increase the density of fuels which were being used at the time the Program began and work on a fuel with the potential for much higher density. The ultimate goal of the fuel development and testing phase of the Program is to 'qualify' the fuel for use. A fuel is considered qualified when a sufficient data base for the fuel exists that it can be approved by regulating bodies for use in reactors. To convert a core to the use of reduced-enrichment fuel it is necessary to show that the core will behave properly during normal and off-normal operating conditions and to show that the fuel will behave properly to a reasonable margin beyond the conditions expected during normal operation. It is this latter area that this paper will address. The main characteristics to be considered in evaluating the performance of a fuel are its swelling, its blister-threshold temperature, and its metallurgical appearance. Data for the qualification of the reduced-enrichment fuels being developed by the RERTR Program are obtained from examination of miniature fuel plates (miniplates) which successfully pass the irradiation screening tests and from examinations of full-sized fuel elements. This paper will summarize the miniplate data reported in other papers presented during this meeting and will give the status of full-sized element irradiations. Finally, the current status of qualification of the various fuel types will be discussed and some projections of the future will be given

  17. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation.

    Science.gov (United States)

    Evans, Mark; Cogan, Karl E; Egan, Brendan

    2017-05-01

    Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β-hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post-exercise recovery period, and the ability to utilise ketone bodies is higher in exercise-trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III-reducer Rhodoferax ferrireducens

    Directory of Open Access Journals (Sweden)

    Daugherty Sean

    2009-09-01

    Full Text Available Abstract Background Rhodoferax ferrireducens is a metabolically versatile, Fe(III-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies. Results The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress. Conclusion This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms.

  19. Fuel loading and control rod patterns optimization in a BWR using tabu search

    International Nuclear Information System (INIS)

    Castillo, Alejandro; Ortiz, Juan Jose; Montes, Jose Luis; Perusquia, Raul

    2007-01-01

    This paper presents the QuinalliBT system, a new approach to solve fuel loading and control rod patterns optimization problem in a coupled way. This system involves three different optimization stages; in the first one, a seed fuel loading using the Haling principle is designed. In the second stage, the corresponding control rod pattern for the previous fuel loading is obtained. Finally, in the last stage, a new fuel loading is created, starting from the previous fuel loading and using the corresponding set of optimized control rod patterns. For each stage, a different objective function is considered. In order to obtain the decision parameters used in those functions, the CM-PRESTO 3D steady-state reactor core simulator was used. Second and third stages are repeated until an appropriate fuel loading and its control rod pattern are obtained, or a stop criterion is achieved. In all stages, the tabu search optimization technique was used. The QuinalliBT system was tested and applied to a real BWR operation cycle. It was found that the value for k eff obtained by QuinalliBT was 0.0024 Δk/k greater than that of the reference cycle

  20. Response of unirradiated and irradiated PWR fuel rods tested under power-cooling-mismatch conditions

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Quapp, W.J.; Martinson, Z.R.; McCardell, R.K.; Mehner, A.S.

    1978-01-01

    This report summarizes the results from the single-rod power-cooling-mismatch (PCM) and irradiation effects (IE) tests conducted to date in the Power Burst Facility (PBF) at the U.S. DOE Idaho National Engineering Laboratory. This work was performed for the U.S. NRC under contact to the Department of Energy. These tests are part of the NRC Fuel Behavior Program, which is designed to provide data for the development and verification of analytical fuel behavior models that are used to predict fuel response to abnormal or postulated accident conditions in commercial LWRs. The mechanical, chemical and thermal response of both previously unirradiated and previously irradiated LWR-type fuel rods tested under power-cooling-mismatch condition is discussed. A brief description of the test designs is presented. The results of the PCM thermal-hydraulic studies are summarized. Primary emphasis is placed on the behavior of the fuel and cladding during and after stable film boiling. (orig.) [de

  1. Preliminary Calculation on a Spent Fuel Pool Accident using GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaehwan; Choi, Yu Jung; Hong, Tae Hyub; Kim, Hyeong-Taek [KHNP-CRI, Daejeon (Korea, Republic of)

    2015-10-15

    The probability of an accident happening at the spent fuel pool was believed to be quite low until the 2011 Fukushima accident occurred. Notably, large amount of spent fuel are normally stored in the spent fuel pool for a long time compared to the amount of fuel in the reactor core and the total heat released from the spent fuel is high enough to boil the water of the spent fuel pool when the cooling system does not operate. In addition, the enrichment and the burnup of the fuel have both increased in the past decade and heat generation from the spent fuel thereby has also increased. The failure of the cooling system at the spent fuel pool (hereafter, a loss-of-cooling accident) is one of the principal hypothetical causes of an accident that could occur at the spent fuel pool. In this paper, the preliminary calculation of a loss-of-cooling accident was performed. In this paper, the preliminary calculation of a loss-of cooling accident was performed with GOTHIC. The calculation results show boiling away of water in the spent fuel pool due to the loss-of-cooling accident and similar thermal performance of the spent fuel pool with previous research results.

  2. Systems-level computational modeling demonstrates fuel selection switching in high capacity running and low capacity running rats

    Science.gov (United States)

    Qi, Nathan R.

    2018-01-01

    High capacity and low capacity running rats, HCR and LCR respectively, have been bred to represent two extremes of running endurance and have recently demonstrated disparities in fuel usage during transient aerobic exercise. HCR rats can maintain fatty acid (FA) utilization throughout the course of transient aerobic exercise whereas LCR rats rely predominantly on glucose utilization. We hypothesized that the difference between HCR and LCR fuel utilization could be explained by a difference in mitochondrial density. To test this hypothesis and to investigate mechanisms of fuel selection, we used a constraint-based kinetic analysis of whole-body metabolism to analyze transient exercise data from these rats. Our model analysis used a thermodynamically constrained kinetic framework that accounts for glycolysis, the TCA cycle, and mitochondrial FA transport and oxidation. The model can effectively match the observed relative rates of oxidation of glucose versus FA, as a function of ATP demand. In searching for the minimal differences required to explain metabolic function in HCR versus LCR rats, it was determined that the whole-body metabolic phenotype of LCR, compared to the HCR, could be explained by a ~50% reduction in total mitochondrial activity with an additional 5-fold reduction in mitochondrial FA transport activity. Finally, we postulate that over sustained periods of exercise that LCR can partly overcome the initial deficit in FA catabolic activity by upregulating FA transport and/or oxidation processes. PMID:29474500

  3. The effects of anticholinergic drugs on regional cerebral blood flow, and oxygen metabolism in previously untreated patients with Parkinson`s disease

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Satoko; Takahashi, Satoshi; Yonezawa, Hisashi; Sato, Yoshitomo [Iwate Medical Univ., Morioka (Japan). School of Medicine

    1998-12-01

    Regional cerebral blood flow (rCBF) and oxygen metabolism (rCMRO{sub 2}) were measured using the steady-state {sup 15}O technique and positron emission tomography (PET) in six previously untreated patients with Parkinson`s disease before and after trihexyphenidyl (THP) treatment. The patients comprised of 4 men and 2 women with Hoehn-Yahr stage II-III. Their ages at the onset of the study ranged from 46 to 57 years (mean{+-}SD, 51.8{+-}3.7) and the duration of the illness ranged from 10 to 48 months (mean{+-}SD, 28.8{+-}15.5). The PET study, assessments of the disability and cognitive function were undergone twice. The first time assessments were done was when the patients were not receiving any drugs, and the second time was one to three months after administration of 6 mg THP. All patients showed clinical improvement after THP treatment. The mean disability score of Unified Parkinson`s Disease Rating Scale decreased from 35.1 (SD{+-}11.3) to 25.7 (SD{+-}11.6). The cognitive function assessed by Hasegawa`s dementia rating scale-revised, Mini-Mental State Examination, Wechsler Adult Intelligence Scale-Revised, and Wechsler Memory Scale-Revised, were not significantly different before and after the THP treatment. After the THP treatment, rCBF and rCMRO{sub 2} decreased significantly in the striatum (about 15%) and all cerebral cortices (about 10%) on both sides contralateral and ipsilateral to the predominantly symptomatic limbs. We conclude that an anticholinergic THP decreases the rCBF and rCMRO{sub 2} significantly in the cerebral cortices without cognitive impairment in early untreated patients with Parkinson`s disease. (author)

  4. Fatty acids from diet and microbiota regulate energy metabolism [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joe Alcock

    2015-09-01

    Full Text Available A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system.

  5. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  6. Out-of-core nuclear fuel cycle optimization utilizing an engineering workstation

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Comes, S.A.

    1986-01-01

    Within the past several years, rapid advances in computer technology have resulted in substantial increases in their performance. The net effect is that problems that could previously only be executed on mainframe computers can now be executed on micro- and minicomputers. The authors are interested in developing an engineering workstation for nuclear fuel management applications. An engineering workstation is defined as a microcomputer with enhanced graphics and communication capabilities. Current fuel management applications range from using workstations as front-end/back-end processors for mainframe computers to completing fuel management scoping calculations. More recently, interest in using workstations for final in-core design calculations has appeared. The authors have used the VAX 11/750 minicomputer, which is not truly an engineering workstation but has comparable performance, to complete both in-core and out-of-core fuel management scoping studies. In this paper, the authors concentrate on our out-of-core research. While much previous work in this area has dealt with decisions concerned with equilibrium cycles, the current project addresses the more realistic situation of nonequilibrium cycles

  7. High temperature transient deformation of mixed oxide fuels

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1986-01-01

    The purpose of this paper is to present recent experimental results on fuel creep under transient conditions at high temperatures. The effect of temperature, stress, heating rate, density and grain size were considered. An empirical formulation is derived for the relationship between strain, stress, temperature and heating rate. This relationship provides a means for incorporating stress relief into the analysis of fuel-cladding interaction during an overpower transient. The effect of sample density and initial grain size is considered by varying the sample parameters. Previously derived steady-state creep relationships for the high temperature creep of mixed oxide fuel were combined with the time dependency of creep found for UO 2 to calculate a transient creep relationship for mixed oxide fuel. These calculated results were found to be in good agreement with the measured high temperature transient creep results

  8. Enzyme clustering accelerates processing of intermediates through metabolic channeling

    Science.gov (United States)

    Castellana, Michele; Wilson, Maxwell Z.; Xu, Yifan; Joshi, Preeti; Cristea, Ileana M.; Rabinowitz, Joshua D.; Gitai, Zemer; Wingreen, Ned S.

    2015-01-01

    We present a quantitative model to demonstrate that coclustering multiple enzymes into compact agglomerates accelerates the processing of intermediates, yielding the same efficiency benefits as direct channeling, a well-known mechanism in which enzymes are funneled between enzyme active sites through a physical tunnel. The model predicts the separation and size of coclusters that maximize metabolic efficiency, and this prediction is in agreement with previously reported spacings between coclusters in mammalian cells. For direct validation, we study a metabolic branch point in Escherichia coli and experimentally confirm the model prediction that enzyme agglomerates can accelerate the processing of a shared intermediate by one branch, and thus regulate steady-state flux division. Our studies establish a quantitative framework to understand coclustering-mediated metabolic channeling and its application to both efficiency improvement and metabolic regulation. PMID:25262299

  9. Brain glucose and acetoacetate metabolism: a comparison of young and older adults.

    Science.gov (United States)

    Nugent, Scott; Tremblay, Sebastien; Chen, Kewei W; Ayutyanont, Napatkamon; Roontiva, Auttawut; Castellano, Christian-Alexandre; Fortier, Melanie; Roy, Maggie; Courchesne-Loyer, Alexandre; Bocti, Christian; Lepage, Martin; Turcotte, Eric; Fulop, Tamas; Reiman, Eric M; Cunnane, Stephen C

    2014-06-01

    The extent to which the age-related decline in regional brain glucose uptake also applies to other important brain fuels is presently unknown. Ketones are the brain's major alternative fuel to glucose, so we developed a dual tracer positron emission tomography protocol to quantify and compare regional cerebral metabolic rates for glucose and the ketone, acetoacetate. Twenty healthy young adults (mean age, 26 years) and 24 healthy older adults (mean age, 74 years) were studied. In comparison with younger adults, older adults had 8 ± 6% (mean ± SD) lower cerebral metabolic rates for glucose in gray matter as a whole (p = 0.035), specifically in several frontal, temporal, and subcortical regions, as well as in the cingulate and insula (p ≤ 0.01, false discovery rate correction). The effect of age on cerebral metabolic rates for acetoacetate in gray matter did not reach significance (p = 0.11). Rate constants (min(-1)) of glucose (Kg) and acetoacetate (Ka) were significantly lower (-11 ± 6%; [p = 0.005], and -19 ± 5%; [p = 0.006], respectively) in older adults compared with younger adults. There were differential effects of age on Kg and Ka as seen by significant interaction effects in the caudate (p = 0.030) and post-central gyrus (p = 0.023). The acetoacetate index, which expresses the scaled residuals of the voxel-wise linear regression of glucose on ketone uptake, identifies regions taking up higher or lower amounts of acetoacetate relative to glucose. The acetoacetate index was higher in the caudate of young adults when compared with older adults (p ≤ 0.05 false discovery rate correction). This study provides new information about glucose and ketone metabolism in the human brain and a comparison of the extent to which their regional use changes during normal aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Oxide thickness measurement for monitoring fuel performance at high burnup

    International Nuclear Information System (INIS)

    Jaeger, M.A.; Van Swam, L.F.P.; Brueck-Neufeld, K.

    1991-01-01

    For on-site monitoring of the fuel performance at high burnup, Advanced Nuclear Fuels uses the linear scan eddy current method to determine the oxide thickness of irradiated Zircaloy fuel cans. Direct digital data acquisition methods are employed to collect the data on magnetic storage media. This field-proven methodology allows oxide thickness measurements and rapid interpretation of the data during the reactor outages and makes it possible to immediately reinsert the assemblies for the next operating cycle. The accuracy of the poolside measurements and data acquisition/interpretation techniques have been verified through hot cell metallographic measurements of rods previously measured in the fuel pool. The accumulated data provide a valuable database against which oxide growth models have been benchmarked and allow for effective monitoring of fuel performance. (orig.) [de

  11. Why is walker-assisted gait metabolically expensive?

    Science.gov (United States)

    Priebe, Jonathon R; Kram, Rodger

    2011-06-01

    Walker-assisted gait is reported to be ∼200% more metabolically expensive than normal bipedal walking. However, previous studies compared different walking speeds. Here, we compared the metabolic power consumption and basic stride temporal-spatial parameters for 10 young, healthy adults walking without assistance and using 2-wheeled (2W), 4-wheeled (4W) and 4-footed (4F) walker devices, all at the same speed, 0.30m/s. We also measured the metabolic power demand for walking without any assistive device using a step-to gait at 0.30m/s, walking normally at 1.25m/s, and for repeated lifting of the 4F walker mimicking the lifting pattern used during 4F walker-assisted gait. Similar to previous studies, we found that the cost per distance walked was 217% greater with a 4F walker at 0.30m/s compared to unassisted, bipedal walking at 1.25m/s. Compared at the same speed, 0.30m/s, using a 4F walker was still 82%, 74%, and 55% energetically more expensive than walking unassisted, with a 4W walker and a 2W walker respectively. The sum of the metabolic cost of step-to walking plus the cost of lifting itself was equivalent to the cost of walking with a 4F walker. Thus, we deduce that the high cost of 4F walker assisted gait is due to three factors: the slow walking speed, the step-to gait pattern and the repeated lifting of the walker. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Constant strength fuel-fuel cell

    International Nuclear Information System (INIS)

    Vaseen, V.A.

    1980-01-01

    A fuel cell is an electrochemical apparatus composed of both a nonconsumable anode and cathode; and electrolyte, fuel oxidant and controls. This invention guarantees the constant transfer of hydrogen atoms and their respective electrons, thus a constant flow of power by submergence of the negative electrode in a constant strength hydrogen furnishing fuel; when said fuel is an aqueous absorbed hydrocarbon, such as and similar to ethanol or methnol. The objective is accomplished by recirculation of the liquid fuel, as depleted in the cell through specific type membranes which pass water molecules and reject the fuel molecules; thus concentrating them for recycle use

  13. Does a renewable fuel standard for biofuels reduce climate costs?

    Energy Technology Data Exchange (ETDEWEB)

    Greaker, Mads; Hoel, Michael; Rosendahl, Knut Einar

    2012-07-01

    Recent contributions have questioned whether biofuels policies actually lead to emissions reductions, and thus lower climate costs. In this paper we make two contributions to the literature. First, we study the market effects of a renewable fuel standard. Opposed to most previous studies we model the supply of fossil fuels taking into account that fossil fuels is a non-renewable resource. Second, we model emissions from land use change explicitly when we evaluate the climate effects of the renewable fuel standard. We find that extraction of fossil fuels most likely will decline initially as a consequence of the standard. Thus, if emissions from biofuels are sufficiently low, the standard will have beneficial climate effects. Furthermore, we find that the standard tends to reduce total fuel (i.e., oil plus biofuels) consumption initially. Hence, even if emissions from biofuels are substantial, climate costs may be reduced. Finally, if only a subset of countries introduce a renewable fuel standard, there will be carbon leakage to the rest of the world. However, climate costs may decline as global extraction of fossil fuels is postponed.(Author)

  14. Design support document for the K Basins Vertical Fuel Handling Tools

    International Nuclear Information System (INIS)

    Bridges, A.E.

    1995-01-01

    The purpose of this document is to provide the design support information for the Vertical Fuel Handling Tools, developed for the removal of N Reactor fuel elements from their storage canisters in the K Basins storage pool and insertion into the Single Fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N Reactor fuel elements is part of the overall characterization effort. These new hand tools are required since previous fuel movement has involved grasping the fuel in a horizontal position. These tools are required to lift an element vertically from the storage canister. Additionally, a Mark II storage canister Lip Seal Protector was designed and fabricated for use during fuel retrieval. This device was required to prevent damage to the canister lip should a fuel element accidentally be dropped during its retrieval, using the handling tools. Supporting documentation for this device is included in this document

  15. High-conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1976-01-01

    The high-temperature reactors using graphite as structural core material and helium as coolant represent thermal reactor designs with a very high degree of neutron economy which, when using the thorium fuel cycle, offer, at least theoretically, the possibility of thermal breeding. Though this was already known from previous studies, the economic climate at that time was such that the achievement of high conversion ratios conflicted with the incentive for low fuel cycle costs. Consequently, thorium cycle conversion ratios of around 0.6 were found optimum, and the core and fuel element layout followed from the economic ground rules. The recent change in attitude, brought about partly by the slow process of realization of the limits to the earth's accessible high-grade uranium ore resources and more dramatically by the oil crisis, makes it necessary to concentrate attention again on the high conversion fuel cycles. This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilization of the high conversion potential are compared with others that aim at easier reprocessing and the ''environmental'' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (author)

  16. Advanced combinational microfluidic multiplexer for fuel cell reactors

    International Nuclear Information System (INIS)

    Lee, D W; Kim, Y; Cho, Y-H; Doh, I

    2013-01-01

    An advanced combinational microfluidic multiplexer capable to address multiple fluidic channels for fuel cell reactors is proposed. Using only 4 control lines and two different levels of control pressures, the proposed multiplexer addresses up to 19 fluidic channels, at least two times larger than the previous microfluidic multiplexers. The present multiplexer providing high control efficiency and simple structure for channel addressing would be used in the application areas of the integrated microfluidic systems such as fuel cell reactors and dynamic pressure generators

  17. Back end of the fuel cycle

    International Nuclear Information System (INIS)

    Wolfe, B.; Lambert, R.W.

    1975-01-01

    At present, that portion of the nuclear fuel cycle involving reprocessing, waste management, and mixed-oxide fuel fabrication is in an unsettled state. Government regulatory requirements with respect to all aspects of the back end of the fuel cycle are still being formulated, and there is little positive experience on the operation of commercial reprocessing or mixed-oxide fabrication plants. In view of this unsettled situation, it will be difficult to meet the reprocessing and mixed-oxide fabrication needs of the next decade in the pattern previously anticipated. The costs in the back end of the fuel cycle are much higher than had been anticipated several years ago, a situation similar to that of almost all large endeavors in this country. On the other hand, the added costs are small relative to total power costs and do not affect the economic advantage of nuclear power as compared to other power sources. A rough economic analysis indicates that the question for the back end of the fuel cycle has changed from one of optimizing profitability to one of determining the most economic disposition of spent fuel. Long-term spent fuel storage is a practical and economically acceptable way to provide time for determining a sound course of action for the back end of the fuel cycle. Indeed, if one could count on a breeder economy before the end of the century, one possible course of action is to store light-water fuel until the plutonium can be used in breeders. However, for philosophical as well as practical reasons, it is important that the uncertainties in the course of action should be resolved as quickly as possible. Long-term storage should not be an excuse to delay resolution of the basic questions. (U.S.)

  18. Photoperiodic regulation of glycogen metabolism, glycolysis, and glutamine synthesis in tanycytes of the Siberian hamster suggests novel roles of tanycytes in hypothalamic function.

    Science.gov (United States)

    Nilaweera, Kanishka; Herwig, Annika; Bolborea, Matei; Campbell, Gill; Mayer, Claus D; Morgan, Peter J; Ebling, Francis J P; Barrett, Perry

    2011-11-01

    The objective of this study is to investigate the impact of photoperiod on the temporal and spatial expression of genes involved in glucose metabolism in the brain of the seasonal mammal Phodopus sungorus (Siberian hamster). In situ hybridization was performed on brain sections obtained from male hamsters held in long photoperiod (high body weight and developed testes) or short photoperiod (reduced body weight with testicular regression). This analysis revealed upregulation in expression of genes involved in glycogen and glucose metabolism in short photoperiod and localized to the tanycyte layer of the third ventricle. On the basis of these data and a previously identified photoperiod-dependent increase in activity of neighboring hypothalamic neurons, we hypothesized that the observed expression changes may reflect alteration in either metabolic fuel or precursor neurotransmitter supply to surrounding neurons. Gene expression analysis was performed for genes involved in lactate and glutamate transport. This analysis showed that the gene for the lactate transporter MCT2 and glutamate transporter GLAST was decreased in the tanycyte layer in short photoperiod. Expression of mRNA for glutamine synthetase, the final enzyme in the synthesis of the neuronal neurotransmitter precursor, glutamine, was also decreased in short photoperiod. These data suggest a role for tanycytes in modulating glutamate concentrations and neurotransmitter supply in the hypothalamic environment. Copyright © 2011 Wiley-Liss, Inc.

  19. Co-Optimization of Fuels and Engines

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John

    2016-03-24

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energy savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the project.

  20. Direct fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Farooque, M. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  1. Co-Optimization of Fuels and Engines

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John

    2016-04-11

    The Co-Optimization of Fuels and Engines (Co-Optima) initiative is a new DOE initiative focused on accelerating the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines. The simultaneous fuels and vehicles research and development (R&D) are designed to deliver maximum energy savings, emissions reduction, and on-road vehicle performance. The initiative's integrated approach combines the previously independent areas of biofuels and combustion R&D, bringing together two DOE Office of Energy Efficiency & Renewable Energy research offices, ten national laboratories, and numerous industry and academic partners to simultaneously tackle fuel and engine research and development (R&D) to maximize energy savings and on-road vehicle performance while dramatically reducing transportation-related petroleum consumption and greenhouse gas (GHG) emissions. This multi-year project will provide industry with the scientific underpinnings required to move new biofuels and advanced engine systems to market faster while identifying and addressing barriers to their commercialization. This project's ambitious, first-of-its-kind approach simultaneously tackles fuel and engine innovation to co-optimize performance of both elements and provide dramatic and rapid cuts in fuel use and emissions. This presentation provides an overview of the initiative and reviews recent progress focused on both advanced spark-ignition and compression-ignition approaches.

  2. Impaired glucose metabolism in HIV-infected pregnant women: a retrospective analysis.

    LENUS (Irish Health Repository)

    Moore, Rebecca

    2015-05-20

    Metabolic complications including diabetes mellitus have been increasingly recognised in HIV-infected individuals since the introduction of antiretroviral therapy, particularly protease inhibitors (PIs). Pregnancy is also a risk factor for impaired glucose metabolism, and previous studies have given conflicting results regarding the contribution of PIs to impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) in pregnant HIV-infected women.

  3. Ranking Renewable and Fossil Fuels on Global Warming Potential Using Respiratory Quotient Concept

    Directory of Open Access Journals (Sweden)

    Kalyan Annamalai

    2018-01-01

    Full Text Available Carbon dioxide (CO2 is one of the greenhouse gases which cause global warming. The amount of fossil fuels consumed to meet the demands in the areas of power and transportation is projected to increase in the upcoming years. Depending on carbon content, each power plant fuel has its own potential to produce carbon dioxide. Similarly, the humans consume food containing carbohydrates (CH, fat, and protein which emit CO2 due to metabolism. The biology literature uses respiratory quotient (RQ, defined as the ratio of CO2 moles exhausted per mole of O2 consumed within the body, to estimate CO2 loading in the blood stream and CO2 in nasal exhaust. Here, we apply that principle in the field of combustion to relate the RQ to CO2 emitted in tons per GJ of energy released when a fuel is combusted. The RQ value of a fuel can be determined either from fuel chemical formulae (from ultimate analyses for most liquid and solid fuels of known composition or from exhaust gas analyses. RQ ranges from 0.5 for methane (CH4 to 1 for pure carbon. Based on the results obtained, the lesser the value of “RQ” of a fuel, the lower its global warming potential. This methodology can be further extended for an “online instantaneous measurement of CO2” in automobiles based on actual fuel use irrespective of fuel composition.

  4. The elastic model for arbitrary radially cracked fuel implemented in COMETHE-4D

    Energy Technology Data Exchange (ETDEWEB)

    Shihab, S [Belgonucleaire S.A., Brussels (Belgium)

    1997-08-01

    Among high burnup effects, the swelling occurring in the pellet rim is such that the fuel presents a radial bridging in its periphery. This secondary bridging has an important effect on the mechanical reaction of the fuel in case of PCI. The present paper describes the elastic mechanical model of the fuel to be implemented in COMETHE-4D which alleviates problems encountered with the previously model which assumed such bridging to occur solely in the central part of the fuel. (author). 9 refs, 4 figs.

  5. Metabolic Trade-offs between Biomass Synthesis and Photosynthate Export at Different Light Intensities in a Genome–Scale Metabolic Model of Rice

    Directory of Open Access Journals (Sweden)

    Mark Graham Poolman

    2014-11-01

    Full Text Available Previously we have used a genome scale model of rice metabolism to describe how metabolism reconfigures at different light intensities in an expanding leaf of rice. Although this established that the metabolism of the leaf was adequatelyrepresented, in the model, the scenario was not that of the typical function of the leaf --- to provide material for the rest of the plant. Here we extend our analysis to explore the transition to a source leaf as export of photosynthate increases at the expense of making leaf biomass precursors, again as a function of light intensity. In particular we investigate whether, when the leaf is making a smaller range of compounds for export to the phloem, the same changes occur in the interactions between mitochondrial and chloroplast metabolism as seen in biomass synthesis for growth when light intensity increases. Our results show that the same changes occur qualitatively, though there are slight quantitative differences reflecting differences in the energy and redox requirements for the different metabolic outputs.

  6. Experimental study on the potential of higher octane number fuels for low load partially premixed combustion

    NARCIS (Netherlands)

    Wang, S.; van der Waart, K.; Somers, B.; de Goey, P.

    2017-01-01

    The optimal fuel for partially premixed combustion (PPC) is considered to be a gasoline boiling range fuel with an octane number around 70. Higher octane number fuels are considered problematic with low load and idle conditions. In previous studies mostly the intake air temperature did not exceed 30

  7. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy.

    Science.gov (United States)

    Fu, Dan; Yu, Yong; Folick, Andrew; Currie, Erin; Farese, Robert V; Tsai, Tsung-Huang; Xie, Xiaoliang Sunney; Wang, Meng C

    2014-06-18

    Metabolic fingerprinting provides valuable information on the physiopathological states of cells and tissues. Traditional imaging mass spectrometry and magnetic resonance imaging are unable to probe the spatial-temporal dynamics of metabolites at the subcellular level due to either lack of spatial resolution or inability to perform live cell imaging. Here we report a complementary metabolic imaging technique that is based on hyperspectral stimulated Raman scattering (hsSRS). We demonstrated the use of hsSRS imaging in quantifying two major neutral lipids: cholesteryl ester and triacylglycerol in cells and tissues. Our imaging results revealed previously unknown changes of lipid composition associated with obesity and steatohepatitis. We further used stable-isotope labeling to trace the metabolic dynamics of fatty acids in live cells and live Caenorhabditis elegans with hsSRS imaging. We found that unsaturated fatty acid has preferential uptake into lipid storage while saturated fatty acid exhibits toxicity in hepatic cells. Simultaneous metabolic fingerprinting of deuterium-labeled saturated and unsaturated fatty acids in living C. elegans revealed that there is a lack of interaction between the two, unlike previously hypothesized. Our findings provide new approaches for metabolic tracing of neutral lipids and their precursors in living cells and organisms, and could potentially serve as a general approach for metabolic fingerprinting of other metabolites.

  8. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  9. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    Science.gov (United States)

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Vented fuel experiment for gas-cooled fast reactor application

    International Nuclear Information System (INIS)

    Longest, A.W.; Gat, U.; Conlin, J.A.; Campana, R.J.

    1975-01-01

    A pressure-equalized and vented fuel rod is being irradiated in an instrumented capsule designated GB-10 to approximately 100 MWd/kg-heavy metal. The fuel is a sol-gel derived 88 atom-percent uranium (approximately 9 percent 235 U) 12 atom-percent plutonium oxide, and the cladding is 20 percent cold-worked 316 stainless steel. The capsule is being irradiated in the Oak Ridge Research Reactor (ORR) and has exceeded a burnup of 70 MWd/kg. The fuel has been operated at linear power rates of 39 and 44 kW/ m, and peak outer cladding temperature of 565 0 and 630 0 C respectively. A similar fuel rod in a previous capsule (GB-9) was subjected to 48 kW/m (685 0 C). 4 references. (auth)

  11. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  12. Physical and transportation requirements for a FLIP fueled TRIGA

    International Nuclear Information System (INIS)

    Johnson, A.G.; Ringle, J.C.; Anderson, T.V.

    1977-01-01

    Several major changes to the OSTR Physical Security Plan were required by the NRC prior to the August 1976 receipt and installation of a new core consisting entirely of FLIP fuel. The general nature of these changes will be reviewed along with several decisions we faced during their implementation. At the previous TRIGA Owners' Conference in Salt Lake City, Utah, we reported on Oregon's regulatory program for research reactor emergency response planning and physical security. The latter program was of particular interest to us in light of the projected FLIP fuel shipments. The impact of the State's program for physical security of FLIP fuel during transportation will be presented. (author)

  13. Vibration mechanism of fuel rod in axial flow

    International Nuclear Information System (INIS)

    Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Song, Kee Nam

    1998-08-01

    This is a review on the previous researches for the vibration of fuel rod induced by axial flow. The analysis methods are classified into three categories accordingly as the researchers postulate the vibration to be self-excited, forced and parametric; the self-excited mechanism by Burgreen and Quinn, the forced one by Reavis, Gorman, kanazawa, and S. Chen, and the parametric one by Y. Chen. Quinn supposed that the centrifugal force by flow exaggerated the natural bow in the cylinder, and the flexural force by it diminished the bow by turns; this interactive motion leaded cylinder to vibration. The supporters to the forced mechanism considered the forces arising from pressure perturbation within the boundary layers as vibrating sources. Y. Chen insisted that the cylinder could only be excited to vibration in resonance by the small oscillation of mean flow velocity. The previous studies were based on the simple boundary conditions such as hinged-hinged or fixed-fixed single span. Therefore, for the more accurate prediction of the fuel rod vibration in reactor, the further studies need to reflect the actual boundary conditions of the fuel rod like axial force and continuous supports by grids. (author). 25 refs

  14. Fabrication and testing of uranium nitride fuel for space power reactors

    Science.gov (United States)

    Matthews, R. B.; Chidester, K. M.; Hoth, C. W.; Mason, R. E.; Petty, R. L.

    1988-02-01

    Uranium nitride fuel was selected for previous space power reactors because of its attractive thermal and physical properties; however, all UN fabrication and testing activities were terminated over ten years ago. An accelerated irradiation test, SP-1, was designed to demonstrate the irradiation performance of Nb-1 Zr clad UN fuel pins for the SP-100 program. A carbothermic-reduction/nitriding process was developed to synthesize UN powders. These powders were fabricated into fuel pellets by conventional cold-pressing and sintering. The pellets were loaded into Nb-1 Zr cladding tubes, irradiated in a fast-test reactor, and destructively examined after 0.8 at% burnup. Preliminary postirradiation examination (PIE) results show that the fuel pins behaved as designed. Fuel swelling, fission-gas release, and microstructural data are presented, and suggestions to enhance the reliability of UN fuel pins are discussed.

  15. 'Diesel regenerativ' as fuel for passenger cars

    Energy Technology Data Exchange (ETDEWEB)

    Zimon, Anja; Krahl, Juergen [Coburg Univ. of Applied Sciences and Arts (Germany); Schroeder, Olaf; Fey, Barbara; Munack, Axel [Thuenen Institute, Braunschweig (Germany); Bockey, Dieter [Union for the Promotion of Oil and Protein Plants, Berlin

    2013-06-01

    Among the multitude of possible biofuels, hydrotreated vegetable oil (HVO) presents one possible means of partially replacing diesel fuel. In the project presented here, HVO was used with an admixture of biodiesel in the amount of 2% and 7% in two different vehicle fleets. HVO and biodiesel were made from domestic rapeseed oil. Both fuels trade under the name Diesel regenerative. The test vehicles were cars of the emission standards Euro 3 to Euro 6 that had been previously fueled with fossil diesel fuel, each for different periods. All vehicles were tested for regulated emissions at the beginning and the end of the project. In summary, emission reductions for hydrocarbons, carbon monoxide and particulate matter were identified for Diesel regenerative in comparison to fossil diesel fuel. However, nitrogen oxides were slightly increased for Diesel regenerative. Until now, this increase was only known in the literature to be associated with paraffinic fuel exhaust gases such as GTL. Moreover, decreases in nitrogen oxide when using pure HVO versus DF were published for utility vehicles (Warnecke et al., 2012). (orig.)

  16. Gas Tungsten Arc Welding for Fabrication of SFR Fuel Rodlet

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Won; Woo, Yoon Myeng; Kim, Bong Goo; Park, Jeong Yong; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    To evaluate the PGSFR fuel performance, the irradiation test in HANARO research reactor was planned and the fuel rodlet to be used for irradiation test should be fabricated under the appropriate Quality Assurance (QA) program. For the fabrication of PGSFR metallic fuel rodlets, the end plug welding is a crucial process. The sealing of end plug to cladding tube should be hermetically perfect to prevent a leakage of fission gases and to maintain a good reactor performance. In this study, the end plug welding of fuel rodlet for irradiation test in HANARO was carried out based on the qualified welding technique as reported in the previous paper. The end plug welding of fuel rodlets for irradiation test in HANARO was successfully carried out under the appropriate QA program. The results of the quality inspections on the end plug weld satisfied well the quality criteria on the weld. Consequently the fabricated fuel rodlets are ready for irradiation test in HANARO.

  17. Elevated glucose metabolism in the amygdala during an inhibitory avoidance task.

    Science.gov (United States)

    Sandusky, Leslie A; Flint, Robert W; McNay, Ewan C

    2013-05-15

    There is a long-standing debate as to whether the memory process of consolidation is neurochemically similar to or the same as the set of processes involved in retrieval and reconsolidation of that memory. In addition, although we have previously shown that initial memory processing in the hippocampus causes a drainage of hippocampal glucose because of increased local metabolic demand, it is unknown what metabolic changes occur elsewhere in the brain or during subsequent processing of a previously consolidated memory. Male Sprague Dawley rats (3 months old) were implanted with unilateral microdialysis cannulae and in vivo microdialysis of amygdala extracellular fluid (ECF) was performed during both (i) initial learning and (ii) retrieval 24 h later of an aversively motivated avoidance memory task. ECF samples were analyzed for glucose, lactate, pyruvate and glutamate. Results showed close similarity between increases in local glycolysis seen during both consolidation and retrieval, but also suggested that there may perhaps be a difference in amygdalar oxidative phosphorylation stimulated by the two processes. Hence, our data suggest that memory formation places similar metabolic demands across neural systems, and that consolidation may be metabolically different from retrieval. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Role of innate lymphoid cells in obesity and metabolic disease

    Science.gov (United States)

    Saetang, Jirakrit; Sangkhathat, Surasak

    2018-01-01

    The immune system has previously been demonstrated to be associated with the pathophysiological development of metabolic abnormalities. However, the mechanisms linking immunity to metabolic disease remain to be fully elucidated. It has previously been suggested that innate lymphoid cells (ILCs) may be involved in the progression of numerous types of metabolic diseases as these cells act as suppressors and promoters for obesity and associated conditions, and are particularly involved in adipose tissue inflammation, which is a major feature of metabolic imbalance. Group 2 ILCs (ILC2s) have been revealed as anti-obese immune regulators by secreting anti-inflammatory cytokines and promoting the polarization of M2 macrophages, whereas group 1 ILCs (ILC1s), including natural killer cells, may promote adipose tissue inflammation via production of interferon-γ, which in turn polarizes macrophages toward the M1 type. The majority of studies to date have demonstrated the pathological association between ILCs and obesity in the context of adipose tissue inflammation, whereas the roles of ILCs in other organs which participate in obesity development have not been fully characterized. Therefore, identifying the roles of all types of ILCs as central components mediating obesity-associated inflammation, is of primary concern, and may lead to the discovery of novel preventative and therapeutic interventions. PMID:29138853

  19. Fission product release from high gap-inventory LWR fuel under LOCA conditions

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Collins, J.L.; Osborne, M.F.; Malinauskas, A.P.

    1980-01-01

    Fission product release tests were performed with light water reactor (LWR) fuel rod segments containing large amounts of cesium and iodine in the pellet-to-cladding gap space in order to check the validity of the previously published Source Term Model for this type of fuel. The model describes the release of fission product cesium and iodine from LWR fuel rods for controlled loss-of-coolant accident (LOCA) transients in the temperature range 500 to 1200 0 C. The basis for the model was test data obtained with simulated fuel rods and commercial fuel irradiated to high burnup but containing relatively small amounts of cesium and iodine in the pellet-to-cladding gap space

  20. Genome scale metabolic network reconstruction of Spirochaeta cellobiosiphila

    Directory of Open Access Journals (Sweden)

    Bharat Manna

    2017-10-01

    Full Text Available Substantial rise in the global energy demand is one of the biggest challenges in this century. Environmental pollution due to rapid depletion of the fossil fuel resources and its alarming impact on the climate change and Global Warming have motivated researchers to look for non-petroleum-based sustainable, eco-friendly, renewable, low-cost energy alternatives, such as biofuel. Lignocellulosic biomass is one of the most promising bio-resources with huge potential to contribute to this worldwide energy demand. However, the complex organization of the Cellulose, Hemicellulose and Lignin in the Lignocellulosic biomass requires extensive pre-treatment and enzymatic hydrolysis followed by fermentation, raising overall production cost of biofuel. This encourages researchers to design cost-effective approaches for the production of second generation biofuels. The products from enzymatic hydrolysis of cellulose are mostly glucose monomer or cellobiose unit that are subjected to fermentation. Spirochaeta genus is a well-known group of obligate or facultative anaerobes, living primarily on carbohydrate metabolism. Spirochaeta cellobiosiphila sp. is a facultative anaerobe under this genus, which uses a variety of monosaccharides and disaccharides as energy sources. However, most rapid growth occurs on cellobiose and fermentation yields significant amount of ethanol, acetate, CO2, H2 and small amounts of formate. It is predicted to be promising microbial machinery for industrial fermentation processes for biofuel production. The metabolic pathways that govern cellobiose metabolism in Spirochaeta cellobiosiphila are yet to be explored. The function annotation of the genome sequence of Spirochaeta cellobiosiphila is in progress. In this work we aim to map all the metabolic activities for reconstruction of genome-scale metabolic model of Spirochaeta cellobiosiphila.

  1. Damage and failure of unirradiated and irradiated fuel rods tested under film boiling conditions

    International Nuclear Information System (INIS)

    Mehner, A.S.; Hobbins, R.R.; Seiffert, S.L.; MacDonald, P.E.; McCardell, R.K.

    1979-01-01

    Power-cooling-mismatch experiments are being conducted as part of the Thermal Fuels Behavior Program in the Power Burst Facility at the Idaho National Engineering Laboratory to evaluate the behavior of unirradiated and previously irradiated light water reactor fuel rods tested under stable film boiling conditions. The observed damage that occurs to the fuel rod cladding and the fuel as a result of film boiling operation is reported. Analyses performed as a part of the study on the effects of operating failed fuel rods in film boiling, and rod failure mechanisms due to cladding embrittlement and cladding melting upon being contacted by molten fuel are summarized

  2. Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus.

    Science.gov (United States)

    Thorgersen, Michael P; Lipscomb, Gina L; Schut, Gerrit J; Kelly, Robert M; Adams, Michael W W

    2014-03-01

    The heterotrophic, hyperthermophilic archaeon Pyrococcus furiosus is a new addition to the growing list of genetically-tractable microorganisms suitable for metabolic engineering to produce liquid fuels and industrial chemicals. P. furiosus was recently engineered to generate 3-hydroxypropionate (3-HP) from CO₂ and acetyl-CoA by the heterologous-expression of three enzymes from the CO₂ fixation cycle of the thermoacidophilic archaeon Metallosphaera sedula using a thermally-triggered induction system. The acetyl-CoA for this pathway is generated from glucose catabolism that in wild-type P. furiosus is converted to acetate with concurrent ATP production by the heterotetrameric (α₂β₂) acetyl-CoA synthetase (ACS). Hence ACS in the engineered 3-HP production strain (MW56) competes with the heterologous pathway for acetyl-CoA. Herein we show that strains of MW56 lacking the α-subunit of either of the two ACSs previously characterized from P. furiosus (ACSI and ACSII) exhibit a three-fold increase in specific 3-HP production. The ΔACSIα strain displayed only a minor defect in growth on either maltose or peptides, while no growth defect on these substrates was observed with the ΔACSIIα strain. Deletion of individual and multiple ACS subunits was also shown to decrease CoA release activity for several different CoA ester substrates in addition to acetyl-CoA, information that will be extremely useful for future metabolic engineering endeavors in P. furiosus. Copyright © 2014 International Metabolic Engineering Society. All rights reserved.

  3. Performance of microbial fuel cell double chamber using mozzarella cheese whey substrate

    Science.gov (United States)

    Darmawan, M. D.; Hawa, L. C.; Argo, B. D.

    2018-03-01

    Nowadays the availability of electric energy is decreasing, hence there is a need for innovation of electric energy producer alternative; one of them is microbial fuel cell (MFC). MFC is a bioelectrochemical system generated by bacterial metabolism that utilizes organic substrate. One of the substrates that can be used is whey, a waste generated from cheese production. Therefore, this study aimed to determine the power of potential current and voltage generated from the use of whey cheese as a substrate for bacterial metabolism. In this research, double chamber system was used in microbial fuel cell reactor by using cheese whey as substrate at anode and potassium permanganate as cathode and utilizing membrane nafion 212 as membrane of proton exchange. The variable of experiment was bacteria type. The types of bacteria used in this study were Lactobacillus bulgaricus, Streptococcus thermophillus and Lactobacillus casei. While the operating time used was 100 hours. The highest current produced was 74.6 μA and the highest voltage was 529.3 mV produced by Lactobacillus bulgaricus bacteria. In this study, it was also found that the death phase of the three bacteria was at 70-80 hours.

  4. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis.

    Science.gov (United States)

    Jordan, Sabine D; Könner, A Christine; Brüning, Jens C

    2010-10-01

    The central nervous system (CNS) is capable of gathering information on the body's nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus.

  5. Emerging health problems among women: Inactivity, obesity, and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Yi-Ju Tsai

    2014-02-01

    Full Text Available The increase in obesity and metabolic syndrome has been documented worldwide. However, few studies have investigated the risk of inactivity, obesity, and metabolic syndrome specifically in women. Hormone balance plays a crucial role in regulating metabolism and helps to maintain optimal health. It is likely that the sex difference in obesity may be due to the variation in hormone concentration throughout a woman's life, which predisposes them to weight gain. This paper reviews previous literature and discusses factors that influence the risk of adiposity-related health consequences among women for three critical biological transitions throughout a woman's life: puberty, menopause, and pregnancy. To improve quality of life and metabolic health for women, interventions are needed to target women at different transition stages and provide tailored health education programs. Interventions should raise awareness of physical inactivity, obesity, and metabolic syndrome, and promote healthy behavioral change in women.

  6. Operational method for demonstrating fuel loading integrity in a reactor having accessible 235U fuel

    International Nuclear Information System (INIS)

    Ward, D.R.

    1979-07-01

    The Health Physics Research Reactor is a small pulse reactor at the Oak Ridge National Laboratory. It is desirable for the operator to be able to demonstrate on a routine basis that all the fuel pieces are present in the reactor core. Accordingly, a technique has been devised wherein the control rod readings are recorded with the reactor at delayed critical and corrections are made to compensate for the effects of variations in reactor height above the floor, reactor power, core temperature, and the presence of any massive neutron reflectors. The operator then compares these readings with the values expected based on previous operating experience. If this routine operational check suggests that the core fuel loading might be deficient, a more rigorous follow-up may be made

  7. Assessment of the prediction capability of the TRANSURANUS fuel performance code on the basis of power ramp tested LWR fuel rods

    International Nuclear Information System (INIS)

    Pastore, G.; Botazzoli, P.; Di Marcello, V.; Luzzi, L.

    2009-01-01

    The present work is aimed at assessing the prediction capability of the TRANSURANUS code for the performance analysis of LWR fuel rods under power ramp conditions. The analysis refers to all the power ramp tested fuel rods belonging to the Studsvik PWR Super-Ramp and BWR Inter-Ramp Irradiation Projects, and is focused on some integral quantities (i.e., burn-up, fission gas release, cladding creep-down and failure due to pellet cladding interaction) through a systematic comparison between the code predictions and the experimental data. To this end, a suitable setup of the code is established on the basis of previous works. Besides, with reference to literature indications, a sensitivity study is carried out, which considers the 'ITU model' for fission gas burst release and modifications in the treatment of the fuel solid swelling and the cladding stress corrosion cracking. The performed analyses allow to individuate some issues, which could be useful for the future development of the code. Keywords: Light Water Reactors, Fuel Rod Performance, Power Ramps, Fission Gas Burst Release, Fuel Swelling, Pellet Cladding Interaction, Stress Corrosion Cracking

  8. Probable leaching mechanisms for spent fuel

    International Nuclear Information System (INIS)

    Wang, R.; Katayama, Y.B.

    1981-01-01

    At the Pacific Northwest Laboratory, researchers in the Waste/Rock Interaction Technology Program are studying spent fuel as a possible waste form for the Office of Nuclear Waste Isolation. This paper presents probable leaching mechanisms for spent fuel and discusses current progress in identifying and understanding the leaching process. During the past year, experiments were begun to study the complex leaching mechanism of spent fuel. The initial work in this investigation was done with UO 2 , which provided the most information possible on the behavior of the spent-fuel matrix without encountering the very high radiation levels associated with spent fuel. Both single-crystal and polycrystalline UO 2 samples were used for this study, and techniques applicable to remote experimentation in a hot cell are being developed. The effects of radiation are being studied in terms of radiolysis of water and surface activation of the UO 2 . Dissolution behavior and kinetics of UO 2 were also investigated by electrochemical measurement techniques. These data will be correlated with those acquired when spent fuel is tested in a hot cell. Oxidation effects represent a major area of concern in evaluating the stability of spent fuel. Dissolution of UO 2 is greatly increased in an oxidizing solution because the dissolution is then controlled by the formation of hexavalent uranium. In solutions containing very low oxygen levels (i.e., reducing solutions), oxidation-induced dissolution may be possible via a previously oxidized surface, through exposure to air during storage, or by local oxidants such as O 2 and H 2 O 2 produced from radiolysis of water and radiation-activated UO 2 surfaces. The effects of oxidation not only increase the dissolution rate, but could lead to the disintegration of spent fuel into fine fragments

  9. Organ-specific metabolic responses to drought in Pinus pinaster Ait.

    Science.gov (United States)

    de Miguel, Marina; Guevara, M Ángeles; Sánchez-Gómez, David; de María, Nuria; Díaz, Luis Manuel; Mancha, Jose A; Fernández de Simón, Brígida; Cadahía, Estrella; Desai, Nalini; Aranda, Ismael; Cervera, María-Teresa

    2016-05-01

    Drought is an important driver of plant survival, growth, and distribution. Water deficit affects different pathways of metabolism, depending on plant organ. While previous studies have mainly focused on the metabolic drought response of a single organ, analysis of metabolic differences between organs is essential to achieve an integrated understanding of the whole plant response. In this work, untargeted metabolic profiling was used to examine the response of roots, stems, adult and juvenile needles from Pinus pinaster Ait. full-sib individuals, subjected to a moderate and long lasting drought period. Cyclitols content showed a significant alteration, in response to drought in all organs examined, but other metabolites increased or decreased differentially depending on the analyzed organ. While a high number of flavonoids were only detected in aerial organs, an induction of the glutathione pathway was mainly detected in roots. This result may reflect different antioxidant mechanisms activated in aerial organs and roots. Metabolic changes were more remarkable in roots than in the other organs, highlighting its prominent role in the response to water stress. Significant changes in flavonoids and ascorbate metabolism were also observed between adult and juvenile needles, consistent with previously proven differential functional responses between the two developmental stages. Genetic polymorphisms in candidate genes coding for a Myb1 transcription factor and a malate dehydrogenase (EC 1.1.1.37) were associated with different concentration of phenylalanine, phenylpropanoids and malate, respectively. The results obtained will support further research on metabolites and genes potentially involved in functional mechanisms related to drought tolerance in trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Burn-up measurements of spent fuel using gamma spectrometry technique

    International Nuclear Information System (INIS)

    Pereda, C.; Henriquez, C.; Klein, J.; Medel, J.

    2005-01-01

    Burn-up results obtained for HEU (45% of 235 U) fuel assemblies of the RECH-1 Research Reactor using gamma spectrometry technique are presented. The spectra were got from an in-pool facility built in the reactor to be mainly used to measure the burnup of irradiated fuel assemblies with short cooling time, where 95 Zr is being evaluated as possible fission monitor. A program to measure all spent fuel assemblies of the RECH-1 reactor was initiated in the frame of the Regional Project RLA/4/018: 'Management of Spent Fuel from Research Reactors'. The results presented here were obtained from HEU spent fuel assemblies with cooling time greater than 100 days and 137 Cs was used as fission monitor. The efficiency of the in-pool system was determined using a slightly burnt experimental fuel assembly, which has one fuel plate (one of the outer plates) and the rest are dummy plates. An average burn-up of 2.8% of 235 U was previously measured for the experimental fuel assembly utilizing a facility installed in a hot cell and 137 Cs was used as monitor. (author)

  11. From pathways to genomes and beyond. The metabolic engineering toolbox and its place in biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Leqian; Reed, Ben; Alper, Hal [Texas Univ., Austin, TX (United States). Dept. of Chemical Engineering

    2011-07-01

    Concerns about the availability of petroleum-derived fuels and chemicals have led to the exploration of metabolically engineered organisms as novel hosts for biofuels and chemicals production. However, the complexity inherent in metabolic and regulatory networks makes this undertaking a complex task. To address these limitations, metabolic engineering has adapted a wide-variety of tools for altering phenotypes. In this review, we will highlight traditional and recent metabolic engineering tools for optimizing cells including pathway-based, global, and genomic-enabled approaches. Specifically, we describe these tools as well as provide demonstrations of their effectiveness in optimizing biofuels production. However, each of these tools provides stepping stones towards the grand goal of biofuels production. Thus, developing methods for large-scale cellular optimization and integrative approaches are invaluable for further cell optimization. This review highlights the challenges that still must be met to accomplish this goal. (orig.)

  12. Inhibition of the human liver microsomal and human cytochrome P450 1A2 and 3A4 metabolism of estradiol by deployment-related and other chemicals.

    Science.gov (United States)

    Usmani, Khawja A; Cho, Taehyeon M; Rose, Randy L; Hodgson, Ernest

    2006-09-01

    Cytochromes P450 (P450s) are major catalysts in the metabolism of xenobiotics and endogenous substrates such as estradiol (E2). It has previously been shown that E2 is predominantly metabolized in humans by CYP1A2 and CYP3A4 with 2-hydroxyestradiol (2-OHE2) the major metabolite. This study examines effects of deployment-related and other chemicals on E2 metabolism by human liver microsomes (HLM) and individual P450 isoforms. Kinetic studies using HLM, CYP3A4, and CYP1A2 showed similar affinities (Km) for E2 with respect to 2-OHE2 production. Vmax and CLint values for HLM are 0.32 nmol/min/mg protein and 7.5 microl/min/mg protein; those for CYP3A4 are 6.9 nmol/min/nmol P450 and 291 microl/min/nmol P450; and those for CYP1A2 are 17.4 nmol/min/nmol P450 and 633 microl/min/nmol P450. Phenotyped HLM use showed that individuals with high levels of CYP1A2 and CYP3A4 have the greatest potential to metabolize E2. Preincubation of HLM with a variety of chemicals, including those used in military deployments, resulted in varying levels of inhibition of E2 metabolism. The greatest inhibition was observed with organophosphorus compounds, including chlorpyrifos and fonofos, with up to 80% inhibition for 2-OHE2 production. Carbaryl, a carbamate pesticide, and naphthalene, a jet fuel component, inhibited ca. 40% of E2 metabolism. Preincubation of CYP1A2 with chlorpyrifos, fonofos, carbaryl, or naphthalene resulted in 96, 59, 84, and 87% inhibition of E2 metabolism, respectively. Preincubation of CYP3A4 with chlorpyrifos, fonofos, deltamethrin, or permethrin resulted in 94, 87, 58, and 37% inhibition of E2 metabolism. Chlorpyrifos inhibition of E2 metabolism is shown to be irreversible.

  13. Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.

    Science.gov (United States)

    Edwards, Geoffrey W R; Priest, Nicholas D

    2014-11-01

    The neutron economy and online refueling capability of heavy water moderated reactors enable them to use many different fuel types, such as low enriched uranium, plutonium mixed with uranium, or plutonium and/or U mixed with thorium, in addition to their traditional natural uranium fuel. However, the toxicity and radiological protection methods for fuels other than natural uranium are not well established. A previous paper by the current authors compared the composition and toxicity of irradiated natural uranium to that of three potential advanced heavy water fuels not containing plutonium, and this work uses the same method to compare irradiated natural uranium to three other fuels that do contain plutonium in their initial composition. All three of the new fuels are assumed to incorporate plutonium isotopes characteristic of those that would be recovered from light water reactor fuel via reprocessing. The first fuel investigated is a homogeneous thorium-plutonium fuel designed for a once-through fuel cycle without reprocessing. The second fuel is a heterogeneous thorium-plutonium-U bundle, with graded enrichments of U in different parts of a single fuel assembly. This fuel is assumed to be part of a recycling scenario in which U from previously irradiated fuel is recovered. The third fuel is one in which plutonium and Am are mixed with natural uranium. Each of these fuels, because of the presence of plutonium in the initial composition, is determined to be considerably more radiotoxic than is standard natural uranium. Canadian nuclear safety regulations require that techniques be available for the measurement of 1 mSv of committed effective dose after exposure to irradiated fuel. For natural uranium fuel, the isotope Pu is a significant contributor to the committed effective dose after exposure, and thermal ionization mass spectrometry is sensitive enough that the amount of Pu excreted in urine is sufficient to estimate internal doses, from all isotopes, as low

  14. Redesign of the Human Metabolic Simulator

    Science.gov (United States)

    Duffield, Bruce; Jeng, Frank; Lange, Kevin

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is currently building a Human Metabolic Simulator (HMS) at the Johnson Space Center as part of the Advanced Life Support Air Revitalization Technology Evaluation Facility (ARTEF). The purpose of ARTEF is to evaluate Environmental Control and Life Support System Technologies for Advanced Missions. The HMS is needed to reproduce the primary metabolic effects of human respiration on an enclosed atmosphere when humans cannot be present and the impact of human presence on the system is required. A HMS was designed, built and successfully operated in 2000 but larger crew size requirements and the expense of upgrade of the current system necessitate redesign. This paper addresses the redesign. Several concepts were considered, ranging from chemical oxidation of a hydrocarbon like ethanol or ethyl acetate to carbon dioxide and water, oxidation of an iron-containing compound, or by using a fuel cell. For reasons of cost, simplicity, safety and other factors, the concept chosen includes: a molecular sieve packaged as an industrial oxygen concentrator to remove oxygen from the atmosphere, with direct carbon dioxide, water and heat injection. The water injection is done via heating water to steam with a heat exchanger and thermal effects are handled by directly adding heat to the air stream with a second heat exchanger. Both heat exchangers are supplied by a hot oil loop. The amount of oxygen removal, carbon dioxide addition, water addition and heat addition were calculated using metabolic profiles for respiration and heat, calculated using a series of empirical equations developed for International Space Station (ISS). Sketches of the Human Metabolic Simulator and the hot oil bath loop used to supply heat to the heat exchangers are included

  15. Fuel Chemistry Division: progress report for 1985

    International Nuclear Information System (INIS)

    1988-01-01

    Fuel Chemistry Division was formed in May 1985 to give a larger emphasis on the research and development in chemistry of the nuclear fuel cycle. The areas of research in Fuel Chemistry Division are fuel development and its chemical quality control, understanding of the fuel behaviour and post irradiation examinations, chemistry of reprocessing and waste management processes as also the basic aspects of actinide and relevant fission product elements. This report summarises the work by the staff of the Division during 1985 and also some work from the previous periods which was not reported in the progress reports of the Radiochemistry Division. The work related to the FBTR fuel was one of the highlights during this period. In the area of process chemistry useful work has been carried out for processing of plutonium bearing solutions. In the area of mass spectrometry, the determination of trace constituents by spark source mass spectrometry has been a major area of research. Significant progress has also been made in the use of alpha spectromet ry techniques for the determination of plutonium in dissolver solution and other samples. The technology of plutonium utilisation is quite complex and the Division would continue to look into the chemical aspects of this technology and provide the necessary base for future developments in this area. (author)

  16. Burnup measurements of leader fuel elements

    International Nuclear Information System (INIS)

    Henriquez, C; Navarro, G; Pereda, C

    2000-01-01

    Some time ago the CCHEN authorities decided to produce a set of 50 low enrichment fuel elements. These elements were produced in the PEC (Fuel Elements Plant), located at CCHEN offices in Lo Aguirre. These new fuel elements have basically the same geometrical characteristics of previous ones, which were British and made with raw material from the U.S. The principal differences between our fuel elements and the British ones is the density of fissile material, U-235, which was increased to compensate the reduction in enrichment. Last year, the Fuel Elements Plant (PEC) delivered the shipment's first four (4) fuel elements, called leaders, to the RECH1. A test element was delivered too, and the complete set was introduced into the reactor's nucleus, following the normal routine, but performing a special follow-up on their behavior inside the nucleus. This experimental element has only one outside fuel plate, and the remaining (15) structural plates are aluminum. In order to study the burnup, the test element was taken out of the nucleus, in mid- November 1999, and left to decay until June 2000, when it was moved to the laboratory (High Activity Cell), to start the burnup measurements, with a gamma spectroscopy system. This work aims to show the results of these measurements and in addition to meet the following objectives: (a) Visual test of the plate's general condition; (b) Sipping test of fission products; (c) Study of burn-up distribution in the plate; (d) Check and improve the calculus algorithm; (e) Comparison of the results obtained from the spectroscopy with the ones from neutron calculus

  17. Development of Innovative Accident Tolerant High Thermal Conductivity UO2-Diamond Composite Fuel Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Tulenko, James [Univ. of Florida, Gainesville, FL (United States); Subhash, Ghatu [Univ. of Florida, Gainesville, FL (United States)

    2016-01-01

    The University of Florida (UF) evaluated a composite fuel consisting of UO2 powder mixed with diamond micro particles as a candidate as an accident-tolerant fuel (ATF). The research group had previous extensive experience researching with diamond micro particles as an addition to reactor coolant for improved plant thermal performance. The purpose of this research work was to utilize diamond micro particles to develop UO2-Diamond composite fuel pellets with significantly enhanced thermal properties, beyond that already being measured in the previous UF research projects of UO2 – SiC and UO2 – Carbon Nanotube fuel pins. UF is proving with the current research results that the addition of diamond micro particles to UO2 may greatly enhanced the thermal conductivity of the UO2 pellets producing an accident-tolerant fuel. The Beginning of life benefits have been proven and fuel samples are being irradiated in the ATR reactor to confirm that the thermal conductivity improvements are still present under irradiation.

  18. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  19. Child mortality from solid-fuel use in India: a nationally-representative case-control study

    Directory of Open Access Journals (Sweden)

    Bassani Diego G

    2010-08-01

    Full Text Available Abstract Background Most households in low and middle income countries, including in India, use solid fuels (coal/coke/lignite, firewood, dung, and crop residue for cooking and heating. Such fuels increase child mortality, chiefly from acute respiratory infection. There are, however, few direct estimates of the impact of solid fuel on child mortality in India. Methods We compared household solid fuel use in 1998 between 6790 child deaths, from all causes, in the previous year and 609 601 living children living in 1.1 million nationally-representative homes in India. Analyses were stratified by child's gender, age (neonatal, post-neonatal, 1-4 years and colder versus warmer states. We also examined the association of solid fuel to non-fatal pneumonias. Results Solid fuel use was very common (87% in households with child deaths and 77% in households with living children. After adjustment for demographic factors and living conditions, solid-fuel use significantly increase child deaths at ages 1-4 (prevalence ratio (PR boys: 1.30, 95%CI 1.08-1.56; girls: 1.33, 95%CI 1.12-1.58. More girls than boys died from exposure to solid fuels. Solid fuel use was also associated with non-fatal pneumonia (boys: PR 1.54 95%CI 1.01-2.35; girls: PR 1.94 95%CI 1.13-3.33. Conclusions Child mortality risks, from all causes, due to solid fuel exposure were lower than previously, but as exposure was common solid, fuel caused 6% of all deaths at ages 0-4, 20% of deaths at ages 1-4 or 128 000 child deaths in India in 2004. Solid fuel use has declined only modestly in the last decade. Aside from reducing exposure, complementary strategies such as immunization and treatment could also reduce child mortality from acute respiratory infections.

  20. Review of thorium fuel reprocessing experience

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; McDuffee, W.T.; Rainey, R.H.

    1978-01-01

    The review reveals that experience in the reprocessing of irradiated thorium materials is limited. Plants that have processed thorium-based fuels were not optimized for the operations. Previous demonstrations of several viable flowsheets provide a sound technological base for the development of optimum reprocessing methods and facilities. In addition to the resource benefit by using thorium, recent nonproliferation thrusts have rejuvenated an interest in thorium reprocessing. Extensive radiation is generated as the result of 232 U-contamination produced in the 233 U, resulting in the remote operation and fabrication operations and increased fuel cycle costs. Development of the denatured thorium flowsheet, which is currently of interest because of nonproliferation concerns, represents a difficult technological challenge

  1. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2014-12-23

    The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when combusted. Considerable effort is being expended to develop photosynthetic systems -- algae, cyanobacteria, and anaerobic phototrophs -- for sustainable H2 production. While promising, this approach also has hurdles such as the harvesting of light in densely pigmented cultures that requires costly constant mixing and large areas for exposure to sunlight. Little attention is given to fermentative H2 generation. Thus understanding the microbial pathways to H2 evolution and metabolic processes competing for electrons is an essential foundation that may expand the variety of fuels that can be generated or provide alternative substrates for fine chemical production. We studied a widely found soil anaerobe of the class Deltaproteobacteria, a sulfate-reducing bacterium to determine the electron pathways used during the oxidation of substrates and the potential for hydrogen production.

  2. Experimental analysis of a PEM fuel cell 15 W; Analise experimental de uma celula a combustivel PEM 15W

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Raphael Guardini; Bazzo, Edson [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], e-mail: miyake@labcet.ufsc.br, e-mail: ebazzo@emc.ufsc.br

    2006-07-01

    Fuel cells have been considered a promising alternative for electric energy generation. In order to contribute with the development of this technology, a PEM fuel cell was installed and new experiments were carried out at LabCET (Laboratory of Combustion and Thermal System Engineering). Previous results have shown polarization curves identifying the need of rigorous controlling of humidification temperature of the fuel cell. In this paper, new results were carried out considering the use of a fan connected to the fuel cell and possible degradation in the electrolyte, after a relative long time operation. New polarization curves were plotted for comparison with previous results. (author)

  3. Fuel performance and operation experience of WWER-440 fuel in improved fuel cycle

    International Nuclear Information System (INIS)

    Gagarinski, A.; Proselkov, V.; Semchenkov, Yu.

    2007-01-01

    The paper summarizes WWER-440 second-generation fuel operation experience in improved fuel cycles using the example of Kola NPP units 3 and 4. Basic parameters of fuel assemblies, fuel rods and uranium-gadolinium fuel rods, as well as the principal neutronic parameters and burn-up achieved in fuel assemblies are presented. The paper also contains some data concerning the activity of coolant during operation (Authors)

  4. Should children with inherited metabolic disorders receive varicella vaccination?

    LENUS (Irish Health Repository)

    Varghese, M

    2011-01-01

    The aim was to determine the rate of varicella infection and complications in children with disorders of intermediary metabolism (IEM) between the ages of 1 and 16 years attending our national metabolic referral centre. Of 126 children identified, a response was received from 122. A history of previous varicella infection was identified in 64 cases (53%) and of varicella vaccination in 5 (4%). Fifty-three (43%) patients apparently did not have a history of clinical varicella infection. Of the 64 children with a history of varicella infection, five required hospitalisation for complications, including life-threatening lactic acidosis in one patient with mitochondrial disease and metabolic decompensation in four patients. In conclusion, varicella infection may cause an increased risk of metabolic decompensation in patients with IEMs. We propose that a trial of varicella vaccination be considered for this cohort of patients with monitoring of its safety and efficacy.

  5. Rictor/mTORC2 Loss in the Myf5 Lineage Reprograms Brown Fat Metabolism and Protects Mice against Obesity and Metabolic Disease

    Directory of Open Access Journals (Sweden)

    Chien-Min Hung

    2014-07-01

    Full Text Available The in vivo functions of mechanistic target of rapamycin complex 2 (mTORC2 and the signaling mechanisms that control brown adipose tissue (BAT fuel utilization and activity are not well understood. Here, by conditionally deleting Rictor in the Myf5 lineage, we provide in vivo evidence that mTORC2 is dispensable for skeletal muscle development and regeneration but essential for BAT growth. Furthermore, deleting Rictor in Myf5 precursors shifts BAT metabolism to a more oxidative and less lipogenic state and protects mice from obesity and metabolic disease at thermoneutrality. We additionally find that Rictor is required for brown adipocyte differentiation in vitro and that the mechanism specifically requires AKT1 hydrophobic motif phosphorylation but is independent of pan-AKT signaling and is rescued with BMP7. Our findings provide insights into the signaling circuitry that regulates brown adipocytes and could have important implications for developing therapies aimed at increasing energy expenditure as a means to combat human obesity.

  6. Advanced fuel development at AECL: What does the future hold for CANDU fuels/fuel cycles?

    Energy Technology Data Exchange (ETDEWEB)

    Kupferschmidt, W.C.H. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper outlines advanced fuel development at AECL. It discusses expanding the limits of fuel utilization, deploy alternate fuel cycles, increase fuel flexibility, employ recycled fuels; increase safety and reliability, decrease environmental impact and develop proliferation resistant fuel and fuel cycle.

  7. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Coobs, J.H.

    1976-08-01

    The status of fuel and fuel cycle technology for high-temperature gas-cooled reactors (HTGRs) is reviewed. The all-ceramic core of the HTGRs permits high temperatures compared with other reactors. Core outlet temperatures of 740 0 C are now available for the steam cycle. For advanced HTGRs such as are required for direct-cycle power generation and for high-temperature process heat, coolant temperatures as high as 1000 0 C may be expected. The paper discusses the variations of HTGR fuel designs that meet the performance requirements and the requirements of the isotopes to be used in the fuel cycle. Also discussed are the fuel cycle possibilities, which include the low-enrichment cycle, the Th- 233 U cycle, and plutonium utilization in either cycle. The status of fuel and fuel cycle development is summarized

  8. Demonstration of Passive Fuel Cell Thermal Management Technology

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  9. Burnup credit feasibility for BWR spent fuel shipments

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1990-01-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent of fuel casks used for transportation and storage. Analyses 1 have shown the feasibility estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This paper summarizes the extension of the previous PWR feasibility assessments to boiling water reactor (BWR) fuel. As with the PWR analysis, the purpose was not verification of burnup credit (see ref. 2 for ongoing work in this area) but a reasonable assessment of the feasibility and potential gains from its use in BWR applications. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. The method includes characterization of a typical pin-cell spectrum, using a one-dimensional (1-D) model of a BWR assembly. The calculated spectrum allows burnup-dependent few-group material constants to be generated. Point depletion methods were then used to obtain the time-varying characteristics of the fuel. These simple methods were validated, where practical, with multidimensional methods. 6 refs., 1 tab

  10. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David [ORNL; Chandler, David [ORNL; Cook, David [ORNL; Ilas, Germina [ORNL; Jain, Prashant [ORNL; Valentine, Jennifer [ORNL

    2014-10-30

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the “complex” aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The

  11. Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Chandler, David [ORNL; Cook, David Howard [ORNL; Ilas, Germina [ORNL; Jain, Prashant K [ORNL; Valentine, Jennifer R [ORNL

    2014-11-01

    Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy s Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the complex aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present

  12. Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Fazal Wahab

    2018-03-01

    Full Text Available A large body of data has established the hypothalamic kisspeptin (KP and its receptor, KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as well as of circadian and seasonal variation-related information on the reproductive axis. Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the current metabolic status of the body. In conditions of energy imbalance, either positive or negative, a number of alterations in the hypothalamic KP signaling pathway have been documented in different mammalian models including nonhuman primates and human. Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene transcript levels in the hypothalamus and, hence, decreases the output of KP-containing neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, alterations in Kiss1 expression have also been reported in other situations of energy imbalance like diabetes and obesity. Information related to the body’s current metabolic status reaches to KP neurons both directly as well as indirectly via a complex network of other neurons. In this review article, we have provided an updated summary of the available literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic KP-Kiss1r signaling, in light of available evidence, are discussed.

  13. Rapid evaluation of the electrooxidation of fuel compounds with a multiple-electrode setup for direct polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Naoko; Siroma, Zyun; Ioroi, Tsutomu; Yasuda, Kazuaki [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2007-02-10

    Electrochemical oxidation of fuel compounds in acidic media was examined on eight electrodes (Pt, Ru, PtRu, Rh, Ir, Pd, Au, and glassy carbon) simultaneously by multiple cyclic voltammetry (CV) with an electrochemical cell equipped with an eight-electrode configuration. Direct-type polymer electrolyte fuel cells (PEFCs), in which aqueous solutions of the fuel compounds are directly supplied to the anode, were also evaluated. The performances of direct PEFCs with various anode catalysts could be roughly estimated from the results obtained with multiple CV. This multiple evaluation may be useful for identifying novel fuels or electrocatalysts. Methanol, ethanol, ethylene glycol, 2-propanol, and D-glucose were oxidized selectively on Pt or PtRu, as reported previously. However, several compounds that are often used as reducing agents show electrochemical oxidation with unique characteristics. Large current was obtained for the oxidation of formic acid, hypophosphorous acid, and phosphorous acid on a Pd electrode. L-Ascorbic acid and sulfurous acid were oxidized on all of the electrodes used in the present study. (author)

  14. Robust metabolic responses to varied carbon sources in natural and laboratory strains of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Wayne A Van Voorhies

    Full Text Available Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O₂ consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O₂ consumption or CO₂ production, in the strains used in this study.

  15. Fundamentals of bioventing applied to fuel contaminated sites

    International Nuclear Information System (INIS)

    Dupont, R.R.

    1993-01-01

    Bioventing entails the use of soil vapor extraction (SVE) systems for the transport of oxygen to the subsurface, where indigenous organisms are stimulated to aerobically metabolize fuel components. Bioventing systems are designed and configured to optimize oxygen transfer and oxygen utilization efficiency, and are operated at much lower flow rates and with configurations much different than those of conventional SVE systems. Bioventing system applications and design are contrasted to those of conventional SVE systems, and the two key elements of bioventing system design evaluation, i.e., in situ microbial activity and air permeability determinations, are highlighted in this paper. The application of bioventing to vadose zone bioremediation was reviewed with particular emphasis on its advantages over aqueous based bioremediation systems in terms of its superior oxygen transfer efficiency. Finally, the application of bioventing and bioventing design concepts are illustrated through a case study of JP-4 jet fuel contaminated soil remediation at Hill AFB, Utah. 22 refs., 8 figs., 5 tabs

  16. Highly proliferative primitive fetal liver hematopoietic stem cells are fueled by oxidative metabolic pathways

    Directory of Open Access Journals (Sweden)

    Javed K. Manesia

    2015-11-01

    Full Text Available Hematopoietic stem cells (HSCs in the fetal liver (FL unlike adult bone marrow (BM proliferate extensively, posing different metabolic demands. However, metabolic pathways responsible for the production of energy and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen dependent energy generating pathways significantly more than their BM counterparts. RNA-Seq analysis of E14.5 FL versus BM derived HSCs identified increased expression levels of genes involved in oxidative phosphorylation (OxPhos and the citric acid cycle (TCA. We demonstrated that FL HSCs contain more mitochondria than BM HSCs, which resulted in increased levels of oxygen consumption and reactive oxygen species (ROS production. Higher levels of DNA repair and antioxidant pathway gene expression may prevent ROS-mediated (genotoxicity in FL HSCs. Thus, we here for the first time highlight the underestimated importance of oxygen dependent pathways for generating energy and building blocks in FL HSCs.

  17. 76 FR 37703 - Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing

    Science.gov (United States)

    2011-06-28

    ... Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... hearing to be held for the proposed rule ``Regulation of Fuels and Fuel Additives: 2012 Renewable Fuel... be proposing amendments to the renewable fuel standard program regulations to establish annual...

  18. SAF-BRET-FMEF: a developmental LMR fuel cycle facility

    International Nuclear Information System (INIS)

    Stradley, J.G.; Yook, H.R.; Gerber, E.W.; Lerch, R.E.; Rice, L.H.

    1985-01-01

    The SAF-BRET-FMEF complex represents a versatile fuel cycle facility for processing LMR fuel. While originally conceived for processing FFTF and CRBRP fuel, it represents a facility where LMR fuel from the first generation of innovative LMRs could be processed. The cost of transporting fuel from the LMR to the Hanford site would have to be assessed when the LMR site is identified. The throughput of BRET was set at 15 MTHM/yr during conceptual design of the facility, a rate which was adequate to process all of the fuel from FFTF and fuel and blanket material from CRBRP. The design is currently being reevaluated to see if BRET could be expanded to approx.35 MTHM/yr to process fuel and blanket material from approx.1300 MWe generating capacity of the innovative LMRs. This expanded throughput is possible by designing the equipment for an instantaneous throughput of 0.2 MTHM/d, and by selected additional modifications to the facility (e.g., expansion of shipping and receiving area, and addition of a second entry tunnel transporter), and by the fact that the LMR fuel assemblies contain more fuel than the FFTF assemblies (therefore, fewer assemblies must be handled for the same throughput). The estimated cost of such an expansion is also being assessed. As stated previously, the throughput of SAF and Fuel Assembly could be made to support typical LMRs at little additional cost. The throughput could be increased to support the fuel fabrication requirements for 1300 MWe generating capacity of the innovative LMRs. This added capacity may be achieved by increasing the number of operating shifts, and is affected by variables such as fuel design, fuel enrichment, and plutonium isotopic composition

  19. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    Science.gov (United States)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  20. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis

    Science.gov (United States)

    A.A. Ager; M.A. Finney; A. McMahan; J. Carthcart

    2010-01-01

    Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon...

  1. Proceedings of the international conference on CANDU fuel

    International Nuclear Information System (INIS)

    Hastings, I.J.

    1986-01-01

    These proceedings contain full texts of all paper presented at the first International Conference on CANDU Fuel. The Conference was organized and hosted by the Chalk River Branch of the Canadian Nuclear Society and utilized Atomic Energy of Canada Limited's facilities at Chalk River Nuclear Laboratories. Previously, informal Fuel Information Meetings were used in Canada to allow the exchange of information and technology associated with CANDU. The Chalk River conference was the first open international forum devoted solely to CANDU and included representatives of overseas countries with current or potential CANDU programs, as well as Canadian participants. The keynote presentation was given by Dr. J.B. Slater, who noted the correlation between past successes in CANDU fuel cycle technology and the co-operation between researchers, fabricators and reactor owner/operators in all phases of the fuel cycle, and outlined the challenges facing the industry today. In the banquet address, Dr. R.E. Green described the newly restructured AECL Research Company and its mission which blends traditional R and D with commercial initiatives. Since this forum for fuel technology has proven to be valuable, a second International CANDU Fuel Conference is planned for the fall of 1989, again sponsored by the Canadian Nuclear Society

  2. Reactivity management and burn-up management on JRR-3 silicide-fuel-core

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Araki, Masaaki; Izumo, Hironobu; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-08-01

    On the conversion from uranium-aluminum-dispersion-type fuel (aluminide fuel) to uranium-silicon-aluminum-dispersion-type fuel (silicide fuel), uranium density was increased from 2.2 to 4.8 g/cm 3 with keeping uranium-235 enrichment of 20%. So, burnable absorbers (cadmium wire) were introduced for decreasing excess reactivity caused by the increasing of uranium density. The burnable absorbers influence reactivity during reactor operation. So, the burning of the burnable absorbers was studied and the influence on reactor operation was made cleared. Furthermore, necessary excess reactivity on beginning of operation cycle and the time limit for restart after unplanned reactor shutdown was calculated. On the conversion, limit of fuel burn-up was increased from 50% to 60%. And the fuel exchange procedure was changed from the six-batch dispersion procedure to the fuel burn-up management procedure. The previous estimation of fuel burn-up was required for the planning of fuel exchange, so that the estimation was carried out by means of past operation data. Finally, a new fuel exchange procedure was proposed for effective use of fuel elements. On the procedure, burn-up of spent fuel was defined for each loading position. The average length of fuel's staying in the core can be increased by two percent on the procedure. (author)

  3. Fuel assembly

    International Nuclear Information System (INIS)

    Chaki, Masao; Nishida, Koji; Karasawa, Hidetoshi; Kanazawa, Toru; Orii, Akihito; Nagayoshi, Takuji; Kashiwai, Shin-ichi; Masuhara, Yasuhiro

    1998-01-01

    The present invention concerns a fuel assembly, for a BWR type nuclear reactor, comprising fuel rods in 9 x 9 matrix. The inner width of the channel box is about 132mm and the length of the fuel rods which are not short fuel rods is about 4m. Two water rods having a circular cross section are arranged on a diagonal line in a portion of 3 x 3 matrix at the center of the fuel assembly, and two fuel rods are disposed at vacant spaces, and the number of fuel rods is 74. Eight fuel rods are determined as short fuel rods among 74 fuel rods. Assuming the fuel inventory in the short fuel rod as X(kg), and the fuel inventory in the fuel rods other than the short fuel rods as Y(kg), X and Y satisfy the relation: X + Y ≥ 173m, Y ≤ - 9.7X + 292, Y ≤ - 0.3X + 203 and X > 0. Then, even when the short fuel rods are used, the fuel inventory is increased and fuel economy can be improved. (I.N.)

  4. Fuel assemblies

    International Nuclear Information System (INIS)

    Mukai, Hideyuki

    1987-01-01

    Purpose: To prevent bending of fuel rods caused by the difference of irradiation growth between coupling fuel rods and standards fuel rods thereby maintain the fuel rod integrity. Constitution: The f value for a fuel can (the ratio of pole of zirconium crystals in the entire crystals along the axial direction of the fuel can) of a coupling fuel rod secured by upper and lower tie plates is made smaller than the f value for the fuel can of a standard fuel rod not secured by the upper and the lower tie plates. This can make the irradiation growth of the fuel can of the coupling fuel rod greater than the irradiation growth of the fuel can of the standard fuel rod and, accordingly, since the elongation of the standard fuel rod can always by made greater, bending of the standard fuel rod can be prevented. (Yoshihara, M.)

  5. Effects of phenobarbital pretreatment on the in vivo metabolism of carbaryl in rats

    International Nuclear Information System (INIS)

    Knight, E.V.; Alvares, A.P.; Chin, B.H.

    1987-01-01

    Phenobarbital (PB) pretreatment of animals is known to induce the activity of drug-metabolizing enzymes in liver microsomes. Previous studies showed that incubation of carbaryl with microsomes obtained from livers of untreated or PB-treated rats resulted in little or no oxidative metabolism of the substrate. In addition, no spectral interactions were observed when carbaryl was added to hepatic microsomal suspensions. The present study was carried out to determine the effect of PB pretreatment on the in vivo metabolism of carbaryl in rats

  6. Dietary fatty acid metabolism in prediabetes.

    Science.gov (United States)

    Noll, Christophe; Carpentier, André C

    2017-02-01

    Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.

  7. Features of fuel performance at high fuel burnups

    International Nuclear Information System (INIS)

    Proselkov, V.N.; Scheglov, A.S.; Smirnov, A.V.; Smirnov, V.P.

    2001-01-01

    Some features of fuel behavior at high fuel burnups, in particular, initiation and development of rim-layer, increase in the rate of fission gas release from the fuel and increase in the inner gas pressure in the fuel rod are briefly described. Basing on the analysis of the data of post-irradiation examinations of fuel rods of WWER-440 working FA and CR fuel followers, that have been operated for five fuel cycles and got the average fuel burnup or varies as 50MW-day/kgU, a conclusion is made that the WWER-440 fuel burnup can be increased at least to average burnups of 55-58 MW-day/kgU per fuel assembly (Authors)

  8. Fenetylline: new results on pharmacology, metabolism and kinetics.

    Science.gov (United States)

    Nickel, B; Niebch, G; Peter, G; von Schlichtegroll, A; Tibes, U

    1986-06-01

    In the fenetylline molecule, theophylline is covalently linked with amphetamine via an alkyl chain. The inclusion of amphetamine and results from early metabolic studies have led to speculation that fenetylline may be merely a prodrug for amphetamine and/or theophylline. Although previous studies are not consistent with this hypothesis, additional studies were conducted to comparatively evaluate the profiles of activity exhibited by fenetylline and its two postulated primary metabolites, (+/-)-amphetamine and theophylline. Investigations were also initiated using newly developed high pressure liquid chromatography (HPLC) techniques to further characterize the metabolic pattern that fenetylline undergoes and to examine the relationship between plasma pharmacokinetics and the pharmacodynamic actions of the drug. Fenetylline inhibits activity associated with amphetamine in certain test systems, an effect similar to that previously observed with fenfluramine. Only small amounts of the amphetamine theoretically available in the fenetylline molecule are released. Pharmacodynamic activity associated with fenetylline administration is more closely tied to plasma levels of the parent compound than to any (+/-)-amphetamine produced.

  9. Nuclear criticality assessment of Oak Ridge research fuel element storage

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1978-06-01

    Spent and partially spent Oak Ridge Research Reactor (ORR) fuel elements are retained in the storage section of the ORR pool facility. Determination of a maximum expected neutron multiplication factor for the storage area is accomplished by a validated calculational method. The KENO Monte Carlo code and the Hansen-Roach 16-group neutron cross section sets were validated by calculations of critical experiments performed with early ORR fuel elements and with SPERT-D fuel elements. Calculations of various fuel element arrangements are presented which confirm the subcriticality previously inferred from critical experiments and indicate the k/sub eff/ would not exceed 0.85, were the storage area to be filled to capacity with storage racks containing elements with the fissionable material loading increased to 350 g of 235 U

  10. In-pile intragranular densification of oxide fuels (AWBA Development Program)

    International Nuclear Information System (INIS)

    Dollins, C.C.; Nichols, F.A.

    1977-10-01

    This report proposes a model to describe in-pile densification of oxide fuels, by both vacancy boil-off due to thermal excitation and vacancy knockout by the passage of fission fragments through the pores. The model includes the migration rates of both vacancies and interstitials to pores and the production of vacancy-rich damage cascades by fission fragments. It has been coupled with a previously reported swelling and gas release model so that it can predict the total dimensional changes of the fuel as well as predicting intragranular densification for both ThO 2 and UO 2 fuels for advanced water breeder reactor applications development effort

  11. BISON Fuel Performance Analysis of IFA-796 Rod 3 & 4 and Investigation of the Impact of Fuel Creep

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sweet, Ryan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace the currently used zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromiumaluminum (FeCrAl) alloys because they exhibit slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and slow cladding consumption in the presence of high temperature steam. These alloys should also exhibit increased “coping time” in the event of an accident scenario by improving the mechanical performance at high temperatures, allowing greater flexibility to achieve core cooling. As a continuation of the development of these alloys, in-reactor irradiation testing of FeCrAl cladded fuel rods has started. In order to provide insight on the possible behavior of these fuel rods as they undergo irradiation in the Halden Boiling Water Reactor, engineering analysis has been performed using FeCrAl material models implemented into the BISON fuel performance code. This milestone report provides an update on the ongoing development of modeling capability to predict FeCrAl cladding fuel performance and to provide an early look at the possible behavior of planned in-reactor FeCrAl cladding experiments. In particular, this report consists of two separate analyses. The first analysis consists of fuel performance simulations of IFA-796 rod 4 and two segments of rod 3. These simulations utilize previously implemented material models for the C35M FeCrAl alloy and UO2 to provide a bounding behavior analysis corresponding to variation of the initial fuel cladding gap thickness within the fuel rod. The second analysis is an assessment of the fuel and cladding stress states after modification of the fuel creep model that is currently implemented in the BISON fuel performance code. Effects from modifying the fuel creep model were identified for the BISON simulations

  12. Metabolic Syndrome Risk Profiles Among African American Adolescents

    Science.gov (United States)

    Fitzpatrick, Stephanie L.; Lai, Betty S.; Brancati, Frederick L.; Golden, Sherita H.; Hill-Briggs, Felicia

    2013-01-01

    OBJECTIVE Although African American adolescents have the highest prevalence of obesity, they have the lowest prevalence of metabolic syndrome across all definitions used in previous research. To address this paradox, we sought to develop a model of the metabolic syndrome specific to African American adolescents. RESEARCH DESIGN AND METHODS Data from the National Health and Nutrition Examination Survey (2003–2010) of 822 nonpregnant, nondiabetic, African American adolescents (45% girls; aged 12 to 17 years) who underwent physical examinations and fasted at least 8 h were analyzed. We conducted a confirmatory factor analysis to model metabolic syndrome and then used latent profile analysis to identify metabolic syndrome risk groups among African American adolescents. We compared the risk groups on probability of prediabetes. RESULTS The best-fitting metabolic syndrome model consisted of waist circumference, fasting insulin, HDL, and systolic blood pressure. We identified three metabolic syndrome risk groups: low, moderate, and high risk (19% boys; 16% girls). Thirty-five percent of both boys and girls in the high-risk groups had prediabetes, a significantly higher prevalence compared with boys and girls in the low-risk groups. Among adolescents with BMI higher than the 85th percentile, 48 and 36% of boys and girls, respectively, were in the high-risk group. CONCLUSIONS Our findings provide a plausible model of the metabolic syndrome specific to African American adolescents. Based on this model, approximately 19 and 16% of African American boys and girls, respectively, are at high risk for having the metabolic syndrome. PMID:23093663

  13. Fuel Handbook[Wood and other renewable fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (SE)] (ed.)

    2006-03-15

    This handbook on renewable fuels is intended for power and heat producers in Sweden. This fuel handbook provides, from a plant owner's perspective, a method to evaluate different fuels on the market. The fuel handbook concerns renewable fuels (but does not include household waste) that are available on the Swedish market today or fuels that have potential to be available within the next ten years. The handbook covers 26 different fuels. Analysis data, special properties, operating experiences and literature references are outlined for each fuel. [Special properties, operating experiences and literature references are not included in this English version] The handbook also contains: A proposed methodology for introduction of new fuels. A recommendation of analyses and tests to perform in order to reduce the risk of problems is presented. [The recommendation of analyses and tests is not included in the English version] A summary of relevant laws and taxes for energy production, with references to relevant documentation. [Only laws and taxes regarding EU are included] Theory and background to evaluate a fuel with respect to combustion, ash and corrosion properties and methods that can be used for such evaluations. Summary of standards, databases and handbooks on biomass fuels and other solid fuels, and links to web sites where further information about the fuels can be found. The appendices includes: A methodology for trial firing of fuels. Calculations procedures for, amongst others, heating value, flue gas composition, key number and free fall velocity [Free fall velocity is not included in the English version]. In addition, conversion routines between different units for a number of different applications are provided. Fuel analyses are presented in the appendix. (The report is a translation of parts of the report VARMEFORSK--911 published in 2005)

  14. O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle.

    Science.gov (United States)

    Hanover, John A; Chen, Weiping; Bond, Michelle R

    2018-06-01

    Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.

  15. An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

    International Nuclear Information System (INIS)

    Douglas E. Burkes; Daniel M. Wachs; James E. Werner; Steven D. Howe

    2007-01-01

    Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective fuel elements. These advanced technologies may address common issues with CERMET fuels, such as grain growth, ductile to brittle transition temperature and UO2 stoichiometry, more effectively than the commonly accepted 'traditional' fabrication routes. Bonding of fuel elements, especially if the fabrication process demands production of smaller element segments, must be investigated. Advanced brazing techniques and compounds are now available that could produce a higher quality bond segment with increased ease in joining. This paper will briefly address the history of CERMET

  16. Benefits of barrier fuel on fuel cycle economics

    International Nuclear Information System (INIS)

    Crowther, R.L.; Kunz, C.L.

    1988-01-01

    Barrier fuel rod cladding was developed to eliminate fuel rod failures from pellet/cladding stress/corrosion interaction and to eliminate the associated need to restrict the rate at which fuel rod power can be increased. The performance of barrier cladding has been demonstrated through extensive testing and through production application to many boiling water reactors (BWRs). Power reactor data have shown that barrier fuel rod cladding has a significant beneficial effect on plant capacity factor and plant operating costs and significantly increases fuel reliability. Independent of the fuel reliability benefit, it is less obvious that barrier fuel has a beneficial effect of fuel cycle costs, since barrier cladding is more costly to fabricate. Evaluations, measurements, and development activities, however, have shown that the fuel cycle cost benefits of barrier fuel are large. This paper is a summary of development activities that have shown that application of barrier fuel significantly reduces BWR fuel cycle costs

  17. Argentine activities on fuels for nuclear generation stations

    International Nuclear Information System (INIS)

    Olezza, R.L.; Valesi, J.

    1995-01-01

    In the last six years, significant changes have taken place in the nuclear fuel activity field in Argentina, therefore all the areas of the nuclear fuel cycle have been strongly influenced by these. The strategies carried out by CNEA to give an initial answer to the modifications of the domestic and international context of the nuclear fuel cycle were described in the previous Conference. Three years later, it is possible to appreciate the first results of the application of those strategies, and also that the frame has continued not only evolving and requiring new answers, but adapting and accentuating some strategies as well. A brief review of those results is presented here, together with a summary of the condition of the current situation and of the proposals to face it. (author)

  18. Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium.

    Science.gov (United States)

    Ponce-de-Leon, Miguel; Tamarit, Daniel; Calle-Espinosa, Jorge; Mori, Matteo; Latorre, Amparo; Montero, Francisco; Pereto, Juli

    2017-01-01

    Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism-which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca . Serratia symbiotica SCc, and in which some metabolic pathways are partitioned between different partners. Here we present a genome-scale metabolic network (GEM) for the bacterial consortium from the cedar aphid i BSCc. The analysis of this GEM allows us the confirmation of cases of metabolic complementation previously described by genome analysis (i.e., tryptophan and biotin biosynthesis) and the redefinition of an event of metabolic pathway sharing between the two endosymbionts, namely the biosynthesis of tetrahydrofolate. In silico knock-out experiments with i BSCc showed that the consortium metabolism is a highly integrated yet fragile network. We also have explored the evolutionary pathways leading to the emergence of metabolic complementation between reduced metabolisms starting from individual, complete networks. Our results suggest that, during the establishment of metabolic complementation in endosymbionts, adaptive evolution is significant in the case of tryptophan biosynthesis, whereas vitamin production pathways seem to adopt suboptimal solutions.

  19. Effect of Crossflow on Hot Spot Fuel Temperature in Prismatic VHTR

    International Nuclear Information System (INIS)

    Lee, Sung Nam; Tak, Nam-il; Kim, Min Hwan; Noh, Jae Man; Park, Goon-Cherl

    2014-01-01

    Various studies have been conducted to predict the thermal-hydraulics of a prismatic gas-cooled reactor. However, most previous studies have concentrated on the nominal-designed core. The fuel assembly of a high temperature gas-cooled reactor consists of a fuel compact and graphite block used as a moderator. This graphite faces a dimensional change due to irradiation or heating during normal operation. This size change might affect the coolant flow distribution in the active core. Therefore, the hot spot fuel temperature position or value could vary. There are two types of flows by the size change of graphite. One is the bypass flow and the other is the crossflow. The crossflow occurs at the crossflow gap between the vertical stacks of fuel blocks. In this study, the effect of the crossflow on the hot spot fuel temperature has been intensively investigated. (author)

  20. Improvement of fuel sampling device for STACY and TRACY

    International Nuclear Information System (INIS)

    Hirose, Hideyuki; Sakuraba, Koichi; Onodera, Seiji

    1998-05-01

    STACY and TRACY, static and transient experiment facilities in NUCEF, use solution fuel. It is important to analyze accurately fuel composition (uranium enrichment, uranium concentration, nitric acid morality, amount of impurities, radioactivity of FP) for their safety operation and improvement of experimental accuracy. Both STACY and TRACY have the sampling devices to sample fuel solution for that purpose. The previous sampling devices of STACY and TRACY had been designed to dilute fuel sample with nitric acid. Its sampling mechanism could pour fuel sample into sampling vessel by a piston drive of nitric acid in the burette. It was, however, sometimes found that sample fuel solution was diluted by mixing with nitric acid in the burette. Therefore, the sampling mechanism was change into a fixed quantity pump drive which didn't use nitric acid. The authors confirmed that the performance of the new sampling device was improved by changing sampling mechanism. It was confirmed through the function test that the uncertainty in uranium concentration measurement using the improved sampling device was 0.14%, and less than the designed value of 0.2% (coefficient of variation). (author)

  1. Platelet activating factor receptor binding plays a critical role in jet fuel-induced immune suppression

    International Nuclear Information System (INIS)

    Ramos, Gerardo; Kazimi, Nasser; Nghiem, Dat X.; Walterscheid, Jeffrey P.; Ullrich, Stephen E.

    2004-01-01

    Applying military jet fuel (JP-8) or commercial jet fuel (Jet-A) to the skin of mice suppresses the immune response in a dose-dependant manner. The release of biological response modifiers, particularly prostaglandin E 2 (PGE 2 ), is a critical step in activating immune suppression. Previous studies have shown that injecting selective cyclooxygenase-2 inhibitors into jet fuel-treated mice blocks immune suppression. Because the inflammatory phospholipid mediator, platelet-activating factor (PAF), up-regulates cyclooxygenase-2 production and PGE 2 synthesis by keratinocytes, we tested the hypothesis that PAF-receptor binding plays a role in jet fuel-induced immune suppression. Treating keratinocyte cultures with PAF and/or jet fuel (JP-8 and Jet-A) stimulates PGE 2 secretion. Jet fuel-induced PGE 2 production was suppressed by treating the keratinocytes with specific PAF-receptor antagonists. Injecting mice with PAF, or treating the skin of the mice with JP-8, or Jet-A, induced immune suppression. Jet fuel-induced immune suppression was blocked when the jet fuel-treated mice were injected with PAF-receptor antagonists before treatment. Jet fuel treatment has been reported to activate oxidative stress and treating the mice with anti-oxidants (Vitamins C, or E or beta-hydroxy toluene), before jet fuel application, interfered with immune suppression. These findings confirm previous studies showing that PAF-receptor binding can modulate immune function. Furthermore, they suggest that PAF-receptor binding may be an early event in the induction of immune suppression by immunotoxic environmental agents that target the skin

  2. Fuel assembly

    International Nuclear Information System (INIS)

    Yamazaki, Hajime.

    1995-01-01

    In a fuel assembly having fuel rods of different length, fuel pellets of mixed oxides of uranium and plutonium are loaded to a short fuel rod. The volume ratio of a pellet-loaded portion to a plenum portion of the short fuel rod is made greater than the volume ratio of a fuel rod to which uranium fuel pellets are loaded. In addition, the volume of the plenum portion of the short fuel rod is set greater depending on the plutonium content in the loaded fuel pellets. MOX fuel pellets are loaded on the short fuel rods having a greater degree of freedom relevant to the setting for the volume of the plenum portion compared with that of a long rod fuel, and the volume of the plenum portion is ensured greater depending on the plutonium content. Even if a large amount of FP gas and He gas are discharged from the MOX fuels compared with that from the uranium fuels, the internal pressure of the MOX fuel rod during operation is maintained substantially identical with that of the uranium fuel rod, so that a risk of generating excess stresses applied to the fuel cladding tubes and rupture of fuels are greatly reduced. (N.H.)

  3. Framing car fuel efficiency : linearity heuristic for fuel consumption and fuel-efficiency ratings

    NARCIS (Netherlands)

    Schouten, T.M.; Bolderdijk, J.W.; Steg, L.

    2014-01-01

    People are sensitive to the way information on fuel efficiency is conveyed. When the fuel efficiency of cars is framed in terms of fuel per distance (FPD; e.g. l/100 km), instead of distance per units of fuel (DPF; e.g. km/l), people have a more accurate perception of potential fuel savings. People

  4. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

    Science.gov (United States)

    Scholtens, Denise M; Bain, James R; Reisetter, Anna C; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L

    2016-07-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Used fuel packing plant for CANDU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Menzies, I.; Thayer, B.; Bains, N., E-mail: imenzies@atsautomation.com [ATS Automation, Cambridge, ON (Canada); Murchison, A., E-mail: amurchison@nwmo.ca [NWMO, Toronto, ON (Canada)

    2015-07-01

    Large forgings have been selected to containerize Light Water Reactor used nuclear fuel. CANDU fuel, which is significantly smaller in size, allows novel approaches for containerization. For example, by utilizing commercially available extruded ASME pipe a conceptual design of a Used Fuel Packing Plant for containerization of used CANDU fuel in a long lived metallic container has been developed. The design adopts a modular approach with multiple independent work cells to transfer and containerize the used fuel. Based on current technologies and concepts from proven industrial systems, the Used Fuel Packing Plant can assemble twelve used fuel containers per day considering conservative levels of process availability. (author)

  6. The fuel cell model of abiogenesis: a new approach to origin-of-life simulations.

    Science.gov (United States)

    Barge, Laura M; Kee, Terence P; Doloboff, Ivria J; Hampton, Joshua M P; Ismail, Mohammed; Pourkashanian, Mohamed; Zeytounian, John; Baum, Marc M; Moss, John A; Lin, Chung-Kuang; Kidd, Richard D; Kanik, Isik

    2014-03-01

    In this paper, we discuss how prebiotic geo-electrochemical systems can be modeled as a fuel cell and how laboratory simulations of the origin of life in general can benefit from this systems-led approach. As a specific example, the components of what we have termed the "prebiotic fuel cell" (PFC) that operates at a putative Hadean hydrothermal vent are detailed, and we used electrochemical analysis techniques and proton exchange membrane (PEM) fuel cell components to test the properties of this PFC and other geo-electrochemical systems, the results of which are reported here. The modular nature of fuel cells makes them ideal for creating geo-electrochemical reactors with which to simulate hydrothermal systems on wet rocky planets and characterize the energetic properties of the seafloor/hydrothermal interface. That electrochemical techniques should be applied to simulating the origin of life follows from the recognition of the fuel cell-like properties of prebiotic chemical systems and the earliest metabolisms. Conducting this type of laboratory simulation of the emergence of bioenergetics will not only be informative in the context of the origin of life on Earth but may help in understanding whether life might emerge in similar environments on other worlds.

  7. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    Science.gov (United States)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  8. Fuel assembly

    International Nuclear Information System (INIS)

    Sakuyama, Tadashi; Mukai, Hideyuki.

    1988-01-01

    Purpose: To prevent the bending of a fuel rod caused by the difference in the elongation between a joined fuel rod and a standard fuel rod thereby maintain the fuel rod integrity. Constitution: A joined fuel rod is in a thread engagement at its lower end plug thereof with a lower plate, while passed through at its upper end plug into an upper tie plate and secured with a nut. Further, a standard fuel rod is engaged at its upper end plug and lower end plug with the upper tie plate and the lower tie plate respectively. Expansion springs are mounted to the upper end plugs of these bonded fuel rods and the standard fuel rods for preventing this lifting. Each of the fuel rods comprises a plurality of sintered pellets of nuclear fuel materials laminated in a zircaloy fuel can. The content of the alloy ingredient in the fuel can of the bonded fuel rod is made greater than that of the alloy ingredient of the standard fuel rod. this can increase the elongation for the bonded fuel rod, and the spring of the standard fuel rod is tightly bonded to prevent the bending. (Yoshino, Y.)

  9. Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates.

    Science.gov (United States)

    Glazier, Douglas S; Hirst, Andrew G; Atkinson, David

    2015-03-07

    Metabolism fuels all biological activities, and thus understanding its variation is fundamentally important. Much of this variation is related to body size, which is commonly believed to follow a 3/4-power scaling law. However, during ontogeny, many kinds of animals and plants show marked shifts in metabolic scaling that deviate from 3/4-power scaling predicted by general models. Here, we show that in diverse aquatic invertebrates, ontogenetic shifts in the scaling of routine metabolic rate from near isometry (bR = scaling exponent approx. 1) to negative allometry (bR < 1), or the reverse, are associated with significant changes in body shape (indexed by bL = the scaling exponent of the relationship between body mass and body length). The observed inverse correlations between bR and bL are predicted by metabolic scaling theory that emphasizes resource/waste fluxes across external body surfaces, but contradict theory that emphasizes resource transport through internal networks. Geometric estimates of the scaling of surface area (SA) with body mass (bA) further show that ontogenetic shifts in bR and bA are positively correlated. These results support new metabolic scaling theory based on SA influences that may be applied to ontogenetic shifts in bR shown by many kinds of animals and plants. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Measurement of soluble nuclide dissolution rates from spent fuel

    International Nuclear Information System (INIS)

    Wilson, C.N.; Gray, W.J.

    1990-01-01

    Gaining a better understanding of the potential release behavior of water-soluble radionuclides is the focus of new laboratory spent fuel dissolution studies being planned in support of the Yucca Mountain Project. Previous studies have suggested that maximum release rates for actinide nuclides, which account for most of the long-term radioactivity in spent fuel, should be solubility-limited and should not depend on the characteristics or durability of the spent fuel waste form. Maximum actinide concentrations should be sufficiently low to meet the NRC (Nuclear Regulatory Commission) annual release limits. Potential release rates for soluble nuclides such as 99 Tc, 135 Cs, 14 C and 129 I, which account for about 1-2% of the activity in spent fuel at 1,000 years, are less certain and may depend on processes such as oxidation of the fuel in the repository air environment. Dissolution rates for several soluble nuclides have been measured from spent fuel specimens using static and semi-static methods. However, such tests do not provide a direct measurement of fuel matrix dissolution rates that may ultimately control soluble-nuclide release rates. Flow-through tests are being developed as a potential supplemental method for determining the matrix component of soluble-nuclide dissolution. Advantages and disadvantages of both semi-static and flow-through methods are discussed. Tests with fuel specimens representing a range of potential fuel states that may occur in the repository, including oxidized fuel, are proposed. Preliminary results from flow-through tests with unirradiated UO 2 suggesting that matrix dissolution rates are very sensitive to water composition are also presented

  11. PEM fuel cell model suitable for energy optimization purposes

    International Nuclear Information System (INIS)

    Caux, S.; Hankache, W.; Fadel, M.; Hissel, D.

    2010-01-01

    Many fuel cell stack models or fuel cell system models exist. A model must be built with a main objective, sometimes for accurate electro-chemical behavior description, sometimes for optimization procedure at a system level. In this paper, based on the fundamental reactions present in a fuel cell stack, an accurate model and identification procedure is presented for future energy management in a Hybrid Electrical Vehicle (HEV). The proposed approach extracts all important state variables in such a system and based on the control of the fuel cell's gas flows and temperature, simplification arises to a simple electrical model. Assumptions verified due to the control of the stack allow simplifying the relationships within keeping accuracy in the description of a global fuel cell stack behavior from current demand to voltage. Modeled voltage and current dynamic behaviors are compared with actual measurements. The obtained accuracy is sufficient and less time-consuming (versus other previously published system-oriented models) leading to a suitable model for optimization iterative off-line algorithms.

  12. PEM fuel cell model suitable for energy optimization purposes

    Energy Technology Data Exchange (ETDEWEB)

    Caux, S.; Hankache, W.; Fadel, M. [LAPLACE/CODIASE: UMR CNRS 5213, Universite de Toulouse - INPT, UPS, - ENSEEIHT: 2 rue Camichel BP7122, 31071 Toulouse (France); CNRS, LAPLACE, F-31071 Toulouse (France); Hissel, D. [FEMTO-ST ENISYS/FCLAB, UMR CNRS 6174, University of Franche-Comte, Rue Thierry Mieg, 90010 Belfort (France)

    2010-02-15

    Many fuel cell stack models or fuel cell system models exist. A model must be built with a main objective, sometimes for accurate electro-chemical behavior description, sometimes for optimization procedure at a system level. In this paper, based on the fundamental reactions present in a fuel cell stack, an accurate model and identification procedure is presented for future energy management in a Hybrid Electrical Vehicle (HEV). The proposed approach extracts all important state variables in such a system and based on the control of the fuel cell's gas flows and temperature, simplification arises to a simple electrical model. Assumptions verified due to the control of the stack allow simplifying the relationships within keeping accuracy in the description of a global fuel cell stack behavior from current demand to voltage. Modeled voltage and current dynamic behaviors are compared with actual measurements. The obtained accuracy is sufficient and less time-consuming (versus other previously published system-oriented models) leading to a suitable model for optimization iterative off-line algorithms. (author)

  13. Spent fuel management in Hungary: Current status and prospects

    International Nuclear Information System (INIS)

    Ferenczi, G.

    1996-01-01

    The Paks Nuclear Power Plant Ltd. operates the only NPP of Hungary, consisting of a 4 WWER-440 type units. Since 1989, approximately 40-50 % of the total yearly electricity generation of the country has been supplied by this plant. The fresh fuel is imported from Russia (previously from the Soviet Union) and the spent fuel assemblies are shipped back to Russia for later reprocessing after 5 years of decay storage in the spent fuel pools of the plant. Seeing the political and economical changes that started in Russia, the Paks NPP's management made a decision in 1990 to study the implementation of an independent spent fuel storage facility (ISFSF) at the Paks site and in 1992 to choose the GEC-ALSTHOM's MVDS. On the basis of the Construction License issued by the HAEC, the construction of the ISFSF was started in March 1995. The paper gives general information on the spent fuel arisings, the storage at the site, the shipment to Russia and on the implementation of the ISFSF. (author). 3 refs

  14. Effects of independently altering body weight and body mass on the metabolic cost of running

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Grabowski, A.; Kram, R.

    2011-01-01

    The metabolic cost of running is substantial, despite the savings from elastic energy storage and return. Previous studies suggest that generating vertical force to support body weight and horizontal forces to brake and propel body mass are the major determinants of the metabolic cost of running. In

  15. Optimization of binary breeder reactor IV - Conception of mixed fuel at central part of the core

    International Nuclear Information System (INIS)

    Dias, A.F.; Ishiguro, Y.

    1986-04-01

    Neutronic characteristics of some LMFBRs are analized for a fueling mode that is different from those reported previously. In an inner part of the core both 233 U/ 232 Th and Pu/U assemblies are placed while the outer zone is fueled with Pu/U assemblies. Both oxide metal fuels and 232 Th and 238 U blankets are considered. (Author) [pt

  16. Fuel performance of DOE fuels in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-01-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. In April of 1992, the U.S. Department of Energy (DOE) decided to end the fuel reprocessing mission at ICPP. Fuel performance in storage received increased emphasis as the fuel now needs to be stored until final dispositioning is defined and implemented. Fuels are stored in four main areas: an original underwater storage facility, a modern underwater storage facility, and two dry fuel storage facilities. As a result of the reactor research mission of the DOE and predecessor agencies, the Energy Research and Development Administration and the Atomic Energy Commission, many types of nuclear fuel have been developed, used, and assigned to storage at the ICPP. Fuel clad with stainless steel, zirconium, aluminum, and graphite are represented. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels, resulting in 55 different fuel types in storage. Also included in the fuel storage inventory is canned scrap material

  17. Monitoring and prevalence rates of metabolic syndrome in military veterans with serious mental illness.

    Directory of Open Access Journals (Sweden)

    Sameed Ahmed M Khatana

    Full Text Available BACKGROUND: Cardiovascular disease is the leading cause of mortality among patients with serious mental illness (SMI and the prevalence of metabolic syndrome--a constellation of cardiovascular risk factors--is significantly higher in these patients than in the general population. Metabolic monitoring among patients using second generation antipsychotics (SGAs--a risk factor for metabolic syndrome--has been shown to be inadequate despite the release of several guidelines. However, patients with SMI have several factors independent of medication use that predispose them to a higher prevalence of metabolic syndrome. Our study therefore examines monitoring and prevalence of metabolic syndrome in patients with SMI, including those not using SGAs. METHODS AND FINDINGS: We retrospectively identified all patients treated at a Veterans Affairs Medical Center with diagnoses of schizophrenia, schizoaffective disorder or bipolar disorder during 2005-2006 and obtained demographic and clinical data. Incomplete monitoring of metabolic syndrome was defined as being unable to determine the status of at least one of the syndrome components. Of the 1,401 patients included (bipolar disorder: 822; schizophrenia: 222; and schizoaffective disorder: 357, 21.4% were incompletely monitored. Only 54.8% of patients who were not prescribed SGAs and did not have previous diagnoses of hypertension or hypercholesterolemia were monitored for all metabolic syndrome components compared to 92.4% of patients who had all three of these characteristics. Among patients monitored for metabolic syndrome completely, age-adjusted prevalence of the syndrome was 48.4%, with no significant difference between the three psychiatric groups. CONCLUSIONS: Only one half of patients with SMI not using SGAs or previously diagnosed with hypertension and hypercholesterolemia were completely monitored for metabolic syndrome components compared to greater than 90% of those with these characteristics

  18. Fuel Supply Defaults for Regional Fuels and Fuel Wizard Tool in MOVES201X

    Science.gov (United States)

    The fuel supply report documents the data and methodology used to derive the default gasoline, diesel and fuel-blend fuel properties, and their respective fuel market share in MOVES. The default market share of the individual fuels varies by calendar year, seasons, and several do...

  19. The KALIMER-600 Reactor Core Design Concept with Varying Fuel Cladding Thickness

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Jang, Jin Wook; Kim, Yeong Il

    2006-01-01

    Recently, Korea Atomic Energy Research Institute (KAERI) has developed a 600MWe sodium cooled fast reactor, the KALIMER-600 reactor core concept using single enrichment fuel. This reactor core concept is characterized by the following design targets : 1) Breakeven breeding (or fissile-self-sufficient) without any blanket, 2) Small burnup reactivity swing ( 23 n/cm 2 ). In the previous design, the single enrichment fuel concept was achieved by using the special fuel assembly designs where non-fuel rods (i.e., ZrH 1.8 , B 4 C, and dummy rods) were used. In particular, the moderator rods (ZrH 1.8 ) were used to reduce the sodium void worth and the fuel Doppler coefficient. But it has been known that this hydride moderator possesses relatively poor irradiation behavior at high temperature. In this paper, a new core design concept for use of single enrichment fuel is described. In this concept, the power flattening is achieved by using the core region wise cladding thicknesses but all non-fuel rods are removed to simplify the fuel assembly design

  20. 78 FR 12005 - Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing

    Science.gov (United States)

    2013-02-21

    ... Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards; Public Hearing AGENCY: Environmental... EPA is announcing a public hearing to be held for the proposed rule ``Regulation of Fuels and Fuel Additives: 2013 Renewable Fuel Standards,'' which was published separately in the Federal Register on...

  1. Metabonomics Approach to Assessing the Metabolism Variation and Endoexogenous Metabolic Interaction of Ginsenosides in Cold Stress Rats.

    Science.gov (United States)

    Zhang, Zhihao; Wang, Xiaoyan; Wang, Jingcheng; Jia, Zhiying; Liu, Yumin; Xie, Xie; Wang, Chongchong; Jia, Wei

    2016-06-03

    Metabolic profiling technology, a massive information provider, has promoted the understanding of the metabolism of multicomponent medicines and its interactions with endogenous metabolites, which was previously a challenge in clarification. In this study, an untargeted GC/MS-based approach was employed to investigate the urinary metabolite profile in rats with oral administration of ginsenosides and the control group. Significant changes of urinary metabolites contents were observed in the total ginsenosides group, revealing the impact of ginsenosides as indicated by the up- or down-regulation of several pathways involving neurotransmitter-related metabolites, tricarboxylic acid (TCA) cycle, fatty acids β-oxidation, and intestinal microflora metabolites. Meanwhile, a targeted UPLC-QQQ/MS-based metabonomic approach was developed to investigate the changes of urinary ginsenoside metabolites during the process of acute cold stress. Metabolic analysis indicated that upstream ginsenosides (rg1, re, and rf) increased significantly, whereas downstream ginsenosides (ck, ppd, and ppt) decreased correspondingly after cold exposure. Finally, the relationships between ginsenosides and significantly changed metabolites were investigated by correlation analysis.

  2. Solid TRU fuels and fuel cycle technology

    International Nuclear Information System (INIS)

    Ogawa, Toru; Suzuki, Yasufumi

    1997-01-01

    Alloys and nitrides are candidate solid fuels for transmutation. However, the nitride fuels are preferred to the alloys because they have more favorable thermal properties which allows to apply a cold-fuel concept. The nitride fuel cycle technology is briefly presented

  3. Analysis of radiation shields of BNPP spent fuel pool

    International Nuclear Information System (INIS)

    Ayoobian, N.; Hadad, K.; Nematollahi, M. R.

    2007-01-01

    Radioactive protection is one of the most important subjects in nuclear power plants safety. Analysis of BNPP spent fuel pool shielding , as a main source of energetic γ-rays was the main goal of this project. Firstly, we simulated the reactor core using WIMSD-4 neutronic code and the amount of fission product in the fuel assembly (FA) was calculated during the reactor operation. Then, by obtaining the results from the previous calculation and by using MCNP4C nuclear code , the intensity of γ-rays was obtained in layers of spent fuel pool shields. The results have shown that no significant γ-rays passed through these shields. Finally, an accident and resulting exposure dose above the pool was analyzed

  4. Autoxidation of jet fuels: Implications for modeling and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Heneghan, S.P. [Univ. of Dayton Research Institute, OH (United States); Chin, L.P. [Systems Research Laboratories, Inc., Dayton, OH (United States)

    1995-05-01

    The study and modeling of jet fuel thermal deposition is dependent on an understanding of and ability to model the oxidation chemistry. Global modeling of jet fuel oxidation is complicated by several facts. First, liquid jet fuels are hard to heat rapidly and fuels may begin to oxidize during the heat-up phase. Non-isothermal conditions can be accounted for but the evaluation of temperature versus time is difficult. Second, the jet fuels are a mixture of many compounds that may oxidize at different rates. Third, jet fuel oxidation may be autoaccelerating through the decomposition of the oxidation products. Attempts to model the deposition of jet fuels in two different flowing systems showed the inadequacy of a simple two-parameter global Arrhenius oxidation rate constant. Discarding previous assumptions about the form of the global rate constants results in a four parameter model (which accounts for autoacceleration). This paper discusses the source of the rate constant form and the meaning of each parameter. One of these parameters is associated with the pre-exponential of the autoxidation chain length. This value is expected to vary inversely to thermal stability. We calculate the parameters for two different fuels and discuss the implication to thermal and oxidative stability of the fuels. Finally, we discuss the effect of non-Arrhenius behavior on current modeling of deposition efforts.

  5. Fuel conditioning facility electrorefiner cadmium vapor trap operation

    International Nuclear Information System (INIS)

    Vaden, D. E.

    1998-01-01

    Processing sodium-bonded spent nuclear fuel at the Fuel Conditioning Facility at Argonne National Laboratory-West involves an electrometallurgical process employing a molten LiCl-KCl salt covering a pool of molten cadmium. Previous research has shown that the cadmium dissolves in the salt as a gas, diffuses through the salt layer and vaporizes at the salt surface. This cadmium vapor condenses on cool surfaces, causing equipment operation and handling problems. Using a cadmium vapor trap to condense the cadmium vapors and reflux them back to the electrorefiner has mitigated equipment problems and improved electrorefiner operations

  6. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    Science.gov (United States)

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  7. Advanced Fuel Cycle Cost Basis – 2017 Edition

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ganda, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hanson, J. K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-09-29

    This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.

  8. Nuclear fuels

    International Nuclear Information System (INIS)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F.

    2009-01-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO 2 pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO 2 and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under irradiation

  9. Nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Beauvy, M.; Berthoud, G.; Defranceschi, M.; Ducros, G.; Guerin, Y.; Limoge, Y.; Madic, Ch.; Santarini, G.; Seiler, J.M.; Sollogoub, P.; Vernaz, E.; Guillet, J.L.; Ballagny, A.; Bechade, J.L.; Bonin, B.; Brachet, J.Ch.; Delpech, M.; Dubois, S.; Ferry, C.; Freyss, M.; Gilbon, D.; Grouiller, J.P.; Iracane, D.; Lansiart, S.; Lemoine, P.; Lenain, R.; Marsault, Ph.; Michel, B.; Noirot, J.; Parrat, D.; Pelletier, M.; Perrais, Ch.; Phelip, M.; Pillon, S.; Poinssot, Ch.; Vallory, J.; Valot, C.; Pradel, Ph.; Bonin, B.; Bouquin, B.; Dozol, M.; Lecomte, M.; Vallee, A.; Bazile, F.; Parisot, J.F.; Finot, P.; Roberts, J.F

    2009-07-01

    Fuel is one of the essential components in a reactor. It is within that fuel that nuclear reactions take place, i.e. fission of heavy atoms, uranium and plutonium. Fuel is at the core of the reactor, but equally at the core of the nuclear system as a whole. Fuel design and properties influence reactor behavior, performance, and safety. Even though it only accounts for a small part of the cost per kilowatt-hour of power provided by current nuclear power plants, good utilization of fuel is a major economic issue. Major advances have yet to be achieved, to ensure longer in-reactor dwell-time, thus enabling fuel to yield more energy; and improve ruggedness. Aside from economics, and safety, such strategic issues as use of plutonium, conservation of resources, and nuclear waste management have to be addressed, and true technological challenges arise. This Monograph surveys current knowledge regarding in-reactor behavior, operating limits, and avenues for R and D. It also provides illustrations of ongoing research work, setting out a few noteworthy results recently achieved. Content: 1 - Introduction; 2 - Water reactor fuel: What are the features of water reactor fuel? 9 (What is the purpose of a nuclear fuel?, Ceramic fuel, Fuel rods, PWR fuel assemblies, BWR fuel assemblies); Fabrication of water reactor fuels (Fabrication of UO{sub 2} pellets, Fabrication of MOX (mixed uranium-plutonium oxide) pellets, Fabrication of claddings); In-reactor behavior of UO{sub 2} and MOX fuels (Irradiation conditions during nominal operation, Heat generation, and removal, The processes involved at the start of irradiation, Fission gas behavior, Microstructural changes); Water reactor fuel behavior in loss of tightness conditions (Cladding, the first containment barrier, Causes of failure, Consequences of a failure); Microscopic morphology of fuel ceramic and its evolution under irradiation; Migration and localization of fission products in UOX and MOX matrices (The ceramic under

  10. Hydrogen: A real alternative to fossil fuels and bio fuels in the Spanish vehicle industry; El Hidrogeno: Una alternativa real a los combustible fosiles y a los biocombustible para automoacion en Espana

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sobrino, F.; Rodriguez-Monroy, C.; Hernandez-Perez, J. L.

    2010-07-01

    For several years, UE has been trying to increase the use of bio fuels to replace petrol or diesel in the transports with the aim of fulfilling a commitment about climate change, supplying environmentally friendly conditions, promoting renewable energy sources. To achieve this, the 2003/30/EC Directive states that in all the European countries, before 31st December 2010, at least 5.75% of all petrol and diesel fuels used for transport are bio fuels. In previous papers, the authors evaluated this possibility. Analyzing hydrogen as replacement of fossil fuels and bio fuels nowadays in spain and a technical,economic and environmental point of view is the aim of this paper. (Author)

  11. Fuel economy of hybrid fuel-cell vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  12. The effects of incretin hormones on cerebral glucose metabolism in health and disease

    DEFF Research Database (Denmark)

    Nilsson, Malin; Gjedde, Albert; Brock, Birgitte

    2017-01-01

    Incretin hormones, notably glucagon-like peptide-1 (GLP-1), are gluco-regulatory hormones with pleiotropic effects also in the central nervous system. Apart from a local production of GLP-1, systemic administration of the hormone has been shown to influence a number of cerebral pathologies......, including neuroinflammation. Given the brains massive dependence on glucose as its major fuel, we here review the mechanistics of cerebral glucose transport and metabolism, focusing on the deleterious effects of both hypo- and hyperglycaemia. GLP-1, when administered as long-acting analogues...... or intravenously, appears to decrease transport of glucose in normoglycaemic conditions, without affecting the total cerebral glucose content. During hypoglycaemia this effect seems abated, whereas during hyperglycaemia GLP-1 regulates cerebral glucose metabolism towards stable levels resembling normoglycaemia...

  13. Heart over mind: metabolic control of white adipose tissue and liver.

    Science.gov (United States)

    Nakamura, Michinari; Sadoshima, Junichi

    2014-12-01

    Increasing evidence suggests that the heart controls the metabolism of peripheral organs. Olson and colleagues previously demonstrated that miR‐208a controls systemic energy homeostasis through the regulation of MED13 in cardiomyocytes (Grueter et al, 2012). In their follow‐up study in this issue of EMBO Molecular Medicine, white adipose tissue (WAT) and liver are identified as the physiological targets of cardiac MED13 signaling, most likely through cardiac‐derived circulating factors, which boost energy consumption by upregulating metabolic gene expression and increasing mitochondrial numbers (Baskin et al, 2014). In turn, increased energy expenditure in WAT and the liver confers leanness. These findings strengthen the evidence of metabolic crosstalk between the heart and peripheral tissues through cardiokines and also set the stage for the development of novel treatments for metabolic syndrome.

  14. Economic evaluation of multilateral nuclear fuel cycle approach

    International Nuclear Information System (INIS)

    Takashima, Ryuta; Kuno, Yusuke; Omoto, Akira; Tanaka, Satoru

    2011-01-01

    Recently previous works have shown that multilateral nuclear fuel cycle approach has benefits not only of non-proliferation but also of cost effectiveness. This is because for most facilities in nuclear fuel cycle, there exist economies of scale, which has a significant impact on the costs of nuclear fuel cycle. Therefore, the evaluation of economic rationality is required as one of the evaluation factors for the multilateral nuclear fuel cycle approach. In this study, we consider some options with respect to multilateral approaches to nuclear fuel cycle in Asian-Pacific region countries that are proposed by the University of Tokyo. In particular, the following factors are embedded into each type: A) no involvement of assurance of services, B) provision of assurance of services including construction of new facility, without transfer of ownership, and C) provision of assurance of service including construction of new joint facilities with ownership transfer of facilities to multilateral nuclear fuel cycle approach. We show the overnight costs taking into account install and operation of nuclear fuel cycle facilities for each option. The economic parameter values such as uranium price, scale factor, and market output expansion influences the total cost for each option. Thus, we show how these parameter values and economic risks affect the total overnight costs for each option. Additionally, the international facilities could increase the risk of transportation for nuclear material compared to national facilities. We discuss the potential effects of this transportation risk on the costs for each option. (author)

  15. Ammonia as a Suitable Fuel for Fuel Cells

    International Nuclear Information System (INIS)

    Lan, Rong; Tao, Shanwen

    2014-01-01

    Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5 wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  16. Technology of solid-fuel-layer targets for laser-fusion experiments

    International Nuclear Information System (INIS)

    Musinski, D.L.; Henderson, T.M.; Pattinson, T.R.; Tarvin, J.A.

    1979-01-01

    An apparatus which produces uniform solid-fuel layers in glass-shell targets for laser irradiation is described. A low-power cw laser pulse is used to vaporize the fuel within a previously frozen target which is maintained in a cold-helium environment by a cryogenic shroud. The rapid refreezing that follows the pulse forms a uniform fuel layer on the inner surface of the glass shell. This apparatus and technique meet the restrictions imposed by the experimental target chamber. The method does not perturb the target position; nor does it preclude the usual diagnostic experimets since the shroud is retracted before the main laser pulse arrives. Successful laser irradiation and implosion of solid-fuel-layer targets at KMSF have confirmed the effectiveness and reliability of this system and extended the range of laser-target-interaction studies in the cryogenic regime

  17. Insights on the SO2 Poisoning of Pt3Co/VC and Pt/VC Fuel Cell Catalysts

    Science.gov (United States)

    2010-01-01

    catalyst is performed at the cathode of proton exchange membrane fuel cells ( PEMFCs ) in order to link previously reported results at the elec- trode...stripping voltammetry and underpotential deposition (upd) of copper adatoms. Then the performance of PEMFC cathodes employing 30wt.% Pt3Co/VC and 50wt.% Pt/VC...proton exchange membrane fuel cells( PEMFCs )in order to link previously reported results at the elec- trode/solution interface to the FC environment. First

  18. Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly

    International Nuclear Information System (INIS)

    Liu, X.J.; Cheng, X.

    2009-01-01

    A new fuel assembly design for a thermal supercritical water cooled reactor (SCWR) core is proposed. Compared to the existing fuel assemblies, the present fuel assembly has two-rows of fuel rods between the moderator channels, to achieve a more uniform moderation for all fuel rod cells, and subsequently, a more uniform radial power distribution. In addition, a neutron-kinetics/thermal-hydraulics coupling method is developed, to analyze the neutron-physical and thermal-hydraulic behavior of the fuel assembly designs. This coupling method is based on the sub-channel analysis code COBRA-IV for thermal-hydraulics and the neutron-kinetics code SKETCH-N for neutron-physics. Both the COBRA-IV code and the SKETCH-N code are accordingly modified. An interface is established for the data transfer between these two codes. This coupling method is applied to both the one-row fuel assemblies (previous design) and the two-row fuel assemblies (present design). The performance of the two types of fuel assemblies is compared. The results show clearly that the two-row fuel assembly has more favorable neutron-physical and thermal-hydraulic characteristics than the one-row fuel assembly. The effect of various parameters on the fuel assembly performance is discussed. The coupling method is proven to be well suitable for further applications to SCWR fuel assembly design analysis

  19. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  20. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.

    Science.gov (United States)

    Wang, Qiongye; Wang, Yanfang; Yu, Zujiang; Li, Duolu; Jia, Bin; Li, Jingjing; Guan, Kelei; Zhou, Yubing; Chen, Yanling; Kan, Quancheng

    2014-08-01

    Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Thorium fuel performance assessment in HTRs

    Energy Technology Data Exchange (ETDEWEB)

    Allelein, H.-J. [Forschungszentrum Jülich, D-52425 Jülich (Germany); RWTH Aachen, D-52072 Aachen (Germany); Kania, M.J.; Nabielek, H. [Forschungszentrum Jülich, D-52425 Jülich (Germany); Verfondern, K., E-mail: k.verfondern@fz-juelich.de [Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2014-05-01

    Thorium as a nuclear fuel is receiving renewed interest, because of its widespread availability and the good irradiation performance of Th and mixed (Th,U) oxide compounds as fuels in nuclear power systems. Early HTR development employed thorium together with high-enriched uranium. After 1980, most HTR fuel systems switched to low-enriched uranium. After completing fuel development for AVR and THTR with BISO coated particles, the German program expanded efforts on a new program utilizing thorium and high-enriched uranium TRISO coated particles for advanced HTR concepts for process heat applications (PNP) and direct-cycle electricity production (HHT). The combination of LTI inner and outer pyrocarbon layers surrounding a strong, stable SiC layer greatly improved manufacturing conditions and the subsequent contamination and defective particle fractions in production fuel elements. In addition, this combination provided improved mechanical strength and a higher degree of solid fission product retention, not known previously with HTI-BISO coatings. The improved performance of the HEU (Th,U)O{sub 2} TRISO fuel system was successfully demonstrated in three primary areas of development: manufacturing, irradiation testing under normal operating conditions, and accident simulation testing. In terms of demonstrating performance for advanced HTR applications, the experimental failure statistic from manufacture and irradiation testing are significantly below the coated particle requirements specified for PNP and HHT designs at the time. Covering a range to 1300 °C in normal operations and 1600 °C in accidents, with burnups up to 13% FIMA and fast fluences to 8 × 10{sup 25} m{sup −2} (E > 16 fJ), the results exceed the design limits on manufacturing and operational requirements for the German HTR Modul concept, which were: <6.5 × 10{sup −5} for manufacturing; <2 × 10{sup −4} for normal operating conditions; and <5 × 10{sup −4} for accident conditions. These

  2. Ammonia as a suitable fuel for fuel cells

    Directory of Open Access Journals (Sweden)

    Rong eLan

    2014-08-01

    Full Text Available Ammonia, an important basic chemical, is produced at a scale of 150 million tons per year. Half of hydrogen produced in chemical industry is used for ammonia production. Ammonia containing 17.5wt% hydrogen is an ideal carbon-free fuel for fuel cells. Compared to hydrogen, ammonia has many advantages. In this mini-review, the suitability of ammonia as fuel for fuel cells, the development of different types of fuel cells using ammonia as the fuel and the potential applications of ammonia fuel cells are briefly reviewed.

  3. Reducing the fuel temperature for pressure-tube supercritical-water-cooled reactors and the effect of fuel burnup

    Energy Technology Data Exchange (ETDEWEB)

    Nichita, E., E-mail: eleodor.nichita@uoit.ca; Kovaltchouk, V., E-mail: vitali.kovaltchouk@uoit.ca

    2015-12-15

    Highlights: • Typical PT-SCWR fuel uses single-region pins consisting of a homogeneous mixture of ThO{sub 2} and PuO{sub 2}. • Using two regions (central for the ThO{sub 2} and peripheral for the PuO{sub 2}) reduces the fuel temperature. • Single-region-pin melting-to-average power ratio is 2.5 at 0.0 MW d/kg and 2.3 at 40 MW d/kg. • Two-region-pin melting-to-average power ratio is 36 at 0.0 MW d/kg and 10.5 at 40 MW d/kg. • Two-region-pin performance drops with burnup due to fissile-element buildup in the ThO{sub 2} region. - Abstract: The Pressure-Tube Supercritical-Water-Cooled Reactor (PT-SCWR) is one of the concepts under investigation by the Generation IV International Forum for its promise to deliver higher thermal efficiency than nuclear reactors currently in operation. The high coolant temperature (>625 K) and high linear power density employed by the PT-SCWR cause the fuel temperature to be fairly high, leading to a reduced margin to fuel melting, thus increasing the risk of actual melting during accident scenarios. It is therefore desirable to come up with a fuel design that lowers the fuel temperature while preserving the high linear power ratio and high coolant temperature. One possible solution is to separate the fertile (ThO{sub 2}) and fissile (PuO{sub 2}) fuel materials into different radial regions in each fuel pin. Previously-reported work found that by locating the fertile material at the centre and the fissile material at the periphery of the fuel pin, the fuel centreline temperature can be reduced by ∼650 K for fresh fuel compared to the case of a homogeneous (Th–Pu)O{sub 2} mixture for the same coolant temperature and linear power density. This work provides a justification for the observed reduction in fuel centreline temperature and suggests a systematic approach to lower the fuel temperature. It also extends the analysis to the dependence of the radial temperature profile on fuel burnup. The radial temperature profile is

  4. Safety analysis of MOX fuels by fuel performance code

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    Performance of plutonium rick mixed oxide fuels specified for the Reduced-Moderation Water Reactor (RMWR) has been analysed by modified fuel performance code. Thermodynamic properties of these fuels up to 120 GWd/t burnup have not been measured and estimated using existing uranium fuel models. Fission product release, pressure rise inside fuel rods and mechanical loads of fuel cans due to internal pressure have been preliminarily assessed based on assumed axial power distribution history, which show the integrity of fuel performance. Detailed evaluation of fuel-cladding interactions due to thermal expansion or swelling of fuel pellets due to high burnup will be required for safety analysis of mixed oxide fuels. Thermal conductivity and swelling of plutonium rich mixed oxide fuels shall be taken into consideration. (T. Tanaka)

  5. Does habitat variability really promote metabolic network modularity?

    Science.gov (United States)

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  6. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria.

    Science.gov (United States)

    Xiong, Wei; Lee, Tai-Chi; Rommelfanger, Sarah; Gjersing, Erica; Cano, Melissa; Maness, Pin-Ching; Ghirardi, Maria; Yu, Jianping

    2015-12-07

    Central carbon metabolism in cyanobacteria comprises the Calvin-Benson-Bassham (CBB) cycle, glycolysis, the pentose phosphate (PP) pathway and the tricarboxylic acid (TCA) cycle. Redundancy in this complex metabolic network renders the rational engineering of cyanobacterial metabolism for the generation of biomass, biofuels and chemicals a challenge. Here we report the presence of a functional phosphoketolase pathway, which splits xylulose-5-phosphate (or fructose-6-phosphate) to acetate precursor acetyl phosphate, in an engineered strain of the model cyanobacterium Synechocystis (ΔglgC/xylAB), in which glycogen synthesis is blocked, and xylose catabolism enabled through the introduction of xylose isomerase and xylulokinase. We show that this mutant strain is able to metabolise xylose to acetate on nitrogen starvation. To see whether acetate production in the mutant is linked to the activity of phosphoketolase, we disrupted a putative phosphoketolase gene (slr0453) in the ΔglgC/xylAB strain, and monitored metabolic flux using (13)C labelling; acetate and 2-oxoglutarate production was reduced in the light. A metabolic flux analysis, based on isotopic data, suggests that the phosphoketolase pathway metabolises over 30% of the carbon consumed by ΔglgC/xylAB during photomixotrophic growth on xylose and CO2. Disruption of the putative phosphoketolase gene in wild-type Synechocystis also led to a deficiency in acetate production in the dark, indicative of a contribution of the phosphoketolase pathway to heterotrophic metabolism. We suggest that the phosphoketolase pathway, previously uncharacterized in photosynthetic organisms, confers flexibility in energy and carbon metabolism in cyanobacteria, and could be exploited to increase the efficiency of cyanobacterial carbon metabolism and photosynthetic productivity.

  7. Improved evidence-based genome-scale metabolic models for maize leaf, embryo, and endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Seaver, Samuel M. D.; Bradbury, Louis M. T.; Frelin, Océane; Zarecki, Raphy; Ruppin, Eytan; Hanson, Andrew D.; Henry, Christopher S.

    2015-03-10

    There is a growing demand for genome-scale metabolic reconstructions for plants, fueled by the need to understand the metabolic basis of crop yield and by progress in genome and transcriptome sequencing. Methods are also required to enable the interpretation of plant transcriptome data to study how cellular metabolic activity varies under different growth conditions or even within different organs, tissues, and developmental stages. Such methods depend extensively on the accuracy with which genes have been mapped to the biochemical reactions in the plant metabolic pathways. Errors in these mappings lead to metabolic reconstructions with an inflated number of reactions and possible generation of unreliable metabolic phenotype predictions. Here we introduce a new evidence-based genome-scale metabolic reconstruction of maize, with significant improvements in the quality of the gene-reaction associations included within our model. We also present a new approach for applying our model to predict active metabolic genes based on transcriptome data. This method includes a minimal set of reactions associated with low expression genes to enable activity of a maximum number of reactions associated with high expression genes. We apply this method to construct an organ-specific model for the maize leaf, and tissue specific models for maize embryo and endosperm cells. We validate our models using fluxomics data for the endosperm and embryo, demonstrating an improved capacity of our models to fit the available fluxomics data. All models are publicly available via the DOE Systems Biology Knowledgebase and PlantSEED, and our new method is generally applicable for analysis transcript profiles from any plant, paving the way for further in silico studies with a wide variety of plant genomes.

  8. Role of the metabolism of parathyroid hormone

    International Nuclear Information System (INIS)

    Teitelbaum, A.P.

    1978-01-01

    The heterogeneity of parathyroid hormone (PTH) in plasma has prompted investigations of the metabolism of PTH and its relationship to hormone action. The time course of tissue distribution and metabolism of electrolytically iodinated PTH (E-PTH) previously shown to retain biological activity was compared with that of inactive PTH iodinated with Chloramine-T (CT-PTH). Labeled PTH (0.4 μg) was injected in the saphenous veins of anesthetized rats which were sacrificed at 1, 3, 5, 10, and 20 min. Tissue extracts from kidney, liver, and serum were chromatographed to separate intact PTH from its metabolites. In the kidney, the initial rate of degradation of E-PTH was greater than that of CT-PTH. The difference in initial rates of metabolism may be due, in part, to receptor-specific hydrolysis on peritubular cell membranes which selectively act on biologically active PTH molecules. PTH-responsive adenyl cyclase activity in isolated kidney cortex plasma membranes was measured and PTH metabolism was monitored simultaneously. When degradation was completely blocked by histone f 3 (1 mg/ml), adenyl cyclase activity was significantly increased over control. In addition, when adenyl cyclase activity was negligible, the rate of PTH degradation by the membranes was not significantly diminished. Consistent with the in vivo data was the observation that E-PTH is metabolized by these membranes at a greater rate than CT-PTH. The data demonstrate the existence of a receptor-specific metabolism at sites which are independent of PTH receptor mediated adenyl cyclase activity

  9. Reactor fuel element and fuel assembly

    International Nuclear Information System (INIS)

    Okada, Seiji; Ishida, Tsuyoshi; Ikeda, Atsuko.

    1997-01-01

    A mixture of fission products and burnable poisons is disposed at least to a portion between MOX pellets to form a burnable poison-incorporated fuel element without mixing burnable poisons to the MOX pellets. Alternatively, a mixture of materials other than the fission products and burnable poisons is formed into disks, a fuel lamination portion is divided into at least to two regions, and the ratio of number of the disks of the mixture relative to the volume of the region is increased toward the lower portion of the fuel lamination portion. With such a constitution, the axial power distribution of fuels can be made flat easily. Alternatively, the thickness of the disk of the mixture is increased toward the lower region of the fuel lamination portion to flatten the axial power distribution of the fuels in the same manner easily. The time and the cost required for the manufacture are reduced, and MOX fuels filled with burnable poisons with easy maintenance and control can be realized. (N.H.)

  10. Sulphur capture by co-firing sulphur containing fuels with biomass fuels - optimization

    International Nuclear Information System (INIS)

    Nordin, A.

    1992-12-01

    Previous results concerning co-firing of high sulphur fuels with biomass fuels have shown that a significant part of the sulphur can be absorbed in the ash by formation of harmless sulphates. The aim of this work has been to (i) determine the maximum reduction that can be obtained in a bench scaled fluidized bed (5 kW); (ii) determine which operating conditions will give maximum reduction; (iii) point out the importance and applicability of experimental designs and multivariate methods when optimizing combustion processes; (iv) determine if the degree of sulphur capture can be correlated to the degree of slagging, fouling or bed sintering; and (v) determine if further studies are desired. The following are some of the more important results obtained: - By co-firing peat with biomass, a total sulphur retention of 70 % can be obtained. By co-firing coal with energy-grass, the total SO 2 emissions can be reduced by 90 %. - Fuel feeding rate, amount of combustion air and the primary air ratio were the most important operating parameters for the reduction. Bed temperature and oxygen level seem to be the crucial physical parameters. - The NO emissions also decreased by the sulphur reducing measures. The CO emissions were relatively high (130 mg/MJ) compared to large scale facilities due to the small reactor and the small fluctuations in the fuel feeding rate. The SO 2 emissions could however be reduced without any increase in CO emissions. - When the reactor was fired with a grass, the bed sintered at a low temperature ( 2 SO 4 and KCl are formed no sintering problems were observed. (27 refs., 41 figs., 9 tabs., 3 appendices)

  11. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  12. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    Science.gov (United States)

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-05-01

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  13. Some aspects of copper metabolism in Brindled mice

    International Nuclear Information System (INIS)

    Prins, H.W.

    1981-01-01

    The semi-dominant X-linked mutation in Brindled mice causes a severe copper deficiency of which the hemizygous Brindled mice die between 14 and 21 days post partum. Previously, in analogy to Menkes' disease in man, the primary defect in mutated Brindled mice has been described as a block in the resorption of alimentary copper, i.e., the transport of copper from the intestinal lumen into the portal blood circulation. During this research it became clear that the impaired resorption of alimentary copper is only a part of a more general aberration of copper metabolism in epithelioid cells. Tracer techniques using 64 Cu are used for metabolism studies. (Auth.)

  14. Metabolic profile at first-time schizophrenia diagnosis: a population-based cross-sectional study

    Directory of Open Access Journals (Sweden)

    Horsdal HT

    2017-02-01

    Full Text Available Henriette Thisted Horsdal,1,2 Michael Eriksen Benros,2,3 Ole Köhler-Forsberg,2–4 Jesper Krogh,3 Christiane Gasse1,2,5 1National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus BSS, Aarhus University, Aarhus, 2The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, 3Faculty of Health Sciences, Mental Health Centre Copenhagen, University of Copenhagen, Copenhagen, 4Psychosis Research Unit, Aarhus University Hospital, Risskov, 5Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark Objective: Schizophrenia and/or antipsychotic drug use are associated with metabolic abnormalities; however, knowledge regarding metabolic status and physician’s monitoring of metabolic status at first schizophrenia diagnosis is sparse. We assessed the prevalence of monitoring for metabolic blood abnormalities and characterized the metabolic profiles in people with a first-time schizophrenia diagnosis. Methods: This is a population-based cross-sectional study including all adults born in Denmark after January 1, 1955, with their first schizophrenia diagnosis between 2000 and 2012 in the Central Denmark Region. Information on metabolic parameters was obtained from a clinical laboratory information system. Associations were calculated using Wilcoxon rank-sum tests, chi-square tests, logistic regression, and Spearman’s correlation coefficients. Results: A total of 2,452 people with a first-time schizophrenia diagnosis were identified, of whom 1,040 (42.4% were monitored for metabolic abnormalities. Among those monitored, 58.4% had an abnormal lipid profile and 13.8% had an abnormal glucose profile. People who had previously filled prescription(s for antipsychotic drugs were more likely to present an abnormal lipid measure (65.7% vs 46.8%, P<0.001 and abnormal glucose profile (16.4% vs 10.1%, P=0.01. Conclusion: Metabolic abnormalities are common at first

  15. Drop testing of the Westinghouse fresh nuclear fuel package

    International Nuclear Information System (INIS)

    Shappert, L.B.; Sanders, C.F.

    1993-01-01

    The Westinghouse Columbia Fuel Fabrication Facility has decided to develop and certify a new fresh fuel package design (type A, fissile) that has the capability to transport more highly enriched fuel than was previously possible. A prototype package was tested in support of the Safety Analysis Report of the Packaging (SARP). This paper provides detailed information on the tests and test results. A first prototype test was carried out at the STF, and the design did not give the safety margin that Westinghouse wanted for their containers. The data from the test were used to redesign the connection between the clamping frame and the pressure pad, and the tests were reinitiated. Three packages were then tested at the STF. All packages met the acceptance criteria and acceleration information was obtained that provided an indication of the behavior of the cradle and strongback which holds the fuel assemblies and nuclear poison in place. (J.P.N.)

  16. Examination of irradiated fuel elements using gamma scanning technique

    International Nuclear Information System (INIS)

    Ichim, O.; Mincu, M.; Man, I.; Stanica, M.

    2016-01-01

    The purpose of this paper is to validate the gamma scanning technique used to calculate the activity of gamma fission products from CANDU/TRIGA irradiated fuel elements. After a short presentation of the equipments used and their characteristics, the paper describes the calibration technique for the devices and how computed tomography reconstruction is done. Following the previously mentioned steps is possible to obtain the axial and radial profiles and the computed tomography reconstruction for calibration sources and for the irradiated fuel elements. The results are used to validate the gamma scanning techniques as a non-destructive examination method. The gamma scanning techniques will be used to: identify the fission products in the irradiated CANDU/TRIGA fuel elements, construct the axial and radial distributions of fission products, get the distribution in cross section through computed tomography reconstruction, and determine the nuclei number and the fission products activity of the irradiated CANDU/TRIGA fuel elements. (authors)

  17. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    International Nuclear Information System (INIS)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-01-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  18. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  19. First fuel reload in Laguna Verde

    International Nuclear Information System (INIS)

    Bahena B, D.

    1992-01-01

    A report containing the activities carried out during the first reload of nuclear fuel and major maintenance in the Laguna Verde nuclear reactor is presented. The previous and the specific activities are included. These last are related without including the technical considerations, data or the operation details, because these data were documented inside the registrations of the CFE, the ININ and in personal way. (Author)

  20. Prospects for development of fuel cells

    Directory of Open Access Journals (Sweden)

    В. М. Шабер

    2017-10-01

    Full Text Available The article is devoted to the solution of a complex of problems that arise in small and medium-scale treatment complexes, gas production plants and small and medium-capacity power plants associated with the processing of crude methane and the possibility of reducing the greenhouse effect.The economic feasibility of the development of fuel cells (FC on raw biomethane was demonstrated by the authors in previous publications.The specificity of the solution of problems is focused on small and medium-scale treatment complexes, gas production plants and small and medium power plants.The aim of the study is to show the possibility of solving a multicomponent task of developing fuel cells, including the experimental determination of the actual use of sodium formate as a reducing agent for the production of electricity in a fuel cell (FC.Results are the following: the possibility of solving the issues of reducing greenhouse gas emissions into the atmosphere during processing of waste products of human vital activity is proved. A method for converting methane and carbon dioxide emissions into useful products is shown.

  1. Hematite nuclear fuel cycle facility decommissioning

    International Nuclear Information System (INIS)

    Hayes, K.

    2004-01-01

    Westinghouse Electric Company LLC ('Westinghouse') acquired a nuclear fuel processing plant at Hematite, Missouri ('Hematite', the 'Facility', or the 'Plant') in April 2000. The plant has subsequently been closed, and its operations have been relocated to a newer, larger facility. Westinghouse has announced plans to complete its clean-up, decommissioning, and license retirement in a safe, socially responsible, and environmentally sound manner as required by internal policies, as well as those of its parent company, British Nuclear Fuels plc. ('BNFL'). Preliminary investigations have revealed the presence of environmental contamination in various areas of the facility and grounds, including both radioactive contamination and various other substances related to the nuclear fuel processing operations. The disparity in regulatory requirements for radiological and nonradiological contaminants, the variety of historic and recent operations, and the number of previous owners working under various contractual arrangements for both governmental and private concerns has resulted in a complex project. This paper discusses Westinghouse's efforts to develop and implement a comprehensive decontamination and decommissioning (D and D) strategy for the facility and grounds. (author)

  2. Sequential flow membraneless microfluidic fuel cell with porous electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Kamil S.; Posner, Jonathan D. [Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States); Hayes, Joel R.; Friesen, Cody A. [School of Materials, Arizona State University, Tempe, AZ 85287-8706 (United States)

    2008-05-15

    A novel convective flow membraneless microfluidic fuel cell with porous disk electrodes is described. In this fuel cell design, the fuel flows radially outward through a thin disk shaped anode and across a gap to a ring shaped cathode. An oxidant is introduced into the gap between anode and cathode and advects radially outward to the cathode. This fuel cell differs from previous membraneless designs in that the fuel and the oxidant flow in series, rather than in parallel, enabling independent control over the fuel and oxidant flow rate and the electrode areas. The cell uses formic acid as a fuel and potassium permanganate as the oxidant, both contained in a sulfuric acid electrolyte. The flow velocity field is examined using microscale particle image velocimetry and shown to be nearly axisymmetric and steady. The results show that increasing the electrolyte concentration reduces the cell Ohmic resistance, resulting in larger maximum currents and peak power densities. Increasing the flow rate delays the onset of mass transport and reduces Ohmic losses resulting in larger maximum currents and peak power densities. An average open circuit potential of 1.2 V is obtained with maximum current and power densities of 5.35 mA cm{sup -2} and 2.8 mW cm{sup -2}, respectively (cell electrode area of 4.3 cm{sup 2}). At a flow rate of 100 {mu}L min{sup -1} a fuel utilization of 58% is obtained. (author)

  3. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors.

    Science.gov (United States)

    Montgomery, David C; Sorum, Alexander W; Guasch, Laura; Nicklaus, Marc C; Meier, Jordan L

    2015-08-20

    The finding that chromatin modifications are sensitive to changes in cellular cofactor levels potentially links altered tumor cell metabolism and gene expression. However, the specific enzymes and metabolites that connect these two processes remain obscure. Characterizing these metabolic-epigenetic axes is critical to understanding how metabolism supports signaling in cancer, and developing therapeutic strategies to disrupt this process. Here, we describe a chemical approach to define the metabolic regulation of lysine acetyltransferase (KAT) enzymes. Using a novel chemoproteomic probe, we identify a previously unreported interaction between palmitoyl coenzyme A (palmitoyl-CoA) and KAT enzymes. Further analysis reveals that palmitoyl-CoA is a potent inhibitor of KAT activity and that fatty acyl-CoA precursors reduce cellular histone acetylation levels. These studies implicate fatty acyl-CoAs as endogenous regulators of histone acetylation, and suggest novel strategies for the investigation and metabolic modulation of epigenetic signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Something Old, Something New: Conserved Enzymes and the Evolution of Novelty in Plant Specialized Metabolism1

    Science.gov (United States)

    Moghe, Gaurav D.; Last, Robert L.

    2015-01-01

    Plants produce hundreds of thousands of small molecules known as specialized metabolites, many of which are of economic and ecological importance. This remarkable variety is a consequence of the diversity and rapid evolution of specialized metabolic pathways. These novel biosynthetic pathways originate via gene duplication or by functional divergence of existing genes, and they subsequently evolve through selection and/or drift. Studies over the past two decades revealed that diverse specialized metabolic pathways have resulted from the incorporation of primary metabolic enzymes. We discuss examples of enzyme recruitment from primary metabolism and the variety of paths taken by duplicated primary metabolic enzymes toward integration into specialized metabolism. These examples provide insight into processes by which plant specialized metabolic pathways evolve and suggest approaches to discover enzymes of previously uncharacterized metabolic networks. PMID:26276843

  5. Pinhole Breaches in Spent Fuel Containers: Some Modeling Considerations

    International Nuclear Information System (INIS)

    Casella, Andrew M.; Loyalka, Sudarsham K.; Hanson, Brady D.

    2006-01-01

    This paper replaces PNNL-SA-48024 and incorporates the ANS reviewer's comments, including the change in the title. Numerical methods to solve the equations for gas diffusion through very small breaches in spent fuel containers are presented and compared with previous literature results

  6. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Science.gov (United States)

    2012-03-05

    ... Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under the Renewable Fuel Standard Program AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal... Renewable Fuel Standard program regulations. Because EPA received adverse comment, we are withdrawing the...

  7. Nuclear fuels

    International Nuclear Information System (INIS)

    2008-01-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO 2 and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO 2 ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO 2 and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast neutrons radiation

  8. Criticality evaluations of scrambled fuel in water basin storage

    International Nuclear Information System (INIS)

    Fast, E.

    1989-01-01

    Fuel stored underwater in the Idaho Chemical Processing Plant basins has been subjected to the usual criticality safety evaluations to assure safe storage configurations. Certain accident or emergency conditions, caused by corrosion or a seismic event, could change the fuel configuration and environment to invalidate previous calculations. Consideration is given here to such contingencies for fuel stored in three storage basins. One basin has fuel stored in racks, on a generally flat floor. In the other two basins, the fuel is stored on yokes and in baskets suspended from a monorail system. The floor is ribbed with 30.48-cm-thick and 80-cm-high concrete barriers across the basin width and spaced 30.48 cm apart. The suspended fuel is typically down to 15 cm above the floor of the channel between the concrete barriers. These basins each have 29 channels of 18 positions maximum per channel for a total of 522 possible positions, which are presently 77 and 49% occupied. The three basins are hydraulically interconnected. Several scenarios indicate possible changes in the fuel configuration. An earthquake could rupture a basin wall or floor, allowing the water to drain from all basins. All levels of water would fall to the completely drained condition. Suspended fuel could drop and fall over within the channel. Corrosion might weaken the support systems or cause leaks in sealed fuel canisters. Calculations were made with the KENO-IV criticality program and the library of mostly Hansen-Roach 16-energy-group neutron cross sections

  9. Apparatus for loading fuel pellets in fuel rods

    International Nuclear Information System (INIS)

    Tedesco, R.J.

    1976-01-01

    An apparatus is disclosed for loading fuel pellets into fuel rods for a nuclear reactor including a base supporting a table having grooves therein for holding a multiplicity of pellets. Multiple fuel rods are placed in alignment with grooves in the pellet table and a guide member channels pellets from the table into the corresponding fuel rods. To effect movement of pellets inside the fuel rods without jamming, a number of electromechanical devices mounted on the base have arms connected to the lower surface of the fuel rod table which cyclically imparts a reciprocating arc motion to the table for moving the fuel pellets longitudinally of and inside the fuel rods. These electromechanical devices include a solenoid having a plunger therein connected to a leaf type spring, the arrangement being such that upon energization of the solenoid coil, the leaf spring moves the fuel rod table rearwardly and downwardly, and upon deenergization of the coil, the spring imparts an upward-forward movement to the table which results in physical displacement of fuel pellets in the fuel rods clamped to the table surface. 8 claims, 6 drawing figures

  10. Coated Particle Fuel and Deep Burn Program Monthly Highlights May 2011

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Bell, Gary L.; Besmann, Theodore M.

    2011-01-01

    During FY 2011 the CP and DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for April 2011, ORNL/TM-2011/125, was distributed to program participants on May 10, 2011. As reported previously, the final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Fuel Performance Modeling - Fuel Performance Analysis; (2) Thermochemical Data and Model Development - (a) Thermochemical Modeling, (b) Thermomechanical Modeling, (c) Actinide and Fission Product Transport; (3) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; and (4) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing.

  11. Coated Particle Fuel and Deep Burn Program Monthly Highlights June 2011

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Bell, Gary L.; Besmann, Theodore M.

    2011-01-01

    During FY 2011 the CP and DB Program will report Highlights on a monthly basis, but will no longer produce Quarterly Progress Reports. Technical details that were previously included in the quarterly reports will be included in the appropriate Milestone Reports that are submitted to FCRD Program Management. These reports will also be uploaded to the Deep Burn website. The Monthly Highlights report for May 2011, ORNL/TM-2011/126, was distributed to program participants on June 9, 2011. As reported previously, the final Quarterly for FY 2010, Deep Burn Program Quarterly Report for July - September 2010, ORNL/TM-2010/301, was announced to program participants and posted to the website on December 28, 2010. This report discusses the following: (1) Fuel Performance Modeling - Fuel Performance Analysis; (2) Thermochemical Data and Model Development - (a) Thermochemical Behavior, (b) Thermomechanical Modeling, (c) Actinide and Fission Product Transport; (3) TRU (transuranic elements) TRISO (tri-structural isotropic) Development - (a) TRU Kernel Development, (b) Coating Development; and (4) LWR Fully Ceramic Fuel - (a) FCM Fabrication Development, (b) FCM Irradiation Testing.

  12. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    Science.gov (United States)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  13. Hardened over-coating fuel particle and manufacture of nuclear fuel using its fuel particle

    International Nuclear Information System (INIS)

    Yoshimuda, Hideharu.

    1990-01-01

    Coated-fuel particles comprise a coating layer formed by coating ceramics such as silicon carbide or zirconium carbide and carbons, etc. to a fuel core made of nuclear fuel materials. The fuel core generally includes oxide particles such as uranium, thorium and plutonium, having 400 to 600 μm of average grain size. The average grain size of the coated-fuel particle is usually from 800 to 900 μm. The thickness of the coating layer is usually from 150 to 250 μm. Matrix material comprising a powdery graphite and a thermosetting resin such as phenol resin, etc. is overcoated to the surface of the coated-fuel particle and hardened under heating to form a hardened overcoating layer to the coated-fuel particle. If such coated-fuel particles are used, cracks, etc. are less caused to the coating layer of the coated-fuel particles upon production, thereby enabling to prevent the damages to the coating layer. (T.M.)

  14. Acylcarnitines as markers of exercise-associated fuel partitioning, xenometabolism, and potential signals to muscle afferent neurons.

    Science.gov (United States)

    Zhang, Jie; Light, Alan R; Hoppel, Charles L; Campbell, Caitlin; Chandler, Carol J; Burnett, Dustin J; Souza, Elaine C; Casazza, Gretchen A; Hughen, Ronald W; Keim, Nancy L; Newman, John W; Hunter, Gary R; Fernandez, Jose R; Garvey, W Timothy; Harper, Mary-Ellen; Fiehn, Oliver; Adams, Sean H

    2017-01-01

    What is the central question of this study? Does improved metabolic health and insulin sensitivity following a weight-loss and fitness intervention in sedentary, obese women alter exercise-associated fuel metabolism and incomplete mitochondrial fatty acid oxidation (FAO), as tracked by blood acylcarnitine patterns? What is the main finding and its importance? Despite improved fitness and blood sugar control, indices of incomplete mitochondrial FAO increased in a similar manner in response to a fixed load acute exercise bout; this indicates that intramitochondrial muscle FAO is inherently inefficient and is tethered directly to ATP turnover. With insulin resistance or type 2 diabetes mellitus, mismatches between mitochondrial fatty acid fuel delivery and oxidative phosphorylation/tricarboxylic acid cycle activity may contribute to inordinate accumulation of short- or medium-chain acylcarnitine fatty acid derivatives [markers of incomplete long-chain fatty acid oxidation (FAO)]. We reasoned that incomplete FAO in muscle would be ameliorated concurrent with improved insulin sensitivity and fitness following a ∼14 week training and weight-loss intervention in obese, sedentary, insulin-resistant women. Contrary to this hypothesis, overnight-fasted and exercise-induced plasma C4-C14 acylcarnitines did not differ between pre- and postintervention phases. These metabolites all increased robustly with exercise (∼45% of pre-intervention peak oxygen consumption) and decreased during a 20 min cool-down. This supports the idea that, regardless of insulin sensitivity and fitness, intramitochondrial muscle β-oxidation and attendant incomplete FAO are closely tethered to absolute ATP turnover rate. Acute exercise also led to branched-chain amino acid acylcarnitine derivative patterns suggestive of rapid and transient diminution of branched-chain amino acid flux through the mitochondrial branched-chain ketoacid dehydrogenase complex. We confirmed our prior novel observation

  15. Ischaemic memory imaging using metabolic radiopharmaceuticals: overview of clinical settings and ongoing investigations.

    Science.gov (United States)

    Yoshinaga, Keiichiro; Naya, Masanao; Shiga, Tohru; Suzuki, Eriko; Tamaki, Nagara

    2014-02-01

    "Ischaemic memory" is defined as a prolonged functional and/or biochemical alteration remaining after a particular episode of severe myocardial ischaemia. The biochemical alteration has been reported as metabolic stunning. Metabolic imaging has been used to detect the footprint left by previous ischaemic episodes evident due to delayed recovery of myocardial metabolism (persistent dominant glucose utilization with suppression of fatty acid oxidation). β-Methyl-p-[(123)I]iodophenylpentadecanoic acid (BMIPP) is a single-photon emission computed tomography (SPECT) radiotracer widely used for metabolic imaging in clinical settings in Japan. In patients with suspected coronary artery disease but no previous myocardial infarction, BMIPP has shown acceptable diagnostic accuracy. In particular, BMIPP plays an important role in the identification of prior ischaemic insult in patients arriving at emergency departments with acute chest pain syndrome. Recent data also show the usefulness of (123)I-BMIPP SPECT for predicting cardiovascular events in patients undergoing haemodialysis. Similarly, SPECT or PET imaging with (18)F-FDG injected during peak exercise or after exercise under fasting conditions shows an increase in FDG uptake in postischaemic areas. This article will overview the roles of ischaemic memory imaging both under established indications and in ongoing investigations.

  16. Ischaemic memory imaging using metabolic radiopharmaceuticals: overview of clinical settings and ongoing investigations

    International Nuclear Information System (INIS)

    Yoshinaga, Keiichiro; Naya, Masanao; Shiga, Tohru; Suzuki, Eriko; Tamaki, Nagara

    2014-01-01

    ''Ischaemic memory'' is defined as a prolonged functional and/or biochemical alteration remaining after a particular episode of severe myocardial ischaemia. The biochemical alteration has been reported as metabolic stunning. Metabolic imaging has been used to detect the footprint left by previous ischaemic episodes evident due to delayed recovery of myocardial metabolism (persistent dominant glucose utilization with suppression of fatty acid oxidation). β-Methyl-p-[ 123 I]iodophenylpentadecanoic acid (BMIPP) is a single-photon emission computed tomography (SPECT) radiotracer widely used for metabolic imaging in clinical settings in Japan. In patients with suspected coronary artery disease but no previous myocardial infarction, BMIPP has shown acceptable diagnostic accuracy. In particular, BMIPP plays an important role in the identification of prior ischaemic insult in patients arriving at emergency departments with acute chest pain syndrome. Recent data also show the usefulness of 123 I-BMIPP SPECT for predicting cardiovascular events in patients undergoing haemodialysis. Similarly, SPECT or PET imaging with 18 F-FDG injected during peak exercise or after exercise under fasting conditions shows an increase in FDG uptake in postischaemic areas. This article will overview the roles of ischaemic memory imaging both under established indications and in ongoing investigations. (orig.)

  17. Nuclear Fuel Cycle Strategy For Developing Countries

    International Nuclear Information System (INIS)

    Kim, Chang Hyo

    1987-01-01

    The world's uranium market is very uncertain at the moment while other front-end fuel cycle services including enrichment show a surplus of supply. Therefore, a current concern of developing countries is how to assure a long-term stable supply of uranium, so far as front-end fuel cycle operation is concerned. So, as for the front-end fuel cycle strategy, I would like to comment only on uranium procurement strategy. I imagine that you are familiar with, yet let me begin my talk by having a look at, the nuclear power development program and current status of fuel cycle technology of developing countries. It is a nice thing to achieve the full domestic control of fuel cycle operation. The surest way to do so is localization of related technology. Nevertheless, developing at a time due to enormous capital requirements, not to mention the non-proliferation restrictions. Therefore, the important which technology to localize prior to other technology and how to implement. The non-proliferation restriction excludes the enrichment and reprocessing technology for the time being. As for the remaining technology the balance between the capital costs and benefits must dictate the determination of the priority as mentioned previously. As a means to reduce the commercial risk and heavy financial burdens, the multi-national joint venture of concerned countries is desirable in implementing the localization projects

  18. Cyclone reburn using coal-water fuel: Pilot-scale development and testing

    Energy Technology Data Exchange (ETDEWEB)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  19. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  20. Recent developments in spent fuel management in Norway - 59260

    International Nuclear Information System (INIS)

    Bennett, Peter J.; Oberlaender, Barbara C.

    2012-01-01

    Spent Nuclear Fuel (SNF) in Norway has arisen from irradiation of fuel in the NORA, Jeep I and Jeep II reactors at Kjeller, and in the Heavy Boiling Water Reactor (HBWR) in Halden. In total there is some 16 tonnes of SNF, with 12 tons of aluminium-clad fuel, of which 10 tonnes is metallic uranium fuel and the remainder oxide (UO 2 ). The portion of this fuel that is similar to commercial fuel (UO 2 clad in Zircaloy) may be suitable for direct disposal on the Swedish model or in other repository designs. However, metallic uranium and/or fuels clad in aluminium are chemically reactive and there would be risks associated with direct disposal. Two committees were established by the Government of Norway in January 2009 to make recommendations for the interim storage and final disposal of spent fuel in Norway. The Technical Committee on Storage and Disposal of Metallic Uranium Fuel and Al-clad Fuels was formed with the mandate to recommend treatment (i.e. conditioning) options for metallic uranium fuel and aluminium-clad fuel to render them stable for long term storage and disposal. This committee, whose members were drawn from the nuclear industry, reported in January 2010, and recommended commercial reprocessing as the best option for these fuels. The Phase-2 committee, which in part based its work on the work of previous committees and on the report of the Technical Committee, had the mandate to find the most suitable technical solution and localisation for intermediate storage for spent nuclear fuel and long-lived waste. The membership of this committee was chosen to represent a broad cross section of stakeholders. The committee evaluated different solutions and their associated costs, and recommended one of the options. The committee's report published in early 2011. This paper summarises the conclusions of the two committees, and thereby illustrates the steps taken by one country to formulate a strategy for the long-term management of its SNF. (authors)