WorldWideScience

Sample records for metabolic engineering working

  1. Modeling of Zymomonas mobilis central metabolism for novel metabolic engineering strategies.

    Science.gov (United States)

    Kalnenieks, Uldis; Pentjuss, Agris; Rutkis, Reinis; Stalidzans, Egils; Fell, David A

    2014-01-01

    Mathematical modeling of metabolism is essential for rational metabolic engineering. The present work focuses on several types of modeling approach to quantitative understanding of central metabolic network and energetics in the bioethanol-producing bacterium Zymomonas mobilis. Combined use of Flux Balance, Elementary Flux Mode, and thermodynamic analysis of its central metabolism, together with dynamic modeling of the core catabolic pathways, can help to design novel substrate and product pathways by systematically analyzing the solution space for metabolic engineering, and yields insights into the function of metabolic network, hardly achievable without applying modeling tools.

  2. Genomics:GTL Contractor-Grantee Workshop IV and Metabolic Engineering Working Group Inter-Agency Conference on Metabolic Engineering 2006

    Energy Technology Data Exchange (ETDEWEB)

    Mansfield, Betty Kay [ORNL; Martin, Sheryl A [ORNL

    2006-02-01

    Welcome to the 2006 joint meeting of the fourth Genomics:GTL Contractor-Grantee Workshop and the six Metabolic Engineering Working Group Inter-Agency Conference. The vision and scope of the Genomics:GTL program continue to expand and encompass research and technology issues from diverse scientific disciplines, attracting broad interest and support from researchers at universities, DOE national laboratories, and industry. Metabolic engineering's vision is the targeted and purposeful alteration of metabolic pathways to improve the understanding and use of cellular pathways for chemical transformation, energy transduction, and supramolecular assembly. These two programs have much complementarity in both vision and technological approaches, as reflected in this joint workshop. GLT's challenge to the scientific community remains the further development and use of a broad array of innovative technologies and computational tools to systematically leverage the knowledge and capabilities brought to us by DNA sequencing projects. The goal is to seek a broad and predictive understanding of the functioning and control of complex systems--individual microbes, microbial communities, and plants. GTL's prominent position at the interface of the physical, computational, and biological sciences is both a strength and challenge. Microbes remain GTL's principal biological focus. In the complex 'simplicity' of microbes, they find capabilities needed by DOE and the nation for clean and secure energy, cleanup of environmental contamination, and sequestration of atmospheric carbon dioxide that contributes to global warming. An ongoing challenge for the entire GTL community is to demonstrate that the fundamental science conducted in each of your research projects brings us a step closer to biology-based solutions for these important national energy and environmental needs.

  3. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  4. Metabolic Engineering X Conference

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Evan [American Institute of Chemical Engineers

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  5. Computer-aided design for metabolic engineering.

    Science.gov (United States)

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Genome scale engineering techniques for metabolic engineering.

    Science.gov (United States)

    Liu, Rongming; Bassalo, Marcelo C; Zeitoun, Ramsey I; Gill, Ryan T

    2015-11-01

    Metabolic engineering has expanded from a focus on designs requiring a small number of genetic modifications to increasingly complex designs driven by advances in genome-scale engineering technologies. Metabolic engineering has been generally defined by the use of iterative cycles of rational genome modifications, strain analysis and characterization, and a synthesis step that fuels additional hypothesis generation. This cycle mirrors the Design-Build-Test-Learn cycle followed throughout various engineering fields that has recently become a defining aspect of synthetic biology. This review will attempt to summarize recent genome-scale design, build, test, and learn technologies and relate their use to a range of metabolic engineering applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  7. Recent advances in systems metabolic engineering tools and strategies.

    Science.gov (United States)

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Metabolic Engineering VII Conference

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  9. 2007 Plant Metabolic Engineering Gordon Conference and Graduate Research Seminar

    Energy Technology Data Exchange (ETDEWEB)

    Erich Grotewold

    2008-09-15

    Plant Metabolic Engineering is an emerging field that integrates a diverse range of disciplines including plant genetics, genomics, biochemistry, chemistry and cell biology. The Gordon-Kenan Graduate Research Seminar (GRS) in Plant Metabolic Engineering was initiated to provide a unique opportunity for future researcher leaders to present their work in this field. It also creates an environment allowing for peer-review and critical assessment of work without the intimidation usually associated with the presence of senior investigators. The GRS immediately precedes the Plant Metabolic Engineering Gordon Research Conference and will be for and by graduate students and post-docs, with the assistance of the organizers listed.

  10. Cytochrome P450-mediated metabolic engineering

    DEFF Research Database (Denmark)

    Renault, Hugues; Bassard, Jean-Étienne André; Hamberger, Björn Robert

    2014-01-01

    for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered...... in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing...

  11. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    Science.gov (United States)

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  12. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    Science.gov (United States)

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Systems metabolic engineering in an industrial setting.

    Science.gov (United States)

    Sagt, Cees M J

    2013-03-01

    Systems metabolic engineering is based on systems biology, synthetic biology, and evolutionary engineering and is now also applied in industry. Industrial use of systems metabolic engineering focuses on strain and process optimization. Since ambitious yields, titers, productivities, and low costs are key in an industrial setting, the use of effective and robust methods in systems metabolic engineering is becoming very important. Major improvements in the field of proteomics and metabolomics have been crucial in the development of genome-wide approaches in strain and process development. This is accompanied by a rapid increase in DNA sequencing and synthesis capacity. These developments enable the use of systems metabolic engineering in an industrial setting. Industrial systems metabolic engineering can be defined as the combined use of genome-wide genomics, transcriptomics, proteomics, and metabolomics to modify strains or processes. This approach has become very common since the technology for generating large data sets of all levels of the cellular processes has developed quite fast into robust, reliable, and affordable methods. The main challenge and scope of this mini review is how to translate these large data sets in relevant biological leads which can be tested for strain or process improvements. Experimental setup, heterogeneity of the culture, and sample pretreatment are important issues which are easily underrated. In addition, the process of structuring, filtering, and visualization of data is important, but also, the availability of a genetic toolbox and equipment for medium/high-throughput fermentation is a key success factor. For an efficient bioprocess, all the different components in this process have to work together. Therefore, mutual tuning of these components is an important strategy.

  14. Modular co-culture engineering, a new approach for metabolic engineering.

    Science.gov (United States)

    Zhang, Haoran; Wang, Xiaonan

    2016-09-01

    With the development of metabolic engineering, employment of a selected microbial host for accommodation of a designed biosynthetic pathway to produce a target compound has achieved tremendous success in the past several decades. Yet, increasing requirements for sophisticated microbial biosynthesis call for establishment and application of more advanced metabolic engineering methodologies. Recently, important progress has been made towards employing more than one engineered microbial strains to constitute synthetic co-cultures and modularizing the biosynthetic labor between the co-culture members in order to improve bioproduction performance. This emerging approach, referred to as modular co-culture engineering in this review, presents a valuable opportunity for expanding the scope of the broad field of metabolic engineering. We highlight representative research accomplishments using this approach, especially those utilizing metabolic engineering tools for microbial co-culture manipulation. Key benefits and major challenges associated with modular co-culture engineering are also presented and discussed. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  16. Protein engineering for metabolic engineering: current and next-generation tools

    Science.gov (United States)

    Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.

    2014-01-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443

  17. Metabolic engineering tools in model cyanobacteria.

    Science.gov (United States)

    Carroll, Austin L; Case, Anna E; Zhang, Angela; Atsumi, Shota

    2018-03-26

    Developing sustainable routes for producing chemicals and fuels is one of the most important challenges in metabolic engineering. Photoautotrophic hosts are particularly attractive because of their potential to utilize light as an energy source and CO 2 as a carbon substrate through photosynthesis. Cyanobacteria are unicellular organisms capable of photosynthesis and CO 2 fixation. While engineering in heterotrophs, such as Escherichia coli, has result in a plethora of tools for strain development and hosts capable of producing valuable chemicals efficiently, these techniques are not always directly transferable to cyanobacteria. However, recent efforts have led to an increase in the scope and scale of chemicals that cyanobacteria can produce. Adaptations of important metabolic engineering tools have also been optimized to function in photoautotrophic hosts, which include Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9, 13 C Metabolic Flux Analysis (MFA), and Genome-Scale Modeling (GSM). This review explores innovations in cyanobacterial metabolic engineering, and highlights how photoautotrophic metabolism has shaped their development. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. Genome-scale modeling for metabolic engineering.

    Science.gov (United States)

    Simeonidis, Evangelos; Price, Nathan D

    2015-03-01

    We focus on the application of constraint-based methodologies and, more specifically, flux balance analysis in the field of metabolic engineering, and enumerate recent developments and successes of the field. We also review computational frameworks that have been developed with the express purpose of automatically selecting optimal gene deletions for achieving improved production of a chemical of interest. The application of flux balance analysis methods in rational metabolic engineering requires a metabolic network reconstruction and a corresponding in silico metabolic model for the microorganism in question. For this reason, we additionally present a brief overview of automated reconstruction techniques. Finally, we emphasize the importance of integrating metabolic networks with regulatory information-an area which we expect will become increasingly important for metabolic engineering-and present recent developments in the field of metabolic and regulatory integration.

  19. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering.

    Science.gov (United States)

    Baghalian, Kambiz; Hajirezaei, Mohammad-Reza; Schreiber, Falk

    2014-10-01

    Models are used to represent aspects of the real world for specific purposes, and mathematical models have opened up new approaches in studying the behavior and complexity of biological systems. However, modeling is often time-consuming and requires significant computational resources for data development, data analysis, and simulation. Computational modeling has been successfully applied as an aid for metabolic engineering in microorganisms. But such model-based approaches have only recently been extended to plant metabolic engineering, mainly due to greater pathway complexity in plants and their highly compartmentalized cellular structure. Recent progress in plant systems biology and bioinformatics has begun to disentangle this complexity and facilitate the creation of efficient plant metabolic models. This review highlights several aspects of plant metabolic modeling in the context of understanding, predicting and modifying complex plant metabolism. We discuss opportunities for engineering photosynthetic carbon metabolism, sucrose synthesis, and the tricarboxylic acid cycle in leaves and oil synthesis in seeds and the application of metabolic modeling to the study of plant acclimation to the environment. The aim of the review is to offer a current perspective for plant biologists without requiring specialized knowledge of bioinformatics or systems biology. © 2014 American Society of Plant Biologists. All rights reserved.

  20. Modularization of genetic elements promotes synthetic metabolic engineering.

    Science.gov (United States)

    Qi, Hao; Li, Bing-Zhi; Zhang, Wen-Qian; Liu, Duo; Yuan, Ying-Jin

    2015-11-15

    In the context of emerging synthetic biology, metabolic engineering is moving to the next stage powered by new technologies. Systematical modularization of genetic elements makes it more convenient to engineer biological systems for chemical production or other desired purposes. In the past few years, progresses were made in engineering metabolic pathway using synthetic biology tools. Here, we spotlighted the topic of implementation of modularized genetic elements in metabolic engineering. First, we overviewed the principle developed for modularizing genetic elements and then discussed how the genetic modules advanced metabolic engineering studies. Next, we picked up some milestones of engineered metabolic pathway achieved in the past few years. Last, we discussed the rapid raised synthetic biology field of "building a genome" and the potential in metabolic engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Cyanobacterial metabolic engineering for biofuel and chemical production.

    Science.gov (United States)

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    Science.gov (United States)

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  3. Systematic Applications of Metabolomics in Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Robert A. Dromms

    2012-12-01

    Full Text Available The goals of metabolic engineering are well-served by the biological information provided by metabolomics: information on how the cell is currently using its biochemical resources is perhaps one of the best ways to inform strategies to engineer a cell to produce a target compound. Using the analysis of extracellular or intracellular levels of the target compound (or a few closely related molecules to drive metabolic engineering is quite common. However, there is surprisingly little systematic use of metabolomics datasets, which simultaneously measure hundreds of metabolites rather than just a few, for that same purpose. Here, we review the most common systematic approaches to integrating metabolite data with metabolic engineering, with emphasis on existing efforts to use whole-metabolome datasets. We then review some of the most common approaches for computational modeling of cell-wide metabolism, including constraint-based models, and discuss current computational approaches that explicitly use metabolomics data. We conclude with discussion of the broader potential of computational approaches that systematically use metabolomics data to drive metabolic engineering.

  4. Metabolic engineering in methanotrophic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Engineering of aromatic amino acid metabolism in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Vuralhan, Z.

    2006-01-01

    Saccharomyces cerevisiae is a popular industrial microorganism. It has since long been used in bread, beer and wine making. More recently it is also being applied for heterologous protein production and as a target organism for metabolic engineering. The work presented in this thesis describes how

  6. The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering

    Directory of Open Access Journals (Sweden)

    Matthieu Jules

    2017-12-01

    Full Text Available Synthetic Biology (SB aims at the rational design and engineering of novel biological functions and systems. By facilitating the engineering of living organisms, SB promises to facilitate the development of many new applications for health, biomanufacturing, and the environment. Over the last decade, SB promoted the construction of libraries of components enabling the fine-tuning of genetic circuits expression and the development of novel genome engineering methodologies for many organisms of interest. SB thus opened new perspectives in the field of metabolic engineering, which was until then mainly limited to (overproducing naturally synthesized metabolic compounds. To engineer efficient cell factories, it is key to precisely reroute cellular resources from the central carbon metabolism (CCM to the synthetic circuitry. This task is however difficult as there is still significant lack of knowledge regarding both the function of several metabolic components and the regulation of the CCM fluxes for many industrially important bacteria. Pyruvate is a pivotal metabolite at the heart of the CCM and a key precursor for the synthesis of several commodity compounds and fine chemicals. Numerous bacterial species can also use it as a carbon source when present in the environment but bacterial, pyruvate-specific uptake systems were to be discovered. This is an issue for metabolic engineering as one can imagine to make use of pyruvate transport systems to replenish synthetic metabolic pathways towards the synthesis of chemicals of interest. Here we describe a recent study (MBio 8(5: e00976-17, which identified and characterized a pyruvate transport system in the Gram-positive (G+ve bacterium Bacillus subtilis, a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics. This study also revealed that the activity of the two-component system (TCS responsible for its induction is retro-inhibited by the level of

  7. Engineering yeast metabolism for production of fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2016-01-01

    faster development of metabolically engineered strains that can be used for production of fuels and chemicals. The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel industrial...... as for metabolic design. In this lecture it will be demonstrated how the Design-Build-Test cycle of metabolic engineering has allowed for development of yeast cell factories for production of a range of different fuels and chemicals. Some examples of different technologies will be presented together with examples......Metabolic engineering relies on the Design-Build-Test cycle. This cycle includes technologies like mathematical modeling of metabolism, genome editing and advanced tools for phenotypic characterization. In recent years there have been advances in several of these technologies, which has enabled...

  8. Genetic and metabolic engineering in diatoms.

    Science.gov (United States)

    Huang, Weichao; Daboussi, Fayza

    2017-09-05

    Diatoms have attracted considerable attention due to their success in diverse environmental conditions, which probably is a consequence of their complex origins. Studies of their metabolism will provide insight into their adaptation capacity and are a prerequisite for metabolic engineering. Several years of investigation have led to the development of the genome engineering tools required for such studies, and a profusion of appropriate tools is now available for exploring and exploiting the metabolism of these organisms. Diatoms are highly prized in industrial biotechnology, due to both their richness in natural lipids and carotenoids and their ability to produce recombinant proteins, of considerable value in diverse markets. This review provides an overview of recent advances in genetic engineering methods for diatoms, from the development of gene expression cassettes and gene delivery methods, to cutting-edge genome-editing technologies. It also highlights the contributions of these rapid developments to both basic and applied research: they have improved our understanding of key physiological processes; and they have made it possible to modify the natural metabolism to favour the production of specific compounds or to produce new compounds for green chemistry and pharmaceutical applications.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  9. Engineering central metabolism – a grand challenge for plant biologists

    DEFF Research Database (Denmark)

    Sweetlove, Lee J.; Nielsen, Jens; Fernie, Alisdair R.

    2017-01-01

    The goal of increasing crop productivity and nutrient-use efficiency is being addressed by a number of ambitious research projects seeking to re-engineer photosynthetic biochemistry. Many of these projects will require the engineering of substantial changes in fluxes of central metabolism. However......, as has been amply demonstrated in simpler systems such as microbes, central metabolism is extremely difficult to rationally engineer. This is because of multiple layers of regulation that operate to maintain metabolic steady state and because of the highly connected nature of central metabolism....... In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative ‘design-build-test-learn’ cycle...

  10. Protein design in systems metabolic engineering for industrial strain development.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Engineering microbial fatty acid metabolism for biofuels and biochemicals

    DEFF Research Database (Denmark)

    Marella, Eko Roy; Holkenbrink, Carina; Siewers, Verena

    2017-01-01

    microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining...

  12. Metabolite damage and repair in metabolic engineering design.

    Science.gov (United States)

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  13. Two-Scale 13C Metabolic Flux Analysis for Metabolic Engineering.

    Science.gov (United States)

    Ando, David; Garcia Martin, Hector

    2018-01-01

    Accelerating the Design-Build-Test-Learn (DBTL) cycle in synthetic biology is critical to achieving rapid and facile bioengineering of organisms for the production of, e.g., biofuels and other chemicals. The Learn phase involves using data obtained from the Test phase to inform the next Design phase. As part of the Learn phase, mathematical models of metabolic fluxes give a mechanistic level of comprehension to cellular metabolism, isolating the principle drivers of metabolic behavior from the peripheral ones, and directing future experimental designs and engineering methodologies. Furthermore, the measurement of intracellular metabolic fluxes is specifically noteworthy as providing a rapid and easy-to-understand picture of how carbon and energy flow throughout the cell. Here, we present a detailed guide to performing metabolic flux analysis in the Learn phase of the DBTL cycle, where we show how one can take the isotope labeling data from a 13 C labeling experiment and immediately turn it into a determination of cellular fluxes that points in the direction of genetic engineering strategies that will advance the metabolic engineering process.For our modeling purposes we use the Joint BioEnergy Institute (JBEI) Quantitative Metabolic Modeling (jQMM) library, which provides an open-source, python-based framework for modeling internal metabolic fluxes and making actionable predictions on how to modify cellular metabolism for specific bioengineering goals. It presents a complete toolbox for performing different types of flux analysis such as Flux Balance Analysis, 13 C Metabolic Flux Analysis, and it introduces the capability to use 13 C labeling experimental data to constrain comprehensive genome-scale models through a technique called two-scale 13 C Metabolic Flux Analysis (2S- 13 C MFA) [1]. In addition to several other capabilities, the jQMM is also able to predict the effects of knockouts using the MoMA and ROOM methodologies. The use of the jQMM library is

  14. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review......Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  15. Advances and prospects in metabolic engineering of Zymomonas mobilis.

    Science.gov (United States)

    Wang, Xia; He, Qiaoning; Yang, Yongfu; Wang, Jingwen; Haning, Katie; Hu, Yun; Wu, Bo; He, Mingxiong; Zhang, Yaoping; Bao, Jie; Contreras, Lydia M; Yang, Shihui

    2018-04-05

    Biorefinery of biomass-based biofuels and biochemicals by microorganisms is a competitive alternative of traditional petroleum refineries. Zymomonas mobilis is a natural ethanologen with many desirable characteristics, which makes it an ideal industrial microbial biocatalyst for commercial production of desirable bioproducts through metabolic engineering. In this review, we summarize the metabolic engineering progress achieved in Z. mobilis to expand its substrate and product ranges as well as to enhance its robustness against stressful conditions such as inhibitory compounds within the lignocellulosic hydrolysates and slurries. We also discuss a few metabolic engineering strategies that can be applied in Z. mobilis to further develop it as a robust workhorse for economic lignocellulosic bioproducts. In addition, we briefly review the progress of metabolic engineering in Z. mobilis related to the classical synthetic biology cycle of "Design-Build-Test-Learn", as well as the progress and potential to develop Z. mobilis as a model chassis for biorefinery practices in the synthetic biology era. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    Science.gov (United States)

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Applications of computational modeling in metabolic engineering of yeast

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Lahtvee, Petri-Jaan; Nielsen, Jens

    2015-01-01

    a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering......, it is necessary to expand the modeling of metabolism to consider kinetics of individual processes. This review will give an overview about models available for metabolic engineering of yeast and discusses their applications....

  19. Quantifying complexity in metabolic engineering using the LASER database

    Directory of Open Access Journals (Sweden)

    James D. Winkler

    2016-12-01

    Full Text Available We previously introduced the LASER database (Learning Assisted Strain EngineeRing, https://bitbucket.org/jdwinkler/laser_release (Winkler et al. 2015 to serve as a platform for understanding past and present metabolic engineering practices. Over the past year, LASER has been expanded by 50% to include over 600 engineered strains from 450 papers, including their growth conditions, genetic modifications, and other information in an easily searchable format. Here, we present the results of our efforts to use LASER as a means for defining the complexity of a metabolic engineering “design”. We evaluate two complexity metrics based on the concepts of construction difficulty and novelty. No correlation is observed between expected product yield and complexity, allowing minimization of complexity without a performance trade-off. We envision the use of such complexity metrics to filter and prioritize designs prior to implementation of metabolic engineering efforts, thereby potentially reducing the time, labor, and expenses of large-scale projects. Possible future developments based on an expanding LASER database are then discussed. Keywords: Metabolic engineering, Synthetic biology, Standardization, Design tools

  20. [Improving industrial microbial stress resistance by metabolic engineering: a review].

    Science.gov (United States)

    Fu, Ruiyan; Li, Yin

    2010-09-01

    Metabolic engineering is a technologic platform for industrial strain improvement and aims not only at modifying microbial metabolic fluxes, but also improving the physiological performance of industrial microbes. Microbes will meet multiple stresses in industrial processes. Consequently, elicited gene responses might result in a decrease in overall cell fitness and the efficiency of biotransformation. Thus, it is crucial to develop robust and productive microbial strains that can be integrated into industrial-scale bioprocesses. In this review, we focus on the progress of these novel methods and strategies for engineering stress-tolerance phenotypes referring to rational metabolic engineering and inverse metabolic engineering in recent years. In addition, we also address problems existing in this area and future research needs of microbial physiological functionality engineering.

  1. Engineering strategy of yeast metabolism for higher alcohol production

    Directory of Open Access Journals (Sweden)

    Shimizu Hiroshi

    2011-09-01

    Full Text Available Abstract Background While Saccharomyces cerevisiae is a promising host for cost-effective biorefinary processes due to its tolerance to various stresses during fermentation, the metabolically engineered S. cerevisiae strains exhibited rather limited production of higher alcohols than that of Escherichia coli. Since the structure of the central metabolism of S. cerevisiae is distinct from that of E. coli, there might be a problem in the structure of the central metabolism of S. cerevisiae. In this study, the potential production of higher alcohols by S. cerevisiae is compared to that of E. coli by employing metabolic simulation techniques. Based on the simulation results, novel metabolic engineering strategies for improving higher alcohol production by S. cerevisiae were investigated by in silico modifications of the metabolic models of S. cerevisiae. Results The metabolic simulations confirmed that the high production of butanols and propanols by the metabolically engineered E. coli strains is derived from the flexible behavior of their central metabolism. Reducing this flexibility by gene deletion is an effective strategy to restrict the metabolic states for producing target alcohols. In contrast, the lower yield using S. cerevisiae originates from the structurally limited flexibility of its central metabolism in which gene deletions severely reduced cell growth. Conclusions The metabolic simulation demonstrated that the poor productivity of S. cerevisiae was improved by the introduction of E. coli genes to compensate the structural difference. This suggested that gene supplementation is a promising strategy for the metabolic engineering of S. cerevisiae to produce higher alcohols which should be the next challenge for the synthetic bioengineering of S. cerevisiae for the efficient production of higher alcohols.

  2. Next-generation genome-scale models for metabolic engineering

    DEFF Research Database (Denmark)

    King, Zachary A.; Lloyd, Colton J.; Feist, Adam M.

    2015-01-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict...... examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering....

  3. Applications of computational modeling in metabolic engineering of yeast.

    Science.gov (United States)

    Kerkhoven, Eduard J; Lahtvee, Petri-Jaan; Nielsen, Jens

    2015-02-01

    Generally, a microorganism's phenotype can be described by its pattern of metabolic fluxes. Although fluxes cannot be measured directly, inference of fluxes is well established. In biotechnology the aim is often to increase the capacity of specific fluxes. For this, metabolic engineering methods have been developed and applied extensively. Many of these rely on balancing of intracellular metabolites, redox, and energy fluxes, using genome-scale models (GEMs) that in combination with appropriate objective functions and constraints can be used to predict potential gene targets for obtaining a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering, tools from synthetic biology have emerged, enabling integration and assembly of naturally nonexistent, but well-characterized components into a living organism. To describe these systems kinetic models are often used and to integrate these systems with the standard metabolic engineering approach, it is necessary to expand the modeling of metabolism to consider kinetics of individual processes. This review will give an overview about models available for metabolic engineering of yeast and discusses their applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  4. Metabolite damage and repair in metabolic engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.; Bruner, Steven D.; Hanson, Andrew D.

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.

  5. The Future of Metabolic Engineering and Synthetic Biology: Towards a Systematic Practice

    Science.gov (United States)

    Yadav, Vikramaditya G.; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-01-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as ‘multivariate modular metabolic engineering’ (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. PMID:22629571

  6. The future of metabolic engineering and synthetic biology: towards a systematic practice.

    Science.gov (United States)

    Yadav, Vikramaditya G; De Mey, Marjan; Lim, Chin Giaw; Ajikumar, Parayil Kumaran; Stephanopoulos, Gregory

    2012-05-01

    Industrial biotechnology promises to revolutionize conventional chemical manufacturing in the years ahead, largely owing to the excellent progress in our ability to re-engineer cellular metabolism. However, most successes of metabolic engineering have been confined to over-producing natively synthesized metabolites in E. coli and S. cerevisiae. A major reason for this development has been the descent of metabolic engineering, particularly secondary metabolic engineering, to a collection of demonstrations rather than a systematic practice with generalizable tools. Synthetic biology, a more recent development, faces similar criticisms. Herein, we attempt to lay down a framework around which bioreaction engineering can systematize itself just like chemical reaction engineering. Central to this undertaking is a new approach to engineering secondary metabolism known as 'multivariate modular metabolic engineering' (MMME), whose novelty lies in its assessment and elimination of regulatory and pathway bottlenecks by re-defining the metabolic network as a collection of distinct modules. After introducing the core principles of MMME, we shall then present a number of recent developments in secondary metabolic engineering that could potentially serve as its facilitators. It is hoped that the ever-declining costs of de novo gene synthesis; the improved use of bioinformatic tools to mine, sort and analyze biological data; and the increasing sensitivity and sophistication of investigational tools will make the maturation of microbial metabolic engineering an autocatalytic process. Encouraged by these advances, research groups across the world would take up the challenge of secondary metabolite production in simple hosts with renewed vigor, thereby adding to the range of products synthesized using metabolic engineering. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Production of amino acids - Genetic and metabolic engineering approaches.

    Science.gov (United States)

    Lee, Jin-Ho; Wendisch, Volker F

    2017-12-01

    The biotechnological production of amino acids occurs at the million-ton scale and annually about 6milliontons of l-glutamate and l-lysine are produced by Escherichia coli and Corynebacterium glutamicum strains. l-glutamate and l-lysine production from starch hydrolysates and molasses is very efficient and access to alternative carbon sources and new products has been enabled by metabolic engineering. This review focusses on genetic and metabolic engineering of amino acid producing strains. In particular, rational approaches involving modulation of transcriptional regulators, regulons, and attenuators will be discussed. To address current limitations of metabolic engineering, this article gives insights on recent systems metabolic engineering approaches based on functional tools and method such as genome reduction, amino acid sensors based on transcriptional regulators and riboswitches, CRISPR interference, small regulatory RNAs, DNA scaffolding, and optogenetic control, and discusses future prospects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    Science.gov (United States)

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. Metabolic Engineering: Techniques for analysis of targets for genetic manipulations

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1998-01-01

    Metabolic engineering has been defined as the purposeful modification of intermediary metabolism using recombinant DNA techniques. With this definition metabolic engineering includes: (1) inserting new pathways in microorganisms with the aim of producing novel metabolites, e.g., production...... of polyketides by Streptomyces; (2) production of heterologous peptides, e.g., production of human insulin, erythropoitin, and tPA; and (3) improvement of both new and existing processes, e.g., production of antibiotics and industrial enzymes. Metabolic engineering is a multidisciplinary approach, which involves...... input from chemical engineers, molecular biologists, biochemists, physiologists, and analytical chemists. Obviously, molecular biology is central in the production of novel products, as well as in the improvement of existing processes. However, in the latter case, input from other disciplines is pivotal...

  10. Production of L-valine from metabolically engineered Corynebacterium glutamicum.

    Science.gov (United States)

    Wang, Xiaoyuan; Zhang, Hailing; Quinn, Peter J

    2018-05-01

    L-Valine is one of the three branched-chain amino acids (valine, leucine, and isoleucine) essential for animal health and important in metabolism; therefore, it is widely added in the products of food, medicine, and feed. L-Valine is predominantly produced through microbial fermentation, and the production efficiency largely depends on the quality of microorganisms. In recent years, continuing efforts have been made in revealing the mechanisms and regulation of L-valine biosynthesis in Corynebacterium glutamicum, the most utilitarian bacterium for amino acid production. Metabolic engineering based on the metabolic biosynthesis and regulation of L-valine provides an effective alternative to the traditional breeding for strain development. Industrially competitive L-valine-producing C. glutamicum strains have been constructed by genetically defined metabolic engineering. This article reviews the global metabolic and regulatory networks responsible for L-valine biosynthesis, the molecular mechanisms of regulation, and the strategies employed in C. glutamicum strain engineering.

  11. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  12. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    Science.gov (United States)

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  13. Metabolic Engineering of Probiotic Saccharomyces boulardii.

    Science.gov (United States)

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E; Rao, Christopher V; Jin, Yong-Su

    2016-04-01

    Saccharomyces boulardiiis a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae Therefore, S. boulardiiis an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for metabolic engineering. Here, we report the development of well-defined auxotrophic mutants (leu2,ura3,his3, and trp1) through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-based genome editing. The resulting auxotrophic mutants can be used as a host for introducing various genetic perturbations, such as overexpression or deletion of a target gene, using existing genetic tools forS. cerevisiae We demonstrated the overexpression of a heterologous gene (lacZ), the correct localization of a target protein (red fluorescent protein) into mitochondria by using a protein localization signal, and the introduction of a heterologous metabolic pathway (xylose-assimilating pathway) in the genome ofS. boulardii We further demonstrated that human lysozyme, which is beneficial for human gut health, could be secreted by S. boulardii Our results suggest that more sophisticated genetic perturbations to improveS. boulardii can be performed without using a drug resistance marker, which is a prerequisite for in vivo applications using engineeredS. boulardii. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Engineering of sugar metabolism in Lactococcus lactis

    NARCIS (Netherlands)

    Pool, Weia Arianne

    2008-01-01

    Short English Summary Lactococcus lactis is a lactic acid bacterium used in the dairy industry. This thesis decribes the genetic engineering performed on the sugar metabolism of L. lactis. Besides our fundamental interest for sugar metabolism and its regulation in L. lactis, this project had the

  15. Metabolic engineering of cyanobacteria for the synthesis of commodity products

    NARCIS (Netherlands)

    Angermayr, S.A.; Gorchs Rovira, A.; Hellingwerf, K.J.

    2015-01-01

    Through metabolic engineering cyanobacteria can be employed in biotechnology. Combining the capacity for oxygenic photosynthesis and carbon fixation with an engineered metabolic pathway allows carbon-based product formation from CO2, light, and water directly. Such cyanobacterial 'cell factories'

  16. Metabolic Engineering for Probiotics and their Genome-Wide Expression Profiling.

    Science.gov (United States)

    Yadav, Ruby; Singh, Puneet K; Shukla, Pratyoosh

    2018-01-01

    Probiotic supplements in food industry have attracted a lot of attention and shown a remarkable growth in this field. Metabolic engineering (ME) approaches enable understanding their mechanism of action and increases possibility of designing probiotic strains with desired functions. Probiotic microorganisms generally referred as industrially important lactic acid bacteria (LAB) which are involved in fermenting dairy products, food, beverages and produces lactic acid as final product. A number of illustrations of metabolic engineering approaches in industrial probiotic bacteria have been described in this review including transcriptomic studies of Lactobacillus reuteri and improvement in exopolysaccharide (EPS) biosynthesis yield in Lactobacillus casei LC2W. This review summaries various metabolic engineering approaches for exploring metabolic pathways. These approaches enable evaluation of cellular metabolic state and effective editing of microbial genome or introduction of novel enzymes to redirect the carbon fluxes. In addition, various system biology tools such as in silico design commonly used for improving strain performance is also discussed. Finally, we discuss the integration of metabolic engineering and genome profiling which offers a new way to explore metabolic interactions, fluxomics and probiogenomics using probiotic bacteria like Bifidobacterium spp and Lactobacillus spp. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Computational methods in metabolic engineering for strain design.

    Science.gov (United States)

    Long, Matthew R; Ong, Wai Kit; Reed, Jennifer L

    2015-08-01

    Metabolic engineering uses genetic approaches to control microbial metabolism to produce desired compounds. Computational tools can identify new biological routes to chemicals and the changes needed in host metabolism to improve chemical production. Recent computational efforts have focused on exploring what compounds can be made biologically using native, heterologous, and/or enzymes with broad specificity. Additionally, computational methods have been developed to suggest different types of genetic modifications (e.g. gene deletion/addition or up/down regulation), as well as suggest strategies meeting different criteria (e.g. high yield, high productivity, or substrate co-utilization). Strategies to improve the runtime performances have also been developed, which allow for more complex metabolic engineering strategies to be identified. Future incorporation of kinetic considerations will further improve strain design algorithms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Corynebacterium glutamicum for Sustainable Bioproduction: From Metabolic Physiology to Systems Metabolic Engineering.

    Science.gov (United States)

    Becker, Judith; Gießelmann, Gideon; Hoffmann, Sarah Lisa; Wittmann, Christoph

    Since its discovery 60 years ago, Corynebacterium glutamicum has evolved into a workhorse for industrial biotechnology. Traditionally well known for its remarkable capacity to produce amino acids, this Gram-positive soil bacterium, has become a flexible, efficient production platform for various bulk and fine chemicals, materials, and biofuels. The central turnstile of all these achievements is our excellent understanding of its metabolism and physiology. This knowledge base, together with innovative systems metabolic engineering concepts, which integrate systems and synthetic biology into strain engineering, has upgraded C. glutamicum into one of the most successful industrial microorganisms in the world.

  19. SBOLme: a Repository of SBOL Parts for Metabolic Engineering

    KAUST Repository

    Kuwahara, Hiroyuki

    2017-01-12

    The Synthetic Biology Open Language (SBOL) is a community-driven open language to promote standardization in synthetic biology. To support the use of SBOL in metabolic engineering, we developed SBOLme, the first open-access repository of SBOL 2-compliant biochemical parts for a wide range of metabolic engineering applications. The URL of our repository is http://www.cbrc.kaust.edu.sa/sbolme.

  20. Metabolic engineering approaches for production of biochemicals in food and medicinal plants.

    Science.gov (United States)

    Wilson, Sarah A; Roberts, Susan C

    2014-04-01

    Historically, plants are a vital source of nutrients and pharmaceuticals. Recent advances in metabolic engineering have made it possible to not only increase the concentration of desired compounds, but also introduce novel biosynthetic pathways to a variety of species, allowing for enhanced nutritional or commercial value. To improve metabolic engineering capabilities, new transformation techniques have been developed to allow for gene specific silencing strategies or stacking of multiple genes within the same region of the chromosome. The 'omics' era has provided a new resource for elucidation of uncharacterized biosynthetic pathways, enabling novel metabolic engineering approaches. These resources are now allowing for advanced metabolic engineering of plant production systems, as well as the synthesis of increasingly complex products in engineered microbial hosts. The status of current metabolic engineering efforts is highlighted for the in vitro production of paclitaxel and the in vivo production of β-carotene in Golden Rice and other food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.

    Science.gov (United States)

    Hong, Kuk-Ki; Nielsen, Jens

    2012-08-01

    Metabolic engineering is the enabling science of development of efficient cell factories for the production of fuels, chemicals, pharmaceuticals, and food ingredients through microbial fermentations. The yeast Saccharomyces cerevisiae is a key cell factory already used for the production of a wide range of industrial products, and here we review ongoing work, particularly in industry, on using this organism for the production of butanol, which can be used as biofuel, and isoprenoids, which can find a wide range of applications including as pharmaceuticals and as biodiesel. We also look into how engineering of yeast can lead to improved uptake of sugars that are present in biomass hydrolyzates, and hereby allow for utilization of biomass as feedstock in the production of fuels and chemicals employing S. cerevisiae. Finally, we discuss the perspectives of how technologies from systems biology and synthetic biology can be used to advance metabolic engineering of yeast.

  2. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  3. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    Science.gov (United States)

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals

    Directory of Open Access Journals (Sweden)

    Shuobo Shi

    2017-11-01

    Full Text Available Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.

  5. Ideas of holistic engineering meet engineering work practices

    DEFF Research Database (Denmark)

    Buch, Anders

    2016-01-01

    This article critically reflects on the viability of the idea that reforming engineering education will result in more holistic engineering work practices. Drawing on an empirical study, the article aims to demonstrate that in order to change existing engineering work practices, it might...... be necessary to change engineers’ knowledge and skills; however, such changes are far from sufficient. Conditions and circumstances external to practitioners’ knowledge and skills are crucial if engineering work is to become more holistic. To illustrate this point, the article outlines an empirical study...... of a small team of professionals who engage in holistic engineering work practices in an engineering consultancy company. The work practices are investigated using a philosophical empirical method that inquires into the doings, sayings, and relatings of the practitioners. The study describes the practice...

  6. Essences in Metabolic Engineering of Lignan Biosynthesis

    Directory of Open Access Journals (Sweden)

    Honoo Satake

    2015-05-01

    Full Text Available Lignans are structurally and functionally diverse phytochemicals biosynthesized in diverse plant species and have received wide attentions as leading compounds of novel drugs for tumor treatment and healthy diets to reduce of the risks of lifestyle-related non-communicable diseases. However, the lineage-specific distribution and the low-amount of production in natural plants, some of which are endangered species, hinder the efficient and stable production of beneficial lignans. Accordingly, the development of new procedures for lignan production is of keen interest. Recent marked advances in the molecular and functional characterization of lignan biosynthetic enzymes and endogenous and exogenous factors for lignan biosynthesis have suggested new methods for the metabolic engineering of lignan biosynthesis cascades leading to the efficient, sustainable, and stable lignan production in plants, including plant cell/organ cultures. Optimization of light conditions, utilization of a wide range of elicitor treatments, and construction of transiently gene-transfected or transgenic lignan-biosynthesizing plants are mainly being attempted. This review will present the basic and latest knowledge regarding metabolic engineering of lignans based on their biosynthetic pathways and biological activities, and the perspectives in lignan production via metabolic engineering.

  7. 2005 Plant Metabolic Engineering Gordon Conference - July 10-15, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Eleanore T. Wurtzel

    2006-06-30

    The post-genomic era presents new opportunities for manipulating plant chemistry for improvement of plant traits such as disease and stress resistance and nutritional qualities. This conference will provide a setting for developing multidisciplinary collaborations needed to unravel the dynamic complexity of plant metabolic networks and advance basic and applied research in plant metabolic engineering. The conference will integrate recent advances in genomics, with metabolite and gene expression analyses. Research discussions will explore how biosynthetic pathways interact with regard to substrate competition and channeling, plasticity of biosynthetic enzymes, and investigate the localization, structure, and assembly of biosynthetic metabolons in native and nonnative environments. The meeting will develop new perspectives for plant transgenic research with regard to how transgene expression may influence cellular metabolism. Incorporation of spectroscopic approaches for metabolic profiling and flux analysis combined with mathematical modeling will contribute to the development of rational metabolic engineering strategies and lead to the development of new tools to assess temporal and subcellular changes in metabolite pools. The conference will also highlight new technologies for pathway engineering, including use of heterologous systems, directed enzyme evolution, engineering of transcription factors and application of molecular/genetic techniques for controlling biosynthetic pathways.

  8. SYSTEMS BIOLOGY AND METABOLIC ENGINEERING OF ARTHROSPIRA CELL FACTORIES

    Directory of Open Access Journals (Sweden)

    Amornpan Klanchui

    2012-10-01

    Full Text Available Arthrospira are attractive candidates to serve as cell factories for production of many valuable compounds useful for food, feed, fuel and pharmaceutical industries. In connection with the development of sustainable bioprocessing, it is a challenge to design and develop efficient Arthrospira cell factories which can certify effective conversion from the raw materials (i.e. CO2 and sun light into desired products. With the current availability of the genome sequences and metabolic models of Arthrospira, the development of Arthrospira factories can now be accelerated by means of systems biology and the metabolic engineering approach. Here, we review recent research involving the use of Arthrospira cell factories for industrial applications, as well as the exploitation of systems biology and the metabolic engineering approach for studying Arthrospira. The current status of genomics and proteomics through the development of the genome-scale metabolic model of Arthrospira, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies are discussed. At the end, the perspective and future direction on Arthrospira cell factories for industrial biotechnology are presented.

  9. Civil engineering work

    International Nuclear Information System (INIS)

    Cousyn, Rene; Goubin, Jean.

    1977-01-01

    Although it does not require a specifically new technicality, the Civil Engineering site of a nuclear power plant is a complex work. Considering as an example the power plant currently in construction at Tricastin, the authors describe the main Civil Engineering work and task organization applied to carry it out [fr

  10. Cytochrome P450-mediated metabolic engineering: current progress and future challenges.

    Science.gov (United States)

    Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle

    2014-06-01

    Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Evolutionary programming as a platform for in silico metabolic engineering

    Directory of Open Access Journals (Sweden)

    Förster Jochen

    2005-12-01

    Full Text Available Abstract Background Through genetic engineering it is possible to introduce targeted genetic changes and hereby engineer the metabolism of microbial cells with the objective to obtain desirable phenotypes. However, owing to the complexity of metabolic networks, both in terms of structure and regulation, it is often difficult to predict the effects of genetic modifications on the resulting phenotype. Recently genome-scale metabolic models have been compiled for several different microorganisms where structural and stoichiometric complexity is inherently accounted for. New algorithms are being developed by using genome-scale metabolic models that enable identification of gene knockout strategies for obtaining improved phenotypes. However, the problem of finding optimal gene deletion strategy is combinatorial and consequently the computational time increases exponentially with the size of the problem, and it is therefore interesting to develop new faster algorithms. Results In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters in industrial fermentations, one linear and other non-linear, by using a genome-scale model of the yeast Saccharomyces cerevisiae. Potential metabolic engineering targets for improved production of succinic acid, glycerol and vanillin are identified and underlying flux changes for the predicted mutants are discussed. Conclusion We show that evolutionary programming enables solving large gene knockout problems in relatively short computational time. The proposed algorithm also allows the optimization of non-linear objective functions or incorporation of non-linear constraints and additionally provides a family of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span

  12. Metabolic engineering of Agrobacterium sp. ATCC31749 for curdlan production from cellobiose.

    Science.gov (United States)

    Shin, Hyun-Dong; Liu, Long; Kim, Mi-Kyoung; Park, Yong-Il; Chen, Rachel

    2016-09-01

    Curdlan is a commercial polysaccharide made by fermentation of Agrobacterium sp. Its anticipated expansion to larger volume markets demands improvement in its production efficiency. Metabolic engineering for strain improvement has so far been limited due to the lack of genetic tools. This research aimed to identify strong promoters and to engineer a strain that converts cellobiose efficiently to curdlan. Three strong promoters were identified and were used to install an energy-efficient cellobiose phosphorolysis mechanism in a curdlan-producing strain. The engineered strains were shown with enhanced ability to utilize cellobiose, resulting in a 2.5-fold increase in titer. The availability of metabolically engineered strain capable of producing β-glucan from cellobiose paves the way for its production from cellulose. The identified native promoters from Agrobacterium open up opportunities for further metabolic engineering for improved production of curdlan and other products. The success shown here marks the first such metabolic engineering effort in this microbe.

  13. Mini-review: In vitro Metabolic Engineering for Biomanufacturing of High-value Products

    Directory of Open Access Journals (Sweden)

    Weihua Guo

    Full Text Available With the breakthroughs in biomolecular engineering and synthetic biology, many valuable biologically active compound and commodity chemicals have been successfully manufactured using cell-based approaches in the past decade. However, because of the high complexity of cell metabolism, the identification and optimization of rate-limiting metabolic pathways for improving the product yield is often difficult, which represents a significant and unavoidable barrier of traditional in vivo metabolic engineering. Recently, some in vitro engineering approaches were proposed as alternative strategies to solve this problem. In brief, by reconstituting a biosynthetic pathway in a cell-free environment with the supplement of cofactors and substrates, the performance of each biosynthetic pathway could be evaluated and optimized systematically. Several value-added products, including chemicals, nutraceuticals, and drug precursors, have been biosynthesized as proof-of-concept demonstrations of in vitro metabolic engineering. This mini-review summarizes the recent progresses on the emerging topic of in vitro metabolic engineering and comments on the potential application of cell-free technology to speed up the “design-build-test” cycles of biomanufacturing. Keywords: Cell-free, Biosynthesis, Metabolic pathways, Design-build-test cycle

  14. A Status Report on the Global Research in Microbial Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Min Ho; Lim, Sang Yong; Kim, Dong Ho

    2008-09-15

    Biotechnology industry is now a global 'Mega-Trend' and metabolic engineering technology has important role is this area. Therefore, many countries has made efforts in this field to produce top value added bio-products efficiently using microorganisms. It has been applied to increase the production of chemicals that are already produced by the host organism, to produce desired chemical substances from less expensive feedstock, and to generate products that are new to the host organism. Recent experimental advances, the so-called '-omics' technologies, mainly functional genomics, proteomics and metabolomics, have enabled wholesale generation of new genomic, transcriptomic, proteomic, and metabolomic data. This report provides the insights of the integrated view of metabolism generated by metabolic engineering for biotechnological applications of microbial metabolic engineering.

  15. A Status Report on the Global Research in Microbial Metabolic Engineering

    International Nuclear Information System (INIS)

    Joe, Min Ho; Lim, Sang Yong; Kim, Dong Ho

    2008-09-01

    Biotechnology industry is now a global 'Mega-Trend' and metabolic engineering technology has important role is this area. Therefore, many countries has made efforts in this field to produce top value added bio-products efficiently using microorganisms. It has been applied to increase the production of chemicals that are already produced by the host organism, to produce desired chemical substances from less expensive feedstock, and to generate products that are new to the host organism. Recent experimental advances, the so-called '-omics' technologies, mainly functional genomics, proteomics and metabolomics, have enabled wholesale generation of new genomic, transcriptomic, proteomic, and metabolomic data. This report provides the insights of the integrated view of metabolism generated by metabolic engineering for biotechnological applications of microbial metabolic engineering

  16. A Status Report on the Global Research in Microbial Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Min Ho; Lim, Sang Yong; Kim, Dong Ho

    2008-09-15

    Biotechnology industry is now a global 'Mega-Trend' and metabolic engineering technology has important role is this area. Therefore, many countries has made efforts in this field to produce top value added bio-products efficiently using microorganisms. It has been applied to increase the production of chemicals that are already produced by the host organism, to produce desired chemical substances from less expensive feedstock, and to generate products that are new to the host organism. Recent experimental advances, the so-called '-omics' technologies, mainly functional genomics, proteomics and metabolomics, have enabled wholesale generation of new genomic, transcriptomic, proteomic, and metabolomic data. This report provides the insights of the integrated view of metabolism generated by metabolic engineering for biotechnological applications of microbial metabolic engineering.

  17. Microbial Development and Metabolic Engineering | Bioenergy | NREL

    Science.gov (United States)

    Diversity Our genetically engineered microbes utilize a variety of feedstock including cellulose, xylan , syngas, simple sugars, organic acids, and carbon dioxide (CO2). We have modified the metabolic pathways

  18. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    Science.gov (United States)

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Use of genome-scale microbial models for metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Åkesson, M.; Nielsen, Jens

    2004-01-01

    Metabolic engineering serves as an integrated approach to design new cell factories by providing rational design procedures and valuable mathematical and experimental tools. Mathematical models have an important role for phenotypic analysis, but can also be used for the design of optimal metaboli...... network structures. The major challenge for metabolic engineering in the post-genomic era is to broaden its design methodologies to incorporate genome-scale biological data. Genome-scale stoichiometric models of microorganisms represent a first step in this direction....

  20. Metabolic Engineering for Substrate Co-utilization

    Science.gov (United States)

    Gawand, Pratish

    Production of biofuels and bio-based chemicals is being increasingly pursued by chemical industry to reduce its dependence on petroleum. Lignocellulosic biomass (LCB) is an abundant source of sugars that can be used for producing biofuels and bio-based chemicals using fermentation. Hydrolysis of LCB results in a mixture of sugars mainly composed of glucose and xylose. Fermentation of such a sugar mixture presents multiple technical challenges at industrial scale. Most industrial microorganisms utilize sugars in a sequential manner due to the regulatory phenomenon of carbon catabolite repression (CCR). Due to sequential utilization of sugars, the LCB-based fermentation processes suffer low productivities and complicated operation. Performance of fermentation processes can be improved by metabolic engineering of microorganisms to obtain superior characteristics such as high product yield. With increased computational power and availability of complete genomes of microorganisms, use of model-based metabolic engineering is now a common practice. The problem of sequential sugar utilization, however, is a regulatory problem, and metabolic models have never been used to solve such regulatory problems. The focus of this thesis is to use model-guided metabolic engineering to construct industrial strains capable of co-utilizing sugars. First, we develop a novel bilevel optimization algorithm SimUp, that uses metabolic models to identify reaction deletion strategies to force co-utilization of two sugars. We then use SimUp to identify reaction deletion strategies to force glucose-xylose co-utilization in Escherichia coli. To validate SimUp predictions, we construct three mutants with multiple gene knockouts and test them for glucose-xylose utilization characteristics. Two mutants, designated as LMSE2 and LMSE5, are shown to co-utilize glucose and xylose in agreement with SimUp predictions. To understand the molecular mechanism involved in glucose-xylose co-utilization of the

  1. Design, Optimization and Application of Small Molecule Biosensor in Metabolic Engineering.

    Science.gov (United States)

    Liu, Yang; Liu, Ye; Wang, Meng

    2017-01-01

    The development of synthetic biology and metabolic engineering has painted a great future for the bio-based economy, including fuels, chemicals, and drugs produced from renewable feedstocks. With the rapid advance of genome-scale modeling, pathway assembling and genome engineering/editing, our ability to design and generate microbial cell factories with various phenotype becomes almost limitless. However, our lack of ability to measure and exert precise control over metabolite concentration related phenotypes becomes a bottleneck in metabolic engineering. Genetically encoded small molecule biosensors, which provide the means to couple metabolite concentration to measurable or actionable outputs, are highly promising solutions to the bottleneck. Here we review recent advances in the design, optimization and application of small molecule biosensor in metabolic engineering, with particular focus on optimization strategies for transcription factor (TF) based biosensors.

  2. 13C Metabolic Flux Analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids.

    Directory of Open Access Journals (Sweden)

    Amit Ghosh

    2016-10-01

    Full Text Available Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here we used flux-based modeling approaches to improve yields of fatty acids in S. cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Y. lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for down-regulation in terms of acetyl-CoA consumption. These genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg L of free fatty acids. With the addition of ATP citrate lyase and down-regulation of malate synthase the engineered strain produced 26 per cent more free fatty acids. Further increases in free fatty acid production of 33 per cent were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by 70 per cent.

  3. Pathway elucidation and metabolic engineering of specialized plant metabolites

    DEFF Research Database (Denmark)

    Salomonsen, Bo

    A worldwide need to liberate ourselves from unsustainable petrochemicals has led to numerous metabolic engineering projects, mostly carried out in microbial hosts. Using systems biology for predicting and altering the metabolism of microorganisms towards production of a desired metabolite......, these projects have increased revenues on fermentative production of several biochemicals. The use of systems biology is, however, not limited to microorganisms. Recent advances in biotechnology methods have provided a wealth of data within functional genomics, metabolomics, transcriptomics, proteomics...... and fluxomics for a considerable number of organisms. Unfortunately, transferring the wealth of data to valuable information for metabolic engineering purposes is a non-obvious task. This PhD thesis describes a palate of tools used in generation of cell factories for production of specialized plant metabolites...

  4. Towards systems metabolic engineering in Pichia pastoris.

    Science.gov (United States)

    Schwarzhans, Jan-Philipp; Luttermann, Tobias; Geier, Martina; Kalinowski, Jörn; Friehs, Karl

    2017-11-01

    The methylotrophic yeast Pichia pastoris is firmly established as a host for the production of recombinant proteins, frequently outperforming other heterologous hosts. Already, a sizeable amount of systems biology knowledge has been acquired for this non-conventional yeast. By applying various omics-technologies, productivity features have been thoroughly analyzed and optimized via genetic engineering. However, challenging clonal variability, limited vector repertoire and insufficient genome annotation have hampered further developments. Yet, in the last few years a reinvigorated effort to establish P. pastoris as a host for both protein and metabolite production is visible. A variety of compounds from terpenoids to polyketides have been synthesized, often exceeding the productivity of other microbial systems. The clonal variability was systematically investigated and strategies formulated to circumvent untargeted events, thereby streamlining the screening procedure. Promoters with novel regulatory properties were discovered or engineered from existing ones. The genetic tractability was increased via the transfer of popular manipulation and assembly techniques, as well as the creation of new ones. A second generation of sequencing projects culminated in the creation of the second best functionally annotated yeast genome. In combination with landmark physiological insights and increased output of omics-data, a good basis for the creation of refined genome-scale metabolic models was created. The first application of model-based metabolic engineering in P. pastoris showcased the potential of this approach. Recent efforts to establish yeast peroxisomes for compartmentalized metabolite synthesis appear to fit ideally with the well-studied high capacity peroxisomal machinery of P. pastoris. Here, these recent developments are collected and reviewed with the aim of supporting the establishment of systems metabolic engineering in P. pastoris. Copyright © 2017. Published

  5. Key applications of plant metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Warren Lau

    2014-06-01

    Full Text Available Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field.

  6. Genetic Optimization Algorithm for Metabolic Engineering Revisited

    Directory of Open Access Journals (Sweden)

    Tobias B. Alter

    2018-05-01

    Full Text Available To date, several independent methods and algorithms exist for exploiting constraint-based stoichiometric models to find metabolic engineering strategies that optimize microbial production performance. Optimization procedures based on metaheuristics facilitate a straightforward adaption and expansion of engineering objectives, as well as fitness functions, while being particularly suited for solving problems of high complexity. With the increasing interest in multi-scale models and a need for solving advanced engineering problems, we strive to advance genetic algorithms, which stand out due to their intuitive optimization principles and the proven usefulness in this field of research. A drawback of genetic algorithms is that premature convergence to sub-optimal solutions easily occurs if the optimization parameters are not adapted to the specific problem. Here, we conducted comprehensive parameter sensitivity analyses to study their impact on finding optimal strain designs. We further demonstrate the capability of genetic algorithms to simultaneously handle (i multiple, non-linear engineering objectives; (ii the identification of gene target-sets according to logical gene-protein-reaction associations; (iii minimization of the number of network perturbations; and (iv the insertion of non-native reactions, while employing genome-scale metabolic models. This framework adds a level of sophistication in terms of strain design robustness, which is exemplarily tested on succinate overproduction in Escherichia coli.

  7. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives

    Directory of Open Access Journals (Sweden)

    Jian Zha

    2017-12-01

    Full Text Available Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  8. Evolutionary programming as a platform for in silico metabolic engineering

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Rocha, Isabel; Förster, Jochen

    2005-01-01

    , and it is therefore interesting to develop new faster algorithms. Results In this study we report an evolutionary programming based method to rapidly identify gene deletion strategies for optimization of a desired phenotypic objective function. We illustrate the proposed method for two important design parameters...... of close to optimal solutions. The identified metabolic engineering strategies suggest that non-intuitive genetic modifications span several different pathways and may be necessary for solving challenging metabolic engineering problems....

  9. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nielsen, Jens; Jewett, Michael Christopher

    2008-01-01

    in the industrial application of this yeast. Developments in genomics and high-throughput systems biology tools are enhancing one's ability to rapidly characterize cellular behaviour, which is valuable in the field of metabolic engineering where strain characterization is often the bottleneck in strain development...... programmes. Here, the impact of systems biology on metabolic engineering is reviewed and perspectives on the role of systems biology in the design of cell factories are given....

  10. The application of microfluidic-based technologies in the cycle of metabolic engineering

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ma

    2016-09-01

    Full Text Available The process of metabolic engineering consists of multiple cycles of design, build, test and learn, which is typically laborious and time-consuming. To increase the efficiency and the rate of success of strain engineering, novel instrumentation must be applied. Microfluidics, the control of liquid flow in microstructures, has enabled flexible, accurate, automatic, and high-throughput manipulation of cells in liquid at picoliter to nanoliter scale. These attributes hold great promise in advancing metabolic engineering in terms of the phases of design, build, test and learn. To promote the application of microfluidic-based technologies in strain improvement, this review addressed the potentials of microfluidics and the related approaches in DNA assembly, transformation, strain screening, genotyping and phenotyping, and highlighted their adaptations for single-cell analysis. As a result, this facilitates in-depth understanding of the metabolic network, which in turn promote efficient optimization in the following cycles of strain engineering. Taken together, microfluidic-based technologies enable on-chip workflow, and could greatly accelerate the turnaround of metabolic engineering.

  11. The role of metabolic engineering in the production of secondary metabolites

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1998-01-01

    In the production of secondary metabolites yield and productivity are the most important design parameters. The focus is therefore to direct the carbon fluxes towards the product of interest, and this can be obtained through metabolic engineering whereby directed genetic changes are introduced...... into the production strain. In this process it is, however, important to analyze the metabolic network through measurement of the intracellular metabolites and the flux distributions. Besides playing an important role in the optimization of existing processes, metabolic engineering also offers the possibility...

  12. Teaching Engineering Students Team Work

    Science.gov (United States)

    Levi, Daniel

    1998-01-01

    The purpose of this manual is to provide professor's in engineering classes which the background necessary to use student team projects effectively. This manual describes some of the characteristics of student teams and how to use them in class. It provides a set of class activities and films which can be used to introduce and support student teams. Finally, a set of teaching modules used in freshmen, sophomore, and senior aeronautical engineering classes are presented. This manual was developed as part of a NASA sponsored project to improve the undergraduate education of aeronautical engineers. The project has helped to purchase a set of team work films which can be checked out from Cal Poly's Learning Resources Center in the Kennedy Library. Research for this project has included literature reviews on team work and cooperative learning; interviews, observations, and surveys of Cal Poly students from Industrial and Manufacturing Engineering, Aeronautical Engineering and Psychology; participation in the Aeronautical Engineering senior design lab; and interviews with engineering faculty. In addition to this faculty manual, there is a student team work manual which has been designed to help engineering students work better in teams.

  13. Hijacking CRISPR-Cas for high-throughput bacterial metabolic engineering: advances and prospects

    DEFF Research Database (Denmark)

    Mougiakos, Ioannis; Bosma, Elleke F.; Ganguly, Joyshree

    2018-01-01

    High engineering efficiencies are required for industrial strain development. Due to its user-friendliness and its stringency, CRISPR-Cas-based technologies have strongly increased genome engineering efficiencies in bacteria. This has enabled more rapid metabolic engineering of both the model host...... the range of organisms in which it can be used to create novel production hosts. This review analyses the current status of prokaryotic metabolic engineering towards the production of biotechnologically relevant products, based on the exploitation of different CRISPR-related DNA/RNA endonuclease variants....

  14. The necessity of a theory of biology for tissue engineering: metabolism-repair systems.

    Science.gov (United States)

    Ganguli, Suman; Hunt, C Anthony

    2004-01-01

    Since there is no widely accepted global theory of biology, tissue engineering and bioengineering lack a theoretical understanding of the systems being engineered. By default, tissue engineering operates with a "reductionist" theoretical approach, inherited from traditional engineering of non-living materials. Long term, that approach is inadequate, since it ignores essential aspects of biology. Metabolism-repair systems are a theoretical framework which explicitly represents two "functional" aspects of living organisms: self-repair and self-replication. Since repair and replication are central to tissue engineering, we advance metabolism-repair systems as a potential theoretical framework for tissue engineering. We present an overview of the framework, and indicate directions to pursue for extending it to the context of tissue engineering. We focus on biological networks, both metabolic and cellular, as one such direction. The construction of these networks, in turn, depends on biological protocols. Together these concepts may help point the way to a global theory of biology appropriate for tissue engineering.

  15. Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico.

    Science.gov (United States)

    McAnulty, Michael J; Yen, Jiun Y; Freedman, Benjamin G; Senger, Ryan S

    2012-05-14

    Genome-scale metabolic networks and flux models are an effective platform for linking an organism genotype to its phenotype. However, few modeling approaches offer predictive capabilities to evaluate potential metabolic engineering strategies in silico. A new method called "flux balance analysis with flux ratios (FBrAtio)" was developed in this research and applied to a new genome-scale model of Clostridium acetobutylicum ATCC 824 (iCAC490) that contains 707 metabolites and 794 reactions. FBrAtio was used to model wild-type metabolism and metabolically engineered strains of C. acetobutylicum where only flux ratio constraints and thermodynamic reversibility of reactions were required. The FBrAtio approach allowed solutions to be found through standard linear programming. Five flux ratio constraints were required to achieve a qualitative picture of wild-type metabolism for C. acetobutylicum for the production of: (i) acetate, (ii) lactate, (iii) butyrate, (iv) acetone, (v) butanol, (vi) ethanol, (vii) CO2 and (viii) H2. Results of this simulation study coincide with published experimental results and show the knockdown of the acetoacetyl-CoA transferase increases butanol to acetone selectivity, while the simultaneous over-expression of the aldehyde/alcohol dehydrogenase greatly increases ethanol production. FBrAtio is a promising new method for constraining genome-scale models using internal flux ratios. The method was effective for modeling wild-type and engineered strains of C. acetobutylicum.

  16. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals

    NARCIS (Netherlands)

    Hugenholtz, J.; Sybesma, W.; Groot, M.N.; Wisselink, W.; Ladero, V.; Burgess, K.; Sinderen, van D.; Piard, J.C.; Eggink, G.; Smid, E.J.; Savoy, G.; Sesma, F.; Jansen, T.; Hols, P.; Kleerebezem, M.

    2002-01-01

    Lactic acid bacteria display a relatively simple and well-described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies on the level of sugar metabolism, that lead to either the efficient re-routing of the lactococcal

  17. Microalgal bioengineering for sustainable energy development: Recent transgenesis and metabolic engineering strategies.

    Science.gov (United States)

    Banerjee, Chiranjib; Singh, Puneet Kumar; Shukla, Pratyoosh

    2016-03-01

    Exploring the efficiency of algae to produce remarkable products can be directly benefitted by studying its mechanism at systems level. Recent advents in biotechnology like flux balance analysis (FBA), genomics and in silico proteomics minimize the wet lab exertion. It is understood that FBA predicts the metabolic products, metabolic pathways and alternative pathway to maximize the desired product, and these are key components for microalgae bio-engineering. This review encompasses recent transgenesis techniques and metabolic engineering strategies applied to different microalgae for improving different traits. Further it also throws light on RNAi and riboswitch engineering based methods which may be advantageous for high throughput microalgal research. A valid and optimally designed microalga can be developed where every engineering strategies meet each other successfully and will definitely fulfill the market needs. It is also to be noted that Omics (viz. genetic and metabolic manipulation with bioinformatics) should be integrated to develop a strain which could prove to be a futuristic solution for sustainable development for energy. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Shift work and its association with metabolic disorders.

    Science.gov (United States)

    Brum, Maria Carlota Borba; Filho, Fábio Fernandes Dantas; Schnorr, Claudia Carolina; Bottega, Gustavo Borchardt; Rodrigues, Ticiana C

    2015-01-01

    Although the health burden of shift work has not been extensively studied, evidence suggests that it may affect the metabolic balance and cause obesity and other metabolic disorders. Sleep deprivation, circadian desynchronization and behavioral changes in diet and physical activity are among the most commonly mentioned factors in studies of the association between night work and metabolic disorders. Individual adaptation to night work depends greatly on personal factors such as family and social life, but occupational interventions may also make a positive contribution to the transition to shift work, such as exposure to bright lights during the night shift, melatonin use, shift regularity and clockwise rotation, and dietary adaptations for the metabolic needs of night workers. The evaluation of the impact of night work on health and of the mechanisms underlying this relationship can serve as a basis for intervention strategies to minimize the health burden of shift work. This review aimed to identify highlights regarding therapeutic implications following the association between night and shift work and metabolic disorders, as well as the mechanisms and pathways responsible for these relationships.

  19. Improved Triacylglycerol Production in Acinetobacter baylyi ADP1 by Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-05-01

    Full Text Available Abstract Background Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis. Results Beneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold. Conclusions In silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.

  20. Systems metabolic engineering design: fatty acid production as an emerging case study.

    Science.gov (United States)

    Tee, Ting Wei; Chowdhury, Anupam; Maranas, Costas D; Shanks, Jacqueline V

    2014-05-01

    Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel-like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high-yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high-yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain-length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain-lengths and functionalities. © 2014 Wiley Periodicals, Inc.

  1. Metabolic Engineering of Chemical Defence Pathways in Plant Disease Control

    DEFF Research Database (Denmark)

    Rook, Frederik

    2016-01-01

    on each topic. The chapter reviews the some of the scientific and technical challenges in metabolic engineering and the new possibilities emerging from recent technological developments. It concludes by discussing the outlook for bioengineered chemical defences as part of crop protection strategies, also...... with antimicrobial properties for use in crop protection. It presents an overview of the metabolic engineering efforts made in the area of plant chemical defence. For in-depth information on the characteristics of a specific class of chemical defence compounds, the reader is referred to the specialized reviews...

  2. Combination of traditional mutation and metabolic engineering to enhance ansamitocin P-3 production in Actinosynnema pretiosum.

    Science.gov (United States)

    Du, Zhi-Qiang; Zhang, Yuan; Qian, Zhi-Gang; Xiao, Han; Zhong, Jian-Jiang

    2017-12-01

    Ansamitocin P-3 (AP-3) is a maytansinoid with its most compelling antitumor activity, however, the low production titer of AP-3 greatly restricts its wide commercial application. In this work, a combinatorial approach including random mutation and metabolic engineering was conducted to enhance AP-3 biosynthesis in Actinosynnema pretiosum. First, a mutant strain M was isolated by N-methyl-N'-nitro-N-nitrosoguanidine mutation, which could produce AP-3 almost threefold that of wild type (WT) in 48 deep-well plates. Then, by overexpressing key biosynthetic genes asmUdpg and asm13-17 in the M strain, a further 60% increase of AP-3 production in 250-ml shake flasks was achieved in the engineered strain M-asmUdpg:asm13-17 compared to the M strain, and its maximum AP-3 production reached 582.7 mg/L, which is the highest as ever reported. Both the gene transcription levels and intracellular intermediate concentrations in AP-3 biosynthesis pathway were significantly increased in the M and M-asmUdpg:asm13-17 during fermentation compared to the WT. The good fermentation performance of the engineered strain was also confirmed in a lab-scale bioreactor. This work demonstrated that combination of random mutation and metabolic engineering could promote AP-3 biosynthesis and might be helpful for increasing the production of other industrially important secondary metabolites. © 2017 Wiley Periodicals, Inc.

  3. Modulation of sulfur metabolism enables efficient glucosinolate engineering

    Directory of Open Access Journals (Sweden)

    Geu-Flores Fernando

    2011-01-01

    Full Text Available Abstract Background Metabolic engineering in heterologous organisms is an attractive approach to achieve efficient production of valuable natural products. Glucosinolates represent a good example of such compounds as they are thought to be the cancer-preventive agents in cruciferous plants. We have recently demonstrated that it is feasible to engineer benzylglucosinolate (BGLS in the non-cruciferous plant Nicotiana benthamiana by transient expression of five genes from Arabidopsis thaliana. In the same study, we showed that co-expression of a sixth Arabidopsis gene, γ-glutamyl peptidase 1 (GGP1, resolved a metabolic bottleneck, thereby increasing BGLS accumulation. However, the accumulation did not reach the expected levels, leaving room for further optimization. Results To optimize heterologous glucosinolate production, we have in this study performed a comparative metabolite analysis of BGLS-producing N. benthamiana leaves in the presence or absence of GGP1. The analysis revealed that the increased BGLS levels in the presence of GGP1 were accompanied by a high accumulation of the last intermediate, desulfoBGLS, and a derivative thereof. This evidenced a bottleneck in the last step of the pathway, the transfer of sulfate from 3'-phosphoadenosine-5'-phosphosulfate (PAPS to desulfoBGLS by the sulfotransferase AtSOT16. While substitution of AtSOT16 with alternative sulfotransferases did not alleviate the bottleneck, experiments with the three genes involved in the formation and recycling of PAPS showed that co-expression of adenosine 5'-phosphosulfate kinase 2 (APK2 alone reduced the accumulation of desulfoBGLS and its derivative by more than 98% and increased BGLS accumulation 16-fold. Conclusion Adjusting sulfur metabolism by directing sulfur from primary to secondary metabolism leads to a remarkable improvement in BGLS accumulation and thereby represents an important step towards a clean and efficient production of glucosinolates in

  4. The Genome-Based Metabolic Systems Engineering to Boost Levan Production in a Halophilic Bacterial Model.

    Science.gov (United States)

    Aydin, Busra; Ozer, Tugba; Oner, Ebru Toksoy; Arga, Kazim Yalcin

    2018-03-01

    Metabolic systems engineering is being used to redirect microbial metabolism for the overproduction of chemicals of interest with the aim of transforming microbial hosts into cellular factories. In this study, a genome-based metabolic systems engineering approach was designed and performed to improve biopolymer biosynthesis capability of a moderately halophilic bacterium Halomonas smyrnensis AAD6 T producing levan, which is a fructose homopolymer with many potential uses in various industries and medicine. For this purpose, the genome-scale metabolic model for AAD6 T was used to characterize the metabolic resource allocation, specifically to design metabolic engineering strategies for engineered bacteria with enhanced levan production capability. Simulations were performed in silico to determine optimal gene knockout strategies to develop new strains with enhanced levan production capability. The majority of the gene knockout strategies emphasized the vital role of the fructose uptake mechanism, and pointed out the fructose-specific phosphotransferase system (PTS fru ) as the most promising target for further metabolic engineering studies. Therefore, the PTS fru of AAD6 T was restructured with insertional mutagenesis and triparental mating techniques to construct a novel, engineered H. smyrnensis strain, BMA14. Fermentation experiments were carried out to demonstrate the high efficiency of the mutant strain BMA14 in terms of final levan concentration, sucrose consumption rate, and sucrose conversion efficiency, when compared to the AAD6 T . The genome-based metabolic systems engineering approach presented in this study might be considered an efficient framework to redirect microbial metabolism for the overproduction of chemicals of interest, and the novel strain BMA14 might be considered a potential microbial cell factory for further studies aimed to design levan production processes with lower production costs.

  5. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum.

    Science.gov (United States)

    Cho, Jae Sung; Choi, Kyeong Rok; Prabowo, Cindy Pricilia Surya; Shin, Jae Ho; Yang, Dongsoo; Jang, Jaedong; Lee, Sang Yup

    2017-07-01

    Genome engineering of Corynebacterium glutamicum, an important industrial microorganism for amino acids production, currently relies on random mutagenesis and inefficient double crossover events. Here we report a rapid genome engineering strategy to scarlessly knock out one or more genes in C. glutamicum in sequential and iterative manner. Recombinase RecT is used to incorporate synthetic single-stranded oligodeoxyribonucleotides into the genome and CRISPR/Cas9 to counter-select negative mutants. We completed the system by engineering the respective plasmids harboring CRISPR/Cas9 and RecT for efficient curing such that multiple gene targets can be done iteratively and final strains will be free of plasmids. To demonstrate the system, seven different mutants were constructed within two weeks to study the combinatorial deletion effects of three different genes on the production of γ-aminobutyric acid, an industrially relevant chemical of much interest. This genome engineering strategy will expedite metabolic engineering of C. glutamicum. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Shift work and its association with metabolic disorders

    OpenAIRE

    Brum, Maria Carlota Borba; Dantas Filho, Fábio Fernandes; Schnorr, Claudia Carolina; Bottega, Gustavo Borchardt; Rodrigues, Ticiana da Costa

    2015-01-01

    Although the health burden of shift work has not been extensively studied, evidence suggests that it may affect the metabolic balance and cause obesity and other metabolic disorders. Sleep deprivation, circadian desynchronization and behavioral changes in diet and physical activity are among the most commonly mentioned factors in studies of the association between night work and metabolic disorders. Individual adaptation to night work depends greatly on personal factors such as family and soc...

  7. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  8. Microbial production of antioxidant food ingredients via metabolic engineering.

    Science.gov (United States)

    Lin, Yuheng; Jain, Rachit; Yan, Yajun

    2014-04-01

    Antioxidants are biological molecules with the ability to protect vital metabolites from harmful oxidation. Due to this fascinating role, their beneficial effects on human health are of paramount importance. Traditional approaches using solvent-based extraction from food/non-food sources and chemical synthesis are often expensive, exhaustive, and detrimental to the environment. With the advent of metabolic engineering tools, the successful reconstitution of heterologous pathways in Escherichia coli and other microorganisms provides a more exciting and amenable alternative to meet the increasing demand of natural antioxidants. In this review, we elucidate the recent progress in metabolic engineering efforts for the microbial production of antioxidant food ingredients - polyphenols, carotenoids, and antioxidant vitamins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    Science.gov (United States)

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  10. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Guoqiang Xu

    Full Text Available Fumaric acid (FA is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1 was selected as the target gene on the basis of extensive literature mining. Flux balance analysis (FBA revealed that FUM1 deletion can lead to FA production and slightly lower growth of S. cerevisiae. The engineered S. cerevisiae strain obtained by deleting FUM1 can produce FA up to a concentration of 610±31 mg L(-1 without any apparent change in growth in fed-batch culture. FT-IR and (1H and (13C NMR spectra confirmed that FA was synthesized by the engineered S. cerevisiae strain. FBA identified pyruvate carboxylase as one of the factors limiting higher FA production. When the RoPYC gene was introduced, S. cerevisiae produced 1134±48 mg L(-1 FA. Furthermore, the final engineered S. cerevisiae strain was able to produce 1675±52 mg L(-1 FA in batch culture when the SFC1 gene encoding a succinate-fumarate transporter was introduced. These results demonstrate that the model shows great predictive capability for metabolic engineering. Moreover, FA production in S. cerevisiae can be efficiently developed with the aid of in silico metabolic engineering.

  11. Non-photosynthetic plastids as hosts for metabolic engineering.

    Science.gov (United States)

    Mellor, Silas Busck; Behrendorff, James B Y H; Nielsen, Agnieszka Zygadlo; Jensen, Poul Erik; Pribil, Mathias

    2018-04-13

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most unexploited plant-specific resource. Plant cells contain organelles called plastids that retain their own genome, harbour unique biosynthetic pathways and differentiate into distinct plastid types upon environmental and developmental cues. Chloroplasts, the plastid type hosting the photosynthetic processes in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis and storage of particular classes of compounds, might prove more suitable for engineering the production and storage of non-native metabolites without affecting plant fitness. This review provides the current state of knowledge on the molecular mechanisms involved in plastid differentiation and focuses on non-photosynthetic plastids as alternative biotechnological platforms for metabolic engineering. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering.

    Science.gov (United States)

    Fehér, Tamás; Planson, Anne-Gaëlle; Carbonell, Pablo; Fernández-Castané, Alfred; Grigoras, Ioana; Dariy, Ekaterina; Perret, Alain; Faulon, Jean-Loup

    2014-11-01

    Metabolic engineering has succeeded in biosynthesis of numerous commodity or high value compounds. However, the choice of pathways and enzymes used for production was many times made ad hoc, or required expert knowledge of the specific biochemical reactions. In order to rationalize the process of engineering producer strains, we developed the computer-aided design (CAD) tool RetroPath that explores and enumerates metabolic pathways connecting the endogenous metabolites of a chassis cell to the target compound. To experimentally validate our tool, we constructed 12 top-ranked enzyme combinations producing the flavonoid pinocembrin, four of which displayed significant yields. Namely, our tool queried the enzymes found in metabolic databases based on their annotated and predicted activities. Next, it ranked pathways based on the predicted efficiency of the available enzymes, the toxicity of the intermediate metabolites and the calculated maximum product flux. To implement the top-ranking pathway, our procedure narrowed down a list of nine million possible enzyme combinations to 12, a number easily assembled and tested. One round of metabolic network optimization based on RetroPath output further increased pinocembrin titers 17-fold. In total, 12 out of the 13 enzymes tested in this work displayed a relative performance that was in accordance with its predicted score. These results validate the ranking function of our CAD tool, and open the way to its utilization in the biosynthesis of novel compounds. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis

    Directory of Open Access Journals (Sweden)

    Kiyan Shabestary

    2016-12-01

    Full Text Available Chemical and fuel production by photosynthetic cyanobacteria is a promising technology but to date has not reached competitive rates and titers. Genome-scale metabolic modeling can reveal limitations in cyanobacteria metabolism and guide genetic engineering strategies to increase chemical production. Here, we used constraint-based modeling and optimization algorithms on a genome-scale model of Synechocystis PCC6803 to find ways to improve productivity of fermentative, fatty-acid, and terpene-derived fuels. OptGene and MOMA were used to find heuristics for knockout strategies that could increase biofuel productivity. OptKnock was used to find a set of knockouts that led to coupling between biofuel and growth. Our results show that high productivity of fermentation or reversed beta-oxidation derived alcohols such as 1-butanol requires elimination of NADH sinks, while terpenes and fatty-acid based fuels require creating imbalances in intracellular ATP and NADPH production and consumption. The FBA-predicted productivities of these fuels are at least 10-fold higher than those reported so far in the literature. We also discuss the physiological and practical feasibility of implementing these knockouts. This work gives insight into how cyanobacteria could be engineered to reach competitive biofuel productivities. Keywords: Cyanobacteria, Modeling, Flux balance analysis, Biofuel, MOMA, OptFlux, OptKnock

  14. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Directory of Open Access Journals (Sweden)

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Keywords: Metabolic engineering, Fatty acid biosynthesis, Fatty acid derivatives, Saccharomyces cerevisiae

  15. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.

    Science.gov (United States)

    Ma, Wenlong; Liu, Yanfeng; Shin, Hyun-Dong; Li, Jianghua; Chen, Jian; Du, Guocheng; Liu, Long

    2018-02-01

    Bacillus subtilis is widely used as cell factories for the production of important industrial biochemicals. Although many studies have demonstrated the effects of organic acidic byproducts, such as acetate, on microbial fermentation, little is known about the effects of blocking the neutral byproduct overflow, such as acetoin, on bioproduction. In this study, we focused on the influences of modulating overflow metabolism on the production of N-acetyl-d-glucosamine (GlcNAc) in engineered B. subtilis. We found that acetoin overflow competes with GlcNAc production, and blocking acetoin overflow increased GlcNAc titer and yield by 1.38- and 1.39-fold, reaching 48.9 g/L and 0.32 g GlcNAc/g glucose, respectively. Further blocking acetate overflow inhibited cell growth and GlcNAc production may be induced by inhibiting glucose uptake. Taken together, our results show that blocking acetoin overflow is a promising strategy for enhancing GlcNAc production. The strategies developed in this work may be useful for engineering strains of B. subtilis for producing other important biochemicals. Copyright © 2017. Published by Elsevier Ltd.

  16. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.

    Science.gov (United States)

    Nguyen, Anh Duc; Hwang, In Yeub; Lee, Ok Kyung; Kim, Donghyuk; Kalyuzhnaya, Marina G; Mariyana, Rina; Hadiyati, Susila; Kim, Min Sik; Lee, Eun Yeol

    2018-04-16

    Methane is considered a next-generation feedstock, and methanotrophic cell-based biorefinery is attractive for production of a variety of high-value compounds from methane. In this work, we have metabolically engineered Methylomicrobium alcaliphilum 20Z for 2,3-butanediol (2,3-BDO) production from methane. The engineered strain 20Z/pBudK.p, harboring the 2,3-BDO synthesis gene cluster (budABC) from Klebsiella pneumoniae, accumulated 2,3-BDO in methane-fed shake flask cultures with a titer of 35.66 mg/L. Expression of the most efficient gene cluster was optimized using selection of promoters, translation initiation rates (TIR), and the combination of 2,3-BDO synthesis genes from different sources. A higher 2,3-BDO titer of 57.7 mg/L was measured in the 20Z/pNBM-Re strain with budA of K. pneumoniae and budB of Bacillus subtilis under the control of the Tac promoter. The genome-scale metabolic network reconstruction of M. alcaliphilum 20Z enabled in silico gene knockout predictions using an evolutionary programming method to couple growth and 2,3-BDO production. The ldh, ack, and mdh genes in M. alcaliphilum 20Z were identified as potential knockout targets. Pursuing these targets, a triple-mutant strain ∆ldh ∆ack ∆mdh was constructed, resulting in a further increase of the 2,3-BDO titer to 68.8 mg/L. The productivity of this optimized strain was then tested in a fed-batch stirred tank bioreactor, where final product concentrations of up to 86.2 mg/L with a yield of 0.0318 g-(2,3-BDO) /g-CH 4 were obtained under O 2 -limited conditions. This study first demonstrates the strategy of in silico simulation-guided metabolic engineering and represents a proof-of-concept for the production of value-added compounds using systematic approaches from engineered methanotrophs. Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  17. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.

    Science.gov (United States)

    Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R

    2015-07-01

    The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  18. De Novo Metabolic Engineering and the Promise of Synthetic DNA

    Science.gov (United States)

    Klein-Marcuschamer, Daniel; Yadav, Vikramaditya G.; Ghaderi, Adel; Stephanopoulos, Gregory N.

    The uncertain price and tight supply of crude oil and the ever-increasing demand for clean energy have prompted heightened attention to the development of sustainable fuel technologies that ensure continued economic development while maintaining stewardship of the environment. In the face of these enormous challenges, biomass has emerged as a viable alternative to petroleum for the production of energy, chemicals, and materials owing to its abundance, inexpensiveness, and carbon-neutrality. Moreover, the immense ease and efficiency of biological systems at converting biomass-derived feedstocks into fuels, chemicals, and materials has generated renewed interest in biotechnology as a replacement for traditional chemical processes. Aided by the ever-expanding repertoire of microbial genetics and plant biotechnology, improved understanding of gene regulation and cellular metabolism, and incessantly accumulating gene and protein data, scientists are now contemplating engineering microbial cell factories to produce fuels, chemical feedstocks, polymers and pharmaceuticals in an economically and environmentally sustainable way. This goal resonates with that of metabolic engineering - the improvement of cellular properties through the intelligent design, rational modification, or directed evolution of biochemical pathways, and arguably, metabolic engineering seems best positioned to achieve the concomittant goals of environmental stewardship and economic prolificity.

  19. Team- and project work in engineering practices

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2015-01-01

    in teamwork practices, and, thirdly, how team- and project work affect engineering professionalism and collaborative work practices. A practice theoretical framework informs the analysis. Teamwork is investigated as a phenomenon enacted through the sayings, doings and relatings of practitioners in landscapes......In this paper we investigate teamwork amongst professionals in engineering consultancy companies in order to discern how teamwork affects the collaboration and work practices of the professionals. The paper investigates how professional engineering practices are enacted in two engineering...... consultancy companies in Denmark where teamwork has been or is an ideal for organizing work. Through a practice-based lens the article sets out to investigate, firstly, how discourses about teamand project work affect engineering work practices, secondly, how technology-mediated management is reconciled...

  20. Recent applications of synthetic biology tools for yeast metabolic engineering

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together...... with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed...... synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead....

  1. Volatile science? Metabolic engineering of terpenoids in plants

    NARCIS (Netherlands)

    Aharoni, A.; Jongsma, M.A.; Bouwmeester, H.J.

    2005-01-01

    Terpenoids are important for plant survival and also possess biological properties that are beneficial to humans. Here, we describe the state of the art in terpenoid metabolic engineering, showing that significant progress has been made over the past few years. Subcellular targeting of enzymes has

  2. OptFlux: an open-source software platform for in silico metabolic engineering

    DEFF Research Database (Denmark)

    Rocha, I.; Maia, P.; Evangelista, P.

    2010-01-01

    to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. Results: OptFlux is an open-source and modular...... available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community. Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network...

  3. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  4. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  5. Alternative Substrate Metabolism in Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Michael Spagnuolo

    2018-05-01

    Full Text Available Recent advances in genetic engineering capabilities have enabled the development of oleochemical producing strains of Yarrowia lipolytica. Much of the metabolic engineering effort has focused on pathway engineering of the product using glucose as the feedstock; however, alternative substrates, including various other hexose and pentose sugars, glycerol, lipids, acetate, and less-refined carbon feedstocks, have not received the same attention. In this review, we discuss recent work leading to better utilization of alternative substrates. This review aims to provide a comprehensive understanding of the current state of knowledge for alternative substrate utilization, suggest potential pathways identified through homology in the absence of prior characterization, discuss recent work that either identifies, endogenous or cryptic metabolism, and describe metabolic engineering to improve alternative substrate utilization. Finally, we describe the critical questions and challenges that remain for engineering Y. lipolytica for better alternative substrate utilization.

  6. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Metabolic Engineering of Probiotic Saccharomyces boulardii

    OpenAIRE

    Liu, Jing-Jing; Kong, In Iok; Zhang, Guo-Chang; Jayakody, Lahiru N.; Kim, Heejin; Xia, Peng-Fei; Kwak, Suryang; Sung, Bong Hyun; Sohn, Jung-Hoon; Walukiewicz, Hanna E.; Rao, Christopher V.; Jin, Yong-Su

    2016-01-01

    Saccharomyces boulardii is a probiotic yeast that has been used for promoting gut health as well as preventing diarrheal diseases. This yeast not only exhibits beneficial phenotypes for gut health but also can stay longer in the gut than Saccharomyces cerevisiae. Therefore, S. boulardii is an attractive host for metabolic engineering to produce biomolecules of interest in the gut. However, the lack of auxotrophic strains with defined genetic backgrounds has hampered the use of this strain for...

  8. OptFlux: an open-source software platform for in silico metabolic engineering.

    Science.gov (United States)

    Rocha, Isabel; Maia, Paulo; Evangelista, Pedro; Vilaça, Paulo; Soares, Simão; Pinto, José P; Nielsen, Jens; Patil, Kiran R; Ferreira, Eugénio C; Rocha, Miguel

    2010-04-19

    Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications. OptFlux is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes. OptFlux also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms. The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. OptFlux has a visualization module that allows the analysis of the model structure that is compatible with the layout information of Cell Designer, allowing the superimposition of simulation results with the model graph. The OptFlux software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization

  9. Metabolic engineering of volatile isoprenoids in plants and microbes.

    Science.gov (United States)

    Vickers, Claudia E; Bongers, Mareike; Liu, Qing; Delatte, Thierry; Bouwmeester, Harro

    2014-08-01

    The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids. © 2014 John Wiley & Sons Ltd.

  10. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...... and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals......, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable...

  11. Metabolic engineering of microalgal based biofuel production: prospects and challenges

    Directory of Open Access Journals (Sweden)

    Chiranjib eBanerjee

    2016-03-01

    Full Text Available The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs, which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e. Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  12. Team and Project Work in Engineering Practices

    Directory of Open Access Journals (Sweden)

    Anders Buch

    2015-11-01

    Full Text Available In this article, we investigate teamwork amongst professionals in engineering consultancy companies in order to discern how teamwork affects the collaboration and work practices of the professionals. The article investigates how professional engineering practices are enacted in two engineering consultancy companies in Denmark where teamwork has been or is an ideal for organizing work. Through a practice-based lens, the article sets out to investigate, firstly, how discourses about team and project work affect engineering work practices; secondly, how technologymediated management is reconciled in teamwork practices; and thirdly, how team and project work affect engineering professionalism and collaborative work practices. A practice theoretical framework informs the analysis. Teamwork is investigated as a phenomenon enacted through the sayings, doings and relatings of practitioners in landscapes of practices and the interconnectedness of the practices is traced through the setup of specific ecologies in the sites.

  13. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    DEFF Research Database (Denmark)

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial...... hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ‘drop-in’ biofuels. Some microorganisms have the ability to biosynthesize alkanes and alkenes naturally, but their production level...... is extremely low. Therefore, there have been various attempts to recruit other microbial cell factories for production of alkanes and alkenes by applying metabolic engineering strategies. Here we review different pathways and involved enzymes for alkane and alkene production and discuss bottlenecks...

  14. SBOLme: a Repository of SBOL Parts for Metabolic Engineering

    KAUST Repository

    Kuwahara, Hiroyuki; Cui, Xuefeng; Umarov, Ramzan; Grunberg, Raik; Myers, Chris J.; Gao, Xin

    2017-01-01

    The Synthetic Biology Open Language (SBOL) is a community-driven open language to promote standardization in synthetic biology. To support the use of SBOL in metabolic engineering, we developed SBOLme, the first open-access repository of SBOL 2

  15. Engineering subcultures and working environment in Danish enterprises

    DEFF Research Database (Denmark)

    Broberg, Ole

    2000-01-01

    Engineers' role in the management of working environment has been studied in 20 Danish enterprises based on questionnaires to 680 engineers. In general, engineers are not aware that they may influence the working environment of other people through their decisions. It is suggested that engineering...... subcultures be examined in order to change engineers' attitudes toward the working environment of workers and users....

  16. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering.

    Science.gov (United States)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei; Lee, Sang Yup

    2015-11-15

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and producing novel non-natural chemicals. In this paper, we review the tools and strategies of systems metabolic engineering employed for the development of microorganisms for the production of various industrially useful chemicals belonging to fuels, building block chemicals, and specialty chemicals, in particular focusing on those reported in the last three years. It was aimed at providing the current landscape of systems metabolic engineering and suggesting directions to address future challenges towards successfully establishing processes for the bio-based production of fuels and chemicals from renewable resources. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Metabolic engineering of deinococcus radiodurans based on computational analysis and functional genomics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Jeremy, S.

    2005-02-02

    The objective of our work is to develop novel computational tools to analyze the Deinococcus radiodurans DNA repair pathways and the influence of the metabolic flux distribution on DNA repair. These tools will be applied to provide insights for metabolic engineering of strains capable of growing under nutrient poor conditions similar to those found in mixed contaminant sites of interest to the DOE. Over the entire grant period we accomplished all our specific aims and were also able to pursue new directions of research. Below, I will list the major accomplishments over the previous 3 years. (1) Performed Monte Carlo Simulations of RecA Mediated Pairing of Homologous DNA Molecules. (2) Developed a statistical approach to study the gene expression data from D. radiodurans. We have been studying the data from John Batista's. (3) Developed an expression profiling technology to generate very accurate and precise expression data. We followed up on results from John Batista's group using this approach. (4) Developed and put online a database for metabolic reconstructions. (5) We have developed and applied new Monte Carlo algorithms that are optimized for studying biological systems. (6) We developed a flux balance model for the D. radiodurans metabolic network

  18. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  19. Quantifying the metabolic capabilities of engineered Zymomonas mobilis using linear programming analysis

    Directory of Open Access Journals (Sweden)

    Tsantili Ivi C

    2007-03-01

    Full Text Available Abstract Background The need for discovery of alternative, renewable, environmentally friendly energy sources and the development of cost-efficient, "clean" methods for their conversion into higher fuels becomes imperative. Ethanol, whose significance as fuel has dramatically increased in the last decade, can be produced from hexoses and pentoses through microbial fermentation. Importantly, plant biomass, if appropriately and effectively decomposed, is a potential inexpensive and highly renewable source of the hexose and pentose mixture. Recently, the engineered (to also catabolize pentoses anaerobic bacterium Zymomonas mobilis has been widely discussed among the most promising microorganisms for the microbial production of ethanol fuel. However, Z. mobilis genome having been fully sequenced in 2005, there is still a small number of published studies of its in vivo physiology and limited use of the metabolic engineering experimental and computational toolboxes to understand its metabolic pathway interconnectivity and regulation towards the optimization of its hexose and pentose fermentation into ethanol. Results In this paper, we reconstructed the metabolic network of the engineered Z. mobilis to a level that it could be modelled using the metabolic engineering methodologies. We then used linear programming (LP analysis and identified the Z. mobilis metabolic boundaries with respect to various biological objectives, these boundaries being determined only by Z. mobilis network's stoichiometric connectivity. This study revealed the essential for bacterial growth reactions and elucidated the association between the metabolic pathways, especially regarding main product and byproduct formation. More specifically, the study indicated that ethanol and biomass production depend directly on anaerobic respiration stoichiometry and activity. Thus, enhanced understanding and improved means for analyzing anaerobic respiration and redox potential in vivo are

  20. The Need for Integrated Approaches in Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    2016-08-15

    This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must b e considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  1. Engineering of metabolic pathways by artificial enzyme channels

    Directory of Open Access Journals (Sweden)

    Marlene ePröschel

    2015-10-01

    Full Text Available Application of industrial enzymes for production of valuable chemical compounds has greatly benefited from recent developments in Systems and Synthetic Biology. Both, in vivo and in vitro systems have been established, allowing conversion of simple into complex compounds. Metabolic engineering in living cells needs to be balanced which is achieved by controlling gene expression levels, translation, scaffolding, compartmentation and flux control. In vitro applications are often hampered by limited protein stability/half-life and insufficient rates of substrate conversion. To improve stability and catalytic activity, proteins are post-translationally modified and arranged in artificial metabolic channels. Within the review article we will first discuss the supramolecular organization of enzymes in living systems and secondly summarize current and future approaches to design artificial metabolic channels by additive manufacturing for the efficient production of desired products.

  2. Review of Microfluidic Photobioreactor Technology for Metabolic Engineering and Synthetic Biology of Cyanobacteria and Microalgae

    Directory of Open Access Journals (Sweden)

    Ya-Tang Yang

    2016-10-01

    Full Text Available One goal of metabolic engineering and synthetic biology for cyanobacteria and microalgae is to engineer strains that can optimally produce biofuels and commodity chemicals. However, the current workflow is slow and labor intensive with respect to assembly of genetic parts and characterization of production yields because of the slow growth rates of these organisms. Here, we review recent progress in the microfluidic photobioreactors and identify opportunities and unmet needs in metabolic engineering and synthetic biology. Because of the unprecedented experimental resolution down to the single cell level, long-term real-time monitoring capability, and high throughput with low cost, microfluidic photobioreactor technology will be an indispensible tool to speed up the development process, advance fundamental knowledge, and realize the full potential of metabolic engineering and synthetic biology for cyanobacteria and microalgae.

  3. Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols

    DEFF Research Database (Denmark)

    Ferreira, Raphael; Teixeira, Paulo Goncalves; Gossing, Michael

    2018-01-01

    Triacylglycerols (TAGs) are valuable versatile compounds that can be used as metabolites for nutrition and health, as well as feedstocks for biofuel production. Although Saccharomyces cerevisiae is the favored microbial cell factory for industrial production of biochemicals, it does not produce...... large amounts of lipids and TAGs comprise only ~1% of its cell dry weight. Here, we engineered S. cerevisiae to reorient its metabolism for overproduction of TAGs, by regulating lipid droplet associated-proteins involved in TAG synthesis and hydrolysis. We implemented a push-and-pull strategy...... PXA1 led to accumulation of  254 mg∙gCDW−1. The TAG levels achieved here are the highest titer reported in S. cerevisiae, reaching 27.4% of the maximum theoretical yield in minimal medium with 2% glucose. This work shows the potential of using an industrially established and robust yeast species...

  4. Transcriptome data modeling for targeted plant metabolic engineering.

    Science.gov (United States)

    Yonekura-Sakakibara, Keiko; Fukushima, Atsushi; Saito, Kazuki

    2013-04-01

    The massive data generated by omics technologies require the power of bioinformatics, especially network analysis, for data mining and doing data-driven biology. Gene coexpression analysis, a network approach based on comprehensive gene expression data using microarrays, is becoming a standard tool for predicting gene function and elucidating the relationship between metabolic pathways. Differential and comparative gene coexpression analyses suggest a change in coexpression relationships and regulators controlling common and/or specific biological processes. In conjunction with the newly emerging genome editing technology, network analysis integrated with other omics data should pave the way for robust and practical plant metabolic engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Metabolic engineering of β-carotene in orange fruit increases its in vivo antioxidant properties.

    Science.gov (United States)

    Pons, Elsa; Alquézar, Berta; Rodríguez, Ana; Martorell, Patricia; Genovés, Salvador; Ramón, Daniel; Rodrigo, María Jesús; Zacarías, Lorenzo; Peña, Leandro

    2014-01-01

    Orange is a major crop and an important source of health-promoting bioactive compounds. Increasing the levels of specific antioxidants in orange fruit through metabolic engineering could strengthen the fruit's health benefits. In this work, we have afforded enhancing the β-carotene content of orange fruit through blocking by RNA interference the expression of an endogenous β-carotene hydroxylase gene (Csβ-CHX) that is involved in the conversion of β-carotene into xanthophylls. Additionally, we have simultaneously overexpressed a key regulator gene of flowering transition, the FLOWERING LOCUS T from sweet orange (CsFT), in the transgenic juvenile plants, which allowed us to obtain fruit in an extremely short period of time. Silencing the Csβ-CHX gene resulted in oranges with a deep yellow ('golden') phenotype and significant increases (up to 36-fold) in β-carotene content in the pulp. The capacity of β-carotene-enriched oranges for protection against oxidative stress in vivo was assessed using Caenorhabditis elegans as experimental animal model. Golden oranges induced a 20% higher antioxidant effect than the isogenic control. This is the first example of the successful metabolic engineering of the β-carotene content (or the content of any other phytonutrient) in oranges and demonstrates the potential of genetic engineering for the nutritional enhancement of fruit tree crops. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Quality of Work and Team- and Project Based Work Practices in Engineering

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2015-01-01

    It is the aim of this paper to investigate teamwork amongst professionals in engineering consultancy companies in order to discern how teamwork affects the collaboration and work practices of the professionals and eventually their quality of work. The paper investigates how professional engineering...... ractices are enacted in two engineering consultancy companies in Denmark where ‘teamwork’ has been or is an ideal for organizing work....

  7. Current progress of targetron technology: development, improvement and application in metabolic engineering.

    Science.gov (United States)

    Liu, Ya-Jun; Zhang, Jie; Cui, Gu-Zhen; Cui, Qiu

    2015-06-01

    Targetrons are mobile group II introns that can recognize their DNA target sites by base-pairing RNA-DNA interactions with the aid of site-specific binding reverse transcriptases. Targetron technology stands out from recently developed gene targeting methods because of the flexibility, feasibility, and efficiency, and is particularly suitable for the genetic engineering of difficult microorganisms, including cellulolytic bacteria that are considered promising candidates for biomass conversion via consolidated bioprocessing. Along with the development of the thermotargetron method for thermophiles, targetron technology becomes increasingly important for the metabolic engineering of industrial microorganisms aiming at biofuel/chemical production. To summarize the current progress of targetron technology and provide new insights on the use of the technology, this paper reviews the retrohoming mechanisms of both mesophilic and thermophilic targetron methods based on various group II introns, investigates the improvement of targetron tools for high target efficiency and specificity, and discusses the current applications in the metabolic engineering for bacterial producers. Although there are still intellectual property and technical restrictions in targetron applications, we propose that targetron technology will contribute to both biochemistry research and the metabolic engineering for industrial productions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production

    OpenAIRE

    Lai, Martin C.; Lan, Ethan I.

    2015-01-01

    Engineering cyanobacteria into photosynthetic microbial cell factories for the production of biochemicals and biofuels is a promising approach toward sustainability. Cyanobacteria naturally grow on light and carbon dioxide, bypassing the need of fermentable plant biomass and arable land. By tapping into the central metabolism and rerouting carbon flux towards desirable compound production, cyanobacteria are engineered to directly convert CO2 into various chemicals. This review discusses the d...

  9. Mitigating health risks associated with alcoholic beverages through metabolic engineering.

    Science.gov (United States)

    Jayakody, Lahiru N; Lane, Stephan; Kim, Heejin; Jin, Yong-Su

    2016-02-01

    Epidemiological studies have established a positive relationship between the occurrence of cancer and consumption of alcoholic beverages. Metabolic engineering of brewing yeast to reduce potential carcinogenic compounds in alcoholic beverage is technically feasible as well as economically promising. This review presents the mechanisms of formation of potentially carcinogenic components in alcoholic beverages, such as formaldehyde, acetaldehyde, ethyl carbamate, acrylamide, and heavy metals, and introduces effective genetic perturbations to minimize the concentrations of these harmful components. As precise and effective genome editing tools for polyploid yeast are now available, we envision that yeast metabolic engineering might open up new research directions for improving brewing yeast in order to ensure product safety as well as to increase overall quality of alcoholic beverages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ecological Engineering and Civil Engineering works

    NARCIS (Netherlands)

    Van Bohemen, H.D.

    2004-01-01

    This thesis provides a survey of the research results of the relationship between on the one hand the construction, management and maintenance of civil engineering works, and on the other hand the environment, nature and landscape, with the main focus on motorways and coastal protection. The growing

  11. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy.

    Science.gov (United States)

    Liu, Han; Fang, Guochen; Wu, Hui; Li, Zhimin; Ye, Qin

    2018-05-01

    L-cysteine is an amino acid with important physiological functions and has a wide range of applications in medicine, food, animal feed, and cosmetics industry. In this study, the L-cysteine synthesis in Escherichia coliEscherichia coli is divided into four modules: the transport module, sulfur module, precursor module, and degradation module. The engineered strain LH03 (overexpression of the feedback-insensitive cysE and the exporter ydeD in JM109) accumulated 45.8 mg L -1 of L-cysteine in 48 hr with yield of 0.4% g/g glucose. Further modifications of strains and culture conditions which based on the rational metabolic engineering and modular strategy improved the L-cysteine biosynthesis significantly. The engineered strain LH06 (with additional overexpression of serA, serC, and serB and double mutant of tnaA and sdaA in LH03) produced 620.9 mg L -1 of L-cysteine with yield of 6.0% g/g glucose, which increased the production by 12 times and the yield by 14 times more than those of LH03 in the original condition. In fed-batch fermentation performed in a 5-L reactor, the concentration of L-cysteine achieved 5.1 g L -1 in 32 hr. This work demonstrates that the combination of rational metabolic engineering and module strategy is a promising approach for increasing the L-cysteine production in E. coli. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. CIVIL ENGINEERS' ROLES IN PUBLIC WORKS

    Science.gov (United States)

    Murata, Teruaki

    Recently, the public interests are becoming high in the way of executing public works and the future direction of infrastructure development, which raises nation-wide discussion on these issues. How should we make our country's growth strategy for sustainable development? How should we realize the grand design of infrastructure needed for the implementation of such a strategy? It is obvious that further discussions are needed for these challenging questions. With an aim to promote such discussions, this paper reviews the history of public works and the professional practices (or accomplishments) of our great civil engineers, and discusses the future of public works and the roles of civil engineers based on their origin. Further, in this paper, the author, as the chairman of the Public Works Committee of Japan Civil Engineering Contractors Association, introduces the Association's proposal of "realization of an attractive construction industry." However, for its realization, sustainable institutional arrangements under social consensus are indispensable. Also, individual engineer must establish his/her own identity based on sense of social ethics. It is the author's hope that, through these journals, the professional practices of civil engineers will be widely known to the public with objective logics and discussed to achieve social consensus.

  13. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum

    Science.gov (United States)

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste. PMID:23868689

  14. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production.

    Science.gov (United States)

    Agren, Rasmus; Otero, José Manuel; Nielsen, Jens

    2013-07-01

    In this work, we describe the application of a genome-scale metabolic model and flux balance analysis for the prediction of succinic acid overproduction strategies in Saccharomyces cerevisiae. The top three single gene deletion strategies, Δmdh1, Δoac1, and Δdic1, were tested using knock-out strains cultivated anaerobically on glucose, coupled with physiological and DNA microarray characterization. While Δmdh1 and Δoac1 strains failed to produce succinate, Δdic1 produced 0.02 C-mol/C-mol glucose, in close agreement with model predictions (0.03 C-mol/C-mol glucose). Transcriptional profiling suggests that succinate formation is coupled to mitochondrial redox balancing, and more specifically, reductive TCA cycle activity. While far from industrial titers, this proof-of-concept suggests that in silico predictions coupled with experimental validation can be used to identify novel and non-intuitive metabolic engineering strategies.

  15. Simulation Modeling to Compare High-Throughput, Low-Iteration Optimization Strategies for Metabolic Engineering.

    Science.gov (United States)

    Heinsch, Stephen C; Das, Siba R; Smanski, Michael J

    2018-01-01

    Increasing the final titer of a multi-gene metabolic pathway can be viewed as a multivariate optimization problem. While numerous multivariate optimization algorithms exist, few are specifically designed to accommodate the constraints posed by genetic engineering workflows. We present a strategy for optimizing expression levels across an arbitrary number of genes that requires few design-build-test iterations. We compare the performance of several optimization algorithms on a series of simulated expression landscapes. We show that optimal experimental design parameters depend on the degree of landscape ruggedness. This work provides a theoretical framework for designing and executing numerical optimization on multi-gene systems.

  16. Engineering the spatial organization of metabolic pathways

    DEFF Research Database (Denmark)

    Albertsen, Line; Maury, Jerome; Bach, Lars Stougaard

    One of the goals of metabolic engineering is to optimize the production of valuable metabolites in cell factories. In this context, modulating the gene expression and activity of enzymes are tools that have been extensively used. Another approach that is gaining interest is the engineering...... of the spatial organization of biosynthetic pathways. Several natural systems for ensuring optimal spatial arrangement of biosynthetic enzymes exist. Sequentially acting enzymes can for example be positioned in close proximity by attachment to cellular structures, up-concentration in membrane enclosed organelles...... or assembly into large complexes. The vision is that by positioning sequentially acting enzymes in close proximity, the cell can accelerate reaction rates and thereby prevent loss of intermediates through diffusion, degradation or competing pathways. The production of valuable metabolites in cell factories...

  17. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    NARCIS (Netherlands)

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired

  18. Metabolic engineering of Candida glabrata for diacetyl production.

    Directory of Open Access Journals (Sweden)

    Xiang Gao

    Full Text Available In this study, Candida glabrata, an efficient pyruvate-producing strain, was metabolically engineered for the production of the food ingredient diacetyl. A diacetyl biosynthetic pathway was reconstructed based on genetic modifications and medium optimization. The former included (i channeling carbon flux into the diacetyl biosynthetic pathway by amplification of acetolactate synthase, (ii elimination of the branched pathway of α-acetolactate by deleting the ILV5 gene, and (iii restriction of diacetyl degradation by deleting the BDH gene. The resultant strain showed an almost 1∶1 co-production of α-acetolactate and diacetyl (0.95 g L(-1. Furthermore, addition of Fe3+ to the medium enhanced the conversion of α-acetolactate to diacetyl and resulted in a two-fold increase in diacetyl production (2.1 g L(-1. In addition, increased carbon flux was further channeled into diacetyl biosynthetic pathway and a titer of 4.7 g L(-1 of diacetyl was achieved by altering the vitamin level in the flask culture. Thus, this study illustrates that C. glabrata could be tailored as an attractive platform for enhanced biosynthesis of beneficial products from pyruvate by metabolic engineering strategies.

  19. Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces cerevisiae.

    Science.gov (United States)

    Lyu, Xiaomei; Ng, Kuan Rei; Lee, Jie Lin; Mark, Rita; Chen, Wei Ning

    2017-08-09

    Flavonoids are an important class of plant polyphenols that possess a variety of health benefits. In this work, S. cerevisiae was metabolically engineered to produce the flavonoid naringenin, using tyrosine as the precursor. Our strategy to improve naringenin production comprised three modules. In module 1, we employed a modified GAL system to overexpress the genes of the naringenin biosynthesis pathway and investigated their synergistic action. In module 2, we simultaneously up-regulated acetyl-CoA production and down-regulated fatty acid biosynthesis in order to increase the precursor supply, malonyl-CoA. In module 3, we engineered the tyrosine biosynthetic pathway to eliminate the feedback inhibition of tyrosine and also down-regulated competing pathways. It was found that modules 1 and 3 played important roles in improving naringenin production. We succeeded in producing up to ∼90 mg/L of naringenin in our final strain, which is a 20-fold increase as compared to the parental strain.

  20. Stirling engine with air working fluid

    Science.gov (United States)

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  1. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane.

    Science.gov (United States)

    Kind, Stefanie; Jeong, Weol Kyu; Schröder, Hartwig; Wittmann, Christoph

    2010-07-01

    In the present work the Gram-positive bacterium Corynebacterium glutamicum was engineered into an efficient, tailor-made production strain for diaminopentane (cadaverine), a highly attractive building block for bio-based polyamides. The engineering comprised expression of lysine decarboxylase (ldcC) from Escherichia coli, catalyzing the conversion of lysine into diaminopentane, and systems-wide metabolic engineering of central supporting pathways. Substantially re-designing the metabolism yielded superior strains with desirable properties such as (i) the release from unwanted feedback regulation at the level of aspartokinase and pyruvate carboxylase by introducing the point mutations lysC311 and pycA458, (ii) an optimized supply of the key precursor oxaloacetate by amplifying the anaplerotic enzyme, pyruvate carboxylase, and deleting phosphoenolpyruvate carboxykinase which otherwise removes oxaloacetate, (iii) enhanced biosynthetic flux via combined amplification of aspartokinase, dihydrodipicolinate reductase, diaminopimelate dehydrogenase and diaminopimelate decarboxylase, and (iv) attenuated flux into the threonine pathway competing with production by the leaky mutation hom59 in the homoserine dehydrogenase gene. Lysine decarboxylase proved to be a bottleneck for efficient production, since its in vitro activity and in vivo flux were closely correlated. To achieve an optimal strain having only stable genomic modifications, the combination of the strong constitutive C. glutamicum tuf promoter and optimized codon usage allowed efficient genome-based ldcC expression and resulted in a high diaminopentane yield of 200 mmol mol(-1). By supplementing the medium with 1 mgL(-1) pyridoxal, the cofactor of lysine decarboxylase, the yield was increased to 300 mmol mol(-1). In the production strain obtained, lysine secretion was almost completely abolished. Metabolic analysis, however, revealed substantial formation of an as yet unknown by-product. It was identified as an

  2. Relationship Between Long Working Hours and Metabolic Syndrome Among Korean Workers.

    Science.gov (United States)

    Yu, Jungok

    2017-03-01

    This study investigated gender differences in the relationship between long working hours and metabolic syndrome. Data based on the Sixth National Health and Nutrition Examination Survey (2014) pertaining to a total of 1,145 paid workers were analyzed. Working hours were divided into three groups (40-51 hours/week, 52-59 hours/week, ≥ 60 hours/week). The relationship between working hours and metabolic syndrome was then analyzed after adjusting for general and occupational characteristics, using a multiple logistic regression model. Working 40-51 hours per week was associated with the lowest metabolic syndrome among female workers (11.2%), whereas it was associated with the highest metabolic syndrome among male workers (28.0%). After adjusting for general and occupational characteristics, female workers working≥60 hours per week showed odds ratios of 2.21 [95% confidence interval (1.07, 4.57)], compared to those who worked 40-51 hours per week. However, no clear association between long working hours and metabolic syndrome was found among male workers. The results suggest that working long hours, especially≥60 hours per week, is related to metabolic syndrome among female Korean workers. Copyright © 2017. Published by Elsevier B.V.

  3. Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seohyoung; Seol, Eunhee; Park, Sunghoon [Department of Chemical and Biochemical Engineering, Pusan National University, Busan 609-735 (Korea); Oh, You-Kwan [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-543 (Korea); Wang, G.Y. [Department of Oceanography, University of Hawaii at Manoa Honolulu, HI 96822 (United States)

    2009-09-15

    Escherichia coli can produce H{sub 2} from glucose via formate hydrogen lyase (FHL). In order to improve the H{sub 2} production rate and yield, metabolically engineered E. coli strains, which included pathway alterations in their H{sub 2} production and central carbon metabolism, were developed and characterized by batch experiments and metabolic flux analysis. Deletion of hycA, a negative regulator for FHL, resulted in twofold increase of FHL activity. Deletion of two uptake hydrogenases (1 (hya) and hydrogenase 2 (hyb)) increased H{sub 2} production yield from 1.20 mol/mol glucose to 1.48 mol/mol glucose. Deletion of lactate dehydrogenase (ldhA) and fumarate reductase (frdAB) further improved the H{sub 2} yield; 1.80 mol/mol glucose under high H{sub 2} pressure or 2.11 mol/mol glucose under reduced H{sub 2} pressure. Several batch experiments at varying concentrations of glucose (2.5-10 g/L) and yeast extract (0.3 or 3.0 g/L) were conducted for the strain containing all these genetic alternations, and their carbon and energy balances were analyzed. The metabolic flux analysis revealed that deletion of ldhA and frdAB directed most of the carbons from glucose to the glycolytic pathway leading to H{sub 2} production by FHL, not to the pentose phosphate pathway. (author)

  4. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.

    Science.gov (United States)

    Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian

    2017-09-01

    Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  5. Shift Work Is Associated with Metabolic Syndrome in Young Female Korean Workers.

    Science.gov (United States)

    Yu, Kyoung Hwa; Yi, Yu Hyeon; Kim, Yun Jin; Cho, Byung Mann; Lee, Sang Yeoup; Lee, Jeong Gyu; Jeong, Dong Wook; Ji, So Yeon

    2017-03-01

    Shift work is associated with health problems, including metabolic syndrome. This study investigated the association between shift work and metabolic syndrome in young workers. A total of 3,317 subjects aged 20-40 years enrolled in the 2011-2012 Korean National Health and Nutrition Examination Survey were divided into shift and day workers. We conducted a cross-sectional study and calculated odds ratios using multivariate logistic regression analysis in order to examine the association between shift work and metabolic syndrome. The prevalence of metabolic syndrome was 14.3% and 7.1% among male and female shift workers, respectively. After adjusting for confounding factors, shift work was associated with metabolic syndrome in female workers (odds ratio, 2.53; 95% confidence interval, 1.12 to 5.70). Shift work was associated with metabolic syndrome in young women. Timely efforts are necessary to manage metabolic syndrome in the workplace.

  6. Metabolic Engineering of Microorganisms for the Production of Higher Alcohols

    Science.gov (United States)

    Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin

    2014-01-01

    ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323

  7. Non-photosynthetic plastids as hosts for metabolic engineering

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Behrendorff, James Bruce Yarnton H; Nielsen, Agnieszka Janina Zygadlo

    2018-01-01

    Using plants as hosts for production of complex, high-value compounds and therapeutic proteins has gained increasing momentum over the past decade. Recent advances in metabolic engineering techniques using synthetic biology have set the stage for production yields to become economically attractive......, but more refined design strategies are required to increase product yields without compromising development and growth of the host system. The ability of plant cells to differentiate into various tissues in combination with a high level of cellular compartmentalization represents so far the most...... in green tissues, have proven to be suitable for high yield protein and bio-compound production. Unfortunately, chloroplast manipulation often affects photosynthetic efficiency and therefore plant fitness. In this respect, plastids of non-photosynthetic tissues, which have focused metabolisms for synthesis...

  8. Metabollic Engineering of Saccharomyces Cereviae a,omi acid metabolism for production of products of industrial interest

    DEFF Research Database (Denmark)

    Chen, Xiao

    -based processes. This study has focused on metabolic engineering of the amino acid metabolism in S. cerevisiae for production of two types of chemicals of industrial interest. The first chemical is δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine (LLD-ACV). ACV belongs to non-ribosomal peptides (NRPs), which......Saccharomyces cerevisiae is widely used in microbial production of chemicals, metabolites and proteins, mainly because genetic manipulation of S. cerevisiae is relatively easy and experiences from its wide application in the existing industrial fermentations directly benefit new S. cerevisiae...

  9. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  10. From pathways to genomes and beyond. The metabolic engineering toolbox and its place in biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Leqian; Reed, Ben; Alper, Hal [Texas Univ., Austin, TX (United States). Dept. of Chemical Engineering

    2011-07-01

    Concerns about the availability of petroleum-derived fuels and chemicals have led to the exploration of metabolically engineered organisms as novel hosts for biofuels and chemicals production. However, the complexity inherent in metabolic and regulatory networks makes this undertaking a complex task. To address these limitations, metabolic engineering has adapted a wide-variety of tools for altering phenotypes. In this review, we will highlight traditional and recent metabolic engineering tools for optimizing cells including pathway-based, global, and genomic-enabled approaches. Specifically, we describe these tools as well as provide demonstrations of their effectiveness in optimizing biofuels production. However, each of these tools provides stepping stones towards the grand goal of biofuels production. Thus, developing methods for large-scale cellular optimization and integrative approaches are invaluable for further cell optimization. This review highlights the challenges that still must be met to accomplish this goal. (orig.)

  11. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  12. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2013-01-01

    trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Metabolic engineering is moving from traditional methods...... for the production of hydrolytic enzymes, biofuels and chemicals from biomass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  13. Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food.

    Science.gov (United States)

    Giovinazzo, Giovanna; Ingrosso, Ilaria; Paradiso, Annalisa; De Gara, Laura; Santino, Angelo

    2012-09-01

    The plant polyphenol trans-resveratrol (3, 5, 4'-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.

  14. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2013-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used for p...... production. The involvement of directed metabolic engineering through the integration of tools from genetic engineering, systems biology and mathematical modeling, is also discussed....... by yeast are human serum albumin, hepatitis vaccines and virus like particles used for vaccination against human papillomavirus. Here is given a brief overview of biopharmaceutical production by yeast and it is discussed how the secretory pathway can be engineered to ensure more efficient protein...

  15. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications

    Directory of Open Access Journals (Sweden)

    Ann-Kathrin Löbs

    2017-09-01

    Full Text Available Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisiae is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  16. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms

    OpenAIRE

    Kang, Min Kyoung; Nielsen, Jens

    2017-01-01

    Advancement in metabolic engineering of microorganisms has enabled bio-based production of a range of chemicals, and such engineered microorganism can be used for sustainable production leading to reduced carbon dioxide emission there. One area that has attained much interest is microbial hydrocarbon biosynthesis, and in particular, alkanes and alkenes are important high-value chemicals as they can be utilized for a broad range of industrial purposes as well as ?drop-in? biofuels. Some microo...

  17. Metabolic engineering of Escherichia coli for the production of riboflavin

    Science.gov (United States)

    2014-01-01

    Background Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. Results The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37°C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. Conclusions The engineered strain RF05S-M40 has the highest yield among all

  18. Metabolic engineering of Escherichia coli for the production of riboflavin.

    Science.gov (United States)

    Lin, Zhenquan; Xu, Zhibo; Li, Yifan; Wang, Zhiwen; Chen, Tao; Zhao, Xueming

    2014-07-16

    Riboflavin (vitamin B2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37°C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. The engineered strain RF05S-M40 has the highest yield among all reported riboflavin production

  19. Metabolic engineering of Ustilago trichophora TZ1 for improved malic acid production

    Directory of Open Access Journals (Sweden)

    Thiemo Zambanini

    2017-06-01

    These results open up a wide range of possibilities for further optimization, especially combinatorial metabolic engineering to increase the flux from pyruvate to malic acid and to reduce by-product formation.

  20. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates

    NARCIS (Netherlands)

    Poblete-Castro, I.; Binger, D.; Rodrigues, A.; Becker, J.; Martins Dos Santos, V.A.P.; Wittmann, C.

    2013-01-01

    Here, we present systems metabolic engineering driven by in-silico modeling to tailor Pseudomonas putida for synthesis of medium chain length PHAs on glucose. Using physiological properties of the parent wild type as constraints, elementary flux mode analysis of a large-scale model of the metabolism

  1. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.

    Science.gov (United States)

    Rodriguez, Alberto; Martínez, Juan A; Millard, Pierre; Gosset, Guillermo; Portais, Jean-Charles; Létisse, Fabien; Bolivar, Francisco

    2017-06-01

    Metabolic engineering strategies applied over the last two decades to produce shikimate (SA) in Escherichia coli have resulted in a battery of strains bearing many expression systems. However, the effects that these systems have on the host physiology and how they impact the production of SA are still not well understood. In this work we utilized an engineered E. coli strain to determine the consequences of carrying a vector that promotes SA production from glucose with a high-yield but that is also expected to impose a significant cellular burden. Kinetic comparisons in fermentors showed that instead of exerting a negative effect, the sole presence of the plasmid increased glucose consumption without diminishing the growth rate. By constitutively expressing a biosynthetic operon from this vector, the more active glycolytic metabolism was exploited to redirect intermediates toward the production of SA, which further increased the glucose consumption rate and avoided excess acetate production. Fluxomics and metabolomics experiments revealed a global remodeling of the carbon and energy metabolism in the production strain, where the increased SA production reduced the carbon available for oxidative and fermentative pathways. Moreover, the results showed that the production of SA relies on a specific setup of the pentose phosphate pathway, where both its oxidative and non-oxidative branches are strongly activated to supply erythrose-4-phosphate and balance the NADPH requirements. This work improves our understanding of the metabolic reorganization observed in E. coli in response to the plasmid-based expression of the SA biosynthetic pathway. Biotechnol. Bioeng. 2017;114: 1319-1330. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Improvement of Engineering Work Efficiency through System Integration

    International Nuclear Information System (INIS)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo

    2016-01-01

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently

  3. Improvement of Engineering Work Efficiency through System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently.

  4. Multimedia Category Preferences of Working Engineers

    Science.gov (United States)

    Baukal, Charles E., Jr.; Ausburn, Lynna J.

    2016-01-01

    Many have argued for the importance of continuing engineering education (CEE), but relatively few recommendations were found in the literature for how to use multimedia technologies to deliver it most effectively. The study reported here addressed this gap by investigating the multimedia category preferences of working engineers. Four categories…

  5. Metabolic engineering of free-energy (ATP) conserving reactions in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    De Kok, S.

    2012-01-01

    Metabolic engineering – the improvement of cellular activities by manipulation of enzymatic, transport and regulatory functions of the cell – has enabled the industrial production of a wide variety of biological molecules from renewable resources. Microbial production of fuels and chemicals thereby

  6. Yeast metabolic engineering--targeting sterol metabolism and terpenoid formation.

    Science.gov (United States)

    Wriessnegger, Tamara; Pichler, Harald

    2013-07-01

    Terpenoids comprise various structures conferring versatile functions to eukaryotes, for example in the form of prenyl-anchors they attach proteins to membranes. The physiology of eukaryotic membranes is fine-tuned by another terpenoid class, namely sterols. Evidence is accumulating that numerous membrane proteins require specific sterol structural features for function. Moreover, sterols are intermediates in the synthesis of steroids serving as hormones in higher eukaryotes. Like steroids many compounds of the terpenoid family do not contribute to membrane architecture, but serve as signalling, protective or attractant/repellent molecules. Particularly plants have developed a plenitude of terpenoid biosynthetic routes branching off early in the sterol biosynthesis pathway and, thereby, forming one of the largest groups of naturally occurring organic compounds. Many of these aromatic and volatile molecules are interesting for industrial application ranging from foods to pharmaceuticals. Combining the fortunate situation that sterol biosynthesis is highly conserved in eukaryotes with the amenability of yeasts to genetic and metabolic engineering, basically all naturally occurring terpenoids might be produced involving yeasts. Such engineered yeasts are useful for the study of biological functions and molecular interactions of terpenoids as well as for the large-scale production of high-value compounds, which are unavailable in sufficient amounts from natural sources due to their low abundance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Metabolic engineering of Corynebacterium glutamicum for fermentative production of chemicals in biorefinery.

    Science.gov (United States)

    Baritugo, Kei-Anne; Kim, Hee Taek; David, Yokimiko; Choi, Jong-Il; Hong, Soon Ho; Jeong, Ki Jun; Choi, Jong Hyun; Joo, Jeong Chan; Park, Si Jae

    2018-05-01

    Bio-based production of industrially important chemicals provides an eco-friendly alternative to current petrochemical-based processes. Because of the limited supply of fossil fuel reserves, various technologies utilizing microbial host strains for the sustainable production of platform chemicals from renewable biomass have been developed. Corynebacterium glutamicum is a non-pathogenic industrial microbial species traditionally used for L-glutamate and L-lysine production. It is a promising species for industrial production of bio-based chemicals because of its flexible metabolism that allows the utilization of a broad spectrum of carbon sources and the production of various amino acids. Classical breeding, systems, synthetic biology, and metabolic engineering approaches have been used to improve its applications, ranging from traditional amino-acid production to modern biorefinery systems for production of value-added platform chemicals. This review describes recent advances in the development of genetic engineering tools and techniques for the establishment and optimization of metabolic pathways for bio-based production of major C2-C6 platform chemicals using recombinant C. glutamicum.

  8. Multimedia category preferences of working engineers

    Science.gov (United States)

    Baukal, Charles E.; Ausburn, Lynna J.

    2016-09-01

    Many have argued for the importance of continuing engineering education (CEE), but relatively few recommendations were found in the literature for how to use multimedia technologies to deliver it most effectively. The study reported here addressed this gap by investigating the multimedia category preferences of working engineers. Four categories of multimedia, with two types in each category, were studied: verbal (text and narration), static graphics (drawing and photograph), dynamic non-interactive graphics (animation and video), and dynamic interactive graphics (simulated virtual reality (VR) and photo-real VR). The results showed that working engineers strongly preferred text over narration and somewhat preferred drawing over photograph, animation over video, and simulated VR over photo-real VR. These results suggest that a variety of multimedia types should be used in the instructional design of CEE content.

  9. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  10. Justice at work and metabolic syndrome: the Whitehall II study.

    Science.gov (United States)

    Gimeno, David; Tabák, Adám G; Ferrie, Jane E; Shipley, Martin J; De Vogli, Roberto; Elovainio, Marko; Vahtera, Jussi; Marmot, Michael G; Kivimäki, Mika

    2010-04-01

    Growing evidence shows that high levels of justice are beneficial for employee health, although biological mechanisms underlying this association are yet to be clarified. We aim to test whether high justice at work protects against metabolic syndrome. A prospective cohort study of 20 civil service departments in London (the Whitehall II study) including 6123 male and female British civil servants aged 35-55 years without prevalent coronary heart disease at baseline (1985-1990). Perceived justice at work was determined by means of questionnaire on two occasions between 1985 and 1990. Follow-up for metabolic syndrome and its components occurring from 1990 to 2004 was based on clinical assessments on three occasions over more than 18 years. Cox proportional hazard models adjusted for age, ethnicity and employment grade showed that men who experienced a high level of justice at work had a lower risk of incident metabolic syndrome than employees with a low level of justice (HR 0.75; 95% CI 0.63 to 0.89). There was little evidence of an association between organisational justice and metabolic syndrome or its components in women (HR 0.88; 95% CI 0.67 to 1.17). Our prospective findings provide evidence of an association between high levels of justice at work and the development of metabolic syndrome in men.

  11. Work stress and metabolic and hemostatic risk factors

    NARCIS (Netherlands)

    Vrijkotte, T. G.; van Doornen, L. J.; de Geus, E. J.

    1999-01-01

    A high level of work stress has been associated with cardiovascular disease. However, the pathophysiological mechanisms underlying this association remain unclear. This study examined the effect of work stress on a cluster of metabolic and hemostatic risk factors. Blood was collected three times, on

  12. Metabolic engineering is key to a sustainable chemical industry.

    Science.gov (United States)

    Murphy, Annabel C

    2011-08-01

    The depletion of fossil fuel stocks will prohibit their use as the main feedstock of future industrial processes. Biocatalysis is being increasingly used to reduce fossil fuel reliance and to improve the sustainability, efficiency and cost of chemical production. Even with their current small market share, biocatalyzed processes already generate approximately US$50 billion and it has been estimated that they could be used to produce up to 20% of fine chemicals by 2020. Until the advent of molecular biological technologies, the compounds that were readily accessible from renewable biomass were restricted to naturally-occurring metabolites. However, metabolic engineering has considerably broadened the range of compounds now accessible, providing access to compounds that cannot be otherwise reliably sourced, as well as replacing established chemical processes. This review presents the case for continued efforts to promote the adoption of biocatalyzed processes, highlighting successful examples of industrial chemical production from biomass and/or via biocatalyzed processes. A selection of emerging technologies that may further extend the potential and sustainability of biocatalysis are also presented. As the field matures, metabolic engineering will be increasingly crucial in maintaining our quality of life into a future where our current resources and feedstocks cannot be relied upon.

  13. Work production of quantum rotor engines

    Science.gov (United States)

    Seah, Stella; Nimmrichter, Stefan; Scarani, Valerio

    2018-04-01

    We study the mechanical performance of quantum rotor heat engines in terms of common notions of work using two prototypical models: a mill driven by the heat flow from a hot to a cold mode, and a piston driven by the alternate heating and cooling of a single working mode. We evaluate the extractable work in terms of ergotropy, the kinetic energy associated to net directed rotation, as well as the intrinsic work based on the exerted torque under autonomous operation, and we compare them to the energy output for the case of an external dissipative load and for externally driven engine cycles. Our results connect work definitions from both physical and information-theoretical perspectives. In particular, we find that apart from signatures of angular momentum quantization, the ergotropy is consistent with the intuitive notion of work in the form of net directed motion. It also agrees with the energy output to an external load or agent under optimal conditions. This sets forth a consistent thermodynamical description of rotating quantum motors, flywheels, and clocks.

  14. Metabolic engineering with plants for a sustainable biobased economy.

    Science.gov (United States)

    Yoon, Jong Moon; Zhao, Le; Shanks, Jacqueline V

    2013-01-01

    Plants are bona fide sustainable organisms because they accumulate carbon and synthesize beneficial metabolites from photosynthesis. To meet the challenges to food security and health threatened by increasing population growth and depletion of nonrenewable natural resources, recent metabolic engineering efforts have shifted from single pathways to holistic approaches with multiple genes owing to integration of omics technologies. Successful engineering of plants results in the high yield of biomass components for primary food sources and biofuel feedstocks, pharmaceuticals, and platform chemicals through synthetic biology and systems biology strategies. Further discovery of undefined biosynthesis pathways in plants, integrative analysis of discrete omics data, and diversified process developments for production of platform chemicals are essential to overcome the hurdles for sustainable production of value-added biomolecules from plants.

  15. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Modeling with a view to target identification in metabolic engineering: a critical evaluation of the available tools.

    Science.gov (United States)

    Maertens, Jo; Vanrolleghem, Peter A

    2010-01-01

    The state of the art tools for modeling metabolism, typically used in the domain of metabolic engineering, were reviewed. The tools considered are stoichiometric network analysis (elementary modes and extreme pathways), stoichiometric modeling (metabolic flux analysis, flux balance analysis, and carbon modeling), mechanistic and approximative modeling, cybernetic modeling, and multivariate statistics. In the context of metabolic engineering, one should be aware that the usefulness of these tools to optimize microbial metabolism for overproducing a target compound depends predominantly on the characteristic properties of that compound. Because of their shortcomings not all tools are suitable for every kind of optimization; issues like the dependence of the target compound's synthesis on severe (redox) constraints, the characteristics of its formation pathway, and the achievable/desired flux towards the target compound should play a role when choosing the optimization strategy.

  17. Experimental researches about the influence of the additives for engine oils upon the work of the engine

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Mucevski, Kiril

    2003-01-01

    In this paper an attempt to get some cognitions about the influence of the additives for engine oils upon the working parameters of the internal combustion engines is made. During the experimental researches the changes of the basic parameters which determine the work of the engine, such as: the pressure of compression, the noise, the vibrations, the friction of the engine mechanism, the internal cleanliness of the engine and similar, were observed. It was conclude that the use of additives into the engine oil resulted with smoother work of the engine and cleaner exhausted as well. (Author)

  18. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering

    NARCIS (Netherlands)

    He, F.; Murabito, E.; Westerhoff, H.V.

    2016-01-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out throughin silicotheoretical studies with the aim to guide and complement furtherin vitroandin vivoexperimental

  19. DEVELOPMENT OF MICROORGANISMS FOR CELLULOSE-BIOFUEL CONSOLIDATED BIOPROCESSINGS: METABOLIC ENGINEERS' TRICKS

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  20. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  1. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Hatami, Mehrnaz, E-mail: m-hatami@araku.ac.ir [Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak (Iran, Islamic Republic of); Kariman, Khalil [School of Earth and Environment M004, The University of Western Australia, Crawley, WA 6009 (Australia); Ghorbanpour, Mansour, E-mail: m-ghorbanpour@araku.ac.ir [Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, 38156-8-8349 Arak (Iran, Islamic Republic of)

    2016-11-15

    Engineered nanomaterials (ENMs) possess remarkable physicochemical characteristics suitable for different applications in medicine, pharmaceuticals, biotechnology, energy, cosmetics and electronics. Because of their ultrafine size and high surface reactivity, ENMs can enter plant cells and interact with intracellular structures and metabolic pathways which may produce toxicity or promote plant growth and development by diverse mechanisms. Depending on their type and concentration, ENMs can have positive or negative effects on photosynthesis, photochemical fluorescence and quantum yield as well as photosynthetic pigments status of the plants. Some studies have shown that ENMs can improve photosynthetic efficiency via increasing chlorophyll content and light absorption and also broadening the spectrum of captured light, suggesting that photosynthesis can be nano-engineered for harnessing more solar energy. Both up- and down-regulation of primary metabolites such as proteins and carbohydrates have been observed following exposure of plants to various ENMs. The potential capacity of ENMs for changing the rate of primary metabolites lies in their close relationship with activation and biosynthesis of the key enzymes. Several classes of secondary metabolites such as phenolics, flavonoids, and alkaloids have been shown to be induced (mostly accompanied by stress-related factors) in plants exposed to different ENMs, highlighting their great potential as elicitors to enhance both quantity and quality of biologically active secondary metabolites. Considering reports on both positive and negative effects of ENMs on plant metabolism, in-depth studies are warranted to figure out the most appropriate ENMs (type, size and optimal concentration) in order to achieve the desirable effect on specific metabolites in a given plant species. In this review, we summarize the studies performed on the impacts of ENMs on biosynthesis of plant primary and secondary metabolites and mention the

  2. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants

    International Nuclear Information System (INIS)

    Hatami, Mehrnaz; Kariman, Khalil; Ghorbanpour, Mansour

    2016-01-01

    Engineered nanomaterials (ENMs) possess remarkable physicochemical characteristics suitable for different applications in medicine, pharmaceuticals, biotechnology, energy, cosmetics and electronics. Because of their ultrafine size and high surface reactivity, ENMs can enter plant cells and interact with intracellular structures and metabolic pathways which may produce toxicity or promote plant growth and development by diverse mechanisms. Depending on their type and concentration, ENMs can have positive or negative effects on photosynthesis, photochemical fluorescence and quantum yield as well as photosynthetic pigments status of the plants. Some studies have shown that ENMs can improve photosynthetic efficiency via increasing chlorophyll content and light absorption and also broadening the spectrum of captured light, suggesting that photosynthesis can be nano-engineered for harnessing more solar energy. Both up- and down-regulation of primary metabolites such as proteins and carbohydrates have been observed following exposure of plants to various ENMs. The potential capacity of ENMs for changing the rate of primary metabolites lies in their close relationship with activation and biosynthesis of the key enzymes. Several classes of secondary metabolites such as phenolics, flavonoids, and alkaloids have been shown to be induced (mostly accompanied by stress-related factors) in plants exposed to different ENMs, highlighting their great potential as elicitors to enhance both quantity and quality of biologically active secondary metabolites. Considering reports on both positive and negative effects of ENMs on plant metabolism, in-depth studies are warranted to figure out the most appropriate ENMs (type, size and optimal concentration) in order to achieve the desirable effect on specific metabolites in a given plant species. In this review, we summarize the studies performed on the impacts of ENMs on biosynthesis of plant primary and secondary metabolites and mention the

  3. A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories

    Directory of Open Access Journals (Sweden)

    Amanda K. Fisher

    2014-08-01

    Full Text Available Microbial cell factories (MCFs are of considerable interest to convert low value renewable substrates to biofuels and high value chemicals. This review highlights the progress of computational models for the rational design of an MCF to produce a target bio-commodity. In particular, the rational design of an MCF involves: (i product selection, (ii de novo biosynthetic pathway identification (i.e., rational, heterologous, or artificial, (iii MCF chassis selection, (iv enzyme engineering of promiscuity to enable the formation of new products, and (v metabolic engineering to ensure optimal use of the pathway by the MCF host. Computational tools such as (i de novo biosynthetic pathway builders, (ii docking, (iii molecular dynamics (MD and steered MD (SMD, and (iv genome-scale metabolic flux modeling all play critical roles in the rational design of an MCF. Genome-scale metabolic flux models are of considerable use to the design process since they can reveal metabolic capabilities of MCF hosts. These can be used for host selection as well as optimizing precursors and cofactors of artificial de novo biosynthetic pathways. In addition, recent advances in genome-scale modeling have enabled the derivation of metabolic engineering strategies, which can be implemented using the genomic tools reviewed here as well.

  4. Work and power fluctuations in a critical heat engine

    Science.gov (United States)

    Holubec, Viktor; Ryabov, Artem

    2017-09-01

    We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016), 10.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.

  5. Work and power fluctuations in a critical heat engine.

    Science.gov (United States)

    Holubec, Viktor; Ryabov, Artem

    2017-09-01

    We investigate fluctuations of output work for a class of Stirling heat engines with working fluid composed of interacting units and compare these fluctuations to an average work output. In particular, we focus on engine performance close to a critical point where Carnot's efficiency may be attained at a finite power as reported by M. Campisi and R. Fazio [Nat. Commun. 7, 11895 (2016)2041-172310.1038/ncomms11895]. We show that the variance of work output per cycle scales with the same critical exponent as the heat capacity of the working fluid. As a consequence, the relative work fluctuation diverges unless the output work obeys a rather strict scaling condition, which would be very hard to fulfill in practice. Even under this condition, the fluctuations of work and power do not vanish in the infinite system size limit. Large fluctuations of output work thus constitute inseparable and dominant element in performance of the macroscopic heat engines close to a critical point.

  6. 48 CFR 436.605 - Government cost estimate for architect-engineer work.

    Science.gov (United States)

    2010-10-01

    ... for architect-engineer work. 436.605 Section 436.605 Federal Acquisition Regulations System DEPARTMENT OF AGRICULTURE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Service 436.605 Government cost estimate for architect-engineer work. The contracting...

  7. Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds.

    Science.gov (United States)

    Murad, André M; Vianna, Giovanni R; Machado, Alex M; da Cunha, Nicolau B; Coelho, Cíntia M; Lacerda, Valquiria A M; Coelho, Marly C; Rech, Elibio L

    2014-05-01

    Improving the quality and performance of soybean oil as biodiesel depends on the chemical composition of its fatty acids and requires an increase in monounsaturated acids and a reduction in polyunsaturated acids. Despite its current use as a source of biofuel, soybean oil contains an average of 25 % oleic acid and 13 % palmitic acid, which negatively impacts its oxidative stability and freezing point, causing a high rate of nitrogen oxide emission. Gas chromatography and ion mobility mass spectrometry were conducted on soybean fatty acids from metabolically engineered seed extracts to determine the nature of the structural oleic and palmitic acids. The soybean genes FAD2-1 and FatB were placed under the control of the 35SCaMV constitutive promoter, introduced to soybean embryonic axes by particle bombardment and down-regulated using RNA interference technology. Results indicate that the metabolically engineered plants exhibited a significant increase in oleic acid (up to 94.58 %) and a reduction in palmitic acid (to seed oil content. No structural differences were observed between the fatty acids of the transgenic and non-transgenic oil extracts.

  8. Role of glycolytic intermediate in regulation: Improving lycopene production in Escherichia coli by engineering metabolic control

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, W.R.; Liao, J.C.

    2001-06-01

    Metabolic engineering in the postgenomic era is expected to benefit from a full understanding of the biosynthetic capability of microorganisms as a result of the progress being made in bioinformatics and functional genomics. The immediate advantage of such information is to allow the rational design of novel pathways and the elimination of native reactions that are detrimental or unnecessary for the desired purpose. However, with the ability to manipulate metabolic pathways becoming more effective, metabolic engineering will need to face a new challenge: the reengineering of the regulatory hierarchy that controls gene expression in those pathways. In addition to constructing the genetic composition of a metabolic pathway, they propose that it will become just as important to consider the dynamics of pathways gene expression. It has been widely observed that high-level induction of a recombinant protein or pathway leads to growth retardation and reduced metabolic activity. These phenotypic characteristics result from the fact that the constant demands of production placed upon the cell interfere with its changing requirements for growth. They believe that this common situation in metabolic engineering can be alleviated by designing a dynamic controller that is able to sense the metabolic state of the cell and regulate the expression of the recombinant pathway accordingly. This approach, which is termed metabolic control engineering, involves redesigning the native regulatory circuits and applying them to the recombinant pathway. The general goal of such an effort will be to control the flux to the recombinant pathway adaptively according to the cell's metabolic state. The dynamically controlled recombinant pathway can potentially lead to enhanced production, minimized growth retardation, and reduced toxic by-product formation. The regulation of gene expression in response to the physiological state is also essential to the success of gene therapy. Here they

  9. 48 CFR 1336.605 - Government cost estimate for architect-engineer work.

    Science.gov (United States)

    2010-10-01

    ... for architect-engineer work. 1336.605 Section 1336.605 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 1336.605 Government cost estimate for architect-engineer work. After award, the...

  10. Relationship Between Long Working Hours and Metabolic Syndrome Among Korean Workers

    OpenAIRE

    Jungok Yu, RN, PhD

    2017-01-01

    Purpose: This study investigated gender differences in the relationship between long working hours and metabolic syndrome. Methods: Data based on the Sixth National Health and Nutrition Examination Survey (2014) pertaining to a total of 1,145 paid workers were analyzed. Working hours were divided into three groups (40–51 hours/week, 52–59 hours/week, ≥ 60 hours/week). The relationship between working hours and metabolic syndrome was then analyzed after adjusting for general and occupationa...

  11. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Wei, Hui; Knoshaug, Eric; Van Wychen, Stefanie; Xu, Qi; Himmel, Michael E.; Zhang, Min

    2016-04-25

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.

  12. Production of vanillin by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Yoon, Sang-Hwal; Li, Cui; Kim, Ju-Eun; Lee, Sook-Hee; Yoon, Ji-Young; Choi, Myung-Suk; Seo, Weon-Taek; Yang, Jae-Kyung; Kim, Jae-Yeon; Kim, Seon-Won

    2005-11-01

    E. coli was metabolically engineered to produce vanillin by expression of the fcs and ech genes from Amycolatopsis sp. encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively. Vanillin production was optimized by leaky expression of the genes, under the IPTG-inducible trc promoter, in complex 2YT medium. Supplementation with glucose, fructose, galactose, arabinose or glycerol severely decreased vanillin production. The highest vanillin production of 1.1 g l(-1) was obtained with cultivation for 48 h in 2YT medium with 0.2% (w/v) ferulate, without IPTG and no supplementation of carbon sources.

  13. Women Working in Engineering and Science

    Science.gov (United States)

    Luna, Bernadette; Kliss, Mark (Technical Monitor)

    1998-01-01

    The presentation will focus on topics of interest to young women pursuing an engineering or scientific career, such as intrinsic personality traits of most engineers, average salaries for the various types of engineers, appropriate preparation classes at the high school and undergraduate levels, gaining experience through internships, summer jobs and graduate school, skills necessary but not always included in engineering curricula (i.e., multimedia, computer skills, communication skills), the work environment, balancing family and career, and sexual harassment. Specific examples from the speaker's own experience in NASA's Space Life Sciences Program will be used to illustrate the above topics. In particular, projects from Extravehicular Activity and Protective Systems research and Regenerative Life Support research will be used as examples of real world problem-solving to enable human exploration of the solar system.

  14. Metabolic engineering: the ultimate paradigm for continuous pharmaceutical manufacturing.

    Science.gov (United States)

    Yadav, Vikramaditya G; Stephanopoulos, Gregory

    2014-07-01

    Research and development (R&D) expenditures by pharmaceutical companies doubled over the past decade, yet candidate attrition rates and development times rose markedly during this period. Understandably, companies have begun downsizing their pipelines and diverting investments away from R&D in favor of manufacturing. It is estimated that transitioning to continuous manufacturing could enable companies to compete for a share in emerging markets. Accordingly, the model for continuous manufacturing that has emerged commences with the conversion of late-stage intermediates into the active pharmaceutical ingredient (API) in a series of continuous flow reactors, followed by continuous solid processing to form finished tablets. The use of flow reactions for API synthesis will certainly generate purer products at higher yields in shorter times compared to equivalent batch reactions. However, transitioning from batch to flow configuration simply alleviates transport limitations within the reaction milieu. As the catalogue of reactions used in flow syntheses is a subset of batch-based chemistries, molecules such as natural products will continue to evade drug prospectors. Also, it is uncertain whether flow synthesis can deliver improvements in the atom and energy economies of API production at the scales that would achieve the levels of revenue growth targeted by companies. Instead, it is argued that implementing metabolic engineering for the production of oxidized scaffolds as gateway molecules for flow-based addition of electrophiles is a more effective and scalable strategy for accessing natural product chemical space. This new paradigm for manufacturing, with metabolic engineering as its engine, would also permit rapid optimization of production variables and allow facile scale-up from gram to ton scale to meet material requirements for clinical trials, thus recasting manufacturing as a tool for discovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Organizing the engineering basis of works during NPP construction

    International Nuclear Information System (INIS)

    Gorodinskij, Yu.Kh.; Finberg, L.K.; Shapiro, V.I.

    1988-01-01

    Experience in organization of the system of engineering basis of works during the Khmelnitskij NPP construction, aimed at providing the applicability of the software complex realized with a computer when solving the problems arising before the service of engineering basis of works, is described. Calculational complex for solving the problems on the engineering basis of works includes the SM-2420 processor, immediate access and external storages on MD with capacity not less than 1 and 60 Mbit correspondignly, terminal multiplexer, VTA 2000-15 video terminals, not less than 10 pieces of videotons and not less than two SM-6315 alphanumerical printers

  16. Transcriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-10-01

    Full Text Available Putrescine is widely used in industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Although engineered Corynebacterium glutamicum has been successfully used to produce high levels of putrescine, the overall cellular physiological and metabolic changes caused by overproduction of putrescine remains unclear. To reveal the transcriptional changes that occur in response to putrescine production in an engineered C. glutamicum strain, a comparative transcriptomic analysis was carried out. Overproduction of putrescine resulted in transcriptional downregulation of genes involved in glycolysis; the TCA cycle, pyruvate degradation, biosynthesis of some amino acids, oxidative phosphorylation; vitamin biosynthesis (thiamine and vitamin 6, metabolism of purine, pyrimidine and sulfur, and ATP-, NAD-, and NADPH-consuming enzymes. The transcriptional levels of genes involved in ornithine biosynthesis and NADPH-forming related enzymes were significantly upregulated in the putrescine producing C. glutamicum strain PUT-ALE. Comparative transcriptomic analysis provided some genetic modification strategies to further improve putrescine production. Repressing ATP- and NADPH-consuming enzyme coding gene expression via CRISPRi enhanced putrescine production.

  17. Transcriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum

    Science.gov (United States)

    Li, Zhen; Liu, Jian-Zhong

    2017-01-01

    Putrescine is widely used in industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Although engineered Corynebacterium glutamicum has been successfully used to produce high levels of putrescine, the overall cellular physiological and metabolic changes caused by overproduction of putrescine remains unclear. To reveal the transcriptional changes that occur in response to putrescine production in an engineered C. glutamicum strain, a comparative transcriptomic analysis was carried out. Overproduction of putrescine resulted in transcriptional downregulation of genes involved in glycolysis; the TCA cycle, pyruvate degradation, biosynthesis of some amino acids, oxidative phosphorylation; vitamin biosynthesis (thiamine and vitamin 6), metabolism of purine, pyrimidine and sulfur, and ATP-, NAD-, and NADPH-consuming enzymes. The transcriptional levels of genes involved in ornithine biosynthesis and NADPH-forming related enzymes were significantly upregulated in the putrescine producing C. glutamicum strain PUT-ALE. Comparative transcriptomic analysis provided some genetic modification strategies to further improve putrescine production. Repressing ATP- and NADPH-consuming enzyme coding gene expression via CRISPRi enhanced putrescine production. PMID:29089930

  18. 48 CFR 736.605 - Government cost estimate for architect-engineer work.

    Science.gov (United States)

    2010-10-01

    ... for architect-engineer work. 736.605 Section 736.605 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 736.605 Government cost estimate for architect-engineer work. See 736.602-3(c)(5). ...

  19. Engineering and Design: Civil Works Cost Engineering

    Science.gov (United States)

    1994-03-31

    labor cost requirements are broken into tasks of work. Each task is usually performd by a labor crew. Crews may vary in size and mix of skills. The...requested in advance of the expected purchase date. Suppliers are reluctant to guarantee future pricw and ofien will only quote current prices. It may be...unit cost is the overhead cost for the item. g. Sources for Pricing. The Cost Engineer must rely on judgement, historical data, and current labor market

  20. Biofuel production in Escherichia coli. The role of metabolic engineering and synthetic biology

    Energy Technology Data Exchange (ETDEWEB)

    Clomburg, James M. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Gonzalez, Ramon [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Rice Univ., Houston, TX (United States). Dept. of Bioengineering

    2010-03-15

    The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced. (orig.)

  1. Genome Sequencing of Streptomyces atratus SCSIOZH16 and Activation Production of Nocardamine via Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Yan Li

    2018-06-01

    Full Text Available The Actinomycetes are metabolically flexible microorganisms capable of producing a wide range of interesting compounds, including but by no means limited to, siderophores which have high affinity for ferric iron. In this study, we report the complete genome sequence of marine-derived Streptomyces atratus ZH16 and the activation of an embedded siderophore gene cluster via the application of metabolic engineering methods. The S. atratus ZH16 genome reveals that this strain has the potential to produce 26 categories of natural products (NPs barring the ilamycins. Our activation studies revealed S. atratus SCSIO ZH16 to be a promising source of the production of nocardamine-type (desferrioxamine compounds which are important in treating acute iron intoxication and performing ecological remediation. We conclude that metabolic engineering provides a highly effective strategy by which to discover drug-like compounds and new NPs in the genomic era.

  2. Development of biosensors and their application in metabolic engineering

    DEFF Research Database (Denmark)

    Zhang, Jie; Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    and ease of implementation with high-throughput analysis. Here we describe recent progress in biosensor development and their applications in a metabolic engineering context. We also highlight examples of how biosensors can be integrated with synthetic circuits to exert feedback regulation...... for the desired phenotypes. However, methods available for microbial genome diversification far exceed our ability to screen and select for those variants with optimal performance. Genetically encoded biosensors have shown the potential to address this gap, given their ability to respond to small molecule binding...

  3. Computational design of auxotrophy-dependent microbial biosensors for combinatorial metabolic engineering experiments.

    Science.gov (United States)

    Tepper, Naama; Shlomi, Tomer

    2011-01-21

    Combinatorial approaches in metabolic engineering work by generating genetic diversity in a microbial population followed by screening for strains with improved phenotypes. One of the most common goals in this field is the generation of a high rate chemical producing strain. A major hurdle with this approach is that many chemicals do not have easy to recognize attributes, making their screening expensive and time consuming. To address this problem, it was previously suggested to use microbial biosensors to facilitate the detection and quantification of chemicals of interest. Here, we present novel computational methods to: (i) rationally design microbial biosensors for chemicals of interest based on substrate auxotrophy that would enable their high-throughput screening; (ii) predict engineering strategies for coupling the synthesis of a chemical of interest with the production of a proxy metabolite for which high-throughput screening is possible via a designed bio-sensor. The biosensor design method is validated based on known genetic modifications in an array of E. coli strains auxotrophic to various amino-acids. Predicted chemical production rates achievable via the biosensor-based approach are shown to potentially improve upon those predicted by current rational strain design approaches. (A Matlab implementation of the biosensor design method is available via http://www.cs.technion.ac.il/~tomersh/tools).

  4. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Hubmann, Georg; Thevelein, Johan M; Nevoigt, Elke

    2014-01-01

    The ease of highly sophisticated genetic manipulations in the yeast Saccharomyces cerevisiae has initiated numerous initiatives towards development of metabolically engineered strains for novel applications beyond its traditional use in brewing, baking, and wine making. In fact, baker's yeast has

  5. Predicting on-site environmental impacts of municipal engineering works

    International Nuclear Information System (INIS)

    Gangolells, Marta; Casals, Miquel; Forcada, Núria; Macarulla, Marcel

    2014-01-01

    The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering project documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also

  6. Predicting on-site environmental impacts of municipal engineering works

    Energy Technology Data Exchange (ETDEWEB)

    Gangolells, Marta, E-mail: marta.gangolells@upc.edu; Casals, Miquel, E-mail: miquel.casals@upc.edu; Forcada, Núria, E-mail: nuria.forcada@upc.edu; Macarulla, Marcel, E-mail: marcel.macarulla@upc.edu

    2014-01-15

    The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling municipal engineering projects. In order to ensure the objectivity of the assessment process, direct and indirect indicators were always based on quantitative data from the municipal engineering project documents. Finally, two case studies were analysed and found to illustrate the practical use of the proposed model. The model highlights the significant environmental impacts of a particular municipal engineering project prior to the construction stage. Consequently, preventive actions can be planned and implemented during on-site activities. The results of the model also allow a comparison of proposed municipal engineering projects and alternatives with respect to the overall on-site environmental impact and the absolute importance of a particular environmental aspect. These findings are useful within the framework of the environmental impact assessment process, as they help to improve the identification and evaluation of on-site environmental aspects of municipal engineering works. The findings may also be of use to construction companies that are willing to implement an environmental management system or simply wish to improve on-site environmental performance in municipal engineering projects. -- Highlights: • We present a model to predict the environmental impacts of municipal engineering works. • It highlights significant on-site environmental impacts prior to the construction stage. • Findings are useful within the environmental impact assessment process. • They also

  7. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels

    Directory of Open Access Journals (Sweden)

    Fu-Xing Niu

    2017-09-01

    Full Text Available Isoprenoids are the most abundant and highly diverse group of natural products. Many isoprenoids have been used for pharmaceuticals, nutraceuticals, flavors, cosmetics, food additives and biofuels. Carotenoids and isoprenoid-based biofuels are two classes of important isoprenoids. These isoprenoids have been produced microbially through metabolic engineering and synthetic biology efforts. Herein, we briefly review the engineered biosynthetic pathways in well-characterized microbial systems for the production of carotenoids and several isoprenoid-based biofuels.

  8. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.

    Science.gov (United States)

    Martínez, I; El-Said Mohamed, M; Santos, V E; García, J L; García-Ochoa, F; Díaz, E

    2017-11-20

    Microbial desulfurization or biodesulfurization (BDS) is an attractive low-cost and environmentally friendly complementary technology to the hydrotreating chemical process based on the potential of certain bacteria to specifically remove sulfur from S-heterocyclic compounds of crude fuels that are recalcitrant to the chemical treatments. The 4S or Dsz sulfur specific pathway for dibenzothiophene (DBT) and alkyl-substituted DBTs, widely used as model S-heterocyclic compounds, has been extensively studied at the physiological, biochemical and genetic levels mainly in Gram-positive bacteria. Nevertheless, several Gram-negative bacteria have been also used in BDS because they are endowed with some properties, e.g., broad metabolic versatility and easy genetic and genomic manipulation, that make them suitable chassis for systems metabolic engineering strategies. A high number of recombinant bacteria, many of which are Pseudomonas strains, have been constructed to overcome the major bottlenecks of the desulfurization process, i.e., expression of the dsz operon, activity of the Dsz enzymes, retro-inhibition of the Dsz pathway, availability of reducing power, uptake-secretion of substrate and intermediates, tolerance to organic solvents and metals, and other host-specific limitations. However, to attain a BDS process with industrial applicability, it is necessary to apply all the knowledge and advances achieved at the genetic and metabolic levels to the process engineering level, i.e., kinetic modelling, scale-up of biphasic systems, enhancing mass transfer rates, biocatalyst separation, etc. The production of high-added value products derived from the organosulfur material present in oil can be regarded also as an economically viable process that has barely begun to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Copyright over Works Reproduced and Published Online by Search Engines

    Directory of Open Access Journals (Sweden)

    Ernesto Rengifo García

    2016-12-01

    Full Text Available Search engines are an important technological tool that facilitates the dissemination and access to information on the Internet. However, when it comes to works protected by authors rights, in the case of continental law, or Copyright, for the Anglo-Saxon tradition, it is difficult to define if search engines infringe the rights of the owners of these works. In the face of this situation, the US and Europe have employed the exceptions to autorights and Fair Use to decide whether search engines infringes owners rights. This article carries out a comparative analysis of the different judicial decisions in the US and Europe on search engines and protected works.

  10. Expanding beyond canonical metabolism: Interfacing alternative elements, synthetic biology, and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Kevin B. Reed

    2018-03-01

    Full Text Available Metabolic engineering offers an exquisite capacity to produce new molecules in a renewable manner. However, most industrial applications have focused on only a small subset of elements from the periodic table, centered around carbon biochemistry. This review aims to illustrate the expanse of chemical elements that can currently (and potentially be integrated into useful products using cellular systems. Specifically, we describe recent advances in expanding the cellular scope to include the halogens, selenium and the metalloids, and a variety of metal incorporations. These examples range from small molecules, heteroatom-linked uncommon elements, and natural products to biomining and nanotechnology applications. Collectively, this review covers the promise of an expanded range of elemental incorporations and the future impacts it may have on biotechnology.

  11. Extremely Thermophilic Microorganisms as Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals

    Directory of Open Access Journals (Sweden)

    Benjamin M Zeldes

    2015-11-01

    Full Text Available Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye towards potential technological

  12. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals

    Science.gov (United States)

    Zeldes, Benjamin M.; Keller, Matthew W.; Loder, Andrew J.; Straub, Christopher T.; Adams, Michael W. W.; Kelly, Robert M.

    2015-01-01

    Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high

  13. Molecular Cloning Designer Simulator (MCDS: All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects

    Directory of Open Access Journals (Sweden)

    Zhenyu Shi

    2016-12-01

    Full Text Available Molecular Cloning Designer Simulator (MCDS is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1 it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2 it can perform a user-defined workflow of cloning steps in a single execution of the software; (3 it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4 it includes experimental information to conveniently guide wet lab work; and (5 it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com. Keywords: BioCAD, Genetic engineering software, Molecular cloning software, Synthetic biology, Workflow simulation and management

  14. Long working hours and metabolic syndrome among Japanese men: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kobayashi Tomoko

    2012-05-01

    Full Text Available Abstract Background The link between long working hours and health has been extensively studied for decades. Despite global concern regarding metabolic syndrome, however, no studies to date have solely evaluated the relationship between long working hours and that syndrome. We therefore examined the association between long working hours and metabolic syndrome in a cross-sectional study. Methods Between May and October 2009, we collected data from annual health checkups and questionnaires from employees at a manufacturing company in Shizuoka, Japan. Questionnaires were returned by 1,601 workers (response rate: 96.2%; 1,314 men, 287 women. After exclusions, including women because of a lack of overtime work, the analysis was performed for 933 men. We calculated odds ratios (ORs and 95% confidence intervals (CIs for metabolic syndrome. Further, we conducted a stratified analysis by age-group ( Results Metabolic syndrome was identified in 110 workers (11.8%. We observed a positive association between working hours and metabolic syndrome after adjusting for age, occupation, shift work, smoking status, frequency of alcohol consumption, and cohabiting status. Compared with subjects who worked 7–8 h/day, multivariate ORs for metabolic syndrome were 1.66 (95% CI, 0.91–3.01, 1.48 (95% CI, 0.75–2.90, and 2.32 (95% CI, 1.04–5.16 for those working 8–9 h/day, 9–10 h/day, and >10 h/day, respectively. Similar patterns were obtained when we excluded shift workers from the analysis. In age-stratified analysis, the corresponding ORs among workers aged ≥40 years were 2.02 (95% CI, 1.04–3.90, 1.21 (95% CI, 0.53–2.77, and 3.14 (95% CI, 1.24–7.95. In contrast, no clear association was found among workers aged Conclusions The present study suggests that 10 h/day may be a trigger level of working hours for increased risk of metabolic syndrome among Japanese male workers.

  15. Application of a controllable degron strategy for metabolic engineering

    DEFF Research Database (Denmark)

    Knuf, Christoph; Maury, Jerome; Jacobsen, Simo Abdessamad

    2014-01-01

    In numerous cases of metabolic engineering, metabolite pools have to be increased in order to obtain flux into heterologous pathways. A simple tool for this would be the deletion of genes that would practically lead to a block of the natural pathway, so that the carbon can flow into the heterolog...... of intermediates of the mevalonate pathway around 2,3-oxidosqualene, which is the precursor for triterpenoids. Many triterpenoids are pharmaceutically relevant compounds which nowadays need to be extracted from plant material through an intricate and resource consuming process....

  16. Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4.

    Science.gov (United States)

    Herman, Nicolaus A; Li, Jeffrey; Bedi, Ripika; Turchi, Barbara; Liu, Xiaoji; Miller, Michael J; Zhang, Wenjun

    2017-01-15

    While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 10 6 CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production. This paper presents the first steps toward advanced genetic engineering of the industrial butanol

  17. Long working hours and metabolic syndrome among Japanese men: a cross-sectional study

    Science.gov (United States)

    2012-01-01

    Background The link between long working hours and health has been extensively studied for decades. Despite global concern regarding metabolic syndrome, however, no studies to date have solely evaluated the relationship between long working hours and that syndrome. We therefore examined the association between long working hours and metabolic syndrome in a cross-sectional study. Methods Between May and October 2009, we collected data from annual health checkups and questionnaires from employees at a manufacturing company in Shizuoka, Japan. Questionnaires were returned by 1,601 workers (response rate: 96.2%; 1,314 men, 287 women). After exclusions, including women because of a lack of overtime work, the analysis was performed for 933 men. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) for metabolic syndrome. Further, we conducted a stratified analysis by age-group (working hours and metabolic syndrome after adjusting for age, occupation, shift work, smoking status, frequency of alcohol consumption, and cohabiting status. Compared with subjects who worked 7–8 h/day, multivariate ORs for metabolic syndrome were 1.66 (95% CI, 0.91–3.01), 1.48 (95% CI, 0.75–2.90), and 2.32 (95% CI, 1.04–5.16) for those working 8–9 h/day, 9–10 h/day, and >10 h/day, respectively. Similar patterns were obtained when we excluded shift workers from the analysis. In age-stratified analysis, the corresponding ORs among workers aged ≥40 years were 2.02 (95% CI, 1.04–3.90), 1.21 (95% CI, 0.53–2.77), and 3.14 (95% CI, 1.24–7.95). In contrast, no clear association was found among workers aged working hours for increased risk of metabolic syndrome among Japanese male workers. PMID:22651100

  18. Long working hours and metabolic syndrome among Japanese men: a cross-sectional study.

    Science.gov (United States)

    Kobayashi, Tomoko; Suzuki, Etsuji; Takao, Soshi; Doi, Hiroyuki

    2012-05-31

    The link between long working hours and health has been extensively studied for decades. Despite global concern regarding metabolic syndrome, however, no studies to date have solely evaluated the relationship between long working hours and that syndrome. We therefore examined the association between long working hours and metabolic syndrome in a cross-sectional study. Between May and October 2009, we collected data from annual health checkups and questionnaires from employees at a manufacturing company in Shizuoka, Japan. Questionnaires were returned by 1,601 workers (response rate: 96.2%; 1,314 men, 287 women). After exclusions, including women because of a lack of overtime work, the analysis was performed for 933 men. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) for metabolic syndrome. Further, we conducted a stratified analysis by age-group (working hours and metabolic syndrome after adjusting for age, occupation, shift work, smoking status, frequency of alcohol consumption, and cohabiting status. Compared with subjects who worked 7-8 h/day, multivariate ORs for metabolic syndrome were 1.66 (95% CI, 0.91-3.01), 1.48 (95% CI, 0.75-2.90), and 2.32 (95% CI, 1.04-5.16) for those working 8-9 h/day, 9-10 h/day, and >10 h/day, respectively. Similar patterns were obtained when we excluded shift workers from the analysis. In age-stratified analysis, the corresponding ORs among workers aged ≥ 40 years were 2.02 (95% CI, 1.04-3.90), 1.21 (95% CI, 0.53-2.77), and 3.14 (95% CI, 1.24-7.95). In contrast, no clear association was found among workers aged working hours for increased risk of metabolic syndrome among Japanese male workers.

  19. Shift Work and the Relationship with Metabolic Syndrome in Chinese Aged Workers

    Science.gov (United States)

    Guo, Yanjun; Rong, Yi; Huang, Xiji; Lai, Hanpeng; Luo, Xin; Zhang, Zhihong; Liu, Yuewei; He, Meian; Wu, Tangchun; Chen, Weihong

    2015-01-01

    Background Shift work is indicated to be associated with adverse metabolic disorders. However, potential effects of shift work on metabolic syndrome (MetS) and its components have not been well established. Methods In total, 26,382 workers from Dongfeng-Tongji Cohort were included in this study. Information on shift work history was gathered through questionnaires and metabolic traits were measured. Logistic regression models were used to calculate the odds ratio (OR) and 95% confidence interval (CI) for long-term shift work related with MetS and each component, respectively. Further stratification analysis was performed to detect the differences on MetS between female and male shift workers. Results Long-term shift work was associated with MetS without adjusting for any confounders. Compared with the group of non-shift work, the multivariate-adjusted ORs (95%CI) of MetS associated with 1–10, 11−20, and ≥20y of shift work were 1.05 (0.95−1.16), 1.14 (1.03−1.26), 1.16 (1.01−1.31), respectively. In female workers, we found a dose-response relationship that every 10 years increase in shift work was associated with a 10% (95% CI: 1%−20%) elevated OR of MetS, while no significant dose-response trend was found among male workers. Furthermore, shift work duration was significantly associated with ORs of high blood pressure (1.07, 1.01−1.13), long waist circumference (1.10, 1.01−1.20) and high glucose levels (1.09, 1.04−1.15). No significant association was observed between shift work and low HDL cholesterol) and raised triglyceride levels. Conclusions Long-term shift work was associated with metabolic syndrome and the association might differ by gender in retired workers. Applicable intervention strategies are needed for prevention of metabolic disorders for shift workers. PMID:25761114

  20. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.

    Science.gov (United States)

    Alonso-Gutierrez, Jorge; Chan, Rossana; Batth, Tanveer S; Adams, Paul D; Keasling, Jay D; Petzold, Christopher J; Lee, Taek Soon

    2013-09-01

    Limonene is a valuable monoterpene used in the production of several commodity chemicals and medicinal compounds. Among them, perillyl alcohol (POH) is a promising anti-cancer agent that can be produced by hydroxylation of limonene. We engineered E. coli with a heterologous mevalonate pathway and limonene synthase for production of limonene followed by coupling with a cytochrome P450, which specifically hydroxylates limonene to produce POH. A strain containing all mevalonate pathway genes in a single plasmid produced limonene at titers over 400mg/L from glucose, substantially higher than has been achieved in the past. Incorporation of a cytochrome P450 to hydroxylate limonene yielded approximately 100mg/L of POH. Further metabolic engineering of the pathway and in situ product recovery using anion exchange resins would make this engineered E. coli a potential production platform for any valuable limonene derivative. © 2013 Elsevier Inc. All rights reserved.

  1. 48 CFR 52.236-24 - Work Oversight in Architect-Engineer Contracts.

    Science.gov (United States)

    2010-10-01

    ... Architect-Engineer Contracts. 52.236-24 Section 52.236-24 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.236-24 Work Oversight in Architect-Engineer Contracts. As prescribed in 36.609-3, insert the following clause: Work Oversight in Architect-Engineer Contracts (APR 1984) The extent and...

  2. Integrating biocompatible chemistry and manipulating cofactor partitioning in metabolically engineeredLactococcus lactisfor fermentative production of (3S)-acetoin

    DEFF Research Database (Denmark)

    Liu, Jianming; Solem, Christian; Jensen, Peter Ruhdal

    2016-01-01

    Biocompatible chemistry (BC), i.e. non-enzymatic chemical reactions compatible with living organisms, is increasingly used in conjunction with metabolically engineered microorganisms for producing compounds that do not usually occur naturally. Here we report production of one such compound, (3S......)-acetoin, a valuable precursor for chiral synthesis, using a metabolically engineered Lactococcus lactis strain growing under respiratory conditions with ferric iron serving as a BC component. The strain used has all competing product pathways inactivated, and an appropriate cofactor balance is achieved by fine...

  3. Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labelling studies.

    Science.gov (United States)

    O'Grady, John; Schwender, Jörg; Shachar-Hill, Yair; Morgan, John A

    2012-03-01

    For the past decade, flux maps have provided researchers with an in-depth perspective on plant metabolism. As a rapidly developing field, significant headway has been made recently in computation, experimentation, and overall understanding of metabolic flux analysis. These advances are particularly applicable to the study of plant metabolism. New dynamic computational methods such as non-stationary metabolic flux analysis are finding their place in the toolbox of metabolic engineering, allowing more organisms to be studied and decreasing the time necessary for experimentation, thereby opening new avenues by which to explore the vast diversity of plant metabolism. Also, improved methods of metabolite detection and measurement have been developed, enabling increasingly greater resolution of flux measurements and the analysis of a greater number of the multitude of plant metabolic pathways. Methods to deconvolute organelle-specific metabolism are employed with increasing effectiveness, elucidating the compartmental specificity inherent in plant metabolism. Advances in metabolite measurements have also enabled new types of experiments, such as the calculation of metabolic fluxes based on (13)CO(2) dynamic labelling data, and will continue to direct plant metabolic engineering. Newly calculated metabolic flux maps reveal surprising and useful information about plant metabolism, guiding future genetic engineering of crops to higher yields. Due to the significant level of complexity in plants, these methods in combination with other systems biology measurements are necessary to guide plant metabolic engineering in the future.

  4. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis.

    Science.gov (United States)

    Chen, Wei; Zhang, Shan; Jiang, Peixia; Yao, Jun; He, Yongzhi; Chen, Lincai; Gui, Xiwu; Dong, Zhiyang; Tang, Shuang-Yan

    2015-07-01

    Advanced high-throughput screening methods for small molecules may have important applications in the metabolic engineering of the biosynthetic pathways of these molecules. Ectoine is an excellent osmoprotectant that has been widely used in cosmetics. In this study, the Escherichia coli regulatory protein AraC was engineered to recognize ectoine as its non-natural effector and to activate transcription upon ectoine binding. As an endogenous reporter of ectoine, the mutated AraC protein was successfully incorporated into high-throughput screening of ectoine hyper-producing strains. The ectoine biosynthetic cluster from Halomonas elongata was cloned into E. coli. By engineering the rate-limiting enzyme L-2,4-diaminobutyric acid (DABA) aminotransferase (EctB), ectoine production and the specific activity of the EctB mutant were increased. Thus, these results demonstrated the effectiveness of engineering regulatory proteins into sensitive and rapid screening tools for small molecules and highlighted the importance and efficacy of directed evolution strategies applied to the engineering of genetic components for yield improvement in the biosynthesis of small molecules. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization.

    Science.gov (United States)

    Ledesma-Amaro, Rodrigo; Serrano-Amatriain, Cristina; Jiménez, Alberto; Revuelta, José Luis

    2015-10-14

    The industrial production of riboflavin mostly relies on the microbial fermentation of flavinogenic microorganisms and Ashbya gossypii is the main industrial producer of the vitamin. Accordingly, bioengineering strategies aimed at increasing riboflavin production in A. gossypii are highly valuable for industry. We analyze the contribution of all the RIB genes to the production of riboflavin in A. gossypii. Two important metabolic rate-limiting steps that limit the overproduction of riboflavin have been found: first, low mRNA levels of the RIB genes hindered the overproduction of riboflavin; second, the competition of the AMP branch for purinogenic precursors also represents a limitation for riboflavin overproduction. Thus, overexpression of the RIB genes resulted in a significant increase in riboflavin yield. Moreover, both the inactivation and the underexpression of the ADE12 gene, which controls the first step of the AMP branch, also proved to have a positive effect on riboflavin production. Accordingly, a strain that combines both the overexpression of the RIB genes and the underexpression of the ADE12 gene was engineered. This strain produced 523 mg/L of riboflavin (5.4-fold higher than the wild-type), which is the highest titer of riboflavin obtained by metabolic engineering in A. gossypii so far. Riboflavin production in A. gossypii is limited by a low transcription activity of the RIB genes. Flux limitation towards AMP provides committed substrate GTP for riboflavin overproduction without detrimental effects on biomass formation. A multiple-engineered Ashbya strain that produces up to 523 mg/L of riboflavin was generated.

  6. Biobased organic acids production by metabolically engineered microorganisms

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2016-01-01

    Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...... expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high...... performance microbes for production of succinic acid and 3-hydroxypropionic acid. Also, the key limitations and challenges in microbial organic acids production are discussed...

  7. Working conditions in the engine department - A qualitative study among engine room personnel on board Swedish merchant ships.

    Science.gov (United States)

    Lundh, Monica; Lützhöft, Margareta; Rydstedt, Leif; Dahlman, Joakim

    2011-01-01

    The specific problems associated with the work on board within the merchant fleet are well known and have over the years been a topic of discussion. The work conditions in the engine room (ER) are demanding due to, e.g. the thermal climate, noise and awkward working postures. The work in the engine control room (ECR) has over recent years undergone major changes, mainly due to the introduction of computers on board. In order to capture the impact these changes had implied, and also to investigate how the work situation has developed, a total of 20 engine officers and engine ratings were interviewed. The interviews were semi-structured and Grounded Theory was used for the data analysis. The aim of the present study was to describe how the engine crew perceive their work situation and working environment on board. Further, the aim was to identify areas for improvements which the engine crew consider especially important for a safe and effective work environment. The result of the study shows that the design of the ECR and ER is crucial for how different tasks are performed. Design which does not support operational procedures and how tasks are performed risk inducing inappropriate behaviour as the crew members' are compelled to find alternative ways to perform their tasks in order to get the job done. These types of behaviour can induce an increased risk of exposure to hazardous substances and the engine crew members becoming injured. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Social Work and Engineering Collaboration: Forging Innovative Global Community Development Education

    Science.gov (United States)

    Gilbert, Dorie J.

    2014-01-01

    Interdisciplinary programs in schools of social work are growing in scope and number. This article reports on collaboration between a school of social work and a school of engineering, which is forging a new area of interdisciplinary education. The program engages social work students working alongside engineering students in a team approach to…

  9. Expanding the chemical palate of cells by combining systems biology and metabolic engineering.

    Science.gov (United States)

    Curran, Kathleen A; Alper, Hal S

    2012-07-01

    The field of Metabolic Engineering has recently undergone a transformation that has led to a rapid expansion of the chemical palate of cells. Now, it is conceivable to produce nearly any organic molecule of interest using a cellular host. Significant advances have been made in the production of biofuels, biopolymers and precursors, pharmaceuticals and nutraceuticals, and commodity and specialty chemicals. Much of this rapid expansion in the field has been, in part, due to synergies and advances in the area of systems biology. Specifically, the availability of functional genomics, metabolomics and transcriptomics data has resulted in the potential to produce a wealth of new products, both natural and non-natural, in cellular factories. The sheer amount and diversity of this data however, means that uncovering and unlocking novel chemistries and insights is a non-obvious exercise. To address this issue, a number of computational tools and experimental approaches have been developed to help expedite the design process to create new cellular factories. This review will highlight many of the systems biology enabling technologies that have reduced the design cycle for engineered hosts, highlight major advances in the expanded diversity of products that can be synthesized, and conclude with future prospects in the field of metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Improving production of ?-lactam antibiotics by Penicillium chrysogenum : Metabolic engineering based on transcriptome analysis

    NARCIS (Netherlands)

    Veiga, T.

    2012-01-01

    In Chapters 2-5 of this thesis, the applicability of transcriptome analysis to guide metabolic engineering strategies in P. chrysogenum is explored by investigating four cellular processes that are of potential relevance for industrial production of ?-lactam antibiotics: - Regulation of secondary

  11. Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria.

    Science.gov (United States)

    Ehira, Shigeki; Takeuchi, Takuto; Higo, Akiyoshi

    2018-02-01

    Cyanobacteria, which perform oxygenic photosynthesis, have drawn attention as hosts for the direct production of biofuels and commodity chemicals from CO 2 and H 2 O using light energy. Although cyanobacteria capable of producing diverse chemicals have been generated by metabolic engineering, anaerobic non-photosynthetic culture conditions are often necessary for their production. In this study, we conducted cell type-specific metabolic engineering of the filamentous cyanobacterium Anabaena sp. PCC 7120, which forms a terminally differentiated cell called a heterocyst with a semi-regular spacing of 10-15 cells. Because heterocysts are specialized cells for nitrogen fixation, the intracellular oxygen level of heterocysts is maintained very low even when adjacent cells perform oxygenic photosynthesis. Pyruvate decarboxylase of Zymomonas mobilis and alcohol dehydrogenase of Synechocystis sp. PCC 6803 were exclusively expressed in heterocysts. Ethanol production was concomitant with nitrogen fixation in genetically engineered Anabaena sp. PCC 7120. Engineering of carbon metabolism in heterocysts improved ethanol production, and strain ET14, with an extra copy of the invB gene expressed from a heterocyst-specific promoter, produced 130.9 mg L -1 of ethanol after 9 days. ET14 produced 1681.9 mg L -1 of ethanol by increasing the CO 2 supply. Ethanol production per heterocyst cell was approximately threefold higher than that per cell of unicellular cyanobacterium. This study demonstrates the potential of heterocysts for anaerobic production of biofuels and commodity chemicals under oxygenic photosynthetic conditions.

  12. Shape-memory materials as a working substance for martensitic rotary engines

    Science.gov (United States)

    Mandzhavidze, A. G.; Barnov, V. A.; Sobolevskaya, S. V.; Margvelashvili, O. V.

    2006-05-01

    A martensitic rotary engine has been designed. The physical properties of its working substance are studied, and the power characteristics of the engine are determined. Temperature and stress cycling are shown to adversely affect the properties of the working element (a coil spring made of titanium nickelide) and, thus, to decrease the engine efficiency.

  13. Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete Amycolatopsis sp. ATCC 39116.

    Science.gov (United States)

    Fleige, Christian; Steinbüchel, Alexander

    2014-01-01

    Amycolatopsis sp. ATCC 39116 is able to synthesize the important flavoring agent vanillin from cheap natural substrates. The bacterium is therefore of great interest for the industry and used for the fermentative production of vanillin. In order to improve the production of natural vanillin with Amycolatopsis sp. ATCC 39116, the strain has been genetically engineered to optimize the metabolic flux towards the desired product. Extensive metabolic engineering was hitherto hampered, due to the lack of genetic tools like functional promoters and expression vectors. In this study, we report the establishment of a plasmid-based gene expression system for Amycolatopsis sp. ATCC 39116 that allows a further manipulation of the genotype. Four new Escherichia coli-Amycolatopsis shuttle vectors harboring different promoter elements were constructed, and the functionality of these regulatory elements was proven by the expression of the reporter gene gusA, encoding a β-glucuronidase. Glucuronidase activity was detected in all plasmid-harboring strains, and remarkable differences in the expression strength of the reporter gene depending on the used promoter were observed. The new expression vectors will promote the further genetic engineering of Amycolatopsis sp. ATCC 39116 to get insight into the metabolic network and to improve the strain for a more efficient industrial use.

  14. Molecular Cloning Designer Simulator (MCDS): All-in-one molecular cloning and genetic engineering design, simulation and management software for complex synthetic biology and metabolic engineering projects.

    Science.gov (United States)

    Shi, Zhenyu; Vickers, Claudia E

    2016-12-01

    Molecular Cloning Designer Simulator (MCDS) is a powerful new all-in-one cloning and genetic engineering design, simulation and management software platform developed for complex synthetic biology and metabolic engineering projects. In addition to standard functions, it has a number of features that are either unique, or are not found in combination in any one software package: (1) it has a novel interactive flow-chart user interface for complex multi-step processes, allowing an integrated overview of the whole project; (2) it can perform a user-defined workflow of cloning steps in a single execution of the software; (3) it can handle multiple types of genetic recombineering, a technique that is rapidly replacing classical cloning for many applications; (4) it includes experimental information to conveniently guide wet lab work; and (5) it can store results and comments to allow the tracking and management of the whole project in one platform. MCDS is freely available from https://mcds.codeplex.com.

  15. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].

    Science.gov (United States)

    Pang, Yaru; Hu, Zhihui; Xiao, Dongguang; Yu, Aiqun

    2018-01-25

    Limonene (C₁₀H₁₆) and bisabolene (C₁₅H₂₄) are both naturally occurring terpenes in plants. Depending on the number of C₅ units, limonene and bisabolene are recognized as representative monoterpenes and sesquiterpenes, respectively. Limonene and bisabolene are important pharmaceutical and nutraceutical products used in the prevention and treatment of cancer and many other diseases. In addition, they can be used as starting materials to produce a range of commercially valuable products, such as pharmaceuticals, nutraceuticals, cosmetics, and biofuels. The low abundance or yield of limonene and bisabolene in plants renders their isolation from plant sources non-economically viable. Isolation of limonene and bisabolene from plants also suffers from low efficiency and often requires harsh reaction conditions, prolonged reaction times, and expensive equipment cost. Recently, the rapid developments in metabolic engineering of microbes provide a promising alternative route for producing these plant natural products. Therefore, producing limonene and bisabolene by engineering microbial cells into microbial factories is becoming an attractive alternative approach that can overcome the bottlenecks, making it more sustainable, environmentally friendly and economically competitive. Here, we reviewed the status of metabolic engineering of microbes that produce limonene and bisabolene including microbial hosts, key enzymes, metabolic pathways and engineering of limonene/bisabolene biosynthesis. Furthermore, key challenges and future perspectives were discussed.

  16. Glucose metabolism during rotational shift-work in healthcare workers.

    Science.gov (United States)

    Sharma, Anu; Laurenti, Marcello C; Dalla Man, Chiara; Varghese, Ron T; Cobelli, Claudio; Rizza, Robert A; Matveyenko, Aleksey; Vella, Adrian

    2017-08-01

    Shift-work is associated with circadian rhythm disruption and an increased risk of obesity and type 2 diabetes. We sought to determine the effect of rotational shift-work on glucose metabolism in humans. We studied 12 otherwise healthy nurses performing rotational shift-work using a randomised crossover study design. On each occasion, participants underwent an isotope-labelled mixed meal test during a simulated day shift and a simulated night shift, enabling simultaneous measurement of glucose flux and beta cell function using the oral minimal model. We sought to determine differences in fasting and postprandial glucose metabolism during the day shift vs the night shift. Postprandial glycaemic excursion was higher during the night shift (381±33 vs 580±48 mmol/l per 5 h, pshift. While insulin action did not differ between study days, the beta cell responsivity to glucose (59±5 vs 44±4 × 10 -9  min -1 ; pshift. Impaired beta cell function during the night shift may result from normal circadian variation, the effect of rotational shift-work or a combination of both. As a consequence, higher postprandial glucose concentrations are observed during the night shift.

  17. Enhancing GDP-fucose production in recombinant Escherichia coli by metabolic pathway engineering.

    Science.gov (United States)

    Zhai, Yafei; Han, Donglei; Pan, Ying; Wang, Shuaishuai; Fang, Junqiang; Wang, Peng; Liu, Xian-wei

    2015-02-01

    Guanosine 5'-diphosphate (GDP)-fucose is the indispensible donor substrate for fucosyltransferase-catalyzed synthesis of fucose-containing biomolecules, which have been found involving in various biological functions. In this work, the salvage pathway for GDP-fucose biosynthesis from Bacterioides fragilis was introduced into Escherichia coli. Besides, the biosynthesis of guanosine 5'-triphosphate (GTP), an essential substrate for GDP-fucose biosynthesis, was enhanced via overexpression of enzymes involved in the salvage pathway of GTP biosynthesis. The production capacities of metabolically engineered strains bearing different combinations of recombinant enzymes were compared. The shake flask fermentation of the strain expressing Fkp, Gpt, Gmk and Ndk obtained the maximum GDP-fucose content of 4.6 ± 0.22 μmol/g (dry cell mass), which is 4.2 fold that of the strain only expressing Fkp. Through fed-batch fermentation, the GDP-fucose content further rose to 6.6 ± 0.14 μmol/g (dry cell mass). In addition to a better productivity than previous fermentation processes based on the de novo pathway for GDP-fucose biosynthesis, the established schemes in this work also have the advantage to be a potential avenue to GDP-fucose analogs encompassing chemical modification on the fucose residue. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Shift Work Is Associated with Metabolic Syndrome in Young Female Korean Workers

    OpenAIRE

    Yu, Kyoung Hwa; Yi, Yu Hyeon; Kim, Yun Jin; Cho, Byung Mann; Lee, Sang Yeoup; Lee, Jeong Gyu; Jeong, Dong Wook; Ji, So Yeon

    2017-01-01

    Background Shift work is associated with health problems, including metabolic syndrome. This study investigated the association between shift work and metabolic syndrome in young workers. Methods A total of 3,317 subjects aged 20?40 years enrolled in the 2011?2012 Korean National Health and Nutrition Examination Survey were divided into shift and day workers. We conducted a cross-sectional study and calculated odds ratios using multivariate logistic regression analysis in order to examine the...

  19. Dynamic gene expression for metabolic engineering of mammalian cells in culture.

    Science.gov (United States)

    Le, Huong; Vishwanathan, Nandita; Kantardjieff, Anne; Doo, Inseok; Srienc, Michael; Zheng, Xiaolu; Somia, Nikunj; Hu, Wei-Shou

    2013-11-01

    Recombinant mammalian cells are the major hosts for the production of protein therapeutics. In addition to high expression of the product gene, a hyper-producer must also harbor superior phenotypic traits related to metabolism, protein secretion, and growth control. Introduction of genes endowing the relevant hyper-productivity traits is a strategy frequently used to enhance the productivity. Most of such cell engineering efforts have been performed using constitutive expression systems. However, cells respond to various environmental cues and cellular events dynamically according to cellular needs. The use of inducible systems allows for time dependent expression, but requires external manipulation. Ideally, a transgene's expression should be synchronous to the host cell's own rhythm, and at levels appropriate for the objective. To that end, we identified genes with different expression dynamics and intensity ranges using pooled transcriptome data. Their promoters may be used to drive the expression of the transgenes following the desired dynamics. We isolated the promoter of the Thioredoxin-interacting protein (Txnip) gene and demonstrated its capability to drive transgene expression in concert with cell growth. We further employed this Chinese hamster promoter to engineer dynamic expression of the mouse GLUT5 fructose transporter in Chinese hamster ovary (CHO) cells, enabling them to utilize sugar according to cellular needs rather than in excess as typically seen in culture. Thus, less lactate was produced, resulting in a better growth rate, prolonged culture duration, and higher product titer. This approach illustrates a novel concept in metabolic engineering which can potentially be used to achieve dynamic control of cellular behaviors for enhanced process characteristics. © 2013 Published by Elsevier Inc.

  20. Synthetic biology for engineering acetyl coenzyme a metabolism in yeast

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2014-01-01

    The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels, chemicals, and pharmaceuticals. The use of this cell factory for cost-efficient production of novel fuels and chemicals requires high yields and low by-product production. Many industrially interesting...... chemicals are biosynthesized from acetyl coenzyme A (acetyl-CoA), which serves as a central precursor metabolite in yeast. To ensure high yields in production of these chemicals, it is necessary to engineer the central carbon metabolism so that ethanol production is minimized (or eliminated) and acetyl...

  1. Metabolic Characteristics of a Glucose-Utilizing Shewanella oneidensis Strain Grown under Electrode-Respiring Conditions.

    Directory of Open Access Journals (Sweden)

    Gen Nakagawa

    Full Text Available In bioelectrochemical systems, the electrode potential is an important parameter affecting the electron flow between electrodes and microbes and microbial metabolic activities. Here, we investigated the metabolic characteristics of a glucose-utilizing strain of engineered Shewanella oneidensis under electrode-respiring conditions in electrochemical reactors for gaining insight into how metabolic pathways in electrochemically active bacteria are affected by the electrode potential. When an electrochemical reactor was operated with its working electrode poised at +0.4 V (vs. an Ag/AgCl reference electrode, the engineered S. oneidensis strain, carrying a plasmid encoding a sugar permease and glucose kinase of Escherichia coli, generated current by oxidizing glucose to acetate and produced D-lactate as an intermediate metabolite. However, D-lactate accumulation was not observed when the engineered strain was grown with a working electrode poised at 0 V. We also found that transcription of genes involved in pyruvate and D-lactate metabolisms was upregulated at a high electrode potential compared with their transcription at a low electrode potential. These results suggest that the carbon catabolic pathway of S. oneidensis can be modified by controlling the potential of a working electrode in an electrochemical bioreactor.

  2. Accelerator science and its civil and utility engineering work

    International Nuclear Information System (INIS)

    Yoshioka, Masakazu

    2006-01-01

    In large-scale accelerator projects such as TRISTAN and J-PARC, approximately half of the total project costs are spent on the civil and utility engineering work for the accelerator. In addition, the quality of civil and utility engineering has a large effect on the quality of the beam. With increasing scale of projects, there is growing specialization of the people in charge of the accelerator on the one hand, and the people in charge of civil and utility engineering on the other. Mutual understanding between the people in charge is therefore important in such cases. From the experience I have accumulated working on the facilities of many large projects, I have become keenly aware of the necessity for both accelerator-literate civil engineering specialists and civil engineering-literate accelerator researchers. A straight-forward method for satisfying this requirement is to systematize accelerator science as a science with civil and utility engineering for accelerators recognized as its sub-field. When new projects launched, the methodology of the natural sciences should be incorporated whereby past experience is fully utilized and then new technologies and knowledge are accumulated. (author)

  3. Predicting on-site environmental impacts of municipal engineering works

    OpenAIRE

    Gangolells Solanellas, Marta; Casals Casanova, Miquel; Forcada Matheu, Núria; Macarulla Martí, Marcel

    2014-01-01

    The research findings fill a gap in the body of knowledge by presenting an effective way to evaluate the significance of on-site environmental impacts of municipal engineering works prior to the construction stage. First, 42 on-site environmental impacts of municipal engineering works were identified by means of a process-oriented approach. Then, 46 indicators and their corresponding significance limits were determined on the basis of a statistical analysis of 25 new-build and remodelling mun...

  4. 48 CFR 36.609-3 - Work oversight in architect-engineer contracts.

    Science.gov (United States)

    2010-10-01

    ... architect-engineer contracts. 36.609-3 Section 36.609-3 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 36.609-3 Work oversight in architect-engineer contracts. The contracting officer...

  5. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels.

    Science.gov (United States)

    Zhang, Yueping; Nielsen, Jens; Liu, Zihe

    2017-12-01

    Terpenoids represent a large class of natural products with significant commercial applications. These chemicals are currently mainly obtained through extraction from plants and microbes or through chemical synthesis. However, these sources often face challenges of unsustainability and low productivity. In order to address these issues, Escherichia coli and yeast have been metabolic engineered to produce non-native terpenoids. With recent reports of engineering yeast metabolism to produce several terpenoids at high yields, it has become possible to establish commercial yeast production of terpenoids that find applications as perfume ingredients, pharmaceuticals and advanced biofuels. In this review, we describe the strategies to rewire the yeast pathway for terpenoid biosynthesis. Recent advances will be discussed together with challenges and perspectives of yeast as a cell factory to produce different terpenoids. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals.

    Science.gov (United States)

    Borodina, Irina; Nielsen, Jens

    2014-05-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology and the advances in yeast strain engineering will stimulate development of novel yeast-based processes for chemicals production. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications.

    Science.gov (United States)

    Lin, Jyun-Liang; Wagner, James M; Alper, Hal S

    2017-12-01

    Within the Design-Build-Test Cycle for strain engineering, rapid product detection and selection strategies remain challenging and limit overall throughput. Here we summarize a wide variety of modalities that transduce chemical concentrations into easily measured absorbance, luminescence, and fluorescence signals. Specifically, we cover protein-based biosensors (including transcription factors), nucleic acid-based biosensors, coupled enzyme reactions, bioorthogonal chemistry, and fluorescent and chromogenic dyes and substrates as modalities for detection. We focus on the use of these methods for strain engineering and enzyme discovery and conclude with remarks on the current and future state of biosensor development for application in the metabolic engineering field. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Methodology discourses as boundary work in the construction of engineering education.

    Science.gov (United States)

    Beddoes, Kacey

    2014-04-01

    Engineering education research is a new field that emerged in the social sciences over the past 10 years. This analysis of engineering education research demonstrates that methodology discourses have played a central role in the construction and development of the field of engineering education, and that they have done so primarily through boundary work. This article thus contributes to science and technology studies literature by examining the role of methodology discourses in an emerging social science field. I begin with an overview of engineering education research before situating the case within relevant bodies of literature on methodology discourses and boundary work. I then identify two methodology discourses--rigor and methodological diversity--and discuss how they contribute to the construction and development of engineering education research. The article concludes with a discussion of how the findings relate to prior research on methodology discourses and boundary work and implications for future research.

  9. 48 CFR 936.609-3 - Work oversight in architect-engineer contracts.

    Science.gov (United States)

    2010-10-01

    ... architect-engineer contracts. 936.609-3 Section 936.609-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 936.609-3 Work oversight in architect-engineer contracts. In addition to the clause at 48...

  10. First year engineering students: Perceptions of engineers and engineering work amongst domestic and international students

    Directory of Open Access Journals (Sweden)

    Dawn Bennett

    2015-03-01

    Full Text Available Despite being well ahead of many other disciplines in establishing strong and evidence-based research and practice, engineering in many countries still experiences high rates of student and graduate attrition. One possible reason for this is that students enter engineering study without understanding the realities of either their degree program or engineering work, and without a sense of motivation and commitment. The research reported here aimed to extend understanding of first year engineering students’ thinking about their competencies, identity, self-efficacy, motivation, and career. The study involved over 1,100 first year engineering students enrolled in a common first year unit. Responses were coded using the Engineers Australia graduate competencies as a framework, and this paper reports findings from the most diverse cohort of students (n=260, of whom 49% were international students with English as their second language. The research identified differences between international and domestic students’ perceptions of self and of career competencies, possibly related to self-esteem. Implications include improved confidence and motivation to learn as students consider their strengths, interests and goals. Further, the research raises the need for analysis of international students’ cultural and educational background to determine how different cohorts of international students self-appraise and how they associate learning with their future careers.

  11. Repository-Based Software Engineering Program: Working Program Management Plan

    Science.gov (United States)

    1993-01-01

    Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.

  12. Promiscuous activities of heterologous enzymes lead to unintended metabolic rerouting in Saccharomyces cerevisiae engineered to assimilate various sugars from renewable biomass.

    Science.gov (United States)

    Yun, Eun Ju; Oh, Eun Joong; Liu, Jing-Jing; Yu, Sora; Kim, Dong Hyun; Kwak, Suryang; Kim, Kyoung Heon; Jin, Yong-Su

    2018-01-01

    Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae . Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of β-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.

  13. Flux Balance Analysis Inspired Bioprocess Upgrading for Lycopene Production by a Metabolically Engineered Strain of Yarrowia lipolytica

    Directory of Open Access Journals (Sweden)

    Komi Nambou

    2015-12-01

    Full Text Available Genome-scale metabolic models embody a significant advantage of systems biology since their applications as metabolic flux simulation models enable predictions for the production of industrially-interesting metabolites. The biotechnological production of lycopene from Yarrowia lipolytica is an emerging scope that has not been fully scrutinized, especially for what concerns cultivation conditions of newly generated engineered strains. In this study, by combining flux balance analysis (FBA and Plackett-Burman design, we screened chemicals for lycopene production from a metabolically engineered strain of Y. lipolytica. Lycopene concentrations of 126 and 242 mg/L were achieved correspondingly from the FBA-independent and the FBA-assisted designed media in fed-batch cultivation mode. Transcriptional studies revealed upregulations of heterologous genes in media designed according to FBA, thus implying the efficiency of model predictions. Our study will potentially support upgraded lycopene and other terpenoids production from existing or prospect bioengineered strains of Y. lipolytica and/or closely related yeast species.

  14. Recent advances in engineering propionyl-CoA metabolism for microbial production of value-added chemicals and biofuels.

    Science.gov (United States)

    Srirangan, Kajan; Bruder, Mark; Akawi, Lamees; Miscevic, Dragan; Kilpatrick, Shane; Moo-Young, Murray; Chou, C Perry

    2017-09-01

    Diminishing fossil fuel reserves and mounting environmental concerns associated with petrochemical manufacturing practices have generated significant interests in developing whole-cell biocatalytic systems for the production of value-added chemicals and biofuels. Although acetyl-CoA is a common natural biogenic precursor for the biosynthesis of numerous metabolites, propionyl-CoA is unpopular and non-native to most organisms. Nevertheless, with its C3-acyl moiety as a discrete building block, propionyl-CoA can serve as another key biogenic precursor to several biological products of industrial importance. As a result, engineering propionyl-CoA metabolism, particularly in genetically tractable hosts with the use of inexpensive feedstocks, has paved an avenue for novel biomanufacturing. Herein, we present a systematic review on manipulation of propionyl-CoA metabolism as well as relevant genetic and metabolic engineering strategies for microbial production of value-added chemicals and biofuels, including odd-chain alcohols and organic acids, bio(co)polymers and polyketides. [Formula: see text].

  15. Charter for Systems Engineer Working Group

    Science.gov (United States)

    Suffredini, Michael T.; Grissom, Larry

    2015-01-01

    This charter establishes the International Space Station Program (ISSP) Mobile Servicing System (MSS) Systems Engineering Working Group (SEWG). The MSS SEWG is established to provide a mechanism for Systems Engineering for the end-to-end MSS function. The MSS end-to-end function includes the Space Station Remote Manipulator System (SSRMS), the Mobile Remote Servicer (MRS) Base System (MBS), Robotic Work Station (RWS), Special Purpose Dexterous Manipulator (SPDM), Video Signal Converters (VSC), and Operations Control Software (OCS), the Mobile Transporter (MT), and by interfaces between and among these elements, and United States On-Orbit Segment (USOS) distributed systems, and other International Space Station Elements and Payloads, (including the Power Data Grapple Fixtures (PDGFs), MSS Capture Attach System (MCAS) and the Mobile Transporter Capture Latch (MTCL)). This end-to-end function will be supported by the ISS and MSS ground segment facilities. This charter defines the scope and limits of the program authority and document control that is delegated to the SEWG and it also identifies the panel core membership and specific operating policies.

  16. Work-family spillover and metabolic syndrome indicators: Findings from a national sample.

    Science.gov (United States)

    Versey, H Shellae; Tan, Mingxuan

    2018-03-01

    This study examines the link between negative work-family spillover and metabolic risk factors over a 9-year period. Data from two waves of the Midlife in the United States Survey were used to explore relationships between negative work-family spillover and four indicators of metabolic syndrome-blood pressure, triglycerides, body mass index, and glucose levels. In a sample of full-time working men and women ( N = 630), increased negative spillover at baseline significantly predicted higher body mass index nearly a decade later, with a marginally significant effect for triglyceride levels. Increases in spillover also body mass index and glucose levels at follow-up. This study extends research tying work-life spillover to health and suggests that further investigation is needed to fully understand the long-term effects of work stress.

  17. Lessons learned from metabolic engineering of cyanogenic glucosides

    DEFF Research Database (Denmark)

    Morant, Anne Vinther; Jørgensen, Kirsten; Jørgensen, Bodil

    2007-01-01

    Plants produce a plethora of secondary metabolites which constitute a wealth of potential pharmaceuticals, pro-vitamins, flavours, fragrances, colorants and toxins as well as a source of natural pesticides. Many of these valuable compounds are only synthesized in exotic plant species or in concen......Plants produce a plethora of secondary metabolites which constitute a wealth of potential pharmaceuticals, pro-vitamins, flavours, fragrances, colorants and toxins as well as a source of natural pesticides. Many of these valuable compounds are only synthesized in exotic plant species...... or in concentrations too low to facilitate commercialization. In some cases their presence constitutes a health hazard and renders the crops unsuitable for consumption. Metabolic engineering is a powerful tool to alter and ameliorate the secondary metabolite composition of crop plants and gain new desired traits...

  18. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling.

    Science.gov (United States)

    Pasoreck, Elise K; Su, Jin; Silverman, Ian M; Gosai, Sager J; Gregory, Brian D; Yuan, Joshua S; Daniell, Henry

    2016-09-01

    The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were ~4300-fold higher in C and CN lines than in N, but all accumulated ~150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level of transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. The mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Patchoulol Production with Metabolically Engineered Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Nadja A. Henke

    2018-04-01

    Full Text Available Patchoulol is a sesquiterpene alcohol and an important natural product for the perfume industry. Corynebacterium glutamicum is the prominent host for the fermentative production of amino acids with an average annual production volume of ~6 million tons. Due to its robustness and well established large-scale fermentation, C. glutamicum has been engineered for the production of a number of value-added compounds including terpenoids. Both C40 and C50 carotenoids, including the industrially relevant astaxanthin, and short-chain terpenes such as the sesquiterpene valencene can be produced with this organism. In this study, systematic metabolic engineering enabled construction of a patchoulol producing C. glutamicum strain by applying the following strategies: (i construction of a farnesyl pyrophosphate-producing platform strain by combining genomic deletions with heterologous expression of ispA from Escherichia coli; (ii prevention of carotenoid-like byproduct formation; (iii overproduction of limiting enzymes from the 2-c-methyl-d-erythritol 4-phosphate (MEP-pathway to increase precursor supply; and (iv heterologous expression of the plant patchoulol synthase gene PcPS from Pogostemon cablin. Additionally, a proof of principle liter-scale fermentation with a two-phase organic overlay-culture medium system for terpenoid capture was performed. To the best of our knowledge, the patchoulol titers demonstrated here are the highest reported to date with up to 60 mg L−1 and volumetric productivities of up to 18 mg L−1 d−1.

  20. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.

    Science.gov (United States)

    Yuan, Jianfeng; Wu, Mianbin; Lin, Jianping; Yang, Lirong

    2016-05-17

    L-(+)-tartaric acid (L-TA) is an important organic acid, which is produced from the cream of tartar or stereospecific hydrolysis of the cis-epoxysuccinate. The former method is limited by the availability of raw material and the latter is dependent on the petrochemical material. Thus, new processes for the economical preparation of L-TA from carbohydrate or renewable resource would be much more attractive. Production of 5-keto-D-gluconate (5-KGA) from glucose by Gluconobacter oxydans is the first step to produce L-TA. The aim of this work is to enhance 5-KGA accumulation using combinatorial metabolic engineering strategies in G. oxydans. The sldAB gene, encoding sorbitol dehydrogenase, was overexpressed in an industrial strain G. oxydans ZJU2 under a carefully selected promoter, P0169. To enhance the efficiency of the oxidation by sldAB, the coenzyme pyrroloquinoline quinone (PQQ) and respiratory chain were engineered. Besides, the role in sldAB overexpression, coenzyme and respiratory chain engineering and their subsequent effects on 5-KGA production were investigated. An efficient, stable recombinant strain was constructed, whereas the 5-KGA production could be enhanced. By self-overexpressing the sldAB gene in G. oxydans ZJU2 under the constitutive promoter P0169, the resulting strain, G. oxydans ZJU3, produced 122.48 ± 0.41 g/L of 5-KGA. Furthermore, through the coenzyme and respiratory chain engineering, the titer and productivity of 5-KGA reached 144.52 ± 2.94 g/L and 2.26 g/(L · h), respectively, in a 15 L fermenter. It could be further improved the 5-KGA titer by 12.10 % through the fed-batch fermentation under the pH shift and dissolved oxygen tension (DOT) control condition, obtained 162 ± 2.12 g/L with the productivity of 2.53 g/(L · h) within 64 h. The 5-KGA production could be significantly enhanced with the combinatorial metabolic engineering strategy in Gluconobacter strain, including sldAB overexpression, coenzyme

  1. 76 FR 10403 - Hewlett Packard (HP), Global Product Development, Engineering Workstation Refresh Team, Working...

    Science.gov (United States)

    2011-02-24

    ...), Global Product Development, Engineering Workstation Refresh Team, Working On-Site at General Motors..., Non-Information Technology Business Development Team and Engineering Application Support Team, working... Hewlett Packard, Global Product Development, Engineering Workstation Refresh Team, working on-site at...

  2. Metabolic transcription analysis of engineered Escherichia coli strains that overproduce L-phenylalanine

    Directory of Open Access Journals (Sweden)

    Gosset Guillermo

    2007-09-01

    Full Text Available Abstract Background The rational design of L-phenylalanine (L-Phe overproducing microorganisms has been successfully achieved by combining different genetic strategies such as inactivation of the phosphoenolpyruvate: phosphotransferase transport system (PTS and overexpression of key genes (DAHP synthase, transketolase and chorismate mutase-prephenate dehydratase, reaching yields of 0.33 (g-Phe/g-Glc, which correspond to 60% of theoretical maximum. Although genetic modifications introduced into the cell for the generation of overproducing organisms are specifically targeted to a particular pathway, these can trigger unexpected transcriptional responses of several genes. In the current work, metabolic transcription analysis (MTA of both L-Phe overproducing and non-engineered strains using Real-Time PCR was performed, allowing the detection of transcriptional responses to PTS deletion and plasmid presence of genes related to central carbon metabolism. This MTA included 86 genes encoding enzymes of glycolysis, gluconeogenesis, pentoses phosphate, tricarboxylic acid cycle, fermentative and aromatic amino acid pathways. In addition, 30 genes encoding regulatory proteins and transporters for aromatic compounds and carbohydrates were also analyzed. Results MTA revealed that a set of genes encoding carbohydrate transporters (galP, mglB, gluconeogenic (ppsA, pckA and fermentative enzymes (ldhA were significantly induced, while some others were down-regulated such as ppc, pflB, pta and ackA, as a consequence of PTS inactivation. One of the most relevant findings was the coordinated up-regulation of several genes that are exclusively gluconeogenic (fbp, ppsA, pckA, maeB, sfcA, and glyoxylate shunt in the best PTS- L-Phe overproducing strain (PB12-ev2. Furthermore, it was noticeable that most of the TCA genes showed a strong up-regulation in the presence of multicopy plasmids by an unknown mechanism. A group of genes exhibited transcriptional responses to

  3. The Relationship Between Shift Work and Metabolic Risk Factors : A Systematic Review of Longitudinal Studies

    NARCIS (Netherlands)

    Proper, Karin I; van de Langenberg, Daniëlla|info:eu-repo/dai/nl/374886970; Rodenburg, Wendy; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; van der Beek, Allard J; van Steeg, Harry; van Kerkhof, Linda W M

    2016-01-01

    CONTEXT: Although the metabolic health effects of shift work have been extensively studied, a systematic synthesis of the available research is lacking. This review aimed to systematically summarize the available evidence of longitudinal studies linking shift work with metabolic risk factors.

  4. Overproduction of Geranylgeraniol by Metabolically Engineered Saccharomyces cerevisiae▿

    Science.gov (United States)

    Tokuhiro, Kenro; Muramatsu, Masayoshi; Ohto, Chikara; Kawaguchi, Toshiya; Obata, Shusei; Muramoto, Nobuhiko; Hirai, Masana; Takahashi, Haruo; Kondo, Akihiko; Sakuradani, Eiji; Shimizu, Sakayu

    2009-01-01

    (E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter−1) rather than GGOH (0.2 mg liter−1) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter−1 GGOH and 6.5 mg liter−1 squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter−1 GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering. PMID:19592534

  5. Engineering synergy in biotechnology

    DEFF Research Database (Denmark)

    Nielsen, Jens; Fussenegger, Martin; Keasling, Jay

    2014-01-01

    In this article, the author focuses on approaches in metabolic engineering and synthetic biology for the creation of efficient cell factories, which can be bused to convert biomass and other feedstocks for the generation of chemicals. Topics discussed include development of restriction enzymes......, engineering plasmids and recyclable markers, production of 1,3-propanediol using a metabolically engineered Escherichia coli and production of isobutanol by using metabolically engineered yeast....

  6. TWRS Systems Engineering Working Plan

    International Nuclear Information System (INIS)

    Eiholzer, C.R.

    1994-01-01

    The purpose of this Systems Engineering (SE) Working Plan (SEWP) is to describe how the Westinghouse Hanford Company (WHC) Tank Waste Remediation System (TWRS) will implement the SE polity and guidance provided in the Tank Waste Remediation System (TWRS) Systems Engineering Management Plan (SEMP). Sections 2.0 through 4.0 cover how the SE process and management will be performed to develop a technical baseline within TWRS. Section 5.0 covers the plans and schedules to implement the SE process and management within TWRS. Detailed information contained in the TWRS Program SEMP is not repeated in this document. This SEWP and the SE discipline defined within apply to the TWRS Program and new and ongoing TWRS projects or activities, including new facilities and safety. The SE process will be applied to the existing Tank Farm operations where the Richland TWRS Program Office management determines the process appropriate and where value will be added to existing Tank Farm system and operations

  7. In vitro metabolic engineering for the salvage synthesis of NAD(.).

    Science.gov (United States)

    Honda, Kohsuke; Hara, Naoya; Cheng, Maria; Nakamura, Anna; Mandai, Komako; Okano, Kenji; Ohtake, Hisao

    2016-05-01

    Excellent thermal and operational stabilities of thermophilic enzymes can greatly increase the applicability of biocatalysis in various industrial fields. However, thermophilic enzymes are generally incompatible with thermo-labile substrates, products, and cofactors, since they show the maximal activities at high temperatures. Despite their pivotal roles in a wide range of enzymatic redox reactions, NAD(P)(+) and NAD(P)H exhibit relatively low stabilities at high temperatures, tending to be a major obstacle in the long-term operation of biocatalytic chemical manufacturing with thermophilic enzymes. In this study, we constructed an in vitro artificial metabolic pathway for the salvage synthesis of NAD(+) from its degradation products by the combination of eight thermophilic enzymes. The enzymes were heterologously produced in recombinant Escherichia coli and the heat-treated crude extracts of the recombinant cells were directly used as enzyme solutions. When incubated with experimentally optimized concentrations of the enzymes at 60°C, the NAD(+) concentration could be kept almost constant for 15h. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Biosynthesis and metabolic engineering of palmitoleate production, an important contributor to human health and sustainable industry.

    Science.gov (United States)

    Wu, Yongmei; Li, Runzhi; Hildebrand, David F

    2012-10-01

    Palmitoleate (cis-Δ9-16:1) shows numerous health benefits such as increased cell membrane fluidity, reduced inflammation, protection of the cardiovascular system, and inhibition of oncogenesis. Plant oils containing this unusual fatty acid can also be sustainable feedstocks for producing industrially important and high-demand 1-octene. Vegetable oils rich in palmitoleate are the ideal candidates for biodiesel production. Several wild plants are known that can synthesize high levels of palmitoleate in seeds. However, low yields and poor agronomic characteristics of these plants limit their commercialization. Metabolic engineering has been developed to create oilseed crops that accumulate high levels of palmitoleate or other unusual fatty acids, and significant advances have been made recently in this field, particularly using the model plant Arabidopsis as the host. The engineered targets for enhancing palmitoleate synthesis include overexpression of Δ9 desaturase from mammals, yeast, fungi, and plants, down-regulating KASII, coexpression of an ACP-Δ9 desaturase in plastids and CoA-Δ9 desaturase in endoplasmic reticulum (ER), and optimizing the metabolic flux into triacylglycerols (TAGs). This review will mainly describe the recent progress towards producing palmitoleate in transgenic plants by metabolic engineering along with our current understanding of palmitoleate biosynthesis and its regulation, as well as highlighting the bottlenecks that require additional investigation by combining lipidomics, transgenics and other "-omics" tools. A brief review of reported health benefits and non-food uses of palmitoleate will also be covered. Copyright © 2012. Published by Elsevier Ltd.

  9. Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris.

    Science.gov (United States)

    Wriessnegger, Tamara; Augustin, Peter; Engleder, Matthias; Leitner, Erich; Müller, Monika; Kaluzna, Iwona; Schürmann, Martin; Mink, Daniel; Zellnig, Günther; Schwab, Helmut; Pichler, Harald

    2014-07-01

    The sesquiterpenoid (+)-nootkatone is a highly demanded and highly valued aroma compound naturally found in grapefruit, pummelo or Nootka cypress tree. Extraction of (+)-nootkatone from plant material or its production by chemical synthesis suffers from low yields and the use of environmentally harmful methods, respectively. Lately, major attention has been paid to biotechnological approaches, using cell extracts or whole-cell systems for the production of (+)-nootkatone. In our study, the yeast Pichia pastoris initially was applied as whole-cell biocatalyst for the production of (+)-nootkatone from (+)-valencene, the abundant aroma compound of oranges. Therefore, we generated a strain co-expressing the premnaspirodiene oxygenase of Hyoscyamus muticus (HPO) and the Arabidopsis thaliana cytochrome P450 reductase (CPR) that hydroxylated extracellularly added (+)-valencene. Intracellular production of (+)-valencene by co-expression of valencene synthase from Callitropsis nootkatensis resolved the phase-transfer issues of (+)-valencene. Bi-phasic cultivations of P. pastoris resulted in the production of trans-nootkatol, which was oxidized to (+)-nootkatone by an intrinsic P. pastoris activity. Additional overexpression of a P. pastoris alcohol dehydrogenase and truncated hydroxy-methylglutaryl-CoA reductase (tHmg1p) significantly enhanced the (+)-nootkatone yield to 208mg L(-1) cell culture in bioreactor cultivations. Thus, metabolically engineered yeast P. pastoris represents a valuable, whole-cell system for high-level production of (+)-nootkatone from simple carbon sources. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Situational Analysis and Engineering Work Practices

    DEFF Research Database (Denmark)

    Buch, Anders; Andersen, Vibeke

    2013-01-01

    boundaries in order to investigate the dynamics of cultural reproduction in expert work practices. The paper will propose a new research agenda that – inspired by George Marcus’ multi-sited ethnographic methodology (Marcus 1998) and Adele Clarke’s situational analysis (Clarke 2005) – analyze (and contrasts...... of analysis and allowing the situation to be scalable. Likewise, it aspires to overcome the widespread dualism of ‘text’ and ‘con-text’ that pervades contemporary social science methods. We will argue that expert work practices – although reproduced and enacted in local settings – are also enactments......Studies of work practices of scientists and engineers inspired by Science and Technology Studies (STS) provide new material for a richer understanding of expert cultures and expert work practices. However, the specific and strictly situated focus of many of these studies threatens to limit...

  11. Work-related well-being of engineers in South Africa / Marna Malan

    OpenAIRE

    Malan, Marna Magdalena

    2004-01-01

    With the introduction of positive psychology the aim with organisational psychology shifted to finding the 'happy/productive' worker and focusing more on work wellness. Working as an engineer has generally been considered challenging, but tough demands on today's engineers can cause exhaustion, which is due to a combination of personal stressors, job and organisational stressors. However, recently the world of work has started to change drastically - which also holds true for t...

  12. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Skerker, Jeffrey M; Kong, In Iok; Kim, Heejin; Maurer, Matthew J; Zhang, Guo-Chang; Peng, Dairong; Wei, Na; Arkin, Adam P; Jin, Yong-Su

    2017-03-01

    Many desired phenotypes for producing cellulosic biofuels are often observed in industrial Saccharomyces cerevisiae strains. However, many industrial yeast strains are polyploid and have low spore viability, making it difficult to use these strains for metabolic engineering applications. We selected the polyploid industrial strain S. cerevisiae ATCC 4124 exhibiting rapid glucose fermentation capability, high ethanol productivity, strong heat and inhibitor tolerance in order to construct an optimal yeast strain for producing cellulosic ethanol. Here, we focused on developing a general approach and high-throughput screening method to isolate stable haploid segregants derived from a polyploid parent, such as triploid ATCC 4124 with a poor spore viability. Specifically, we deleted the HO genes, performed random sporulation, and screened the resulting segregants based on growth rate, mating type, and ploidy. Only one stable haploid derivative (4124-S60) was isolated, while 14 other segregants with a stable mating type were aneuploid. The 4124-S60 strain inherited only a subset of desirable traits present in the parent strain, same as other aneuploids, suggesting that glucose fermentation and specific ethanol productivity are likely to be genetically complex traits and/or they might depend on ploidy. Nonetheless, the 4124-60 strain did inherit the ability to tolerate fermentation inhibitors. When additional genetic perturbations known to improve xylose fermentation were introduced into the 4124-60 strain, the resulting engineered strain (IIK1) was able to ferment a Miscanthus hydrolysate better than a previously engineered laboratory strain (SR8), built by making the same genetic changes. However, the IIK1 strain showed higher glycerol and xylitol yields than the SR8 strain. In order to decrease glycerol and xylitol production, an NADH-dependent acetate reduction pathway was introduced into the IIK1 strain. By consuming 2.4g/L of acetate, the resulting strain (IIK1A

  13. Traction force microscopy of engineered cardiac tissues.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit

    2018-01-01

    Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.

  14. Rethinking Engineering by Working Interdisciplinary in Groups

    NARCIS (Netherlands)

    Dr. J.B.F. van Zonneveld; Dr.Ir. Hay Geraedts

    1997-01-01

    In this paper we will describe and present the results of an experiment at the Fontys University of Professional Education in which engineering students work together with students from other disciplines in a multidisciplinary group at the end of their study on a real-life environmental problem

  15. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae.

    Science.gov (United States)

    Da Silva, Nancy A; Srikrishnan, Sneha

    2012-03-01

    Metabolic pathway engineering in the yeast Saccharomyces cerevisiae leads to improved production of a wide range of compounds, ranging from ethanol (from biomass) to natural products such as sesquiterpenes. The introduction of multienzyme pathways requires precise control over the level and timing of expression of the associated genes. Gene number and promoter strength/regulation are two critical control points, and multiple studies have focused on modulating these in yeast. This MiniReview focuses on methods for introducing genes and controlling their copy number and on the many promoters (both constitutive and inducible) that have been successfully employed. The advantages and disadvantages of the methods will be presented, and applications to pathway engineering will be highlighted. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene

    DEFF Research Database (Denmark)

    Hu, Yating; Zhou, Yongjin J.; Bao, Jichen

    2017-01-01

    inefficient and suffers from limited natural resources. Here, we engineered a yeast cell factory for the sustainable production of germacrene A, which can be transformed to beta-elemene by a one-step chemical reaction in vitro. Two heterologous germacrene A synthases (GASs) converting farnesyl pyrophosphate...... (FPP) to germacrene A were evaluated in yeast for their ability to produce germacrene A. Thereafter, several metabolic engineering strategies were used to improve the production level. Overexpression of truncated 3-hydroxyl-3-methylglutaryl-CoA reductase and fusion of FPP synthase with GAS, led...

  17. Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products

    Directory of Open Access Journals (Sweden)

    Andreas Hartmut Förster

    2014-05-01

    Full Text Available Mixed-acid fermentation end products have numerous applications in biotechnology. This is probably the main driving force for the development of multiple strains that are supposed to produce individual end products with high yields. The process of engineering Escherichia coli strains for applied production of ethanol, lactate, succinate, or acetate was initiated several decades ago and is still ongoing. This review follows the path of strain development from the general characteristics of aerobic versus anaerobic metabolism over the regulatory machinery that enables the different metabolic routes. Thereafter, major improvements for broadening the substrate spectrum of Escherichia coli towards cheap carbon sources like molasses or lignocellulose are highlighted before major routes of strain development for the production of ethanol, acetate, lactate and succinate are presented.

  18. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    Science.gov (United States)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  19. [Dry immersion effects on the mechanisms of metabolic-reflex regulation of hemodynamics during muscular work].

    Science.gov (United States)

    Bravyĭ, Ia R; Bersenev, E Iu; Missina, S S; Borovik, A S; Sharova, A P; Vinogradova, O L

    2008-01-01

    Effects of 4-d dry immersion on metabolic-reflex regulation of hemodynamics were evaluated during local static work (30% of maximum voluntary effort) of the talocrural extensors. One group of immersed test-subjects received low-frequency electrostimulation of leg muscles to offset the immersion effect on EMG of working muscles. Metabolic-reflex regulation was evaluated through comparison of cardiovascular responses to physical tests with and w/o post-exercise vascular occlusion. Immersion vaguely increased heart rate and reduced systolic arterial pressure in resting subjects; however, it did not have a distinct effect on arterial pressure and HR during muscular work or metabolic-reflex potentiation of hemodynamic shifts.

  20. Glycerol positive promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ho, Ping-Wei; Klein, Mathias; Futschik, Matthias; Nevoigt, Elke

    2018-05-01

    Glycerol offers several advantages as a substrate for biotechnological applications. An important step toward using the popular production host Saccharomyces cerevisiae for glycerol-based bioprocesses has been the fact that in recent studies commonly used S. cerevisiae strains were engineered to grow in synthetic medium containing glycerol as the sole carbon source. For metabolic engineering projects of S. cerevisiae growing on glycerol, characterized promoters are missing. In the current study, we used transcriptome analysis and a yECitrine-based fluorescence reporter assay to select and characterize 25 useful promoters. The promoters of the genes ALD4 and ADH2 showed 4.2-fold and 3-fold higher activities compared to the well-known strong TEF1 promoter. Moreover, the collection contains promoters with graded activities in synthetic glycerol medium and different degrees of glucose repression. To demonstrate the general applicability of the promoter collection, we successfully used a subset of the characterized promoters with graded activities in order to optimize growth on glycerol in an engineered derivative of CEN.PK, in which glycerol catabolism exclusively occurs via a non-native DHA pathway.

  1. Nuclear plant engineering work and integrated management system

    International Nuclear Information System (INIS)

    Ohkubo, Y.; Obata, T.; Tanaka, K.

    1992-01-01

    The Application of computers to the design, engineering, manufacturing and construction works of nuclear power plants has greatly contributed to improvement of productivity and reliability in the nuclear power plants constructed by Mitsubishi Nuclear Group for more than ten years. However, in most cases, those systems have been developed separately and utilized independently in different computer software and hardware environments and have not been fully utilized to achieve high efficiency and reliability. In order to drastically increase the productivity and efficiency, development of NUclear power plant engineering Work and INtegrated manaGement System (NUWINGS) started in 1987 to unify and integrate various conventional and developing systems using the state-of-the-art computer technology. The NUWINGS is almost completed and is now applied to actual plant construction. (author)

  2. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Johnston, M.

    2000-01-01

    Increasing the flux through central carbon metabolism is difficult because of rigidity in regulatory structures, at both the genetic and the enzymatic levels. Here we describe metabolic engineering of a regulatory network to obtain a balanced increase in the activity of all the enzymes in the pat...... media. The improved galactose consumption of the gal mutants did not favor biomass formation, but rather caused excessive respiro-fermentative metabolism, with the ethanol production rate increasing linearly with glycolytic flux....... by eliminating three known negative regulators of the GAL system: Gale, Gal80, and Mig1. This led to a 41% increase in flux through the galactose utilization pathway compared with the wild-type strain. This is of significant interest within the field of biotechnology since galactose is present in many industrial...

  3. Combining metabolic engineering and biocompatible chemistry for high-yield production of homo-diacetyl and homo-(S,S)-2,3-butanediol.

    Science.gov (United States)

    Liu, Jianming; Chan, Siu Hung Joshua; Brock-Nannestad, Theis; Chen, Jun; Lee, Sang Yup; Solem, Christian; Jensen, Peter Ruhdal

    2016-07-01

    Biocompatible chemistry is gaining increasing attention because of its potential within biotechnology for expanding the repertoire of biological transformations carried out by enzymes. Here we demonstrate how biocompatible chemistry can be used for synthesizing valuable compounds as well as for linking metabolic pathways to achieve redox balance and rescued growth. By comprehensive rerouting of metabolism, activation of respiration, and finally metal ion catalysis, we successfully managed to convert the homolactic bacterium Lactococcus lactis into a homo-diacetyl producer with high titer (95mM or 8.2g/L) and high yield (87% of the theoretical maximum). Subsequently, the pathway was extended to (S,S)-2,3-butanediol (S-BDO) through efficiently linking two metabolic pathways via chemical catalysis. This resulted in efficient homo-S-BDO production with a titer of 74mM (6.7g/L) S-BDO and a yield of 82%. The diacetyl and S-BDO production rates and yields obtained are the highest ever reported, demonstrating the promising combination of metabolic engineering and biocompatible chemistry as well as the great potential of L. lactis as a new production platform. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  4. Engineers' Role in the Management of Working Environment in Danish Enterprises: Results of a National Survey

    DEFF Research Database (Denmark)

    Broberg, Ole; Hansen, Nanette Juhler; Høgsbo, Mette Maribo

    1998-01-01

    training at engineering schools are very limited. As the engineers find it very important to teach working environment at engineering schools it must be considered what kind of curriculum would be most effective for the engineering career. Finally, the engineers do not perceive that management or others......This study confirms that many engineers are not aware that they influence the working environment of other people through their engineering. Also, it indicates that the extent of influence dependends on engineering domain and task content. Many engineers and enterprises have an espoused theory...... expressing a positive attitude towards working environment considerations in engineering. However, the theory-in-action seems to be quite different. Engineers do not know what to do in relation to working environment considerations. They mainly point to solidifying their knowledge in the area combined...

  5. Towards a sustainable bio-based economy: Redirecting primary metabolism to new products with plant synthetic biology.

    Science.gov (United States)

    Shih, Patrick M

    2018-08-01

    Humans have domesticated many plant species as indispensable sources of food, materials, and medicines. The dawning era of synthetic biology represents a means to further refine, redesign, and engineer crops to meet various societal and industrial needs. Current and future endeavors will utilize plants as the foundation of a bio-based economy through the photosynthetic production of carbohydrate feedstocks for the microbial fermentation of biofuels and bioproducts, with the end goal of decreasing our dependence on petrochemicals. As our technological capabilities improve, metabolic engineering efforts may expand the utility of plants beyond sugar feedstocks through the direct production of target compounds, including pharmaceuticals, renewable fuels, and commodity chemicals. However, relatively little work has been done to fully realize the potential in redirecting central carbon metabolism in plants for the engineering of novel bioproducts. Although our ability to rationally engineer and manipulate plant metabolism is in its infancy, I highlight some of the opportunities and challenges in applying synthetic biology towards engineering plant primary metabolism. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Medicine is not health care, food is health care: plant metabolic engineering, diet and human health.

    Science.gov (United States)

    Martin, Cathie; Li, Jie

    2017-11-01

    Contents 699 I. 699 II. 700 III. 700 IV. 706 V. 707 VI. 714 714 References 714 SUMMARY: Plants make substantial contributions to our health through our diets, providing macronutrients for energy and growth as well as essential vitamins and phytonutrients that protect us from chronic diseases. Imbalances in our food can lead to deficiency diseases or obesity and associated metabolic disorders, increased risk of cardiovascular diseases and cancer. Nutritional security is now a global challenge which can be addressed, at least in part, through plant metabolic engineering for nutritional improvement of foods that are accessible to and eaten by many. We review the progress that has been made in nutritional enhancement of foods, both improvements through breeding and through biotechnology and the engineering principles on which increased phytonutrient levels are based. We also consider the evidence, where available, that such foods do enhance health and protect against chronic diseases. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Development of Renewable Biofuels Technology by Transcriptomic Analysis and Metabolic Engineering of Diatoms

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, Mark [Univ. of California, San Diego, CA (United States)

    2013-11-18

    There is enormous interest in developing renewable sources of liquid fuels because of depletion of fossil fuel reserves, dependence on foreign sources, and increasing atmospheric CO2 levels. Algae produce neutral lipids that are readily converted into liquid fuels such as biodiesel or JP-8 equivalent, and are attractive sources because they are far more productive than plants (yielding 10 -100’s of time more lipid per land area), and can be grown on non-cultivatable land with non-potable (brackish or salt) water sources. Unicellular algae known as diatoms were the most thoroughly characterized species in the National Renewable Energy Laboratory’s Aquatic Species Program, whose goal was to develop microalgae as renewable fuel sources. Lipid accumulation in microalgae is generally induced by nutrient limitation, which involves a change in environmental conditions. Intrinsic variability in cellular response to environmental changes prevents a high degree of control over the process. Nutrient limitation also inhibits biomass accumulation; therefore a tradeoff between high biomass and lipid production occurs. The goal of this project was to develop metabolic engineering approaches for diatoms to enable induction of lipid accumulation by controllable manipulation of intracellular processes rather than from external environmental conditions, and to manipulate carbon partitioning within the cell between lipid and carbohydrate synthesis to enable both abundant biomass and lipid accumulation. There were two specific objectives for this project; Objective 1:To perform comparative transcriptomic analysis in T. pseudonana and C. cryptica of lipid accumulation resulting from silicon and nitrogen limitation, to identify common and key regulatory steps involved in controlling lipid accumulation and carbon partitioning; and Objective 2: To metabolically engineer the cell to alter carbon partitioning to either trigger lipid induction without the need for nutrient

  8. Engineering a Cause and Cure to Climate Change; Working a culture change with our Future Engineers.

    Science.gov (United States)

    Hudier, E. J. J.

    2014-12-01

    Where scientist unravel the laws of nature giving the human race the means to remodel their environment, engineers are the tools that put together the very technologies that give humans this power. Early on, along our first steps through this industrialization era, development was the key word, nature could digest our waste products no matter what. We have managed to tamper with our atmosphere's gas composition and the climate is slowly remodelling our way of life. Engineers are now expected to be a key part of the solution. Engineering programs have evolved to include new dimensions such as ethics, communication and environment. We want future engineers to put these dimensions first while working on new machine designs, concepts and procedures. As undergraduate students with a deep science background we also want them to be a source of information for their co-workers and more. How well are we getting through? How good teachers our future engineers will be? This work take a look at the teaching/learning successes comparing engineering students with students attending an undergraduate program in biology. Methods emphasizing the acquisition of knowledge through lectures and reading assignments are tested along with activities aiming at unraveling the scientific fundamental behind environmental issues and putting forward original solutions to specific problematic. Concept knowledge scores, communications' quality and activities evaluations by students are discussed.

  9. Engineering as a Social Activity: Preparing Engineers to Thrive in the Changing World of Work

    Science.gov (United States)

    Joyner, Fredricka F.; Mann, Derek T. Y.; Harris, Todd

    2012-01-01

    Key macro-trends are combining to create a new work context for the practice of engineering. Telecommuting and virtual teams create myriad possibilities and challenges related to managing work and workers. Social network technology tools allow for unprecedented global, 24/7 collaboration. Globalization has created hyper-diverse organizations,…

  10. Engineering of metabolic control

    Science.gov (United States)

    Liao, James C.

    2004-03-16

    The invention features a method of producing heterologous molecules in cells under the regulatory control of a metabolite and metabolic flux. The method can enhance the synthesis of heterologous polypeptides and metabolites.

  11. Biosynthetic Pathway and Metabolic Engineering of Plant Dihydrochalcones.

    Science.gov (United States)

    Ibdah, Mwafaq; Martens, Stefan; Gang, David R

    2018-03-14

    Dihydrochalcones are plant natural products containing the phenylpropanoid backbone and derived from the plant-specific phenylpropanoid pathway. Dihydrochalcone compounds are important in plant growth and response to stresses and, thus, can have large impacts on agricultural activity. In recent years, these compounds have also received increased attention from the biomedical community for their potential as anticancer treatments and other benefits for human health. However, they are typically produced at relatively low levels in plants. Therefore, an attractive alternative is to express the plant biosynthetic pathway genes in microbial hosts and to engineer the metabolic pathway/host to improve the production of these metabolites. In the present review, we discuss in detail the functions of genes and enzymes involved in the biosynthetic pathway of the dihydrochalcones and the recent strategies and achievements used in the reconstruction of multi-enzyme pathways in microorganisms in efforts to be able to attain higher amounts of desired dihydrochalcones.

  12. Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus.

    Science.gov (United States)

    Thorgersen, Michael P; Lipscomb, Gina L; Schut, Gerrit J; Kelly, Robert M; Adams, Michael W W

    2014-03-01

    The heterotrophic, hyperthermophilic archaeon Pyrococcus furiosus is a new addition to the growing list of genetically-tractable microorganisms suitable for metabolic engineering to produce liquid fuels and industrial chemicals. P. furiosus was recently engineered to generate 3-hydroxypropionate (3-HP) from CO₂ and acetyl-CoA by the heterologous-expression of three enzymes from the CO₂ fixation cycle of the thermoacidophilic archaeon Metallosphaera sedula using a thermally-triggered induction system. The acetyl-CoA for this pathway is generated from glucose catabolism that in wild-type P. furiosus is converted to acetate with concurrent ATP production by the heterotetrameric (α₂β₂) acetyl-CoA synthetase (ACS). Hence ACS in the engineered 3-HP production strain (MW56) competes with the heterologous pathway for acetyl-CoA. Herein we show that strains of MW56 lacking the α-subunit of either of the two ACSs previously characterized from P. furiosus (ACSI and ACSII) exhibit a three-fold increase in specific 3-HP production. The ΔACSIα strain displayed only a minor defect in growth on either maltose or peptides, while no growth defect on these substrates was observed with the ΔACSIIα strain. Deletion of individual and multiple ACS subunits was also shown to decrease CoA release activity for several different CoA ester substrates in addition to acetyl-CoA, information that will be extremely useful for future metabolic engineering endeavors in P. furiosus. Copyright © 2014 International Metabolic Engineering Society. All rights reserved.

  13. 1C.10: METABOLIC SYNDROME IN A POPULATION OF EMPLOYEES WORKING FOR COMPANIES IN MEXICO.

    Science.gov (United States)

    Perez-Cuadra, A; Limon, F; Rozycka, M; Marques, J; Delgado, J; Meaney, E; Guerra, M

    2015-06-01

    In Mexico, cardiovascular diseases represent the second cause of death, after Diabetes. This is the first trial to describe the metabolic syndrome in a population of Mexican urban employees, working for private companies.To analyze the presence of metabolic syndrome in Mexican employees working for private companies. Study of a consecutive series of evaluated cases between 2010 and 2014. Each participant was subject to the following: comprehensive physical examination, blood pressure, heart rate, height, weight, body mass index, waist/hip index, body fat index, abdominal girth, and lab profile, including lipid profile and glycemia. Publication criteria on harmonization for metabolic syndrome were considered: 3 of the following 5 criteria: presence of central obesity (abdominal girth > 90 cm for men and > 80 cm for women),TA 130/85, Triglycerides > 150 mg%, Glycemia > 100 mg% and HDL metabolic syndrome prevalence by gender, Table 2 presents data by age and gender.(Figure is included in full-text article.) : The population of Mexican employees working for private companies analyzed presents a high prevalence of metabolic syndrome, that increases with age, placing it at a high risk for cardiovascular disease. Men present a higher metabolic syndrome prevalence (p < 0.0001) compared to women analyzed in the group under 65 years. From 65 years and on, both groups present a high prevalence.

  14. Work-family life courses and metabolic markers in mid-life: evidence from the British National Child Development Study

    Science.gov (United States)

    McMunn, Anne; Lacey, Rebecca E; Kumari, Meena; Worts, Diana; McDonough, Peggy; Sacker, Amanda

    2016-01-01

    Background Previous studies have found generally better health among those who combine employment and family responsibilities; however, most research excludes men, and relies on subjective measures of health and information on work and family activities from only 1 or 2 time points in the life course. This study investigated associations between work-family life course types (LCTs) and markers of metabolic risk in a British birth cohort study. Methods Multichannel sequence analysis was used to generate work-family LCTs, combining annual information on work, partnership and parenthood between 16 and 42 years for men and women in the British National Child Development Study (NCDS, followed since their birth in 1958). Associations between work-family LCTs and metabolic risk factors in mid-life (age 44–45) were tested using multivariate linear regression in multiply imputed data. Results Life courses characterised by earlier transitions into parenthood were associated with significantly increased metabolic risk, regardless of attachment to paid work or marital stability over the life course. These associations were only partially attenuated by educational qualifications, early life circumstances and adult mediators. The positive association between weak labour markets ties and metabolic risk was weaker than might be expected from previous studies. Associations between work-family LCTs and metabolic risk factors did not differ significantly by gender. Conclusions Earlier transitions to parenthood are linked to metabolic risk in mid-life. PMID:26659761

  15. The Relationship Between Shift Work and Metabolic Risk Factors: A Systematic Review of Longitudinal Studies.

    Science.gov (United States)

    Proper, Karin I; van de Langenberg, Daniëlla; Rodenburg, Wendy; Vermeulen, Roel C H; van der Beek, Allard J; van Steeg, Harry; van Kerkhof, Linda W M

    2016-05-01

    Although the metabolic health effects of shift work have been extensively studied, a systematic synthesis of the available research is lacking. This review aimed to systematically summarize the available evidence of longitudinal studies linking shift work with metabolic risk factors. A systematic literature search was performed in 2015. Studies were included if (1) they had a longitudinal design; (2) shift work was studied as the exposure; and (3) the outcome involved a metabolic risk factor, including anthropometric, blood glucose, blood lipid, or blood pressure measures. Eligible studies were assessed for their methodologic quality in 2015. A best-evidence synthesis was used to draw conclusions per outcome. Thirty-nine articles describing 22 studies were included. Strong evidence was found for a relation between shift work and increased body weight/BMI, risk for overweight, and impaired glucose tolerance. For the remaining outcomes, there was insufficient evidence. Shift work seems to be associated with body weight gain, risk for overweight, and impaired glucose tolerance. Overall, lack of high-methodologic quality studies and inconsistency in findings led to insufficient evidence in assessing the relation between shift work and other metabolic risk factors. To strengthen the evidence, more high-quality longitudinal studies that provide more information on the shift work schedule (e.g., frequency of night shifts, duration in years) are needed. Further, research to the (mediating) role of lifestyle behaviors in the health effects of shift work is recommended, as this may offer potential for preventive strategies. Copyright © 2016. Published by Elsevier Inc.

  16. Controlling cell-free metabolism through physiochemical perturbations.

    Science.gov (United States)

    Karim, Ashty S; Heggestad, Jacob T; Crowe, Samantha A; Jewett, Michael C

    2018-01-01

    Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of biosynthetic systems, we recently reported a new cell-free framework for pathway construction and testing. In this framework, multiple crude-cell extracts are selectively enriched with individual pathway enzymes, which are then mixed to construct full biosynthetic pathways on the time scale of a day. This rapid approach to building pathways aids in the study of metabolic pathway performance by providing a unique freedom of design to modify and control biological systems for both fundamental and applied biotechnology. The goal of this work was to demonstrate the ability to probe biosynthetic pathway performance in our cell-free framework by perturbing physiochemical conditions, using n-butanol synthesis as a model. We carried out three unique case studies. First, we demonstrated the power of our cell-free approach to maximize biosynthesis yields by mapping physiochemical landscapes using a robotic liquid-handler. This allowed us to determine that NAD and CoA are the most important factors that govern cell-free n-butanol metabolism. Second, we compared metabolic profile differences between two different approaches for building pathways from enriched lysates, heterologous expression and cell-free protein synthesis. We discover that phosphate from PEP utilization, along with other physiochemical reagents, during cell-free protein synthesis-coupled, crude-lysate metabolic system operation inhibits optimal cell-free n-butanol metabolism. Third, we show that non-phosphorylated secondary energy substrates can be used to fuel cell-free protein synthesis and n-butanol biosynthesis. Taken together, our work highlights the ease of using cell-free systems to explore

  17. Engineering works for increasing earthquake resistance of Hamaoka nuclear power plant

    International Nuclear Information System (INIS)

    Oonishi, Yoshihiro; Kondou, Makoto; Hattori, Kazushi

    2007-01-01

    The improvement works of the ground of outdoor piping and duct system of Hamaoka-3, one of engineering works for increasing earthquake resistance of the plant, are reported. The movable outdoor piping systems were moved. SJ method, one of the high-pressure jet mixing method, improved the ground between the duct and the unmoved light oil tank on the western side, and the environmental ground. The other places were improved by the concrete replacement works. The results of ground treated by SJ method showed the high quality of stiffness and continuity. Outline of engineering works, execution of concrete replacement works, the high-pressure jet mixing method, SJ method, the quality control and treatment of the generated mud by SJ method are reported. A seismic response analysis, execution facilities, construction planning, working diagram, improvement work conditions of three methods, and steps of SJ method are illustrated. (S.Y.)

  18. Collaboration for cooperative work experience programs in biomedical engineering education.

    Science.gov (United States)

    Krishnan, Shankar

    2010-01-01

    Incorporating cooperative education modules as a segment of the undergraduate educational program is aimed to assist students in gaining real-life experience in the field of their choice. The cooperative work modules facilitate the students in exploring different realistic aspects of work processes in the field. The track records for cooperative learning modules are very positive. However, it is indeed a challenge for the faculty developing Biomedical Engineering (BME) curriculum to include cooperative work experience or internship requirements coupled with a heavy course load through the entire program. The objective of the present work is to develop a scheme for collaborative co-op work experience for the undergraduate training in the fast-growing BME programs. A few co-op/internship models are developed for the students pursuing undergraduate BME degree. The salient features of one co-op model are described. The results obtained support the proposed scheme. In conclusion, the cooperative work experience will be an invaluable segment in biomedical engineering education and an appropriate model has to be selected to blend with the overall training program.

  19. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus.

    Science.gov (United States)

    Wang, Junhua; Wang, Cheng; Song, Kejing; Wen, Jianping

    2017-10-03

    Ascomycin is a 23-membered polyketide macrolide with high immunosuppressant and antifungal activity. As the lower production in bio-fermentation, global metabolic analysis is required to further explore its biosynthetic network and determine the key limiting steps for rationally engineering. To achieve this goal, an engineering approach guided by a metabolic network model was implemented to better understand ascomycin biosynthesis and improve its production. The metabolic conservation of Streptomyces species was first investigated by comparing the metabolic enzymes of Streptomyces coelicolor A3(2) with those of 31 Streptomyces strains, the results showed that more than 72% of the examined proteins had high sequence similarity with counterparts in every surveyed strain. And it was found that metabolic reactions are more highly conserved than the enzymes themselves because of its lower diversity of metabolic functions than that of genes. The main source of the observed metabolic differences was from the diversity of secondary metabolism. According to the high conservation of primary metabolic reactions in Streptomyces species, the metabolic network model of Streptomyces hygroscopicus var. ascomyceticus was constructed based on the latest reported metabolic model of S. coelicolor A3(2) and validated experimentally. By coupling with flux balance analysis and using minimization of metabolic adjustment algorithm, potential targets for ascomycin overproduction were predicted. Since several of the preferred targets were highly associated with ethylmalonyl-CoA biosynthesis, two target genes hcd (encoding 3-hydroxybutyryl-CoA dehydrogenase) and ccr (encoding crotonyl-CoA carboxylase/reductase) were selected for overexpression in S. hygroscopicus var. ascomyceticus FS35. Both the mutants HA-Hcd and HA-Ccr showed higher ascomycin titer, which was consistent with the model predictions. Furthermore, the combined effects of the two genes were evaluated and the strain HA

  20. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  1. Performance analysis of different working gases for concentrated solar gas engines: Stirling & Brayton

    International Nuclear Information System (INIS)

    Sharaf Eldean, Mohamed A.; Rafi, Khwaja M.; Soliman, A.M.

    2017-01-01

    Highlights: • Different working gases are used to power on Concentrated Solar Gas Engines. • Gases are used to increase the system efficiency. • Specific heat capacity is considered a vital role for the comparison. • Brayton engine resulted higher design limits. • CO 2 is favorable as a working gas more than C 2 H 2 . - Abstract: This article presents a performance study of using different working fluids (gases) to power on Concentrated Solar Gas Engine (CSGE-Stirling and/or Brayton). Different working gases such as Monatomic (five types), Diatomic (three types) and Polyatomic (four types) are used in this investigation. The survey purported to increase the solar gas engine efficiency hence; decreasing the price of the output power. The effect of using different working gases is noticed on the engine volume, dish area, total plant area, efficiency, compression and pressure ratios thence; the Total Plant Cost (TPC, $). The results reveal that the top cycle temperature effect is reflected on the cycle by increasing the total plant efficiency (2–10%) for Brayton operational case and 5–25% for Stirling operational case. Moreover; Brayton engine resulted higher design limits against the Stirling related to total plant area, m 2 and TPC, $ while generating 1–100 MW e as an economic case study plant. C 2 H 2 achieved remarkable results however, CO 2 is considered for both cycles operation putting in consideration the gas flammability and safety issues.

  2. Weedy lignocellulosic feedstock and microbial metabolic engineering. Advancing the generation of 'Biofuel'

    Energy Technology Data Exchange (ETDEWEB)

    Chandel, Anuj K. [Jawaharlal Nehru Technological Univ., Hyderabad (India). Centre of Biotechnology; Singh, Om V. [Pittsburgh Univ., Bradford, PA (United States). Div. of Biological and Health Sciences

    2011-03-15

    Lignocellulosic materials are the most abundant renewable organic resources ({proportional_to}200 billion tons annually) on earth that are readily available for conversion to ethanol and other value-added products, but they have not yet been tapped for the commercial production of fuel ethanol. The lignocellulosic substrates include woody substrates such as hardwood (birch and aspen, etc.) and softwood (spruce and pine, etc.), agro residues (wheat straw, sugarcane bagasse, corn stover, etc.), dedicated energy crops (switch grass, and Miscanthus etc.), weedy materials (Eicchornia crassipes, Lantana camara etc.), and municipal solid waste (food and kitchen waste, etc.). Despite the success achieved in the laboratory, there are limitations to success with lignocellulosic substrates on a commercial scale. The future of lignocellulosics is expected to lie in improvements of plant biomass, metabolic engineering of ethanol, and cellulolytic enzyme-producing microorganisms, fullest exploitation of weed materials, and process integration of the individual steps involved in bioethanol production. Issues related to the chemical composition of various weedy raw substrates for bioethanol formation, including chemical composition-based structural hydrolysis of the substrate, need special attention. This area could be opened up further by exploring genetically modified metabolic engineering routes in weedy materials and in biocatalysts that would make the production of bioethanol more efficient. (orig.)

  3. The shift work and health research agenda: Considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease.

    Science.gov (United States)

    Reynolds, Amy C; Paterson, Jessica L; Ferguson, Sally A; Stanley, Dragana; Wright, Kenneth P; Dawson, Drew

    2017-08-01

    Prevalence and impact of metabolic disease is rising. In particular, overweight and obesity are at epidemic levels and are a leading health concern in the Western world. Shift work increases the risk of overweight and obesity, along with a number of additional metabolic diseases, including metabolic syndrome and type 2 diabetes (T2D). How shift work contributes to metabolic disease has not been fully elucidated. Short sleep duration is associated with metabolic disease and shift workers typically have shorter sleep durations. Short sleep durations have been shown to elicit a physiological stress response, and both physiological and psychological stress disrupt the healthy functioning of the intestinal gut microbiota. Recent findings have shown altered intestinal microbial communities and dysbiosis of the gut microbiota in circadian disrupted mice and jet lagged humans. We hypothesize that sleep and circadian disruption in humans alters the gut microbiota, contributing to an inflammatory state and metabolic disease associated with shift work. A research agenda for exploring the relationship between insufficient sleep, circadian misalignment and the gut microbiota is provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering.

    Science.gov (United States)

    Mehrotra, Shakti; Rahman, Laiq Ur; Kukreja, Arun Kumar

    2010-08-23

    An intrinsic improvement is taking place in the methodologies for the development of culture systems with first-rate production of plant-based molecules. The blending of HR (hairy root) cultures with ME (metabolic engineering) approaches offers new insights into, and possibilities for, improving the system productivity for known and/or novel high-value plant-derived active compounds. The introduction and expression of foreign genes in plants results in improvement of cellular activities by manipulating enzymatic, regulatory and transport function of the cell. The rational amendments in the rate-limiting steps of a biosynthetic pathway as well as inactivating the inefficient pathway(s) for by-product formation can be accomplished either through single-step engineering or through the multi-step engineering. The hierarchical control of any metabolic process can lead the engineer to apply the ME ideas and principles to any of the strata, including transcriptional, moving on to translational and enzymatic activity. The HR culture systems offer a remarkable potential for commercial production of a number of low-volume, but high-value, secondary metabolites. Taking HR as a model system, in the present review, we discuss engineering principles and perceptions to exploit secondary-metabolite pathways for the production of important bioactive compounds. We also talk about requisites and possible challenges that occur during ME, with emphasis on examples of various HR systems. Furthermore, it also highlights the utilization of global information obtained from '-omic' platforms in order to explore pathway architecture, structural and functional aspects of important enzymes and genes that can support the design of sets of engineering, resulting in the generation of wide-ranging views of DNA sequence-to-metabolite passageway networking and their control to obtain desired results.

  5. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  6. Comparing Two Definitions of Work for a Biological Quantum Heat Engine

    International Nuclear Information System (INIS)

    Xu You-Yang; Zhao Shun-Cai; Liu Juan

    2015-01-01

    Systems of photosynthetic reaction centres have been modelled as heat engines, while it has also been reported that the efficiency and power of such heat engines can be enhanced by quantum interference — a trait that has attracted much interest. We compare two definitions of the work of such a photosynthetic heat engine, i.e. definition A used by Weimer et al. and B by Dorfman et al. We also introduce a coherent interaction between donor and acceptor (CIDA) to demonstrate a reversible energy transport. We show that these two definitions of work can impart contradictory results, that is, CIDA enhances the power and efficiency of the photosynthetic heat engine with definition B but not with A. Additionally, we find that both reversible and irreversible excitation-energy transport can be described with definition A, but definition B can only model irreversible transport. As a result, we conclude that definition A is more suitable for photosynthetic systems than definition B. (paper)

  7. Sleep duration as a mediator between an alternating day and night shift work schedule and metabolic syndrome among female hospital employees.

    Science.gov (United States)

    Korsiak, Jill; Tranmer, Joan; Day, Andrew; Aronson, Kristan J

    2018-02-01

    The main objective was to determine whether sleep duration on work shifts mediates the relationship between a current alternating day and night shift work schedule and metabolic syndrome among female hospital employees. The secondary objective was to assess whether cumulative lifetime shift work exposure was associated with metabolic syndrome. In this cross-sectional study of 294 female hospital employees, sleep duration was measured with the ActiGraph GT3X+. Shift work status was determined through self-report. Investigation of the total, direct and indirect effects between shift work, sleep duration on work shifts and metabolic syndrome was conducted using regression path analysis. Logistic regression was used to determine the association between cumulative shift work exposure and metabolic syndrome. Shift work is strongly associated with metabolic syndrome (OR Total =2.72, 95% CI 1.38 to 5.36), and the relationship is attenuated when work shift sleep duration is added to the model (OR Direct =1.18, 95% CI 0.49 to 2.89). Sleep duration is an important intermediate between shift work and metabolic syndrome (OR Indirect =2.25, 95% CI 1.27 to 4.26). Cumulative shift work exposure is not associated with metabolic syndrome in this population. Sleep duration mediates the association between a current alternating day-night shift work pattern and metabolic syndrome. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis

    International Nuclear Information System (INIS)

    Chintala, Venkateswarlu; Subramanian, K.A.

    2014-01-01

    This work is aimed at study of maximum available work and irreversibility (mixing, combustion, unburned, and friction) of a dual-fuel diesel engine (H 2 (hydrogen)–diesel) using exergy analysis. The maximum available work increased with H 2 addition due to reduction in irreversibility of combustion because of less entropy generation. The irreversibility of unburned fuel with the H 2 fuel also decreased due to the engine combustion with high temperature whereas there is no effect of H 2 on mixing and friction irreversibility. The maximum available work of the diesel engine at rated load increased from 29% with conventional base mode (without H 2 ) to 31.7% with dual-fuel mode (18% H 2 energy share) whereas total irreversibility of the engine decreased drastically from 41.2% to 39.3%. The energy efficiency of the engine with H 2 increased about 10% with 36% reduction in CO 2 emission. The developed methodology could also be applicable to find the effect and scope of different technologies including exhaust gas recirculation and turbo charging on maximum available work and energy efficiency of diesel engines. - Highlights: • Energy efficiency of diesel engine increases with hydrogen under dual-fuel mode. • Maximum available work of the engine increases significantly with hydrogen. • Combustion and unburned fuel irreversibility decrease with hydrogen. • No significant effect of hydrogen on mixing and friction irreversibility. • Reduction in CO 2 emission along with HC, CO and smoke emissions

  9. Faculty perspectives on the inclusion of work-related learning in engineering curricula

    DEFF Research Database (Denmark)

    Magnell, Marie; Geschwind, Lars Allan; Kolmos, Anette

    2017-01-01

    The purpose of this paper is to identify faculty perspectives on the integration of work-related issues in engineering education. A mixed methods approach was used to explore faculty attitudes towards work-related learning, to describe activities related to working life that have been introduced...... into the curriculum and to identify factors that faculty see as important if the amount of work-related learning is to increase. The results show that faculty members are positive about integrating work-related issues into the curriculum. Programmes with more extensive connections to industry offer more integrated...... activities, such as projects with external actors, and use professional contacts established through research in their teaching. In order to increase work-related learning in engineering curricula, faculty request clear goals and pedagogical tools. Other options to increase work-related learning include...

  10. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.

    Science.gov (United States)

    Wu, Meng-Ying; Sung, Li-Yu; Li, Hung; Huang, Chun-Hung; Hu, Yu-Chen

    2017-12-15

    Biosynthesis of 1,4-butanediol (1,4-BDO) in E. coli requires an artificial pathway that involves six genes and time-consuming, iterative genome engineering. CRISPR is an effective gene editing tool, while CRISPR interference (CRISPRi) is repurposed for programmable gene suppression. This study aimed to combine both CRISPR and CRISPRi for metabolic engineering of E. coli and 1,4-BDO production. We first exploited CRISPR to perform point mutation of gltA, replacement of native lpdA with heterologous lpdA, knockout of sad and knock-in of two large (6.0 and 6.3 kb in length) gene cassettes encoding the six genes (cat1, sucD, 4hbd, cat2, bld, bdh) in the 1,4-BDO biosynthesis pathway. The successive E. coli engineering enabled production of 1,4-BDO to a titer of 0.9 g/L in 48 h. By combining the CRISPRi system to simultaneously suppress competing genes that divert the flux from the 1,4-BDO biosynthesis pathway (gabD, ybgC and tesB) for >85%, we further enhanced the 1,4-BDO titer for 100% to 1.8 g/L while reducing the titers of byproducts gamma-butyrolactone and succinate for 55% and 83%, respectively. These data demonstrate the potential of combining CRISPR and CRISPRi for genome engineering and metabolic flux regulation in microorganisms such as E. coli and production of chemicals (e.g., 1,4-BDO).

  11. A study on affective work skills needs of engineering and technology ...

    African Journals Online (AJOL)

    The study is designed to investigate the affective work skills needs of Engineering and Technology Education students of universities in North Central States of Nigeria. A 18 items questionnaire was developed and used to collect data from 60 Engineers, 100 technicians and 150 lecturers. Purposive sampling techniques ...

  12. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  13. Production of L-lactic acid from metabolically engineered strain of Enterobacter aerogenes ATCC 29007.

    Science.gov (United States)

    Thapa, Laxmi Prasad; Lee, Sang Jun; Park, Chulhwan; Kim, Seung Wook

    2017-07-01

    In this study, L-lactic acid production was investigated from metabolically engineered strain of E. aerogenes ATCC 29007. The engineered strain E. aerogenes SUMI01 (Δpta) was generated by the deletion of phosphate acetyltransferase (pta) gene from the chromosome of E. aerogenes ATCC 29007 and deletion was confirmed by colony PCR. Under the optimized fermentation conditions, at 37°C and pH 6 for 84h, the L-lactic acid produced by engineered strain E. aerogenes SUMI01 (Δpta) in flask fermentation using 100g/L mannitol as the carbon source was 40.05g/L as compared to that of the wild type counterpart 20.70g/L. At the end of the batch fermentation in bioreactor the production of L-lactic acid reached to 46.02g/L and yield was 0.41g/g by utilizing 112.32g/L mannitol. This is the first report regarding the production of L-lactic acid from Enterobacter species. We believe that this result may provide valuable guidelines for further engineering Enterobacter strain for the improvement of L-lactic acid production. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Increasing ankle push-off work with a powered prosthesis does not necessarily reduce metabolic rate for transtibial amputees.

    Science.gov (United States)

    Quesada, Roberto E; Caputo, Joshua M; Collins, Steven H

    2016-10-03

    Amputees using passive ankle-foot prostheses tend to expend more metabolic energy during walking than non-amputees, and reducing this cost has been a central motivation for the development of active ankle-foot prostheses. Increased push-off work at the end of stance has been proposed as a way to reduce metabolic energy use, but the effects of push-off work have not been tested in isolation. In this experiment, participants with unilateral transtibial amputation (N=6) walked on a treadmill at a constant speed while wearing a powered prosthesis emulator. The prosthesis delivered different levels of ankle push-off work across conditions, ranging from the value for passive prostheses to double the value for non-amputee walking, while all other prosthesis mechanics were held constant. Participants completed six acclimation sessions prior to a data collection in which metabolic rate, kinematics, kinetics, muscle activity and user satisfaction were recorded. Metabolic rate was not affected by net prosthesis work rate (p=0.5; R 2 =0.007). Metabolic rate, gait mechanics and muscle activity varied widely across participants, but no participant had lower metabolic rate with higher levels of push-off work. User satisfaction was affected by push-off work (p=0.002), with participants preferring values of ankle push-off slightly higher than in non-amputee walking, possibly indicating other benefits. Restoring or augmenting ankle push-off work is not sufficient to improve energy economy for lower-limb amputees. Additional necessary conditions might include alternate timing or control, individualized tuning, or particular subject characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Work-family life courses and metabolic markers in mid-life: evidence from the British National Child Development Study.

    Science.gov (United States)

    McMunn, Anne; Lacey, Rebecca E; Kumari, Meena; Worts, Diana; McDonough, Peggy; Sacker, Amanda

    2016-05-01

    Previous studies have found generally better health among those who combine employment and family responsibilities; however, most research excludes men, and relies on subjective measures of health and information on work and family activities from only 1 or 2 time points in the life course. This study investigated associations between work-family life course types (LCTs) and markers of metabolic risk in a British birth cohort study. Multichannel sequence analysis was used to generate work-family LCTs, combining annual information on work, partnership and parenthood between 16 and 42 years for men and women in the British National Child Development Study (NCDS, followed since their birth in 1958). Associations between work-family LCTs and metabolic risk factors in mid-life (age 44-45) were tested using multivariate linear regression in multiply imputed data. Life courses characterised by earlier transitions into parenthood were associated with significantly increased metabolic risk, regardless of attachment to paid work or marital stability over the life course. These associations were only partially attenuated by educational qualifications, early life circumstances and adult mediators. The positive association between weak labour markets ties and metabolic risk was weaker than might be expected from previous studies. Associations between work-family LCTs and metabolic risk factors did not differ significantly by gender. Earlier transitions to parenthood are linked to metabolic risk in mid-life. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. A Buddhist perspective on industrial engineering and the design of work.

    Science.gov (United States)

    Lee, Wei-Tau; Blumenthal, James A; Funk, Kenneth H

    2014-06-01

    The modern way of life is highly dependent upon the production of goods by industrial organizations that are in turn dependent upon their workers for their ongoing operations. Even though more than a century has passed since the dawn of the industrial revolution, many dangerous aspects of work, both physical and mental, remain in the workplace today. Using Buddhist philosophical principles, this paper suggests that although many sources of the problem reside within the larger society, the industrial engineer is still a key factor in bettering work and providing a workplace suitable for their fellow workers. Drawing on these insights, we present a number of work design guidelines that industrial engineers who abide by Buddhist principles could practice to help overcome some of the many sufferings produced by modern work.

  17. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants

    Directory of Open Access Journals (Sweden)

    Shabir H. Wani

    2016-06-01

    Full Text Available Abiotic stresses including drought, salinity, heat, cold, flooding, and ultraviolet radiation causes crop losses worldwide. In recent times, preventing these crop losses and producing more food and feed to meet the demands of ever-increasing human populations have gained unprecedented importance. However, the proportion of agricultural lands facing multiple abiotic stresses is expected only to rise under a changing global climate fueled by anthropogenic activities. Identifying the mechanisms developed and deployed by plants to counteract abiotic stresses and maintain their growth and survival under harsh conditions thus holds great significance. Recent investigations have shown that phytohormones, including the classical auxins, cytokinins, ethylene, and gibberellins, and newer members including brassinosteroids, jasmonates, and strigolactones may prove to be important metabolic engineering targets for producing abiotic stress-tolerant crop plants. In this review, we summarize and critically assess the roles that phytohormones play in plant growth and development and abiotic stress tolerance, besides their engineering for conferring abiotic stress tolerance in transgenic crops. We also describe recent successes in identifying the roles of phytohormones under stressful conditions. We conclude by describing the recent progress and future prospects including limitations and challenges of phytohormone engineering for inducing abiotic stress tolerance in crop plants.

  18. METHODS FOR ORGANIZATION OF WORKING PROCESS FOR GAS-DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. A. Vershina

    2017-01-01

    Full Text Available Over the past few decades reduction in pollutant emissions has become one of the main directions for further deve- lopment of engine technology. Solution of such problems has led to implementation of catalytic post-treatment systems, new technologies of fuel injection, technology for regulated phases of gas distribution, regulated turbocharger system and, lately, even system for variable compression ratio of engine. Usage of gaseous fuel, in particular gas-diesel process, may be one of the means to reduce air pollution caused by toxic substances and meet growing environmental standards and regulations. In this regard, an analysis of methods for organization of working process for a gas-diesel engine has been conducted in the paper. The paper describes parameters that influence on the nature of gas diesel process, it contains graphics of specific total heat consumption according to ignition portion of diesel fuel and dependence of gas-diesel indices on advance angle for igni-tion portion injection of the diesel fuel. A modern fuel system of gas-diesel engine ГД-243 has been demonstrated in the pa- per. The gas-diesel engine has better environmental characteristics than engines running on diesel fuel or gasoline. According to the European Natural & bio Gas Vehicle Association a significant reduction in emissions is reached at a 50%-substitution level of diesel fuel by gas fuel (methane and in such a case there is a tendency towards even significant emission decrease. In order to ensure widespread application of gaseous fuel as fuel for gas-diesel process it is necessary to develop a new wor- king process, to improve fuel equipment, to enhance injection strategy and fuel supply control. A method for organization of working process for multi-fuel engine has been proposed on the basis of the performed analysis. An application has been submitted for a patent.

  19. Metabolic engineering of mannitol production in Lactococcus lactis: influence of overexpression of mannitol 1-phosphate dehydrogenase in different genetic backgrounds.

    Science.gov (United States)

    Wisselink, H Wouter; Mars, Astrid E; van der Meer, Pieter; Eggink, Gerrit; Hugenholtz, Jeroen

    2004-07-01

    To obtain a mannitol-producing Lactococcus lactis strain, the mannitol 1-phosphate dehydrogenase gene (mtlD) from Lactobacillus plantarum was overexpressed in a wild-type strain, a lactate dehydrogenase(LDH)-deficient strain, and a strain with reduced phosphofructokinase activity. High-performance liquid chromatography and (13)C nuclear magnetic resonance analysis revealed that small amounts (<1%) of mannitol were formed by growing cells of mtlD-overexpressing LDH-deficient and phosphofructokinase-reduced strains, whereas resting cells of the LDH-deficient transformant converted 25% of glucose into mannitol. Moreover, the formed mannitol was not reutilized upon glucose depletion. Of the metabolic-engineering strategies investigated in this work, mtlD-overexpressing LDH-deficient L. lactis seemed to be the most promising strain for mannitol production.

  20. Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose.

    Science.gov (United States)

    Kawaguchi, Hideo; Yoshihara, Kumiko; Hara, Kiyotaka Y; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2018-05-17

    L-Arabinose is the second most abundant component of hemicellulose in lignocellulosic biomass, next to D-xylose. However, few microorganisms are capable of utilizing pentoses, and catabolic genes and operons enabling bacterial utilization of pentoses are typically subject to carbon catabolite repression by more-preferred carbon sources, such as D-glucose, leading to a preferential utilization of D-glucose over pentoses. In order to simultaneously utilize both D-glucose and L-arabinose at the same rate, a modified metabolic pathway was rationally designed based on metabolome analysis. Corynebacterium glutamicum ATCC 31831 utilized D-glucose and L-arabinose simultaneously at a low concentration (3.6 g/L each) but preferentially utilized D-glucose over L-arabinose at a high concentration (15 g/L each), although L-arabinose and D-glucose were consumed at comparable rates in the absence of the second carbon source. Metabolome analysis revealed that phosphofructokinase and pyruvate kinase were major bottlenecks for D-glucose and L-arabinose metabolism, respectively. Based on the results of metabolome analysis, a metabolic pathway was engineered by overexpressing pyruvate kinase in combination with deletion of araR, which encodes a repressor of L-arabinose uptake and catabolism. The recombinant strain utilized high concentrations of D-glucose and L-arabinose (15 g/L each) at the same consumption rate. During simultaneous utilization of both carbon sources at high concentrations, intracellular levels of phosphoenolpyruvate declined and acetyl-CoA levels increased significantly as compared with the wild-type strain that preferentially utilized D-glucose. These results suggest that overexpression of pyruvate kinase in the araR deletion strain increased the specific consumption rate of L-arabinose and that citrate synthase activity becomes a new bottleneck in the engineered pathway during the simultaneous utilization of D-glucose and L-arabinose. Metabolome analysis

  1. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Directory of Open Access Journals (Sweden)

    Chonglong Wang

    2014-09-01

    Full Text Available Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  2. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    Science.gov (United States)

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  3. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    Science.gov (United States)

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  4. Boundaries - US Army Corps of Engineers - St. Paul District (MVP) Civil Works

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The US Army Corps of Engineers - St. Paul District Civil Works boundary. Boundary is based on 1:24k watershed data and coordination with MVR to determine shared...

  5. Metabolic engineering of Corynebacterium glutamicum to produce GDP-L-fucose from glucose and mannose.

    Science.gov (United States)

    Chin, Young-Wook; Park, Jin-Byung; Park, Yong-Cheol; Kim, Kyoung Heon; Seo, Jin-Ho

    2013-06-01

    Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5'-diphosphate (GDP)-L-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-D-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-L-fucose from GDP-D-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-L-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-D-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-L-fucose at the specific rate of 0.11 mg g cell(-1) h(-1). The specific GDP-L-fucose content reached 5.5 mg g cell(-1), which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.

  6. Efficient odd straight medium chain free fatty acid production by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Wu, Hui; San, Ka-Yiu

    2014-11-01

    Free fatty acids (FFAs) can be used as precursors for the production of biofuels or chemicals. Different composition of FFAs will be useful for further modification of the biofuel/biochemical quality. Microbial biosynthesis of even chain FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into E. coli. In this study, odd straight medium chain FFAs production was investigated by using metabolic engineered E. coli carrying acyl-ACP thioesterase (TE, Ricinus communis), propionyl-CoA synthase (Salmonella enterica), and β-ketoacyl-acyl carrier protein synthase III (four different sources) with supplement of extracellular propionate. By using these metabolically engineered E. coli, significant quantity of C13 and C15 odd straight-chain FFAs could be produced from glucose and propionate. The highest concentration of total odd straight chain FFAs attained was 1205 mg/L by the strain HWK201 (pXZ18, pBHE2), and 85% of the odd straight chain FFAs was C15. However, the highest percentage of odd straight chain FFAs was achieved by the strain HWK201 (pXZ18, pBHE3) of 83.2% at 48 h. This strategy was also applied successfully in strains carrying different TE, such as the medium length acyl-ACP thioesterase gene from Umbellularia californica. C11 and C13 became the major odd straight-chain FFAs. © 2014 Wiley Periodicals, Inc.

  7. Work-Family Life Courses and Metabolic Markers in the MRC National Survey of Health and Development.

    Science.gov (United States)

    Lacey, Rebecca E; Kumari, Meena; Sacker, Amanda; Stafford, Mai; Kuh, Diana; McMunn, Anne

    2016-01-01

    The aim was to investigate whether the combined work-family life courses of British men and women were associated with differences in metabolic markers-waist circumference, blood pressure, high density lipoprotein cholesterol, triglycerides, and glycated haemoglobin-in mid-life. We used data from the Medical Research Council's National Survey of Health and Development-the 1946 British birth cohort. Multi-channel sequence analysis was used to create a typology of eight work-family life course types combining information on work, partnerships and parenthood between ages 16-51. Linear regression tested associations between work-family types and metabolic outcomes at age 53 on multiply imputed data (20 imputations) of >2,400 participants. Compared with men with strong ties to employment and early transitions to family life, men who made later transitions to parenthood and maintained strong ties to paid work had smaller waist circumferences (-2.16cm, 95% CI: -3.73, -0.59), lower triglycerides (9.78% lower, 95% CI: 0.81, 17.94) and lower blood pressure (systolic: -4.03mmHg, 95% CI: -6.93, -1.13; diastolic: -2.34mmHg, 95% CI: -4.15, -0.53). Married men and women who didn't have children had increased high density lipoprotein cholesterol (7.23% higher, 95% CI: 0.68, 14.21) and lower waist circumferences (-4.67cm, 95% CI: -8.37, -0.97), respectively. For men later transitions to parenthood combined with strong ties to paid work were linked to reduced metabolic risk in mid-life. Fewer differences between work-family types and metabolic markers were seen for women.

  8. Shift in Food Intake and Changes in Metabolic Regulation and Gene Expression during Simulated Night-Shift Work: A Rat Model

    Directory of Open Access Journals (Sweden)

    Andrea Rørvik Marti

    2016-11-01

    Full Text Available Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10 or active (ZT14-22 phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR. Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery.

  9. Shift in Food Intake and Changes in Metabolic Regulation and Gene Expression during Simulated Night-Shift Work: A Rat Model.

    Science.gov (United States)

    Marti, Andrea Rørvik; Meerlo, Peter; Grønli, Janne; van Hasselt, Sjoerd Johan; Mrdalj, Jelena; Pallesen, Ståle; Pedersen, Torhild Thue; Henriksen, Tone Elise Gjøtterud; Skrede, Silje

    2016-11-08

    Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity during their rest (ZT2-10) or active (ZT14-22) phase. Food intake, body weight, and body temperature were monitored across four work days and eight recovery days. Food intake gradually shifted toward rest-work hours, stabilizing on work day three. A subgroup of animals was euthanized after the third work session for analysis of metabolic gene expression in the liver by real-time polymerase chain reaction (PCR). Results show that work in the rest phase shifted food intake to rest-work hours. Moreover, liver genes related to energy storage and insulin metabolism were upregulated, and genes related to energy breakdown were downregulated compared to non-working time-matched controls. Both working groups lost weight during the protocol and regained weight during recovery, but animals that worked in the rest phase did not fully recover, even after eight days of recovery. In conclusion, three to four days of work in the rest phase is sufficient to induce disruption of several metabolic parameters, which requires more than eight days for full recovery.

  10. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    Science.gov (United States)

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Relationship between type of work and metabolic syndrome among the National

    Directory of Open Access Journals (Sweden)

    Paul Alfaro Fernández

    2017-03-01

    Full Text Available Objective: To determine the relationship between public employees’ type of work and the development of metabolic syndrome. Materials and methods: Descriptive cross-sectional observational study. The sample consisted of employees of the National Electoral Board (JNE, Lima office, who underwent their 2013 occupational medical evaluation and were assessed according to the Adult Treatment Panel III (ATP - III criteria, as amended in 2005. Data collection was obtained from the employees’ occupational medical records. Results: Three hundred twenty-two (322 employees were evaluated. The metabolic syndrome prevalence was 2.17%. The administrative sector was affected in 2.28% (p = 1.0 compared to the non-administrative sector which showed no cases. The highest prevalence of metabolic syndrome was found in 30 - 39 years old employees (3.7% (p=0.495. The study showed statistical significance in relation to male gender (p= 0.019. Conclusions: In administrative employees of the JNE, there was no relationship between the

  12. Achievement of the charge exchange work diminishing of an internal combustion engine in part load

    Directory of Open Access Journals (Sweden)

    Stefan POSTRZEDNIK

    2012-01-01

    Full Text Available Internal combustion engines, used for driving of different cars, occurs not only at full load, but mostly at the part load. The relative load exchange work at the full (nominal engine load is significantly low. At the part load of the IC engine its energy efficiency ηe is significantly lower than in the optimal (nominal field range of the performance parameters. One of the numerous reasons of this effect is regular growing of the relative load exchange work of the IC engine. It is directly connected with the quantitative regulation method commonly used in the IC engines. From the thermodynamic point of view - the main reason of this effect is the throttling process (causing exergy losses occurring in the inlet and outlet channels. The known proposals for solving of this problem are based on applying of the fully electronic control of the motion of inlet, outlet valves and new reference cycles.The idea presented in the paper leads to diminishing the charge exchange work of the IC engines. The problem can be solved using presented in the paper a new concept of the reference cycle (called as eco-cycle of IC engine. The work of the engine basing on the eco-cycle occurs in two 3-stroke stages; the fresh air is delivered only once for both stages, but in range of each stage a new portion of fuel is burned. Normally the charge exchange occurs once during each engine cycle realized. Elaborated proposition bases on the elimination of chosen charge exchange processes and through this the dropping of the charge exchange work can be achieved.

  13. Selection Finder (SelFi: A computational metabolic engineering tool to enable directed evolution of enzymes

    Directory of Open Access Journals (Sweden)

    Neda Hassanpour

    2017-06-01

    Full Text Available Directed evolution of enzymes consists of an iterative process of creating mutant libraries and choosing desired phenotypes through screening or selection until the enzymatic activity reaches a desired goal. The biggest challenge in directed enzyme evolution is identifying high-throughput screens or selections to isolate the variant(s with the desired property. We present in this paper a computational metabolic engineering framework, Selection Finder (SelFi, to construct a selection pathway from a desired enzymatic product to a cellular host and to couple the pathway with cell survival. We applied SelFi to construct selection pathways for four enzymes and their desired enzymatic products xylitol, D-ribulose-1,5-bisphosphate, methanol, and aniline. Two of the selection pathways identified by SelFi were previously experimentally validated for engineering Xylose Reductase and RuBisCO. Importantly, SelFi advances directed evolution of enzymes as there is currently no known generalized strategies or computational techniques for identifying high-throughput selections for engineering enzymes.

  14. Superconductor Particles As The Working Media Of A Heat Engine

    Science.gov (United States)

    Keefe, Peter D.

    2011-12-01

    A heat engine is presented in which the working media comprises a multiplicity of mutually isolated particles of Type I superconductor which are selectively processed through H-T phase space so as to convert a heat influx from a high temperature heat reservoir into a useful work output, wherein no heat is rejected to a low temperature heat reservoir.

  15. Shikimic acid production in Escherichia coli: From classical metabolic engineering strategies to omics applied to improve its production

    Directory of Open Access Journals (Sweden)

    Juan Andrés Martínez

    2015-09-01

    Full Text Available Shikimic acid (SA is an intermediate of the SA pathway that is present in bacteria and plants. SA has gained great interest because it is a precursor in the synthesis of the drug oseltamivir phosphate (OSF, an efficient inhibitor of the neuraminidase enzyme of diverse seasonal influenza viruses, the avian influenza virus H5N1, and the human influenza virus H1N1. For the purposes of OSF production, SA is extracted from the pods of Chinese star anise plants (Illicium spp., yielding up to 17% of SA (dry basis content. The high demand for OSF necessary to manage a major influenza outbreak is not adequately met by industrial production using SA from plants sources. As the SA pathway is present in the model bacteria Escherichia coli, several intuitive metabolically engineered strains have been applied for its successful overproduction by biotechnological processes, resulting in strains producing up to 71 g/L of SA, with high conversion yields of up to 0.42 (mol SA/mol Glc, in both batch and fed-batch cultures using complex fermentation broths, including glucose as a carbon source and yeast extract. Global transcriptomic analyses have been performed in SA producing strains, resulting in the identification of possible key target genes for the design of a rational strain improvement strategy. Because possible target genes are involved in the transport, catabolism and interconversion of different carbon sources and metabolic intermediates outside the central carbon metabolism and SA pathways, as genes involved in diverse cellular stress responses, the development of rational cellular strain improvement strategies based on omics data constitutes a challenging task to improve SA production in currently overproducing engineered strains. In this review, we discuss the main metabolic engineering strategies that have been applied for the development of efficient SA producing strains, as the perspective of omics analysis has focused on further strain improvement

  16. Quality assurance in design: policy adopted by Vickers Barrow Engineering Works

    International Nuclear Information System (INIS)

    Aubrey, J.H.

    1976-01-01

    The quality assurance system operated by the Vickers Barrow Engineering Works is described, with special reference to the design of the reactor shield and above core structure for the first commercial fast reactor. Section headings are: introduction; what is quality assurance of design; attitude of designer; design discipline; customers attitude; Engineering Company system; future application of Design Quality Assurance Record system. (U.K.)

  17. Metabolic Engineering of the Shikimate Pathway for Production of Aromatics and Derived Compounds—Present and Future Strain Construction Strategies

    Directory of Open Access Journals (Sweden)

    Nils J. H. Averesch

    2018-03-01

    Full Text Available The aromatic nature of shikimate pathway intermediates gives rise to a wealth of potential bio-replacements for commonly fossil fuel-derived aromatics, as well as naturally produced secondary metabolites. Through metabolic engineering, the abundance of certain intermediates may be increased, while draining flux from other branches off the pathway. Often targets for genetic engineering lie beyond the shikimate pathway, altering flux deep in central metabolism. This has been extensively used to develop microbial production systems for a variety of compounds valuable in chemical industry, including aromatic and non-aromatic acids like muconic acid, para-hydroxybenzoic acid, and para-coumaric acid, as well as aminobenzoic acids and aromatic α-amino acids. Further, many natural products and secondary metabolites that are valuable in food- and pharma-industry are formed outgoing from shikimate pathway intermediates. (Reconstruction of such routes has been shown by de novo production of resveratrol, reticuline, opioids, and vanillin. In this review, strain construction strategies are compared across organisms and put into perspective with requirements by industry for commercial viability. Focus is put on enhancing flux to and through shikimate pathway, and engineering strategies are assessed in order to provide a guideline for future optimizations.

  18. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    Science.gov (United States)

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  19. Folic Acid Production by Engineered Ashbya gossypii.

    Science.gov (United States)

    Serrano-Amatriain, Cristina; Ledesma-Amaro, Rodrigo; López-Nicolás, Rubén; Ros, Gaspar; Jiménez, Alberto; Revuelta, José Luis

    2016-11-01

    Folic acid (vitamin B 9 ) is the common name of a number of chemically related compounds (folates), which play a central role as cofactors in one-carbon transfer reactions. Folates are involved in the biosynthesis and metabolism of nucleotides and amino acids, as well as supplying methyl groups to a broad range of substrates, such as hormones, DNA, proteins, and lipids, as part of the methyl cycle. Humans and animals cannot synthesize folic acid and, therefore, need them in the diet. Folic acid deficiency is an important and underestimated problem of micronutrient malnutrition affecting billions of people worldwide. Therefore, the addition of folic acid as food additive has become mandatory in many countries thus contributing to a growing demand of the vitamin. At present, folic acid is exclusively produced by chemical synthesis despite its associated environmental burdens. In this work, we have metabolically engineered the industrial fungus Ashbya gossypii in order to explore its potential as a natural producer of folic acid. Overexpression of FOL genes greatly enhanced the synthesis of folates and identified GTP cyclohydrolase I as the limiting step. Metabolic flux redirection from competing pathways also stimulated folic acid production. Finally, combinatorial engineering synergistically increased the production of different bioactive forms of the folic vitamin. Overall, strains were constructed which produce 146-fold (6595µg/L) more vitamin than the wild-type and by far represents the highest yield reported. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. Civil Engineering Construction of Underground Works

    CERN Document Server

    Rammer, H

    1999-01-01

    For the first time at CERN, new shafts and caverns will be excavated inside a surface building. The LHC civil engineering construction for the ATLAS experiment has been designed such that the experimental hall will be completed to the extent that it can provide a secure, weatherproof and sound insulated covering to the shaft excavation area. The construction of the two access shafts and the experimental cavern will follow and will be carried out inside the building. This unconventional method of working allows the excavation of the Molasse rock in the dry, which is essential for this type of rock, and ensures reduced environmental pollution by noise and dust. The paper will present the technical infrastructure required for this particular construction method, explain its advantages and disadvantages, and compare it with a conventional method of underground excavations to be used on the same work site for the construction of the service cavern.

  1. Expanding P450 catalytic reaction space through evolution and engineering

    Science.gov (United States)

    McIntosh, John A.; Farwell, Christopher C.; Arnold, Frances H.

    2014-01-01

    Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology’s reaction space. PMID:24658056

  2. Working characteristics of variable intake valve in compressed air engine.

    Science.gov (United States)

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  3. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking

    Science.gov (United States)

    Caputo, Joshua M.; Collins, Steven H.

    2014-12-01

    Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m.s-1. Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models.

  4. 95 a study on affective work skills needs of engineering

    African Journals Online (AJOL)

    DR. AMINU

    analysis of variance (ANOVA) at P< 0.05 level of significant was used to analyse the data. Some of the findings ... Keywords: Affective work skills, Engineering, North Central, Technology ... referred to as non technical abilities, employability.

  5. Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals.

    Science.gov (United States)

    Yang, Dongsoo; Cho, Jae Sung; Choi, Kyeong Rok; Kim, Hyun Uk; Lee, Sang Yup

    2017-09-01

    With pressing issues arising in recent years, the United Nations proposed 17 Sustainable Development Goals (SDGs) as an agenda urging international cooperations for sustainable development. In this perspective, we examine the roles of systems metabolic engineering (SysME) and its contribution to improving the quality of life and protecting our environment, presenting how this field of study offers resolutions to the SDGs with relevant examples. We conclude with offering our opinion on the current state of SysME and the direction it should move forward in the generations to come, explicitly focusing on addressing the SDGs. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Job stress models, depressive disorders and work performance of engineers in microelectronics industry.

    Science.gov (United States)

    Chen, Sung-Wei; Wang, Po-Chuan; Hsin, Ping-Lung; Oates, Anthony; Sun, I-Wen; Liu, Shen-Ing

    2011-01-01

    Microelectronic engineers are considered valuable human capital contributing significantly toward economic development, but they may encounter stressful work conditions in the context of a globalized industry. The study aims at identifying risk factors of depressive disorders primarily based on job stress models, the Demand-Control-Support and Effort-Reward Imbalance models, and at evaluating whether depressive disorders impair work performance in microelectronics engineers in Taiwan. The case-control study was conducted among 678 microelectronics engineers, 452 controls and 226 cases with depressive disorders which were defined by a score 17 or more on the Beck Depression Inventory and a psychiatrist's diagnosis. The self-administered questionnaires included the Job Content Questionnaire, Effort-Reward Imbalance Questionnaire, demography, psychosocial factors, health behaviors and work performance. Hierarchical logistic regression was applied to identify risk factors of depressive disorders. Multivariate linear regressions were used to determine factors affecting work performance. By hierarchical logistic regression, risk factors of depressive disorders are high demands, low work social support, high effort/reward ratio and low frequency of physical exercise. Combining the two job stress models may have better predictive power for depressive disorders than adopting either model alone. Three multivariate linear regressions provide similar results indicating that depressive disorders are associated with impaired work performance in terms of absence, role limitation and social functioning limitation. The results may provide insight into the applicability of job stress models in a globalized high-tech industry considerably focused in non-Western countries, and the design of workplace preventive strategies for depressive disorders in Asian electronics engineering population.

  7. Doctoral scientists and engineers working in energy-related activities, 1981

    International Nuclear Information System (INIS)

    1983-04-01

    The Department of Energy has a responsibility to help ensure the supply of highly trained personnel by providing supply and demand information on energy-related manpower to public and private planners and the general public. This report provides information about the number and characteristics of doctoral-level engineers and scientists working primarily in energy-related activities. The data for the year 1981 are part of the information base for a program of continuing studies of the employment and utilization of all scientists and engineers involved in energy-related activities. Information from these studies will provide input to consideration of actions necessary to ensure that adequate numbers of qualified scientists and engineers are available, when needed, to develop the nation's energy resources and technologies

  8. Personal Vision: Enhancing Work Engagement and the Retention of Women in the Engineering Profession

    Directory of Open Access Journals (Sweden)

    Kathleen Relihan Buse

    2014-12-01

    Full Text Available This study examines how personal vision enhances work engagement and the retention of women in the engineering profession. Using a mixed method approach to understand the factors related to the retention of women in the engineering profession, we first interviewed women who persisted and women who opted out of the profession (Buse & Bilimoria, 2014. In these rich stories we found that women who persisted had a personal vision that included their profession, and that this personal vision enabled them to overcome the bias, barriers and discrimination in the engineering workplace. To validate this finding on a larger population, we developed a scale to measure one’s personal vision conceptualized as the ideal self (Boyatzis & Akrivou, 2006. The measure was tested in a pilot study and then used in a study of 495 women with engineering degrees. The findings validate that the ideal self is comprised of self efficacy, hope, optimism and core identity. For these women the ideal self directly impacts work engagement and work engagement directly impacts career commitment to engineering. The findings add to extant theory related to the role of personal vision and intentional change theory. From a practical perspective these findings will aid efforts to retain women in engineering and other STEM professions.

  9. Personal vision: enhancing work engagement and the retention of women in the engineering profession.

    Science.gov (United States)

    Buse, Kathleen R; Bilimoria, Diana

    2014-01-01

    This study examines how personal vision enhances work engagement and the retention of women in the engineering profession. Using a mixed method approach to understand the factors related to the retention of women in the engineering profession, we first interviewed women who persisted and women who opted out of the profession (Buse and Bilimoria, 2014). In these rich stories, we found that women who persisted had a personal vision that included their profession, and that this personal vision enabled them to overcome the bias, barriers and discrimination in the engineering workplace. To validate this finding on a larger population, we developed a scale to measure one's personal vision conceptualized as the ideal self (Boyatzis and Akrivou, 2006). The measure was tested in a pilot study and then used in a study of 495 women with engineering degrees. The findings validate that the ideal self is comprised of self-efficacy, hope, optimism and core identity. For these women, the ideal self directly impacts work engagement and work engagement directly impacts career commitment to engineering. The findings add to extant theory related to the role of personal vision and intentional change theory. From a practical perspective, these findings will aid efforts to retain women in engineering and other STEM professions.

  10. Personal vision: enhancing work engagement and the retention of women in the engineering profession

    Science.gov (United States)

    Buse, Kathleen R.; Bilimoria, Diana

    2014-01-01

    This study examines how personal vision enhances work engagement and the retention of women in the engineering profession. Using a mixed method approach to understand the factors related to the retention of women in the engineering profession, we first interviewed women who persisted and women who opted out of the profession (Buse and Bilimoria, 2014). In these rich stories, we found that women who persisted had a personal vision that included their profession, and that this personal vision enabled them to overcome the bias, barriers and discrimination in the engineering workplace. To validate this finding on a larger population, we developed a scale to measure one's personal vision conceptualized as the ideal self (Boyatzis and Akrivou, 2006). The measure was tested in a pilot study and then used in a study of 495 women with engineering degrees. The findings validate that the ideal self is comprised of self-efficacy, hope, optimism and core identity. For these women, the ideal self directly impacts work engagement and work engagement directly impacts career commitment to engineering. The findings add to extant theory related to the role of personal vision and intentional change theory. From a practical perspective, these findings will aid efforts to retain women in engineering and other STEM professions. PMID:25538652

  11. The performance of a quantum heat engine working with spin systems

    International Nuclear Information System (INIS)

    Chen Jincan; Lin Bihong; Hua Ben

    2002-01-01

    It is considered that the cycle of a quantum heat engine working with many non-interacting spin-1/2 systems is composed of two isothermal and two isomagnetic field processes. The performance of the cycle is investigated, based on the quantum master equation and semi-group approach. The general expressions of the efficiency and power output are given. The regenerative losses in two isomagnetic field processes are calculated. The influence of non-perfect regeneration is analysed. Some interesting cases are discussed in detail. The results obtained are further generalized, so that they may be directly used to describe the performance of the quantum heat engine using spin-J systems as the working substance. (author)

  12. Preliminary results from a four-working space, double-acting piston, Stirling engine controls model

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1980-01-01

    A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

  13. Thermodynamic model of a diesel engine to work with gas produced from biomass gasification

    International Nuclear Information System (INIS)

    Lesme Jaén, René; Silva Jardines, Fernando; Rodríguez Ortíz, Leandro Alexei; García Faure, Luis Gerónimo; Peralta Campos, Leonel Grave de; Oliva Ruiz, Luis; Iglesias Vaillant, Yunier

    2017-01-01

    The poor gas, obtained from the gasification of the biomass with air, has a high content of volatile substances, high stability to the ignition and can be used in internal combustion engines. In the present work the results of a thermodynamic model for a Diesel engine AshokLeyland, installed in 'El Brujo' sawmill of the Gran Piedra Baconao Forestry Company of Santiago de Cuba. From the composition and the combustion equation of the poor gas, the thermodynamic cycle calculation and the energy balance of the engine for different loads. Cycle parameters, fuel air ratio, CO2 emissions, engine power and performance were determined. As the main result of the work, the engine had an effective efficiency of 22.3%, consumed 3605.5 grams of fuel / KWh and emits 2055 grams of CO2 / kWh. (author)

  14. Accurate Dna Assembly And Direct Genome Integration With Optimized Uracil Excision Cloning To Facilitate Engineering Of Escherichia Coli As A Cell Factory

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Nørholm, Morten

    2015-01-01

    Plants produce a vast diversity of valuable compounds with medical properties, but these are often difficult to purify from the natural source or produce by organic synthesis. An alternative is to transfer the biosynthetic pathways to an efficient production host like the bacterium Escherichia co......-excision-based cloning and combining it with a genome-engineering approach to allow direct integration of whole metabolic pathways into the genome of E. coli, to facilitate the advanced engineering of cell factories........ Cloning and heterologous gene expression are major bottlenecks in the metabolic engineering field. We are working on standardizing DNA vector design processes to promote automation and collaborations in early phase metabolic engineering projects. Here, we focus on optimizing the already established uracil...

  15. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Science.gov (United States)

    Yu, Qihui; Shi, Yan; Cai, Maolin

    2014-01-01

    A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine. PMID:25379536

  16. Working Characteristics of Variable Intake Valve in Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Qihui Yu

    2014-01-01

    Full Text Available A new camless compressed air engine is proposed, which can make the compressed air energy reasonably distributed. Through analysis of the camless compressed air engine, a mathematical model of the working processes was set up. Using the software MATLAB/Simulink for simulation, the pressure, temperature, and air mass of the cylinder were obtained. In order to verify the accuracy of the mathematical model, the experiments were conducted. Moreover, performance analysis was introduced to design compressed air engine. Results show that, firstly, the simulation results have good consistency with the experimental results. Secondly, under different intake pressures, the highest output power is obtained when the crank speed reaches 500 rpm, which also provides the maximum output torque. Finally, higher energy utilization efficiency can be obtained at the lower speed, intake pressure, and valve duration angle. This research can refer to the design of the camless valve of compressed air engine.

  17. MO-DE-206-02: Cellular Metabolism of FDG

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, S. [University of California-Davis (United States)

    2016-06-15

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our ability to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.

  18. MO-DE-206-01: Cellular Metabolism of FDG

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, G. [Stanford University (United States)

    2016-06-15

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our ability to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.

  19. Terminal alkenes as versatile chemical reporter groups for metabolic oligosaccharide engineering.

    Science.gov (United States)

    Späte, Anne-Katrin; Schart, Verena F; Schöllkopf, Sophie; Niederwieser, Andrea; Wittmann, Valentin

    2014-12-08

    The Diels-Alder reaction with inverse electron demand (DAinv reaction) of 1,2,4,5-tetrazines with electron rich or strained alkenes was proven to be a bioorthogonal ligation reaction that proceeds fast and with high yields. An important application of the DAinv reaction is metabolic oligosaccharide engineering (MOE) which allows the visualization of glycoconjugates in living cells. In this approach, a sugar derivative bearing a chemical reporter group is metabolically incorporated into cellular glycoconjugates and subsequently derivatized with a probe by means of a bioorthogonal ligation reaction. Here, we investigated a series of new mannosamine and glucosamine derivatives with carbamate-linked side chains of varying length terminated by alkene groups and their suitability for labeling cell-surface glycans. Kinetic investigations showed that the reactivity of the alkenes in DAinv reactions increases with growing chain length. When applied to MOE, one of the compounds, peracetylated N-butenyloxycarbonylmannosamine, was especially well suited for labeling cell-surface glycans. Obviously, the length of its side chain represents the optimal balance between incorporation efficiency and speed of the labeling reaction. Sialidase treatment of the cells before the bioorthogonal labeling reaction showed that this sugar derivative is attached to the glycans in form of the corresponding sialic acid derivative and not epimerized to another hexosamine derivative to a considerable extent. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Japanese aerial attack on Hanford Engineer Works

    Science.gov (United States)

    Clark, Charles W.

    The day before the Pearl Harbor attack, December 6, 1941, the University of Chicago Metallurgical Laboratory was given four goals: design a plutonium (Pu) bomb; produce Pu by irradiation of uranium (U); extract Pu from the irradiated U; complete this in time to be militarily significant. A year later the first controlled nuclear chain reaction was attained in Chicago Pile 1 (CP-1). In January 1943, Hanford, WA was chosen as the site of the Pu factory. Neutron irradiation of 238U was to be used to make 239Pu. This was done by a larger version of CP-1, Hanford Reactor B, which went critical in September 1944. By July 1945 it had made enough Pu for two bombs: one used at the Trinity test in July; the other at Nagasaki, Japan in August. I focus on an ironic sidelight to this story: disruption of hydroelectric power to Reactor B by a Japanese fire balloon attack on March 10, 1945. This activated the costly coal-fired emergency backup plant to keep the reactor coolant water flowing, thwarting disaster and vindicating the conservative design of Hanford Engineer Works. Management of the Hanford Engineer Works in World War II, H. Thayer (ASCE Press 1996).

  1. Enhancing Carbon Fixation by Metabolic Engineering: A Model System of Complex Network Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gregory Stephanopoulos

    2008-04-10

    In the first two years of this research we focused on the development of a DNA microarray for transcriptional studies in the photosynthetic organism Synechocystis and the elucidation of the metabolic pathway for biopolymer synthesis in this organism. In addition we also advanced the molecular biological tools for metabolic engineering of biopolymer synthesis in Synechocystis and initiated a series of physiological studies for the elucidation of the carbon fixing pathways and basic central carbon metabolism of these organisms. During the last two-year period we focused our attention on the continuation and completion of the last task, namely, the development of tools for basic investigations of the physiology of these cells through, primarily, the determination of their metabolic fluxes. The reason for this decision lies in the importance of fluxes as key indicators of physiology and the high level of information content they carry in terms of identifying rate limiting steps in a metabolic pathway. While flux determination is a well-advanced subject for heterotrophic organisms, for the case of autotrophic bacteria, like Synechocystis, some special challenges had to be overcome. These challenges stem mostly from the fact that if one uses {sup 13}C labeled CO{sub 2} for flux determination, the {sup 13}C label will mark, at steady state, all carbon atoms of all cellular metabolites, thus eliminating the necessary differentiation required for flux determination. This peculiarity of autotrophic organisms makes it imperative to carry out flux determination under transient conditions, something that had not been accomplished before. We are pleased to report that we have solved this problem and we are now able to determine fluxes in photosynthetic organisms from stable isotope labeling experiments followed by measurements of label enrichment in cellular metabolites using Gas Chromatography-Mass Spectrometry. We have conducted extensive simulations to test the method and

  2. Geotechnical information as an important element when planning and designing civil engineering work Bogotá

    OpenAIRE

    Denisse Cangrejo Aljure; Carlos Gustavo Infante

    2010-01-01

    The city of Bogota provides a dynamic scenario re civil construction work; it is thereby essential to have relevant information available for the suitable planning and evaluation of engineering work from both the structural and budgetary points of view. The moisture content of soil has become a most important variable, given its great impact on placing structures in Bogota. This is why this work on city zoning aimed at orientating planning and designing civil engineering work has been done a...

  3. USE OF INFORMATION TECHNOLOGY IN RESEARCH WORK OF FUTURE SOFTWARE ENGINEERS

    Directory of Open Access Journals (Sweden)

    M.O. Vinnik

    2014-04-01

    Full Text Available The article describes practical cooperation experience of Kherson State University’s lecturers group and students on software creation for automation, selection and processing of information about the universities scientists publication on the Internet. Recently, much attention is paid to scientometric bases by scientific societies of Eastern Europe. Large number of countries creates their own scientometric bases, platforms and other services. Working on familiar projects the future software engineers can be ready to implement similar tasks as for own country and for the world leaders. The result of research group work should be creation of software tools to support the business processes of research activities at the university. The involvement of students in research work allows using their creativity and employment potential for solving urgent problems of university, raising research competence of students’ professional skills in computer science and software engineering, which are involved in design and development of real software product. Participation of students in each stage is essential element of research group work. While creating software, students receive not only theoretical and practical knowledge of research work but also enhance their professional competences, as projects implementation is the closest to the professional software engineer’s work.

  4. Engineering Probiotics that Improve Warfighter Performance by Maintaining Lean Body Mass and Inhibiting Anxiety

    Science.gov (United States)

    2017-10-03

    From - To) 03/10/2017 Final Technical Report 15-05-14 to 14-05-17 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Engineering probiotics that improve...ABSTRACT The overall goal of this work is to engineer "synthetic probiotics": orally-administered gut bacteria that sense and compute the metabolic...Final Technical Report Grant number: ONR N00014-14-1-0487 Title: Engineering probiotics that improve warfighter performance by maintaining lean body

  5. Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species.

    Science.gov (United States)

    Liu, Yanbin; Yap, Sihui Amy; Koh, Chong Mei John; Ji, Lianghui

    2016-11-25

    Red yeast species in the Rhodotorula/Rhodosporidium genus are outstanding producers of triacylglyceride and cell biomass. Metabolic engineering is expected to further enhance the productivity and versatility of these hosts for the production of biobased chemicals and fuels. Promoters with strong activity during oil-accumulation stage are critical tools for metabolic engineering of these oleaginous yeasts. The upstream DNA sequences of 6 genes involved in lipid biosynthesis or accumulation in Rhodotorula toruloides were studied by luciferase reporter assay. The promoter of perilipin/lipid droplet protein 1 gene (LDP1) displayed much stronger activity (4-11 folds) than that of glyceraldehyde-3-phosphate dehydrogenase gene (GPD1), one of the strongest promoters known in yeasts. Depending on the stage of cultivation, promoter of acetyl-CoA carboxylase gene (ACC1) and fatty acid synthase β subunit gene (FAS1) exhibited intermediate strength, displaying 50-160 and 20-90% levels of GPD1 promoter, respectively. Interestingly, introns significantly modulated promoter strength at high frequency. The incorporation of intron 1 and 2 of LDP1 (LDP1in promoter) enhanced its promoter activity by 1.6-3.0 folds. Similarly, the strength of ACC1 promoter was enhanced by 1.5-3.2 folds if containing intron 1. The intron 1 sequences of ACL1 and FAS1 also played significant regulatory roles. When driven by the intronic promoters of ACC1 and LDP1 (ACC1in and LDP1in promoter, respectively), the reporter gene expression were up-regulated by nitrogen starvation, independent of de novo oil biosynthesis and accumulation. As a proof of principle, overexpression of the endogenous acyl-CoA-dependent diacylglycerol acyltransferase 1 gene (DGA1) by LDP1in promoter was significantly more efficient than GPD1 promoter in enhancing lipid accumulation. Intronic sequences play an important role in regulating gene expression in R. toruloides. Three intronic promoters, LDP1in, ACC1in and FAS1in, are

  6. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products

    Directory of Open Access Journals (Sweden)

    Volker Fritz Wendisch

    2012-10-01

    Full Text Available Corynebacterium glutamicum is well known as the amino acid-producing workhorse of fermentation industry, being used for multi-million-ton scale production of glutamate and lysine for more than 60 years. However, it is only recently that extensive research has focused on engineering it beyond the scope of amino acids. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources and/or allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. In this review we focus on the state of the art of metabolic engineering of C. glutamicum for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources, and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols.

  7. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  8. Work Sampling Study of an Engineering Professor during a Regular Contract Period

    Science.gov (United States)

    Brink, Jan; McDonald, Dale B.

    2015-01-01

    Work sampling is a technique that has been employed in industry and fields such as healthcare for some time. It is a powerful technique, and an alternative to conventional stop watch time studies, used by industrial engineers to focus upon random work sampling observations. This study applies work sampling to the duties performed by an individual…

  9. Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis.

    Science.gov (United States)

    Veiga, Tânia; Gombert, Andreas K; Landes, Nils; Verhoeven, Maarten D; Kiel, Jan A K W; Krikken, Arjen M; Nijland, Jeroen G; Touw, Hesselien; Luttik, Marijke A H; van der Toorn, John C; Driessen, Arnold J M; Bovenberg, Roel A L; van den Berg, Marco A; van der Klei, Ida J; Pronk, Jack T; Daran, Jean-Marc

    2012-07-01

    Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. chrysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via β-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of β-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of β-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Boosting work characteristics and overall heat-engine performance via shortcuts to adiabaticity: quantum and classical systems.

    Science.gov (United States)

    Deng, Jiawen; Wang, Qing-hai; Liu, Zhihao; Hänggi, Peter; Gong, Jiangbin

    2013-12-01

    Under a general framework, shortcuts to adiabatic processes are shown to be possible in classical systems. We study the distribution function of the work done on a small system initially prepared at thermal equilibrium. We find that the work fluctuations can be significantly reduced via shortcuts to adiabatic processes. For example, in the classical case, probabilities of having very large or almost zero work values are suppressed. In the quantum case, negative work may be totally removed from the otherwise non-positive-definite work values. We also apply our findings to a micro Otto-cycle-based heat engine. It is shown that the use of shortcuts, which directly enhances the engine output power, can also increase the heat-engine efficiency substantially, in both quantum and classical regimes.

  11. CONVERSION OF DIESEL ENGINE INTO SPARK IGNITION ENGINE TO WORK WITH CNG AND LPG FUELS FOR MEETING NEW EMISSION NORMS

    Directory of Open Access Journals (Sweden)

    Syed Kaleemuddin

    2010-01-01

    Full Text Available Fluctuating fuel prices and associated pollution problems of largely exploited petroleum liquid fuel has stimulated the research on abundantly available gaseous fuels to keep the mobility industry intact. In the present work an air cooled diesel engine was modified suitably into a spark ignition engine incorporating electronic ignition and variable speed dependant spark timing to accommodate both LPG and CNG as fuels. Engine was optimized for stoichiometric operation on engine dynamometer. Materials of a few intricate engine components were replaced to suit LPG and CNG application. Ignition timing was mapped to work with gaseous fuels for different speeds. Compensation was done for recovering volumetric efficiency when operated with CNG by introducing more volume of air through resonator. Ignition timing was observed to be the pertinent parameter in achieving good performance with gaseous fuels under consideration. Performance and emission tests were carried out on engine dynamometer and chassis dynamometer. Under wide open throttle and at rated speed condition, it was observed that the peak pressure with LPG was lying between diesel fuel and CNG fuel operation due to slow burning nature of gaseous fuels. As compression ratio was maintained same for LPG and CNG fuel operation, low CO emissions were observed with LPG where as HC + NOx emissions were lower with CNG fuel operation. Chassis dynamometer based emission tests yielded lower CO2 levels with CNG operation.

  12. Organization of the independent work of students while studying engineering graphics

    Directory of Open Access Journals (Sweden)

    Tel’noy Viktor Ivanovich

    2015-01-01

    Full Text Available The article reveals the possibility of creating and implementing teaching conditions for the rational organization of the independent work of first-year students in state of adaptation to the study of the course of engineering drawing. Theoretical and methodological aspects of students’ independent work are presented: types and forms of organization and control, training and methodological support of their independent work. The authors used such an approach to independent work organization: teacher-led classes during the main types of training activities (lectures, practical and laboratory work; form of organization of training (extracurricular, and also self study using innovative teaching methods promotes creative activities of students and the development of competencies of a future skilled construction industry professional. The role of modern information and communication technologies in independent work of students was specified. According to the degree of coverage of students, taking into account individual characteristics and different levels of preparedness, the following forms of independent work organization were detached: individual, differentiated and front.In the process of engineering graphics studying it is recommended to use the following basic forms of independent work: ongoing work with the lecture material; selection and study of literature and electronic sources of information on the problems of the discipline; preparation for the main classroom training; performing calculation and graphic works; work in student scientific societies and carrying out research work; participation in scientific conferences, seminars and other. Emphasis on the formation of students’ skills in working with different types of educational and scientific literature, the ability to analyze, organize information in electronical library systems, open educational resources.

  13. Leisure-time exercise, physical activity during work and commuting, and risk of metabolic syndrome.

    Science.gov (United States)

    Kuwahara, Keisuke; Honda, Toru; Nakagawa, Tohru; Yamamoto, Shuichiro; Akter, Shamima; Hayashi, Takeshi; Mizoue, Tetsuya

    2016-09-01

    Data are limited regarding effect of intensity of leisure-time physical activity on metabolic syndrome. Furthermore, no prospective data are available regarding effect of occupational and commuting physical activity on metabolic syndrome. We compared metabolic syndrome risk by intensity level of leisure-time exercise and by occupational and commuting physical activity in Japanese workers. We followed 22,383 participants, aged 30-64 years, without metabolic syndrome until 2014 March (maximum, 5 years of follow-up). Physical activity was self-reported. Metabolic syndrome was defined by the Joint Statement criteria. We used Cox regression models to estimate the hazard ratios (HRs) and 95 % confidence intervals (CIs) of metabolic syndrome. During a mean follow-up of 4.1 years, 5361 workers developed metabolic syndrome. After adjustment for covariates, compared with engaging in no exercise, the HRs (95 % CIs) for metabolic equivalent hours of exercise per week were 0.99 (0.90, 1.08), 0.99 (0.90, 1.10), and 0.95 (0.83, 1.08), respectively, among individuals engaging in moderate-intensity exercise alone; 0.93 (0.75, 1.14), 0.81 (0.64, 1.02), and 0.84 (0.66, 1.06), among individuals engaging in vigorous-intensity exercise alone; and 0.90 (0.70, 1.17), 0.74 (0.62, 0.89), and 0.81 (0.69, 0.96) among individuals engaging in the two intensities. Higher occupational physical activity was weakly but significantly associated with lower risk of metabolic syndrome. Walking to and from work was not associated with metabolic syndrome. Vigorous-intensity exercise alone or vigorous-intensity combined with moderate-intensity exercise and worksite intervention for physical activity may help prevent metabolic syndrome for Japanese workers.

  14. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin

    OpenAIRE

    Fleige, Christian; Meyer, Florian; Steinbüchel, Alexander

    2016-01-01

    The Gram-positive bacterium Amycolatopsis sp. ATCC 39116 is used for the fermentative production of natural vanillin from ferulic acid on an industrial scale. The strain is known for its outstanding tolerance to this toxic product. In order to improve the productivity of the fermentation process, the strain's metabolism was engineered for higher final concentrations and molar yields. Degradation of vanillin could be decreased by more than 90% through deletion of the vdh gene, which codes for ...

  15. Stirling cycle engines inner workings and design

    CERN Document Server

    Organ, Allan J

    2013-01-01

    Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concep

  16. Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Khaled A. Selim

    2018-03-01

    Full Text Available Scarcity of the non-renewable energy sources, global warming, environmental pollution, and raising the cost of petroleum are the motive for the development of renewable, eco-friendly fuels production with low costs. Bioethanol production is one of the promising materials that can subrogate the petroleum oil, and it is considered recently as a clean liquid fuel or a neutral carbon. Diverse microorganisms such as yeasts and bacteria are able to produce bioethanol on a large scale, which can satisfy our daily needs with cheap and applicable methods. Saccharomyces cerevisiae and Pichia stipitis are two of the pioneer yeasts in ethanol production due to their abilities to produce a high amount of ethanol. The recent focus is directed towards lignocellulosic biomass that contains 30–50% cellulose and 20–40% hemicellulose, and can be transformed into glucose and fundamentally xylose after enzymatic hydrolysis. For this purpose, a number of various approaches have been used to engineer different pathways for improving the bioethanol production with simultaneous fermentation of pentose and hexoses sugars in the yeasts. These approaches include metabolic and flux analysis, modeling and expression analysis, followed by targeted deletions or the overexpression of key genes. In this review, we highlight and discuss the current status of yeasts genetic engineering for enhancing bioethanol production, and the conditions that influence bioethanol production.

  17. MO-DE-206-03: Quantifying Metabolism with Hyperpolarized MR

    Energy Technology Data Exchange (ETDEWEB)

    Bankson, J. [The University of Texas M.D. Anderson Cancer Center (United States)

    2016-06-15

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our ability to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.

  18. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation

    Science.gov (United States)

    Saccharomyces strains engineered to ferment xylose using Scheffersomyces stipitis xylose reductase (XR) and xylitol dehydrogenase (XDH) genes appear to be limited by metabolic imbalances due to differing cofactor specificities of XR and XDH. The S. stipitis XR, which uses nicotinamide adenine dinucl...

  19. Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production.

    Science.gov (United States)

    Xie, Dongming; Jackson, Ethel N; Zhu, Quinn

    2015-02-01

    The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16, and 19-docosahexaenoic acid (C22:6; DHA), have wide-ranging benefits in improving heart health, immune function, mental health, and infant cognitive development. Currently, the major source for EPA and DHA is from fish oil, and a minor source of DHA is from microalgae. With the increased demand for EPA and DHA, DuPont has developed a clean and sustainable source of the omega-3 fatty acid EPA through fermentation using metabolically engineered strains of Yarrowia lipolytica. In this mini-review, we will focus on DuPont's technology for EPA production. Specifically, EPA biosynthetic and supporting pathways have been introduced into the oleaginous yeast to synthesize and accumulate EPA under fermentation conditions. This Yarrowia platform can also produce tailored omega-3 (EPA, DHA) and/or omega-6 (ARA, GLA) fatty acid mixtures in the cellular lipid profiles. Fundamental research such as metabolic engineering for strain construction, high-throughput screening for strain selection, fermentation process development, and process scale-up were all needed to achieve the high levels of EPA titer, rate, and yield required for commercial application. Here, we summarize how we have combined the fundamental bioscience and the industrial engineering skills to achieve large-scale production of Yarrowia biomass containing high amounts of EPA, which led to two commercial products, New Harvest™ EPA oil and Verlasso® salmon.

  20. Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells.

    Science.gov (United States)

    Malhotra, Karan; Subramaniyan, Mayavan; Rawat, Khushboo; Kalamuddin, Md; Qureshi, M Irfan; Malhotra, Pawan; Mohmmed, Asif; Cornish, Katrina; Daniell, Henry; Kumar, Shashi

    2016-11-07

    Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills >500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (∼0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of dihydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  1. 13 CFR 305.4 - Projects for design and engineering work.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Projects for design and engineering work. 305.4 Section 305.4 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION... construction Project in a format and in sufficient quantity to permit advertisement and award of a construction...

  2. Extracurricular Activities Targeted towards Increasing the Number of Engineers Working in the Field of Precision Agriculture

    DEFF Research Database (Denmark)

    Larsen, Leon Bonde; Stark Olsen, Kent; Ahrenkiel, Linda

    SERVICE ROBOTS in precision agriculture have the potential to ensure a more competitive and sustainable production, but the lack of skilled engineers within this area is limiting the industry’s ability to develop new and innovative agricultural technology products. Part of the reason...... is that engineers and scientists have little knowledge about agricultural technology, and they therefore choose to work in other domains. It is hypothesised that introducing engineering students to precision agriculture through practical work with small-scale service robots will increase their interest...... in agriculture and agricultural technology. This article presents the results of an interdisciplinary extracurricular activity for first year engineering students carried out in the Fall 2012 at the University of Southern Denmark. The case was based on practical group-work centered around an agricultural mobile...

  3. A Framework of Working Across Disciplines in Early Design and R&D of Large Complex Engineered Systems

    Science.gov (United States)

    McGowan, Anna-Maria Rivas; Papalambros, Panos Y.; Baker, Wayne E.

    2015-01-01

    This paper examines four primary methods of working across disciplines during R&D and early design of large-scale complex engineered systems such as aerospace systems. A conceptualized framework, called the Combining System Elements framework, is presented to delineate several aspects of cross-discipline and system integration practice. The framework is derived from a theoretical and empirical analysis of current work practices in actual operational settings and is informed by theories from organization science and engineering. The explanatory framework may be used by teams to clarify assumptions and associated work practices, which may reduce ambiguity in understanding diverse approaches to early systems research, development and design. The framework also highlights that very different engineering results may be obtained depending on work practices, even when the goals for the engineered system are the same.

  4. Metabolic engineering of Dunaliella salina for production of ketocarotenoids.

    Science.gov (United States)

    Anila, N; Simon, Daris P; Chandrashekar, Arun; Ravishankar, G A; Sarada, R

    2016-03-01

    Dunaliella is a commercially important marine alga producing high amount of β-carotene. The use of Dunaliella as a potential transgenic system for the production of recombinant proteins has been recently recognized. The present study reports for the first time the metabolic engineering of carotenoid biosynthesis in Dunaliella salina for ketocarotenoid production. The pathway modification included the introduction of a bkt gene from H. pluvialis encoding β-carotene ketolase (4,4'β-oxygenase) along with chloroplast targeting for the production of ketocarotenoids. The bkt under the control of Dunaliella Rubisco smaller subunit promoter along with its transit peptide sequence was introduced into the alga through standardized Agrobacterium-mediated transformation procedure. The selected transformants were confirmed using GFP and GUS expression, PCR and southern blot analysis. A notable upregulation of the endogenous hydroxylase level of transformants was observed where the BKT expression was higher in nutrient-limiting conditions. Carotenoid analysis of the transformants through HPLC and MS analysis showed the presence of astaxanthin and canthaxanthin with maximum content of 3.5 and 1.9 µg/g DW, respectively. The present study reports the feasibility of using D. salina for the production of ketocarotenoids including astaxanthin.

  5. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis

    DEFF Research Database (Denmark)

    Liu, Jianming; Wang, Zhihao; Kandasamy, Vijayalakshmi

    2017-01-01

    on metabolically engineered Lactococcus lactis strains to optimize the production of acetoin and (R,R)−2,3-butanediol (R-BDO). In the absence of an external electron acceptor, a surplus of two NADH per acetoin molecule is produced. We found that a fully activated respiration was able to efficiently regenerate NAD......+, and a high titer of 371 mM (32 g/L) of acetoin was obtained with a yield of 82% of the theoretical maximum. Subsequently, we extended the metabolic pathway from acetoin to R-BDO by introducing the butanediol dehydrogenase gene from Bacillus subtilis. Since one mole of NADH is consumed when acetoin...... is converted into R-BDO per mole, only the excess of NADH needs to be oxidized via respiration. Either by fine-tuning the respiration capacity or by using a dual-phase fermentation approach involving a switch from fully respiratory to non-respiratory conditions, we obtained 361 mM (32 g/L) R-BDO with a yield...

  6. Application of SolidWorks Plastic in the Training in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Maria Ivanova Bakalova

    2017-12-01

    Full Text Available Abstract. In this article is presented an example of the application of SolidWorks the training in mechanical engineering. The main features of the design of the parts intended for injection molding are mentioned. SolidWorks allows all these recommendations to be implemented when creating the details. The text explains the simulation settings that are made in SolidWorks Plastics when simulating injection molding. Through a specific example referred to how to make an analysis of the results obtained.

  7. Roman Engineering, Public Works and Importance of Public Objects in Roman Law

    Directory of Open Access Journals (Sweden)

    Vanessa Ponte-Arrebola

    2017-01-01

    Full Text Available The skill and ability of the Romans in civil engineering and public works largely contributed to the establishment and success of their civilization. Many of the constructed works were built for the possibility of public use and enjoyment by its citizens, known as res publicae in usu publico.

  8. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2014-01-01

    Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up the deve......Yeast Saccharomyces cerevisiae is an important industrial host for production of enzymes, pharmaceutical and nutraceutical ingredients and recently also commodity chemicals and biofuels. Here, we review the advances in modeling and synthetic biology tools and how these tools can speed up...... the development of yeast cell factories. We also present an overview of metabolic engineering strategies for developing yeast strains for production of polymer monomers: lactic, succinic, and cis,cis-muconic acids. S. cerevisiae has already firmly established itself as a cell factory in industrial biotechnology...

  9. A real-time control system of gene expression using ligand-bound nucleic acid aptamer for metabolic engineering.

    Science.gov (United States)

    Wang, Jing; Cui, Xun; Yang, Le; Zhang, Zhe; Lv, Liping; Wang, Haoyuan; Zhao, Zhenmin; Guan, Ningzi; Dong, Lichun; Chen, Rachel

    2017-07-01

    Artificial control of bio-functions through regulating gene expression is one of the most important and attractive technologies to build novel living systems that are useful in the areas of chemical synthesis, nanotechnology, pharmacology, cell biology. Here, we present a novel real-time control system of gene regulation that includes an enhancement element by introducing duplex DNA aptamers upstream promoter and a repression element by introducing a RNA aptamer upstream ribosome binding site. With the presence of ligands corresponding to the DNA aptamers, the expression of the target gene can be potentially enhanced at the transcriptional level by strengthening the recognition capability of RNAP to the recognition region and speeding up the separation efficiency of the unwinding region due to the induced DNA bubble around the thrombin-bound aptamers; while with the presence of RNA aptamer ligand, the gene expression can be repressed at the translational level by weakening the recognition capability of ribosome to RBS due to the shielding of RBS by the formed aptamer-ligand complex upstream RBS. The effectiveness and potential utility of the developed gene regulation system were demonstrated by regulating the expression of ecaA gene in the cell-free systems. The realistic metabolic engineering application of the system has also tested by regulating the expression of mgtC gene and thrombin cDNA in Escherichia coli JD1021 for controlling metabolic flux and improving thrombin production, verifying that the real-time control system of gene regulation is able to realize the dynamic regulation of gene expression with potential applications in bacterial physiology studies and metabolic engineering. Copyright © 2017. Published by Elsevier Inc.

  10. Algogenic substances and metabolic status in work-related Trapezius Myalgia

    DEFF Research Database (Denmark)

    Gerdle, Björn; Kristiansen, Jesper; Larsson, Britt

    2014-01-01

    (LDH), substance P, and N-terminal propeptide of procollagen type I (PINP) in the trapezius muscle at rest and during repetitive/stressful work. These data were also used in multivariate analyses together with previously presented data (Eur J Appl Physiol 108:657-669, 2010): trapezius muscle blood flow......BACKGROUND: This study compares the levels of algesic substances between subjects with trapezius myalgia (TM) and healthy controls (CON) and explores the multivariate correlation pattern between these substances, pain, and metabolic status together with relative blood flow changes reported in our...

  11. Shift in Food Intake and Changes in Metabolic Regulation and Gene Expression during Simulated Night-Shift Work : A Rat Model

    NARCIS (Netherlands)

    Marti, Andrea Rørvik; Meerlo, Peter; Grønli, Janne; van Hasselt, Sjoerd Johan; Mrdalj, Jelena; Pallesen, Ståle; Pedersen, Torhild Thue; Henriksen, Tone Elise Gjøtterud; Skrede, Silje

    2016-01-01

    Night-shift work is linked to a shift in food intake toward the normal sleeping period, and to metabolic disturbance. We applied a rat model of night-shift work to assess the immediate effects of such a shift in food intake on metabolism. Male Wistar rats were subjected to 8 h of forced activity

  12. Main factors affecting the fixing work about nuclear engineering and its discussion

    International Nuclear Information System (INIS)

    Zhang Zhihua; Liu Yaoguan; Qian Dazhi; Liu Hangang; Xu Xianqi; Deng Yue

    2010-01-01

    Main factors to the impact of the fixing work about nuclear engineering such as project design, construction, plan program, document, preparation, order, locale management, surveillance, quality assurance system and so on were presented. These factors were analyzed and discussed in this paper. Some measures and suggestions were put forward to accelerate construction fixing plan and insure good quality. We wish provide some references and help for someone engaged with construction of nuclear engineering. (authors)

  13. Study on Mixed Working Fluids with Different Compositions in Organic Rankine Cycle (ORC Systems for Vehicle Diesel Engines

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2014-08-01

    Full Text Available One way to increase the thermal efficiency of vehicle diesel engines is to recover waste heat by using an organic Rankine cycle (ORC system. Tests were conducted to study the running performances of diesel engines in the whole operating range. The law of variation of the exhaust energy rate under various engine operating conditions was also analyzed. A diesel engine-ORC combined system was designed, and relevant evaluation indexes proposed. The variation of the running performances of the combined system under various engine operating conditions was investigated. R245fa and R152a were selected as the components of the mixed working fluid. Thereafter, six kinds of mixed working fluids with different compositions were presented. The effects of mixed working fluids with different compositions on the running performances of the combined system were revealed. Results show that the running performances of the combined system can be improved effectively when mass fraction R152a in the mixed working fluid is high and the engine operates with high power. For the mixed working fluid M1 (R245fa/R152a, 0.1/0.9, by mass fraction, the net power output of the combined system reaches the maximum of 34.61 kW. Output energy density of working fluid (OEDWF, waste heat recovery efficiency (WHRE, and engine thermal efficiency increasing ratio (ETEIR all reach their maximum values at 42.7 kJ/kg, 10.90%, and 11.29%, respectively.

  14. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas.

    Science.gov (United States)

    Humphreys, Christopher M; Minton, Nigel P

    2018-04-01

    The future sustainable production of chemicals and fuels from non-petrochemical sources, while at the same time reducing greenhouse gas (GHG) emissions, represent two of society's greatest challenges. Microbial chassis able to grow on waste carbon monoxide (CO) and carbon dioxide (CO 2 ) can provide solutions to both. Ranging from the anaerobic acetogens, through the aerobic chemoautotrophs to the photoautotrophic cyanobacteria, they are able to convert C1 gases into a range of chemicals and fuels which may be enhanced and extended through appropriate metabolic engineering. The necessary improvements will be facilitated by the increasingly sophisticated gene tools that are beginning to emerge as part of the Synthetic Biology revolution. These tools, in combination with more accurate metabolic and genome scale models, will enable C1 chassis to deliver their full potential. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Metabolic engineering to expand the substrate spectrum of Pseudomonas putida toward sucrose.

    Science.gov (United States)

    Löwe, Hannes; Schmauder, Lukas; Hobmeier, Karina; Kremling, Andreas; Pflüger-Grau, Katharina

    2017-08-01

    Sucrose is an important disaccharide used as a substrate in many industrial applications. It is a major component of molasses, a cheap by-product of the sugar industry. Unfortunately, not all industrially relevant organisms, among them Pseudomonas putida, are capable of metabolizing sucrose. We chose a metabolic engineering approach to circumvent this blockage and equip P. putida with the activities necessary to consume sucrose. Therefore, we constructed a pair of broad-host range mini-transposons (pSST - sucrose splitting transposon), carrying either cscA, encoding an invertase able to split sucrose into glucose and fructose, or additionally cscB, encoding a sucrose permease. Introduction of cscA was sufficient to convey sucrose consumption and the additional presence of cscB had no further effect, though the sucrose permease was built and localized to the membrane. Sucrose was split extracellularly by the activity of the invertase CscA leaking out of the cell. The transposons were also used to confer sucrose consumption to Cupriavidus necator. Interestingly, in this strain, CscB acted as a glucose transporter, such that C. necator also gained the ability to grow on glucose. Thus, the pSST transposons are functional tools to extend the substrate spectrum of Gram-negative bacterial strains toward sucrose. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Kanchana R. Kildegaard

    2015-12-01

    Full Text Available Biomass, the most abundant carbon source on the planet, may in the future become the primary feedstock for production of fuels and chemicals, replacing fossil feedstocks. This will, however, require development of cell factories that can convert both C6 and C5 sugars present in lignocellulosic biomass into the products of interest. We engineered Saccharomyces cerevisiae for production of 3-hydroxypropionic acid (3HP, a potential building block for acrylates, from glucose and xylose. We introduced the 3HP biosynthetic pathways via malonyl-CoA or β-alanine intermediates into a xylose-consuming yeast. Using controlled fed-batch cultivation, we obtained 7.37±0.17 g 3HP L−1 in 120 hours with an overall yield of 29±1% Cmol 3HP Cmol−1 xylose. This study is the first demonstration of the potential of using S. cerevisiae for production of 3HP from the biomass sugar xylose. Keywords: Metabolic engineering, Biorefineries, 3-hydroxypropionic acid, Saccharomyces cerevisiae, Xylose utilization

  17. Engineering microbes for efficient production of chemicals

    Science.gov (United States)

    Gong, Wei; Dole, Sudhanshu; Grabar, Tammy; Collard, Andrew Christopher; Pero, Janice G; Yocum, R Rogers

    2015-04-28

    This present invention relates to production of chemicals from microorganisms that have been genetically engineered and metabolically evolved. Improvements in chemical production have been established, and particular mutations that lead to those improvements have been identified. Specific examples are given in the identification of mutations that occurred during the metabolic evolution of a bacterial strain genetically engineered to produce succinic acid. This present invention also provides a method for evaluating the industrial applicability of mutations that were selected during the metabolic evolution for increased succinic acid production. This present invention further provides microorganisms engineered to have mutations that are selected during metabolic evolution and contribute to improved production of succinic acid, other organic acids and other chemicals of commercial interest.

  18. Dynamic optimal metabolic control theory: a cybernetic approach for modelling of the central nitrogen metabolism of S. cerevisiae

    NARCIS (Netherlands)

    Riel, van N.A.W.; Giuseppin, M.L.F.; Verrips, C.T.

    2000-01-01

    The theory of dynamic optimal metabolic control (DOMC), as developed by Giuseppin and Van Riel (Metab. Eng., 2000), is applied to model the central nitrogen metabolism (CNM) in Saccharomyces cerevisiae. The CNM represents a typical system encountered in advanced metabolic engineering. The CNM is the

  19. Artificial Promoters for Metabolic Optimization

    DEFF Research Database (Denmark)

    Jensen, Peter Ruhdal; Hammer, Karin

    1998-01-01

    In this article, we review some of the expression systems that are available for Metabolic Control Analysis and Metabolic Engineering, and examine their advantages and disadvantages in different contexts. In a recent approach, artificial promoters for modulating gene expression in micro-organisms...

  20. Prediction of work metabolism from heart rate measurements in forest work: some practical methodological issues.

    Science.gov (United States)

    Dubé, Philippe-Antoine; Imbeau, Daniel; Dubeau, Denise; Auger, Isabelle; Leone, Mario

    2015-01-01

    Individual heart rate (HR) to workload relationships were determined using 93 submaximal step-tests administered to 26 healthy participants attending physical activities in a university training centre (laboratory study) and 41 experienced forest workers (field study). Predicted maximum aerobic capacity (MAC) was compared to measured MAC from a maximal treadmill test (laboratory study) to test the effect of two age-predicted maximum HR Equations (220-age and 207-0.7 × age) and two clothing insulation levels (0.4 and 0.91 clo) during the step-test. Work metabolism (WM) estimated from forest work HR was compared against concurrent work V̇O2 measurements while taking into account the HR thermal component. Results show that MAC and WM can be accurately predicted from work HR measurements and simple regression models developed in this study (1% group mean prediction bias and up to 25% expected prediction bias for a single individual). Clothing insulation had no impact on predicted MAC nor age-predicted maximum HR equations. Practitioner summary: This study sheds light on four practical methodological issues faced by practitioners regarding the use of HR methodology to assess WM in actual work environments. More specifically, the effect of wearing work clothes and the use of two different maximum HR prediction equations on the ability of a submaximal step-test to assess MAC are examined, as well as the accuracy of using an individual's step-test HR to workload relationship to predict WM from HR data collected during actual work in the presence of thermal stress.

  1. Kinetic modeling of cell metabolism for microbial production.

    Science.gov (United States)

    Costa, Rafael S; Hartmann, Andras; Vinga, Susana

    2016-02-10

    Kinetic models of cellular metabolism are important tools for the rational design of metabolic engineering strategies and to explain properties of complex biological systems. The recent developments in high-throughput experimental data are leading to new computational approaches for building kinetic models of metabolism. Herein, we briefly survey the available databases, standards and software tools that can be applied for kinetic models of metabolism. In addition, we give an overview about recently developed ordinary differential equations (ODE)-based kinetic models of metabolism and some of the main applications of such models are illustrated in guiding metabolic engineering design. Finally, we review the kinetic modeling approaches of large-scale networks that are emerging, discussing their main advantages, challenges and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Metabolic engineering of the phenylpropanoid pathway enhances the antioxidant capacity of Saussurea involucrata.

    Directory of Open Access Journals (Sweden)

    Jian Qiu

    Full Text Available The rare wild species of snow lotus Saussurea involucrata is a commonly used medicinal herb with great pharmacological value for human health, resulting from its uniquely high level of phenylpropanoid compound production. To gain information on the phenylpropanid biosynthetic pathway genes in this critically important medicinal plant, global transcriptome sequencing was performed. It revealed that the phenylpropanoid pathway genes were well represented in S. involucrata. In addition, we introduced two key phenylpropanoid pathway inducing transcription factors (PAP1 and Lc into this medicinal plant. Transgenic S. involucrata co-expressing PAP1 and Lc exhibited purple pigments due to a massive accumulation of anthocyanins. The over-expression of PAP1 and Lc largely activated most of the phenylpropanoid pathway genes, and increased accumulation of several phenylpropanoid compounds significantly, including chlorogenic acid, syringin, cyanrine and rutin. Both ABTS (2,2'-azinobis-3-ethylbenzotiazo-line-6-sulfonic acid and FRAP (ferric reducing anti-oxidant power assays revealed that the antioxidant capacity of transgenic S. involucrata lines was greatly enhanced over controls. In addition to providing a deeper understanding of the molecular basis of phenylpropanoid metabolism, our results potentially enable an alternation of bioactive compound production in S. involucrata through metabolic engineering.

  3. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.

    Science.gov (United States)

    Di Gioia, Diana; Luziatelli, Francesca; Negroni, Andrea; Ficca, Anna Grazia; Fava, Fabio; Ruzzi, Maurizio

    2011-12-20

    Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.

    Science.gov (United States)

    Klamt, Steffen; Müller, Stefan; Regensburger, Georg; Zanghellini, Jürgen

    2018-02-07

    example and demonstrate their relevance for metabolic engineering with realistic models of E. coli. We develop a comprehensive mathematical framework for yield optimization in metabolic models. Our theory is particularly useful for the study and rational modification of cell factories designed under given yield and/or rate requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. System-level perturbations of cell metabolism using CRISPR/Cas9

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Jensen, Michael Krogh; Keasling, Jay

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced palindromic repeats and the associated protein Cas9) techniques have made genome engineering and transcriptional reprogramming studies more advanced and cost-effective. For metabolic engineering purposes, the CRISPR-based tools have been applied...... previously possible. In this mini-review we highlight recent studies adopting CRISPR/Cas9 for systems-level perturbations and model-guided metabolic engineering....

  6. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  7. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka Anna; Mahfouz, Magdy M.

    2015-01-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  8. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae

    KAUST Repository

    Aouida, Mustapha

    2015-04-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S.cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S.cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. © 2015 The Society for Biotechnology, Japan.

  9. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks

    DEFF Research Database (Denmark)

    Chen, Yun; Nielsen, Jens

    2013-01-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective...... production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological...

  10. Concurrent Engineering Working Group White Paper Distributed Collaborative Design: The Next Step in Aerospace Concurrent Engineering

    Science.gov (United States)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Panek, John; Warfield, Keith; Borden, Chester

    2011-01-01

    As aerospace missions grow larger and more technically complex in the face of ever tighter budgets, it will become increasingly important to use concurrent engineering methods in the development of early conceptual designs because of their ability to facilitate rapid assessments and trades of performance, cost and schedule. To successfully accomplish these complex missions with limited funding, it is essential to effectively leverage the strengths of individuals and teams across government, industry, academia, and international agencies by increased cooperation between organizations. As a result, the existing concurrent engineering teams will need to increasingly engage in distributed collaborative concurrent design. The purpose of this white paper is to identify a near-term vision for the future of distributed collaborative concurrent engineering design for aerospace missions as well as discuss the challenges to achieving that vision. The white paper also documents the advantages of creating a working group to investigate how to engage the expertise of different teams in joint design sessions while enabling organizations to maintain their organizations competitive advantage.

  11. Context-specific metabolic networks are consistent with experiments.

    Directory of Open Access Journals (Sweden)

    Scott A Becker

    2008-05-01

    Full Text Available Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are "genome-scale" and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.

  12. The role of logbooks as mediators of engineering design work

    DEFF Research Database (Denmark)

    McAlpine, Hamish; Cash, Philip; Hicks, Ben

    2017-01-01

    Information transformation is key to engineering design work. However, research on how information management tools, and logbooks in particular, mediate this, is fragmented. We explore this via two studies (from which we confirm the central role of logbooks) and propose three modes of mediation...... are such a central and enduring medium. This synthesises and extends theory on mediation and information use in engineering design. Further, practical insights are derived for the development new information management tools.......: facilitating cognition and creation, gathering and collation of information, and staging and transformation of information. The findings explain the widespread use of logbooks through their support of these three modes. Consequently, we contend that multi-modal mediation is one of the main reasons why logbooks...

  13. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Ruth Grene

    2013-05-01

    Full Text Available Soybean (Glycine max seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.

  14. Production of L-carnitine by secondary metabolism of bacteria

    Directory of Open Access Journals (Sweden)

    Iborra José L

    2007-10-01

    Full Text Available Abstract The increasing commercial demand for L-carnitine has led to a multiplication of efforts to improve its production with bacteria. The use of different cell environments, such as growing, resting, permeabilized, dried, osmotically stressed, freely suspended and immobilized cells, to maintain enzymes sufficiently active for L-carnitine production is discussed in the text. The different cell states of enterobacteria, such as Escherichia coli and Proteus sp., which can be used to produce L-carnitine from crotonobetaine or D-carnitine as substrate, are analyzed. Moreover, the combined application of both bioprocess and metabolic engineering has allowed a deeper understanding of the main factors controlling the production process, such as energy depletion and the alteration of the acetyl-CoA/CoA ratio which are coupled to the end of the biotransformation. Furthermore, the profiles of key central metabolic activities such as the TCA cycle, the glyoxylate shunt and the acetate metabolism are seen to be closely interrelated and affect the biotransformation efficiency. Although genetically modified strains have been obtained, new strain improvement strategies are still needed, especially in Escherichia coli as a model organism for molecular biology studies. This review aims to summarize and update the state of the art in L-carnitine production using E. coli and Proteus sp, emphasizing the importance of proper reactor design and operation strategies, together with metabolic engineering aspects and the need for feed-back between wet and in silico work to optimize this biotransformation.

  15. The function of specialized organization in work safety engineering for nuclear installations

    International Nuclear Information System (INIS)

    Salvatore, J.E.L.

    1989-01-01

    The attributions of Brazilian CNEN in the licensing procedures of any nuclear installation are discussed. It is shown that the work safety engineering and industrial safety constitute important functions for nuclear safety. (M.C.K.) [pt

  16. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Zebis, Mette Kreutzfeldt; Kiilerich, Kristian

    2013-01-01

    healthy controls. Those with myalgia performed similar to 7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after...... 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism......The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16...

  17. MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis.

    Science.gov (United States)

    Lee, Dong-Yup; Yun, Hongsoek; Park, Sunwon; Lee, Sang Yup

    2003-11-01

    MetaFluxNet is a program package for managing information on the metabolic reaction network and for quantitatively analyzing metabolic fluxes in an interactive and customized way. It allows users to interpret and examine metabolic behavior in response to genetic and/or environmental modifications. As a result, quantitative in silico simulations of metabolic pathways can be carried out to understand the metabolic status and to design the metabolic engineering strategies. The main features of the program include a well-developed model construction environment, user-friendly interface for metabolic flux analysis (MFA), comparative MFA of strains having different genotypes under various environmental conditions, and automated pathway layout creation. http://mbel.kaist.ac.kr/ A manual for MetaFluxNet is available as PDF file.

  18. Engineering Robustness of Microbial Cell Factories.

    Science.gov (United States)

    Gong, Zhiwei; Nielsen, Jens; Zhou, Yongjin J

    2017-10-01

    Metabolic engineering and synthetic biology offer great prospects in developing microbial cell factories capable of converting renewable feedstocks into fuels, chemicals, food ingredients, and pharmaceuticals. However, prohibitively low production rate and mass concentration remain the major hurdles in industrial processes even though the biosynthetic pathways are comprehensively optimized. These limitations are caused by a variety of factors unamenable for host cell survival, such as harsh industrial conditions, fermentation inhibitors from biomass hydrolysates, and toxic compounds including metabolic intermediates and valuable target products. Therefore, engineered microbes with robust phenotypes is essential for achieving higher yield and productivity. In this review, the recent advances in engineering robustness and tolerance of cell factories is described to cope with these issues and briefly introduce novel strategies with great potential to enhance the robustness of cell factories, including metabolic pathway balancing, transporter engineering, and adaptive laboratory evolution. This review also highlights the integration of advanced systems and synthetic biology principles toward engineering the harmony of overall cell function, more than the specific pathways or enzymes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Enhancement of the Work in Scia Engineer's Environment by Employment of XML Programming Language

    Directory of Open Access Journals (Sweden)

    Kortiš Ján

    2015-12-01

    Full Text Available The productivity of the work of engineers in the design of building structures by applying the rules of technical standards [1] has been increasing by using different software products for recent years. The software products offer engineers new possibilities to design different structures. However, there are problems especially for design of structures with similar static schemes as it is needed to follow the same work-steps. This can be more effective if the steps are done automatically by using a programming language for leading the processes that are done by software. The design process of timber structure which is done in the environment of Scia Engineer software is presented in the article. XML Programming Language is used for automatization of the design and the XML code is modified in the Excel environment by using VBA Programming language [2], [3].

  20. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering.

    Science.gov (United States)

    Aikawa, Shimpei; Ho, Shih-Hsin; Nakanishi, Akihito; Chang, Jo-Shu; Hasunuma, Tomohisa; Kondo, Akihiko

    2015-06-01

    Photosynthetic microorganisms, such as cyanobacteria and microalgae, are currently being investigated as alternative biomass resources for bioethanol production, owing to their benefits, including high-photosynthetic activity and whole-year cultivation without utilization of arable land. Polyglucans comprise the major carbohydrate content of these organisms. Polyglucans can be utilized as a carbon source for microbial fermentation. Although polyglucan production has so far been promoted by nutrient limitation, it must be further enhanced to accommodate market demand. This review focuses on the recent progress in the production of α-polyglucans such asglycogen and starch in cyanobacteria and green microalgae via cultivation design, including modifying the nutrient supply and replacing the growth medium. The control and manipulation of polyglucan metabolism necessitates the elucidation of the polyglucan production mechanism. We reviewed gene expression and metabolite accumulation profiles of cyanobacteria and green microalgae during nutrient limitation-stimulated α-polyglucan accumulation. We also focus on the enhancement in cyanobacterial glycogen production via the genetic engineering of glycolysis, CO2 concentration mechanism, and photosynthetic light-harvesting protein based on the polyglucan accumulation mechanism. The combined strategies of cultivation design and genetic engineering should be considered for further enhancement of polyglucan productivity for bioethanol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Work-related psychosocial factors and onset of metabolic syndrome among workers: a systematic review and meta-analysis protocol.

    Science.gov (United States)

    Sakuraya, Asuka; Watanabe, Kazuhiro; Kawakami, Norito; Imamura, Kotaro; Ando, Emiko; Asai, Yumi; Eguchi, Hisashi; Kobayashi, Yuka; Nishida, Norimitsu; Arima, Hideaki; Shimazu, Akihito; Tsutsumi, Akizumi

    2017-06-22

    Metabolic syndrome is an important public health target because of its high prevalence worldwide. Work-related psychosocial factors have been identified as determinants of metabolic syndrome components. However, there have been no systematic reviews or meta-analyses conducted to evaluate the relationship between work-related psychosocial factors and metabolic syndrome as an aggregated cluster. The aim of this study is to examine this association from published prospective studies. The systematic review and meta-analysis will be conducted using published studies that will be identified from electronic databases (ie, PubMed, EMBASE, PsycINFO, PsycARTICLES and Japan Medical Abstracts Society). Studies that (1) examined the association between work-related psychosocial factors and the onset of metabolic syndrome, (2) had a longitudinal or prospective cohort design, (3) were conducted among workers, (4) provided sufficient data for calculating ORs or relative risk with a 95% CI, (5) were published as original articles written in English or Japanese, and (6) having been published until the end of 2016 will be included. Study selection, data collection, quality assessment and statistical syntheses will be conducted based on discussions among investigators. Ethics approval was not required for this study because it was based on published studies. The results and findings of this study will be submitted and published in a scientific peer-reviewed journal. The findings from this study could be useful for assessing metabolic syndrome risk factors in the workplace, and determining approaches for prevention of metabolic syndrome in the future. PROSPERO CRD42016039096 (http://www.crd.york.ac.uk/PROSPERO_REBRANDING/display_record.asp?ID=CRD42016039096). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Maximum Work of Free-Piston Stirling Engine Generators

    Science.gov (United States)

    Kojima, Shinji

    2017-04-01

    Using the method of adjoint equations described in Ref. [1], we have calculated the maximum thermal efficiencies that are theoretically attainable by free-piston Stirling and Carnot engine generators by considering the work loss due to friction and Joule heat. The net work done by the Carnot cycle is negative even when the duration of heat addition is optimized to give the maximum amount of heat addition, which is the same situation for the Brayton cycle described in our previous paper. For the Stirling cycle, the net work done is positive, and the thermal efficiency is greater than that of the Otto cycle described in our previous paper by a factor of about 2.7-1.4 for compression ratios of 5-30. The Stirling cycle is much better than the Otto, Brayton, and Carnot cycles. We have found that the optimized piston trajectories of the isothermal, isobaric, and adiabatic processes are the same when the compression ratio and the maximum volume of the same working fluid of the three processes are the same, which has facilitated the present analysis because the optimized piston trajectories of the Carnot and Stirling cycles are the same as those of the Brayton and Otto cycles, respectively.

  3. A review of parameters and heuristics for guiding metabolic pathfinding.

    Science.gov (United States)

    Kim, Sarah M; Peña, Matthew I; Moll, Mark; Bennett, George N; Kavraki, Lydia E

    2017-09-15

    Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly reducing the total time and resources required for their production, and in turn, allows these valuable compounds to become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development of available metabolic information has enabled the development of automated approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become more sophisticated, the development of better methods for visualizing pathway results and integrating these results into existing metabolic engineering practices is also important for encouraging wider use of these pathfinding methods.

  4. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    DEFF Research Database (Denmark)

    Hefzi, Hooman; Ang, Kok Siong; Hanscho, Michael

    2016-01-01

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways...

  5. Energy-related scientists and engineers: a statistical profile of recent entrants into the work force, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Sharon E.

    1979-12-01

    This report examines the educational and employment characteristics of scientists and engineers who graduated during the years 1972, 1974, 1975, and 1976, with special attention to those whose work involves energy. The characteristics of energy-related graduates are also compared to those of more experienced scientists and engineers involved in energy activities. Information is based on the results of the 1976 and 1978 National Surveys of Recent Science and Engineering Graduates, and the 1976 National Survey of Natural and Social Scientists and Engineers, sponsored by the National Science Foundation and the US Department of Energy. Tabulations are included for the first time on employment involving specific energy sources and activities. Other characteristics discussed include educational level, salary, primary work activity, type of employer, and the proportion of graduates who found employment in their major field.

  6. Glycosylation Engineering

    DEFF Research Database (Denmark)

    Clausen, Henrik; Wandall, Hans H.; Steentoft, Catharina

    2017-01-01

    Knowledge of the cellular pathways of glycosylation across phylogeny provides opportunities for designing glycans via genetic engineering in a wide variety of cell types including bacteria, fungi, plant cells, and mammalian cells. The commercial demand for glycosylation engineering is broad......, including production of biological therapeutics with defined glycosylation (Chapter 57). This chapter describes how knowledge of glycan structures and their metabolism (Parts I–III of this book) has led to the current state of glycosylation engineering in different cell types. Perspectives for rapid...

  7. Participatory ergonomics in industrial engineering projects: The case of a new cheese packaging line work system

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Broberg, Ole; Aldrich, Per

    2014-01-01

    The aim of this study is to explore and conceptualize the challenges that ergonomists meet when seeking to introduce PE methods into an industrial engineering design project in order to optimize the new work system.......The aim of this study is to explore and conceptualize the challenges that ergonomists meet when seeking to introduce PE methods into an industrial engineering design project in order to optimize the new work system....

  8. Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol.

    Science.gov (United States)

    Lee, Hye-Jin; Kim, Soo-Jung; Yoon, Jeong-Jun; Kim, Kyoung Heon; Seo, Jin-Ho; Park, Yong-Cheol

    2015-09-01

    The aim of this work was to apply the evolutionary engineering to construct a mutant Saccharomyces cerevisiae HJ7-14 resistant on 2-deoxy-D-glucose and with an enhanced ability of bioethanol production from galactose, a mono-sugar in red algae. In batch and repeated-batch fermentations, HJ7-14 metabolized 5-fold more galactose and produced ethanol 2.1-fold faster than the parental D452-2 strain. Transcriptional analysis of genes involved in the galactose metabolism revealed that moderate relief from the glucose-mediated repression of the transcription of the GAL genes might enable HJ7-14 to metabolize galactose rapidly. HJ7-14 produced 7.4 g/L ethanol from hydrolysates of the red alga Gelidium amansii within 12 h, which was 1.5-times faster than that observed with D452-2. We demonstrate conclusively that evolutionary engineering is a promising tool to manipulate the complex galactose metabolism in S. cerevisiae to produce bioethanol from red alga. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Savannah River Plant engineering, design, and construction history of ``S`` projects and other work, January 1961--December 1964. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-01

    The work described in this volume of ``S`` Projects History is an extension of the type of work described in Volume I. E.I. du Pont de flemours & Company had entered into Contract AT (07-2)-l with the United States Atomic Energy Commission to develop, design, construct, install, and operate facilities to produce heavy water, fissionable materials, and related products. Under this contract,, Du Pont constructed and operated the Savannah River Plant. The engineering, design, and construction for most of the larger ``S`` projects was performed by the Engineering DeDartment. For some of the large and many of the smaller projects the Engineering Department was responsible only for the construction because the Atomic Energy Division (AED) of the Explosives Department handled the other phases. The Engineering Department Costruction Division also performed the physical work for many of the plant work orders. This volume includes a general description of the Du Pont Engineering Department activities pertaining to the engineering, design, and construction of the ``S`` projects at the Savannah River Plant; brief summaries of the projects and principal work requests; and supplementary informaticn on a few subjects in Volume I for which final data was not available at the closing date. Projects and other plant engineering work which were handled entirely by the Explosives Department -- AED are not included in this history.

  10. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  11. Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism.

    Science.gov (United States)

    Xu, Li-Qin; Liu, Yong-Jun; Yao, Kang; Liu, Hao-Hao; Tao, Xin-Yi; Wang, Feng-Qing; Wei, Dong-Zhi

    2016-02-22

    The catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated. The encoded protein, Hsd4A, was characterized as a dual-function enzyme, with both 17β-hydroxysteroid dehydrogenase and β-hydroxyacyl-CoA dehydrogenase activities in vitro. Using a kshAs-null strain of M. neoaurum ATCC 25795 (NwIB-XII) as a model, Hsd4A was further confirmed to exert dual-function in sterol catabolism in vivo. The deletion of hsd4A in NwIB-XII resulted in the production of 23,24-bisnorcholenic steroids (HBCs), indicating that hsd4A plays a key role in sterol side-chain degradation. Therefore, two competing pathways, the AD and HBC pathways, were proposed for the side-chain degradation. The proposed HBC pathway has great value in illustrating the production mechanism of HBCs in sterol catabolism and in developing HBCs producing strains for industrial application via metabolic engineering. Through the combined modification of hsd4A and other genes, three HBCs producing strains were constructed that resulted in promising productivities of 0.127, 0.109 and 0.074 g/l/h, respectively.

  12. Model-based design of bistable cell factories for metabolic engineering.

    Science.gov (United States)

    Srinivasan, Shyam; Cluett, William R; Mahadevan, Radhakrishnan

    2018-04-15

    Metabolism can exhibit dynamic phenomena like bistability due to the presence of regulatory motifs like the positive feedback loop. As cell factories, microorganisms with bistable metabolism can have a high and a low product flux at the two stable steady states, respectively. The exclusion of metabolic regulation and network dynamics limits the ability of pseudo-steady state stoichiometric models to detect the presence of bistability, and reliably assess the outcomes of design perturbations to metabolic networks. Using kinetic models of metabolism, we assess the change in the bistable characteristics of the network, and suggest designs based on perturbations to the positive feedback loop to enable the network to produce at its theoretical maximum rate. We show that the most optimal production design in parameter space, for a small bistable metabolic network, may exist at the boundary of the bistable region separating it from the monostable region of low product fluxes. The results of our analysis can be broadly applied to other bistable metabolic networks with similar positive feedback network topologies. This can complement existing model-based design strategies by providing a smaller number of feasible designs that need to be tested in vivo. http://lmse.biozone.utoronto.ca/downloads/. krishna.mahadevan@utoronto.ca. Supplementary data are available at Bioinformatics online.

  13. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Lages, Nuno; Oldiges, M.

    2009-01-01

    to induce widespread changes in metabolism. We present a detailed analysis of the impact of perturbations in redox cofactors in the cytosol or mitochondria on glucose and energy metabolism in Saccharomyces cerevisiae to aid metabolic engineering decisions that involve cofactor engineering. We enhanced NADH...... oxidation by introducing NADH oxidase or alternative oxidase, its ATP-mediated conversion to NADPH using NADH kinase as well as the interconversion of NADH and NADPH independent of ATP by the soluble, non-proton-translocating bacterial transhydrogenase. Decreasing cytosolic NADH level lowered glycerol...

  14. 75 FR 67364 - Decision To Evaluate a Petition To Designate a Class of Employees From Clinton Engineering Works...

    Science.gov (United States)

    2010-11-02

    ... Employees From Clinton Engineering Works in Oak Ridge, TN, To Be Included in the Special Exposure Cohort... evaluate a petition to designate a class of employees from Clinton Engineering Works in Oak Ridge... Compensation Program Act of 2000. The initial proposed definition for the class being evaluated, subject to...

  15. Analysis of Office/Laboratory Staying Hour and Home Working Hour of Japanese Scientists and Engineers

    Science.gov (United States)

    Ejiri, A.

    The second questionnaire for scientists and engineers was carried out in 2007, and status of Japanese scientists and engineers were analyzed and reported. A part of the data was reanalyzed from the viewpoint of work life balance. In particular, office/laboratory staying hour and home working hour were analyzed and dependences on various factors were investigated. It was found that these hours depend on gender, marital status, number of child, employment status and age. In addition, the total hours tend to be kept constant regardless of various factors.

  16. Genetic and metabolic engineering for microbial production of poly-γ-glutamic acid.

    Science.gov (United States)

    Cao, Mingfeng; Feng, Jun; Sirisansaneeyakul, Sarote; Song, Cunjiang; Chisti, Yusuf

    2018-05-28

    Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed. Copyright © 2018. Published by Elsevier Inc.

  17. MO-DE-206-00: Joint AAPM-WMIS Symposium: Metabolic Imaging of Cancer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our ability to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.

  18. Engineering Microbial Metabolite Dynamics and Heterogeneity.

    Science.gov (United States)

    Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong

    2017-10-01

    As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Optimum performance analysis of an irreversible Diesel heat engine affected by variable heat capacities of working fluid

    International Nuclear Information System (INIS)

    Zhao, Yingru; Chen, Jincan

    2007-01-01

    An irreversible cycle model of the Diesel heat engine is established in which the temperature dependent heat capacities of the working fluid, the irreversibilities resulting from non-isentropic compression and expansion processes and heat leak losses through the cylinder wall are taken into account. The adiabatic equation of ideal gases with temperature dependent heat capacity is strictly deduced without using the additional approximation condition in the relevant literature and is used to analyze the performance of the Diesel heat engine. Expressions for the work output and efficiency of the cycle are derived by introducing the pressure ratio and the compression and expansion efficiencies. The performance characteristic curves of the Diesel heat engine are presented for a set of given parameters. The optimum criteria of some important parameters such as the work output, efficiency, pressure ratio and temperatures of the working fluid are obtained. Moreover, the influence of the compression and expansion efficiencies, variable heat capacities, heat leak and other parameters on the performance of the cycle is discussed in detail. The results obtained may provide a theoretical basis for both optimal design and operation of real Diesel heat engines

  20. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  1. Metabolic engineering of Chinese hamster ovary cells: towards a bioengineered heparin.

    Science.gov (United States)

    Baik, Jong Youn; Gasimli, Leyla; Yang, Bo; Datta, Payel; Zhang, Fuming; Glass, Charles A; Esko, Jeffrey D; Linhardt, Robert J; Sharfstein, Susan T

    2012-03-01

    Heparin is the most widely used pharmaceutical to control blood coagulation in modern medicine. A health crisis that took place in 2008 led to a demand for production of heparin from non-animal sources. Chinese hamster ovary (CHO) cells, commonly used mammalian host cells for production of foreign pharmaceutical proteins in the biopharmaceutical industry, are capable of producing heparan sulfate (HS), a related polysaccharide naturally. Since heparin and HS share the same biosynthetic pathway, we hypothesized that heparin could be produced in CHO cells by metabolic engineering. Based on the expression of endogenous enzymes in the HS/heparin pathways of CHO-S cells, human N-deacetylase/N-sulfotransferase (NDST2) and mouse heparan sulfate 3-O-sulfotransferase 1 (Hs3st1) genes were transfected sequentially into CHO host cells growing in suspension culture. Transfectants were screened using quantitative RT-PCR and Western blotting. Out of 120 clones expressing NDST2 and Hs3st1, 2 clones, Dual-3 and Dual-29, were selected for further analysis. An antithrombin III (ATIII) binding assay using flow cytometry, designed to recognize a key sugar structure characteristic of heparin, indicated that Hs3st1 transfection was capable of increasing ATIII binding. An anti-factor Xa assay, which affords a measure of anticoagulant activity, showed a significant increase in activity in the dual-expressing cell lines. Disaccharide analysis of the engineered HS showed a substantial increase in N-sulfo groups, but did not show a pattern consistent with pharmacological heparin, suggesting that further balancing the expression of transgenes with the expression levels of endogenous enzymes involved in HS/heparin biosynthesis might be necessary. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  3. Prevalence and clinical characteristics of metabolically healthy obese individuals and other obese/non-obese metabolic phenotypes in a working population: results from the Icaria study

    Directory of Open Access Journals (Sweden)

    Albert Goday

    2016-04-01

    Full Text Available Abstract Background Metabolically healthy obese (MHO phenotype may present with distinct characteristics compared with those with a metabolically unhealthy obese phenotype. Epidemiologic data on the distribution of these conditions in the working population are lacking. We aimed to evaluate the prevalence and clinical characteristics of MHO and other obese/non-obese metabolic phenotypes in a working population. Methods Cross-sectional analysis of all subjects who had undergone a medical examination with Ibermutuamur Prevention Society from May 2004 to December 2007. Participants were classified into 5 categories according to their body mass index (BMI; within each of these categories, participants were further classified as metabolically healthy (MH or metabolically unhealthy (MUH according to the modified NCEP-ATPIII criteria. A logistic regression analysis was performed to evaluate some clinically relevant factors associated with a MH status. Results In the overall population, the prevalence of the MHO phenotype was 8.6 %. The proportions of MH individuals in the overweight and obese categories were: 87.1 % (overweight and 55.5 % (obese I-III [58.8, 40.0, and 38.7 % of the obese I, II, and III categories, respectively]. When the overweight and obese categories were considered, compared with individuals who were MUH, those who were MH tended to be younger and more likely to be female or participate in physical exercise; they were also less likely to smoke, or to be a heavy drinker. In the underweight and normal weight categories, compared with individuals who were MH, those who were MUH were more likely to be older, male, manual (blue collar workers, smokers and heavy drinkers. Among participants in the MUH, normal weight group, the proportion of individuals with a sedentary lifestyle was higher relative to those in the MH, normal weight group. The factors more strongly associated with the MUH phenotype were BMI and age, followed by the

  4. Toward solar biodiesel production from CO2 using engineered cyanobacteria.

    Science.gov (United States)

    Woo, Han Min; Lee, Hyun Jeong

    2017-05-01

    Metabolic engineering of cyanobacteria has received attention as a sustainable strategy to convert carbon dioxide to various biochemicals including fatty acid-derived biodiesel. Recently, Synechococcus elongatus PCC 7942, a model cyanobacterium, has been engineered to convert CO2 to fatty acid ethyl esters (FAEEs) as biodiesel. Modular pathway has been constructed for FAEE production. Several metabolic engineering strategies were discussed to improve the production levels of FAEEs, including host engineering by improving CO2 fixation rate and photosynthetic efficiency. In addition, protein engineering of key enzyme in S. elongatus PCC 7942 was implemented to address issues on FAEE secretions toward sustainable FAEE production from CO2. Finally, advanced metabolic engineering will promote developing biosolar cell factories to convert CO2 to feasible amount of FAEEs toward solar biodiesel. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A modular metabolic engineering approach for the production of 1,2-propanediol from glycerol by Saccharomyces cerevisiae.

    Science.gov (United States)

    Islam, Zia-Ul; Klein, Mathias; Aßkamp, Maximilian R; Ødum, Anders S R; Nevoigt, Elke

    2017-11-01

    Compared to sugars, a major advantage of using glycerol as a feedstock for industrial bioprocesses is the fact that this molecule is more reduced than sugars. A compound whose biotechnological production might greatly profit from the substrate's higher reducing power is 1,2-propanediol (1,2-PDO). Here we present a novel metabolic engineering approach to produce 1,2-PDO from glycerol in S. cerevisiae. Apart from implementing the heterologous methylglyoxal (MG) pathway for 1,2-PDO formation from dihydroxyacetone phosphate (DHAP) and expressing a heterologous glycerol facilitator, the employed genetic modifications included the replacement of the native FAD-dependent glycerol catabolic pathway by the 'DHA pathway' for delivery of cytosolic NADH and the reduction of triosephosphate isomerase (TPI) activity for increased precursor (DHAP) supply. The choice of the medium had a crucial impact on both the strength of the metabolic switch towards fermentation in general (as indicated by the production of ethanol and 1,2-PDO) and on the ratio at which these two fermentation products were formed. For example, virtually no 1,2-PDO but only ethanol was formed in synthetic glycerol medium with urea as the nitrogen source. When nutrient-limited complex YG medium was used, significant amounts of 1,2-PDO were formed and it became obvious that the concerted supply of NADH and DHAP are essential for boosting 1,2-PDO production. Additionally, optimizing the flux into the MG pathway improved 1,2-PDO formation at the expense of ethanol. Cultivation of the best-performing strain in YG medium and a controlled bioreactor set-up resulted in a maximum titer of > 4gL -1 1,2-PDO which, to the best of our knowledge, has been the highest titer of 1,2-PDO obtained in yeast so far. Surprisingly, significant 1,2-PDO production was also obtained in synthetic glycerol medium after changing the nitrogen source towards ammonium sulfate and adding a buffer. Copyright © 2017 International Metabolic

  6. Report for Working Group 1: Design Research in Civil and Environmental Engineering

    DEFF Research Database (Denmark)

    Thompson, Mary Kathryn; Paradisi, Irene

    2013-01-01

    The first 2013 DCEE working group meeting focused on issues associated with design research in civil and environmental engineering. It addressed some of the motivation for establishing design as a research discipline in CEE and some of the challenges and outstanding questions about how to do so....

  7. Mathematical modelling of metabolism

    DEFF Research Database (Denmark)

    Gombert, Andreas Karoly; Nielsen, Jens

    2000-01-01

    Mathematical models of the cellular metabolism have a special interest within biotechnology. Many different kinds of commercially important products are derived from the cell factory, and metabolic engineering can be applied to improve existing production processes, as well as to make new processes...... availability of genomic information and powerful analytical techniques, mathematical models also serve as a tool for understanding the cellular metabolism and physiology....... available. Both stoichiometric and kinetic models have been used to investigate the metabolism, which has resulted in defining the optimal fermentation conditions, as well as in directing the genetic changes to be introduced in order to obtain a good producer strain or cell line. With the increasing...

  8. Shift work or food intake during the rest phase promotes metabolic disruption and desynchrony of liver genes in male rats.

    Science.gov (United States)

    Salgado-Delgado, Roberto C; Saderi, Nadia; Basualdo, María del Carmen; Guerrero-Vargas, Natali N; Escobar, Carolina; Buijs, Ruud M

    2013-01-01

    In the liver, clock genes are proposed to drive metabolic rhythms. These gene rhythms are driven by the suprachiasmatic nucleus (SCN) mainly by food intake and via autonomic and hormonal pathways. Forced activity during the normal rest phase, induces also food intake, thus neglecting the signals of the SCN, leading to conflicting time signals to target tissues of the SCN. The present study explored in a rodent model of night-work the influence of food during the normal sleep period on the synchrony of gene expression between clock genes and metabolic genes in the liver. Male Wistar rats were exposed to forced activity for 8 h either during the rest phase (day) or during the active phase (night) by using a slow rotating wheel. In this shift work model food intake shifts spontaneously to the forced activity period, therefore the influence of food alone without induced activity was tested in other groups of animals that were fed ad libitum, or fed during their rest or active phase. Rats forced to be active and/or eating during their rest phase, inverted their daily peak of Per1, Bmal1 and Clock and lost the rhythm of Per2 in the liver, moreover NAMPT and metabolic genes such as Pparα lost their rhythm and thus their synchrony with clock genes. We conclude that shift work or food intake in the rest phase leads to desynchronization within the liver, characterized by misaligned temporal patterns of clock genes and metabolic genes. This may be the cause of the development of the metabolic syndrome and obesity in individuals engaged in shift work.

  9. Combining metabolic and process engineering strategies to improve recombinant glycoprotein production and quality.

    Science.gov (United States)

    Karengera, Eric; Durocher, Yves; De Crescenzo, Gregory; Henry, Olivier

    2017-11-01

    Increasing recombinant protein production while ensuring a high and consistent protein quality remains a challenge in mammalian cell culture process development. In this work, we combined a nutrient substitution approach with a metabolic engineering strategy that improves glucose utilization efficiency. This combination allowed us to tackle both lactate and ammonia accumulation and investigate on potential synergistic effects on protein production and quality. To this end, HEK293 cells overexpressing the pyruvate yeast carboxylase (PYC2) and their parental cells, both stably producing the therapeutic glycoprotein interferon α2b (IFNα2b), were cultured in media deprived of glutamine but containing chosen substitutes. Among the tested substitutes, pyruvate led to the best improvement in growth (integral of viable cell density) for both cell lines in batch cultures, whereas the culture of PYC2 cells without neither glutamine nor any substitute displayed surprisingly enhanced IFNα2b production. The drastic reduction in both lactate and ammonia in the cultures translated into extended high viability conditions and an increase in recombinant protein titer by up to 47% for the parental cells and the PYC2 cells. Product characterization performed by surface plasmon resonance biosensing using Sambucus nigra (SNA) lectin revealed that the increase in yield was however accompanied by a reduction in the degree of sialylation of the product. Supplementing cultures with glycosylation precursors and a cofactor were effective at counterbalancing the lack of glutamine and allowed improvement in IFNα2b quality as evaluated by lectin affinity. Our study provides a strategy to reconcile protein productivity and quality and highlights the advantages of PYC2-overexpressing cells in glutamine-free conditions.

  10. Cardiovascular Fitness is Associated with Altered Cortical Glucose Metabolism During Working Memory in ε4 Carriers

    Science.gov (United States)

    Deeny, Sean P.; Winchester, Jeanna; Nichol, Kathryn; Roth, Stephen M.; Wu, Joseph C.; Dick, Malcolm; Cotman, Carl W.

    2012-01-01

    Background The possibility that ε4 may modulate the effects of fitness in the brain remains controversial. The present exploratory FDG-PET study aimed to better understand the relationship among ε4, fitness and cerebral metabolism in 18 healthy aged females (9 Carriers, 9 Non-carriers) during working memory. Methods Participants underwent VO2 max, CVLT and FDG-PET, collected at rest and during completion of the Sternberg Working Memory Task. Results Resting FDG-PET did not differ between carriers and non-carriers. Significant effects of fitness on FDG-PET during working memory was noted in the ε4 carriers only. High Fit ε4 carriers had greater glucose uptake than the Low Fit in the temporal lobe, but Low Fit had greater glucose uptake in the frontal and parietal lobes. Conclusion(s) We demonstrate that fitness differentially affects cerebral metabolism in ε4 carriers only, consistent with previous findings that the effects of fitness may be more pronounced in populations genetically at risk for cognitive decline. PMID:22226798

  11. Cardiovascular fitness is associated with altered cortical glucose metabolism during working memory in ɛ4 carriers.

    Science.gov (United States)

    Deeny, Sean P; Winchester, Jeanna; Nichol, Kathryn; Roth, Stephen M; Wu, Joseph C; Dick, Malcolm; Cotman, Carl W

    2012-07-01

    The possibility that ɛ4 may modulate the effects of fitness in the brain remains controversial. The present exploratory FDG-PET study aimed to better understand the relationship among ɛ4, fitness, and cerebral metabolism in 18 healthy aged women (nine carriers, nine noncarriers) during working memory. Participants were evaluated using maximal level of oxygen consumption, California Verbal Learning Test, and FDG-PET, which were collected at rest and during completion of the Sternberg working memory task. Resting FDG-PET did not differ between carriers and noncarriers. Significant effects of fitness on FDG-PET during working memory were noted in the ɛ4 carriers only. High fit ɛ4 carriers had greater glucose uptake in the temporal lobe than the low fit ɛ4 carriers, but low fit ɛ4 carriers had greater glucose uptake in the frontal and parietal lobes. We demonstrate that fitness differentially affects cerebral metabolism in ɛ4 carriers only, consistent with previous findings that the effects of fitness may be more pronounced in populations genetically at risk for cognitive decline. Published by Elsevier Inc.

  12. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli

    DEFF Research Database (Denmark)

    Long, Christopher P.; Gonzalez, Jacqueline E.; Feist, Adam M.

    2018-01-01

    Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic...

  13. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Vered Tzin

    2015-06-01

    Full Text Available The tomato (Solanum lycopersicum fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG209-9 and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA12 were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG209 and PheA12 genes. Overexpression of the AroG209-9 gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA12 overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG209-9 and PheA12 genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG209-9 gene. However, the aroma ranking attributes of the tomato fruits from PheA12//AroG209-9 were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA12 gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of

  14. Dehydratase mediated 1-propanol production in metabolically engineered Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jain Rachit

    2011-11-01

    Full Text Available Abstract Background With the increasing consumption of fossil fuels, the question of meeting the global energy demand is of great importance in the near future. As an effective solution, production of higher alcohols from renewable sources by microorganisms has been proposed to address both energy crisis and environmental concerns. Higher alcohols contain more than two carbon atoms and have better physiochemical properties than ethanol as fuel substitutes. Results We designed a novel 1-propanol metabolic pathway by expanding the well-known 1,2-propanediol pathway with two more enzymatic steps catalyzed by a 1,2-propanediol dehydratase and an alcohol dehydrogenase. In order to engineer the pathway into E. coli, we evaluated the activities of eight different methylglyoxal synthases which play crucial roles in shunting carbon flux from glycolysis towards 1-propanol biosynthesis, as well as two secondary alcohol dehydrogenases of different origins that reduce both methylglyoxal and hydroxyacetone. It is evident from our results that the most active enzymes are the methylglyoxal synthase from Bacillus subtilis and the secondary alcohol dehydrogenase from Klebsiella pneumoniae, encoded by mgsA and budC respectively. With the expression of these two genes and the E. coli ydjG encoding methylglyoxal reductase, we achieved the production of 1,2-propanediol at 0.8 g/L in shake flask experiments. We then characterized the catalytic efficiency of three different diol dehydratases on 1,2-propanediol and identified the optimal one as the 1,2-propanediol dehydratase from Klebsiella oxytoca, encoded by the operon ppdABC. Co-expressing this enzyme with the above 1,2-propanediol pathway in wild type E. coli resulted in the production of 1-propanol at a titer of 0.25 g/L. Conclusions We have successfully established a new pathway for 1-propanol production by shunting the carbon flux from glycolysis. To our knowledge, it is the first time that this pathway has been

  15. VRML metabolic network visualizer.

    Science.gov (United States)

    Rojdestvenski, Igor

    2003-03-01

    A successful date collection visualization should satisfy a set of many requirements: unification of diverse data formats, support for serendipity research, support of hierarchical structures, algorithmizability, vast information density, Internet-readiness, and other. Recently, virtual reality has made significant progress in engineering, architectural design, entertainment and communication. We experiment with the possibility of using the immersive abstract three-dimensional visualizations of the metabolic networks. We present the trial Metabolic Network Visualizer software, which produces graphical representation of a metabolic network as a VRML world from a formal description written in a simple SGML-type scripting language.

  16. The physical work environment and end-user requirements: Investigating marine engineering officers' operational demands and ship design.

    Science.gov (United States)

    Mallam, Steven C; Lundh, Monica

    2016-08-12

    Physical environments influence how individuals perceive a space and behave within it. Previous research has revealed deficiencies in ship engine department work environments, and their impact on crew productivity, health and wellbeing. Connect operational task demands to pragmatic physical design and layout solutions by implementing a user-centric perspective. Three focus groups, each consisting of three marine engineers participated in this study. Focus groups were divided into two sessions: first, to investigate the end-user's operational requirements and their relationship with ship physical design and layout. Second, criteria formulated from group discussions were applied to a ship design case study. All focus group sessions were audio recorded and transcribed verbatim. The data were analyzed using Grounded Theory. Design choices made in a ships general arrangement were described to inherently influence how individuals and teams are able to function within the system. Participants detailed logistical relationships between key areas, stressing that the work environment and physical linkages must allow for flexibility of work organization and task execution. Traditional engine control paradigms do not allow effective mitigation of traditional engine department challenges. The influence of technology and modernization of ship systems can facilitate improvement of physical environments and work organization if effectively utilized.

  17. From reconstruction to C>4 metabolic engineering: A case study for overproduction of polyhydroxybutyrate in bioenergy grasses

    DEFF Research Database (Denmark)

    Gomes de Oliveira Dal'Molin, Cristiana; Quek, Lake-Ee; Saa, Pedro A.

    2018-01-01

    bundle sheath (B) and mesophyll (M) across the day and night cycle. The C4 leaf model was used to explore how amenable polyhydroxybutyrate (PHB) production is with these four compartments working cooperatively. A strategic pattern of metabolite conversion and exchange emerged from a systems-level network......The compartmentalization of C4 plants increases photosynthetic efficiency, while constraining how material and energy must flow in leaf tissues. To capture this metabolic phenomenon, a generic plant metabolic reconstruction was replicated into four connected spatiotemporal compartments, namely...... that has very few constraints imposed; mainly the sequential two-step carbon capture in mesophyll, then bundle sheath and photosynthesis during the day only. The building of starch reserves during the day and their mobilization during the night connects day and night metabolism. Flux simulations revealed...

  18. Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery

    International Nuclear Information System (INIS)

    Wang, E.H.; Zhang, H.G.; Fan, B.Y.; Ouyang, M.G.; Zhao, Y.; Mu, Q.H.

    2011-01-01

    Organic Rankine Cycle (ORC) could be used to recover low-grade waste heat. When a vehicle is running, the engine exhaust gas states have a wide range of variance. Defining the operational conditions of the ORC that achieve the maximum utilization of waste heat is important. In this paper the performance of different working fluids operating in specific regions was analyzed using a thermodynamic model built in Matlab together with REFPROP. Nine different pure organic working fluids were selected according to their physical and chemical properties. The results were compared in the regions when net power outputs were fixed at 10 kW. Safety levels and environmental impacts were also evaluated. The outcomes indicate that R11, R141b, R113 and R123 manifest slightly higher thermodynamic performances than the others; however, R245fa and R245ca are the most environment-friendly working fluids for engine waste heat-recovery applications. The optimal control principle of ORC under the transient process is discussed based on the analytical results. -- Highlights: → R11, R141b, R113 and R123 manifest the best thermodynamic performances. → R245fa and R245ca are the most environment-friendly working fluids for the engine waste heat-recovery application. → The condensing temperature has more important effect than the evaporating pressure to the performance of ORC. → The optimal control principle of ORC under the transient process was defined according to the calculation results for the vehicle engine waste heat-recovery application. → ORC thermodynamic model was built in Matlab together with REFPROP.

  19. Analysis and design of a genetic circuit for dynamic metabolic engineering.

    Science.gov (United States)

    Anesiadis, Nikolaos; Kobayashi, Hideki; Cluett, William R; Mahadevan, Radhakrishnan

    2013-08-16

    Recent advances in synthetic biology have equipped us with new tools for bioprocess optimization at the genetic level. Previously, we have presented an integrated in silico design for the dynamic control of gene expression based on a density-sensing unit and a genetic toggle switch. In the present paper, analysis of a serine-producing Escherichia coli mutant shows that an instantaneous ON-OFF switch leads to a maximum theoretical productivity improvement of 29.6% compared to the mutant. To further the design, global sensitivity analysis is applied here to a mathematical model of serine production in E. coli coupled with a genetic circuit. The model of the quorum sensing and the toggle switch involves 13 parameters of which 3 are identified as having a significant effect on serine concentration. Simulations conducted in this reduced parameter space further identified the optimal ranges for these 3 key parameters to achieve productivity values close to the maximum theoretical values. This analysis can now be used to guide the experimental implementation of a dynamic metabolic engineering strategy and reduce the time required to design the genetic circuit components.

  20. Are Quantity Surveyors Competent to Value for Civil Engineering Works? Evaluating QSs' Competencies and Militating Factors

    Science.gov (United States)

    Olawumi, Timothy Oluwatosin; Ayegun, Olaleke Amos

    2016-01-01

    The role of the quantity surveyor is one that is often unclear amongst the general public. This study discussed the competencies of the quantity surveyor in measuring and managing civil engineering works and also carrying out the financial management for civil engineering construction projects; also outlined the various competencies and skills…

  1. Human engineering

    International Nuclear Information System (INIS)

    Yang, Seong Hwan; Park, Bum; Gang, Yeong Sik; Gal, Won Mo; Baek, Seung Ryeol; Choe, Jeong Hwa; Kim, Dae Sung

    2006-07-01

    This book mentions human engineering, which deals with introduction of human engineering, Man-Machine system like system design, and analysis and evaluation of Man-Machine system, data processing and data input, display, system control of man, human mistake and reliability, human measurement and design of working place, human working, hand tool and manual material handling, condition of working circumstance, working management, working analysis, motion analysis working measurement, and working improvement and design in human engineering.

  2. The association between long working hours and the metabolic syndrome: evidences from the 5th Korean National Health and Nutrition Examination Survey of 2010 and 2012.

    Science.gov (United States)

    Jeong, Jae Uk; Jeon, Man Joong; Sakong, Joon

    2014-01-01

    This study was conducted in order to evaluate the association between the working hours of Korean employees and the metabolic syndrome and the effects of long working hours on metabolic syndrome based on the 5th Korean National Health and Nutrition Examination Survey (2010-2012). Based on the 5th Korean National Health and Nutrition Examination Survey (2010-2012), 4,456 Korean employees without shift work, aged over 15, who work 30 hours or more per week were targeted in this study. The association between the general characteristics, including age, smoking, alcohol drinking, exercise, and the metabolic syndrome criteria defined by International Diabetes Federation (IDF) and weekly working hours were analyzed. In addition, the association between weekly working hours and the metabolic syndrome of the subjects stratified by gender was analyzed through multiple logistic regression analyses and generalized linear mixed model after adjusting the general characteristics. In the results of stratified analysis by gender, in male subjects, in comparison with the 30-39 weekly working hours group, there were no significant adjusted odds ratios to the other working hours groups. In female subjects, in comparison with the 30-39 weekly working hours group, there were no significant adjusted odds ratios to the other working hours groups. In addition, no trend associations were observed among weekly working hour groups in both stratified genders. No significant differences in prevalence of metabolic syndrome of the subjects stratified by gender were found according to weekly increasing working hours. However, due to some limitations of this study, further prospective studies may be necessary for verification.

  3. Metabolic Engineering of Corynebacterium glutamicum for Methanol Metabolism

    Science.gov (United States)

    Witthoff, Sabrina; Schmitz, Katja; Niedenführ, Sebastian; Nöh, Katharina; Noack, Stephan

    2015-01-01

    Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [13C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate. PMID:25595770

  4. A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

    KAUST Repository

    Hefzi, Hooman

    2016-11-23

    Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.

  5. Monitoring Bone Tissue Engineered (BTE) Constructs Based on the Shifting Metabolism of Differentiating Stem Cells.

    Science.gov (United States)

    Simmons, Aaron D; Sikavitsas, Vassilios I

    2018-01-01

    Ever-increasing demand for bone grafts necessitates the realization of clinical implementation of bone tissue engineered constructs. The predominant hurdle to implementation remains to be securing FDA approval, based on the lack of viable methods for the rigorous monitoring of said constructs. The study presented herein details a method for such monitoring based on the shifting metabolism of mesenchymal stem cells (MSCs) as they differentiate into osteoblasts. To that end, rat MSCs seeded on 85% porous spunbonded poly(L-lactic acid) scaffolds were cultured in flow perfusion bioreactors with baseline or osteoinductive media, and levels of key physio-metabolic markers (oxygen, glucose, osteoprotegerin, and osteocalcin) were monitored throughout culture. Comparison of these non-destructively obtained values and current standard destructive analyses demonstrated key trends useful for the concurrent real-time monitoring of construct cellularity and maturation. Principle among these is the elucidation of the ratio of the rates of oxygen uptake to glucose consumption as a powerful quality marker. This ratio, supported on a physiological basis, has been shown herein to be reliable in the determination of both construct maturation (defined as osteoblastic differentiation and accompanying mineralization) and construct cellularity. Supplementary monitoring of OPG and OCN are shown to provide further validation of such metrics.

  6. Energetic optimization of the performances of a hot air engine for micro-CHP systems working with a Joule or an Ericsson cycle

    International Nuclear Information System (INIS)

    Creyx, M.; Delacourt, E.; Morin, C.; Desmet, B.; Peultier, P.

    2013-01-01

    The micro combined heat and electrical power systems (micro-CHP) with hot air engines are well adapted for solid biomass upgrading, in particular, the Ericsson engines working with an open cycle and an external combustion. This paper presents a model of an Ericsson engine with a compression and an expansion cylinder which allows a thermodynamic optimization of the engine performances in a global approach. A sensitive analysis on the influent parameters is carried out in order to determine the optimal working conditions of the engine: temperature and pressure range, expansion cycle shape with a late intake valve closing or an early exhaust valve closing, heat transfers through the wall of the cylinders. This study, focused on thermodynamic aspects, is a first step in the design of an Ericsson engine. -- Highlights: ► A model of Ericsson engine working with a Joule or Ericsson cycle is presented. ► Influent factors on the engine performances are investigated. ► The heat exchanges in the cylinder wall must be avoided to improve the performances. ► Closing the intake valve late and the exhaust valve early enhances the performances. ► Efficiency, indicated mean pressure, specific work are thermodynamically optimized.

  7. EFFECT OF COMPOSITION OF FUEL CONTAINING BUTANOL ON WORKING PROCESS PARAMETERS OF DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    D. G. Hershan

    2017-01-01

    Full Text Available Computational researches the effect of composition of fuel containing butanol on working process parameters of 4ЧН 11/12,5 diesel engine on the external speed characteristic have been conducted. Nominal power is 140 kW at engine speed 2300 min–1. The engine is equipped with gas turbine pressure charging with intercooling of charging air, accumulator-type fuel-handling system. Calculations of the working process have been made in accordance with the developed computer program and models. Investigations have been carried out in two stages: without any changes in regulation of fuel-handling system and with cyclic fuel delivery that ensure such value of excess air factor at various operational modes which corresponds to the operation with diesel fuel. All the obtained results have been analyzed in the paper. The paper shows changes in mean indicated pressure, specific indicated fuel consumption, indicated efficiency, specific nitrogen oxides emissions for various modes in question while using 5, 10, 15, 20, 25 and 30 % mixture of diesel fuel with butanol. Dependences of parameters pertaining to diesel operation have been determined according to external speed characteristic for various mixtures and the obtained data make it possible to justify parameters of the fuel-handling system. It has been recommended to use a diesel fuel-butanol mixture containing 15 % of butanol without any changes in regulating and design engine parameters. It has been revealed that in order to improve parameters of the engine operational process mixture composition must be changed while changing the operational mode. An injector nozzle with a compound needle for the fuel-handling system has been developed and it allows to change fuel composition according to engine operational mode.

  8. Experimental characterization of mass, work and heat flows in an air cooled, single cylinder engine

    International Nuclear Information System (INIS)

    Perez-Blanco, H.

    2004-01-01

    Small air cooled engines, although large in numbers, receive scant attention in the literature. Experimental data for a four stroke, air cooled, single cylinder engine are presented in this report. Air to fuel ratios, indicated and output power, exhaust composition and heat loss are determined to result in suitable thermal and mechanical efficiencies. The data obtained are discussed with the perspective obtained from other literature references. Exhaust composition figures appear reasonable, but the measurement of the transient exhaust flows is still a concern. Based on the measurements, a graph illustrating the different energy transformations in the engine is produced. Undergraduate students in the curriculum routinely use the engine and the present work allows one to conclude that the measurement approach produces reasonable results. These results could be used by engine modelers and others interested in this wide field of technology

  9. Skip cycle system for spark ignition engines: An experimental investigation of a new type working strategy

    International Nuclear Information System (INIS)

    Kutlar, Osman Akin; Arslan, Hikmet; Calik, Alper T.

    2007-01-01

    A new type working strategy for spark ignition engine, named skip cycle, is examined. The main idea is to reduce the effective stroke volume of an engine by cutting off fuel injection and spark ignition in some of the classical four stroke cycles. When the cycle is skipped, additionally, a rotary valve is used in the intake to reduce pumping losses in part load conditions. The effect of this strategy is similar to that of variable displacement engines. Alternative power stroke fractions in one cycle and applicability in single cylinder engines are specific advantageous properties of the proposed system. A thermodynamic model, besides experimental results, is used to explain the skip cycle strategy in more detail. This theoretical investigation shows considerable potential to increase the efficiency at part load conditions. Experimental results obtained with this novel strategy show that the throttle valve of the engine opens wider and the minimum spark advance for maximum brake torque decreases in comparison to those of the classical operation system. The brake specific fuel consumption decreases at very low speed and load, while it increases at higher speed and load due to the increased fuel loss within the skipped cycles. In this working mode, the engine operates at lower idle speed without any stability problem; and moreover with less fuel consumption

  10. Yeast metabolic engineering for hemicellulosic ethanol production

    Science.gov (United States)

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  11. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries.

    Science.gov (United States)

    Parisutham, Vinuselvi; Chandran, Sathesh-Prabu; Mukhopadhyay, Aindrila; Lee, Sung Kuk; Keasling, Jay D

    2017-09-01

    Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolize cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Metabolic Engineering of Yeast to Produce Fatty Acid-derived Biofuels: Bottlenecks and Solutions

    Directory of Open Access Journals (Sweden)

    Jiayuan eSheng

    2015-06-01

    Full Text Available Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles.

  13. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes--current status and future opportunities.

    Science.gov (United States)

    Lange, B Markus; Ahkami, Amirhossein

    2013-02-01

    Terpenoids (a.k.a. isoprenoids) represent the most diverse class of natural products found in plants, with tens of thousands of reported structures. Plant-derived terpenoids have a multitude of pharmaceutical and industrial applications, but the natural resources for their extraction are often limited and, in many cases, synthetic routes are not commercially viable. Some of the most valuable terpenoids are not accumulated in model plants or crops, and genetic resources for breeding of terpenoid natural product traits are thus poorly developed. At present, metabolic engineering, either in the native producer or a heterologous host, is the only realistic alternative to improve yield and accessibility. In this review article, we will evaluate the state of the art of modulating the biosynthetic pathways for the production of mono-, sesqui- and diterpenes in plants. © 2012 The Authors Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  14. BioMet Toolbox: genome-wide analysis of metabolism

    DEFF Research Database (Denmark)

    Cvijovic, M.; Olivares Hernandez, Roberto; Agren, R.

    2010-01-01

    The rapid progress of molecular biology tools for directed genetic modifications, accurate quantitative experimental approaches, high-throughput measurements, together with development of genome sequencing has made the foundation for a new area of metabolic engineering that is driven by metabolic...

  15. Protein design for pathway engineering.

    Science.gov (United States)

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Metabolic engineering of the chloroplast genome reveals that the yeast ArDH gene confers enhanced tolerance to salinity and drought in plants

    Directory of Open Access Journals (Sweden)

    Muhammad Sarwar Khan

    2015-09-01

    Full Text Available Osmoprotectants stabilize proteins and membranes against the denaturing effect of high concentrations of salts and other harmful solutes. In yeast, arabitol dehydrogenase (ArDH reduces D-ribulose to D-arabitol where D-ribulose is derived by dephosphorylating D-ribulose-5-PO4 in the oxidized pentose pathway. Osmotolerance in plants could be developed through metabolic engineering of chloroplast genome by introducing genes encoding polyols. Here, we report that ArDH expression in chloroplasts confers tolerance to NaCl (up to 400 mM. Transgenic plants compared to wild type survived for four to five weeks on 400 mM NaCl. Nevertheless, plants remained green and grew normal on concentrations up to 350 mM NaCl. Further, a-week-old seedlings were also challenged with poly ethylene glycol (PEG, up to 6% in the liquid medium, considering that membranes and proteins are protected under stress conditions due to accumulation of arabitol in chloroplasts. Seedlings were tolerant to 6% PEG, suggesting that ARDH enzyme maintains integrity of membranes in chloroplasts under drought conditions via metabolic engineering. Hence, the gene could be expressed in agronomic plants to withstand abiotic stresses.

  17. Industrial Work Placement in Higher Education: A Study of Civil Engineering Student Engagement

    Science.gov (United States)

    Tennant, Stuart; Murray, Mike; Gilmour, Bob; Brown, Linda

    2018-01-01

    For civil engineering undergraduates, short-term industrial work placement provides an invaluable learning experience. Notwithstanding the near-universal endorsement of short-term placement programmes, the resulting experience is rarely articulated through the student voice. This article provides an analysis of 174 questionnaires returned by…

  18. Separate and joint associations of occupational and leisure-time sitting with cardio-metabolic risk factors in working adults: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Madina Saidj

    Full Text Available BACKGROUND: The workplace is a main setting for prolonged sitting for some occupational groups. Convincing evidence has recently accumulated on the detrimental cardio-metabolic health effects of leisure-time sitting. Yet, much less is known about occupational sitting, and the potential health risk attached compared to leisure-time sitting. OBJECTIVE: To explore the separate and joint associations of occupational and leisure-time sitting with cardio-metabolic risk factors in working adults. METHODS: All working adults (N = 2544 from the Health2006, a Danish population-based study, were included in this cross-sectional study. Participants reported hours of sitting during work, during leisure-time along with socio-demographic and behavioral characteristics, including physical activity. Cardio-metabolic risk factors (waist circumference, body mass index, body fat percentage, total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, insulin, hemoglobin A1c and plasma glucose were measured. Associations were explored by linear regression for leisure-time, occupational, and overall sitting time. RESULTS: Statistically significant (p<.05 detrimental associations of leisure-time sitting were observed with all cardio-metabolic risk factors, except hemoglobin A1c and plasma glucose. Similarly, occupational sitting time was significantly detrimentally associated with HDL cholesterol, triglycerides, and insulin. For categories of sitting time, a joint adverse association of sitting much during both work-time and leisure-time was observed. CONCLUSION: The associations of occupational sitting time with cardio-metabolic risk factors were fewer and weaker compared to leisure-time sitting. Yet, the joint associations of occupational and leisure-time sitting with cardio-metabolic risk factors were higher than the separate. Our findings amplify the need for further focus in this area prior to making assumptions about equivalent health risks across

  19. Separate and joint associations of occupational and leisure-time sitting with cardio-metabolic risk factors in working adults: a cross-sectional study.

    Science.gov (United States)

    Saidj, Madina; Jørgensen, Torben; Jacobsen, Rikke K; Linneberg, Allan; Aadahl, Mette

    2013-01-01

    The workplace is a main setting for prolonged sitting for some occupational groups. Convincing evidence has recently accumulated on the detrimental cardio-metabolic health effects of leisure-time sitting. Yet, much less is known about occupational sitting, and the potential health risk attached compared to leisure-time sitting. To explore the separate and joint associations of occupational and leisure-time sitting with cardio-metabolic risk factors in working adults. All working adults (N = 2544) from the Health2006, a Danish population-based study, were included in this cross-sectional study. Participants reported hours of sitting during work, during leisure-time along with socio-demographic and behavioral characteristics, including physical activity. Cardio-metabolic risk factors (waist circumference, body mass index, body fat percentage, total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, insulin, hemoglobin A1c and plasma glucose) were measured. Associations were explored by linear regression for leisure-time, occupational, and overall sitting time. Statistically significant (pleisure-time sitting were observed with all cardio-metabolic risk factors, except hemoglobin A1c and plasma glucose. Similarly, occupational sitting time was significantly detrimentally associated with HDL cholesterol, triglycerides, and insulin. For categories of sitting time, a joint adverse association of sitting much during both work-time and leisure-time was observed. The associations of occupational sitting time with cardio-metabolic risk factors were fewer and weaker compared to leisure-time sitting. Yet, the joint associations of occupational and leisure-time sitting with cardio-metabolic risk factors were higher than the separate. Our findings amplify the need for further focus in this area prior to making assumptions about equivalent health risks across sedentary behaviors. To our knowledge, this is the first study to contrast the deleterious associations of

  20. Teaching `community engagement' in engineering education for international development: Integration of an interdisciplinary social work curriculum

    Science.gov (United States)

    Gilbert, Dorie J.; Lehman Held, Mary; Ellzey, Janet L.; Bailey, William T.; Young, Laurie B.

    2015-05-01

    This article reviews the literature on challenges faced by engineering faculty in educating their students on community-engaged, sustainable technical solutions in developing countries. We review a number of approaches to increasing teaching modules on social and community components of international development education, from adding capstone courses and educational track seminars to integrating content from other disciplines, particularly the social sciences. After summarising recent pedagogical strategies to increase content on community-focused development, we present a case study of how one engineering programme incorporates social work students and faculty to infuse strategies for community engagement in designing and implementing student-led global engineering development projects. We outline how this interdisciplinary pedagogical approach teaches students from the two disciplines to work together in addressing power balances, economic and social issues and overall sustainability of international development projects.