WorldWideScience

Sample records for metabolic drugs advisory

  1. 75 FR 13559 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-22

    ... growth hormone releasing hormone (GHRH). The proposed indication (use) for EGRIFTA in this application is...: Endocrinologic and Metabolic Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  2. 75 FR 2875 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-19

    ... analogue (a chemical compound that resembles another compound in structure) of growth hormone releasing hormone (GHRH). The proposed indication (use) for EGRIFTA in this application is to induce and maintain a...: Endocrinologic and Metabolic Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  3. 78 FR 64956 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-30

    ... treatment of metabolic disorders associated with lipodystrophy, including diabetes mellitus and/or... than can be reasonably accommodated during the scheduled open public hearing session, FDA may conduct a... 7 days in advance of the meeting. FDA is committed to the orderly conduct of its advisory committee...

  4. Drug Metabolism

    Indian Academy of Sciences (India)

    IAS Admin

    Chemistry of Drug Metabolism. Drug metabolism is a chemical process, where enzymes play a crucial role in the conversion of one chemical species to another. The major family of enzymes associated with these metabolic reactions is the cytochrome P450 family. The structural features and functional activity of these ...

  5. Drug Metabolism

    Indian Academy of Sciences (India)

    IAS Admin

    Drug metabolism may be defined as the biochemical modifica- tion of one chemical form to another, occurring usually through ..... Endogenous. Enzyme. Drugs. Cofactor. Glucuronidation. UDP glucoronic. UDP-. Chloramphenicol, acid glucuronosyltransferase morphine, paracetamol, salicylic acid, fenoprofen, desipramine,.

  6. Drug Metabolism

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Drug Metabolism: A Fascinating Link Between Chemistry and Biology. Nikhil Taxak Prasad V Bharatam. General Article Volume 19 Issue 3 March 2014 pp 259-282 ...

  7. 76 FR 80948 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-12-27

    ..., Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 31...., as an adjunct to diet and exercise for weight management in patients with a body mass index (BMI) equal to or greater than 30 kilograms (kg) per square meter or a BMI equal to or greater than 27 kg per...

  8. 78 FR 63224 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-23

    ... treatment of Mucopolysaccharidosis Type IVA (Morquio A syndrome). Morquio A syndrome is a rare congenital disorder caused by the absence or malfunctioning of an enzyme involved in an important metabolic pathway... scheduled open public hearing session, FDA may conduct a lottery to determine the speakers for the scheduled...

  9. 77 FR 16038 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-03-19

    ... and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 31, rm. 2417, Silver... weight management in patients with a body mass index (BMI) equal to or greater than 30 kilograms (kg) per square meter or a BMI equal to or greater than 27 kg per square meter if accompanied by weight-related...

  10. 75 FR 64313 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001... risk factors (e.g. diabetes, dyslipidemia, or hypertension). The BMI is a measure of body weight (mass... be made to the contact person on or before November 22, 2010. Oral presentations from the public will...

  11. 77 FR 73471 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-12-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001... adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. FDA... person on or before December 27, 2012. Oral presentations from the public will be scheduled between...

  12. 77 FR 61609 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No FDA-2012-N-0001... treatment of Type 1 and Type 2 diabetes mellitus. FDA intends to make background material available to the... submissions may be made to the contact person on or before October 24, 2012. Oral presentations from the...

  13. 78 FR 22270 - Joint Meeting of the Endocrinologic and Metabolic Drugs Advisory Committee and the Drug Safety...

    Science.gov (United States)

    2013-04-15

    ..., indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes... Evaluated for Cardiovascular Outcomes and Regulation of Glycemia in Diabetes (RECORD) trial, for new drug...

  14. 75 FR 32189 - Joint Meeting of the Endocrinologic and Metabolic Drugs Advisory Committee and the Drug Safety...

    Science.gov (United States)

    2010-06-07

    ..., GlaxoSmithKline, a drug approved for blood glucose control in adults with type 2 diabetes mellitus. Data... Outcome and Regulation of Glycemia in Diabetes (RECORD) Trial, observational data, health claims data, and...

  15. 77 FR 69869 - National Advisory Council on Alcohol Abuse and Alcoholism, National Advisory Council on Drug...

    Science.gov (United States)

    2012-11-21

    ... Alcohol Abuse and Alcoholism, National Advisory Council on Drug Abuse, and National Cancer Advisory Board... Advisory Council on Alcohol Abuse and Alcoholism, National Advisory Council on Drug Abuse, and National...: National Advisory Council on Alcohol Abuse and Alcoholism, National Advisory Council on Drug Abuse, and...

  16. 75 FR 81283 - Oncologic Drugs Advisory Committee; Cancellation

    Science.gov (United States)

    2010-12-27

    ... HUMAN SERVICES Food and Drug Administration Oncologic Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Oncologic Drugs Advisory... of December 6, 2010 (75 FR 75680). On February 9, 2011, the Oncologic Drugs Advisory Committee was...

  17. 76 FR 25357 - Advisory Committee; Medical Imaging Drugs Advisory Committee; Reestablishment

    Science.gov (United States)

    2011-05-04

    ... HUMAN SERVICES Food and Drug Administration Advisory Committee; Medical Imaging Drugs Advisory Committee... Administration (FDA) is announcing the ] reestablishment of the Medical Imaging Drugs Advisory Committee in the.... 101-635); and 21 CFR 14.40(b), FDA is announcing the reestablishment of the Medical Imaging Drugs...

  18. 76 FR 45402 - Advisory Committee; Medical Imaging Drugs Advisory Committee; Re-Establishment

    Science.gov (United States)

    2011-07-29

    .... FDA-2010-N-0002] Advisory Committee; Medical Imaging Drugs Advisory Committee; Re- Establishment... (FDA) is announcing the re- establishment of the Medical Imaging Drugs Advisory Committee in FDA's Center for Drug Evaluation and Research. This rule amends the current language for the Medical Imaging...

  19. 78 FR 12762 - Joint Meeting of the Medical Imaging Drugs Advisory Committee and the Oncologic Drugs Advisory...

    Science.gov (United States)

    2013-02-25

    ...] Joint Meeting of the Medical Imaging Drugs Advisory Committee and the Oncologic Drugs Advisory Committee... be open to the public. Name of Committees: Medical Imaging Drugs Advisory Committee and the Oncologic... Special Medical Programs. [FR Doc. 2013-04141 Filed 2-22-13; 8:45 am] BILLING CODE 4160-01-P ...

  20. 77 FR 63839 - Oncologic Drugs Advisory Committee; Cancellation

    Science.gov (United States)

    2012-10-17

    ... HUMAN SERVICES Food and Drug Administration Oncologic Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Oncologic Drugs Advisory... committee have been resolved. FOR FURTHER INFORMATION CONTACT: Caleb Briggs, Center for Drug Evaluation and...

  1. 76 FR 11489 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  2. 76 FR 65736 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  3. 76 FR 44595 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  4. 75 FR 75680 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-12-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  5. 77 FR 32125 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-05-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  6. 77 FR 25184 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  7. 77 FR 5813 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-02-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  8. 78 FR 57166 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-09-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  9. 75 FR 9419 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  10. 78 FR 13348 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-02-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  11. 78 FR 48690 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-08-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  12. 77 FR 31025 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-05-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  13. 76 FR 82309 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-12-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  14. 76 FR 82310 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-12-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug...

  15. 77 FR 50702 - Cardiovascular and Renal Drugs Advisory Committee; Cancellation

    Science.gov (United States)

    2012-08-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Cancellation AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The meeting of the Cardiovascular and Renal Drugs Advisory Committee scheduled for...

  16. 76 FR 62418 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-07

    ...] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION... Administration (FDA). The meeting will be open to the public. Name of Committee: Antiviral Drugs Advisory... enter through Building 1. Contact Person: Paul Tran, Center for Drug Evaluation and Research, Food and...

  17. 75 FR 16151 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-31

    ...] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION... Administration (FDA). The meeting will be open to the public. Name of Committee: Antiviral Drugs Advisory... phone number is 301-589- 5200. Contact Person: Paul Tran, Center for Drug Evaluation and Research (HFD...

  18. 77 FR 15110 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-03-14

    ...] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION... Administration (FDA). The meeting will be open to the public. Name of Committee: Antiviral Drugs Advisory... enter through Building 1. Contact Person: Yvette Waples, Center for Drug Evaluation and Research, Food...

  19. 78 FR 56900 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-09-16

    ...] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION... Administration (FDA). The meeting will be open to the public. Name of Committee: Antiviral Drugs Advisory..., Center for Drug Evaluation and Research, 10903 New Hampshire Ave., Bldg. 31, Rm. 2417, Silver Spring, MD...

  20. 77 FR 17487 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-03-26

    ...] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION... Administration (FDA). The meeting will be open to the public. Name of Committee: Antiviral Drugs Advisory... Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 31, Rm. 2417, Silver...

  1. 78 FR 37820 - Nonprescription Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-06-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Nonprescription Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION... Administration (FDA). The meeting will be open to the public. Name of Committee: Nonprescription Drugs Advisory...

  2. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    ..., both under drug pressure and during inhibition. Factors affecting drug metabolism, such as genetic polymorphisms, age and diet are discussed and how metabolism can lead to toxicity is explained. The book concludes with the role of drug metabolism in the commercial development of therapeutic agents as well as the pharmacology of some illicit drugs.

  3. 76 FR 14027 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-15

    ...] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION... Administration (FDA). The meeting will be open to the public. Name of Committee: Antiviral Drugs Advisory... liver disease who are previously untreated or who have failed previous therapy. Compensated liver...

  4. 76 FR 14026 - Antiviral Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-15

    ...] Antiviral Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION... Administration (FDA). The meeting will be open to the public. Name of Committee: Antiviral Drugs Advisory... who are previously untreated or who have failed previous therapy. Compensated liver disease is a stage...

  5. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    ... metabolism and its impact on patient welfare. After underlining the relationship between efficacy, toxicity and drug concentration, the book then considers how metabolizing systems operate and how they impact upon drug concentration...

  6. 76 FR 45578 - Request for Nominations for Members on a Public Advisory Committee; Medical Imaging Drugs...

    Science.gov (United States)

    2011-07-29

    ...] Request for Nominations for Members on a Public Advisory Committee; Medical Imaging Drugs Advisory... Administration (FDA) is requesting nominations for 12 members to serve on the Medical Imaging Drugs Advisory... final rule adding the Medical Imaging Drugs Advisory Committee to the list of FDA standing advisory...

  7. 76 FR 59142 - Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and...

    Science.gov (United States)

    2011-09-23

    ...] Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and Risk... Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee. General Function of the...., [[Page 59143

  8. 75 FR 71450 - Oncologic Drugs Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2010-11-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Oncologic Drugs Advisory Committee; Amendment of Notice AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing an amendment to the notice of a...

  9. 77 FR 37911 - Oncologic Drugs Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2012-06-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Oncologic Drugs Advisory Committee; Amendment of Notice AGENCY: Food and Drug Administration, HHS. ACTION: Notice. The Food and Drug Administration (FDA) is announcing an amendment to the notice of meeting of the...

  10. 75 FR 56548 - Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug...

    Science.gov (United States)

    2010-09-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug Safety... and Central Nervous System Drugs Advisory Committee and the Drug Safety and Risk Management Advisory...

  11. 75 FR 10490 - Joint Meeting of the Arthritis Drugs Advisory Committee and the Drug Safety and Risk Management...

    Science.gov (United States)

    2010-03-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Joint Meeting of the Arthritis Drugs Advisory Committee and the Drug Safety and Risk Management Advisory... Drug Safety and Risk Management Advisory Committee. General Function of the Committees: To provide...

  12. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    Human Drug Metabolism, An Introduction, Second Edition provides an accessible introduction to the subject and will be particularly invaluable to those who already have some understanding of the life sciences...

  13. 78 FR 17413 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-03-21

    ...] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... rescheduled due to the postponement of the March 7, 2013, Pulmonary-Allergy Drugs Advisory Committee meeting due to unanticipated weather conditions. Name of Committee: Pulmonary-Allergy Drugs Advisory Committee...

  14. 75 FR 8377 - Pulmonary-Allergy Drugs Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2010-02-24

    ...] Pulmonary-Allergy Drugs Advisory Committee; Amendment of Notice AGENCY: Food and Drug Administration, HHS... of a meeting of the Pulmonary-Allergy Drugs Advisory Committee. This meeting was announced in the... February 2, 2010, FDA announced that a meeting of the Pulmonary-Allergy Drugs Advisory Committee would be...

  15. 78 FR 30929 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-23

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide... (REMS) with elements to assure safe use (ETASU) before its Drug Safety and Risk Management Advisory...

  16. 77 FR 65000 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-24

    ...] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide... Use (ETASU) before CDER's Drug Safety and Risk Management Advisory Committee (DSaRM). The Agency plans...

  17. Drug treatment of metabolic syndrome.

    Science.gov (United States)

    Altabas, Velimir

    2013-08-01

    The metabolic syndrome is a constellation of risk factors for cardiovascular diseases including: abdominal obesity, a decreased ability to metabolize glucose (increased blood glucose levels and/or presence of insulin resistance), dyslipidemia, and hypertension. Patients who have developed this syndrome have been shown to be at an increased risk of developing cardiovascular disease and/or type 2 diabetes. Genetic factors and the environment both are important in the development of the metabolic syndrome, influencing all single components of this syndrome. The goals of therapy are to treat the underlying cause of the syndrome, to reduce morbidity, and to prevent complications, including premature death. Lifestyle modification is the preferred first-step treatment of the metabolic syndrome. There is no single effective drug treatment affecting all components of the syndrome equally known yet. However, each component of metabolic syndrome has independent goals to be achieved, so miscellaneous types of drugs are used in the treatment of this syndrome, including weight losing drugs, antidiabetics, antihypertensives, antilipemic and anticlothing drugs etc. This article provides a brief insight into contemporary drug treatment of components the metabolic syndrome.

  18. 76 FR 61713 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-05

    ...] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee. General... adult oncology indication, or in late stage development in pediatric patients with cancer. The...

  19. 75 FR 17417 - Joint Meeting of the Arthritis Advisory Committee and the Drug Safety and Risk Management...

    Science.gov (United States)

    2010-04-06

    ...] Joint Meeting of the Arthritis Advisory Committee and the Drug Safety and Risk Management Advisory... Arthritis Advisory Committee and the Drug Safety and Risk Management Advisory Committee. This meeting was... Drug Safety and Risk Management Advisory Committee would be held on May 12, 2010. On page 10490, in the...

  20. 76 FR 36930 - National Advisory Council on Alcohol Abuse and Alcoholism and National Advisory Council on Drug...

    Science.gov (United States)

    2011-06-23

    ... Alcohol Abuse and Alcoholism and National Advisory Council on Drug Abuse; Notice of Joint Meeting Pursuant... given of a joint meeting of the National Advisory Council on Alcohol Abuse and Alcoholism and the National Institute on Drug Abuse. The meeting will be open to the public as indicated below, with...

  1. Changes in antipsychotic use among patients with severe mental illness after a Food and Drug Administration advisory.

    Science.gov (United States)

    Dusetzina, Stacie B; Busch, Alisa B; Conti, Rena M; Donohue, Julie M; Alexander, G Caleb; Huskamp, Haiden A

    2012-12-01

    A 2003 Food and Drug Administration advisory warned of increased hyperlipidemia and diabetes risk for patients taking second-generation antipsychotics (SGAs). After the advisory, a professional society consensus statement provided treatment recommendations and stratified SGAs into high, intermediate, and low metabolic risk. We examine subsequent changes in incident and prevalent SGA use among individuals with severe mental illness. We created a retrospective cohort using Florida Medicaid's claims from 2001 to 2006. We included non-Medicare eligible adults with bipolar disorder or schizophrenia who filled an SGA prescription. We assessed changes in overall and agent-specific use, discontinuations, interruptions, and therapeutic alternative use among prevalent users and agent-specific use among incident users. Pre-advisory utilization was compared with utilization initially after the advisory and two subsequent periods. Among prevalent users, overall SGA use decreased slightly, and no increases in treatment interruptions or discontinuations were observed after the advisory and consensus statement publication. Compared with the pre-advisory period, in the months immediately after the advisory, the use of the highest metabolic-risk agent, olanzapine, decreased by 34% among prevalent users with bipolar disorder (adjusted risk ratio [aRR] = 0.66, 95%CI = 0.59-0.74) and 26% among prevalent users with schizophrenia (aRR = 0.74, 95%CI = 0.72-0.76). A greater decrease was estimated among incident users with bipolar disorder (aRR = 0.37, 95%CI = 0.29-0.47) and schizophrenia (aRR = 0.42, 95%CI = 0.35-0.51) during this period. During each subsequent post-advisory period, olanzapine use continued to decrease whereas quetiapine, ziprasidone, and aripiprazole use increased. The metabolic risk advisory and the published consensus statement were associated with a selective reduction in olanzapine use without evidence of treatment disruptions among

  2. 78 FR 16271 - Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and...

    Science.gov (United States)

    2013-03-14

    ...] Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and Risk... Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee. General Function of the... presentation may be limited. If the number of registrants requesting to speak is greater than can be reasonably...

  3. 76 FR 40735 - Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and...

    Science.gov (United States)

    2011-07-11

    ...] Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and Risk... Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee. General Function of the... East, Adelphi, MD. The conference center telephone number is: 301 985-7300. Contact Person: Kalyani...

  4. 78 FR 2677 - Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and...

    Science.gov (United States)

    2013-01-14

    ...] Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and Risk... Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee. General Function of the... before February 7, 2013. Time allotted for each presentation may be limited. If the number of registrants...

  5. 76 FR 59143 - Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and...

    Science.gov (United States)

    2011-09-23

    ...] Joint Meeting of the Advisory Committee for Reproductive Health Drugs and the Drug Safety and Risk... Reproductive Health Drugs and the Drug Safety and Risk Management Advisory Committee. General Function of the..., Adelphi, MD. The conference center telephone number is 301-985-7300. Contact Person: Kalyani Bhatt, Center...

  6. 77 FR 12063 - Joint Meeting of the Anti-Infective Drugs Advisory Committee and the Nonprescription Drugs...

    Science.gov (United States)

    2012-02-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Joint Meeting of the Anti-Infective Drugs Advisory Committee and the Nonprescription Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public...

  7. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug... Committee: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee...

  8. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-06-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  9. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  10. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  11. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  12. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  13. 78 FR 20328 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  14. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  15. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  16. 75 FR 9420 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...-Allergy Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  17. 76 FR 29766 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-05-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...-Allergy Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  18. 75 FR 82031 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-12-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...-Allergy Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  19. 77 FR 69635 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-11-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...-Allergy Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  20. 75 FR 5334 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-02-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...-Allergy Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  1. 77 FR 4566 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-01-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...-Allergy Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  2. 75 FR 5333 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-02-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...-Allergy Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  3. 77 FR 74486 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-12-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...-Allergy Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  4. 78 FR 46976 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-08-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...-Allergy Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  5. 77 FR 69636 - Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-11-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Pulmonary-Allergy Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...-Allergy Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  6. 76 FR 39404 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  7. 78 FR 36787 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-06-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  8. 78 FR 38717 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-06-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  9. 77 FR 12062 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-02-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... of Committee: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee...

  10. 75 FR 30839 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-06-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  11. 77 FR 43600 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-07-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  12. 75 FR 1395 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2009-N-0664] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  13. 75 FR 35496 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-06-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  14. 76 FR 82310 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-12-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  15. 77 FR 43093 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-07-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  16. 75 FR 52762 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...

  17. 78 FR 734 - Medical Imaging Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-01-04

    ...] Medical Imaging Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... and Drug Administration (FDA). The meeting will be open to the public. Name of Committee: Medical Imaging Drugs Advisory Committee. General Function of the Committee: To provide advice and recommendations...

  18. 75 FR 23782 - Drug Safety and Risk Management Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Drug Safety and Risk Management Advisory Committee. General Function of the Committee: To provide...

  19. 76 FR 58520 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-09-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee. General...

  20. 75 FR 75681 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-12-06

    ...] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...) and/or abnormal vascularity (abnormal blood supply and circulation) of the central nervous system. The...

  1. 75 FR 57474 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-09-21

    ...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and... analyses of the TREAT (Trial to Reduce Cardiovascular Events with Aranesp Therapy) study of ARANESP...

  2. 77 FR 21982 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-12

    ...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and...., to reduce the risk of thrombotic cardiovascular events in patients with acute coronary syndrome (ACS...

  3. 75 FR 70933 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-11-19

    ...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... of Committee: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committees... appropriate clinical study design for thromboxane receptor antagonists for prevention of cardiovascular events...

  4. 78 FR 76307 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-12-17

    ...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and... combined endpoint of cardiovascular death, MI, stroke, and urgent coronary revascularization. FDA intends...

  5. 78 FR 76308 - Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-12-17

    ...] Cardiovascular and Renal Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS...: Cardiovascular and Renal Drugs Advisory Committee. General Function of the Committee: To provide advice and..., Inc., for the proposed indication to reduce the risk of thrombotic cardiovascular events in patients...

  6. Predicting drug metabolism: Concepts and challenges

    OpenAIRE

    Testa, B.; Balmat, A.-L; Long, Anthony

    2017-01-01

    The paper begins with a discussion of the needs and goals of metabolic predictions in early drug research. Major difficulties toward this objective are examined, mainly the various substrate and product selectivities characteristic of drug metabolism. In a second part, we classify and summarize the major in silico methods used to predict drug metabolism. A discrimination is thus made between "local ”and "global ”systems. In the last part of the paper, the program METEOR is presented and evalu...

  7. 78 FR 63222 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-23

    ...] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... the public. Name of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory... measures in the pediatric development plans of oncology products. The half-day session will provide an...

  8. 77 FR 57095 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-09-17

    ...] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee. General... that are in development for an adult oncology indication. The subcommittee will consider and discuss...

  9. 75 FR 66773 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-10-29

    ...] Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee. General... or, are in late stage development for an adult oncology indication. The subcommittee will consider...

  10. 75 FR 36427 - Joint Meeting of the Arthritis Advisory Committee and the Drug Safety and Risk Management...

    Science.gov (United States)

    2010-06-25

    ... Drug Safety and Risk Management Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Arthritis Advisory Committee and the Drug Safety and Risk Management Advisory Committee. ] General Function... and efficacy findings for sodium oxybate in the fibromyalgia population and the proposed Risk...

  11. 75 FR 9416 - Advisory Committee Information Hotline

    Science.gov (United States)

    2010-03-02

    ... BIOLOGICS EVALUATION AND RESEARCH Allergenic Products Advisory Committee 3014512388 Blood Products Advisory... Committee 3014512391 CENTER FOR DRUG EVALUATION AND RESEARCH Anesthetic and Life Support Drugs Advisory Committee 3014512529 Anti-Infective Drugs Advisory Committee 3014512530 Antiviral Drugs Advisory Committee...

  12. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    .... Completely revised and updated throughout, the new edition focuses only on essential chemical detail and includes patient case histories to illustrate the clinical consequences of changes in drug...

  13. 77 FR 6804 - Advisory Committee for Reproductive Health Drugs; Notice of Meeting

    Science.gov (United States)

    2012-02-09

    ...] Advisory Committee for Reproductive Health Drugs; Notice of Meeting AGENCY: Food and Drug Administration... Committee for Reproductive Health Drugs. General Function of the Committee: To provide advice and.... If the number of registrants requesting to speak is greater than can be reasonably accommodated...

  14. 76 FR 70462 - Advisory Committee for Reproductive Health Drugs; Notice of Meeting

    Science.gov (United States)

    2011-11-14

    ...] Advisory Committee for Reproductive Health Drugs; Notice of Meeting AGENCY: Food and Drug Administration... Committee for Reproductive Health Drugs. General Function of the Committee: To provide advice and... be limited. If the number of registrants requesting to speak is greater than can be reasonably...

  15. 78 FR 734 - Advisory Committee for Reproductive Health Drugs; Notice of Meeting

    Science.gov (United States)

    2013-01-04

    ...] Advisory Committee for Reproductive Health Drugs; Notice of Meeting AGENCY: Food and Drug Administration... Committee for Reproductive Health Drugs. General Function of the Committee: To provide advice and... limited. If the number of registrants requesting to speak is greater than can be reasonably accommodated...

  16. 78 FR 13348 - Science Board to the Food and Drug Administration Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2013-02-27

    ... HUMAN SERVICES Food and Drug Administration Science Board to the Food and Drug Administration Advisory... Administration (FDA) is announcing an amendment to the notice of meeting of the Science Board to the Food and... that a meeting of the Science Board to the Food and Drug Administration would be held on February 27...

  17. Pharmacokinetics and drug metabolism in the elderly.

    Science.gov (United States)

    Klotz, Ulrich

    2009-01-01

    Aging involves progressive impairments in the functional reserve of multiple organs, which might also affect drug metabolism and pharmacokinetics. In addition, the elderly population will develop multiple diseases and, consequently, often has to take several drugs. As the hepatic first-pass effect of highly cleared drugs could be reduced (due to decreases in liver mass and perfusion), the bioavailability of some drugs can be increased in the elderly. Significant changes in body composition occur with advancing age. Lipophilic drugs may have an increased volume of distribution (Vd) with a prolonged half-life, and water-soluble drugs tend to have a smaller Vd. In the elderly, hepatic drug clearance of some drugs can be reduced by up to 30% and CYP-mediated phase I reactions are more likely to be impaired than phase II metabolism, which is relatively preserved in the elderly. Concerning the most important CYP3A4 studies with human liver microsomes and clinical studies with the validated probe, midazolam, it is indicated that there are no significant differences in CYP3A4 activity between young and old populations. Finally, renal excretion is decreased (up to 50%) in about two thirds of elderly subjects, but confounding factors such as hypertension and coronary heart disease account also for a decline in kidney function. In conclusion, age-related physiological and pharmacokinetic changes as well as the presence of comorbidity and polypharmacy will complicate drug therapy in the elderly.

  18. 75 FR 21000 - Draft Guidance for the Public, Food and Drug Administration Advisory Committee Members, and Food...

    Science.gov (United States)

    2010-04-22

    ...] (formerly Docket No. 02D-0049) Draft Guidance for the Public, Food and Drug Administration Advisory Committee Members, and Food and Drug Administration Staff: Public Availability of Advisory Committee Members... and Drug Administration Amendments Act of 2007, Public Law No. 110-85), and section 701 (21 U.S.C. 371...

  19. 78 FR 27405 - Anesthetic and Analgesic Drug Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001... Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to the public. Name of Committee...

  20. 78 FR 29142 - Anesthetic and Analgesic Drug Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001... Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food and Drug Administration (FDA). The meeting will be open to the public. Name of Committee...

  1. Study of Drug Metabolism by Xanthine Oxidase

    Directory of Open Access Journals (Sweden)

    Lizhou Sun

    2012-04-01

    Full Text Available In this work, we report the studies of drug metabolism by xanthine oxidase (XOD with electrochemical techniques. Firstly, a pair of stable, well-defined and quasi-reversible oxidation/reduction peaks is obtained with the formal potential at −413.1 mV (vs. SCE after embedding XOD in salmon sperm DNA membrane on the surface of pyrolytic graphite electrode. Then, a new steady peak can be observed at −730 mV (vs. SCE upon the addition of 6-mercaptopurine (6-MP to the electrochemical system, indicating the metabolism of 6-MP by XOD. Furthermore, the chronoamperometric response shows that the current of the catalytic peak located at −730 mV increases with addition of 6-MP in a concentration-dependent manner, and the increase of the chronoamperometric current can be inhibited by an XOD inhibitor, quercetin. Therefore, our results prove that XOD/DNA modified electrode can be efficiently used to study the metabolism of 6-MP, which may provide a convenient approach for in vitro studies on enzyme-catalyzed drug metabolism.

  2. Can vaccines interact with drug metabolism?

    Science.gov (United States)

    Pellegrino, Paolo; Clementi, Emilio; Capuano, Annalisa; Radice, Sonia

    2015-02-01

    Vaccines are safe and efficacious in reducing the burden of several serious infections affecting children and adults. Due to their efficacy, vaccines are often administered in patients with chronic diseases, likely to be under poly-therapy. Because of several case reports indicating changes in drug metabolism after vaccination, the hypothesis of an interaction between vaccines and specific drugs has been put forward. These interactions are conceivably of great concern, especially in patients treated with molecules characterised by a narrow therapeutic index. Herein, we review and systematise the available evidence on vaccine-drug interactions. The picture that emerges indicates that reduction in the activity of specific CYPs following vaccination may occur, most likely via interferon γ overproduction, and for specific drugs such as anticonvulsivant and theophylline may have significant clinical relevance. Clinical interaction between vaccines and drugs that are metabolised by cytochromes uninfluenced by INFγ levels, such as warfarin, are instead unlikely to happen. Further studies are however needed to gain a complete picture of vaccine-drug interactions and define their relevance in terms of possible negative clinical impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. 21 CFR 862.3360 - Drug metabolizing enzyme genotyping system.

    Science.gov (United States)

    2010-04-01

    ....3360 Section 862.3360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Test Systems § 862.3360 Drug metabolizing enzyme genotyping system. (a) Identification. A drug metabolizing enzyme genotyping system is a device intended for use in testing deoxyribonucleic acid (DNA...

  4. PXR antagonists and implication in drug metabolism

    Science.gov (United States)

    Mani, Sridhar; Dou, Wei; Redinbo, Matthew R.

    2013-01-01

    Adopted orphan nuclear receptor (NR), pregnane X receptor (PXR), plays a central role in the regulation of xeno- and endobiotic metabolism. Since the discovery of the functional role of PXR in 1998, there is evolving evidence for the role of PXR agonists in abrogating metabolic pathophysiology (e.g., cholestasis, hypercholesterolemia, and inflammation). However, more recently, it is clear that PXR is also an important mediator of adverse xeno- (e.g., enhances acetaminophen toxicity) and endobiotic (e.g., hepatic steatosis) metabolic phenotypes. Moreover, in cancer therapeutics, PXR activation can induce drug resistance, and there is growing evidence for tissue-specific enhancement of the malignant phenotype. Thus, in these instances, there may be a role for PXR antagonists. However, as opposed to the discovery efforts for PXR agonists, there are only a few antagonists described. The mode of action of these antagonists (e.g., sulforaphane) remains less clear. Our laboratory efforts have focused on this question. Since the original discovery of azoles analogs as PXR antagonists, we have preliminarily defined an important PXR antagonist pharmacophore and developed less-toxic PXR antagonists. In this review, we describe our published and unpublished findings on recent structure-function studies involving the azole chemical scaffold. Further work in the future is needed to fully define potent, more-selective PXR antagonists that may be useful in clinical application. PMID:23330542

  5. Interplay of drug metabolizing enzymes with cellular transporters.

    Science.gov (United States)

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  6. Metabolic engineering of microorganisms: general strategies and drug production.

    Science.gov (United States)

    Lee, Sang Yup; Kim, Hyun Uk; Park, Jin Hwan; Park, Jong Myung; Kim, Tae Yong

    2009-01-01

    Many drugs and drug precursors found in natural organisms are rather difficult to synthesize chemically and to extract in large amounts. Metabolic engineering is playing an increasingly important role in the production of these drugs and drug precursors. This is typically achieved by establishing new metabolic pathways leading to the product formation, and enforcing or removing the existing metabolic pathways toward enhanced product formation. Recent advances in system biology and synthetic biology are allowing us to perform metabolic engineering at the whole cell level, thus enabling optimal design of a microorganism for the efficient production of drugs and drug precursors. In this review, we describe the general strategies for the metabolic engineering of microorganisms for the production of drugs and drug precursors. As successful examples of metabolic engineering, the approaches taken toward strain development for the production of artemisinin, an antimalarial drug, and benzylisoquinoline alkaloids, a family of antibacterial and anticancer drugs, are described in detail. Also, systems metabolic engineering of Escherichia coli for the production of L-valine, an important drug precursor, is showcased as an important strategy of future metabolic engineering effort.

  7. Drug-Induced Metabolic Acidosis [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Amy Quynh Trang Pham

    2015-12-01

    Full Text Available Metabolic acidosis could emerge from diseases disrupting acid-base equilibrium or from drugs that induce similar derangements. Occurrences are usually accompanied by comorbid conditions of drug-induced metabolic acidosis, and clinical outcomes may range from mild to fatal. It is imperative that clinicians not only are fully aware of the list of drugs that may lead to metabolic acidosis but also understand the underlying pathogenic mechanisms. In this review, we categorized drug-induced metabolic acidosis in terms of pathophysiological mechanisms, as well as individual drugs’ characteristics.

  8. Sex Differences in the Expression of Hepatic Drug Metabolizing Enzymes

    OpenAIRE

    Waxman, David J.; Holloway, Minita G.

    2009-01-01

    Sex differences in pharmacokinetics and pharmacodynamics characterize many drugs and contribute to individual differences in drug efficacy and toxicity. Sex-based differences in drug metabolism are the primary cause of sex-dependent pharmacokinetics and reflect underlying sex differences in the expression of hepatic enzymes active in the metabolism of drugs, steroids, fatty acids and environmental chemicals, including cytochromes P450 (P450s), sulfotransferases, glutat...

  9. Links between nutrition, drug abuse, and the metabolic syndrome.

    Science.gov (United States)

    Virmani, Ashraf; Binienda, Zbigniew; Ali, Syed; Gaetani, Franco

    2006-08-01

    Nutritional deficiency in combination with drug abuse may increase risk of developing the metabolic syndrome by augmenting cell damage, excitotoxicity, reducing energy production, and lowering the antioxidant potential of the cells. We have reviewed here the following points: effects of drugs of abuse on nutrition and brain metabolism; effects of nutrition on actions of the drugs of abuse; drug abuse and probability of developing metabolic syndrome; role of genetic vulnerability in nutrition/drug abuse and brain damage; and the role of neuroprotective supplements in drug abuse. Nutrition education is an essential component of substance abuse treatment programs and can enhance substance abuse treatment outcomes. The strategies available, in particular the nutritional approach to protect the drug abusers from the metabolic syndrome and other diseases are discussed.

  10. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism

    DEFF Research Database (Denmark)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik

    2016-01-01

    The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R...... are useful for understanding drug metabolism....

  11. Fast prediction of cytochrome P450 mediated drug metabolism

    DEFF Research Database (Denmark)

    Rydberg, Patrik Åke Anders; Poongavanam, Vasanthanathan; Oostenbrink, Chris

    2009-01-01

    Cytochrome P450 mediated metabolism of drugs is one of the major determinants of their kinetic profile, and prediction of this metabolism is therefore highly relevant during the drug discovery and development process. A new rule-based method, based on results from density functional theory...

  12. Nutritional conditioning : The effect of fasting on drug metabolism

    NARCIS (Netherlands)

    Lammers, L.A.

    2018-01-01

    The studies described in this thesis focus on the effect of fasting, as nutritional modulator, on drug metabolism. Drug metabolism varies considerably between and within patients, which may result in treatment failure or, conversely, in untoward side effects. Many factors contribute to the

  13. 77 FR 14404 - Guidance for the Public, Food and Drug Administration (FDA) Advisory Committee Members, and FDA...

    Science.gov (United States)

    2012-03-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2002-D-0094; (formerly Docket No. 02D-0049)] Guidance for the Public, Food and Drug Administration (FDA) Advisory... Food and Drug Administration (FDA) is announcing the availability of a guidance for the public, FDA...

  14. In vitro methods to study intestinal drug metabolism

    NARCIS (Netherlands)

    van de Kerkhof, Esther G.; de Graaf, Inge A. M.; Groothuis, Geny M. M.

    2007-01-01

    Although the liver has long been thought to play the major role in drug metabolism, also the metabolic capacity of the intestine is more and more recognized. In vivo studies eventually pointed out not only the significance of first-pass metabolism by the intestinal wall for the bioavailability of

  15. 77 FR 17078 - Gastrointestinal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-03-23

    ..., Building 31, the Great Room, White Oak Conference Center (Rm. 1503), 10903 New Hampshire Ave., Silver... visitors to the White Oak Campus must enter through Building 1. Contact Person: Minh Doan, Center for Drug... Corporation, proposed for use with magnetic resonance imaging (MRI) to improve pancreatic duct visualization...

  16. 77 FR 52743 - Nonprescription Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-08-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001... trade name OXYTROL FOR WOMEN). The proposed OTC use is ``treats overactive bladder in women.'' The data... 26, 2012. Oral presentations from the public will be scheduled between approximately 1 p.m. and 2 p.m...

  17. 75 FR 30045 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-05-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001... women with metastatic breast cancer known as HER2-negative breast cancer, in combination with the... contact person on or before July 6, 2010. Oral presentations from the public will be scheduled between...

  18. 75 FR 59732 - Gastrointestinal Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-09-28

    ... and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 31, rm. 2417, Silver... disease (GERD) in patients less than 1 year of age, performed in response to a Pediatric Written Request... Pediatric Research Equity Act commitment (Prilosec, omeprazole by AstraZeneca LP). The pathophysiology...

  19. OxyContin: Prescription Drug Abuse. CSAT Advisory.

    Science.gov (United States)

    Substance Abuse and Mental Health Services Administration (DHHS/PHS), Rockville, MD. Center for Substance Abuse Treatment.

    Recently, the media have issued numerous reports about the apparent increase in OxyContin abuse and addiction. OxyContin has been heralded as a miracle drug that allows patients with chronic pain to resume a normal life. It has also been called pharmaceutical heroin and is thought to have been responsible for a number of deaths and robberies in…

  20. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    Science.gov (United States)

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  1. Predicting drug metabolism by cytochrome P450 2C9

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Olsen, Lars

    2012-01-01

    By the use of knowledge gained through modeling of drug metabolism mediated by the cytochrome P450 2D6 and 3A4 isoforms, we constructed a 2D-based model for site-of-metabolism prediction for the cytochrome P450 2C9 isoform. The similarities and differences between the models for the 2C9 and 2D6...

  2. Significance and challenges of stereoselectivity assessing methods in drug metabolism

    Directory of Open Access Journals (Sweden)

    Zhuowei Shen

    2016-02-01

    Full Text Available Stereoselectivity in drug metabolism can not only influence the pharmacological activities, tolerability, safety, and bioavailability of drugs directly, but also cause different kinds of drug–drug interactions. Thus, assessing stereoselectivity in drug metabolism is of great significance for pharmaceutical research and development (R&D and rational use in clinic. Although there are various methods available for assessing stereoselectivity in drug metabolism, many of them have shortcomings. The indirect method of chromatographic methods can only be applicable to specific samples with functional groups to be derivatized or form complex with a chiral selector, while the direct method achieved by chiral stationary phases (CSPs is expensive. As a detector of chromatographic methods, mass spectrometry (MS is highly sensitive and specific, whereas the matrix interference is still a challenge to overcome. In addition, the use of nuclear magnetic resonance (NMR and immunoassay in chiral analysis are worth noting. This review presents several typical examples of drug stereoselective metabolism and provides a literature-based evaluation on current chiral analytical techniques to show the significance and challenges of stereoselectivity assessing methods in drug metabolism.

  3. In Vitro Drug Metabolism by Human Carboxylesterase 1

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Rasmussen, Henrik B; Linnet, Kristian

    2014-01-01

    Carboxylesterase 1 (CES1) is the major hydrolase in human liver. The enzyme is involved in the metabolism of several important therapeutic agents, drugs of abuse, and endogenous compounds. However, no studies have described the role of human CES1 in the activation of two commonly prescribed...... a panel of therapeutic drugs and drugs of abuse to assess their inhibition of the hydrolysis of p-nitrophenyl acetate by recombinant CES1 and human liver microsomes. The screening assay confirmed several known inhibitors of CES1 and identified two previously unreported inhibitors: the dihydropyridine...... calcium antagonist, isradipine, and the immunosuppressive agent, tacrolimus. CES1 plays a role in the metabolism of several drugs used in the treatment of common conditions, including hypertension, congestive heart failure, and diabetes mellitus; thus, there is a potential for clinically relevant drug-drug...

  4. New analytical strategies in studying drug metabolism.

    Science.gov (United States)

    Staack, Roland F; Hopfgartner, Gérard

    2007-08-01

    Identification and elucidation of the structures of metabolites play major roles in drug discovery and in the development of pharmaceutical compounds. These studies are also important in toxicology or doping control with either pharmaceuticals or illicit drugs. This review focuses on: new analytical strategies used to identify potential metabolites in biological matrices with and without radiolabeled drugs; use of software for metabolite profiling; interpretation of product spectra; profiling of reactive metabolites; development of new approaches for generation of metabolites; and detection of metabolites with increased sensitivity and simplicity. Most of the new strategies involve mass spectrometry (MS) combined with liquid chromatography (LC).

  5. Intrinsic and Antipsychotic Drug-Induced Metabolic Dysfunction in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Zachary Freyberg

    2017-07-01

    Full Text Available For decades, there have been observations demonstrating significant metabolic disturbances in people with schizophrenia including clinically relevant weight gain, hypertension, and disturbances in glucose and lipid homeostasis. Many of these findings pre-date the use of antipsychotic drugs (APDs which on their own are also strongly associated with metabolic side effects. The combination of APD-induced metabolic changes and common adverse environmental factors associated with schizophrenia have made it difficult to determine the specific contributions of each to the overall metabolic picture. Data from drug-naïve patients, both from the pre-APD era and more recently, suggest that there may be an intrinsic metabolic risk associated with schizophrenia. Nevertheless, these findings remain controversial due to significant clinical variability in both psychiatric and metabolic symptoms throughout patients' disease courses. Here, we provide an extensive review of classic and more recent literature describing the metabolic phenotype associated with schizophrenia. We also suggest potential mechanistic links between signaling pathways associated with schizophrenia and metabolic dysfunction. We propose that, beyond its symptomatology in the central nervous system, schizophrenia is also characterized by pathophysiology in other organ systems directly related to metabolic control.

  6. Bioanalysis, metabolism & clinical pharmacology of antiretroviral drugs

    NARCIS (Netherlands)

    Heine, R. ter

    2009-01-01

    The aims of all studies described in this thesis were to develop new bioanalytical and more patient friendly methods for studying the clinical pharmacology of antiretroviral drugs and to ultimately improve antiretroviral treatment.

  7. Cunninghamella Biotransformation--Similarities to Human Drug Metabolism and Its Relevance for the Drug Discovery Process.

    Science.gov (United States)

    Piska, Kamil; Żelaszczyk, Dorota; Jamrozik, Marek; Kubowicz-Kwaśny, Paulina; Pękala, Elżbieta

    2016-01-01

    Studies of drug metabolism are one of the most significant issues in the process of drug development, its introduction to the market and also in treatment. Even the most promising molecule may show undesirable metabolic properties that would disqualify it as a potential drug. Therefore, such studies are conducted in the early phases of drug discovery and development process. Cunninghamella is a filamentous fungus known for its catalytic properties, which mimics mammalian drug metabolism. It has been proven that C. elegans carries at least one gene coding for a CYP enzyme closely related to the CYP51 family. The transformation profile of xenobiotics in Cunninghamella spp. spans a number of reactions catalyzed by different mammalian CYP isoforms. This paper presents detailed data on similar biotransformation drug products in humans and Cunninghamella spp. and covers the most important aspects of preparative biosynthesis of metabolites, since this model allows to obtain metabolites in sufficient quantities to conduct the further detailed investigations, as quantification, structure analysis and pharmacological activity and toxicity testing. The metabolic activity of three mostly used Cunninghamella species in obtaining hydroxylated, dealkylated and oxidated metabolites of different drugs confirmed its convergence with human biotransformation. Though it cannot replace the standard methods, it can provide support in the field of biotransformation and identifying metabolic soft spots of new chemicals and in predicting possible metabolic pathways. Another aspect is the biosynthesis of metabolites. In this respect, techniques using Cunninghamella spp. seem to be competitive to the chemical methods currently used.

  8. Acute Metabolic Changes Associated With Analgesic Drugs

    DEFF Research Database (Denmark)

    Hansen, Tine Maria; Olesen, Anne Estrup; Simonsen, Carsten Wiberg

    2016-01-01

    BACKGROUND AND PURPOSE: Magnetic resonance spectroscopy (MRS) is used to measure brain metabolites. Limited data exist on the analgesic-induced spectroscopy response. This was an explorative study with the aims to investigate the central effects of two analgesic drugs, an opioid and a selective...

  9. Disposition and Metabolism of Investigational New Drugs.

    Science.gov (United States)

    1982-09-01

    and Trans- fer of Raw Data for Disposition, Metabolic Profile, and Phar- macokinetics of Mefloquine -SC1, WR-142490-EC1 in the Monkey," July 21, 1980...Studies on DL-Erythro-a- (2-Piperidyl)-2,8-Bis (Tri- fluoromethyl)-4-Quinoline Methanol Hydrochloride, Mefloquine - SHC1, WR-142490"HC1 in the Rat...DL-Erythro--(2-Piperidyl)-2,8-Bis (Trifluoro- Umethyl)-4-Quinolinemethanol Hydrochloride, Mefloquine *ld, WR-142490-HCI in the Monkey," July 21, 1980

  10. Antilipolytic drug boosts glucose metabolism in prostate cancer

    DEFF Research Database (Denmark)

    Andersen, Kim Francis; Divilov, Vadim; Koziorowski, Jacek

    2013-01-01

    The antilipolytic drug Acipimox reduces free fatty acid (FFA) levels in the blood stream. We examined the effect of reduced FFAs on glucose metabolism in androgen-dependent (CWR22Rv1) and androgen-independent (PC3) prostate cancer (PCa) xenografts.......The antilipolytic drug Acipimox reduces free fatty acid (FFA) levels in the blood stream. We examined the effect of reduced FFAs on glucose metabolism in androgen-dependent (CWR22Rv1) and androgen-independent (PC3) prostate cancer (PCa) xenografts....

  11. Predicting selective drug targets in cancer through metabolic networks

    Science.gov (United States)

    Folger, Ori; Jerby, Livnat; Frezza, Christian; Gottlieb, Eyal; Ruppin, Eytan; Shlomi, Tomer

    2011-01-01

    The interest in studying metabolic alterations in cancer and their potential role as novel targets for therapy has been rejuvenated in recent years. Here, we report the development of the first genome-scale network model of cancer metabolism, validated by correctly identifying genes essential for cellular proliferation in cancer cell lines. The model predicts 52 cytostatic drug targets, of which 40% are targeted by known, approved or experimental anticancer drugs, and the rest are new. It further predicts combinations of synthetic lethal drug targets, whose synergy is validated using available drug efficacy and gene expression measurements across the NCI-60 cancer cell line collection. Finally, potential selective treatments for specific cancers that depend on cancer type-specific downregulation of gene expression and somatic mutations are compiled. PMID:21694718

  12. Use of density functional theory in drug metabolism studies

    DEFF Research Database (Denmark)

    Rydberg, Patrik; Jørgensen, Flemming Steen; Olsen, Lars

    2014-01-01

    INTRODUCTION: The cytochrome P450 enzymes (CYPs) metabolize many drug compounds. They catalyze a wide variety of reactions, and potentially, a large number of different metabolites can be generated. Density functional theory (DFT) has, over the past decade, been shown to be a powerful tool...

  13. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    Science.gov (United States)

    Amoedo, N D; Obre, E; Rossignol, R

    2017-08-01

    The search for new drugs capable of blocking the metabolic vulnerabilities of human tumors has now entered the clinical evaluation stage, but several projects already failed in phase I or phase II. In particular, very promising in vitro studies could not be translated in vivo at preclinical stage and beyond. This was the case for most glycolysis inhibitors that demonstrated systemic toxicity. A more recent example is the inhibition of glutamine catabolism in lung adenocarcinoma that failed in vivo despite a strong addiction of several cancer cell lines to glutamine in vitro. Such contradictory findings raised several questions concerning the optimization of drug discovery strategies in the field of cancer metabolism. For instance, the cell culture models in 2D or 3D might already show strong limitations to mimic the tumor micro- and macro-environment. The microenvironment of tumors is composed of cancer cells of variegated metabolic profiles, supporting local metabolic exchanges and symbiosis, but also of immune cells and stroma that further interact with and reshape cancer cell metabolism. The macroenvironment includes the different tissues of the organism, capable of exchanging signals and fueling the tumor 'a distance'. Moreover, most metabolic targets were identified from their increased expression in tumor transcriptomic studies, or from targeted analyses looking at the metabolic impact of particular oncogenes or tumor suppressors on selected metabolic pathways. Still, very few targets were identified from in vivo analyses of tumor metabolism in patients because such studies are difficult and adequate imaging methods are only currently being developed for that purpose. For instance, perfusion of patients with [ 13 C]-glucose allows deciphering the metabolomics of tumors and opens a new area in the search for effective targets. Metabolic imaging with positron emission tomography and other techniques that do not involve [ 13 C] can also be used to evaluate tumor

  14. Intracellular thiols: involvement in drug metabolism and radiation response

    International Nuclear Information System (INIS)

    Astor, M.

    1983-01-01

    Nitro compunds are activated by coupled enzyme reactions to oxygen reactive intermediates leading to the formation of peroxide, under aerobic conditions, and to the depletion of thiols, under anaerobic conditions. Some nitro compounds as substrates for glutathione-S-transferase, show peroxide production without prior thiol removal. Other drugs reacting spontaneouly with glutathione also produce peroxide. Glutathione plays an important role in the metabolism of the nitrocompounds either by directly reacting with them or their reduced intermediates such as the nitroso, nitro and hydroxyl radical. In the case of misonidazole, protection against their cytotoxic effects can be achieved by the addition of exogenous thiols such as glutathione or cysteamine. Results indicate that oxygen and peroxide electrodes provide convenient means for measuring the products of metabolic activation of nitro compounds. Mechanisms are proposed whereby protein, nonprotein and glutathione thiols can interact with drug radicals or with DNA radicals. 60 references, 14 figures, 5 tables

  15. The use of stable isotopes in drug metabolism studies.

    Science.gov (United States)

    Abramson, F P

    2001-06-01

    Although there is a long history of stable isotopes use in drug metabolism research, it is appropriate to evaluate them in pregnancy drug studies in which safety takes highest priority. It is well established through a number of human and animal experiments that stable isotopes themselves rarely generate additional toxicities beyond the molecules to which they are attached. For the analysis of stable isotopes involved in metabolism studies, mass spectrometry plays the predominant role. Several mass spectrometry-based techniques now exist that enable the selective quantitative detection of stable isotopes with better sensitivity and better retention of chromatographic resolution than do in-line radioactivity monitors for 14C. Even mass balance studies can be performed by using stable isotopes, a type of experiment that still predominantly uses radioisotopes. Some of the newest developments in the use of stable isotopes involve biopolymers, in which fully isotope-labeled species can be generated from cells grown in isotopically labeled growth media. Having shown safety, sensitivity, specificity, and versatility, stable isotopes should play an important role in drug metabolism studies in pregnancy.

  16. 78 FR 69991 - Advisory Committee; Veterinary Medicine Advisory Committee; Termination

    Science.gov (United States)

    2013-11-22

    ... HUMAN SERVICES Food and Drug Administration 21 CFR Part 14 Advisory Committee; Veterinary Medicine Advisory Committee; Termination AGENCY: Food and Drug Administration, HHS. ACTION: Final rule. SUMMARY: The Food and Drug Administration (FDA) is announcing the termination of the Veterinary Medicine Advisory...

  17. Trends in Bone Morphogenetic Protein Usage since the U.S. Food and Drug Administration Advisory in 2008: What Happens to Physician Practices When the Food and Drug Administration Issues an Advisory?

    Science.gov (United States)

    Mckie, Janay; Qureshi, Sheeraz; Iatridis, James; Egorova, Natalia; Cho, Samuel; Hecht, Andrew

    2014-06-01

    Study Design Retrospective cross-sectional study of spinal procedures from 2002 to 2010 using the Nationwide Inpatient Sample database. Objective To determine the patterns of bone morphogenetic protein (BMP) usage in fusion surgery before and after the U.S. Food and Drug Administration (FDA) 2008 advisory for the anterior cervical spine to understand how advisories affect U.S. physician practices. Methods Procedures were identified through International Classification of Diseases, Ninth Revision procedure codes and were plotted over time based on fusion procedure type, site, and area of fusion. U.S. national trends were approximated by polynomial regression analysis. Results The majority of the data trends of BMP usage reflect a second-order polynomial model. BMP usage in anterior cervical spine fusion procedures plateaued during the fourth quarter of 2007. The most apparent change in trend was noted in BMP usage pre- and postadvisory in the analysis of anterior cervical spine fusions. BMP percentage of use decreased in this area by 5% from the time of the FDA advisory to the fourth quarter of 2010. Conclusions The decrease in BMP usage in anterior cervical spinal fusion procedures coincided with the timing of the FDA advisory. The fact that BMP continued to be used in cervical spine fusion procedures, even at lower rates, despite the advisory, may reflect the availability of new clinical information that could lessen complications (i.e., lower BMP dose, perioperative steroids, BMP containment). Furthermore, factors like the natural ceiling effect of use or demand for new technology, complications, prohibitive institutional costs, access to information, and insurance compensation may have all contributed to the BMP usage trends observed.

  18. Flavonoids as modulators of metabolic enzymes and drug transporters.

    Science.gov (United States)

    Miron, Anca; Aprotosoaie, Ana Clara; Trifan, Adriana; Xiao, Jianbo

    2017-06-01

    Flavonoids, natural compounds found in plants and in plant-derived foods and beverages, have been extensively studied with regard to their capacity to modulate metabolic enzymes and drug transporters. In vitro, flavonoids predominantly inhibit the major phase I drug-metabolizing enzyme CYP450 3A4 and the enzymes responsible for the bioactivation of procarcinogens (CYP1 enzymes) and upregulate the enzymes involved in carcinogen detoxification (UDP-glucuronosyltransferases, glutathione S-transferases (GSTs)). Flavonoids have been reported to inhibit ATP-binding cassette (ABC) transporters (multidrug resistance (MDR)-associated proteins, breast cancer-resistance protein) that contribute to the development of MDR. P-glycoprotein, an ABC transporter that limits drug bioavailability and also induces MDR, was differently modulated by flavonoids. Flavonoids and their phase II metabolites (sulfates, glucuronides) inhibit organic anion transporters involved in the tubular uptake of nephrotoxic compounds. In vivo studies have partially confirmed in vitro findings, suggesting that the mechanisms underlying the modulatory effects of flavonoids are complex and difficult to predict in vivo. Data summarized in this review strongly support the view that flavonoids are promising candidates for the enhancement of oral drug bioavailability, chemoprevention, and reversal of MDR. © 2017 New York Academy of Sciences.

  19. Drug metabolism in early infancy: opioids as an illustration.

    Science.gov (United States)

    Van Donge, Tamara; Mian, Paola; Tibboel, Dick; Van Den Anker, John; Allegaert, Karel

    2018-03-01

    Drug dosing in infants frequently depends on body weight as a crude indicator for maturation. Fentanyl (metabolized by Cytochrome P450 3A4) and morphine (glucuronidated by UDP-glucuronosyltransferase-2B7) served as model drugs to provide insight in maturation patterns of these enzymes and provide understanding of the impact of non-maturational factors to optimize dosing in infants. Areas covered: Systematic searches on metabolism and population pharmacokinetic (Pop-PK) models for fentanyl and morphine were performed. Pre- and post-model selection criteria were applied to assess and evaluate the validity of these models. It was observed that maturational changes have been rather well investigated, be it with variability in the maturational function estimates. The same holds true for Pop-PK models, where non-maturational covariates have also been reported (pharmacogenetics, disease state or external influences), although less incorporated in the PK models and with limited knowledge on mechanisms involved. Expert opinion: PK models for fentanyl and morphine are currently available. Consequently, we suggest that researchers should not continue to develop new models, but should investigate whether collected data fit in already existing models and provide additional value concerning the impact of (non)-maturational factors like drug-drug interactions or pharmacogenetics.

  20. Metabolic drug interactions - the impact of prescribed drug regimens on the medication safety.

    NARCIS (Netherlands)

    Fialova, D.; Vrbensky, K.; Topinkova, E.; Vlcek, J.; Soerbye, L.W.; Wagner, C.; Bernabei, R.

    2005-01-01

    Background and objective: Risk/benefit profile of prescribed drug regimens is unkown. Over 60% of commonly used medications interact on metabolic pathways (cytochrom P450 (CYP450), uridyl-glucuronyl tranferasis (UGT I, II) and P-glycoprotein (PGP) transport). Using an up-to-date knowledge on

  1. Electrochemical and enzymatic synthesis of oxidative drug metabolites for metabolism studies : Exploring selectivity and yield

    NARCIS (Netherlands)

    Gül, Turan

    2017-01-01

    Metabolism studies of drug molecules play a crucial role in drug discovery and development since the early detection of possibly toxic drug metabolites can save time and money. During the metabolic biotransformation process, oxidation of a drug molecule is catalyzed by specific enzymes which can

  2. Associations of Drug Lipophilicity and Extent of Metabolism with Drug-Induced Liver Injury.

    Science.gov (United States)

    McEuen, Kristin; Borlak, Jürgen; Tong, Weida; Chen, Minjun

    2017-06-22

    Drug-induced liver injury (DILI), although rare, is a frequent cause of adverse drug reactions resulting in warnings and withdrawals of numerous medications. Despite the research community's best efforts, current testing strategies aimed at identifying hepatotoxic drugs prior to human trials are not sufficiently powered to predict the complex mechanisms leading to DILI. In our previous studies, we demonstrated lipophilicity and dose to be associated with increased DILI risk and, and in our latest work, we factored reactive metabolites into the algorithm to predict DILI. Given the inconsistency in determining the potential for drugs to cause DILI, the present study comprehensively assesses the relationship between DILI risk and lipophilicity and the extent of metabolism using a large published dataset of 1036 Food and Drug Administration (FDA)-approved drugs by considering five independent DILI annotations. We found that lipophilicity and the extent of metabolism alone were associated with increased risk for DILI. Moreover, when analyzed in combination with high daily dose (≥100 mg), lipophilicity was statistically significantly associated with the risk of DILI across all datasets ( p < 0.05). Similarly, the combination of extensive hepatic metabolism (≥50%) and high daily dose (≥100 mg) was also strongly associated with an increased risk of DILI among all datasets analyzed ( p < 0.05). Our results suggest that both lipophilicity and the extent of hepatic metabolism can be considered important risk factors for DILI in humans, and that this relationship to DILI risk is much stronger when considered in combination with dose. The proposed paradigm allows the convergence of different published annotations to a more uniform assessment.

  3. Effect of the anticarcinogenic drug 6-mercaptopurine on mineral metabolism

    International Nuclear Information System (INIS)

    Amemiya, K.

    1987-01-01

    The effect of 6-mercaptopurine (6-MP) on mineral metabolism was investigated using rats and mice. A single 6-mercaptopurine injection in pregnant rats on day 11 of gestation proved to be highly teratogenic. At term, fetuses from 6-MP injected dams had lower livers zinc concentrations than non-injected or vehicle injected controls while dams showed no differences in liver zinc. Fetuses from dams injected with 6-MP and fed supplemental levels of zinc had a lower frequency of malformations and had higher hepatic zinc concentrations than fetuses from dams fed less zinc with drug injection. Non-pregnant mice injected with 6-MP had higher zinc concentrations compared to controls. In addition, iron, copper and calcium concentrations were higher in the livers of 6-MP injected mice than in controls, indicating that the drug affected several elements. Hepatic concentrations of metallothionein (MT) were also elevated in 6-MP injected mice, suggesting that the change in zinc concentrations associated with drug administration was the result of a drug induction of MT. Dams injected with 6-MP on day 13 of pregnancy had livers which retained more of an absorbed dose of 65 zinc than non-injected dams. Plasma from these drug injected dams also retained less of the absorbed dose than control dams. In contrast, day 14 from dams injected with 6-MP, retained less of an absorbed dose than control embryos

  4. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    International Nuclear Information System (INIS)

    Saether, Oddbjoern

    2005-01-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  5. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  6. Pharmacogenomic and clinical data link non-pharmacokinetic metabolic dysregulation to drug side effect pathogenesis

    DEFF Research Database (Denmark)

    Zielinski, Daniel C.; Filipp, F. V.; Bordbar, A.

    2015-01-01

    Drug side effects cause a significant clinical and economic burden. However, mechanisms of drug action underlying side effect pathogenesis remain largely unknown. Here, we integrate pharmacogenomic and clinical data with a human metabolic network and find that non-pharmacokinetic metabolic pathways...... the relationships between the cellular response to drugs, genetic variation of patients and cell metabolism may help managing side effects by personalizing drug prescriptions and nutritional intervention strategies....

  7. Profiles in drug metabolism and toxicology: Richard Tecwyn Williams (1909-1979).

    Science.gov (United States)

    Jones, Alan Wayne

    2015-01-01

    This article pays homage to the life and work of a veritable pioneer in toxicology and drug metabolism, namely a Welshman, Richard Tecwyn Williams, FRS. Professor Williams, or RT as he was known, made major contributions to knowledge about the metabolism and toxicology of drugs and xenobiotics during a scientific career spanning nearly 50 years. Author or coauthor of close to 400 research articles and reviews, including a classic book, entitled Detoxication Mechanisms, Williams and his research school investigated virtually all aspects of drug metabolism, especially conjugations. In particular, the concepts of phase 1 and phase II metabolic pathways were introduced by Williams; the biliary excretion of drugs was extensively studied as were species differences in drug metabolism and detoxication. Besides investigating the metabolism of many pharmaceutical drugs, such as sulfonamides and thalidomide, Williams and his group investigated the disposition and fate in the body of organic pesticides and recreational drugs of abuse, such as amphetamine, methamphetamine and lysergic acid diethylamide (LSD).

  8. Expression and Regulation of Drug Transporters and Metabolizing Enzymes in the Human Gastrointestinal Tract.

    Science.gov (United States)

    Drozdzik, M; Oswald, S

    2016-01-01

    Orally administered drugs must pass through the intestinal wall and then through the liver before reaching systemic circulation. During this process drugs are subjected to different processes that may determine the therapeutic value. The intestinal barrier with active drug metabolizing enzymes and drug transporters in enterocytes plays an important role in the determination of drug bioavailability. Accumulating information demonstrates variable distribution of drug metabolizing enzymes and transporters along the human gastrointestinal tract (GI), that creates specific barrier characteristics in different segments of the GI. In this review, expression of drug metabolizing enzymes and transporters in the healthy and diseased human GI as well as their regulatory aspects: genetic, miRNA, DNA methylation are outlined. The knowledge of unique interplay between drug metabolizing enzymes and transporters in specific segments of the GI tract allows more precise definition of drug release sites within the GI in order to assure more complete bioavailability and prediction of drug interactions.

  9. Recent Advances of Computational Modeling for Predicting Drug Metabolism: A Perspective.

    Science.gov (United States)

    Kar, Supratik; Leszczynski, Jerzy

    2017-01-01

    Absorption, Distribution, Metabolism, Excretion (ADME) properties along with drug induced adverse effects are the major reasons for the late stage failure of drug candidates as well as the cause for the expensive withdrawal of many approved drugs from the market. Considering the adverse effects of drugs, metabolism factor has great importance in medicinal chemistry and clinical pharmacology because it influences the deactivation, activation, detoxification and toxification of drugs. Computational methods are effective approaches to reduce the number of safety issues by analyzing possible links between chemical structures and metabolism followed by adverse effects, as they serve the integration of information on several levels to enhance the reliability of outcomes. In silico profiling of drug metabolism can help progress only those molecules along the discovery chain that is less likely to fail later in the drug discovery process. This positively impacts the very high costs of drug discovery and development. Understanding the science behind computational tools, their opportunities, and limitations is essential to make a true influence on drug discovery at different levels. If applied in a scientifically consequential way, computational tools may improve the capability to identify and evaluate potential drug molecules considering pharmacokinetic properties of drugs. Herein, current trends in computational modeling for predicting drug metabolism are reviewed highlighting new computational tools for drug metabolism prediction followed by reporting large and integrated databases of approved drugs associated with diverse metabolism issues. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans

    NARCIS (Netherlands)

    Lammers, Laureen A.; Achterbergh, Roos; de Vries, Emmely M.; van Nierop, F. Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R.; Boelen, Anita; Romijn, Johannes A.; Mathôt, Ron A. A.

    2015-01-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug

  11. The effect of chronic renal failure on hepatic drug metabolism and drug disposition.

    Science.gov (United States)

    Dreisbach, Albert W; Lertora, Juan J L

    2003-01-01

    There is abundant evidence that chronic renal failure (CRF) and end-stage renal disease (ESRD) alter drug disposition by affecting protein and tissue binding and reducing systemic clearance of renally cleared drugs. What is not fully appreciated is that CRF can significantly reduce nonrenal clearance and alter the bioavailability of drugs predominantly metabolized by the liver. Animal studies in CRF have shown a major down-regulation (40-85%) of hepatic cytochrome P-450 metabolism involving specific isozymes. Phase II reactions such as acetylation and glucuronidation are also involved, with some isozymes showing induction and others inhibition. Hepatic enzymes exhibiting genetic polymorphisms such as N-acetyl-transferase-2 (NAT-2), which is responsible for the rapid and slow acetylator phenotypes, have been shown to be inhibited by ESRD and reversed by transplantation. There is some evidence pointing to the possibility of inhibitory factors circulating in the serum in ESRD patients which may be dialyzable. This review includes all significant animal and clinical studies using the search terms "chronic renal failure,"cytochrome P-450," and "liver metabolism" over the past 10 years obtained from the National Library of Medicine MEDLINE database, including relevant articles back to 1969.

  12. Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite.

    Directory of Open Access Journals (Sweden)

    Varsha Agarwal

    2008-06-01

    Full Text Available Cytochrome P450 (P450 is a super-family of drug metabolizing enzymes. P450 enzymes have dual function; they can metabolize drugs to pharmacologically inactive metabolites facilitating their excretion or biotransform them to pharmacologically active metabolites which may have longer half-life than the parent drug. The variable pharmacological response to psychoactive drugs typically seen in population groups is often not accountable by considering dissimilarities in hepatic metabolism. Metabolism in brain specific nuclei may play a role in pharmacological modulation of drugs acting on the CNS and help explain some of the diverse response to these drugs seen in patient population. P450 enzymes are also present in brain where drug metabolism can take place and modify therapeutic action of drugs at the site of action. We have earlier demonstrated an intrinsic difference in the biotransformation of alprazolam (ALP in brain and liver, relatively more alpha-hydroxy alprazolam (alpha-OHALP is formed in brain as compared to liver. In the present study we show that recombinant CYP3A43 metabolizes ALP to both alpha-OHALP and 4-hydroxy alprazolam (4-OHALP while CYP3A4 metabolizes ALP predominantly to its inactive metabolite, 4-OHALP. The expression of CYP3A43 mRNA in human brain samples correlates with formation of relatively higher levels of alpha-OH ALP indicating that individuals who express higher levels of CYP3A43 in the brain would generate larger amounts of alpha-OHALP. Further, the expression of CYP3A43 was relatively higher in brain as compared to liver across different ethnic populations. Since CYP3A enzymes play a prominent role in the metabolism of drugs, the higher expression of CYP3A43 would generate metabolite profile of drugs differentially in human brain and thus impact the pharmacodynamics of psychoactive drugs at the site of action.

  13. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism.

    Science.gov (United States)

    Konstandi, Maria; Johnson, Elizabeth O; Lang, Matti A

    2014-09-01

    Most drugs are metabolized in the liver by cytochromes P450 (CYPs). Stress can modify CYP-catalyzed drug metabolism and subsequently, the pharmacokinetic profile of a drug. Current evidence demonstrates a gene-, stress- and species-specific interference in stress-mediated regulation of genes encoding the major drug-metabolizing CYP isozymes. Stress-induced up-regulation of CYPs that metabolize the majority of prescribed drugs can result in their increased metabolism and consequently, in failure of pharmacotherapy. In contrast, stress-induced down-regulation of CYP isozymes, including CYP2E1 and CYP2B1/2, potentially reduces metabolism of several toxicants and specific drugs-substrates resulting in increased levels and altered toxicity. The primary stress effectors, the adrenergic receptor-linked pathways and glucocorticoids, play primary and distinct roles in stress-mediated regulation of CYPs. Evidence demonstrates that stress regulates major drug metabolizing CYP isozymes, suggesting that stress should be considered to ensure pharmacotherapy efficacy and minimize drug toxicity. A detailed understanding of the molecular events underlying the stress-dependent regulation of drug metabolizing CYPs is crucial both for the design of new drugs and for physiology-based pharmacokinetic and pharmacodynamic modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Sirtuins: Novel targets for metabolic disease in drug development

    International Nuclear Information System (INIS)

    Jiang Weijian

    2008-01-01

    Calorie restriction extends lifespan and produces a metabolic profile desirable for treating diseases such as type 2 diabetes. SIRT1, an NAD + -dependent deacetylase, is a principal modulator of pathways downstream of calorie restriction that produces beneficial effects on glucose homeostasis and insulin sensitivity. Activation of SIRT1 leads to enhanced activity of multiple proteins, including peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and FOXO which helps to mediate some of the in vitro and in vivo effects of sirtuins. Resveratrol, a polyphenolic SIRT1 activator, mimics the effects of calorie restriction in lower organisms and in mice fed a high-fat diet ameliorates insulin resistance. In this review, we summarize recent research advances in unveiling the molecular mechanisms that underpin sirtuin as therapeutic candidates and discuss the possibility of using resveratrol as potential drug for treatment of diabetes

  15. Effect of drugs used in psychoses on cerebral dopamine metabolism

    Science.gov (United States)

    O'Keeffe, Ruth; Sharman, D. F.; Vogt, Marthe

    1970-01-01

    1. Chlorpromazine 15 mg/kg, given daily to cats for 2 weeks, produced a rise in homovanillic acid (HVA) content of the caudate nucleus, whereas the same dose of thioridazine lacked this effect. Of these two drugs, only chlorpromazine causes a high incidence of drug-induced Parkinsonism in man. 2. In the mouse, chlorpromazine, thioridazine and haloperidol increased striatal concentrations of HVA and accelerated the disappearance of dopamine (DA) after inhibition of catecholamine synthesis with α-methyltyrosine. Low doses of the three compounds increased, whereas high doses reduced, the concentration of DA in the striatum. In their effects on the DA metabolism of the mouse, chlorpromazine and thioridazine had the same potency, but haloperidol was between 10 and 100 times more active than the other two drugs. In producing hypothermia and sedation, the three compounds were equiactive. 3. Oxypertine, another drug apt to produce Parkinsonism in man, caused a severe reduction in striatal DA and hypothalamic noradrenaline (NA). Though the clinical signs produced in the mouse were indistinguishable from those seen after the same dose of chlorpromazine, the biochemical changes in the brain were thus quite different. 4. Though all the drugs used caused temporary motor disabilities in animals, these bore no resemblance to human Parkinsonism, even when treatment was continued for 7 weeks or more as it was in cats and monkeys. The latter were treated with chlorpromazine 7·5 mg/kg daily, a dose chosen to avoid loss of weight and which may have been too small to produce toxic side-effects. It caused no changes in striatal DA turnover. 5. Even at the high dose of 50 mg/kg, phenoxybenzamine did not increase DA turnover in mouse brain, but it sedated the mice as did the tranquillizers. 6. Atropine sulphate, 25 mg/kg, reduced the HVA content of mouse striatum and partially antagonized the rise in HVA produced by phenothiazines. The effect was surmountable. Possible modes of action

  16. Uses and limits of radiotracers in the study of drugs and xenobiotics metabolism

    International Nuclear Information System (INIS)

    Cohen, Y.

    1980-01-01

    This review deals with scientific papers issued in 1977-1978, on labelling of drugs and xenobiotics and their metabolism. It is divided in five parts: site of label; in vivo metabolism in animals and human beings; in vitro metabolism on tissue slices, cells culture, microsomes, membrane receptors; metabolism of xenobiotics: nutrients, food additives, detergents, plastics and fabrics; discussion. Metabolic studies, nowadays, associate radiotracers, stable isotopes with high performing procedures for analytical separation [fr

  17. 75 FR 22146 - Advisory Committee for Reproductive Health Drugs; Notice of Meeting

    Science.gov (United States)

    2010-04-27

    ... of the treatment of hypoactive sexual desire disorder in premenopausal women. FDA intends to make... public hearing session, FDA may conduct a lottery to determine the speakers for the scheduled open public... least 7 days in advance of the meeting. FDA is committed to the orderly conduct of its advisory...

  18. Individualization of treatments with drugs metabolized by CES1: combining genetics and metabolomics

    DEFF Research Database (Denmark)

    Rasmussen, Henrik B.; Bjerre, Ditte; Linnet, Kristian

    2015-01-01

    in individualizing the treatment with these drugs. The present review addresses the issue of individualized treatment with drugs metabolized by CES1. It describes the composition of the gene encoding CES1, reports variants of this gene with focus upon those with a potential effect on drug metabolism and provides......CES1 is involved in the hydrolysis of ester group-containing xenobiotic and endobiotic compounds including several essential and commonly used drugs. The individual variation in the efficacy and tolerability of many drugs metabolized by CES1 is considerable. Hence, there is a large interest...... an overview of the protein structure of this enzyme bringing notice to mechanisms involved in the regulation of enzyme activity. Subsequently, the review highlights drugs metabolized by CES1 and argues that individual differences in the pharmacokinetics of these drugs play an important role in determining...

  19. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome.

    Science.gov (United States)

    Mallory, Emily K; Acharya, Ambika; Rensi, Stefano E; Turnbaugh, Peter J; Bright, Roselie A; Altman, Russ B

    2018-01-01

    Bacteria in the human gut have the ability to activate, inactivate, and reactivate drugs with both intended and unintended effects. For example, the drug digoxin is reduced to the inactive metabolite dihydrodigoxin by the gut Actinobacterium E. lenta, and patients colonized with high levels of drug metabolizing strains may have limited response to the drug. Understanding the complete space of drugs that are metabolized by the human gut microbiome is critical for predicting bacteria-drug relationships and their effects on individual patient response. Discovery and validation of drug metabolism via bacterial enzymes has yielded >50 drugs after nearly a century of experimental research. However, there are limited computational tools for screening drugs for potential metabolism by the gut microbiome. We developed a pipeline for comparing and characterizing chemical transformations using continuous vector representations of molecular structure learned using unsupervised representation learning. We applied this pipeline to chemical reaction data from MetaCyc to characterize the utility of vector representations for chemical reaction transformations. After clustering molecular and reaction vectors, we performed enrichment analyses and queries to characterize the space. We detected enriched enzyme names, Gene Ontology terms, and Enzyme Consortium (EC) classes within reaction clusters. In addition, we queried reactions against drug-metabolite transformations known to be metabolized by the human gut microbiome. The top results for these known drug transformations contained similar substructure modifications to the original drug pair. This work enables high throughput screening of drugs and their resulting metabolites against chemical reactions common to gut bacteria.

  20. Drug Metabolizing Enzyme and Transporter Gene Variation, Nicotine Metabolism, Prospective Abstinence, and Cigarette Consumption

    Science.gov (United States)

    Bergen, Andrew W.; Michel, Martha; Nishita, Denise; Krasnow, Ruth; Javitz, Harold S.; Conneely, Karen N.; Lessov-Schlaggar, Christina N.; Hops, Hyman; Zhu, Andy Z. X.; Baurley, James W.; McClure, Jennifer B.; Hall, Sharon M.; Baker, Timothy B.; Conti, David V.; Benowitz, Neal L.; Lerman, Caryn; Tyndale, Rachel F.; Swan, Gary E.

    2015-01-01

    The Nicotine Metabolite Ratio (NMR, ratio of trans-3’-hydroxycotinine and cotinine), has previously been associated with CYP2A6 activity, response to smoking cessation treatments, and cigarette consumption. We searched for drug metabolizing enzyme and transporter (DMET) gene variation associated with the NMR and prospective abstinence in 2,946 participants of laboratory studies of nicotine metabolism and of clinical trials of smoking cessation therapies. Stage I was a meta-analysis of the association of 507 common single nucleotide polymorphisms (SNPs) at 173 DMET genes with the NMR in 449 participants of two laboratory studies. Nominally significant associations were identified in ten genes after adjustment for intragenic SNPs; CYP2A6 and two CYP2A6 SNPs attained experiment-wide significance adjusted for correlated SNPs (CYP2A6 PACT=4.1E-7, rs4803381 PACT=4.5E-5, rs1137115, PACT=1.2E-3). Stage II was mega-regression analyses of 10 DMET SNPs with pretreatment NMR and prospective abstinence in up to 2,497 participants from eight trials. rs4803381 and rs1137115 SNPs were associated with pretreatment NMR at genome-wide significance. In post-hoc analyses of CYP2A6 SNPs, we observed nominally significant association with: abstinence in one pharmacotherapy arm; cigarette consumption among all trial participants; and lung cancer in four case:control studies. CYP2A6 minor alleles were associated with reduced NMR, CPD, and lung cancer risk. We confirmed the major role that CYP2A6 plays in nicotine metabolism, and made novel findings with respect to genome-wide significance and associations with CPD, abstinence and lung cancer risk. Additional multivariate analyses with patient variables and genetic modeling will improve prediction of nicotine metabolism, disease risk and smoking cessation treatment prognosis. PMID:26132489

  1. Drug Metabolizing Enzyme and Transporter Gene Variation, Nicotine Metabolism, Prospective Abstinence, and Cigarette Consumption.

    Directory of Open Access Journals (Sweden)

    Andrew W Bergen

    Full Text Available The Nicotine Metabolite Ratio (NMR, ratio of trans-3'-hydroxycotinine and cotinine, has previously been associated with CYP2A6 activity, response to smoking cessation treatments, and cigarette consumption. We searched for drug metabolizing enzyme and transporter (DMET gene variation associated with the NMR and prospective abstinence in 2,946 participants of laboratory studies of nicotine metabolism and of clinical trials of smoking cessation therapies. Stage I was a meta-analysis of the association of 507 common single nucleotide polymorphisms (SNPs at 173 DMET genes with the NMR in 449 participants of two laboratory studies. Nominally significant associations were identified in ten genes after adjustment for intragenic SNPs; CYP2A6 and two CYP2A6 SNPs attained experiment-wide significance adjusted for correlated SNPs (CYP2A6 PACT=4.1E-7, rs4803381 PACT=4.5E-5, rs1137115, PACT=1.2E-3. Stage II was mega-regression analyses of 10 DMET SNPs with pretreatment NMR and prospective abstinence in up to 2,497 participants from eight trials. rs4803381 and rs1137115 SNPs were associated with pretreatment NMR at genome-wide significance. In post-hoc analyses of CYP2A6 SNPs, we observed nominally significant association with: abstinence in one pharmacotherapy arm; cigarette consumption among all trial participants; and lung cancer in four case:control studies. CYP2A6 minor alleles were associated with reduced NMR, CPD, and lung cancer risk. We confirmed the major role that CYP2A6 plays in nicotine metabolism, and made novel findings with respect to genome-wide significance and associations with CPD, abstinence and lung cancer risk. Additional multivariate analyses with patient variables and genetic modeling will improve prediction of nicotine metabolism, disease risk and smoking cessation treatment prognosis.

  2. Metabolic and redox barriers in the skin exposed to drugs and xenobiotics.

    Science.gov (United States)

    Korkina, Liudmila

    2016-01-01

    Growing exposure of human skin to environmental and occupational hazards, to numerous skin care/beauty products, and to topical drugs led to a biomedical concern regarding sustainability of cutaneous chemical defence that is essential for protection against intoxication. Since skin is the largest extra-hepatic drug/xenobiotic metabolising organ where redox-dependent metabolic pathways prevail, in this review, publications on metabolic processes leading to redox imbalance (oxidative stress) and its autocrine/endocrine impact to cutaneous drug/xenobiotic metabolism were scrutinised. Chemical and photo-chemical skin barriers contain metabolic and redox compartments: their protective and homeostatic functions. The review will examine the striking similarity of adaptive responses to exogenous chemical/photo-chemical stressors and endogenous toxins in cutaneous metabolic and redox system; the role(s) of xenobiotics/drugs and phase II enzymes in the endogenous antioxidant defence and maintenance of redox balance; redox regulation of interactions between metabolic and inflammatory responses in skin cells; skin diseases sharing metabolic and redox problems (contact dermatitis, lupus erythematosus, and vitiligo) Due to exceptional the redox dependence of cutaneous metabolic pathways and interaction of redox active metabolites/exogenous antioxidants with drug/xenobiotic metabolism, metabolic tests of topical xenobiotics/drugs should be combined with appropriate redox analyses and performed on 3D human skin models.

  3. Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches.

    Science.gov (United States)

    Zisaki, Aikaterini; Miskovic, Ljubisa; Hatzimanikatis, Vassily

    2015-01-01

    Drug discovery and development is a high-risk enterprise that requires significant investments in capital, time and scientific expertise. The studies of xenobiotic metabolism remain as one of the main topics in the research and development of drugs, cosmetics and nutritional supplements. Antihypertensive drugs are used for the treatment of high blood pressure, which is one the most frequent symptoms of the patients that undergo cardiovascular diseases such as myocardial infraction and strokes. In current cardiovascular disease pharmacology, four drug clusters - Angiotensin Converting Enzyme Inhibitors, Beta-Blockers, Calcium Channel Blockers and Diuretics - cover the major therapeutic characteristics of the most antihypertensive drugs. The pharmacokinetic and specifically the metabolic profile of the antihypertensive agents are intensively studied because of the broad inter-individual variability on plasma concentrations and the diversity on the efficacy response especially due to the P450 dependent metabolic status they present. Several computational methods have been developed with the aim to: (i) model and better understand the human drug metabolism; and (ii) enhance the experimental investigation of the metabolism of small xenobiotic molecules. The main predictive tools these methods employ are rule-based approaches, quantitative structure metabolism/activity relationships and docking approaches. This review paper provides detailed metabolic profiles of the major clusters of antihypertensive agents, including their metabolites and their metabolizing enzymes, and it also provides specific information concerning the computational approaches that have been used to predict the metabolic profile of several antihypertensive drugs.

  4. Genetic analysis of drug metabolizing phase-I enzymes CYP3A4 in ...

    Indian Academy of Sciences (India)

    LIJUN LIU

    CYP3A4*5 and CYP3A4*18 are the predominant mutations affecting the metabolism of certain drugs in Chinese people. Tibetans are minority in China and have huge differences in the genetic structure, physiology, diet and lifestyle com- pared with the Han population. These variable factors may affect the drug metabolism.

  5. Metabolic and Endocrine Side Effects of Atypical Antipsychotic Drugs in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Aysegul Tahiroglu

    2011-03-01

    Full Text Available omorbid psychiatric disorders, frequent hospitalization, multiple outpatient treatment, prior history of hypertension, obesity and lipid dysregulation are associated with higher risk of metabolic syndrome in children. Side effects of antipsychotic drugs and their management have recently become a major subject of research due to enhanced antipsychotic drug usage in child and adolescents. Prevention strategies are usually preferred to secondary or tertiary strategies in the management of metabolic syndrome associated with antipsychotic drugs. Clinicians should present multidisciplinary approach to endocrine and metabolic side effects due to antipsychotic use in pediatric patient groups and avoid multiple drug use in such patients. In this paper, we briefly reviewed metabolic side effects of second generation antipsychotic drugs in child and adolescent population, possible mechanisms of susceptibility to metabolic syndrome and pharmacological and non pharmacological treatment approach to prevention of weight gain.

  6. The Conduct of Drug Metabolism Studies Considered Good Practice (II): In Vitro Experiments

    OpenAIRE

    Jia, Lee; Liu, Xiaodong

    2007-01-01

    In vitro drug metabolism studies, which are inexpensive and readily carried out, serve as an adequate screening mechanism to characterize drug metabolites, elucidate their pathways, and make suggestions for further in vivo testing. This publication is a sequel to part I in a series and aims at providing a general framework to guide designs and protocols of the in vitro drug metabolism studies considered good practice in an efficient manner such that it would help researchers avoid common pitf...

  7. Drug metabolizing enzyme systems and their relationship to toxic mechanisms

    International Nuclear Information System (INIS)

    Boyd, M.R.; Ravindranath, V.; Burka, L.T.

    1983-01-01

    The metabolism and toxicity of 3-methylfuran (3-MF) are described. The major product of metabolic activation of 3-MF appears to be disemicarbazones. Cursory description of toxic effects of 3-MF on lung and kidneys are provided. 18 refs

  8. 21 CFR 808.5 - Advisory opinions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Advisory opinions. 808.5 Section 808.5 Food and... Advisory opinions. (a) Any State, political subdivision, or other interested person may request an advisory... or local requirements, or proposed requirements, as preempted. (1) Such an advisory opinion may be...

  9. Predicting drug metabolism--an evaluation of the expert system METEOR.

    Science.gov (United States)

    Testa, Bernard; Balmat, Anne-Loyse; Long, Anthony; Judson, Philip

    2005-07-01

    The paper begins with a discussion of the goals of metabolic predictions in early drug research, and some difficulties toward this objective, mainly the various substrate and product selectivities characteristic of drug metabolism. The major in silico approaches to predict drug metabolism are then classified and summarized. A discrimination is, thus, made between 'local' and 'global' systems. In its second part, an evaluation of METEOR, a rule-based expert system used to predict the metabolism of drugs and other xenobiotics, is reported. The published metabolic data of ten substrates were used in this evaluation, the overall results being discussed in terms of correct vs. disputable (i.e., false-positive and false-negative) predictions. The predictions for four representative substrates are presented in detail (Figs. 1-4), illustrating the interest of such an evaluation in identifying where and how predictive rules can be improved.

  10. METABOLISM OF 3 PHARMACOLOGICALLY ACTIVE-DRUGS IN ISOLATED HUMAN AND RAT HEPATOCYTES - ANALYSIS OF INTERSPECIES VARIABILITY AND COMPARISON WITH METABOLISM IN-VIVO

    NARCIS (Netherlands)

    SANDKER, GW; VOS, RME; DELBRESSINE, LPC; SLOOFF, MJH; MEIJER, DKF; GROOTHUIS, GMM

    1. The metabolism of the three drugs (Org GB 94, Org 3770 and Org OD 14) was studied in isolated human and rat hepatocytes. The metabolic profiles in rat and human hepatocytes were compared with the available in vivo data in both species. 2. All three drugs were metabolized extensively under the

  11. The conduct of drug metabolism studies considered good practice (II): in vitro experiments.

    Science.gov (United States)

    Jia, Lee; Liu, Xiaodong

    2007-12-01

    In vitro drug metabolism studies, which are inexpensive and readily carried out, serve as an adequate screening mechanism to characterize drug metabolites, elucidate their pathways, and make suggestions for further in vivo testing. This publication is a sequel to part I in a series and aims at providing a general framework to guide designs and protocols of the in vitro drug metabolism studies considered good practice in an efficient manner such that it would help researchers avoid common pitfalls and misleading results. The in vitro models include hepatic and non-hepatic microsomes, cDNA-expressed recombinant human CYPs expressed in insect cells or human B lymphoblastoid, chemical P450 inhibitors, S9 fraction, hepatocytes and liver slices. Important conditions for conducting the in vitro drug metabolism studies using these models are stated, including relevant concentrations of enzymes, co-factors, inhibitors and test drugs; time of incubation and sampling in order to establish kinetics of reactions; appropriate control settings, buffer selection and method validation. Separate in vitro data should be logically integrated to explain results from animal and human studies and to provide insights into the nature and consequences of in vivo drug metabolism. This article offers technical information and data and addresses scientific rationales and practical skills related to in vitro evaluation of drug metabolism to meet regulatory requirements for drug development.

  12. An ex Vivo Model for Evaluating Blood-Brain Barrier Permeability, Efflux, and Drug Metabolism

    DEFF Research Database (Denmark)

    Hellman, Karin; Aadal Nielsen, Peter; Ek, Fredrik

    2016-01-01

    , risperidone, citalopram, fluoxetine, and haloperidol were studied, and one preselected metabolite for each drug was analyzed, identified, and quantified. Metabolite identification studies of clozapine and midazolam showed that the locust brain was highly metabolically active, and 18 and 14 metabolites...

  13. 76 FR 59406 - Anti-Infective Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-09-26

    ...., Silver Spring, MD. The hotel telephone number is 301- 589-5200. Contact Person: Minh Doan, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 31, rm... document entitled ``Guidance for Industry: Community-Acquired Bacterial Pneumonia: Developing Drugs for...

  14. [Design and analyze mathematical algorithms of intestinal absorption and metabolism of multicomponent drug].

    Science.gov (United States)

    Dong, Ling; Xiang, Jia-Mei; Wang, Yun; Wu, Rui-Guang; Tang, Ming-Min; Sun, Mo-Han

    2014-12-01

    Evaluation of the permeability mainly focuses on intestinal absorption in biopharmaceutics classification system (BCS). It is more complicated that the absorption and metabolism under multicomponent environment in biopharmaceutics classification system of Chinese materia medica (CMMBCS) compared with single component environment, which needs suitable mathematical models to be described. Therefore, with full consideration of existing single component mathematical algorithm combining with the characteristics of intestinal absorption and metabolism, we explored and designed a new mathematical algorithm of intestinal absorption and metabolism of multicomponent drug. Then we put forward a new coefficient, P (influence), the relative change rate of the single component's intestinal absorption and metabolism under multicomponent environment compared with single component environment, which described the influences of intestinal absorption and metabolism of the component under multicomponent environment. Moreover, P (influence) highlights the distinctive characteristics of multicomponent drug's intestinal absorption and metabolism, and lays the foundation for the construction of CMMBCS.

  15. The effect of chronic renal failure on drug metabolism and transport.

    Science.gov (United States)

    Dreisbach, Albert W; Lertora, Juan J L

    2008-08-01

    Chronic renal failure (CRF) has been shown to significantly reduce the nonrenal clearance and alter bioavailability of drugs predominantly metabolized by the liver and intestine. The purpose of this article is to review all significant animal and clinical studies dealing with the effect of CRF on drug metabolism and transport. A search of the National Library of Medicine PubMed was done with terms such as chronic renal failure, cytochrome P450 [CYP], liver metabolism, efflux drug transport and uptake transport, including relevant articles back to 1969. Animal studies in CRF have shown a significant downregulation (40-85%) of hepatic and intestinal CYP metabolism. High levels of parathyroid hormone, cytokines and uremic toxins have been shown to reduce CYP activity. Phase II reactions and drug transporters such as P-glycoprotein and organic anion transporting polypeptide are also affected. CRF alters intestinal, renal and hepatic drug metabolism and transport producing a clinically significant impact on drug disposition and increasing the risk for adverse drug reactions.

  16. Electrochemical Oxidation by Square-Wave Potential Pulses in the Imitation of Oxidative Drug Metabolism

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Permentier, Hjalmar P.; Bischoff, Rainer; Bruins, Andries P.

    2011-01-01

    Electrochemistry combined with mass spectrometry (EC-MS) is an emerging analytical technique in the imitation of oxidative drug metabolism at the early stages of new drug development. Here, we present the benefits of electrochemical oxidation by square-wave potential pulses for the oxidation of

  17. 78 FR 63224 - Pediatric Oncology Subcommittee of the Oncologic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-23

    ... Information: Caleb Briggs, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New..., application submitted by Bristol-Myers Squibb Co. and (2) MK-3475, application submitted by Merck Sharp... you require special accommodations due to a disability, please contact Caleb Briggs at least 7 days in...

  18. 76 FR 59405 - Anti-Infective Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-09-26

    ...., Silver Spring, MD. The hotel telephone number is 301- 589-5200. Contact Person: Minh Doan, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 31, Rm...-associated bacterial pneumonia, and the draft document entitled ``Guidance for Industry: Hospital-Acquired...

  19. Drug metabolism in older people--a key consideration in achieving optimal outcomes with medicines.

    Science.gov (United States)

    McLachlan, Andrew J; Pont, Lisa G

    2012-02-01

    Hepatic clearance plays a key role in determining the systemic exposure of drugs and metabolites, which in turn has a major effect on variability in the beneficial and adverse effects of medicines. Aging results in a number of significant changes in the human liver including reductions in liver blood flow, size, drug-metabolizing enzyme content, and pseudocapillarization. Drug metabolism is also influenced by comorbid disease, frailty, concomitant medicines, and (epi)genetics. These changes have the potential to alter the hepatic clearance of drugs but need to be interpreted in the context of the pharmacokinetic (and pharmacodynamic) characteristics of the drug of interest. There is growing evidence that the age-related changes in the liver not only result in a decrease in the hepatic clearance of unbound drug but also influence variability in response to medicines in older people.

  20. Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis

    Science.gov (United States)

    Gohil, Vishal M.; Sheth, Sunil A.; Nilsson, Roland; Wojtovich, Andrew P.; Lee, Jeong Hyun; Perocchi, Fabiana; Chen, William; Clish, Clary B.; Ayata, Cenk; Brookes, Paul S.; Mootha, Vamsi K.

    2010-01-01

    Most cells can dynamically shift their relative reliance on glycolytic versus oxidative metabolism in response to nutrient availability, during development, and in disease. Studies in model systems have shown that re-directing energy metabolism from respiration to glycolysis can suppress oxidative damage and cell death in ischemic injury. At present we have a limited set of drugs that safely toggle energy metabolism in humans. Here, we introduce a quantitative, nutrient sensitized screening strategy that can identify such compounds based on their ability to selectively impair growth and viability of cells grown in galactose versus glucose. We identify several FDA approved agents never before linked to energy metabolism, including meclizine, which blunts cellular respiration via a mechanism distinct from canonical inhibitors. We further show that meclizine pretreatment confers cardioprotection and neuroprotection against ischemia-reperfusion injury in murine models. Nutrient-sensitized screening may offer a useful framework for understanding gene function and drug action within the context of energy metabolism. PMID:20160716

  1. Current knowledge of microRNA-mediated regulation of drug metabolism in humans.

    Science.gov (United States)

    Nakano, Masataka; Nakajima, Miki

    2018-05-02

    Understanding the factors causing inter- and intra-individual differences in drug metabolism potencies is required for the practice of personalized or precision medicine, as well as for the promotion of efficient drug development. The expression of drug-metabolizing enzymes is controlled by transcriptional regulation by nuclear receptors and transcriptional factors, epigenetic regulation, such as DNA methylation and histone acetylation, and post-translational modification. In addition to such regulation mechanisms, recent studies revealed that microRNAs (miRNAs), endogenous ~22-nucleotide non-coding RNAs that regulate gene expression through the translational repression and degradation of mRNAs, significantly contribute to post-transcriptional regulation of drug-metabolizing enzymes. Areas covered: This review summarizes the current knowledge regarding miRNAs-dependent regulation of drug-metabolizing enzymes and transcriptional factors and its physiological and clinical significance. We also describe recent advances in miRNA-dependent regulation research, showing that the presence of pseudogenes, single-nucleotide polymorphisms, and RNA editing affects miRNA targeting. Expert opinion: It is unwavering fact that miRNAs are critical factors causing inter- and intra-individual differences in the expression of drug-metabolizing enzymes. Consideration of miRNA-dependent regulation would be a helpful tool for optimizing personalized and precision medicine.

  2. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions.

    Science.gov (United States)

    Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula; Ghose, Romi

    2017-06-01

    Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.

  3. Cytochrome P450s: mechanisms and biological implications in drug metabolism and its interaction with oxidative stress.

    Science.gov (United States)

    Bhattacharyya, Sudip; Sinha, Krishnendu; Sil, Parames C

    2014-01-01

    Cytochrome monooxygenases P450 enzymes (CYPs) are terminal oxidases, belonging to the multi-gene family of heme-thiolate enzymes and located in multiple sites of ER, cytosol and mitochondria. CYPs act as catalysts in drugs metabolism. This review highlights the mitochondrial and microsomal CYPs metabolic functions, CYPs mediated ROS generation and its feedback, bioactivation of drugs and related hypersensitivity, metabolic disposition as well as the therapeutic approaches. CYPs mediated drugs bioactivation may trigger oxidative stress and cause pathophysiology. Almost all drugs show some adverse reactions at high doses or accidental overdoses. Drugs lead to hypersensitivity reactions while metabolic predisposition to drug hypersensitivity exaggerates it. Mostly different intermediate bioactive products of CYPs mediated drug metabolism is the principal issue in this respect. On the other hand, CYPs are the main source of ROS. Their generation and feedback are of major concern of this review. Besides drug metabolism, CYPs also contribute significantly to carcinogen metabolism. Ultimately other enzymes in drug metabolism and antioxidant therapy are indispensible. Importance of this field: In a global sense, understanding of exact mechanism can facilitate pharmaceutical industries' challenge of developing drugs without toxicity. Ultimate message: This review would accentuate the recent advances in molecular mechanism of CYPs mediated drug metabolism and complex cross-talks between various restorative novel strategies evolved by CYPs to sustain the redox balance and limit the source of oxidative stress.

  4. The TREAT-NMD advisory committee for therapeutics (TACT): an innovative de-risking model to foster orphan drug development.

    Science.gov (United States)

    Heslop, Emma; Csimma, Cristina; Straub, Volker; McCall, John; Nagaraju, Kanneboyina; Wagner, Kathryn R; Caizergues, Didier; Korinthenberg, Rudolf; Flanigan, Kevin M; Kaufmann, Petra; McNeil, Elizabeth; Mendell, Jerry; Hesterlee, Sharon; Wells, Dominic J; Bushby, Kate

    2015-04-23

    Despite multiple publications on potential therapies for neuromuscular diseases (NMD) in cell and animal models only a handful reach clinical trials. The ability to prioritise drug development according to objective criteria is particularly critical in rare diseases with large unmet needs and a limited numbers of patients who can be enrolled into clinical trials. TREAT-NMD Advisory Committee for Therapeutics (TACT) was established to provide independent and objective guidance on the preclinical and development pathway of potential therapies (whether novel or repurposed) for NMD.We present our experience in the establishment and operation of the TACT. TACT provides a unique resource of recognized experts from multiple disciplines. The goal of each TACT review is to help the sponsor to position the candidate compound along a realistic and well-informed plan to clinical trials, and eventual registration. The reviews and subsequent recommendations are focused on generating meaningful and rigorous data that can enable clear go/no-go decisions and facilitate longer term funding or partnering opportunities. The review process thereby acts to comment on viability, de-risking the process of proceeding on a development programme.To date TACT has held 10 review meeting and reviewed 29 program applications in several rare neuromuscular diseases: Of the 29 programs reviewed, 19 were from industry and 10 were from academia; 15 were for novel compounds and 14 were for repurposed drugs; 16 were small molecules and 13 were biologics; 14 were preclinical stage applications and 15 were clinical stage applications. 3 had received Orphan drug designation from European Medicines Agency and 3 from Food and Drug Administration. A number of recurrent themes emerged over the course of the reviews and we found that applicants frequently require advice and education on issues concerned with preclinical standard operating procedures, interactions with regulatory agencies, formulation

  5. 78 FR 67364 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-11-12

    ...-glucose cotransporter 2 inhibitor developed as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. FDA intends to make background material available to the...

  6. 76 FR 23324 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-04-26

    ... treatment with the statin, simvastatin in subjects with type 2 diabetes mellitus. The results of the ACCORD... Cardiovascular Risk in Diabetes-Lipid (ACCORD Lipid) trial as they relate to the efficacy and safety of the...

  7. 76 FR 34085 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-06-10

    ...-glucose co-transporter 2 (SGLT2) inhibitors, developed as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. FDA intends to make background material available...

  8. 75 FR 47821 - Endocrinologic and Metabolic Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-08-09

    ... adjunct to diet and exercise for weight management in patients with a body mass index (BMI) of equal to or..., heart disease, or diabetes). The BMI is a measure of body weight (mass) based on a person's weight and...

  9. Effects of resveratrol on drug- and carcinogen-metabolizing enzymes, implications for cancer prevention.

    Science.gov (United States)

    Guthrie, Ariane R; Chow, H-H Sherry; Martinez, Jessica A

    2017-02-01

    Resveratrol is a polyphenol found in grape skins and peanuts that has demonstrated many health benefits including protection against aging, cardiovascular and metabolic disease, neurological decline, and cancer. The anticancer properties of resveratrol have been attributed to a variety of mechanisms, including its general inhibition of phase I metabolism and induction of phase II metabolism. The effects of resveratrol on these enzymes, however, are still unclear, as in vitro evidence often contrasts with animal studies and clinical trials. Reasons for these variances could include the low bioavailability of resveratrol and the effects of resveratrol metabolites. Due to resveratrol's interactions with drug-metabolizing enzymes and drug transporters, individuals concurrently taking pharmacological doses of resveratrol with other supplements or medications could potentially experience nutrient-drug interactions. This review summarizes the known effects of resveratrol and its main metabolites on drug metabolism in order to help characterize which populations might benefit from resveratrol for the prevention of cancer, as well as those that may need to avoid supplementation due to potential drug interactions.

  10. Metabolic Side-Effects of the Novel Second-Generation Antipsychotic Drugs Asenapine and Iloperidone: A Comparison with Olanzapine

    OpenAIRE

    Boyda, Heidi N.; Procyshyn, Ric M.; Pang, Catherine C. Y.; Hawkes, Erin; Wong, Daniel; Jin, Chen Helen; Honer, William G.; Barr, Alasdair M.

    2013-01-01

    Background The second generation antipsychotic (SGA) drugs are widely used in psychiatry due to their clinical efficacy and low incidence of neurological side-effects. However, many drugs in this class cause deleterious metabolic side-effects. Animal models accurately predict metabolic side-effects for SGAs with known clinical metabolic liability. We therefore used preclinical models to evaluate the metabolic side-effects of glucose intolerance and insulin resistance with the novel SGAs asena...

  11. Mechanistic and structural insight into promiscuity based metabolism of cardiac drug digoxin by gut microbial enzyme.

    Science.gov (United States)

    Kumar, Kundan; Jaiswal, Shubham K; Dhoke, Gaurao V; Srivastava, Gopal N; Sharma, Ashok K; Sharma, Vineet K

    2017-12-23

    The recent advances in microbiome studies have revealed the role of gut microbiota in altering the pharmacological properties of oral drugs, which contributes to patient-response variation and undesired effect of the drug molecule. These studies are essential to guide us for achieving the desired efficacy and pharmacological activity of the existing drug molecule or for discovering novel and more effective therapeutics. However, one of the main limitations is the lack of atomistic details on the binding and metabolism of these drug molecules by gut-microbial enzymes. Therefore, in this study, for a well-known and important FDA-approved cardiac glycoside drug, digoxin, we report the atomistic details and energy economics for its binding and metabolism by the Cgr2 protein of Eggerthela lenta DSM 2243. It was observed that the binding pocket of digoxin to Cgr2 primarily involved the negatively charged polar amino acids and a few non-polar hydrophobic residues. The drug digoxin was found to bind Cgr2 at the same binding site as that of fumarate, which is the proposed natural substrate. However, digoxin showed a much lower binding energy (17.75 ±2 Kcal mol -1 ) than the binding energy (42.17 ±2 Kcal mol -1 ) of fumarate. This study provides mechanistic insights into the structural and promiscuity-based metabolism of widely used cardiac drug digoxin and presents a methodology, which could be useful to confirm the promiscuity-based metabolism of other orally administrated drugs by gut microbial enzymes and also help in designing strategies for improving the efficacy of the drugs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    Science.gov (United States)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  13. Redox-based Epigenetic status in Drug Addiction: Potential mediator of drug-induced gene priming phenomenon and use of metabolic intervention for symptomatic treatment in drug addiction.

    Directory of Open Access Journals (Sweden)

    Malav Suchin Trivedi

    2015-01-01

    Full Text Available Alcohol and other drugs of abuse, including psychostimulants and opioids, can induce epigenetic changes: a contributing factor for drug addiction, tolerance and associated withdrawal symptoms. DNA methylation is the major epigenetic mechanism and it is one of more than 200 methylation reactions supported by methyl donor S-adenosylmethionine (SAM. The levels of SAM are controlled by cellular redox status via the folate and vitamin B12-dependent enzyme methionine synthase (MS, for example; under oxidative conditions MS is inhibited, diverting its substrate homocysteine (HCY to the transsulfuration pathway. Alcohol, dopamine and morphine, can alter intracellular levels of glutathione (GSH-based cellular redox status, subsequently affecting S-adenosylmethionine (SAM levels and DNA methylation status. In this discussion, we compile this and other existing evidence in a coherent manner to present a novel hypothesis implicating the involvement of redox-based epigenetic changes in drug addiction. Next, we also discuss how gene priming phenomenon can contribute to maintenance of redox and methylation status homeostasis under various stimuli including drugs of abuse. Lastly, based on our hypothesis and some preliminary evidence, we discuss a mechanistic explanation for use of metabolic interventions / redox-replenishers as symptomatic treatment of alcohol addiction and associated withdrawal symptoms. Hence, the current review article strengthens the hypothesis that neuronal metabolism has a critical bidirectional coupling with epigenetic changes in drug addiction and we support this claim via exemplifying the link between redox-based metabolic changes and resultant epigenetic consequences under the effect of drugs of abuse.

  14. Increasing of organism radioresistance by MR-33 metabolic drug

    International Nuclear Information System (INIS)

    Kalinina, E.V.; Novichkova, M.D.; Chirkova, E.M.; Koppel', M.A.; Komissarova, I.V.

    1999-01-01

    Using acute radiation injury model and mother-embryo system the radioprotective effect is studied of original metabolic preparation MR-33 (L-glutamine acid + glycine + cysteine) the characteristic feature of which is the ability to increase the intracellular level of glutathione (GSH) and GSH-depending system. Rats-males and pregnant females were used for experiments as well as volunteers. It is shown that the MR-33 increase adult and embryo radioresistance in case of γ-irradiation using 60 Co source [ru

  15. Forensic relevance of glucuronidation in phase-II-metabolism of alcohols and drugs.

    Science.gov (United States)

    Kaeferstein, Herbert

    2009-04-01

    Forensic toxicology means detecting toxic or pharmacologically active substances in body fluids and organs and the evaluation and judgement of the respective results. In the legal judgement, not only the taken in active drugs, but also their metabolites are to be included. Regarding metabolism one distinguishes phase-I- and phase-II-metabolism. In the phase-I-metabolism, active substances are converted by oxidation, reduction or hydrolysis, but influencing the polarity of more lipophilic substances often not decisively. The pharmacological activity is often preserved or even increased. In phase-II-metabolism a highly hydrophilic substance--mostly glucuronic acid--is coupled to the active substances or the respective phase-I-metabolites. This reaction step decisively increases hydrophilicity of lipophilic substances, thus enhancing renal elimination and often also abolishing pharmacologically and/or toxicologically effects. Nevertheless the interaction of different drugs and alcohols in glucuronidation and the glucuronides of phase-II-metabolism still do not play a substantial role in the forensic-toxicological analysis and interpretation of results so far. However, in vitro investigations since 1999 in our lab show that such interactions are not unlikely. For valid interpretation of complex cases in the future it may become necessary not only to quantify drugs and the phase-I-metabolites but also the phase-II-metabolites and discuss possible interactions in the metabolism.

  16. The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout

    International Nuclear Information System (INIS)

    Prindiville, John S.; Mennigen, Jan A.; Zamora, Jake M.; Moon, Thomas W.; Weber, Jean-Michel

    2011-01-01

    Gemfibrozil (GEM) is a fibrate drug consistently found in effluents from sewage treatment plants. This study characterizes the pharmacological effects of GEM on the plasma lipoproteins of rainbow trout (Oncorhynchus mykiss). Our goals were to quantify the impact of the drug on: 1) lipid constituents of lipoproteins (phospholipids (PL), triacylglycerol (TAG), and cholesterol), 2) lipoprotein classes (high, low and very low density lipoproteins), and 3) fatty acid composition of lipoproteins. Potential mechanisms of GEM action were investigated by measuring lipoprotein lipase activity (LPL) and the hepatic gene expression of LPL and of the peroxisome proliferator-activated receptor (PPAR) α, β, and γ isoforms. GEM treatment resulted in decreased plasma lipoprotein levels (- 29%) and a reduced size of all lipoprotein classes (lower PL:TAG ratios). However, the increase in HDL-cholesterol elicited by GEM in humans failed to be observed in trout. Therefore, HDL-cholesterol cannot be used to assess the impact of the drug on fish. GEM also modified lipoprotein composition by reducing the abundance of long-chain n-3 fatty acids, thereby potentially reducing the nutritional quality of exposed fish. The relative gene expression of LPL was increased, but the activity of the enzyme was not, and we found no evidence for the activation of PPAR pathways. The depressing effects of GEM on fish lipoproteins demonstrated here may be a concern in view of the widespread presence of fibrates in aquatic environments. Work is needed to test whether exposure to environmental concentrations of these drugs jeopardizes the capacity of fish for reproduction, temperature acclimation or migratory behaviors.

  17. Reactions and enzymes in the metabolism of drugs and other xenobiotics.

    Science.gov (United States)

    Testa, Bernard; Pedretti, Alessandro; Vistoli, Giulio

    2012-06-01

    In this article, we offer an overview of the compared quantitative importance of biotransformation reactions in the metabolism of drugs and other xenobiotics, based on a meta-analysis of current research interests. Also, we assess the relative significance the enzyme (super)families or categories catalysing these reactions. We put the facts unveiled by the analysis into a drug discovery context and draw some implications. The results confirm the primary role of cytochrome P450-catalysed oxidations and UDP-glucuronosyl-catalysed glucuronidations, but they also document the marked significance of several other reactions. Thus, there is a need for several drug discovery scientists to better grasp the variety of drug metabolism reactions and enzymes and their consequences. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. A metabolic network approach for the identification and prioritization of antimicrobial drug targets.

    Science.gov (United States)

    Chavali, Arvind K; D'Auria, Kevin M; Hewlett, Erik L; Pearson, Richard D; Papin, Jason A

    2012-03-01

    For many infectious diseases, novel treatment options are needed in order to address problems with cost, toxicity and resistance to current drugs. Systems biology tools can be used to gain valuable insight into pathogenic processes and aid in expediting drug discovery. In the past decade, constraint-based modeling of genome-scale metabolic networks has become widely used. Focusing on pathogen metabolic networks, we review in silico strategies used to identify effective drug targets and highlight recent successes as well as limitations associated with such computational analyses. We further discuss how accounting for the host environment and even targeting the host may offer new therapeutic options. These systems-level approaches are beginning to provide novel avenues for drug targeting against infectious agents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Genome-scale metabolic models as platforms for identification of novel genes as antimicrobial drug targets.

    Science.gov (United States)

    Mienda, Bashir Sajo; Salihu, Rabiu; Adamu, Aliyu; Idris, Shehu

    2018-03-01

    The growing number of multidrug-resistant pathogenic bacteria is becoming a world leading challenge for the scientific community and for public health. However, advances in high-throughput technologies and whole-genome sequencing of bacterial pathogens make the construction of bacterial genome-scale metabolic models (GEMs) increasingly realistic. The use of GEMs as an alternative platforms will expedite identification of novel unconditionally essential genes and enzymes of target organisms with existing and forthcoming GEMs. This approach will follow the existing protocol for construction of high-quality GEMs, which could ultimately reduce the time, cost and labor-intensive processes involved in identification of novel antimicrobial drug targets in drug discovery pipelines. We discuss the current impact of existing GEMs of selected multidrug-resistant pathogenic bacteria for identification of novel antimicrobial drug targets and the challenges of closing the gap between genome-scale metabolic modeling and conventional experimental trial-and-error approaches in drug discovery pipelines.

  20. 21 CFR 10.85 - Advisory opinions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Advisory opinions. 10.85 Section 10.85 Food and... PRACTICES AND PROCEDURES General Administrative Procedures § 10.85 Advisory opinions. (a) An interested person may request an advisory opinion from the Commissioner on a matter of general applicability. (1...

  1. 21 CFR 12.83 - Advisory opinions.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Advisory opinions. 12.83 Section 12.83 Food and... PUBLIC HEARING Hearing Procedures § 12.83 Advisory opinions. Before or during a hearing, a person may, under § 10.85, request the Commissioner for an advisory opinion on whether any regulation or order under...

  2. Metabolic acidosis with a high anion: A drug-drug interaction between paracetamol and flucloxacillin

    NARCIS (Netherlands)

    Jessurun, N.T.; Van Hunse, F.; Van Puijenbroek, E.

    2015-01-01

    Background: Five-oxoproline is a product of disordered glutathione metabolism in the gamma glutamyl cycle: glutathione deficiency removes the feedback inhibition resulting in the formation of γ -glutamylcysteine and elevated concentrations of γ -glutamylcysteine leading to the formation of

  3. Effects of uremic toxins on transport and metabolism of different biopharmaceutics drug disposition classification system xenobiotics.

    Science.gov (United States)

    Reyes, Maribel; Benet, Leslie Z

    2011-09-01

    Chronic kidney disease (CKD) is recognized to cause pharmacokinetic changes in renally excreted drugs; however, pharmacokinetic changes are also reported for drugs that are nonrenally eliminated. Few studies have investigated how uremic toxins may affect drug transporters and metabolizing enzymes and how these may result in pharmacokinetic/metabolic changes in CKD. Here, we investigated the effects of uremic toxins and human uremic serum on the transport of the prototypical transporter substrate [(3) H]-estrone sulfate and three Biopharmaceutics Drug Disposition Classification System (BDDCS) drugs, propranolol, losartan, and eprosartan. We observed a significant decrease in [(3) H]-estrone sulfate, losartan, and eprosartan uptake with some uremic toxins in both transfected cells and rat hepatocytes. The uptake of losartan was decreased in rat and human hepatocytes (28% and 48%, respectively) in the presence of hemodialysis (HD) serum. Time-course studies of losartan showed a 27%, 65%, and 68% increase in area under the curve (AUC) in the presence of HD serum, rifampin, and sulfaphenazole, respectively. Intracellular losartan AUC decreased significantly in the treatment groups, and the metabolite AUC decreased by 41% and 26% in rifampin- and sulfaphenazole-treated group, respectively. The intracellular AUC of eprosartan increased 190% in the presence of HD serum. These studies indicate that the uremic toxins contained in HD serum play an important role in drug disposition through drug transporters, and that there would be differential effects depending on the BDDCS classification of the drug. Copyright © 2011 Wiley-Liss, Inc.

  4. 78 FR 70954 - Risk Communications Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-11-27

    ...] Risk Communications Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... Communications Advisory Committee. General Function of the Committee: To provide advice and recommendations to.... Visit the Risk Communication Advisory Committee Web site at http://www.fda.gov/AdvisoryCommittees...

  5. Controllability in cancer metabolic networks according to drug targets as driver nodes.

    Science.gov (United States)

    Asgari, Yazdan; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2013-01-01

    Networks are employed to represent many nonlinear complex systems in the real world. The topological aspects and relationships between the structure and function of biological networks have been widely studied in the past few decades. However dynamic and control features of complex networks have not been widely researched, in comparison to topological network features. In this study, we explore the relationship between network controllability, topological parameters, and network medicine (metabolic drug targets). Considering the assumption that targets of approved anticancer metabolic drugs are driver nodes (which control cancer metabolic networks), we have applied topological analysis to genome-scale metabolic models of 15 normal and corresponding cancer cell types. The results show that besides primary network parameters, more complex network metrics such as motifs and clusters may also be appropriate for controlling the systems providing the controllability relationship between topological parameters and drug targets. Consequently, this study reveals the possibilities of following a set of driver nodes in network clusters instead of considering them individually according to their centralities. This outcome suggests considering distributed control systems instead of nodal control for cancer metabolic networks, leading to a new strategy in the field of network medicine.

  6. Deletion of 30 murine cytochrome p450 genes results in viable mice with compromised drug metabolism.

    Science.gov (United States)

    Scheer, Nico; McLaughlin, Lesley A; Rode, Anja; Macleod, A Kenneth; Henderson, Colin J; Wolf, C Roland

    2014-06-01

    In humans, 75% of all drugs are metabolized by the cytochrome P450-dependent monooxygenase system. Enzymes encoded by the CYP2C, CYP2D, and CYP3A gene clusters account for ∼80% of this activity. There are profound species differences in the multiplicity of cytochrome P450 enzymes, and the use of mouse models to predict pathways of drug metabolism is further complicated by overlapping substrate specificity between enzymes from different gene families. To establish the role of the hepatic and extrahepatic P450 system in drug and foreign chemical disposition, drug efficacy, and toxicity, we created a unique mouse model in which 30 cytochrome P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene clusters have been deleted. Remarkably, despite a wide range of putative important endogenous functions, Cyp2c/2d/3a KO mice were viable and fertile, demonstrating that these genes have evolved primarily as detoxification enzymes. Although there was no overt phenotype, detailed examination showed Cyp2c/2d/3a KO mice had a smaller body size (15%) and larger livers (20%). Changes in hepatic morphology and a decreased blood glucose (30%) were also noted. A five-drug cocktail of cytochrome P450 isozyme probe substrates were used to evaluate changes in drug pharmacokinetics; marked changes were observed in either the pharmacokinetics or metabolites formed from Cyp2c, Cyp2d, and Cyp3a substrates, whereas the metabolism of the Cyp1a substrate caffeine was unchanged. Thus, Cyp2c/2d/3a KO mice provide a powerful model to study the in vivo role of the P450 system in drug metabolism and efficacy, as well as in chemical toxicity.

  7. Characterization of drug-metabolizing enzymes CYP2C9, CYP2C19 ...

    Indian Academy of Sciences (India)

    We believe that this is the first work that reports these variants among those populations. The cytochrome P450 enzymes (CYPs) are a subfamily of hemoproteins, playing a critical role in the metabolism of many drugs. Several genetic polymorphisms which depend on ethnic groups can alter CYP activity and then affect the.

  8. Cryopreservation of precision-cut tissue slices for application in drug metabolism research

    NARCIS (Netherlands)

    de Graaf, I.A.M.; Koster, H

    Cryopreservation of tissue slices greatly facilitates their use in drug metabolism research, leading to efficient use of human organ material and a decrease of laboratory animal use. In the present review, various mechanisms of cryopreservation such as equilibrium slow freezing, rapid freezing and

  9. Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans.

    Science.gov (United States)

    Scott, Timothy A; Quintaneiro, Leonor M; Norvaisas, Povilas; Lui, Prudence P; Wilson, Matthew P; Leung, Kit-Yi; Herrera-Dominguez, Lucia; Sudiwala, Sonia; Pessia, Alberto; Clayton, Peter T; Bryson, Kevin; Velagapudi, Vidya; Mills, Philippa B; Typas, Athanasios; Greene, Nicholas D E; Cabreiro, Filipe

    2017-04-20

    Fluoropyrimidines are the first-line treatment for colorectal cancer, but their efficacy is highly variable between patients. We queried whether gut microbes, a known source of inter-individual variability, impacted drug efficacy. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we performed three-way high-throughput screens that unraveled the complexity underlying host-microbe-drug interactions. We report that microbes can bolster or suppress the effects of fluoropyrimidines through metabolic drug interconversion involving bacterial vitamin B 6 , B 9 , and ribonucleotide metabolism. Also, disturbances in bacterial deoxynucleotide pools amplify 5-FU-induced autophagy and cell death in host cells, an effect regulated by the nucleoside diphosphate kinase ndk-1. Our data suggest a two-way bacterial mediation of fluoropyrimidine effects on host metabolism, which contributes to drug efficacy. These findings highlight the potential therapeutic power of manipulating intestinal microbiota to ensure host metabolic health and treat disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Microsomal drug-metabolizing enzymes in the olive baboon (papio anabis)

    DEFF Research Database (Denmark)

    Autrup, Herman; Thurlow, Brenda J.; Wakhisi, Johnston

    1975-01-01

    1.1. The activity of microsomal drug-metabolizing enzymes—azo reductase, nitroreductase, p-hydroxylation, N-demethylation, O-demethylation, NADPH cytochrome c reductase and cytochrome P P-450—in the olive baboon are lower than in other animal species, e.g. mouse, rat, guinea-pig. 2. 2. The level...

  11. 131I metabolism in the study of antithyroid drug

    International Nuclear Information System (INIS)

    Gagliardi, R.P.; Santalla de Pirovano, M. del C.; Kramar de Valmaggia, E.P.; Valsecchi, R.; Pisarev, Mario; Altschuler, Noe

    1977-11-01

    The main purpose of the present report was to study the action of antithyroid drugs on different parameters of thyroid activity utilizing 131 I, in the offsprings of rats treated during pregnancy and the perinatal period. Both PTU and MMI caused alterations in growth and thyroid activity, but they were more dramatic with the former. A significative increase in 131 I thyroid uptake and in circulating radioactivity was observed. When % uptake was expressed as a function of thyroidal and body weights, a significative decrease was noticed. The ratio T/S and the percentage of labelled iodothyronines in pancreatin digests were also decreased. Neuromuscular maturation was evaluated, by means of the test of Schapiro. A group of animals treated with PTU plus T 4 had a significant delay, reaching normal developement later than the controls or those treated with MMI. (author) [es

  12. Tea consumption modulates hepatic drug metabolizing enzymes in Wistar rats.

    Science.gov (United States)

    Maliakal, P P; Coville, P F; Wanwimolruk, S

    2001-04-01

    The antioxidant, antimutagenic and anticarcinogenic activities of green tea and its polyphenols have been reported. As bioactivation of the precarcinogens and detoxification of ultimate carcinogens are mainly carried out by hepatic metabolizing enzymes, we have investigated the modulation of these enzyme activities subsequent to tea consumption in rats. Female Wistar rats were divided into eight groups (n = 5). Six groups were given aqueous solutions (2%, w/v) of six different teas (New Zealand green tea, Australian green tea, Java green tea, Dragon green tea, Gunpowder green tea or English Breakfast black tea) as the sole source of fluid. One group was given a standard green tea extract (0.5%, w/v) while the control group had free access to water. At the end of four-weeks treatment, different cytochrome P450 (CYP) isoform and phase II enzyme activities were determined by incubation of the liver microsomes or cytosols with appropriate substrates. CYP 1A2 activity was markedly increased in all the tea treatment groups (P Java green tea-treatment groups. Cytosolic glutathione-S-transferase activity was significantly increased (PJava green tea-treatment groups. The microsomal UDP-glucuronosyl transferase activity remained unchanged or was moderately increased in most of the groups. The balance between the phase I carcinogen-activating enzymes and the phase II detoxifying enzymes could be important in determining the risk of developing chemically-induced cancer.

  13. Innovative methods to study human intestinal drug metabolism in vitro : Precision-cut slices compared with Ussing chamber preparations

    NARCIS (Netherlands)

    van de Kerkhof, Esther G.; Ungell, Anna-Lena B.; Sjoberg, Asa K.; de Jager, Marina H.; Hilgendorf, Constanze; de Graaf, Inge A. M.; Groothuis, Geny M. M.

    2006-01-01

    Predictive in vitro methods to investigate drug metabolism in the human intestine using intact tissue are of high importance. Therefore, we studied the metabolic activity of human small intestinal and colon slices and compared it with the metabolic activity of the same human intestinal segments

  14. On-chip electromembrane extraction for monitoring drug metabolism in real time by electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Petersen, Nickolaj J.; Pedersen, Jacob Sønderby; Poulsen, Nicklas Nørgård

    2012-01-01

    the in vitro metabolism of amitriptyline in real time. There was no need to stop the metabolisms by protein precipitation as in conventional metabolic studies, since the EME selectively extracted the drug and metabolites from the reaction solution comprised of rat liver microsomes in buffer. Compositional...

  15. Metabolic switching of drug pathways as a consequence of deuterium substitution

    International Nuclear Information System (INIS)

    Horning, M.G.; Haegele, K.D.; Sommer, K.R.; Nowlin, J.; Stafford, M.

    1975-01-01

    An investigation was made of the metabolism of deuterated analogs of caffeine (1-CD 3 -caffeine and 7-CD 3 -caffeine) and antipyrine (N-CD 3 -antipyrine and 3-CD 3 -antipyrine) because both caffeine and antipyrine are metabolized by multiple alternate pathways. Since it is well established that carbon-deuterium bonds are more stable than carbon-hydrogen bonds, it was postulated that oxidation of the CD 3 group would be depressed and that metabolism of the labeled compounds would be shifted to another pathway that did not involve cleavage of a carbon-deuterium bond. Metabolic switching of drug pathways was observed in vivo for both of the caffeine analogs and was observed both in vivo and in vitro for 3-CD 3 -antipyrine

  16. Drug-drug interaction and doping, part 1: an in vitro study on the effect of non-prohibited drugs on the phase I metabolic profile of toremifene.

    Science.gov (United States)

    Mazzarino, Monica; de la Torre, Xavier; Fiacco, Ilaria; Palermo, Amelia; Botrè, Francesco

    2014-05-01

    The present study was designed to provide preliminary information on the potential impact of metabolic drug-drug interaction on the effectiveness of doping control strategies currently followed by the anti-doping laboratories to detect the intake of banned agents. In vitro assays based on the use of human liver microsomes and recombinant CYP isoforms were designed and performed to characterize the phase I metabolic profile of the prohibited agent toremifene, selected as a prototype drug of the class of selective oestrogen receptor modulators, both in the absence and in the presence of medicaments (fluconazole, ketoconazole, itraconazole, miconazole, cimetidine, ranitidine, fluoxetine, paroxetine, nefazodone) not included in the World Anti-Doping Agency list of prohibited substances and methods and frequently administered to athletes. The results show that the in vitro model developed in this study was adequate to simulate the in vivo metabolism of toremifene, confirming the results obtained in previous studies. Furthermore, our data also show that ketoconazole, itraconazole, miconazole and nefazodone cause a marked modification in the production of the metabolic products (i.e. hydroxylated and carboxylated metabolites) normally selected by the anti-doping laboratories as target analytes to detect toremifene intake; moderate variations were registered in the presence of fluconazole, paroxetine and fluoxetine; while no significant modifications were measured in the presence of ranitidine and cimetidine. This evidence imposes that the potential effect of drug-drug interactions is duly taken into account in anti-doping analysis, also for a broader significance of the analytical results. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Lack of effect of spinal anesthesia on drug metabolism

    International Nuclear Information System (INIS)

    Whelan, E.; Wood, A.J.; Shay, S.; Wood, M.

    1989-01-01

    The effect of spinal anesthesia on drug disposition was determined in six dogs with chronically implanted vascular catheters using propranolol as a model compound. On the first study day, 40 mg of unlabeled propranolol and 200 microCi of [3H]propranolol were injected into the portal and femoral veins respectively. Arterial blood samples were taken for 4 hr for measurement of plasma concentrations of labeled and unlabeled propranolol by high-pressure liquid chromatography (HPLC) and of [3H]propranolol by liquid scintillation counting of the HPLC eluant corresponding to each propranolol peak. Twenty-four hr later, spinal anesthesia was induced with tetracaine (mean dose 20.7 +/- 0.6 mg) with low sacral to midthoracic levels and the propranolol infusions and sampling were then repeated. Spinal anesthesia had no significant effect on either the intrinsic clearance of propranolol (2.01 +/- 0.75 L/min before and 1.9 +/- 0.7 L/min during spinal anesthesia), or on mean hepatic plasma flow (2.01 +/- 0.5 L/min before and 1.93 +/- 0.5 L/min during spinal anesthesia). The systemic clearance and elimination half-life of propranolol were also unchanged by spinal anesthesia (0.9 +/- 0.23 L/min on the first day, 0.7 +/- 0.1 L/min during spinal anesthesia; and 101 +/- 21 min on the first day, 115 +/- 16 min during spinal anesthesia, respectively). The volume of distribution (Vd) of propranolol was similarly unaffected by spinal anesthesia

  18. The metabolic and toxicological considerations for immunosuppressive drugs used during pancreas transplantation.

    Science.gov (United States)

    Rangel, Erika B

    2012-12-01

    Pancreas-kidney transplant is an effective treatment for patients with insulin-dependent dabetes and chronic renal failure. Reduction in technical failure loss and early acute rejection rates contributed to prolong pancreas graft survival. However, drug toxicity affects negatively both short- and long-term follow-ups. This article reviews the existing literature and knowledge of the immunosuppressive drugs that are frequently used in pancreas transplant, including calcineurin inhibitors, sirolimus, corticosteroids, and mycophenolate. The article also discusses the short- and long-term adverse effects of these drugs. The article also reports and discusses the most relevant in vitro studies, providing additional information to in vivo findings. Some clinically relevant drug interactions with immunosuppressive drugs are also highlighted. Over- and underimmunosuppression effects will not be addressed. Immunosuppressive regimen after pancreas transplant is very effective and contributed to pancreas allograft survival. However, they present several side effects that are potentiated when drugs are combined. Modifiable and non-modifiable risk factors can aggravate metabolic and toxicological effects of immunosuppressive drugs. It is important to critically analyze the results of clinical studies and investigate new immunosuppressive drugs and/or novel drug combinations. It is equally important to comprehend and interpret experimental data. Therefore, minimization of side effects, based on safe approaches, can prolong pancreas allograft survival.

  19. Drug metabolism and genetic polymorphism in subjects with previous halothane hepatitis

    DEFF Research Database (Denmark)

    Ranek, L; Dalhoff, K; Poulsen, H E

    1993-01-01

    To test the hypothesis that halothane hepatitis is caused by a combination of altered drug metabolism and an immunoallergic disposition, the metabolism of antipyrine, metronidazole, sparteine, phenytoin, and racemic R- and S-mephenytoin was investigated in seven subjects with previous halothane h...... hepatitis do not appear to be different from controls with regard to drug metabolism and HLA tissue type. The possibility of a higher frequency of complement C3 phenotype F and FS needs further investigation....... hepatitis. The HLA tissue types and the complement C3 phenotypes were also determined. The metabolism of antipyrine and metronidazole was within normal range in all subjects, and they were all fast or extensive metabolizers of sparteine, mephenytoin, and phenytoin. HLA tissue types were unremarkable. Five...... of the seven subjects had complement C3 phenotypes F or FS. In the general population phenotype S is the most common, but the difference in complement C3 phenotypes is not statistically significant (p = 0.07). We conclude, although in a limited number of patients, that subjects with previous halothane...

  20. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions.

    Science.gov (United States)

    Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C; Yu, Ai-Ming

    2010-10-01

    5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed.

  1. Metabolism of Drugs Used in the Therapy of Seizures: An Analytical Point of View. Part 1.

    Science.gov (United States)

    Mandrioli, Roberto; Mercolini, Laura

    2017-10-16

    Seizures are aetiologically and clinically heterogeneous neurological disorders that are currently treated using a wide array of drugs, belonging to equally heterogeneous chemical classes. Some of them are known as "antiepileptic drugs" (AEDs), due to their main field of use, while others (such as benzodiazepines) are frequently used for other conditions as well as for seizures. Due to their different chemical properties and mechanisms of activity, the metabolic characteristics of anti-seizure drugs can vary widely, also producing big differences in terms of safety, efficacy and therapeutic suitability. Scopus and PubMed databases were searched for the most significant papers centered on metabolism and analysis of the following antiepileptics: carbamazepine, oxcarbazepine, lamotrigine, phenytoin, ethosuximide, gabapentin, vigabatrin, topiramate, levetiracetam and valproic acid. The most important studies on the metabolic characteristics of several AEDs are reported and briefly discussed in this review; moreover, the analytical methods used to determine biological levels of these drugs during therapy are also described and commented upon, and their main characteristics highlighted. Other AEDs, and notes on polypharmacy, will be included in the second part of this series. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. The many consequences of chemical- and genetic-based modulation of drug metabolizing enzyme activities.

    Science.gov (United States)

    Paolini, M; Biagi, G L; Cantelli-Forti, G

    1999-01-01

    The induction or inhibition of the metabolizing enzyme activities by a great deal of substances (including drugs) influence their toxicological or pharmacological outcomes as well as that of other xenobiotics or drugs to which human is simultaneously exposed. The dual bioactivating/detoxificating nature of both phase I and phase II enzymes poses such modulation as an unavoidable unhealthy phenomenon. Therefore, the proposed strategies in preventive medicine which foresee boosting or depressing enzymatic effects such as those in the field of cancer chemoprevention, should be carefully reconsidered before their credibility would be compromised. As the phenotypic features, genetic polymorphisms leading to the occurrence of high or low metabolizers in the population, each at high risk to certain forms of toxicity, behave as a sort of "constitutive" enzymatic modulation. Thus, considering the double-edged sword nature (detoxi-toxicant) of these catalysts towards ubiquitous environmental pollutants, the search for individual susceptibility by means of the genotypic analysis represents a very intriguing problem. However, the knowledge of the "overall" metabolic fingerprint associated to the phenotypic analysis in a single person could offer an interesting way to (partially) control human risk by making suitable (well aimed) modifications of determined life-styles (e.g. stop smoking or drinking) or particular dietetic practices (e.g. stop eating high cooked meat or fish) as well as selecting personalised drug adjustments by physicians either in terms of dosage or fitting drug.

  3. Human gut microbiota plays a role in the metabolism of drugs.

    Science.gov (United States)

    Jourova, Lenka; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-09-01

    The gut microbiome, an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract, is now known to play a critical role in human health and predisposition to disease. It is also involved in the biotransformation of xenobiotics and several recent studies have shown that the gut microbiota can affect the pharmacokinetics of orally taken drugs with implications for their oral bioavailability. Review of Pubmed, Web of Science and Science Direct databases for the years 1957-2016. Recent studies make it clear that the human gut microbiota can play a major role in the metabolism of xenobiotics and, the stability and oral bioavailability of drugs. Over the past 50 years, more than 30 drugs have been identified as a substrate for intestinal bacteria. Questions concerning the impact of the gut microbiota on drug metabolism, remain unanswered or only partially answered, namely (i) what are the molecular mechanisms and which bacterial species are involved? (ii) What is the impact of host genotype and environmental factors on the composition and function of the gut microbiota, (iii) To what extent is the composition of the intestinal microbiome stable, transmissible, and resilient to perturbation? (iv) Has past exposure to a given drug any impact on future microbial response, and, if so, for how long? Answering such questions should be an integral part of pharmaceutical research and personalised health care.

  4. Recent developments in our understanding of the implications of traditional African medicine on drug metabolism.

    Science.gov (United States)

    Gouws, Chrisna; Hamman, Josias H

    2018-02-01

    The use of traditional herbal medicines has become increasingly popular globally, but in some countries, it is the main or sometimes even the only healthcare service available in the most rural areas. This is especially true for Africa where herbal medicines form a key component of traditional medicinal practices and there is access to a diversity of medicinal plants. Although many benefits have been derived from the use of traditional herbal medicines, many concerns are associated with their use of which herb-drug interactions have been identified to have a rising impact on patient treatment outcome. One type of pharmacokinetic interaction involves the modulation of drug metabolizing enzymes, which may result in enhanced or reduced bioavailability of co-administered drugs. Areas covered: This review highlights the current information available on drug metabolism-associated information with regards to traditional African medicines related to some of the most prevalent diseases burdening the African continent. Expert opinion: It is clear from previous studies that enzyme modulation by traditional African medicines plays a significant role in the pharmacokinetics of some co-administered drugs, but more research is needed to provide detailed information on these interactions, specifically for treatment of prevalent diseases such as tuberculosis and hypertension.

  5. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    Directory of Open Access Journals (Sweden)

    Yong-Yeol Ahn

    Full Text Available The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  6. Metabolism of anabolic steroids and their relevance to drug detection in horseracing.

    Science.gov (United States)

    Teale, Philip; Houghton, Edward

    2010-06-01

    The fight against doping in sport using analytical chemistry is a mature area with a history of approximately 100 years in horseracing. In common with human sport, anabolic/androgenic steroids (AASs) are an important group of potential doping agents. Particular issues with their detection are extensive metabolism including both phase I and phase II. A number of the common AASs are also endogenous to the equine. A further issue is the large number of synthetic steroids produced as pharmaceutical products or as 'designer' drugs intended to avoid detection or for the human supplement market. An understanding of the metabolism of AASs is vital to the development of effective detection methods for equine sport. The aim of this paper is to review current knowledge of the metabolism of appropriate steroids, the current approaches to their detection in equine sport and future trends that may affect equine dope testing.

  7. Crypt Organoid Culture as an in Vitro Model in Drug Metabolism and Cytotoxicity Studies.

    Science.gov (United States)

    Lu, Wenqi; Rettenmeier, Eva; Paszek, Miles; Yueh, Mei-Fei; Tukey, Robert H; Trottier, Jocelyn; Barbier, Olivier; Chen, Shujuan

    2017-07-01

    The gastrointestinal tract is enriched with xenobiotic processing proteins that play important roles in xenobiotic bioactivation, metabolism, and detoxification. The application of genetically modified mouse models has been instrumental in characterizing the function of xenobiotic processing genes (XPG) and their proteins in drug metabolism. Here, we report the utilization of three-dimensional crypt organoid cultures from these animal models to study intestinal drug metabolism and toxicity. With the successful culturing of crypt organoids, we profiled the abundance of Phase I and Phase II XPG expression, drug transporter gene expression, and xenobiotic nuclear receptor (XNR) gene expression. Functions of XNRs were examined by treating crypt cells with XNR prototypical agonists. Real-time quantitative polymerase chain reaction demonstrated that the representative downstream target genes were induced. These findings were validated from cultures developed from XNR-null mice. In crypt cultures isolated from Pxr -/- mice, pregnenolone 16 α -carbonitrile failed to induce Cyp3a11 gene expression; similarly, WY14643 failed to induce Cyp4a10 in the Pparα -/- crypts. Crypt cultures from control ( Ugt1 F/F ) and intestinal epithelial cell (IEC) specific Ugt1 null mice ( Ugt1 ΔIEC ) were treated with camptothecin-11, an anticancer prodrug with severe intestinal toxicity that originates from insufficient UGT1A1-dependent glucuronidation of its active metabolite SN-38. In the absence of Ugt1 gene expression, Ugt1 ΔIEC crypt cultures exhibit very limited production of SN-38 glucuronide, concordant with increased apoptosis in comparison with Ugt1 F/F crypt cultures. This study suggests crypt organoid cultures as an effective in vitro model for studying intestinal drug metabolism and toxicity. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    He JL

    2014-12-01

    Full Text Available Jin-Lian He,1 Zhi-Wei Zhou,2,3 Juan-Juan Yin,2 Chang-Qiang He,1 Shu-Feng Zhou,2,3 Yang Yu1 1College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China Abstract: Drug metabolizing enzymes (DMEs and drug transporters are regulated via epigenetic, transcriptional, posttranscriptional, and translational and posttranslational modifications. Phase I and II DMEs and drug transporters play an important role in the disposition and detoxification of a large number of endogenous and exogenous compounds. The nuclear factor (erythroid-derived 2-like 2 (Nrf2 is a critical regulator of a variety of important cytoprotective genes that are involved in disposition and detoxification of xenobiotics. Schisandra chinensis (SC is a commonly used traditional Chinese herbal medicine that has been primarily used to protect the liver because of its potent antioxidative and anti-inflammatory activities. SC can modulate some DMEs and drug transporters, but the underlying mechanisms are unclear. In this study, we aimed to explore the role of Nrf2 in the regulatory effect of SC extract (SCE on selected DMEs and drug transporters in human hepatocellular liver carcinoma cell line (HepG2 cells. The results showed that SCE, schisandrin A, and schisandrin B significantly increased the expression of NAD(PH: Nicotinamide Adenine Dinucleotide Phosphate-oxidase or:quinone oxidoreductase 1, heme oxygenase-1, glutamate–cysteine ligase, and glutathione S-transferase A4 at both transcriptional and posttranscriptional levels. Incubation of HepG2 cells with SCE resulted in a significant

  9. The protease inhibitors ritonavir and saquinavir influence lipid metabolism: a pig model for the rapid evaluation of new drugs

    DEFF Research Database (Denmark)

    Petersen, E.; Mu, Huiling; Porsgaard, Trine

    2010-01-01

    Background: Studies of the effects of antiretroviral drugs on lipid metabolism are limited by the availability of suitable models. We have thus developed an animal model utilising Gottingen mini-pigs. The normal lipid metabolism of mini-pigs closely reflects that of humans and they are expected...... levels, suggesting a prolonged effect of the antiretroviral drug treatment lasting beyond the 4 week post-treatment observation period. Conclusions: The Gottingen mini-pig model is a promising animal model for rapid screening of the metabolic effects induced by antiretroviral drugs....

  10. In vitro-in vivo correlation for intrinsic clearance for drugs metabolized by human aldehyde oxidase.

    Science.gov (United States)

    Zientek, Michael; Jiang, Ying; Youdim, Kuresh; Obach, R Scott

    2010-08-01

    The ability to predict in vivo clearance from in vitro intrinsic clearance for compounds metabolized by aldehyde oxidase has not been demonstrated. To date, there is no established scaling method for predicting aldehyde oxidase-mediated clearance using in vitro or animal data. This challenge is exacerbated by the fact that rats and dogs, two of the laboratory animal species commonly used to develop in vitro-in vivo correlations of clearance, differ from humans with regard to expression of aldehyde oxidase. The objective of this investigation was to develop an in vitro-in vivo correlation of intrinsic clearance for aldehyde oxidase, using 11 drugs known to be metabolized by this enzyme. The set consisted of methotrexate, XK-469, (+/-)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]pyrimidine (RS-8359), zaleplon, 6-deoxypenciclovir, zoniporide, O(6)-benzylguanine, N-[(2'-dimethylamino)ethyl]acridine-4-carboxamide (DACA), carbazeran, PF-4217903, and PF-945863. These compounds were assayed using two in vitro systems (pooled human liver cytosol and liver S-9 fractions) to calculate scaled unbound intrinsic clearance, and they were then compared with calculated in vivo unbound intrinsic clearance. The investigation provided a relative scale that can be used for in vitro-in vivo correlation of aldehyde oxidase clearance and suggests limits as to when a potential new drug candidate that is metabolized by this enzyme will possess acceptable human clearance, or when structural modification is required to reduce aldehyde oxidase catalyzed metabolism.

  11. Effects of first-pass metabolism on metabolite mean residence time determination after oral administration of parent drug.

    Science.gov (United States)

    Chan, K K; Gibaldi, M

    1990-01-01

    Metabolite kinetics after oral drug administration can be determined, without separate metabolite administration, using the concepts of mean residence time (MRT). The MRT of parent drug and metabolite after oral administration of the parent drug, MRTp,p(oral) and MRTm,p(oral), can be calculated directly from the drug and metabolite profiles. The difference between MRTm,p(oral) and MRTp,p(oral), termed Delta MRT, yields an estimate of MRT of metabolite when the metabolite is given as an iv bolus, MRTm,m(iv). The calculation is simple for drugs that are known to undergo, negligible first-pass metabolism. Correction can also be made when extent of first-pass metabolism is known. Ambiguity is encountered, however, when the degree of first-pass metabolism is unknown. When the delta MRT is negative, then first-pass metabolism must be considered. A positive value of delta MRT, on the other hand, is not a definitive indication of the absence of first-pass metabolism. It may occur in the presence or absence of first-pass metabolism. Ignoring the possibility of first-pass metabolism when a positive value of delta MRT occurs may lead to an incorrect estimate of MRTm,m(iv). The estimation error is relatively small, however, when MRTm,m(iv) much greater than MRTp,p(iv), even when first-pass metabolism is extensive. This situation may apply to the administration of a prodrug.

  12. 76 FR 58519 - Risk Communication Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-09-21

    ...] Risk Communication Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... Communication Advisory Committee. General Function of the Committee: To provide advice and recommendations to... discuss implications, for strategic communication, of recent theoretical developments on information use...

  13. 75 FR 5335 - Risk Communication Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-02-02

    ...] Risk Communication Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... Communication Advisory Committee. General Function of the Committee: To provide advice and recommendations to... previously issued communications, emphasizing communications challenges. Examples, selected for illustrative...

  14. Gene expression variability in human hepatic drug metabolizing enzymes and transporters.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    Full Text Available Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.

  15. Association of metabolic syndrome with atypical antipsychotic drug (olanzapine) short term versus long term use

    International Nuclear Information System (INIS)

    Ikram, H.; Ahmed, T.M.; Hayat, A.; Ullah, Q.I.; Nawaz, A.

    2017-01-01

    Objective: To determine the association of metabolic syndrome with atypical antipsychotic drug (olanzapine) short term versus long term use. Study Design: Case control study. Place and Duration of Study: Chemical pathology department Army Medical College Rawalpindi, from Nov 2014 to Oct 2015. Material and Methods: The study was carried out on 240 subjects, 120 cases and 120 controls. For the purpose of the study cases were divided into four groups A, B, C and D according to the duration of drug use. Group A patients included those who the last the drug olanzapine for the last three months. Group B patients included those who were using the drug olanzapine for the last six months. Group C and D included those who were using the drug for last 1 year and more than one year (2-5 years) respectively. By employing non probability convenience sampling technique the data was collected from patients having the diagnosis of psychosis as per DSM IV modified criteria through a proforma and fasting blood samples were drawn. These samples were tested for fasting serum lipid profile and fasting plasma glucose. The data obtained were analyzed using SPSS version 21. For quantitative data Mean and SD were calculated. For qualitative data frequency and percentages were calculated. Qualitative data was compared using chi square test whereas quantitative data was compared using independent sample t-test. Results: There was statistically no significant difference in fasting plasma glucose between group A and B and their controls whereas in group C and D these levels were significantly high as compared to controls. Triglyceride levels were significantly higher and HDL cholesterol levels were significantly lower in all four groups as compared to controls. Comparison of qualitative data which included waist circumference and blood pressure showed statistically no significant rise for group A whereas waist circumference showed insignificant rise and blood pressure showed statistically

  16. [Involvement of microRNA in the induction of drug-metabolizing enzymes].

    Science.gov (United States)

    Shizu, Ryota; Numazawa, Satoshi; Yoshida, Takemi

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs of about 20 nucleotides in length and participate in the post-transcriptional regulation of gene expression. Accumulating evidence indicates that miRNA binds to 3'-UTR of its target mRNAs and thereby destabilizes the transcripts or suppresses the translation. It is expected that miRNAs could have diverse functions and therefore play a role in the gene expression caused by the drug treatment, which have yet to be determined. Demonstration of the participation of specific miRNA in the drug-mediated gene expression would make it a biomarker for the toxicological assessment and help an understanding of molecular machinery of the drug-drug interaction. Under these backgrounds, we investigated the change of miRNAs in the liver of mice treated with phenobarbital, a typical inducer for drug-metabolizing enzymes, and demonstrate the participation of miRNAs in the phenobarbital-regulated gene expression. We investigated the relationship between phenobarbital-mediated changes in miRNA and mRNA by using Agilent miRNA microarray and DNA microarray, followed by real time RT-PCR. From these experiments, it was suggested that the phenobarbital-induced changes in cyp2c29 and mrp3 are regulated by miR-30a and miR-29b, respectively. In addition, we obtained evidence that indicates a phenobarbital-mediated decrease in miR-122, a highly abundant liver-specific miRNA, leads to the activation of the transcription factor CAR and thereby induces drug-metabolizing enzymes.

  17. Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Damte, Dereje; Suh, Joo-Won; Lee, Seung-Jin; Yohannes, Sileshi Belew; Hossain, Md Akil; Park, Seung-Chun

    2013-07-01

    In the present study, a computational comparative and subtractive genomic/proteomic analysis aimed at the identification of putative therapeutic target and vaccine candidate proteins from Kyoto Encyclopedia of Genes and Genomes (KEGG) annotated metabolic pathways of Mycoplasma hyopneumoniae was performed for drug design and vaccine production pipelines against M.hyopneumoniae. The employed comparative genomic and metabolic pathway analysis with a predefined computational systemic workflow extracted a total of 41 annotated metabolic pathways from KEGG among which five were unique to M. hyopneumoniae. A total of 234 proteins were identified to be involved in these metabolic pathways. Although 125 non homologous and predicted essential proteins were found from the total that could serve as potential drug targets and vaccine candidates, additional prioritizing parameters characterize 21 proteins as vaccine candidate while druggability of each of the identified proteins evaluated by the DrugBank database prioritized 42 proteins suitable for drug targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Age related changes in fractional elimination pathways for drugs: assessing the impact of variable ontogeny on metabolic drug-drug interactions.

    Science.gov (United States)

    Salem, Farzaneh; Johnson, Trevor N; Barter, Zoe E; Leeder, J Steven; Rostami-Hodjegan, Amin

    2013-08-01

    The magnitude of any metabolic drug-drug interactions (DDIs) depends on fractional importance of inhibited pathway which may not necessarily be the same in young children when compared to adults. The ontogeny pattern of cytochrome P450 (CYP) enzymes (CYPs 1A2, 2B6, 2C8, 2C9, 2C18/19, 2D6, 2E1, 3A4) and renal function were analyzed systematically. Bootstrap methodology was used to account for variability, and to define the age range over which statistical differences existed between each pair of specific pathways. A number of DDIs were simulated (Simcyp Pediatric v12) for virtual compounds to highlight effects of age on fractional elimination and consequent magnitude of DDI. For a theoretical drug metabolized 50% by each of CYP2D6 and CYP3A4 pathways at birth, co-administration of ketoconazole (3 mg/kg) resulted in a 1.65-fold difference between inhibited versus uninhibited AUC compared to 2.4-fold in 1 year olds and 3.2-fold in adults. Conversely, neonates could be more sensitive to DDI than adults in certain scenarios. Thus, extrapolation from adult data may not be applicable across all pediatric age groups. The use of pediatric physiologically based pharmacokinetic (p-PBPK) models may offer an interim solution to uncovering potential periods of vulnerability to DDI where there are no existing clinical data derived from children. © The Author(s) 2013.

  19. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    Science.gov (United States)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at pprotein

  20. Carboxymefloquine, the major metabolite of the antimalarial drug mefloquine, induces drug-metabolizing enzyme and transporter expression by activation of pregnane X receptor.

    Science.gov (United States)

    Piedade, Rita; Traub, Stefanie; Bitter, Andreas; Nüssler, Andreas K; Gil, José P; Schwab, Matthias; Burk, Oliver

    2015-01-01

    Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Important role of proinflammatory cytokines/other endogenous substances in drug-induced hepatotoxicity: depression of drug metabolism during infections/inflammation states, and genetic polymorphisms of drug-metabolizing enzymes/cytokines may markedly contribute to this pathology.

    Science.gov (United States)

    Prandota, Joseph

    2005-01-01

    Analysis of literature data on drug-induced hepatotoxicity reveals that often upper respiratory febrile illnesses and/or inflammation states precede liver injury/diseases related to administration of drugs or hepatotoxicity associated with administration of therapeutic doses of acetaminophen in some genetically predisposed subjects. The goals of this paper are to review the potential role of alterations in the balance between TH1 cells producing cytokines associated with a cell-mediated response and TH2 cells associated with an antibody response, as well as other endogenous substances, eg, growth factors, leading to a shift in immune response to one that may participate in the liver cells injury during administration of certain drugs, especially in subjects with genetic polymorphisms in drug-metabolizing enzymes. The papers cited in this review were selected to illustrate specific issue related to how profuse and dysregulated production of cytokines, growth factors, and/or other endogenous substances during viral/bacterial infections and inflammation states play a role in the development of drug-induced liver injury. Several cases of liver injury related to administration of drugs appear to be initiated or intensified by upper respiratory febrile illnesses and/or inflammation states, which stimulate sometimes dysregulated production of interferon gamma and/or other proinflammatory cytokines/growth factors. This, in turn, results in down-regulation of various induced and constitutive isoforms of cytochromes P-450, and other enzymes involved in the metabolism of several exogenous (eg, drugs) and endogenous lipophilic (eg, steroids) substances, thus having an important impact on the alterations in bioactivation and detoxication processes in the body and on the balance between production, utilization, and elimination of endogenous bioproducts of these reactions. Activation of systemic host defense mechanisms results in down-regulation of various enzymes involved in

  2. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport.

    Science.gov (United States)

    Won, Christina S; Oberlies, Nicholas H; Paine, Mary F

    2012-11-01

    Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The Ussing Chamber Assay to Study Drug Metabolism and Transport in the Human Intestine.

    Science.gov (United States)

    Kisser, Beatrice; Mangelsen, Eva; Wingolf, Caroline; Partecke, Lars Ivo; Heidecke, Claus-Dieter; Tannergren, Christer; Oswald, Stefan; Keiser, Markus

    2017-06-22

    The Ussing chamber is an old but still powerful technique originally designed to study the vectorial transport of ions through frog skin. This technique is also used to investigate the transport of chemical agents through the intestinal barrier as well as drug metabolism in enterocytes, both of which are key determinants for the bioavailability of orally administered drugs. More contemporary model systems, such as Caco-2 cell monolayers or stably transfected cells, are more limited in their use compared to the Ussing chamber because of differences in expression rates of transporter proteins and/or metabolizing enzymes. While there are limitations to the Ussing chamber assay, the use of human intestinal tissue remains the best laboratory test for characterizing the transport and metabolism of compounds following oral administration. Detailed in this unit is a step-by-step protocol for preparing human intestinal tissue, for designing Ussing chamber experiments, and for analyzing and interpreting the findings. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  4. Primary Hepatocytes Cultured on a Fiber-Embedded PDMS Chip to Study Drug Metabolism

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2017-06-01

    Full Text Available In vitro drug screening using reliable and predictable liver models remains a challenge. The identification of an ideal biological substrate is essential to maintain hepatocyte functions during in vitro culture. Here, we developed a fiber-embedded polydimethylsiloxane (PDMS chip to culture hepatocytes. Hepatocyte spheroids formed in this device were subjected to different flow rates, of which a flow rate of 50 μL/min provided the optimal microenvironment for spheroid formation, maintained significantly higher rates of albumin and urea synthesis, yielded higher CYP3A1 (cytochrome P450 3A1 and CYP2C11 (cytochrome P450 2C11 enzyme activities for metabolism, and demonstrated higher expression levels of liver-specific genes. In vitro metabolism tests on tolbutamide and testosterone by hepatocytes indicated predicted clearance rates of 1.98 ± 0.43 and 40.80 ± 10.13 mL/min/kg, respectively, which showed a good in vitro–in vivo correspondence. These results indicate that this system provides a strategy for the construction of functional engineered liver tissue that can be used to study drug metabolism.

  5. Interaction of ibuprofen and probenecid with drug metabolizing enzyme phenotyping procedures using caffeine as the probe drug

    Science.gov (United States)

    Vrtic, Fatima; Haefeli, Walter E; Drewe, Jürgen; Krähenbühl, Stephan; Wenk, Markus

    2003-01-01

    Aim To examine the suspected inhibitory potential of the over-the-counter (OTC) drug ibuprofen on N-acetyltransferase 2 (NAT2) in vitro and in vivo and the possible implications for phenotyping procedures using caffeine as probe drug. Methods We first studied the inhibitory effect of ibuprofen on NAT2 in vitro, using human liver cytosol and sulfamethazine as substrate. In vivo 15 fast and 15 slow acetylating healthy volunteers were treated with a single dose of ibuprofen (800 mg) orally and phenotyped for NAT2, CYP1A2, and xanthine oxidase (XO) with caffeine as probe drug before and during drug treatment. Because of unexpected in vivo results with ibuprofen this study was repeated in 20 healthy volunteers with probenecid, a model substrate of renal organic anion transport (OAT). For phenotyping tests a urine sample was collected 6 h after caffeine (200 mg) intake. The caffeine metabolites acetyl-6-formylamino-3-methyluracil (AFMU), 1-methylxanthine (1MX), 1-methyluric acid (1MU), and 1,7-dimethyluric acid (17MU) were quantified by HPLC, and the corresponding metabolic ratios for CYP1A2, NAT2, and XO were then calculated. Genotyping for NAT2 was performed with standard PCR-RFLP methods. Results In vitro, with human liver cytosol an inhibition by ibuprofen of the acetylation of sulfamethazine with Ki values between 2.2 and 3.1 mm was observed. Surprisingly, in vivo a significant (P probenecid, a model substrate of the renal OAT system. Again, a prominent elevation of the AFMU/1MX ratio from 0.97 ± 0.21 to 1.53 ± 0.35 was found (P < 0.002; 95% CI on the difference 0.237, 0.876), but also the XO ratio 1MU/1MX was significantly (P < 0.0001) increased from 1.34 ± 0.09 to 2.24 ± 0.14 (95% CI on difference 0.735, 1.059) due to a reduction of 1MX excretion. Conclusions Substrates of OAT interact with renal excretion of caffeine metabolites and may falsify NAT2 and XO phenotyping results. Other phenotyping procedures, which are based on urinary metabolic ratios, should

  6. In vitro metabolism and drug-drug interaction potential of UTL-5g, a novel chemo- and radioprotective agent.

    Science.gov (United States)

    Wu, Jianmei; Shaw, Jiajiu; Dubaisi, Sarah; Valeriote, Frederick; Li, Jing

    2014-12-01

    N-(2,4-dichlorophenyl)-5-methyl-1,2-oxazole-3-carboxamide (UTL-5g), a potential chemo- and radioprotective agent, acts as a prodrug requiring bioactivation to the active metabolite 5-methylisoxazole-3-carboxylic acid (ISOX). UTL-5g hydrolysis to ISOX and 2,4-dichloroaniline (DCA) has been identified in porcine and rabbit liver esterases. The purpose of this study was to provide insights on the metabolism and drug interaction potential of UTL-5g in humans. The kinetics of UTL-5g hydrolysis was determined in human liver microsomes (HLM) and recombinant human carboxylesterases (hCE1b and hCE2). The potential of UTL-5g and its metabolites for competitive inhibition and time-dependent inhibition of microsomal cytochrome P450 (P450) was examined in HLM. UTL-5g hydrolysis to ISOX and DCA in HLM were NADPH-independent, with a maximum rate of reaction (Vmax) of 11.1 nmol/min per mg and substrate affinity (Km) of 41.6 µM. Both hCE1b and hCE2 effectively catalyzed UTL-5g hydrolysis, but hCE2 exhibited ∼30-fold higher catalytic efficiency (Vmax/Km) than hCE1b. UTL-5g and DCA competitively inhibited microsomal CYP1A2, CYP2B6, and CYP2C19 (IC50 values 5g. Factors influencing carboxylesterase activities may have a significant impact on the pharmacological and therapeutic effects of UTL-5g. UTL-5g has the potential to inhibit P450-mediated metabolism through competitive inhibition or time-dependent inhibition. Caution is particularly needed for potential drug interactions involving competitive inhibition or time-dependent inhibition of CYP1A2 in the future clinical development of UTL-5g. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Prediction of metabolic drug clearance in humans: in vitro-in vivo extrapolation vs allometric scaling.

    Science.gov (United States)

    Shiran, M R; Proctor, N J; Howgate, E M; Rowland-Yeo, K; Tucker, G T; Rostami-Hodjegan, A

    2006-07-01

    Previously in vitro-in vivo extrapolation (IVIVE) with the Simcyp Clearance and Interaction Simulator has been used to predict the clearance of 15 clinically used drugs in humans. The criteria for the selection of the drugs were that they are used as probes for the activity of specific cytochromes P450 (CYPs) or have a single CYP isoform as the major or sole contributor to their metabolism and that they do not exhibit non-linear kinetics in vivo. Where data were available for the clearance of the drugs in at least three animal species, the predictions from IVIVE have now been compared with those based on allometric scaling (AS). Adequate data were available for estimating oral clearance (CLp.o.) in 9 cases (alprazolam, sildenafil, caffeine, clozapine, cyclosporine, dextromethorphan, midazolam, omeprazole and tolbutamide) and intravenous clearance in 6 cases (CLi.v.) (cyclosporine, diclofenac, midazolam, omeprazole, theophylline and tolterodine). AS predictions were based on five different methods: (1) simple allometry (clearance versus body weight); (2) correction for maximum life-span potential (CL x MLP); (3) correction for brain weight (CL x BrW); (4) the use of body surface area; and (5) the rule of exponents. A prediction accuracy was indicated by mean-fold error and the Pearson product moment correlation coefficient. Predictions were considered successful if the mean-fold error was error range: 1.02-4.00). All five AS methods were accurate in 13, 11, 10, 10 and 14 cases, respectively. However, in some cases the error of AS exceeded fivefold. On the basis of the current results, IVIVE is more reliable than AS in predicting human clearance values for drugs mainly metabolized by CYP450 enzymes. This suggests that the place of AS methods in pre-clinical drug development warrants further scrutiny.

  8. Electrochemical oxidation by square-wave potential pulses in the imitation of oxidative drug metabolism.

    Science.gov (United States)

    Nouri-Nigjeh, Eslam; Permentier, Hjalmar P; Bischoff, Rainer; Bruins, Andries P

    2011-07-15

    Electrochemistry combined with mass spectrometry (EC-MS) is an emerging analytical technique in the imitation of oxidative drug metabolism at the early stages of new drug development. Here, we present the benefits of electrochemical oxidation by square-wave potential pulses for the oxidation of lidocaine, a test drug compound, on a platinum electrode. Lidocaine was oxidized at constant potential and by square-wave potential pulses with different cycle times, and the reaction products were analyzed by liquid chromatography-mass spectrometry [LC-MS(/MS)]. Application of constant potentials of up to +5.0 V resulted in relatively low yields of N-dealkylation and 4-hydroxylation products, while oxidation by square-wave potential pulses generated up to 50 times more of the 4-hydroxylation product at cycle times between 0.2 and 12 s (estimated yield of 10%). The highest yield of the N-dealkylation product was obtained at cycle times shorter than 0.2 s. Tuning of the cycle time is thus an important parameter to modulate the selectivity of electrochemical oxidation reactions. The N-oxidation product was only obtained by electrochemical oxidation under air atmosphere due to reaction with electrogenerated hydrogen peroxide. Square-wave potential pulses may also be applicable to modulate the selectivity of electrochemical reactions with other drug compounds in order to generate oxidation products with greater selectivity and higher yield based on the optimization of cycle times and potentials. This considerably widens the scope of direct electrochemistry-based oxidation reactions for the imitation of in vivo oxidative drug metabolism.

  9. Recent Advances in Understanding and Mitigating Adipogenic and Metabolic Effects of Antipsychotic Drugs

    Science.gov (United States)

    Gohlke, Julia M.; Dhurandhar, Emily J.; Correll, Christoph U.; Morrato, Elaine H.; Newcomer, John W.; Remington, Gary; Nasrallah, Henry A.; Crystal, Stephen; Nicol, Ginger; Allison, David B.

    2012-01-01

    Although offering many benefits for several psychiatric disorders, antipsychotic drugs (APDs) as a class have a major liability in their tendency to promote adiposity, obesity, and metabolic dysregulation in an already metabolically vulnerable population. The past decade has witnessed substantial research aimed at investigating the mechanisms of these adverse effects and mitigating them. On July 11 and 12, 2011, with support from 2 NIH institutes, leading experts convened to discuss current research findings and to consider future research strategies. Five areas where significant advances are being made emerged from the conference: (1) methodological issues in the study of APD effects; (2) unique characteristics and needs of pediatric patients; (3) genetic components underlying susceptibility to APD-induced metabolic effects; (4) APD effects on weight gain and adiposity in relation to their acute effects on glucose regulation and diabetes risk; and (5) the utility of behavioral, dietary, and pharmacological interventions in mitigating APD-induced metabolic side effects. This paper summarizes the major conclusions and important supporting data from the meeting. PMID:22754543

  10. Albendazole metabolism in patients with neurocysticercosis: antipyrine as a multifunctional marker drug of cytochrome P450

    Directory of Open Access Journals (Sweden)

    M.P. Marques

    2002-02-01

    Full Text Available The present study investigates the isoform(s of cytochrome P450 (CYP involved in the metabolism of albendazole sulfoxide (ASOX to albendazole sulfone (ASON in patients with neurocysticercosis using antipyrine as a multifunctional marker drug. The study was conducted on 11 patients with neurocysticercosis treated with a multiple dose regimen of albendazole for 8 days (5 mg/kg every 8 h. On the 5th day of albendazole treatment, 500 mg antipyrine was administered po. Blood and urine samples were collected up to 72 h after antipyrine administration. Plasma concentrations of (+-ASOX, (--ASOX and ASON were determined by HPLC using a chiral phase column and detection by fluorescence. The apparent clearance (CL/f of ASON and of the (+ and (--ASOX enantiomers were calculated and compared to total antipyrine clearance (CL T and the clearance for the production of the three major antipyrine metabolites (CLm. A correlation (P<=0.05 was obtained only between the CL T of antipyrine and the CL/f of ASON (r = 0.67. The existence of a correlation suggests the involvement of CYP isoforms common to the metabolism of antipyrine and of ASOX to ASON. Since the CL T of antipyrine is a general measure of CYP enzymes but with a slight to moderate weight toward CYP1A2, we suggest the involvement of this enzyme in ASOX to ASON metabolism in man. The study supports the establishment of a specific marker drug of CYP1A2 in the study of the in vivo metabolism of ASOX to ASON.

  11. ROLE OF NON-DRUG THERAPIES OF METABOLIC SYNDROME: CHALLENGES AND PROSPECTS

    Directory of Open Access Journals (Sweden)

    S. N. Strelkova

    2016-01-01

    Full Text Available Abdominal obesity (and the closely related metabolic syndrome is one of the most common diseases in the world. The urgency of the problem of the progression of abdominal obesity is not only in its high prevalence, but also in the formation of a high risk of developing cardiovascular disease and diabetes type 2. The main reasons for the rapid development of obesity are considered high-calorie food (which includes not only the quantity but also the quality of edible products, sedentary lifestyle and genetic predisposition. Until now there are underway great controversies about the procedures of fast and trouble-free weight loss. There are many studies on the treatment of various components of metabolic syndrome. Despite a number of different pharmaceutical drugs developed for the treatment of abdominal obesity, non-drug therapies come first as well as the organization of the right way of life, which is difficult and sometimes impossible task for the clinician. One of the main reasons is the lack of time in doctor during outpatient consultations. To resolve this issue the role of "School of Health" is considered in order to effectively reduce the body weight of patients with metabolic syndrome and maintaining long-term results. It is expected that the implementation of the "School of Health" in the complex treatment of patients with metabolic syndrome will more broadly inform patients about their disease, improve the motivational and cognitive components of plants, and increase compliance to carry out the doctor's prescription. A review of the prevalence and root causes of abdominal obesity is presented, as well as analysis of the effectiveness of existing “Schools of Health” in the clinical practice for the treatment of various chronic diseases.

  12. Changes in drug transport and metabolism and their clinical implications in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Dietrich, Christoph G; Rau, Monika; Jahn, Daniel; Geier, Andreas

    2017-06-01

    The incidence of non-alcoholic fatty liver disease (NAFLD) is rising, especially in Western countries. Drug treatment in patients with NAFLD is common since it is linked to other conditions like diabetes, obesity, and cardiovascular disease. Consequently, changes in drug metabolism may have serious clinical implications. Areas covered: A literature search for studies in animal models or patients with obesity, fatty liver, non-alcoholic steatohepatitis (NASH) or NASH cirrhosis published before November 2016 was performed. After discussing epidemiology and animal models for NAFLD, we summarized both basic as well as clinical studies investigating changes in drug transport and metabolism in NAFLD. Important drug groups were assessed separately with emphasis on clinical implications for drug treatment in patients with NAFLD. Expert opinion: Given the frequency of NAFLD even today, a high degree of drug treatment in NAFLD patients appears safe and well-tolerated despite considerable changes in hepatic uptake, distribution, metabolism and transport of drugs in these patients. NASH causes changes in biliary excretion, systemic concentrations, and renal handling of drugs leading to alterations in drug efficacy or toxicity under specific circumstances. Future clinical drug studies should focus on this special patient population in order to avoid serious adverse events in NAFLD patients.

  13. Electrocatalytic oxidation of hydrogen peroxide on a platinum electrode in the imitation of oxidative drug metabolism of lidocaine

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Bruins, Andries P.; Bischoff, Rainer; Permentier, Hjalmar P.

    2012-01-01

    Electrochemistry in combination with mass spectrometry has shown promise as a versatile technique not only in the analytical assessment of oxidative drug metabolism, but also for small-scale synthesis of drug metabolites. However, electrochemistry is generally limited to reactions initiated by

  14. The biochemistry of drug metabolism--an introduction: part 4. reactions of conjugation and their enzymes.

    Science.gov (United States)

    Testa, Bernard; Krämer, Stefanie D

    2008-11-01

    This review continues a general presentation of the metabolism of drugs and other xenobiotics begun in three recent issues of Chemistry & Biodiversity. The present Part is dedicated to reactions of conjugation, namely methylation, sulfonation, and phosphorylation, glucuronidation and other glycosidations, acetylation and other acylations, the formation and fate of coenzyme A conjugates, glutathione conjugation, and the reaction of amines with carbonyl compounds. It presents the many transferases involved, their nomenclature, relevant biochemical properties, catalytic mechanisms, and the reactions they catalyze. Nonenzymatic reactions, mainly of glutathione conjugation, also receive due attention. A number of medicinally, environmentally, and toxicologically relevant examples are presented and discussed.

  15. Effects of dibutyl phthalate on lipid metabolism and drug metabolising enzyme system in rats

    International Nuclear Information System (INIS)

    Arakaki, Mitsuo; Ariyoshi, Toshihiko.

    1976-01-01

    Effects of dibutyl phthalate (DBP) on the liver constituents and the drug metabolizing enzyme system were investigated in rats. 1. In the experiments at a single oral dose of DBP (630 or 1260 mg/kg), the glycogen content was decreased only at the high dose, but no effects were observed on the contents of glycogen, triglyceride, microsomal protein and cytochromes, and on the activities of drug metabolizing enzymes. 2. In the repeated oral dose of DBP (630 or 1260 mg/kg/day) for 5 days, the ratio of liver weight to body weight was increased in both female and male rats, whereas the increases of cytochrome P-450 content and aniline hydroxylase activity were noted only in male rats. However, the contents of liver triglyceride, phospholipids, and cholesterol were unchanged. On the other hand, serum cholesterol content which showed the tendency to be decreased at the low dose was significantly decreased at the high dose. 3. In the incorporation of 1- 14 C-acetate into liver and serum lipids after repeated oral dose of DBP (630 mg/kg/day) for 5 days in male rats, the incorporation into triglyceride showed tendency to be increased, whereas the incorporation into cholesterol and cholesterol ester remained unchanged in vivo and in vitro. (auth.)

  16. STAT3-Mediated Metabolic Reprograming in Cellular Transformation and Implications for Drug Resistance

    Science.gov (United States)

    Poli, Valeria; Camporeale, Annalisa

    2015-01-01

    Signal transducer and activator of transcription (STAT)3 mediates the signaling downstream of cytokine and growth factor receptors, regulating the expression of target genes. It is constitutively phosphorylated on tyrosine (Y-P) in many tumors, where its transcriptional activity can induce a metabolic switch toward aerobic glycolysis and down-regulate mitochondrial activity, a prominent metabolic feature of most cancer cells, correlating with reduced production of ROS, delayed senescence, and protection from apoptosis. STAT3 can, however, also localize to mitochondria, where its serine-phosphorylated (S-P) form preserves mitochondrial oxidative phosphorylation and controls the opening of the mitochondrial permeability transition pore, also promoting survival and resistance to apoptosis in response to specific signals/oncogenes such as RAS. Thus, downstream of different signals, both nuclear, Y-P STAT3, and mitochondrial, S-P STAT3, can act by promoting cell survival and reducing ROS production. Here, we discuss these properties in the light of potential connections between STAT3-driven alterations of mitochondrial metabolism and the development of drug resistance in cancer patients. PMID:26106584

  17. 76 FR 44017 - Risk Communication Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-22

    ...] Risk Communication Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... Communication Advisory Committee. General Function of the Committee: To provide advice and recommendations to... and former members of the Risk Communication Advisory Committee. FDA intends to make background...

  18. 76 FR 5380 - Advisory Committees; Filing of Closed Meeting Reports

    Science.gov (United States)

    2011-01-31

    ...] Advisory Committees; Filing of Closed Meeting Reports AGENCY: Food and Drug Administration, HHS. ACTION... Advisory Committee Act, the Agency has filed with the Library of Congress the annual reports of those FDA...), FDA has filed with the Library of Congress the annual reports for the following FDA advisory...

  19. Twenty-six years of HIV science: an overview of anti-HIV drugs metabolism

    Directory of Open Access Journals (Sweden)

    Carolina Horta Andrade

    2011-06-01

    Full Text Available From the identification of HIV as the agent causing AIDS, to the development of effective antiretroviral drugs, the scientific achievements in HIV research over the past twenty-six years have been formidable. Currently, there are twenty-five anti-HIV compounds which have been formally approved for clinical use in the treatment of AIDS. These compounds fall into six categories: nucleoside reverse transcriptase inhibitors (NRTIs, nucleotide reverse transcriptase inhibitors (NtRTIs, non-nucleoside reverse transcriptase inhibitors (NNRTIs, protease inhibitors (PIs, cell entry inhibitors or fusion inhibitors (FIs, co-receptor inhibitors (CRIs, and integrase inhibitors (INIs. Metabolism by the host organism is one of the most important determinants of the pharmacokinetic profile of a drug. Formation of active or toxic metabolites will also have an impact on the pharmacological and toxicological outcomes. Therefore, it is widely recognized that metabolism studies of a new chemical entity need to be addressed early in the drug discovery process. This paper describes an overview of the metabolism of currently available anti-HIV drugs.Da identificação do HIV como o agente causador da AIDS, ao desenvolvimento de fármacos antirretrovirais eficazes, os avanços científicos na pesquisa sobre o HIV nos últimos vinte e seis anos foram marcantes. Atualmente, existem vinte e cinco fármacos anti-HIV formalmente aprovados pelo FDA para utilização clínica no tratamento da AIDS. Estes compostos são divididos em seis classes: inibidores nucleosídeos de transcriptase reversa (INTR, inibidores nucleotídeos de transcriptase reversa (INtTR, inibidores não-nucleosídeos de transcriptase reversa (INNTR, inibidores de protease (IP, inibidores da entrada celular ou inibidores de fusão (IF, inibidores de co-receptores (ICR e inibidores de integrase (INI. O metabolismo consiste em um dos maiores determinantes do perfil farmacocinético de um fármaco. A forma

  20. 76 FR 78931 - Advisory Committees; Tentative Schedule of Meetings for 2012

    Science.gov (United States)

    2011-12-20

    ... FOR BIOLOGICS EVALUATION AND RESEARCH Allergenic Products Advisory Committee. April 18, October 18...- 15. CENTER FOR DRUG EVALUATION AND RESEARCH Anesthetic and Analgesic Drugs Advisory February 9... Committee Date(s), if needed, to be determined. Antiviral Drugs Advisory Committee..... May 16-17. Arthritis...

  1. Sex- and age-dependent gene expression in human liver: An implication for drug-metabolizing enzymes.

    Science.gov (United States)

    Uno, Yasuhiro; Takata, Ryo; Kito, Go; Yamazaki, Hiroshi; Nakagawa, Kazuko; Nakamura, Yusuke; Kamataki, Tetsuya; Katagiri, Toyomasa

    2017-02-01

    Sex and age differences in hepatic expression of drug-metabolizing enzyme genes could cause variations in drug metabolism, but has not been fully elucidated, especially in Asian population. In this study, the global expression of human hepatic genes was analyzed by microarrays in 40 Japanese subjects (27 males and 13 females). Thirty-five sex-biased genes were identified (P age-biased genes in two age groups, age-biased genes were related to transcription regulation and cell death. Quantitative polymerase chain reaction confirmed the female-biased expression of drug-metabolizing enzyme genes BChE, CYP4X1, and SULT1E1 (≥1.5-fold, P drug-metabolizing enzyme genes indicated that expression of CYP2A6 and CYP3A4 in females in the ≥70 age group was less than in the age group (≥1.5-fold, P drug metabolism, with respect to sex and age. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  2. Stable isotope- and mass spectrometry-based metabolomics as tools in drug metabolism: a study expanding tempol pharmacology.

    Science.gov (United States)

    Li, Fei; Pang, Xiaoyan; Krausz, Kristopher W; Jiang, Changtao; Chen, Chi; Cook, John A; Krishna, Murali C; Mitchell, James B; Gonzalez, Frank J; Patterson, Andrew D

    2013-03-01

    The application of mass spectrometry-based metabolomics in the field of drug metabolism has yielded important insights not only into the metabolic routes of drugs but has provided unbiased, global perspectives of the endogenous metabolome that can be useful for identifying biomarkers associated with mechanism of action, efficacy, and toxicity. In this report, a stable isotope- and mass spectrometry-based metabolomics approach that captures both drug metabolism and changes in the endogenous metabolome in a single experiment is described. Here the antioxidant drug tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) was chosen because its mechanism of action is not completely understood and its metabolic fate has not been studied extensively. Furthermore, its small size (MW = 172.2) and chemical composition (C(9)H(18)NO(2)) make it challenging to distinguish from endogenous metabolites. In this study, mice were dosed with tempol or deuterated tempol (C(9)D(17)HNO(2)) and their urine was profiled using ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Principal component analysis of the urinary metabolomics data generated a Y-shaped scatter plot containing drug metabolites (protonated and deuterated) that were clearly distinct from the endogenous metabolites. Ten tempol drug metabolites, including eight novel metabolites, were identified. Phase II metabolism was the major metabolic pathway of tempol in vivo, including glucuronidation and glucosidation. Urinary endogenous metabolites significantly elevated by tempol treatment included 2,8-dihydroxyquinoline (8.0-fold, P tempol treatment including pantothenic acid (1.3-fold, P < 0.05) and isobutrylcarnitine (5.3-fold, P < 0.01). This study underscores the power of a stable isotope- and mass spectrometry-based metabolomics in expanding the view of drug pharmacology.

  3. Effect of Various Diets on the Expression of Phase-I Drug Metabolizing Enzymes in Livers of Mice

    Science.gov (United States)

    Guo, Ying; Cui, Julia Yue; Lu, Hong; Klaassen, Curtis D.

    2017-01-01

    Previous studies have shown that diets can alter the metabolism of drugs; however, it is difficult to compare the effects of multiple diets on drug metabolism among different experimental settings. Phase-I related genes play a major role in the biotransformation of pro-drugs and drugs.In the current study, effects of nine diets on the mRNA expression of phase-I drug-metabolizing enzymes in livers of mice were simultaneously investigated. Compared to the AIN-93M purified diet (control), 73 of the 132 critical phase-I drug metabolizing genes were differentially regulated by at least one diet. Diet restriction produced the most number of changed genes (51), followed by the atherogenic diet (27), high-fat diet (25), standard rodent chow (21), western diet (20), high-fructose diet (5), EFA deficient diet (3), and low n-3 FA diet (1). The mRNAs of the Fmo family changed most, followed by Cyp2b and 4a subfamilies, as well as Por (From 1121 to 21-fold increase of theses mRNAs). There were 59 genes not altered by any of these diets.The present results may improve the interpretation of studies with mice and aid in determining effective and safe doses for individuals with different nutritional diets. PMID:25733028

  4. Astrocyte Senescence and Metabolic Changes in Response to HIV Antiretroviral Therapy Drugs

    Directory of Open Access Journals (Sweden)

    Justin Cohen

    2017-08-01

    Full Text Available With the advent of highly active antiretroviral therapy (HAART survival rates among patients infected by HIV have increased. However, even though survival has increased HIV-associated neurocognitive disorders (HAND still persist, suggesting that HAART-drugs may play a role in the neurocognitive impairment observed in HIV-infected patients. Given previous data demonstrating that astrocyte senescence plays a role in neurocognitive disorders such as Alzheimer’s disease (AD, we examined the role of HAART on markers of senescence in primary cultures of human astrocytes (HAs. Our results indicate HAART treatment induces cell cycle arrest, senescence-associated beta-galactosidase, and the cell cycle inhibitor p21. Highly active antiretroviral therapy treatment is also associated with the induction of reactive oxygen species and upregulation of mitochondrial oxygen consumption. These changes in mitochondria correlate with increased glycolysis in HAART drug treated astrocytes. Taken together these results indicate that HAART drugs induce the senescence program in HAs, which is associated with oxidative and metabolic changes that could play a role in the development of HAND.

  5. Modulation of trichloroethylene in vitro metabolism by different drugs in human.

    Science.gov (United States)

    Cheikh Rouhou, Mouna; Haddad, Sami

    2014-08-01

    Toxicological interactions with drugs have the potential to modulate the toxicity of trichloroethylene (TCE). Our objective is to identify metabolic interactions between TCE and 14 widely used drugs in human suspended hepatocytes and characterize the strongest using microsomal assays. Changes in concentrations of TCE and its metabolites were measured by headspace GC-MS. Results with hepatocytes show that amoxicillin, cimetidine, ibuprofen, mefenamic acid and ranitidine caused no significant interactions. Naproxen and salicylic acid showed to increase both TCE metabolites levels, whereas acetaminophen, carbamazepine and erythromycin rather decreased them. Finally, diclofenac, gliclazide, sulphasalazine and valproic acid had an impact on the levels of only one metabolite. Among the 14 tested drugs, 5 presented the most potent interactions and were selected for confirmation with microsomes, namely naproxen, salicylic acid, acetaminophen, carbamazepine and valproic acid. Characterization in human microsomes confirmed interaction with naproxen by competitively inhibiting trichloroethanol (TCOH) glucuronidation (Ki=2.329 mM). Inhibition of TCOH formation was also confirmed for carbamazepine (partial non-competitive with Ki=70 μM). Interactions with human microsomes were not observed with salicylic acid and acetaminophen, similar to prior results in rat material. For valproic acid, interactions with microsomes were observed in rat but not in human. Inhibition patterns were shown to be similar in human and rat hepatocytes, but some differences in mechanisms were noted in microsomal material between species. Next research efforts will focus on determining the adequacy between in vitro observations and the in vivo situation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. ecoAO: A Simple System for the Study of Human Aldehyde Oxidases Role in Drug Metabolism

    OpenAIRE

    Paragas, Erickson M.; Humphreys, Sara C.; Min, Joshua; Joswig-Jones, Carolyn A.; Leimk?hler, Silke; Jones, Jeffrey P.

    2017-01-01

    Although aldehyde oxidase (AO) is an important hepatic drug-metabolizing enzyme, it remains understudied and is consequently often overlooked in preclinical studies, an oversight that has resulted in the failure of multiple clinical trials. AO?s preclusion to investigation stems from the following: (1) difficulties synthesizing metabolic standards due to the chemospecificity and regiospecificity of the enzyme and (2) significant inherent variability across existing in vitro systems including ...

  7. Role of cytochrome P450-mediated metabolism and involvement of reactive metabolite formations on antiepileptic drug-induced liver injuries.

    Science.gov (United States)

    Sasaki, Eita; Yokoi, Tsuyoshi

    2018-01-01

    Several drugs have been withdrawn from the market or restricted to avoid unexpected adverse outcomes. Drug-induced liver injury (DILI) is a serious issue for drug development. Among DILIs, idiosyncratic DILIs have been a serious problem in drug development and clinical uses. Idiosyncratic DILI is most often unrelated to pharmacological effects or the dosing amount of a drug. The number of drugs that cause idiosyncratic DILI continue to grow in part because no practical preclinical tests have emerged that can identify drug candidates with the potential for developing idiosyncratic DILIs. Nevertheless, the implications of drug metabolism-related factors and immune-related factors on idiosyncratic DILIs has not been fully clarified because this toxicity can not be reproduced in animals. Therefore, accumulated evidence for the mechanisms of the idiosyncratic toxicity has been limited to only in vitro studies. This review describes current knowledge of the effects of cytochrome P450 (CYP)-mediated metabolism and its detoxification abilities based on studies of idiosyncratic DILI animal models developed recently. This review also focused on antiepileptic drugs, phenytoin (diphenyl hydantoin, DPH) and carbamazepine (CBZ), which have rarely caused severe adverse reactions, such as fulminant hepatitis, and have been recognized as sources of idiosyncratic DILI. The studies of animal models of idiosyncratic DILIs have produced new knowledge of chronic administration, CYP inductions/inhibitions, glutathione contents, and immune-related factors for the initiation of idiosyncratic DILIs. Considering changes in the drug metabolic profile and detoxification abilities, idiosyncratic DILIs caused by antiepileptic drugs will lead to understanding the mechanisms of these DILIs.

  8. Effects of drugs in subtoxic concentrations on the metabolic fluxes in human hepatoma cell line Hep G2

    International Nuclear Information System (INIS)

    Niklas, Jens; Noor, Fozia; Heinzle, Elmar

    2009-01-01

    Commonly used cytotoxicity assays assess the toxicity of a compound by measuring certain parameters which directly or indirectly correlate to the viability of the cells. However, the effects of a given compound at concentrations considerably below EC 50 values are usually not evaluated. These subtoxic effects are difficult to identify but may eventually cause severe and costly long term problems such as idiosyncratic hepatotoxicity. We determined the toxicity of three hepatotoxic compounds, namely amiodarone, diclofenac and tacrine on the human hepatoma cell line Hep G2 using an online kinetic respiration assay and analysed the effects of subtoxic concentrations of these drugs on the cellular metabolism by using metabolic flux analysis. Several changes in the metabolism could be detected upon exposure to subtoxic concentrations of the test compounds. Upon exposure to diclofenac and tacrine an increase in the TCA-cycle activity was observed which could be a signature of an uncoupling of the oxidative phosphorylation. The results indicate that metabolic flux analysis could serve as an invaluable novel tool for the investigation of the effects of drugs. The described methodology enables tracking the toxicity of compounds dynamically using the respiration assay in a range of concentrations and the metabolic flux analysis permits interesting insights into the changes in the central metabolism of the cell upon exposure to drugs.

  9. Metabolic profiling using HPLC allows classification of drugs according to their mechanisms of action in HL-1 cardiomyocytes

    International Nuclear Information System (INIS)

    Strigun, Alexander; Wahrheit, Judith; Beckers, Simone; Heinzle, Elmar; Noor, Fozia

    2011-01-01

    Along with hepatotoxicity, cardiotoxic side effects remain one of the major reasons for drug withdrawals and boxed warnings. Prediction methods for cardiotoxicity are insufficient. High content screening comprising of not only electrophysiological characterization but also cellular molecular alterations are expected to improve the cardiotoxicity prediction potential. Metabolomic approaches recently have become an important focus of research in pharmacological testing and prediction. In this study, the culture medium supernatants from HL-1 cardiomyocytes after exposure to drugs from different classes (analgesics, antimetabolites, anthracyclines, antihistamines, channel blockers) were analyzed to determine specific metabolic footprints in response to the tested drugs. Since most drugs influence energy metabolism in cardiac cells, the metabolite 'sub-profile' consisting of glucose, lactate, pyruvate and amino acids was considered. These metabolites were quantified using HPLC in samples after exposure of cells to test compounds of the respective drug groups. The studied drug concentrations were selected from concentration response curves for each drug. The metabolite profiles were randomly split into training/validation and test set; and then analysed using multivariate statistics (principal component analysis and discriminant analysis). Discriminant analysis resulted in clustering of drugs according to their modes of action. After cross validation and cross model validation, the underlying training data were able to predict 50%-80% of conditions to the correct classification group. We show that HPLC based characterisation of known cell culture medium components is sufficient to predict a drug's potential classification according to its mode of action.

  10. Effect of honokiol on the induction of drug-metabolizing enzymes in human hepatocytes

    Directory of Open Access Journals (Sweden)

    Cho YY

    2014-11-01

    Full Text Available Yong-Yeon Cho,1 Hyeon-Uk Jeong,1 Jeong-Han Kim,2 Hye Suk Lee1 1College of Pharmacy, The Catholic University of Korea, Bucheon, Korea; 2Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea Abstract: Honokiol, 2-(4-hydroxy-3-prop-2-enyl-phenyl-4-prop-2-enyl-phenol, an active component of Magnolia officinalis and Magnolia grandiflora, exerts various pharmacological activities such as antitumorigenic, antioxidative, anti-inflammatory, neurotrophic, and antithrombotic effects. To investigate whether honokiol acts as a perpetrator in drug interactions, messenger ribonucleic acid (mRNA levels of phase I and II drug-metabolizing enzymes, including cytochrome P450 (CYP, UDP-glucuronosyltransferase (UGT, and sulfotransferase 2A1 (SULT2A1, were analyzed by real-time reverse transcription polymerase chain reaction following 48-hour honokiol exposure in three independent cryopreserved human hepatocyte cultures. Honokiol treatment at the highest concentration tested (50 µM increased the CYP2B6 mRNA level and CYP2B6-catalyzed bupropion hydroxylase activity more than two-fold in three different hepatocyte cultures, indicating that honokiol induces CYP2B6 at higher concentrations. However, honokiol treatment (0.5–50 µM did not significantly alter the mRNA levels of phase I enzymes (CYP1A2, CYP3A4, CYP2C8, CYP2C9, and CYP2C19 or phase II enzymes (UGT1A1, UGT1A4, UGT1A9, UGT2B7, and SULT2A1 in cryopreserved human hepatocyte cultures. CYP1A2-catalyzed phenacetin O-deethylase and CYP3A4-catalyzed midazolam 1'-hydroxylase activities were not affected by 48-hour honokiol treatment in cryopreserved human hepatocytes. These results indicate that honokiol is a weak CYP2B6 inducer and is unlikely to increase the metabolism of concomitant CYP2B6 substrates and cause pharmacokinetic-based drug interactions in humans. Keywords: honokiol, human hepatocytes, drug interactions, cytochrome P450, UDP-glucuronosyltransferases

  11. Utilization of carbon 13-labelled stable isotopes for studying drug toxicity on cellular metabolism

    International Nuclear Information System (INIS)

    Herve, M.; Wietzerbin, J.; Tran-Dinh, S.

    1994-01-01

    A new approach for studying the effects of two drugs, amphotericine B (AMB), an anti-fungal antibiotic, and 2-deoxy-D-glucose (DG), on the glucose metabolism in brewer yeast cells (Saccharomyces cerevisiae), is presented; AMB interacts with the membrane sterols, inducing formation of pores through which ions and small molecules can pass. DG may enter in the cytosol, where it is phosphoryled by hexokinase into deoxy-D-glucose 6-phosphate (DG6P) which disappears very slowly. DG slows down the glycolysis process and induces the formation of new substances. This paper shows the advantages of utilizing carbon 13-labelled substrates combined to the NMR-13C and NMR-1H techniques. 6 figs., 5 refs

  12. Metformin: a metabolic disruptor and anti-diabetic drug to target human leukemia.

    Science.gov (United States)

    Rosilio, Célia; Ben-Sahra, Issam; Bost, Frédéric; Peyron, Jean-François

    2014-05-01

    There is a global and urgent need for expanding our current therapeutical arsenal against leukemia in order to improve their actual cure rates and fight relapse. Targeting the reprogrammed, altered cancer metabolism is an emerging strategy which should profoundly affect cancer cells in their intimate and irrepressible needs and addictions for nutrients uptake and incorporation into the biomass during malignant proliferation. We present here how metformin, an anti-diabetic drug that has attracted a strong interest for its recently discovered anti-cancer properties, can be envisioned as a new adjuvant approach to treat leukemia. Metformin may have a double-edged sword effect (i) by acting on the organism to decrease hyperglycaemia and hyperinsulinemia in diabetic patients and (ii) at the cellular level, by inhibiting the mTORC1-cancer supporting pathway through AMPK-dependent and independent mechanisms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S.T.; Dragsted, L.O.

    1999-01-01

    1. Gavage administration of the natural flavonoids tangeretin, chrysin, apigenin, naringenin, genistein and quercetin for 2 consecutive weeks to the female rat resulted in differential effects on selected phase 1 and 2 enzymes in liver, colon and heart as well as antioxidant enzymes in red brood......, genistein, tangeretin and BNF. 5. The observed effects of chrysin, quercetin and genistein on antioxidant enzymes, concurrently with a protection against oxidative stress, suggest a feedback mechanism on the antioxidant enzymes triggered by the flavonoid antioxidants. 6. Despite the use of high flavonoid...... doses, which by far exceed the human exposure levels, the effect on drug metabolizing and antioxidant enzymes was still very minor. The role of singly administered flavonoids in the protection against cancer and heart disease is thus expected to be limited....

  14. Nerve agent hydrolysis activity designed into a human drug metabolism enzyme.

    Directory of Open Access Journals (Sweden)

    Andrew C Hemmert

    2011-03-01

    Full Text Available Organophosphorus (OP nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme's native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates. Such approaches may lead to novel countermeasures for nerve agent poisoning.

  15. Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics.

    Science.gov (United States)

    Romão, Maria João; Coelho, Catarina; Santos-Silva, Teresa; Foti, Alessandro; Terao, Mineko; Garattini, Enrico; Leimkühler, Silke

    2017-04-01

    Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. Mammals are characterized by a complement of species-specific AOX isoenzymes, that varies from one in humans (AOX1) to four in rodents (AOX1, AOX2, AOX3 and AOX4). The physiological function of mammalian AOX isoenzymes is unknown, although human AOX1 is an emerging enzyme in phase-I drug metabolism. Indeed, the number of therapeutic molecules under development which act as AOX substrates is increasing. The recent crystallization and structure determination of human AOX1 as well as mouse AOX3 has brought new insights into the mechanisms underlying substrate/inhibitor binding as well as the catalytic activity of this class of enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The schistosome excretory system: a key to regulation of metabolism, drug excretion and host interaction.

    Science.gov (United States)

    Kusel, John R; McVeigh, Paul; Thornhill, Joyce A

    2009-08-01

    There is a gulf between the enormous information content of the various genome projects and the understanding of the life of the parasite in the host. In vitro studies with adult Schistosoma mansoni using several substrates suggest that the excretory system contains both P-glycoproteins and multiresistance proteins. If both these families of protein were active in vivo, they could regulate parasite metabolism and be responsible for the excretion of drugs. During skin penetration, membrane-impermeant molecules of a wide range of molecular weights can be taken into the cercaria and schistosomulum through the nephridiopore, through the surface membrane or through both. We speculate that this uptake process might stimulate novel signalling pathways involved in growth and development.

  17. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism

    Directory of Open Access Journals (Sweden)

    Li J

    2018-01-01

    Full Text Available Jian Li,1,* Haiyang Yu,2,* Sijian Wang,1 Wei Wang,3 Qian Chen,1 Yanmin Ma,2 Yi Zhang,1 Tao Wang1 1Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, 2Department of Phytochemistry, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; 3Internal Medicine, Houston Methodist Hospital, Houston, TX, USA *These authors contributed equally to this work Abstract: Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs. Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound–multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs. Keywords: hepatic glucose metabolism, natural products, multitarget, metabolic syndromes, drug and functional food development integrative medicine

  18. Evaluation of modafinil as a perpetrator of metabolic drug-drug interactions using a model informed cocktail reaction phenotyping trial protocol.

    Science.gov (United States)

    Rowland, Angela; van Dyk, Madelé; Warncken, David; Mangoni, Arduino A; Sorich, Michael J; Rowland, Andrew

    2018-03-01

    To evaluate the capacity for modafinil to be a perpetrator of metabolic drug-drug interactions by altering cytochrome P450 activity following a single dose and dosing to steady state. A single centre, open label, single sequence cocktail drug interaction trial. On days 0, 2 and 8 participants were administered an oral drug cocktail comprising 100 mg caffeine, 30 mg dextromethorphan, 25 mg losartan, 1 mg midazolam and 20 mg enteric-coated omeprazole. Timed blood samples were collected prior to and for up to 6 h post cocktail dosing. Between days 2 and 8 participants orally self-administered 200 mg modafinil each morning. Following a single 200 mg dose of modafinil mean (± 95% CI) AUC ratios for caffeine, dextromethorphan, losartan, midazolam and omeprazole were 0.95 (± 0.08), 1.01 (± 0.35), 0.97 (± 0.10), 0.98 (± 0.10) and 1.36 (± 0.06), respectively. Following dosing of modafinil to steady state (200 mg for 7 days), AUC ratios for caffeine, dextromethorphan, losartan, midazolam and omeprazole were 0.90 (± 0.16), 0.79 (± 0.09), 0.98 (± 0.11), 0.66 (± 0.12) and 1.90 (± 0.53), respectively. These data support consideration of the risk of clinically relevant metabolic drug-drug interactions perpetrated by modafinil when this drug is co-administered with drugs that are primarily cleared by CYP2C19 (single modafinil dose or steady state modafinil dosing) or CYP3A4 (steady state modafinil dosing only) catalysed metabolic pathways. © 2017 The British Pharmacological Society.

  19. Inhibitory effects of drugs on the metabolic activity of mouse and human aldehyde oxidases and influence on drug-drug interactions.

    Science.gov (United States)

    Takaoka, Naoki; Sanoh, Seigo; Okuda, Katsuhiro; Kotake, Yaichiro; Sugahara, Go; Yanagi, Ami; Ishida, Yuji; Tateno, Chise; Tayama, Yoshitaka; Sugihara, Kazumi; Kitamura, Shigeyuki; Kurosaki, Mami; Terao, Mineko; Garattini, Enrico; Ohta, Shigeru

    2018-04-17

    As aldehyde oxidase (AOX) plays an emerging role in drug metabolism, understanding its significance for drug-drug interactions (DDI) is important. Therefore, we tested 10 compounds for species-specific and substrate-dependent differences in the inhibitory effect of AOX activity using genetically engineered HEK293 cells over-expressing human AOX1, mouse AOX1 or mouse AOX3. The IC 50 values of 10 potential inhibitors of the three AOX enzymes were determined using phthalazine and O 6 -benzylguanine as substrates. 17β-Estradiol, menadione, norharmane and raloxifene exhibited marked differences in inhibitory effects between the human and mouse AOX isoforms when the phthalazine substrate was used. Some of the compounds tested exhibited substrate-dependent differences in their inhibitory effects. Docking simulations with human AOX1 and mouse AOX3 were conducted for six representative inhibitors. The rank order of the minimum binding energy reflected the order of the corresponding IC 50 values. We also evaluated the potential DDI between an AOX substrate (O 6 -benzylguanine) and an inhibitor (hydralazine) using chimeric mice with humanized livers. Pretreatment of hydralazine increased the maximum plasma concentration (C max ) and the area under the plasma concentration-time curve (AUC 0-24 ) of O 6 -benzylguanine compared to single administration. Our in vitro data indicate species-specific and substrate-dependent differences in the inhibitory effects on AOX activity. Our in vivo data demonstrate the existence of a DDI which may be of relevance in the clinical context. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Review of Warfarin; A Cytochrome P450 Metabolizing Drug, in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Tolou-Ghamari

    2016-04-01

    Full Text Available Context For the prevention and management of thromboembolic complications, warfarin is the most extensively recommended anticoagulant. It is categorized as a drug with a narrow therapeutic window. Therefore, warfarin prescription requires special attention related to therapeutic drug monitoring. Evidence Acquisition By categorizing the clinical implications of warfarin, this manuscript aims to provide a comprehensive (albeit somewhat brief conclusion associated with its pharmacotherapy. The key words relevant to the topic were searched. Consequently, articles relevant to the pharmacotherapeutic management of warfarin were selected and reviewed in their entirety. Results To obtain a reasonable level of stability between the required antithrombotic treatment and the risk of bleeding, an analysis of the literature revealed that the prothrombin time in terms of the international normalized ratio (INR was found for each individual. The best model for stable warfarin dosage prediction was found to be based on multiple linear regression. Genotype-guided procedures were established to: 1, improve the time in the therapeutic range; 2, reduce time to the first therapeutic INR; and 3, reduce the time for the stable doses. Vitamin K epoxide reductase is an enzyme with an important role in vitamin K metabolism, and warfarin is metabolized in hepatocytes via a monooxygenase, cytochrome P450 2C9. In patients carrying 2C9*1/*2 and 2C9*2/*2 or 2C9*1/*3 alleles, the dose is recommended to be reduced by 18% - 40% and 21% - 49%, respectively. Conclusions Race, age, body surface area, chronic kidney disease, CYP2C9*3 level, and VKORC1 variants could affect the dose of warfarin. To administer the proper doses of warfarin, patients and physicians might achieve the best results with the pharmacologist proficient anticoagulation database and recommended continuation program. Owing to its’ unpredictability, caution must be taken when prescribing warfarin. More advanced

  1. Current status of hyphenated mass spectrometry in studies of the metabolism of drugs of abuse, including doping agents.

    Science.gov (United States)

    Meyer, Markus R; Maurer, Hans H

    2012-01-01

    This paper reviews scientific contributions on the identification and/or quantification of metabolites of drugs of abuse in in vitro assays or various body samples using hyphenated mass spectrometry. Gas chromatography-mass spectrometry (GC-MS) as well as liquid chromatography-mass spectrometry (LC-MS) approaches are considered and discussed if they have been reported in the last five years and are relevant to clinical and forensic toxicology or doping control. Workup and artifact formation are discussed, and typical examples of studies of the metabolism of designer drugs, doping agents, herbal drugs, and synthetic cannabinoids are provided. Procedures for quantifying metabolites in body samples for pharmacokinetic studies or in enzyme incubations for enzyme kinetic studies are also reviewed. In conclusion, the reviewed papers showed that both GC-MS and LC-MS still have important roles to play in research into the metabolism of drugs of abuse, including doping agents.

  2. Natural products, an important resource for discovery of multitarget drugs and functional food for regulation of hepatic glucose metabolism.

    Science.gov (United States)

    Li, Jian; Yu, Haiyang; Wang, Sijian; Wang, Wei; Chen, Qian; Ma, Yanmin; Zhang, Yi; Wang, Tao

    2018-01-01

    Imbalanced hepatic glucose homeostasis is one of the critical pathologic events in the development of metabolic syndromes (MSs). Therefore, regulation of imbalanced hepatic glucose homeostasis is important in drug development for MS treatment. In this review, we discuss the major targets that regulate hepatic glucose homeostasis in human physiologic and pathophysiologic processes, involving hepatic glucose uptake, glycolysis and glycogen synthesis, and summarize their changes in MSs. Recent literature suggests the necessity of multitarget drugs in the management of MS disorder for regulation of imbalanced glucose homeostasis in both experimental models and MS patients. Here, we highlight the potential bioactive compounds from natural products with medicinal or health care values, and focus on polypharmacologic and multitarget natural products with effects on various signaling pathways in hepatic glucose metabolism. This review shows the advantage and feasibility of discovering multicompound-multitarget drugs from natural products, and providing a new perspective of ways on drug and functional food development for MSs.

  3. Optical metabolic imaging measures early drug response in an allograft murine breast cancer model (Conference Presentation)

    Science.gov (United States)

    Sharick, Joe T.; Cook, Rebecca S.; Skala, Melissa C.

    2017-02-01

    Previous work has shown that cellular-level Optical Metabolic Imaging (OMI) of organoids derived from human breast cancer cell-line xenografts accurately and rapidly predicts in vivo response to therapy. To validate OMI as a predictive measure of treatment response in an immune-competent model, we used the polyomavirus middle-T (PyVmT) transgenic mouse breast cancer model. The PyVmT model includes intra-tumoral heterogeneity and a complex tumor microenvironment that can influence treatment responses. Three-dimensional organoids generated from primary PyVmT tumor tissue were treated with a chemotherapy (paclitaxel) and a PI3K inhibitor (XL147), each alone or in combination. Cellular subpopulations of response were measured using the OMI Index, a composite endpoint of metabolic response comprised of the optical redox ratio (ratio of the fluorescence intensities of metabolic co-enzymes NAD(P)H to FAD) as well as the fluorescence lifetimes of NAD(P)H and FAD. Combination treatment significantly decreased the OMI Index of PyVmT tumor organoids (p<0.0001) and in vivo tumors (p<0.0001) versus controls. Subpopulation analyses revealed a homogeneous response to combined therapy in both cultured organoids and in vivo tumors, while single agent treatment with XL147 alone or paclitaxel alone elicited heterogeneous responses in organoids. Tumor volume decreased with combination treatment through treatment day 30. These results indicate that OMI of organoids generated from PyVmT tumors can accurately reflect drug response in heterogeneous allografts with both innate and adaptive immunity. Thus, this method is promising for use in humans to predict long-term treatment responses accurately and rapidly, and could aid in clinical treatment planning.

  4. New Aspects of an Old Drug – Diclofenac Targets MYC and Glucose Metabolism in Tumor Cells

    Science.gov (United States)

    Gottfried, Eva; Lang, Sven A.; Renner, Kathrin; Bosserhoff, Anja; Gronwald, Wolfram; Rehli, Michael; Einhell, Sabine; Gedig, Isabel; Singer, Katrin; Seilbeck, Anton; Mackensen, Andreas; Grauer, Oliver; Hau, Peter; Dettmer, Katja; Andreesen, Reinhard; Oefner, Peter J.; Kreutz, Marina

    2013-01-01

    Non-steroidal anti-inflammatory drugs such as diclofenac exhibit potent anticancer effects. Up to now these effects were mainly attributed to its classical role as COX-inhibitor. Here we show novel COX-independent effects of diclofenac. Diclofenac significantly diminished MYC expression and modulated glucose metabolism resulting in impaired melanoma, leukemia, and carcinoma cell line proliferation in vitro and reduced melanoma growth in vivo. In contrast, the non-selective COX inhibitor aspirin and the COX-2 specific inhibitor NS-398 had no effect on MYC expression and glucose metabolism. Diclofenac significantly decreased glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and monocarboxylate transporter 1 (MCT1) gene expression in line with a decrease in glucose uptake and lactate secretion. A significant intracellular accumulation of lactate by diclofenac preceded the observed effect on gene expression, suggesting a direct inhibitory effect of diclofenac on lactate efflux. While intracellular lactate accumulation impairs cellular proliferation and gene expression, it does not inhibit MYC expression as evidenced by the lack of MYC regulation by the MCT inhibitor α-cyano-4-hydroxycinnamic acid. Finally, in a cell line with a tetracycline-regulated c-MYC gene, diclofenac decreased proliferation both in the presence and absence of c-MYC. Thus, diclofenac targets tumor cell proliferation via two mechanisms, that is inhibition of MYC and lactate transport. Based on these results, diclofenac holds potential as a clinically applicable MYC and glycolysis inhibitor supporting established tumor therapies. PMID:23874405

  5. New aspects of an old drug--diclofenac targets MYC and glucose metabolism in tumor cells.

    Directory of Open Access Journals (Sweden)

    Eva Gottfried

    Full Text Available Non-steroidal anti-inflammatory drugs such as diclofenac exhibit potent anticancer effects. Up to now these effects were mainly attributed to its classical role as COX-inhibitor. Here we show novel COX-independent effects of diclofenac. Diclofenac significantly diminished MYC expression and modulated glucose metabolism resulting in impaired melanoma, leukemia, and carcinoma cell line proliferation in vitro and reduced melanoma growth in vivo. In contrast, the non-selective COX inhibitor aspirin and the COX-2 specific inhibitor NS-398 had no effect on MYC expression and glucose metabolism. Diclofenac significantly decreased glucose transporter 1 (GLUT1, lactate dehydrogenase A (LDHA, and monocarboxylate transporter 1 (MCT1 gene expression in line with a decrease in glucose uptake and lactate secretion. A significant intracellular accumulation of lactate by diclofenac preceded the observed effect on gene expression, suggesting a direct inhibitory effect of diclofenac on lactate efflux. While intracellular lactate accumulation impairs cellular proliferation and gene expression, it does not inhibit MYC expression as evidenced by the lack of MYC regulation by the MCT inhibitor α-cyano-4-hydroxycinnamic acid. Finally, in a cell line with a tetracycline-regulated c-MYC gene, diclofenac decreased proliferation both in the presence and absence of c-MYC. Thus, diclofenac targets tumor cell proliferation via two mechanisms, that is inhibition of MYC and lactate transport. Based on these results, diclofenac holds potential as a clinically applicable MYC and glycolysis inhibitor supporting established tumor therapies.

  6. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland); Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH 3004 Bern (Switzerland)

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  7. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    International Nuclear Information System (INIS)

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-01-01

    Research highlights: → Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). → Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. → We are reporting that mutations in POR may reduce CYP3A4 activity. → POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. → Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  8. Pharmacotherapeutic targeting of the endocannabinoid signaling system: drugs for obesity and the metabolic syndrome.

    Science.gov (United States)

    Vemuri, V Kiran; Janero, David R; Makriyannis, Alexandros

    2008-03-18

    Endogenous signaling lipids ("endocannabinoids") functionally related to Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana (Cannabis), are important biomediators and metabolic regulators critical to mammalian (patho)physiology. The growing family of endocannabinoids, along with endocannabinoid biosynthetic and inactivating enzymes, transporters, and at least two membrane-bound, G-protein coupled receptors, comprise collectively the mammalian endocannabinoid signaling system. The ubiquitous and diverse regulatory actions of the endocannabinoid system in health and disease have supported the regulatory approval of natural products and synthetic agents as drugs that alter endocannabinoid-system activity. More recent data support the concept that the endocananbinoid system may be modulated for therapeutic gain at discrete pharmacological targets with safety and efficacy. Potential medications based on the endocannabinoid system have thus become a central focus of contemporary translational research for varied indications with important unmet medical needs. One such indication, obesity, is a global pandemic whose etiology has a pathogenic component of endocannabinoid-system hyperactivity and for which current pharmacological treatment is severely limited. Application of high-affinity, selective CB1 cannabinoid receptor ligands to attenuate endocannabinoid signaling represents a state-of-the-art approach for improving obesity pharmacotherapy. To this intent, several selective CB1 receptor antagonists with varied chemical structures are currently in advanced preclinical or clinical trials, and one (rimonabant) has been approved as a weight-management drug in some markets. Emerging preclinical data suggest that CB1 receptor neutral antagonists may represent breakthrough medications superior to antagonists/inverse agonists such as rimonabant for therapeutic attenuation of CB1 receptor transmission. Since obesity is a predisposing condition for the

  9. SREBP activation by antipsychotic- and antidepressant-drugs in cultured human liver cells: relevance for metabolic side-effects?

    Science.gov (United States)

    Raeder, Maria B; Fernø, Johan; Vik-Mo, Audun O; Steen, Vidar M

    2006-09-01

    Drug-induced weight gain is a major problem in the treatment of psychiatric disorders, especially with some antipsychotic- and antidepressant drugs. We have recently demonstrated that antipsychotic- and antidepressant drugs activate the SREBP (sterol regulatory element-binding proteins) transcription factors in human- and rat glial cells, with subsequent up-regulation of downstream genes involved in cholesterol- and fatty acid biosynthesis. Since stimulation of cellular lipogenesis in the liver could be of relevance for the metabolic side effects of these drugs, we have now investigated the effects of antidepressants, antipsychotic- and mood-stabilizing drugs on cell cultures of human liver cells. For several of the drugs being strongly associated with weight gain (clozapine, imipramine, and amitriptyline), we observed a very pronounced activation of SREBP. Ziprasidone and buproprion, however, which are not associated with weight gain, did hardly stimulate the SREBP system. For haloperidol, olanzapine and mirtazapine, the correspondence between metabolic side effects and SREBP stimulation in liver cells was less obvious. The mood-stabilizers did not increase SREBP activation. The results indicate a relationship between drug-induced activation of SREBP in cultured human liver cells and weight gain side-effects of antidepressant and antipsychotic drugs.

  10. Metabolic Syndrome in Drug-naïve Patients with Depressive Disorders.

    Science.gov (United States)

    Grover, Sandeep; Nebhinani, Naresh; Chakrabarti, Subho; Avasthi, Ajit; Kulhara, Parmanand

    2013-04-01

    The prevalence of metabolic syndrome (MS) is found to be higher in patients with depression than in the general population. As there is lack of data from India, this study aimed to assess the prevalence of MS in patients with depression who had never been treated with antidepressants for their depressive disorder and compare the same with a matched group of healthy controls. Forty-three drug-naïve patients with depressive disorders and 43 age- and gender-matched healthy controls were assessed for the prevalence of MS as per the consensus definition. The prevalence of MS in patients with depression was 37.2% and was significantly higher than that seen in the healthy controls (16.3%). Increased waist circumference was the most common abnormality in both the study groups. Compared to healthy controls, a significantly higher proportion of patients with depression had abnormal waist circumference, systolic blood pressure, or high blood pressure. Besides 16 patients with depressive disorders having MS, another 53.5% of patients fulfilled one or two criteria of MS. None of the sociodemographic variables was associated with development of MS in patients with depression. Slightly more than one-third of depressed patients who are drug-naïve have MS and this prevalence rate is significantly higher than in healthy controls.

  11. Korean, Japanese, and Chinese populations featured similar genes encoding drug-metabolizing enzymes and transporters: a DMET Plus microarray assessment.

    Science.gov (United States)

    Yi, SoJeong; An, Hyungmi; Lee, Howard; Lee, Sangin; Ieiri, Ichiro; Lee, Youngjo; Cho, Joo-Youn; Hirota, Takeshi; Fukae, Masato; Yoshida, Kenji; Nagatsuka, Shinichiro; Kimura, Miyuki; Irie, Shin; Sugiyama, Yuichi; Shin, Dong Wan; Lim, Kyoung Soo; Chung, Jae-Yong; Yu, Kyung-Sang; Jang, In-Jin

    2014-10-01

    Interethnic differences in genetic polymorphism in genes encoding drug-metabolizing enzymes and transporters are one of the major factors that cause ethnic differences in drug response. This study aimed to investigate genetic polymorphisms in genes involved in drug metabolism, transport, and excretion among Korean, Japanese, and Chinese populations, the three major East Asian ethnic groups. The frequencies of 1936 variants representing 225 genes encoding drug-metabolizing enzymes and transporters were determined from 786 healthy participants (448 Korean, 208 Japanese, and 130 Chinese) using the Affymetrix Drug-Metabolizing Enzymes and Transporters Plus microarray. To compare allele or genotype frequencies in the high-dimensional data among the three East Asian ethnic groups, multiple testing, principal component analysis (PCA), and regularized multinomial logit model through least absolute shrinkage and selection operator were used. On microarray analysis, 1071 of 1936 variants (>50% of markers) were found to be monomorphic. In a large number of genetic variants, the fixation index and Pearson's correlation coefficient of minor allele frequencies were less than 0.034 and greater than 0.95, respectively, among the three ethnic groups. PCA identified 47 genetic variants with multiple testing, but was unable to discriminate ethnic groups by the first three components. Multinomial least absolute shrinkage and selection operator analysis identified 269 genetic variants that showed different frequencies among the three ethnic groups. However, none of those variants distinguished between the three ethnic groups during subsequent PCA. Korean, Japanese, and Chinese populations are not pharmacogenetically distant from one another, at least with regard to drug disposition, metabolism, and elimination.

  12. Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction

    NARCIS (Netherlands)

    Martignoni, Marcella; Groothuis, Geny M. M.; de Kanter, Ruben

    2006-01-01

    Animal models are commonly used in the preclinical development of new drugs to predict the metabolic behaviour of new compounds in humans. It is, however, important to realise that humans differ from animals with regards to isoform composition, expression and catalytic activities of

  13. The metabolic fate of the Anti-HIV active drug carrier succinylated human serum albumin after intravenous administration in rats

    NARCIS (Netherlands)

    Swart, P J; Kuipers, M E; Smit, C; Beljaars, L; Ter Wiel, J; Meijer, D K

    The pharmacokinetics and metabolic fate of the intrinsically active (anti-HIV) drug carrier succinylated human serum albumin (Suc-HSA) was studied in rats. Suc-HSA was prepared by derivatizing HSA with 1,4-[C-14]-succinic anhydride, a modification by which all available epsilonNH2-groups in HSA were

  14. Protein metabolism in the rat cerebral cortex in vivo and in vitro as affected by the acquisition enhancing drug piracetam

    NARCIS (Netherlands)

    Nickolson, V.J.; Wolthuis, O.L.

    1976-01-01

    The effect of Piracetam on rat cerebral protein metabolism in vivo and in vitro was studied. It was found that the drug stimulates the uptake of labelled leucine by cerebral cortex slices, has no effect on the incorporation of leucine into cerebral protein, neither in slices nor in vivo, but

  15. The METEOR study of diabetes and other metabolic disorders in patients with schizophrenia treated with antipsychotic drugs. I. Methodology.

    Science.gov (United States)

    De Hert, Marc; Mauri, Mauro; Shaw, Ken; Wetterling, Tilman; Doble, Adam; Giudicelli, Agnès; Falissard, Bruno

    2010-12-01

    Patients with schizophrenia present a two- to three-fold higher prevalence of diabetes, of metabolic syndrome and of cardiovascular morbidity. The reason for this increased prevalence may involve intrinsic vulnerability, lifestyle factors and iatrogenic effects of antipsychotic drugs. The objective of this multinational, cross-sectional, pharmacoepidemiological study was to determine the prevalence of diabetes, lipid disorders, obesity, hypertension and the metabolic syndrome in patients with schizophrenia treated with antipsychotic drugs. Particular attention was taken to acquire data on a wide a range as possible of demographic, clinical and lifestyle variables that may influence the risk of metabolic disorders, which were taken into account in the calculation of prevalence data by propensity scoring. The study included 2270 subjects from 16 European countries, predominantly from Central and Eastern Europe. The proportion of subjects presenting the pathologies of interest was relatively high, ranging from 28% for glycaemic disorders to 70% for lipid disorders. Copyright © 2010 John Wiley & Sons, Ltd.

  16. Xenobiotic-metabolizing enzymes in plants and their role in uptake and biotransformation of veterinary drugs in the environment.

    Science.gov (United States)

    Bártíková, Hana; Skálová, Lenka; Stuchlíková, Lucie; Vokřál, Ivan; Vaněk, Tomáš; Podlipná, Radka

    2015-08-01

    Many various xenobiotics permanently enter plants and represent potential danger for their organism. For that reason, plants have evolved extremely sophisticated detoxification systems including a battery of xenobiotic-metabolizing enzymes. Some of them are similar to those in humans and animals, but there are several plant-specific ones. This review briefly introduces xenobiotic-metabolizing enzymes in plants and summarizes present information about their action toward veterinary drugs. Veterinary drugs are used worldwide to treat diseases and protect animal health. However, veterinary drugs are also unwantedly introduced into environment mostly via animal excrements, they persist in the environment for a long time and may impact on the non-target organisms. Plants are able to uptake, transform the veterinary drugs to non- or less-toxic compounds and store them in the vacuoles and cell walls. This ability may protect not only plant themselves but also other organisms, predominantly invertebrates and wild herbivores. The aim of this review is to emphasize the importance of plants in detoxification of veterinary drugs in the environment. The results of studies, which dealt with transport and biotransformation of veterinary drugs in plants, are summarized and evaluated. In conclusion, the risks and consequences of veterinary drugs in the environment and the possibilities of phytoremediation technologies are considered and future perspectives are outlined.

  17. Effects of Uremic Toxins on Transport and Metabolism of Different Biopharmaceutics Drug Disposition Classification System (BDDCS) Xenobiotics

    Science.gov (United States)

    Reyes, Maribel; Benet, Leslie Z.

    2013-01-01

    Chronic kidney disease (CKD) is recognized to cause pharmacokinetic changes in renally excreted drugs; however, pharmacokinetic changes are also reported for drugs that are non-renally eliminated. Few studies have investigated how uremic toxins may affect drug transporters and metabolizing enzymes and how these may result in pharmacokinetic/metabolic changes in CKD. Here, we investigated the effects of uremic toxins and human uremic serum on the transport of the prototypical transporter substrate [3H]-estrone sulfate and three BDDCS drugs, propranolol, losartan, and eprosartan. We observed a significant decrease in [3H]-estrone sulfate, losartan, and eprosartan uptake with some uremic toxins in both transfected cells and rat hepatocytes. The uptake of losartan was decreased in rat and human hepatocytes (28%, and 48% respectively) in the presence of hemodialysis (HD) serum. Time-course studies of losartan showed a 27%, 65% and 68% increase in AUC in the presence of HD serum, rifampin, and sulfaphenazole respectively. Intracellular losartan AUC decreased significantly in the treatment groups and the metabolite AUC decreased by 41% and 26% in rifampin and sulfaphenazole treated group. The intracellular AUC of eprosartan increased 190% in the presence of HD serum. These studies indicate that the uremic toxins contained in HD serum play an important role in drug disposition through drug transporters, and that there would be differential effects depending on the BDDCS classification of the drug. PMID:21618544

  18. CNS metabolism in high-risk drug abuse : Insights gained from 1H-, 31P-MRS and PET.

    Science.gov (United States)

    Bodea, S

    2017-07-10

    High-risk drug consumption is a matter of great concern for public health actors in industrialised countries. The latest trends show a market tendency towards diversification and increasing demand for high-purity synthetic drugs. While most consumers seek medical help after cannabis use, it is high-risk drugs like cocaine, heroin and amphetamines that account for most of the 1000 drug-related deaths that occur in Germany every year. This article presents the most prominent in vivo cerebral metabolic information in cocaine, heroin and methamphetamine users provided by MRI spectroscopy and PET imaging. We reviewed the literature reporting neuroimaging studies of in vivo metabolic data for methamphetamine, cocaine and heroin consumption published up to March 2017. The search was conducted using PubMed and a combination of the following key words: methamphetamine, cocaine, heroin, MR spectroscopy, PET. MRI and PET are indispensable tools in gauging brain metabolic response to illegal drug abuse. Future breakthroughs in this field will most likely come from the investigation of novel neurotransmitter systems in PET and imaging phosphorus and carbon metabolites in MRI.

  19. The TREAT-NMD advisory committee for therapeutics (TACT): an innovative de-risking model to foster orphan drug development

    NARCIS (Netherlands)

    Heslop, Emma; Csimma, Cristina; Straub, Volker; McCall, John; Nagaraju, Kanneboyina; Wagner, Kathryn R.; Caizergues, Didier; Korinthenberg, Rudolf; Flanigan, Kevin M.; Kaufmann, Petra; McNeil, Elizabeth; Mendell, Jerry; Hesterlee, Sharon; Wells, Dominic J.; Bushby, Kate; McNeil, Dawn Elizabeth; Allen, Hugh; Bourke, John; Burghes, Arthur; Buyse, Gunnar; Catlin, Nick; Clemens, Paula; Cnaan, Avital; Comi, Giacomo; Connor, Edward; de Luca, Annamaria; de Montleau, Béatrice; de Visser, Marianne; Day, Simon; Dittrich, Sven; Dubrosky, Alberto; Eagle, Michelle; Finkel, Richard; Fishbeck, Kenneth; Furlong, Patricia; Grounds, Miranda; Hauschke, Dieter; Hoffman, Eric; Irwin, Joseph; Jarecki, Jill; Kelly, Michael; Laforêt, Pascal; Lovering, Richard; Larkindale, Jane; Mayer, Henry; McDonald, Robert; McNally, Elizabeth; Miller, Debra; North, Kathryn; Ouillade, Marie-Christine; Pattinson, Shaun; Pearson, Paul; Pleiss, Mike; Pohlschmidt, Marita; Raymackers, Jean-Marc; Rehmann-Sutter, Christoph; Ruegg, Urs; Rutkowski, Anne; Ryan, Monique; Simonds, Anita; Sweeney, Lee; Tinsley, Jon; Towbin, Jeff; Tulinius, Mar; Verschuuren, Jan; Voit, Thomas; Vroom, Elizabeth; Walter, Maggie; Winberg, Meg; Wong, Brenda; Zoetis, Tracy; Johnston, Louise; Robertson, Agata

    2015-01-01

    Despite multiple publications on potential therapies for neuromuscular diseases (NMD) in cell and animal models only a handful reach clinical trials. The ability to prioritise drug development according to objective criteria is particularly critical in rare diseases with large unmet needs and a

  20. A Human Hepatocyte-Bearing Mouse: An Animal Model to Predict Drug Metabolism and Effectiveness in Humans

    Directory of Open Access Journals (Sweden)

    Katsutoshi Yoshizato

    2009-01-01

    Full Text Available Preclinical studies to predict the efficacy and safety of drugs have conventionally been conducted almost exclusively in mice and rats as rodents, despite the differences in drug metabolism between humans and rodents. Furthermore, human (ℎ viruses such as hepatitis viruses do not infect the rodent liver. A mouse bearing a liver in which the hepatocytes have been largely repopulated with ℎ-hepatocytes would overcome some of these disadvantages. We have established a practical, efficient, and large-scale production system for such mice. Accumulated evidence has demonstrated that these hepatocyte-humanized mice are a useful and reliable animal model, exhibiting ℎ-type responses in a series of in vivo drug processing (adsorption, distribution, metabolism, excretion experiments and in the infection and propagation of hepatic viruses. In this review, we present the current status of studies on chimeric mice and describe their usefulness in the study of peroxisome proliferator-activated receptors.

  1. CHANGING METABOLIC FUNCTIONS IN EXPERIMENTAL ANIMALS AFTER INTRODUCTION OF THE XENOBIOTIC, IMMUNOTROPIC DRUG AND PROBIOTIC

    Directory of Open Access Journals (Sweden)

    Zvyagintseva O.V.

    2015-05-01

    Full Text Available The aim of the study was to evaluate in vivo changes in metabolic and barrier function of the resistance factors (activity of enzymes of neutrophils, the efficiency of phagocytosis, some biochemical parameters (concentration of ceruloplasmin and haptoglobin and proliferate activity in vitro cells after introduction of copper sulfate, probiotics and immunostimulant "Fungidol" the experimental animals. Material and methods. The in vivo experiments were performed on 6-month-old male rats of Wistar line. Identified the following groups: group 1 - control animals, which were intraperitoneally injected with saline (n = 5; group 2 - animals that were administered saline per os and 48 hours a solution of copper sulphate intraperitoneally (n = 5; group 3 - animals, which were injected with immunotropic drug "Fungidol" per os and 48 hours a solution of copper sulphate intraperitoneally (n = 5; group 4 animals, which were injected with a solution of probiotics per os and 48 hours a solution of copper sulphate intraperitoneally (n = 5. As a probiotic used capsules firm Yogurt that contains active Lactobacillus acidophilus, Lactobacillus rhamnosus, Streptococcus thermophillus, Lactobacillus bulgaricus. The concentration of haptoglobin and ceruloplasmin were determined spectrophotometrically. Oxygen-dependent metabolism of neutrophils was investigated by microscopy according to their ability to absorb nitroblue tetrazolium (NBT-test and restore it to deformazione in the form of granules blue color under the influence of superoxide anion, which is formed in the NADP-oxidase reaction, initiating the process of stimulation of phagocytosis (NBT-test. To determine the barrier function of phagocytic cells by light microscopy to evaluate the activity of phagocytosis of neutrophilic granulocytes with subsequent determination of phagocytic index, phagocytic number and the index of completeness of phagocytosis. As a microbial agent used is a suspension culture of

  2. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    Science.gov (United States)

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker. © 2015 Authors; published by Portland Press Limited.

  3. Vagal Nerve Stimulation in the Treatment of Drug-Resistant Epileptic Encephalopathies in Inborn Errors of Metabolism

    Directory of Open Access Journals (Sweden)

    Daniele Grioni MD

    2015-10-01

    Full Text Available Patients affected by inborn errors of metabolism can develop catastrophic epilepsies ineligible for resective surgery. Few reports concerning vagal nerve stimulation in patients with epileptic encephalopathy in the context of metabolic diseases have been published in the literature. Drug-resistant epilepsies in metabolic disease could be a specific target for vagal nerve stimulation, although the efficacy of this technique in these patients still needs to be proved. The authors report our experience in treating refractory epilepsy with vagal nerve stimulation in 2 patients affected by inborn errors of metabolism. The first patient is a 23-year-old patient affected by glutaric aciduria type II, the other one is a 16-month-old child with nonketotic hyperglycinemia. Vagal nerve stimulation reduced seizures up to 50% in the first case and up to 90% in the second one.

  4. Antinociceptive effects, metabolism and disposition of ketamine in ponies under target-controlled drug infusion

    International Nuclear Information System (INIS)

    Knobloch, M.; Portier, C.J.; Levionnois, O.L.; Theurillat, R.; Thormann, W.; Spadavecchia, C.; Mevissen, M.

    2006-01-01

    Ketamine is widely used as an anesthetic in a variety of drug combinations in human and veterinary medicine. Recently, it gained new interest for use in long-term pain therapy administered in sub-anesthetic doses in humans and animals. The purpose of this study was to develop a physiologically based pharmacokinetic (PBPk) model for ketamine in ponies and to investigate the effect of low-dose ketamine infusion on the amplitude and the duration of the nociceptive withdrawal reflex (NWR). A target-controlled infusion (TCI) of ketamine with a target plasma level of 1 μg/ml S-ketamine over 120 min under isoflurane anesthesia was performed in Shetland ponies. A quantitative electromyographic assessment of the NWR was done before, during and after the TCI. Plasma levels of R-/S-ketamine and R-/S-norketamine were determined by enantioselective capillary electrophoresis. These data and two additional data sets from bolus studies were used to build a PBPk model for ketamine in ponies. The peak-to-peak amplitude and the duration of the NWR decreased significantly during TCI and returned slowly toward baseline values after the end of TCI. The PBPk model provides reliable prediction of plasma and tissue levels of R- and S-ketamine and R- and S-norketamine. Furthermore, biotransformation of ketamine takes place in the liver and in the lung via first-pass metabolism. Plasma concentrations of S-norketamine were higher compared to R-norketamine during TCI at all time points. Analysis of the data suggested identical biotransformation rates from the parent compounds to the principle metabolites (R- and S-norketamine) but different downstream metabolism to further metabolites. The PBPk model can provide predictions of R- and S-ketamine and norketamine concentrations in other clinical settings (e.g. horses)

  5. Increased circulating full-length betatrophin levels in drug-naïve metabolic syndrome.

    Science.gov (United States)

    Liu, Dan; Li, Sheyu; He, He; Yu, Chuan; Li, Xiaodan; Liang, Libo; Chen, Yi; Li, Jianwei; Li, Jianshu; Sun, Xin; Tian, Haoming; An, Zhenmei

    2017-03-14

    Betatrophin is a newly identified circulating adipokine playing a role in the regulation of glucose homeostasis and lipid metabolism. But its role in metabolic syndrome (MetS) remains unknown. Therefore, we aimed to compare the circulating betatrophin concentrations between patients with MetS and healthy controls. We recruited 47 patients with MetS and 47 age and sex matched healthy controls. Anthropometric and biochemical measurements were performed, and serum betatrophin levels were detected by ELISA. Full-length betatrophin levels in patients with MetS were significantly higher than those in controls (694.84 ± 365.51 pg/ml versus 356.64 ± 287.92 pg/ml; P <0.001). While no significant difference of total betatrophin levels was found between the two groups (1.20 ± 0.79 ng/ml versus 1.31 ± 1.08 ng/ml; P = 0.524). Full-length betatrophin level was positively correlated with fasting plasma glucose (FPG) (r = 0.357, P = 0.014) and 2-hour plasma glucose (2hPG) (r = 0.38, P <0.01). Binary logistic regression models indicated that subjects in the tertile of the highest full-length betatrophin level experienced higher odds of having MetS (OR, 8.6; 95% CI 2.8-26.8; P <0.001). Our study showed that full-length betatrophin concentrations were increased in drug-naïve MetS patients.

  6. Metabolic side-effects of the novel second-generation antipsychotic drugs asenapine and iloperidone: a comparison with olanzapine.

    Directory of Open Access Journals (Sweden)

    Heidi N Boyda

    Full Text Available The second generation antipsychotic (SGA drugs are widely used in psychiatry due to their clinical efficacy and low incidence of neurological side-effects. However, many drugs in this class cause deleterious metabolic side-effects. Animal models accurately predict metabolic side-effects for SGAs with known clinical metabolic liability. We therefore used preclinical models to evaluate the metabolic side-effects of glucose intolerance and insulin resistance with the novel SGAs asenapine and iloperidone for the first time. Olanzapine was used as a comparator.Adults female rats were treated with asenapine (0.01, 0.05, 0.1, 0.5, 1.0 mg/kg, iloperidone (0.03, 0.5, 1.0, 5.0, 10.0 mg/kg or olanzapine (0.1, 0.5, 1.5, 5.0, 10.0 mg/kg and subjected to the glucose tolerance test (GTT. Separate groups of rats were treated with asenapine (0.1 and 1.0 mg/kg, iloperidone (1.0 and 10 mg/kg or olanzapine (1.5 and 15 mg/kg and tested for insulin resistance with the hyperinsulinemic-euglycemic clamp (HIEC.Asenapine showed no metabolic effects at any dose in either test. Iloperidone caused large and significant glucose intolerance with the three highest doses in the GTT, and insulin resistance with both doses in the HIEC. Olanzapine caused significant glucose intolerance with the three highest doses in the GTT, and insulin resistance with the higher dose in the HIEC.In preclinical models, asenapine shows negligible metabolic liability. By contrast, iloperidone exhibits substantial metabolic liability, comparable to olanzapine. These results emphasize the need for appropriate metabolic testing in patients treated with novel SGAs where current clinical data do not exist.

  7. Effects of Curcuma xanthorrhiza Extracts and Their Constituents on Phase II Drug-metabolizing Enzymes Activity

    Science.gov (United States)

    Salleh, Nurul Afifah Mohd; Ismail, Sabariah; Ab Halim, Mohd Rohaimi

    2016-01-01

    Background: Curcuma xanthorrhiza is a native Indonesian plant and traditionally utilized for a range of illness including liver damage, hypertension, diabetes, and cancer. Objective: The study determined the effects of C. xanthorrhiza extracts (ethanol and aqueous) and their constituents (curcumene and xanthorrhizol) on UDP-glucuronosyltransferase (UGT) and glutathione transferase (GST) activities. Materials and Methods: The inhibition studies were evaluated both in rat liver microsomes and in human recombinant UGT1A1 and UGT2B7 enzymes. p-nitrophenol and beetle luciferin were used as the probe substrates for UGT assay while 1-chloro-2,4-dinitrobenzene as the probe for GST assay. The concentrations of extracts studied ranged from 0.1 to 1000 μg/mL while for constituents ranged from 0.01 to 500 μM. Results: In rat liver microsomes, UGT activity was inhibited by the ethanol extract (IC50 =279.74 ± 16.33 μg/mL). Both UGT1A1 and UGT2B7 were inhibited by the ethanol and aqueous extracts with IC50 values ranging between 9.59–22.76 μg/mL and 110.71–526.65 μg/Ml, respectively. Rat liver GST and human GST Pi-1 were inhibited by ethanol and aqueous extracts, respectively (IC50 =255.00 ± 13.06 μg/mL and 580.80 ± 18.56 μg/mL). Xanthorrhizol was the better inhibitor of UGT1A1 (IC50 11.30 ± 0.27 μM) as compared to UGT2B7 while curcumene did not show any inhibition. For GST, both constituents did not show any inhibition. Conclusion: These findings suggest that C. xanthorrhiza have the potential to cause herb-drug interaction with drugs that are primarily metabolized by UGT and GST enzymes. SUMMARY Findings from this study would suggest which of Curcuma xanthorrhiza extracts and constituents that would have potential interactions with drugs which are highly metabolized by UGT and GST enzymes. Further clinical studies can then be designed if needed to evaluate the in vivo pharmacokinetic relevance of these interactions Abbreviations Used: BSA: Bovine serum albumin

  8. Hydrophilic Interaction Liquid Chromatography/Mass Spectrometry: An Attractive and Prospective Method for the Quantitative Bioanalysis in Drug Metabolism.

    Science.gov (United States)

    Li, Zheng; Han, Jie; Sun, Shi-an; Chen, Kai; Tang, Dao-quan

    2016-01-01

    During the development, dosage optimization and safety evaluation of a drug, rapid and precise monitoring of administered drug and/or its metabolites in biological samples including blood, plasma, serum, tissues and saliva are vital. As drug biotransformation produces more hydrophilic metabolites for the enhancement of drug elimination, which is often a challenge for traditional reversed-phase liquid chromatography (RPLC) separation. Because hydrophilic interaction liquid chromatography (HILIC) is capable of retaining polar compounds and readily compatible with mass spectrometry (MS), HILIC has been used as a complementary separation technique to RPLC for analysis of polar metabolites, especially polar drugs and their metabolites. This review covers core aspects of HILIC-MS/MS method and overall profile of its application in analysis of drug and/or its metabolites. The emphasis of this paper has been placed on the applications of HILIC-MS/MS method in quantitative bioanalysis of drugs alone or along with their metabolites in drug metabolism studies in recent years. As a fundamental and critical step of bioanalytical method, conventional sample preparation techniques of biological matrices for the HILIC-MS/MS analysis of drugs and/or their metabolites are also briefly featured.

  9. 75 FR 4576 - Veterinary Medicine Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-28

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Veterinary Medicine Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food an...

  10. 75 FR 65641 - Risk Communication Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2010-10-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Risk Communication Advisory Committee; Amendment of Notice AGENCY: Food and Drug Administration, HHS... meeting of the Risk Communication Advisory Committee. This meeting was announced in the Federal Register...

  11. 77 FR 62242 - Risk Communication Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-12

    ...] Risk Communication Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... Communication Advisory Committee. General Function of the Committee: To provide advice and recommendations to... Person: Lee L. Zwanziger, Risk Communication Staff, Office of Planning, Food and Drug Administration...

  12. 77 FR 31025 - Risk Communication Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-05-24

    ...] Risk Communication Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... Communication Advisory Committee. General Function of the Committee: To provide advice and recommendations to...: Lee L. Zwanziger, Risk Communication Staff, Office of Planning, Food and Drug Administration, 10903...

  13. 77 FR 70450 - Risk Communication Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-11-26

    ...] Risk Communication Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... Communication Advisory Committee. General Function of the Committee: To provide advice and recommendations to... 1. Contact Person: Lee L. Zwanziger, Risk Communication Staff, Food and Drug Administration, 10903...

  14. 78 FR 66011 - Allergenic Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-11-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Allergenic Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION... Administration (FDA). The meeting will be open to the public. Name of Committee: Allergenic Products Advisory...

  15. A Physiologically Based Pharmacokinetic Model for Pregnant Women to Predict the Pharmacokinetics of Drugs Metabolized Via Several Enzymatic Pathways.

    Science.gov (United States)

    Dallmann, André; Ince, Ibrahim; Coboeken, Katrin; Eissing, Thomas; Hempel, Georg

    2017-09-18

    Physiologically based pharmacokinetic modeling is considered a valuable tool for predicting pharmacokinetic changes in pregnancy to subsequently guide in-vivo pharmacokinetic trials in pregnant women. The objective of this study was to extend and verify a previously developed physiologically based pharmacokinetic model for pregnant women for the prediction of pharmacokinetics of drugs metabolized via several cytochrome P450 enzymes. Quantitative information on gestation-specific changes in enzyme activity available in the literature was incorporated in a pregnancy physiologically based pharmacokinetic model and the pharmacokinetics of eight drugs metabolized via one or multiple cytochrome P450 enzymes was predicted. The tested drugs were caffeine, midazolam, nifedipine, metoprolol, ondansetron, granisetron, diazepam, and metronidazole. Pharmacokinetic predictions were evaluated by comparison with in-vivo pharmacokinetic data obtained from the literature. The pregnancy physiologically based pharmacokinetic model successfully predicted the pharmacokinetics of all tested drugs. The observed pregnancy-induced pharmacokinetic changes were qualitatively and quantitatively reasonably well predicted for all drugs. Ninety-seven percent of the mean plasma concentrations predicted in pregnant women fell within a twofold error range and 63% within a 1.25-fold error range. For all drugs, the predicted area under the concentration-time curve was within a 1.25-fold error range. The presented pregnancy physiologically based pharmacokinetic model can quantitatively predict the pharmacokinetics of drugs that are metabolized via one or multiple cytochrome P450 enzymes by integrating prior knowledge of the pregnancy-related effect on these enzymes. This pregnancy physiologically based pharmacokinetic model may thus be used to identify potential exposure changes in pregnant women a priori and to eventually support informed decision making when clinical trials are designed in this

  16. CYP2C9 genotype vs. metabolic phenotype for individual drug dosing--a correlation analysis using flurbiprofen as probe drug.

    Directory of Open Access Journals (Sweden)

    Silvia Vogl

    Full Text Available Currently, genotyping of patients for polymorphic enzymes responsible for metabolic elimination is considered a possibility to adjust drug dose levels. For a patient to profit from this procedure, the interindividual differences in drug metabolism within one genotype should be smaller than those between different genotypes. We studied a large cohort of healthy young adults (283 subjects, correlating their CYP2C9 genotype to a simple phenotyping metric, using flurbiprofen as probe drug. Genotyping was conducted for CYP2C9*1, *2, *3. The urinary metabolic ratio MR (concentration of CYP2C9-dependent metabolite divided by concentration of flurbiprofen determined two hours after flurbiprofen (8.75 mg administration served as phenotyping metric. Linear statistical models correlating genotype and phenotype provided highly significant allele-specific MR estimates of 0.596 for the wild type allele CYP2C9*1, 0.405 for CYP2C9*2 (68 % of wild type, and 0.113 for CYP2C9*3 (19 % of wild type. If these estimates were used for flurbiprofen dose adjustment, taking 100 % for genotype *1/*1, an average reduction to 84 %, 60 %, 68 %, 43 %, and 19 % would result for genotype *1/*2, *1/*3, *2/*2, *2/*3, and *3/*3, respectively. Due to the large individual variation within genotypes with coefficients of variation ≥ 20 % and supposing the normal distribution, one in three individuals would be out of the average optimum dose by more than 20 %, one in 20 would be 40 % off. Whether this problem also applies to other CYPs and other drugs has to be investigated case by case. Our data for the given example, however, puts the benefit of individual drug dosing to question, if it is exclusively based on genotype.

  17. Metabolism

    Science.gov (United States)

    ... functions: Anabolism (uh-NAB-uh-liz-um), or constructive metabolism, is all about building and storing. It ... in infants and young children. Hypothyroidism slows body processes and causes fatigue (tiredness), slow heart rate, excessive ...

  18. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  19. Regulation of drug metabolism and toxicity by multiple factors of genetics, epigenetics, lncRNAs, gut microbiota, and diseases: a meeting report of the 21st International Symposium on Microsomes and Drug Oxidations (MDO

    Directory of Open Access Journals (Sweden)

    Ai-Ming Yu

    2017-03-01

    Full Text Available Variations in drug metabolism may alter drug efficacy and cause toxicity; better understanding of the mechanisms and risks shall help to practice precision medicine. At the 21st International Symposium on Microsomes and Drug Oxidations held in Davis, California, USA, in October 2–6, 2016, a number of speakers reported some new findings and ongoing studies on the regulation mechanisms behind variable drug metabolism and toxicity, and discussed potential implications to personalized medications. A considerably insightful overview was provided on genetic and epigenetic regulation of gene expression involved in drug absorption, distribution, metabolism, and excretion (ADME and drug response. Altered drug metabolism and disposition as well as molecular mechanisms among diseased and special populations were presented. In addition, the roles of gut microbiota in drug metabolism and toxicology as well as long non-coding RNAs in liver functions and diseases were discussed. These findings may offer new insights into improved understanding of ADME regulatory mechanisms and advance drug metabolism research.

  20. Novel Drug Targets for Food-Borne Pathogen Campylobacter jejuni: An Integrated Subtractive Genomics and Comparative Metabolic Pathway Study.

    Science.gov (United States)

    Mehla, Kusum; Ramana, Jayashree

    2015-07-01

    Campylobacters are a major global health burden and a cause of food-borne diarrheal illness and economic loss worldwide. In developing countries, Campylobacter infections are frequent in children under age two and may be associated with mortality. In developed countries, they are a common cause of bacterial diarrhea in early adulthood. In the United States, antibiotic resistance against Campylobacter is notably increased from 13% in 1997 to nearly 25% in 2011. Novel drug targets are urgently needed but remain a daunting task to accomplish. We suggest that omics-guided drug discovery is timely and worth considering in this context. The present study employed an integrated subtractive genomics and comparative metabolic pathway analysis approach. We identified 16 unique pathways from Campylobacter when compared against H. sapiens with 326 non-redundant proteins; 115 of these were found to be essential in the Database of Essential Genes. Sixty-six proteins among these were non-homologous to the human proteome. Six membrane proteins, of which four are transporters, have been proposed as potential vaccine candidates. Screening of 66 essential non-homologous proteins against DrugBank resulted in identification of 34 proteins with drug-ability potential, many of which play critical roles in bacterial growth and survival. Out of these, eight proteins had approved drug targets available in DrugBank, the majority serving crucial roles in cell wall synthesis and energy metabolism and therefore having the potential to be utilized as drug targets. We conclude by underscoring that screening against these proteins with inhibitors may aid in future discovery of novel therapeutics against campylobacteriosis in ways that will be pathogen specific, and thus have minimal toxic effect on host. Omics-guided drug discovery and bioinformatics analyses offer the broad potential for veritable advances in global health relevant novel therapeutics.

  1. Importância do metabolismo no planejamento de fármacos The importance of metabolism in drug design

    Directory of Open Access Journals (Sweden)

    Dárcio Gomes Pereira

    2007-02-01

    Full Text Available It is widely recognized that pharmacokinetic optimization needs to be addressed early in drug discovery to reduce the high failure rate in bringing drugs to market. Poor absorption, too short duration of action due to high elimination rate, or the presence of active metabolites are examples of properties that can potentially lead to unsuccessful clinical programmes. Here I describe a brief overview of advantages and molecular strategies for improving metabolic and pharmacokinetic properties applied to the discovery of fluconazol, beta-blockers, ritonavir and ezetimibe and to the development of the prodrugs enalapril and bambuterol.

  2. Dose-response effects of lycopene on selected drug-metabolizing and antioxidant enzymes in the rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S. T.; Daneshvar, B.

    2000-01-01

    enzymes involved in the protection against oxidative stress and cancer. The fact that these enzymatic activities are induced at all of these very low plasma levels, could be taken to suggest that modulation of antioxidant and drug-metabolizing enzymes map indeed be relevant to humans, which in general......The administration of lycopene to female rats at doses ranging from 0.001 to 0.1 g/kg b.w, per day for 2 weeks was found to alter the drug-metabolizing capacity and antioxidant status of the exposed animals. An investigation of four cytochrome P450-dependent enzymes revealed that benzyloxyresorufin...... is barely within the lower range of the mean human plasma concentration of lycopene, which ranges from 70-1790 nM. Oxidative stress induced by the heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP), and investigated by analyzing for malondialdehyde in plasma, was not found...

  3. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.

    Science.gov (United States)

    Uddin, Reaz; Sufian, Muhammad

    2016-01-01

    Infections caused by Salmonella enterica, a Gram-negative facultative anaerobic bacteria belonging to the family of Enterobacteriaceae, are major threats to the health of humans and animals. The recent availability of complete genome data of pathogenic strains of the S. enterica gives new avenues for the identification of drug targets and drug candidates. We have used the genomic and metabolic pathway data to identify pathways and proteins essential to the pathogen and absent from the host. We took the whole proteome sequence data of 42 strains of S. enterica and Homo sapiens along with KEGG-annotated metabolic pathway data, clustered proteins sequences using CD-HIT, identified essential genes using DEG database and discarded S. enterica homologs of human proteins in unique metabolic pathways (UMPs) and characterized hypothetical proteins with SVM-prot and InterProScan. Through this core proteomic analysis we have identified enzymes essential to the pathogen. The identification of 73 enzymes common in 42 strains of S. enterica is the real strength of the current study. We proposed all 73 unexplored enzymes as potential drug targets against the infections caused by the S. enterica. The study is comprehensive around S. enterica and simultaneously considered every possible pathogenic strain of S. enterica. This comprehensiveness turned the current study significant since, to the best of our knowledge it is the first subtractive core proteomic analysis of the unique metabolic pathways applied to any pathogen for the identification of drug targets. We applied extensive computational methods to shortlist few potential drug targets considering the druggability criteria e.g. Non-homologous to the human host, essential to the pathogen and playing significant role in essential metabolic pathways of the pathogen (i.e. S. enterica). In the current study, the subtractive proteomics through a novel approach was applied i.e. by considering only proteins of the unique metabolic

  4. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting.

    Directory of Open Access Journals (Sweden)

    Alyaa M Abdel-Haleem

    2018-01-01

    Full Text Available Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale metabolic models (GeMMs of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1, choline, and pantothenate (vitamin B5 metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  5. Cancer therapy leading to state of cancer metabolism depression for efficient operation of small dosage cytotoxic drugs

    Directory of Open Access Journals (Sweden)

    Ponizovskiy MR

    2015-04-01

    Full Text Available “Prolonged medical starvation” as the method of cancer therapy was borrowed from folk healers Omelchenko A and Breuss R. Author was convinced in efficiency of this method of cancer treatment via examination of cured patients and on own experience. The mechanism of this method of cancer therapy operates via Warburg effect targeting that promotes efficient cancer treatment with small cytotoxic drugs. Just it was described the mechanism of Warburg effect as well as mechanism transmutation of mitochondrial function in cancer metabolism which are exhibited in connection with operation of described method cancer therapy. There were described the biochemical and biophysical mechanisms of formations resistance to some cytotoxic drugs and recurrence cancer disease after disease remission which occur sometimes as result of treatment with great dosage of cytotoxic drugs. Also it was described the benefits of use the method “Prolonged medical starvation” with decreased dosage of cytotoxic drugs for cancer treatment. The significance of this work that it was substantiated the mechanism operation of combination “Prolonged medical starvation” with small dosages cytotoxic drugs of cancer treatment, which mechanism leads to prevention recurrence cancer disease and resistance to anticancer drugs in comparison with intensive anticancer chemotherapy with great dosages of cytotoxic drugs in cancer therapy. Also the offered concepts of cancer therapy mechanism gave possibility to explain mechanisms of some results of experiments eliminating the doubts of the authors these experiments.

  6. In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin.

    Science.gov (United States)

    Ntie-Kang, Fidele; Lifongo, Lydia L; Mbah, James A; Owono Owono, Luc C; Megnassan, Eugene; Mbaze, Luc Meva'a; Judson, Philip N; Sippl, Wolfgang; Efange, Simon M N

    2013-01-01

    Drug metabolism and pharmacokinetics (DMPK) assessment has come to occupy a place of interest during the early stages of drug discovery today. The use of computer modelling to predict the DMPK and toxicity properties of a natural product library derived from medicinal plants from Central Africa (named ConMedNP). Material from some of the plant sources are currently employed in African Traditional Medicine. Computer-based methods are slowly gaining ground in this area and are often used as preliminary criteria for the elimination of compounds likely to present uninteresting pharmacokinetic profiles and unacceptable levels of toxicity from the list of potential drug candidates, hence cutting down the cost of discovery of a drug. In the present study, we present an in silico assessment of the DMPK and toxicity profile of a natural product library containing ~3,200 compounds, derived from 379 species of medicinal plants from 10 countries in the Congo Basin forests and savannas, which have been published in the literature. In this analysis, we have used 46 computed physico-chemical properties or molecular descriptors to predict the absorption, distribution, metabolism and elimination and toxicity (ADMET) of the compounds. This survey demonstrated that about 45% of the compounds within the ConMedNP compound library are compliant, having properties which fall within the range of ADME properties of 95% of currently known drugs, while about 69% of the compounds have ≤ 2 violations. Moreover, about 73% of the compounds within the corresponding "drug-like" subset showed compliance. In addition to the verified levels of "drug-likeness", diversity and the wide range of measured biological activities, the compounds from medicinal plants in Central Africa show interesting DMPK profiles and hence could represent an important starting point for hit/lead discovery.

  7. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model

    International Nuclear Information System (INIS)

    Chang, Robert; Sun Wei; Emami, Kamal; Wu Honglu

    2010-01-01

    In their normal in vivo matrix milieu, tissues assume complex well-organized three-dimensional architectures. Therefore, the primary aim in the tissue engineering design process is to fabricate an optimal analog of the in vivo scenario. This challenge can be addressed by applying emerging layered biofabrication approaches in which the precise configuration and composition of cells and bioactive matrix components can recapitulate the well-defined three-dimensional biomimetic microenvironments that promote cell-cell and cell-matrix interactions. Furthermore, the advent of and refinements in microfabricated systems can present physical and chemical cues to cells in a controllable and reproducible fashion unmatched with conventional cultures, resulting in the precise construction of engineered biomimetic microenvironments on the cellular length scale in geometries that are readily parallelized for high throughput in vitro models. As such, the convergence of layered solid freeform fabrication (SFF) technologies along with microfabrication techniques enables the creation of a three-dimensional micro-organ device to serve as an in vitro platform for cell culture, drug screening or to elicit further biological insights, particularly for NASA's interest in a flight-suitable high-fidelity microscale platform to study drug metabolism in space and planetary environments. The proposed model in this paper involves the combinatorial setup of an automated syringe-based, layered direct cell writing bioprinting process with micro-patterning techniques to fabricate a microscale in vitro device housing a chamber of bioprinted three-dimensional liver cell-encapsulated hydrogel-based tissue constructs in defined design patterns that biomimic the cell's natural microenvironment for enhanced biological functionality. In order to assess the structural formability and biological feasibility of such a micro-organ, reproducibly fabricated tissue constructs were biologically characterized for

  8. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... Adolescent Brain Comorbidity College-Age & Young Adults Criminal Justice Drugged Driving Drug Testing Drugs and the Brain ... Meetings & Events Media Guide About NIDA Director's Page Organization Legislative Activities Advisory Boards & Groups Working at NIDA ...

  9. Trends in Mode of Hysterectomy After the U.S. Food and Drug Administration Power Morcellation Advisory.

    Science.gov (United States)

    Ottarsdottir, Helga; Cohen, Sarah L; Cox, Mary; Vitonis, Allison; Einarsson, Jon I

    2017-06-01

    To evaluate the trends in mode of surgery for benign hysterectomy after the 2014 U.S. Food and Drug Administration (FDA) morcellation guidelines. This is a retrospective review of all patients who underwent a hysterectomy for benign indications, specifically for leiomyomas, at Brigham and Women's Hospital from 2013 to 2015. The rates of abdominal, vaginal, laparoscopic, and robotic-assisted laparoscopic hysterectomy as well as the perioperative outcomes were compared over the study period. Analysis was performed using multivariable linear, multinomial, and logistic regression. Regression models were adjusted for potential confounders. From 2013 to 2015, 1,530 patients underwent a hysterectomy for benign indications and 639 patients underwent the procedure for the indication of uterine leiomyomas; there was a decrease in the number of hysterectomy cases in the later years. Focusing on the patients with leiomyomas alone, there was a 40-60% decreased odds of a minimally invasive procedure in 2014 or 2015 compared with 2013 [adjusted odds ratio (OR) 0.53 (0.29-0.97) in 2014 and adjusted OR 0.40 (0.22-0.74) in 2015, P=.003]. A 24% decrease in the supracervical approach to hysterectomy was also noted. Despite these trends, the majority of cases in each year were still performed in a minimally invasive fashion. The factor most strongly associated with undergoing a minimally invasive hysterectomy was having a fellowship-trained surgeon perform the procedure [adjusted OR 6.80 (3.65-12.7), P<.001]. There was no significant difference between the year of surgery and occurrence of intraoperative complications or reoperation. Although key perioperative outcomes remained similar, the overall rate of minimally invasive surgery declined at our institution after the FDA's recommendations. With changing practice patterns and vigilance surrounding power morcellation, gynecologic surgeons may still offer patients minimally invasive procedures with all of the accompanying advantages.

  10. Effects of resveratrol on drug? and carcinogen?metabolizing enzymes, implications for cancer prevention

    OpenAIRE

    Guthrie, Ariane R.; Chow, H?H. Sherry; Martinez, Jessica A.

    2017-01-01

    Abstract Resveratrol is a polyphenol found in grape skins and peanuts that has demonstrated many health benefits including protection against aging, cardiovascular and metabolic disease, neurological decline, and cancer. The anticancer properties of resveratrol have been attributed to a variety of mechanisms, including its general inhibition of phase I metabolism and induction of phase II metabolism. The effects of resveratrol on these enzymes, however, are still unclear, as in?vitro evidence...

  11. Allosteric regulation of metabolism in cancer: endogenous mechanisms and considerations for drug design.

    Science.gov (United States)

    Macpherson, Jamie A; Anastasiou, Dimitrios

    2017-12-01

    Alterations in metabolic processes have been linked to various diseases, including cancer. Although gene expression can dictate long-term metabolic adaptation, many metabolic changes found in cancer are associated with altered allosteric properties of the underlying enzymes. Small molecule-protein interactions and intracellular signalling converge to orchestrate these allosteric mechanisms, which, emerging evidence suggests, constitute a promising therapeutic avenue. In this review we focus on glucose and energy metabolism to illustrate the role of allostery in cancer physiology and we discuss approaches to streamline the process of targeting aberrant allosteric pathways with small molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets.

    Science.gov (United States)

    Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula

    2016-08-20

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility.

    Science.gov (United States)

    Enright, Elaine F; Joyce, Susan A; Gahan, Cormac G M; Griffin, Brendan T

    2017-04-03

    In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration-dependent. Our studies herein indicate that bile acid modifications occurring at the host-microbe interface could lead to alterations in the capacity of intestinal bile salt micelles to solubilize drugs

  14. Structural and functional study of YER067W, a new protein involved in yeast metabolism control and drug resistance.

    Directory of Open Access Journals (Sweden)

    Tatiana Domitrovic

    2010-06-01

    Full Text Available The genome of Saccharomyces cerevisiae is arguably the best studied eukaryotic genome, and yet, it contains approximately 1000 genes that are still relatively uncharacterized. As the majority of these ORFs have no homologs with characterized sequence or protein structure, traditional sequence-based approaches cannot be applied to deduce their biological function. Here, we characterize YER067W, a conserved gene of unknown function that is strongly induced in response to many stress conditions and repressed in drug resistant yeast strains. Gene expression patterns of YER067W and its paralog YIL057C suggest an involvement in energy metabolism. We show that yeast lacking YER067W display altered levels of reserve carbohydrates and a growth deficiency in media that requires aerobic metabolism. Impaired mitochondrial function and overall reduction of ergosterol content in the YER067W deleted strain explained the observed 2- and 4-fold increase in resistance to the drugs fluconazole and amphotericin B, respectively. Cell fractionation and immunofluorescence microscopy revealed that Yer067w is associated with cellular membranes despite the absence of a transmembrane domain in the protein. Finally, the 1.7 A resolution crystal structure of Yer067w shows an alpha-beta fold with low similarity to known structures and a putative functional site.YER067W's involvement with aerobic energetic metabolism suggests the assignment of the gene name RGI1, standing for respiratory growth induced 1. Altogether, the results shed light on a previously uncharacterized protein family and provide basis for further studies of its apparent role in energy metabolism control and drug resistance.

  15. Pharmacokinetic evaluation of UK-49,858, a metabolically stable triazole antifungal drug, in animals and humans.

    Science.gov (United States)

    Humphrey, M J; Jevons, S; Tarbit, M H

    1985-11-01

    The pharmacokinetic profile of UK-49,858 (fluconazole), a novel triazole antifungal agent which is being developed for oral and intravenous use, was determined in mice, rats, dogs, and humans. Comparative data following oral and intravenous administration showed that bioavailability was essentially complete in all four species. Peak concentrations in plasma of drug normalized to a 1-mg/kg dose level following oral administration, were relatively high: 0.7, 0.6, 1.1, and 1.4 micrograms/ml in mice, rats, dogs, and humans, respectively. The volumes of distribution ranged between 1.1 liter/kg in mice and 0.7 liter/kg in humans, which are approximate to the values for total body water. Whole body autoradiography studies in mice following intravenous administration of [14C]UK-49,858 demonstrated that the drug was evenly distributed throughout the tissues, including the central nervous system and the gastrointestinal tract. Plasma protein binding was low (11 to 12%) in all species. Marked species differences were observed in elimination half-lives, with mean values of 4.8, 4.0, 14, and 22 h in mice, rats, dogs, and humans, respectively. The major route of elimination of the drug was renal clearance, with about 70% of the dose being excreted unchanged in the urine in each species. Studies with [14C]UK-49,858 on metabolism and excretion (intravenous and oral) in mice and dogs showed that about 90% of the dose was recovered as unchanged drug in urine and feces, confirming the metabolic stability of the drug. This pharmacokinetic profile is markedly different from that of imidazole antifungal drugs and undoubtedly contributes to the excellent efficacy of UK-49,858 in vivo.

  16. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function

    DEFF Research Database (Denmark)

    Yang, Jason H.; Bhargava, Prerna; McCloskey, Douglas

    2017-01-01

    Bactericidal antibiotics alter microbial metabolism as part of their lethality and can damage mitochondria in mammalian cells. In addition, antibiotic susceptibility is sensitive to extracellular metabolites, but it remains unknown whether metabolites present at an infection site can affect eithe...... the immunomodulatory potential of antibiotics and reveal the local metabolic microenvironment to be an important determinant of infection resolution....

  17. The Metabolic Inhibition Model Which Predicts the Intestinal Absorbability and Metabolizability of Drug: Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Mizuma Takashi

    1998-01-01

    Full Text Available The intestinal absorption of analgesic peptides (leucine enkephalin and kyotorphin and modified peptides in rat were studied. Although these peptides were not absorbed, the absorbability (absorption clearance of these peptides were increased in the presence of peptidase inhibitors. In order to kinetically analyze these phenomena, we proposed the metabolic inhibition model, which incorporated the metabolic clearance (metabolizability with the absorption clearance. Metabolic activity was determined with intestinal homogenates. The higher the metabolic clearance was, the lower was the absorption clearance. The relationships between the absorption clearance and the metabolic clearance of the experimental data as well as of the theoretical values were hyperbolic. This model predicted the maximum absorption clearances of cellobiose-coupled leucine enkephalin (0.654 &mgr;l/min/cm and kyotorphin (0.247 &mgr;l/min/cm. Details of the experimental methods are described.

  18. ecoAO: A Simple System for the Study of Human Aldehyde Oxidases Role in Drug Metabolism.

    Science.gov (United States)

    Paragas, Erickson M; Humphreys, Sara C; Min, Joshua; Joswig-Jones, Carolyn A; Leimkühler, Silke; Jones, Jeffrey P

    2017-08-31

    Although aldehyde oxidase (AO) is an important hepatic drug-metabolizing enzyme, it remains understudied and is consequently often overlooked in preclinical studies, an oversight that has resulted in the failure of multiple clinical trials. AO's preclusion to investigation stems from the following: (1) difficulties synthesizing metabolic standards due to the chemospecificity and regiospecificity of the enzyme and (2) significant inherent variability across existing in vitro systems including liver cytosol, S9 fractions, and primary hepatocytes, which lack specificity and generate discordant expression and activity profiles. Here, we describe a practical bacterial biotransformation system, ecoAO, addressing both issues simultaneously. ecoAO is a cell paste of MoCo-producing Escherichia coli strain TP1017 expressing human AO. It exhibits specific activity toward known substrates, zoniporide, 4- trans -( N , N -dimethylamino)cinnamaldehyde, O 6 -benzylguanine, and zaleplon; it also has utility as a biocatalyst, yielding milligram quantities of synthetically challenging metabolite standards such as 2-oxo-zoniporide. Moreover, ecoAO enables routine determination of k cat and V / K , which are essential parameters for accurate in vivo clearance predictions. Furthermore, ecoAO has potential as a preclinical in vitro screening tool for AO activity, as demonstrated by its metabolism of 3-aminoquinoline, a previously uncharacterized substrate. ecoAO promises to provide easy access to metabolites with the potential to improve pharmacokinetic clearance predictions and guide drug development.

  19. Andrographis paniculata Extract and Andrographolide Modulate the Hepatic Drug Metabolism System and Plasma Tolbutamide Concentrations in Rats

    Directory of Open Access Journals (Sweden)

    Haw-Wen Chen

    2013-01-01

    Full Text Available Andrographolide is the most abundant terpenoid of A. paniculata which is used in the treatment of diabetes. In this study, we investigated the effects of A. paniculata extract (APE and andrographolide on the expression of drug-metabolizing enzymes in rat liver and determined whether modulation of these enzymes changed the pharmacokinetics of tolbutamide. Rats were intragastrically dosed with 2 g/kg/day APE or 50 mg/kg/day andrographolide for 5 days before a dose of 20 mg/kg tolbutamide was given. APE and andrographolide reduced the AUC0–12 h of tolbutamide by 37% and 18%, respectively, compared with that in controls. The protein and mRNA levels and enzyme activities of CYP2C6/11, CYP1A1/2, and CYP3A1/2 were increased by APE and andrographolide. To evaluate whether APE or andrographolide affected the hypoglycemic action of tolbutamide, high-fat diet-induced obese mice were used and treated in the same manner as the rats. APE and andrographolide increased CYP2C6/11 expression and decreased plasma tolbutamide levels. In a glucose tolerance test, however, the hypoglycemic effect of tolbutamide was not changed by APE or andrographolide. These results suggest that APE and andrographolide accelerate the metabolism rate of tolbutamide through increased expression and activity of drug-metabolizing enzymes. APE and andrographolide, however, do not impair the hypoglycemic effect of tolbutamide.

  20. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting

    KAUST Repository

    Abdel-Haleem, Alyaa M.

    2018-01-04

    Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale models (GEMs) of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1), choline, and pantothenate (vitamin B5) metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  1. Application of isolated hepatocytes to studies of drug metabolism in large food animals.

    Science.gov (United States)

    Shull, L R; Kirsch, D G; Lohse, C L; Wisniewski, J A

    1987-03-01

    A definitive hazard assessment of xenobiotics translocated through food animals into edible products such as meat or milk requires a complete analysis of metabolism in food animals. However, large animal metabolism studies present many experimental difficulties. None of several in vitro alternatives such as subcellular fractions has been established as an acceptable predictor of in vivo metabolism. The feasibility of using isolated hepatocytes to predict the metabolism of xenobiotics, both quantitatively and qualitatively, in large ruminant animals (e.g. cattle) is being studied in our laboratory. A procedure was developed for isolating hepatocytes aseptically from the caudate process of the liver which was obtained surgically from 100-125 kg calves. A modified two-step vascular perfusion procedure provides hepatocyte suspensions that are typically greater than or equal to 85% viable and greater than or equal to 1 X 10(7) viable hepatocytes/g of liver (wet wt). Xenobiotic metabolism has been evaluated in suspensions and primary cultures using aldrin epoxidation, ethoxycoumarin O-deethylation, and 7-hydroxycoumarin glucuronidation and sulfation. Metabolic activities are relatively short-lived in suspensions less than or equal to 4 h, but quite stable up to 10 h when cultured on collagen-coated plates in chemically defined medium. Bovine hepatocytes behave similarly in culture to rodent hepatocytes. Although primary culturing of hepatocytes is more difficult than suspensions, primarily due to the asepsis requirements, it is the method of choice for xenobiotic metabolism determinations in isolated hepatocytes of cattle.

  2. 77 FR 65693 - Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2012-10-30

    ...] Cellular, Tissue and Gene Therapies Advisory Committee; Amendment of Notice AGENCY: Food and Drug... notice of a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee. This meeting was... announced that a meeting of the Cellular, Tissue and Gene Therapies Advisory Committee would be held on...

  3. Combining Potent Statin Therapy with Other Drugs to Optimize Simultaneous Cardiovascular and Metabolic Benefits while Minimizing Adverse Events.

    Science.gov (United States)

    Koh, Kwang Kon; Sakuma, Ichiro; Shimada, Kazunori; Hayashi, Toshio; Quon, Michael J

    2017-07-01

    Hypercholesterolemia and hypertension are among the most important risk factors for cardiovascular (CV) disease. They are also important contributors to metabolic diseases including diabetes that further increase CV risk. Updated guidelines emphasize targeted reduction of overall CV risks but do not explicitly incorporate potential adverse metabolic outcomes that also influence CV health. Hypercholesterolemia and hypertension have synergistic deleterious effects on interrelated insulin resistance and endothelial dysfunction. Dysregulation of the renin-angiotensin system is an important pathophysiological mechanism linking insulin resistance and endothelial dysfunction to atherogenesis. Statins are the reference standard treatment to prevent CV disease in patients with hypercholesterolemia. Statins work best for secondary CV prevention. Unfortunately, most statin therapies dose-dependently cause insulin resistance, increase new onset diabetes risk and exacerbate existing type 2 diabetes mellitus. Pravastatin is often too weak to achieve target low-density lipoprotein cholesterol levels despite having beneficial metabolic actions. Renin-angiotensin system inhibitors improve both endothelial dysfunction and insulin resistance in addition to controlling blood pressure. In this regard, combined statin-based and renin-angiotensin system (RAS) inhibitor therapies demonstrate additive/synergistic beneficial effects on endothelial dysfunction, insulin resistance, and other metabolic parameters in addition to lowering both cholesterol levels and blood pressure. This combined therapy simultaneously reduces CV events when compared to either drug type used as monotherapy. This is mediated by both separate and interrelated mechanisms. Therefore, statin-based therapy combined with RAS inhibitors is important for developing optimal management strategies in patients with hypertension, hypercholesterolemia, diabetes, metabolic syndrome, or obesity. This combined therapy can help

  4. Hepatocytes--the choice to investigate drug metabolism and toxicity in man: in vitro variability as a reflection of in vivo.

    Science.gov (United States)

    Gómez-Lechón, María José; Castell, José Vicente; Donato, María Teresa

    2007-05-20

    The pharmaceutical industry is committed to marketing safer drugs with fewer side effects, predictable pharmacokinetic properties and quantifiable drug-drug interactions. Drug metabolism is a major determinant of drug clearance and interindividual pharmacokinetic differences, and an indirect determinant of the clinical efficacy and toxicity of drugs. Progressive advances in the knowledge of metabolic routes and enzymes responsible for drug biotransformation have contributed to understanding the great metabolic variations existing in human beings. Phenotypic as well genotypic differences in the expression of the enzymes involved in drug metabolism are the main causes of this variability. However, only a minor part of phenotypic variability in man is attributable to gene polymorphisms, thus making the definition of a normal liver complex. At present, the use of human in vitro hepatic models at early preclinical stages means that the process of selecting drug candidates is becoming much more rational. Cultured human hepatocytes are considered to be the closest model to human liver. However, the fact that hepatocytes are located in a microenvironment that differs from that of the cell in the liver raises the question: to what extent does drug metabolism variability observed in vitro actually reflect that of the liver in vivo? By comparing the metabolism of a model compound both in vitro and in vivo in the same individual, a good correlation between the in vitro and in vivo relative abundance of oxidized metabolites and the hydrolysis of the compound was observed. Thus, it is reasonable to consider that the variability observed in human hepatocytes reflects the existing phenotypic heterogeneity of the P450 expression in human liver.

  5. Paradigm shift - Metabolic transformation of docosahexaenoic and eicosapentaenoic acids to bioactives exemplify the promise of fatty acid drug discovery.

    Science.gov (United States)

    Halade, Ganesh V; Black, Laurence M; Verma, Mahendra Kumar

    2018-02-28

    Fatty acid drug discovery (FADD) is defined as the identification of novel, specialized bioactive mediators that are derived from fatty acids and have precise pharmacological/therapeutic potential. A number of reports indicate that dietary intake of omega-3 fatty acids and limited intake of omega-6 promotes overall health benefits. In 1929, Burr and Burr indicated the significant role of essential fatty acids for survival and functional health of many organs. In reference to specific dietary benefits of differential omega-3 fatty acids, docosahexaenoic and eicosapentaenoic acids (DHA and EPA) are transformed to monohydroxy, dihydroxy, trihydroxy, and other complex mediators during infection, injury, and exercise to resolve inflammation. The presented FADD approach describes the metabolic transformation of DHA and EPA in response to injury, infection, and exercise to govern uncontrolled inflammation. Metabolic transformation of DHA and EPA into a number of pro-resolving molecules exemplifies a novel, inexpensive approach compared to traditional, expensive drug discovery. DHA and EPA have been recommended for prevention of cardiovascular disease since 1970. Therefore, the FADD approach is relevant to cardiovascular disease and resolution of inflammation in many injury models. Future research demands identification of novel action targets, receptors for biomolecules, mechanism(s), and drug-interactions with resolvins in order to maintain homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. EFFECTS OF METABOLIC DRUG ELTACINE ON CLINICAL, FUNCTIONAL AND BIOCHEMICAL INDICES IN PATIENTS WITH CHRONIC HEART FAILURE

    Directory of Open Access Journals (Sweden)

    R. M. Zaslavskaya

    2015-12-01

    Full Text Available Aim. To study clinical efficacy of a new domestic metabolic drug Eltacine in patients with chronic heart failure (CHF.Material and methods. 134 patients with CHF of I-III functional classes were randomized in two parallel groups of patients receiving Eltacine or placebo additionally to standard therapy. Common clinical and laboratory investigations were used as well as 6-minute-walking test and Echocardiography. Besides Holter monitoring with determination of heart rate variability, peroxidal oxidation of lipids (POL and cell anti-oxidant protection were implemented.Results. Eltacine increased in tolerance to physical burden, improved cardiac haemodynamics, parameters of POL and cell anti-oxidant protection, improved the patient quality of life.Conclusion. The efficacy and safety of Eltacine as metabolic and antioxidant therapy was shown in patients with CHF.

  7. EFFECTS OF METABOLIC DRUG ELTACINE ON CLINICAL, FUNCTIONAL AND BIOCHEMICAL INDICES IN PATIENTS WITH CHRONIC HEART FAILURE

    Directory of Open Access Journals (Sweden)

    R. M. Zaslavskaya

    2007-01-01

    Full Text Available Aim. To study clinical efficacy of a new domestic metabolic drug Eltacine in patients with chronic heart failure (CHF.Material and methods. 134 patients with CHF of I-III functional classes were randomized in two parallel groups of patients receiving Eltacine or placebo additionally to standard therapy. Common clinical and laboratory investigations were used as well as 6-minute-walking test and Echocardiography. Besides Holter monitoring with determination of heart rate variability, peroxidal oxidation of lipids (POL and cell anti-oxidant protection were implemented.Results. Eltacine increased in tolerance to physical burden, improved cardiac haemodynamics, parameters of POL and cell anti-oxidant protection, improved the patient quality of life.Conclusion. The efficacy and safety of Eltacine as metabolic and antioxidant therapy was shown in patients with CHF.

  8. Manidipine: an antihypertensive drug with positive effects on metabolic parameters and adrenergic tone in patients with diabetes

    Directory of Open Access Journals (Sweden)

    Margarita SaizSatjes

    2018-01-01

    Full Text Available Antihypertensive treatment of patients with diabetes should include those drugs with a positive effect on metabolic parameters. Most patients with diabetes require at least two antihypertensive agents. Combining a dihydropyridine calcium channel blocker with a renin-angiotensin-aldosterone system inhibitor is a rational approach. However, not all dihydropyridines are equal with respect to their effects on metabolic parameters. Thus, manidipine exerts a positive effect on insulin resistance. However, this effect has not been observed with amlodipine. On the other hand, the excessive activation of sympathetic nervous system has been related with an increase of insulin resistance, pulse pressure, and ankle edema rates. Compared with amlodipine, manidipine activates sympathetic nervous system to a lesser extent. As a result, treatment with manidipine represents a good option in hypertensive patients with diabetes.

  9. Consumption of poisonous plants (Senecio jacobaea, Symphytum officinale, Pteridium aquilinum, Hypericum perforatum) by rats: chronic toxicity, mineral metabolism, and hepatic drug-metabolizing enzymes.

    Science.gov (United States)

    Garrett, B J; Cheeke, P R; Miranda, C L; Goeger, D E; Buhler, D R

    1982-02-01

    Effect of dietary tancy ragwort (Senecio jacobaea), comfrey (Symphytum officinale), bracken (Pteridium aquilinum) and alfalfa (Medicago sativa) on hepatic drug-metabolizing enzymes in rats were measured. Tansy ragwort and bracken increased (P less than 0.05) the activity of glutathione transferase and epoxide hydrolase. Comfrey and alfalfa increased (P less than 0.05) the activity of aminopyrine N-demethylase. Feeding bracken or St. John's wort (Hypericum perforatum) in conjunction with tansy ragwort did not influence chronic toxicity of tansy ragwort as assessed by rat survival time. Dietary tansy ragwort resulted in increased (P less than 0.05) hepatic copper levels; the other plants did not affect copper levels. The results do not suggest any major interaction in the toxicity of tansy ragwort with bracken or St. John's wort.

  10. Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4

    Science.gov (United States)

    Ande, Anusha; Wang, Lei; Vaidya, Naveen K.; Li, Weihua; Kumar, Santosh; Kumar, Anil

    2016-01-01

    Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir

  11. 75 FR 57279 - Risk Communication Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-09-20

    ...] Risk Communication Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... Communication Advisory Committee. General Function of the Committee: To provide advice and recommendations to... Committee will hear and discuss developments in FDA's ongoing communications programs, such as FDA's...

  12. 76 FR 16427 - Risk Communication Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-23

    ...] Risk Communication Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... Communication Advisory Committee. General Function of the Committee: To provide advice and recommendations to... discuss developments in FDA's ongoing communications programs. The discussion will focus on the use of...

  13. 75 FR 20608 - Risk Communication Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-20

    ...] Risk Communication Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS... Communication Advisory Committee. General Function of the Committee: To provide advice and recommendations to... relevant to improving risk communication at FDA, and discuss applications or gaps for strategic planning of...

  14. 76 FR 29767 - Arthritis Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-05-23

    ... HUMAN SERVICES Food and Drug Administration Arthritis Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Arthritis Advisory Committee. General Function of the Committee: To provide advice and... arthritis attacks. ILARIS has also been shown to extend the time to the next attack and reduce the frequency...

  15. 75 FR 55805 - Arthritis Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-09-14

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Arthritis Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Arthritis Advisory Committee. General Function of the Committee: To provide advice and...

  16. 77 FR 64524 - Arthritis Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-10-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Arthritis Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Arthritis Advisory Committee. General Function of the Committee: To provide advice and...

  17. 77 FR 14529 - Arthritis Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-03-12

    ... HUMAN SERVICES Food and Drug Administration Arthritis Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Arthritis Advisory Committee. General Function of the Committee: To provide advice and... moderately to severely active rheumatoid arthritis who have had an inadequate response to one or more disease...

  18. 78 FR 32403 - Arthritis Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-30

    ... HUMAN SERVICES Food and Drug Administration Arthritis Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Arthritis Advisory Committee. General Function of the Committee: To provide advice and... meeting. Agenda: On July 22, 2013, the committee will discuss the Assessment of SpondyloArthritis...

  19. 77 FR 13611 - Arthritis Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-03-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Arthritis Advisory Committee; Notice of Meeting AGENCY: Food... of Committee: Arthritis Advisory Committee. General Function of the Committee: To provide advice and...

  20. Development of an in vitro assay for the investigation of metabolism-induced drug hepatotoxicity

    DEFF Research Database (Denmark)

    Otto, Marie; Hansen, Steen Honore'; Dalgaard, L.

    2008-01-01

    the cytotoxicity of diclofenac was increased by S9 enzymes when an NADPH regenerating system was used. The increased toxicity was NADPH dependent. Reactive drug metabolites of diclofenac, formed by NADPH-dependent metabolism, were identified by LC-MS. Furthermore, an increase in toxicity, not related to enzymatic...... activity but to G6P, was observed for diclofenac and minocycline. Tacrine and amodiaquine displayed decreased toxicity with S9-mix, and carbamazepine, phenytoin, bromfenac and troglitazone were nontoxic at all tested concentrations, with or without S9-mix. The results show that this method...

  1. Possible drug-metabolism interactions of medicinal herbs with antiretroviral agents.

    NARCIS (Netherlands)

    Beukel, C.J.P. van den; Koopmans †, P.P.; Ven, A.J.A.M. van der; Smet, P.A.G.M. de; Burger, D.M.

    2006-01-01

    Herbal medicines are widely used by HIV patients. Several herbal medicines have been shown to interact with antiretroviral drugs, which might lead to drug failure. We have aimed to provide an overview of the modulating effects of Western and African herbal medicines on antiretroviral

  2. Ex vivo preparations of human tissue for drug metabolism, toxicity and transport

    NARCIS (Netherlands)

    Groothuis, Genoveva

    2012-01-01

    Before new drugs are allowed on the market, their safety and metabolite profile should be extensively tested, as often reactive metabolites are the ultimate toxicant. The exposure of the target cell to the drug and its metabolites is determined by the expression levels of the transporters and the

  3. Development of Metabolic Syndrome in Drug-Naive Adolescents After 12 Months of Second-Generation Antipsychotic Treatment

    DEFF Research Database (Denmark)

    Sjo, Christina Power; Stenstrøm, Anne Dorte; Bojesen, Anders Bo

    2017-01-01

    if obesity or metabolic aberration starts in childhood or adolescence. METHODS: Drug-naive adolescents were recruited after contact with an outpatient Psychosis Team. Changes relative to baseline in body mass index (BMI), waist circumference (WC), blood pressure (BP), fasting blood glucose (FBG...... months the participants' BMI had increased from 0.5 to 1.57 standard deviation (SD) above the 50th percentile for age and gender (p = 0.0001). CONCLUSION: To our knowledge, this is the first study to include all the aspects of MetS in a sample of drug-naive adolescents followed over the first 12 months...... after starting SGA treatment. A significant shift in all parameters (except BP) toward MetS was found, presumably due to SGA use. Therefore, these adolescents will need proper follow-up, consisting of not only monitoring but also preventive measures to diminish these effects of SGA use....

  4. Effects of meal composition and meal timing on the expression of genes involved in hepatic drug metabolism in rats.

    Science.gov (United States)

    de Vries, E M; Oosterman, J E; Eggink, H M; de Goede, P; Sen, S; Foppen, E; Boudzovitch-Surovtseva, O; Boelen, A; Romijn, J A; laFleur, S E; Kalsbeek, A

    2017-01-01

    With chronotherapy, drug administration is synchronized with daily rhythms in drug clearance and pharmacokinetics. Daily rhythms in gene expression are centrally mastered by the suprachiasmatic nucleus of the hypothalamus as well as by tissue clocks containing similar molecular mechanisms in peripheral organs. The central timing system is sensitive to changes in the external environment such as those of the light-dark cycle, meal timing and meal composition. We investigated how changes in diet composition and meal timing would affect the daily hepatic expression rhythms of the nuclear receptors PXR and CAR and of enzymes involved in P450 mediated drug metabolism, as such changes could have consequences for the practice of chronotherapy. Rats were subjected to either a regular chow or a free choice high-fat-high-sugar (fcHFHS) diet. These diets were provided ad libitum, or restricted to either the light phase or the dark phase. In a second experiment, rats had access to chow either ad libitum or in 6 meals equally distributed over 24 hours. Pxr, Alas1 and Por displayed significant day-night rhythms under ad libitum chow fed conditions, which for Pxr was disrupted under fcHFHS diet conditions. Although no daily rhythms were detected in expression of CAR, Cyp2b2 and Cyp3a2, the fcHFHS diet did affect basal expression of these genes. In chow fed rats, dark phase feeding induced a diurnal rhythm in Cyp2b2 expression while light phase feeding induced a diurnal rhythm in Car expression and completely shifted the peak expression of Pxr, Car, Cyp2b2, Alas1 and Por. The 6-meals-a-day feeding only abolished the Pxr rhythm but not the rhythms of the other genes. We conclude that although nuclear receptors and enzymes involved in the regulation of hepatic drug metabolism are sensitive to meal composition, changes in meal timing are mainly effectuated via changes in the molecular clock.

  5. Probenecid interferes with renal oxidative metabolism: A potential pitfall in its use as an inhibitor of drug transport

    Science.gov (United States)

    Masereeuw, Rosalinde; van Pelt, Ard P; van Os, Sandra H G; Willems, Peter H G M; Smits, Paul; Russel, Frans G M

    2000-01-01

    The anionic drug probenecid has been traditionally used as an inhibitor of renal organic anion transport. More recently the drug was found to inhibit organic cation transport as well, and it is used to retain intracellularly loaded fluorophores. In these investigations it is implicitly assumed that probenecid performs its activity through competition for transport. Here we studied the possibility that probenecid provokes its effect through inhibition of cellular oxidative metabolism. Oxygen consumption was measured in isolated rat kidney cortex mitochondria. At concentrations of 1 mM or higher, probenecid increased the resting state (state 4) and decreased the ADP-stimulated respiration (state 3). A complete loss in respiratory control was observed at 10 mM probenecid. After incubating isolated rat kidney proximal tubular cells (PTC) for 30 min with probenecid a concentration-dependent reduction in ATP content was observed, which was significant at concentrations of 1 mM and higher. Using digital image fluorescence microscopy the membrane potential in PTC was measured with bisoxonol. The mitochondrial effects of probenecid were paralleled by a depolarization of the plasma membrane, immediately after drug addition. All events are likely to be a result of membrane disordering due to the lipophilic character of probenecid, and may explain, at least in part, the various inhibitory effects found for the drug. We recommend to be cautious with applying probenecid in cellular research. PMID:10960069

  6. A novel metabolism-based phenotypic drug discovery platform in zebrafish uncovers HDACs 1 and 3 as a potential combined anti-seizure drug target.

    Science.gov (United States)

    Ibhazehiebo, Kingsley; Gavrilovici, Cezar; de la Hoz, Cristiane L; Ma, Shun-Chieh; Rehak, Renata; Kaushik, Gaurav; Meza Santoscoy, Paola L; Scott, Lucas; Nath, Nandan; Kim, Do-Young; Rho, Jong M; Kurrasch, Deborah M

    2018-01-24

    Despite the development of newer anti-seizure medications over the past 50 years, 30-40% of patients with epilepsy remain refractory to treatment. One explanation for this lack of progress is that the current screening process is largely biased towards transmembrane channels and receptors, and ignores intracellular proteins and enzymes that might serve as efficacious molecular targets. Here, we report the development of a novel drug screening platform that harnesses the power of zebrafish genetics and combines it with in vivo bioenergetics screening assays to uncover therapeutic agents that improve mitochondrial health in diseased animals. By screening commercially available chemical libraries of approved drugs, for which the molecular targets and pathways are well characterized, we were able to reverse-identify the proteins targeted by efficacious compounds and confirm the physiological roles that they play by utilizing other pharmacological ligands. Indeed, using an 870-compound screen in kcna1-morpholino epileptic zebrafish larvae, we uncovered vorinostat (Zolinza™; suberanilohydroxamic acid, SAHA) as a potent anti-seizure agent. We further demonstrated that vorinostat decreased average daily seizures by ∼60% in epileptic Kcna1-null mice using video-EEG recordings. Given that vorinostat is a broad histone deacetylase (HDAC) inhibitor, we then delineated a specific subset of HDACs, namely HDACs 1 and 3, as potential drug targets for future screening. In summary, we have developed a novel phenotypic, metabolism-based experimental therapeutics platform that can be used to identify new molecular targets for future drug discovery in epilepsy. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.

  7. Quantitative dynamic nuclear polarization‐NMR on blood plasma for assays of drug metabolism

    DEFF Research Database (Denmark)

    Lerche, Mathilde Hauge; Meier, Sebastian; Jensen, Pernille Rose

    2011-01-01

    ‐NMR determinations were performed without analyte derivatization or sample purification other than plasma protein precipitation. Quantitative DNP‐NMR is an emerging methodology which requires little sample preparation and yields quantitative data with high sensitivity for therapeutic drug monitoring. Copyright......Analytical platforms for the fast detection, identification and quantification of circulating drugs with a narrow therapeutic range are vital in clinical pharmacology. As a result of low drug concentrations, analytical tools need to provide high sensitivity and specificity. Dynamic nuclear...... polarization‐NMR (DNP‐NMR) in the form of the hyperpolarization–dissolution method should afford the sensitivity and spectral resolution for the direct detection and quantification of numerous isotopically labeled circulating drugs and their metabolites in single liquid‐state NMR transients. This study...

  8. DMET™ (Drug-Metabolizing Enzymes and Transporters) microarray analysis of colorectal cancer patients with severe 5-fluorouracil-induced toxicity.

    Science.gov (United States)

    Rumiato, Enrica; Boldrin, Elisa; Amadori, Alberto; Saggioro, Daniela

    2013-08-01

    5-fluorouracil (5-FU) has been widely used since the 1980s, and it remains the backbone of many chemotherapeutic combination regimens. However, its use is often limited by the occurrence of severe toxicity. Although several reports have shown the detrimental effect of some dihydropyrimidine dehydrogenase (DPYD) and thymidylate synthase (TYMS) gene polymorphisms in patients undergoing 5-FU-based treatment, they account for only a minority of toxicities. Looking for new candidate genetic variants associated with 5-FU-induced toxicity, we used the innovative genotyping microarray Affymetrix Drug-Metabolizing Enzymes and Transporters (DMET)™ Plus GeneChip that interrogates 1,936 genetic variants distributed in 231 genes involved in drug metabolism, excretion, and transport. To reduce variability, we analyzed samples from colorectal cancer patients who underwent fairly homogenous treatments (i.e., Machover or Folfox) and experienced G3 or G4 toxicity; control patients were matched for therapy and selected from those who did not disclose toxicity (G0-G1). Pharmacogenetic genotyping showed no significant difference in DPYD and TYMS genetic variants distribution between cases and controls. However, other polymorphisms could account for 5-FU-induced toxicity, with the CHST1 rs9787901 and GSTM3 rs1799735 having the strongest association. Although exploratory, this study suggests that genetic polymorphisms not directly related to 5-FU pharmacokinetics and pharmacodynamics are involved in 5-FU-induced toxicity. Our data also indicates DMET™ microarray as a valid approach to discover new genetic determinants influencing chemotherapy-induced toxicity.

  9. A Metabolic Study on the Biochemical Effects of Chiral Illegal Drugs in Rats Using1H-NMR Spectroscopy.

    Science.gov (United States)

    Fukuhara, Kiyoshi; Ohno, Akiko; Kikura-Hanajiri, Ruri

    2017-01-01

    Considering the pharmacological effects of chiral drugs, enantiopure drugs may differ from their racemic mixture formulation in efficacy, potency, or adverse effects. Levomethorphan (LVM) and Dextromethorphan (DXM) act on the central nervous system and exhibit different pharmacological features. LVM, the l-stereoisomer of methorphan, shows many similarities to opiates such as heroin, morphine and codeine, including the potential for addiction, while the d-stereoisomer, DXM, does not have the same opioid effect. In the present study, NMR-based metabolomics were performed on the urine of rats treated with these stereoisomers, and showed significant differences in metabolic profiles. In urine within 24 h after treatment of these samples, levels of citrate, 2-oxoglutarate, creatine, and dimethylglycine were higher in LVM-treated rats than in DXM-treated rats. While urinary levels of hippurate and creatinine gradually increased over 72 h in DXM-treated rats, these metabolites were decreased in the urine by 48-72 h after treatment with LVM. The levels of these changed metabolites may provide the first evidence for different cellular responses to the metabolism of stereoisomers.

  10. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism: Mexiletine N-Hydroxylation by Cytochrome P450 1A2.

    Science.gov (United States)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik; Harvey, Jeremy N; Mulholland, Adrian J

    2016-06-20

    The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site, but this is not a prerequisite for reaction via either mechanism. Several active site residues play a role in the binding of mexiletine in the active site, including Thr124 and Phe226. This work reveals key details of the N-hydroxylation of mexiletine and further demonstrates that mechanistic studies using QM/MM methods are useful for understanding drug metabolism.

  11. Polymorphisms in genes encoding drug metabolizing enzymes and their influence on the outcome of children with neuroblastoma.

    Science.gov (United States)

    Ashton, Lesley J; Murray, Jayne E; Haber, Michelle; Marshall, Glenn M; Ashley, David M; Norris, Murray D

    2007-09-01

    Although several studies have shown that drug metabolizing enzyme gene polymorphisms may influence the impact of therapy in childhood leukemia, no comprehensive investigations have been carried out in children with neuroblastoma. The aim of this study was to identify polymorphisms in the genes encoding phase I and II drug metabolizing enzymes associated with the risk of relapse or death in a cohort of 209 children with neuroblastoma. Real-time PCR allelic discrimination was used to characterize the presence of polymorphisms in DNA from children with neuroblastoma. Three broad gene categories were examined: cytochrome P450, glutathione-S-transferase and N-acetyltransferase. Cumulative event-free survival was computed by the Kaplan-Meier method. The influence of selected factors on event-free survival was tested using the Cox proportional hazards model. As previously reported, amplification of MYCN (hazards ratio=4.25, 95% confidence interval=2.76-6.56, Pchildren who were GSTM1 null were more likely to relapse or die during follow-up after adjusting for MYCN amplification, stage and age at diagnosis (hazard ratio=1.6, 95% confidence interval=1.02-2.9, P=0.04). These observations suggest that the NAT1*11 variant and the GSTM1 wild-type genotype contribute to a more favorable outcome in patients treated for neuroblastoma and are the first to demonstrate a relationship between NAT1 and GSTM1 genotypes in childhood neuroblastoma.

  12. Fast Metabolic Response to Drug Intervention Through Analysis on a Miniaturized, Highly Integrated Molecular Imaging System

    OpenAIRE

    Wang, Jun; Hwang, Kiwook; Braas, Daniel; Dooraghi, Alex; Nathanson, David; Campbell, Dean O.; Gu, Yuchao; Sandberg, Troy; Mischel, Paul; Radu, Caius; Chatziioannou, Arion F.; Phelps, Michael E.; Christofk, Heather; Heath, James R.

    2013-01-01

    We report on a radiopharmaceutical imaging platform designed to capture the kinetics of cellular responses to drugs. Methods: A portable in vitro molecular imaging system comprising a microchip and a β-particle imaging camera permitted routine cell-based radioassays of small numbers of either suspended or adherent cells. We investigated the kinetics of responses of model lymphoma and glioblastoma cancer cell lines to ^(18)F-FDG uptake after drug exposure. Those responses were correlated with ...

  13. A Comparison of Psychotomimetic Drug Effects on Rat Brain Norepinephrine Metabolism

    Science.gov (United States)

    1973-02-19

    Thor. 189: 42-50,1974. V The effects of LSD, psilocybin, mescaline, amphetamine and cold water swimming stress on the metabolism of ’H-norepinephrine...to ef- C.ARR, L. A. AND Mooc , K E.: Norepincphrinv: 50 STOLK ET AL. Vol. 189’ Release from brain by d-amphetamine in vivo. SMITH, C. B.: Effects of d

  14. Novel small molecule drugs inhibit tumor cell metabolism and show potent anti-tumorigenic potential

    DEFF Research Database (Denmark)

    Trojel-Hansen, Christina; Erichsen, Kamille Dumong; Christensen, Mette Knak

    2011-01-01

    oxyphenisatine analogs TOP001 and TOP216 exert their anti-cancer effect by affecting tumor cell metabolism and inducing intracellular amino acid deprivation, leading to a block of cell proliferation. GCN2-mediated phosphorylation of eIF2a as well as mTOR pathway inhibition supports the above notion. In addition...

  15. Novel small molecule drugs inhibit tumor cell metabolism and show potent anti-tumorigenic potential

    DEFF Research Database (Denmark)

    Trojel-Hansen, Christina; Erichsen, Kamille Dumong; Christensen, Mette Knak

    2011-01-01

    oxyphenisatine analogs TOP001 and TOP216 exert their anti-cancer effect by affecting tumor cell metabolism and inducing intracellular amino acid deprivation, leading to a block of cell proliferation. GCN2-mediated phosphorylation of eIF2α as well as mTOR pathway inhibition supports the above notion. In addition...

  16. Regulation of Brain Glucose Metabolic Patterns by Protein Phosphorlyation and Drug Therapy

    Science.gov (United States)

    2007-03-30

    Bipolar GLU cell • ®.-. GLN Figure 3. Diagrammatic representation ofthe metabolic stuttering oflactate between glia and photoreceptors in the retina...film. Films were digitized and the resulting images were analyzed using ImageJ software . Two Dimensional Gel Electrophoresis Rat brain mitochondria were

  17. Expression of two drug-metabolizing cytochrome P450-enzymes in human salivary glands

    DEFF Research Database (Denmark)

    Kragelund, C; Hansen, C; Torpet, L A

    2008-01-01

    OBJECTIVE: The oral cavity is constantly lubricated by saliva and even small amounts of xenobiotics and / or their metabolites in the saliva may affect the oral mucosa. Our aim was therefore to clarify if xenobiotic metabolizing enzymes CYP1A2 and CYP3A4 are expressed in salivary glands. METHODS...

  18. The influence of starvation upon hepatic drug metabolism in rats, mice, and guinea pigs.

    Science.gov (United States)

    Furner, R. L.; Feller, D. D.

    1971-01-01

    Male rats, mice, and guinea pigs were starved for 1, 2, or 3 days, and the metabolism of ethylmorphine, p-nitroanisole, and aniline was studied. Results suggest that the oxidative enzyme systems studied are not interdependent, and the pathways studied appear to be species dependent.

  19. FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs.

    Science.gov (United States)

    Kim, Kook Hwan; Lee, Myung-Shik

    2015-07-01

    Most hormones secreted from specific organs of the body in response to diverse stimuli contribute to the homeostasis of the whole organism. Fibroblast growth factor 21 (FGF21), a hormone induced by a variety of environmental or metabolic stimuli, plays a crucial role in the adaptive response to these stressful conditions. In addition to its role as a stress hormone, FGF21 appears to function as a mediator of the therapeutic effects of currently available drugs and those under development for treatment of metabolic diseases. In this review, we highlight molecular mechanisms and the functional importance of FGF21 induction in response to diverse stress conditions such as changes of nutritional status, cold exposure, and exercise. In addition, we describe recent findings regarding the role of FGF21 in the pathogenesis and treatment of diabetes associated with obesity, liver diseases, pancreatitis, muscle atrophy, atherosclerosis, cardiac hypertrophy, and diabetic nephropathy. Finally, we discuss the current understanding of the actions of FGF21 as a crucial regulator mediating beneficial metabolic effects of therapeutic agents such as metformin, glucagon/glucagon-like peptide 1 analogues, thiazolidinedione, sirtuin 1 activators, and lipoic acid. © 2015 Society for Endocrinology.

  20. Effects of lemongrass oil and citral on hepatic drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in rats

    Directory of Open Access Journals (Sweden)

    Chien-Chun Li

    2018-01-01

    Full Text Available The essential oil from a lemongrass variety of Cymbopogon flexuosus [lemongrass oil (LO] is used in various food and aroma industry products and exhibits biological activities, such as anticancer and antimicrobial activities. To investigate the effects of 200 LO (200 mg/kg and 400 LO (400 mg/kg and its major component, citral (240 mg/kg, on drug-metabolizing enzymes, oxidative stress, and acetaminophen toxicity in the liver, male Sprague-Dawley rats were fed a pelleted diet and administered LO or citral by gavage for 2 weeks. After 2 weeks of feeding, the effects of LO and citral on the metabolism and toxicity of acetaminophen were determined. The results showed that rats treated with 400 LO or citral had significantly reduced hepatic testosterone 6β-hydroxylation and ethoxyresorufin O-deethylation activities. In addition, NAD(PH:quinone oxidoreductase 1 activity was significantly increased by citral, and Uridine 5′-diphospho (UDP glucurosyltransferase activity was significantly increased by 400 LO in the rat liver. Treatment with 400 LO or citral reduced lipid peroxidation and reactive oxygen species levels in the liver. After acetaminophen treatment, however, LO and citral treatment resulted in little or no change in plasma alanine aminotransferase activity and acetaminophen-protein adducts content in the liver. Our results indicate that LO and citral may change the activities of drug-metabolizing enzymes and reduce oxidative stress in the liver. However, LO and citral may not affect the detoxification of acetaminophen.

  1. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets

    NARCIS (Netherlands)

    Levering, J.; Fiedler, T.; Sieg, A.; van Grinsven, K.W.A.; Hering, S.; Veith, N.; Olivier, B.G.; Klett, L.; Hugenholtz, J.; Teusink, B.; Kreikemeyer, B.; Kummer, U.

    2016-01-01

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes

  2. Metabolic acidosis, hypoglycemia, and severe myalgias: an attempt to mask urine drug screen results.

    Science.gov (United States)

    Arcinegas-Rodriguez, Silvana; Gaspers, Mary Glas; Lowe, Merlin Channing

    2011-04-01

    Adolescent use of illicit substances remains a significant problem. In attempts to hide their use of these substances, some are using Internet-recommended methods of masking these drugs on drug screens, potentially exposing the adolescent to severe and possibly dangerous adverse effects. We report a 16-year-old patient who ingested approximately 13 g (twenty-six 500-mg tablets) of niacin during a 48-hour period in an attempt to mask his use of tetrahydrocannabinol on an upcoming drug screen. He subsequently developed severe chest and abdominal pain as well as extreme diffuse myalgias (previously unreported in association with niacin use). In addition, he developed severe hypoglycemia, acidosis, transaminitis, and coagulopathy. He required significant fluid resuscitation and bicarbonate infusion. Over approximately 5 days his symptoms resolved and he ultimately did well. Given increasingly available home drug screens and the abundance of false information readily available to adolescents via the Internet regarding "masking" of drug use, it is likely that cases such as ours will become more prevalent. Pediatric emergency physicians and pediatricians should maintain a high suspicion for use of niacin or other substances to obscure detection of illicit substances when patients present with symptoms similar to those of our patient. Copyright © 2011 by Lippincott Williams & Wilkins

  3. Nutritional modulation of intestinal drug-metabolizing cytochrome P450 by butyrate of different origin in chicken.

    Science.gov (United States)

    Kulcsár, Anna; Mátis, Gábor; Molnár, Andor; Petrilla, Janka; Wágner, László; Fébel, Hedvig; Husvéth, Ferenc; Dublecz, Károly; Neogrády, Zsuzsanna

    2017-08-01

    Intestinal cytochrome P450 (CYP) enzymes play key role in the first pass metabolism of orally ingested xenobiotics, providing a primary metabolic barrier, being of special importance in maintaining animal health and production. This study was aimed to investigate how intestinal drug-metabolizing CYPs can be modulated by nutritional factors in broiler chicken. We investigated the effects of the natural growth promoter (n-)butyrate of different origin (feed supplementation of protected or non-protected forms and/or inducing caecal microbial production by supporting higher level of dietary non-starch polysaccharides [NSP]) on the activity of duodenal CYPs. To observe the connection between intestinal CYP activity and butyrate concentration, the distribution of differently originated butyrate was also assessed by measuring its concentration in various intestinal segments and different vessels of portal and systemic circulation. Butyrate of different origin showed varying distribution properties as being absorbed from different parts of the gastrointestinal tract. Intestinal CYP1A and CYP2H2 activities were increased by dietary butyrate supplementation and by the increased caecal microbial butyrate production, while CYP3A37 activity was minimally influenced by microbial butyrate only. The present study proved that both dietary and microbial butyrate could alter the activity of CYPs in the duodenal epithelium. Our findings suggest that intestinal CYPs could be induced not only by the intestinal luminal butyrate, but also from basolateral side, by the already absorbed butyrate. Such action of butyrate can be of special importance from food safety and pharmacotherapeutic point of view as it may modify the metabolism and intestinal kinetics of simultaneously applied xenobiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Brain Aging and Disorders of the Central Nervous System: Kynurenines and Drug Metabolism.

    Science.gov (United States)

    Török, Nóra; Majláth, Zsófia; Fülöp, Ferenc; Toldi, József; Vécsei, László

    2016-01-01

    The kynurenine pathway includes several neuroactive compounds, including kynurenic acid, picolinic acid, 3-hydroxykynurenine and quinolinic acid. The enzymatic cascade of the kynurenine pathway is tightly connected with the immune system, and may provide a link between the immune system and neurotransmission. Main Areas Covered: Alterations in this cascade are associated with neurodegenerative, neurocognitive, autoimmune and psychiatric disorders, such as Parkinson's disease, Huntington's disease, Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, migraine or schizophrenia. This review highlights the alterations in this metabolic pathway in the physiological aging process and in different disorders. A survey is also presented of therapeutic possibilities of influencing this metabolic route, which can be achieved through the use of synthetic kynurenic acid analogues, enzyme inhibitors or even nanotechnology.

  5. Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering.

    Science.gov (United States)

    Ehrenworth, Amy M; Peralta-Yahya, Pamela

    2017-02-15

    Alkaloid-derived pharmaceuticals are commonly semisynthesized from plant-extracted starting materials, which often limits their availability and final price. Recent advances in synthetic biology have enabled the introduction of complete plant pathways into microbes for the production of plant alkaloids. Microbial production of modified alkaloids has the potential to accelerate the semisynthesis of alkaloid-derived drugs by providing advanced intermediates that are structurally closer to the final pharmaceuticals and could be used as advanced intermediates for the synthesis of novel drugs. Here, we analyze the scientific and engineering challenges that must be overcome to generate microbes to produce modified plant alkaloids that can provide more suitable intermediates to US Food and Drug Administration-approved pharmaceuticals. We highlight modified alkaloids that currently could be produced by leveraging existing alkaloid microbial platforms with minor variations to accelerate the semisynthesis of seven pharmaceuticals on the market.

  6. ROLE OF NON-DRUG THERAPIES OF METABOLIC SYNDROME: CHALLENGES AND PROSPECTS

    OpenAIRE

    S. N. Strelkova; K. V. Ovsyannicov; N. I. Utkina

    2016-01-01

    Abdominal obesity (and the closely related metabolic syndrome) is one of the most common diseases in the world. The urgency of the problem of the progression of abdominal obesity is not only in its high prevalence, but also in the formation of a high risk of developing cardiovascular disease and diabetes type 2. The main reasons for the rapid development of obesity are considered high-calorie food (which includes not only the quantity but also the quality of edible products), sedentary lifest...

  7. The Anti-Oxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota

    Science.gov (United States)

    Cai, Jingwei; Zhang, Limin; Jones, Richard A.; Correll, Jared B.; Hatzakis, Emmanuel; Smith, Philip B.; Gonzalez, Frank J.; Patterson, Andrew D.

    2016-01-01

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver 1H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum 1H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles were observed in germ-free mice thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function resulting in reduced host energy availability and a significant shift in liver metabolism towards a more catabolic state. PMID:26696396

  8. Antioxidant Drug Tempol Promotes Functional Metabolic Changes in the Gut Microbiota.

    Science.gov (United States)

    Cai, Jingwei; Zhang, Limin; Jones, Richard A; Correll, Jared B; Hatzakis, Emmanuel; Smith, Philip B; Gonzalez, Frank J; Patterson, Andrew D

    2016-02-05

    Recent studies have identified the important role of the gut microbiota in the pathogenesis and progression of obesity and related metabolic disorders. The antioxidant tempol was shown to prevent or reduce weight gain and modulate the gut microbiota community in mice; however, the mechanism by which tempol modulates weight gain/loss with respect to the host and gut microbiota has not been clearly established. Here we show that tempol (0, 1, 10, and 50 mg/kg p.o. for 5 days) decreased cecal bacterial fermentation and increased fecal energy excretion in a dose-dependent manner. Liver (1)H NMR-based metabolomics identified a dose-dependent decrease in glycogen and glucose, enhanced glucogenic and ketogenic activity (tyrosine and phenylalanine), and increased activation of the glycolysis pathway. Serum (1)H NMR-based metabolomics indicated that tempol promotes enhanced glucose catabolism. Hepatic gene expression was significantly altered as demonstrated by an increase in Pepck and G6pase and a decrease in Hnf4a, ChREBP, Fabp1, and Cd36 mRNAs. No significant change in the liver and serum metabolomic profiles was observed in germ-free mice, thus establishing a significant role for the gut microbiota in mediating the beneficial metabolic effects of tempol. These results demonstrate that tempol modulates the gut microbial community and its function, resulting in reduced host energy availability and a significant shift in liver metabolism toward a more catabolic state.

  9. Pharmacological, Physiochemical, and Drug-Relevant Biological Properties of Short Chain Fatty Acid Hexosamine Analogues Used in Metabolic Glycoengineering.

    Science.gov (United States)

    Saeui, Christopher T; Liu, Lingshu; Urias, Esteban; Morrissette-McAlmon, Justin; Bhattacharya, Rahul; Yarema, Kevin J

    2018-03-05

    In this study, we catalog structure activity relationships (SAR) of several short chain fatty acid (SCFA)-modified hexosamine analogues used in metabolic glycoengineering (MGE) by comparing in silico and experimental measurements of physiochemical properties important in drug design. We then describe the impact of these compounds on selected biological parameters that influence the pharmacological properties and safety of drug candidates by monitoring P-glycoprotein (Pgp) efflux, inhibition of cytochrome P450 3A4 (CYP3A4), hERG channel inhibition, and cardiomyocyte cytotoxicity. These parameters are influenced by length of the SCFAs (e.g., acetate vs n-butyrate), which are added to MGE analogues to increase the efficiency of cellular uptake, the regioisomeric arrangement of the SCFAs on the core sugar, the structure of the core sugar itself, and by the type of N-acyl modification (e.g., N-acetyl vs N-azido). By cataloging the influence of these SAR on pharmacological properties of MGE analogues, this study outlines design considerations for tuning the pharmacological, physiochemical, and the toxicological parameters of this emerging class of small molecule drug candidates.

  10. Toxicokinetics of drugs of abuse: current knowledge of the isoenzymes involved in the human metabolism of tetrahydrocannabinol, cocaine, heroin, morphine, and codeine.

    Science.gov (United States)

    Maurer, Hans H; Sauer, Christoph; Theobald, Denis S

    2006-06-01

    This review summarizes the major metabolic pathways of the drugs of abuse, tetrahydrocannabinol, cocaine, heroin, morphine, and codeine, in humans including the involvement of isoenzymes. This knowledge may be important for predicting their possible interactions with other xenobiotics, understanding pharmaco-/toxicokinetic and pharmacogenetic variations, toxicological risk assessment, developing suitable toxicological analysis procedures, and finally for understanding certain pitfalls in drug testing. The detection times of these drugs and/or their metabolites in biological samples are summarized and the implications of the presented data on the possible interactions of drugs of abuse with other xenobiotics, ie, inhibition or induction of individual polymorphic and nonpolymorphic isoenzymes, discussed.

  11. Genetic analysis of drug metabolizing phase-I enzymes CYP3A4 in ...

    Indian Academy of Sciences (India)

    LIJUN LIU

    5Xi'an Tiangen Precision Medical Institute, Xi'an, Shaanxi 710075, People's Republic of China. Abstract ... nant, and (iv) smoking, drug/alcohol addiction. The purpose .... 96. Table 2. Frequency distribution of CYP3A4 polymorphisms in 96 Tibetan subjects. Nucleotide change. Position. Region. SNP. Allele. Amino acid effect.

  12. Genetic analysis of drug metabolizing phase-I enzymes CYP3A4 in ...

    Indian Academy of Sciences (India)

    LIJUN LIU1

    nant, and (iv) smoking, drug/alcohol addiction. The purpose of exclusion was to minimize some factors that may have influenced genetic variation in the ..... 81560516), Major science and technology research projects of Xizang (Tibet) Autonomous Region (2015XZ01G23), Natural. Science Foundation of Tibet Autonomous ...

  13. Metabolism of ATP-binding cassette drug transporter inhibitors: complicating factor for multidrug resistance.

    NARCIS (Netherlands)

    Cnubben, N.H.; Wortelboer, H.M.; Zanden, J.J. van; Rietjens, I.M.; Bladeren, P.J. van

    2005-01-01

    Membrane transport proteins belonging to the ATP-binding cassette (ABC) family of transport proteins play a central role in the defence of organisms against toxic compounds, including anticancer drugs. However, for compounds that are designed to display a toxic effect, this defence system diminishes

  14. Antipsychotic drugs may worsen metabolic control in type 2 diabetes mellitus

    NARCIS (Netherlands)

    Spoelstra, JA; Stolk, RP; Cohen, D; Klungel, OH; Erkens, JA; Leufkens, HGM; Grobbee, DE

    (B)ackground: Several studies have indicated that type 2 diabetes mellitus is more common among schizophrenic patients than in the general population. In this study, we investigated whether the use of antipsychotic drugs in patients with diabetes leads to worsening of glycemic control. Method: In

  15. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.

    Science.gov (United States)

    Bunik, Victoria I; Tylicki, Adam; Lukashev, Nikolay V

    2013-12-01

    Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed. © 2013 FEBS.

  16. Fondaparinux sodium is not metabolised in mammalian liver fractions and does not inhibit cytochrome P450-mediated metabolism of concomitant drugs.

    Science.gov (United States)

    Lieu, Carolyne; Shi, Juan; Donat, François; Van Horn, Robert; Brian, William; Newton, John; Delbressine, Leon; Vos, Ria

    2002-01-01

    To investigate the in vitro metabolism of the antithrombotic agent fondaparinux sodium in mammalian liver fractions and to evaluate its potential inhibitory effect on human cytochrome P450 (CYP)-mediated metabolism of other drugs. Metabolism was evaluated by incubating radioisotope-labelled fondaparinux sodium with postmitochondrial liver fractions of rat, rabbit, monkey or human origin (three subjects). Human liver microsomal preparations and an NADPH-generating system were incubated with phenacetin, coumarin, tolbutamide, S-mephenytoin, bufuralol, chlorzoxazone or nifedipine. These are selectively metabolised by CYP isoforms: CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 or CYP3A4, respectively. Experiments were designed to determine apparent K(i) (inhibitory constant) values for fondaparinux sodium against each CYP isoform, by varying concentrations of fondaparinux sodium and the selective substrate. Each experiment included control reaction mixtures containing an isoform-selective inhibitor. After incubation, the mixtures were analysed by LC-MS/MS or with fluorometric detection. All liver fractions were enzymatically active, as demonstrated by degradation of [(14)C]testosterone. No metabolism of fondaparinux sodium was detectable in postmitochondrial liver fractions. Apparent K(i) values for fondaparinux sodium against the CYP isoforms could not be determined because the oxidative metabolism of the isoform-selective CYP substrates was not significantly inhibited in pooled microsomal reaction mixtures. In the presence of selective CYP inhibitors, metabolism of each substrate was significantly reduced, confirming that inhibition could be observed in these assays. The demonstrated lack of mammalian hepatic metabolism of fondaparinux sodium is consistent with animal and human studies. The absence of inhibition of the human CYP isoforms commonly involved in the metabolism of drugs suggests that clinical treatment with fondaparinux sodium is unlikely to interfere

  17. The comparison of glucose and lipid metabolism parameters in drug-naïve, antipsychotic-treated, and antipsychotic discontinuation patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Wu X

    2014-07-01

    Full Text Available Xiaoli Wu,1,2 Zeping Huang,3 Hongying Han,2 Zhiyong Zhong,2 Zhaoyu Gan,2 Xiaofeng Guo,1 Feici Diao,2 Zili Han,2 Jingping Zhao1 1Mental Health Institute of the Second Xiangya Hospital, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, People’s Republic of China; 2Psychiatry Department, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China; 3Ultrasound Department, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China Background: Although many studies have reported that glucose and lipid metabolism disorders are a significant side effect associated with the use of antipsychotic drugs, the characteristics of glucose and lipid metabolism disorders in patients with schizophrenia who are taking antipsychotic drugs remain poorly understood, and the possible effects that antipsychotic discontinuation may have on glucose and lipid metabolism remain unclear. Methods: The sample consisted of 131 Chinese patients with schizophrenia, including 70 first-episode, drug-naïve patients; 33 patients who had received continuous antipsychotic drug treatment for ≥1 year prior to the beginning of the study; and 28 patients who had discontinued antipsychotic drug treatment for ≥3 months prior to the beginning of study. We compared the glucose and lipid metabolic parameter levels among the three groups of patients with schizophrenia. All assessments were performed upon hospital admission. Results: The characteristics of glucose and lipid metabolism disorders in Chinese patients with schizophrenia who are taking antipsychotic drugs included significant augmentation of the body mass index and waist circumference, significantly higher levels of fasting plasma insulin and insulin resistance, and significantly lower plasma high-density lipoprotein cholesterol levels. Antipsychotic discontinuation

  18. Effects of meal composition and meal timing on the expression of genes involved in hepatic drug metabolism in rats.

    Directory of Open Access Journals (Sweden)

    E M de Vries

    Full Text Available With chronotherapy, drug administration is synchronized with daily rhythms in drug clearance and pharmacokinetics. Daily rhythms in gene expression are centrally mastered by the suprachiasmatic nucleus of the hypothalamus as well as by tissue clocks containing similar molecular mechanisms in peripheral organs. The central timing system is sensitive to changes in the external environment such as those of the light-dark cycle, meal timing and meal composition. We investigated how changes in diet composition and meal timing would affect the daily hepatic expression rhythms of the nuclear receptors PXR and CAR and of enzymes involved in P450 mediated drug metabolism, as such changes could have consequences for the practice of chronotherapy.Rats were subjected to either a regular chow or a free choice high-fat-high-sugar (fcHFHS diet. These diets were provided ad libitum, or restricted to either the light phase or the dark phase. In a second experiment, rats had access to chow either ad libitum or in 6 meals equally distributed over 24 hours.Pxr, Alas1 and Por displayed significant day-night rhythms under ad libitum chow fed conditions, which for Pxr was disrupted under fcHFHS diet conditions. Although no daily rhythms were detected in expression of CAR, Cyp2b2 and Cyp3a2, the fcHFHS diet did affect basal expression of these genes. In chow fed rats, dark phase feeding induced a diurnal rhythm in Cyp2b2 expression while light phase feeding induced a diurnal rhythm in Car expression and completely shifted the peak expression of Pxr, Car, Cyp2b2, Alas1 and Por. The 6-meals-a-day feeding only abolished the Pxr rhythm but not the rhythms of the other genes.We conclude that although nuclear receptors and enzymes involved in the regulation of hepatic drug metabolism are sensitive to meal composition, changes in meal timing are mainly effectuated via changes in the molecular clock.

  19. Toxicokinetics of amphetamines: metabolism and toxicokinetic data of designer drugs, amphetamine, methamphetamine, and their N-alkyl derivatives.

    Science.gov (United States)

    Kraemer, Thomas; Maurer, Hans H

    2002-04-01

    This paper reviews the toxicokinetics of amphetamines. The designer drugs MDA (methylenedioxy-amphetamine, R,S-1-(3;,4;-methylenedioxyphenyl)2-propanamine), MDMA (R,S-methylenedioxymethamphetamine), and MDE (R,S-methylenedioxyethylamphetamine), as well as BDB (benzodioxolylbutanamine; R,S-1-(1;,3;-benzodioxol-5;-yl)-2-butanamine or R,S-1-(3;,4;-methylenedioxyphenyl)-2-butanamine) and MBDB (R,S-N-methyl-benzodioxolylbutanamine), were taken into consideration, as were the following N-alkylated amphetamine derivatives: amphetaminil, benzphetamine, clobenzorex, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, methamphetamine, prenylamine, and selegiline. English-language publications from 1995 to 2000 were reviewed. Papers describing identification of metabolites or cytochrome P450 isoenzyme-dependent metabolism and papers containing pharmacokinetic/toxicokinetic data were considered and summarized. The implications of toxicokinetics for toxicologic assessment or for interpretation in forensic cases are discussed.

  20. Targeting Cellular Stress Mechanisms and Metabolic Homeostasis by Chinese Herbal Drugs for Neuroprotection

    Directory of Open Access Journals (Sweden)

    Hsiao-Chien Ting

    2018-01-01

    Full Text Available Traditional Chinese medicine has been practiced for centuries in East Asia. Herbs are used to maintain health and cure disease. Certain Chinese herbs are known to protect and improve the brain, memory, and nervous system. To apply ancient knowledge to modern science, some major natural therapeutic compounds in herbs were extracted and evaluated in recent decades. Emerging studies have shown that herbal compounds have neuroprotective effects or can ameliorate neurodegenerative diseases. To understand the mechanisms of herbal compounds that protect against neurodegenerative diseases, we summarize studies that discovered neuroprotection by herbal compounds and compound-related mechanisms in neurodegenerative disease models. Those compounds discussed herein show neuroprotection through different mechanisms, such as cytokine regulation, autophagy, endoplasmic reticulum (ER stress, glucose metabolism, and synaptic function. The interleukin (IL-1β and tumor necrosis factor (TNF-α signaling pathways are inhibited by some compounds, thus attenuating the inflammatory response and protecting neurons from cell death. As to autophagy regulation, herbal compounds show opposite regulatory effects in different neurodegenerative models. Herbal compounds that inhibit ER stress prevent neuronal death in neurodegenerative diseases. Moreover, there are compounds that protect against neuronal death by affecting glucose metabolism and synaptic function. Since the progression of neurodegenerative diseases is complicated, and compound-related mechanisms for neuroprotection differ, therapeutic strategies may need to involve multiple compounds and consider the type and stage of neurodegenerative diseases.

  1. Polyphenols of Salix aegyptiaca modulate the activities of drug metabolizing and antioxidant enzymes, and level of lipid peroxidation.

    Science.gov (United States)

    Nauman, Mohd; Kale, R K; Singh, Rana P

    2018-03-07

    Salix aegyptiaca is known for its medicinal properties mainly due to the presence of salicylate compounds. However, it also contains other beneficial phytochemicals such as gallic acid, quercetin, rutin and vanillin. The aim of the study was to examine the redox potential, antioxidant and anti-inflammatory activity of these phytochemicals along with acetylsalicylic acid. The redox potential and antioxidant activity of gallic acid, quercetin, rutin, vanillin and acetylsalicylic acid were determined by oxidation-reduction potential electrode method and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, respectively. In ex vivo studies, antioxidant activity of these phytochemicals was determined by lipid peroxidation and carbonyl content assay in the liver of mice. Anti-inflammatory activity was determined by protein denaturation method. Six-week old C57BL/6 mice treated with gallic acid (100 mg/kg body weight) and acetylsalicylic acid (25 and 50 mg/kg body weight) to investigate their in vivo modulatory effects on the specific activities of drug metabolizing phase I and phase II enzymes, antioxidant enzymes and level of lipid peroxidation in liver. The order of ability to donate electron and antioxidant activity was found to be: gallic acid > quercetin > rutin > vanillin > acetylsalicylic acid. In ex vivo studies, the similar pattern and magnitude of inhibitory effects of these phytochemicals against peroxidative damage in microsomes and protein carbonyl in cytosolic fraction were observed. In in vivo studies, gallic acid and acetylsalicylic acid alone or in combination, enhanced the specific activities of drug metabolizing phase I and phase II enzymes as well as antioxidant enzymes and also inhibited lipid peroxidation in liver. These findings show a close link between the electron donation and antioxidation potential of these phytochemicals, and in turn their biological activity. Gallic acid, quercetin, rutin and vanillin were found to be better electron donors and

  2. 76 FR 18768 - Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-04-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue, and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Cellular, Tissue, and Gene Therapies Advisory Committee. General Function of...

  3. 78 FR 15726 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-03-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of...

  4. 77 FR 73472 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-12-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug... closed to the public. Name of Committee: Cellular, Tissue and Gene Therapies Advisory Committee. General...

  5. 76 FR 49774 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  6. 76 FR 64951 - Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-10-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Cellular, Tissue and Gene Therapies Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Cellular, Tissue and Gene Therapies Advisory Committee. General Function of the Committee: To provide...

  7. 78 FR 26786 - Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-05-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Microbiology Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Microbiology Devices Panel of the Medical Devices Advisory Committee. General Function of the Committee: To...

  8. 21 CFR 14.84 - Nominations and selection of nonvoting members of standing technical advisory committees.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Nominations and selection of nonvoting members of... Advisory Committees § 14.84 Nominations and selection of nonvoting members of standing technical advisory... Oversight and Management Staff, Food and Drug Administration, 10903 New Hampshire Ave., Bldg. 32, rm. 1503...

  9. Metabolic profile of amphetamine and methamphetamine following administration of the drug famprofazone.

    Science.gov (United States)

    Greenhill, Brandy; Valtier, Sandra; Cody, John T

    2003-10-01

    There are a several drugs that lead to the production of methamphetamine and/or amphetamine in the body which are subsequently excreted in the urine. These drugs raise obvious concerns when interpreting positive amphetamine drug testing results. Famprofazone is an analgesic found in a multi-ingredient medication (Gewodin) used for pain relief. Two Gewodin tablets (50 mg of famprofazone) were administered orally to healthy volunteers with no history of amphetamine, methamphetamine, or famprofazone use. Following administration, urine samples were collected ad lib for up to six days, and pH, specific gravity, and creatinine values were determined. In order to determine the quantitative excretion profile of amphetamine and methamphetamine, samples were extracted using liquid-liquid extraction, derivatized with heptafluorobutyric anhydride, and analyzed by gas chromatography-mass spectrometry (GC-MS). The ions monitored were 91, 118, 240 for amphetamine and 254, 210, 118 for methamphetamine. Amphetamine-d(6) and methamphetamine-d(11) were used as internal standards. Peak concentrations for amphetamine ranged from 148 to 2271 ng/mL and for methamphetamine 615 to 7361 ng/mL. Concentrations of both compounds peaked between 3 and 7 h post-dose. Amphetamine and methamphetamine could be detected (limit of detection = 5 ng/mL) at 121 and 143 h post-dose, respectively. Using a cutoff of 500 ng/mL, all subjects had individual urine samples that tested positive. One subject had 14 samples above the cutoff with the last positive being detected over 48 h post-dose. The profile of methamphetamine and amphetamine enantiomers was also determined using liquid-liquid extraction, derivatization with N-trifluoroacetyl-l-prolyl chloride and analysis by GC-MS. Data showed the famprofazone metabolites amphetamine and methamphetamine to be both d- and l-enantiomers. The proportion of l-methamphetamine exceeded that of its d-enantiomer from the first sample collected. Initially, the

  10. Stable Overexpression of the Constitutive Androstane Receptor Reduces the Requirement for Culture with Dimethyl Sulfoxide for High Drug Metabolism in HepaRG Cells.

    Science.gov (United States)

    van der Mark, Vincent A; Rudi de Waart, D; Shevchenko, Valery; Elferink, Ronald P J Oude; Chamuleau, Robert A F M; Hoekstra, Ruurdtje

    2017-01-01

    Dimethylsulfoxide (DMSO) induces cellular differentiation and expression of drug metabolic enzymes in the human liver cell line HepaRG; however, DMSO also induces cell death and interferes with cellular activities. The aim of this study was to examine whether overexpression of the constitutive androstane receptor (CAR, NR1I3), the nuclear receptor controlling various drug metabolism genes, would sufficiently promote differentiation and drug metabolism in HepaRG cells, optionally without using DMSO. By stable lentiviral overexpression of CAR, HepaRG cultures were less affected by DMSO in total protein content and obtained increased resistance to acetaminophen- and amiodarone-induced cell death. Transcript levels of CAR target genes were significantly increased in HepaRG-CAR cultures without DMSO, resulting in increased activities of cytochrome P450 (P450) enzymes and bilirubin conjugation to levels equal or surpassing those of HepaRG cells cultured with DMSO. Unexpectedly, CAR overexpression also increased the activities of non-CAR target P450s, as well as albumin production. In combination with DMSO treatment, CAR overexpression further increased transcript levels and activities of CAR targets. Induction of CYP1A2 and CYP2B6 remained unchanged, whereas CYP3A4 was reduced. Moreover, the metabolism of low-clearance compounds warfarin and prednisolone was increased. In conclusion, CAR overexpression creates a more physiologically relevant environment for studies on hepatic (drug) metabolism and differentiation in HepaRG cells without the utilization of DMSO. DMSO still may be applied to accomplish higher drug metabolism, required for sensitive assays, such as low-clearance studies and identification of (rare) metabolites, whereas reduced total protein content after DMSO culture is diminished by CAR overexpression. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  11. 21 CFR 14.100 - List of standing advisory committees.

    Science.gov (United States)

    2010-04-01

    ... emerging food safety, food science, and nutrition issues that FDA considers of primary importance in the... 21 Food and Drugs 1 2010-04-01 2010-04-01 false List of standing advisory committees. 14.100 Section 14.100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  12. Psychedelic 5-Methoxy-N,N-dimethyltryptamine: Metabolism, Pharmacokinetics, Drug Interactions, and Pharmacological Actions

    OpenAIRE

    Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C.; Yu, Ai-Ming

    2010-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as h...

  13. Long-term exposure to abnormal glucose levels alters drug metabolism pathways and insulin sensitivity in primary human hepatocytes

    Science.gov (United States)

    Davidson, Matthew D.; Ballinger, Kimberly R.; Khetani, Salman R.

    2016-06-01

    Hyperglycemia in type 2 diabetes mellitus has been linked to non-alcoholic fatty liver disease, which can progress to inflammation, fibrosis/cirrhosis, and hepatocellular carcinoma. Understanding how chronic hyperglycemia affects primary human hepatocytes (PHHs) can facilitate the development of therapeutics for these diseases. Conversely, elucidating the effects of hypoglycemia on PHHs may provide insights into how the liver adapts to fasting, adverse diabetes drug reactions, and cancer. In contrast to declining PHH monocultures, micropatterned co-cultures (MPCCs) of PHHs and 3T3-J2 murine embryonic fibroblasts maintain insulin-sensitive glucose metabolism for several weeks. Here, we exposed MPCCs to hypo-, normo- and hyperglycemic culture media for ~3 weeks. While albumin and urea secretion were not affected by glucose level, hypoglycemic MPCCs upregulated CYP3A4 enzyme activity as compared to other glycemic states. In contrast, hyperglycemic MPCCs displayed significant hepatic lipid accumulation in the presence of insulin, while also showing decreased sensitivity to insulin-mediated inhibition of glucose output relative to a normoglycemic control. In conclusion, we show for the first time that PHHs exposed to hypo- and hyperglycemia can remain highly functional, but display increased CYP3A4 activity and selective insulin resistance, respectively. In the future, MPCCs under glycemic states can aid in novel drug discovery and mechanistic investigations.

  14. 78 FR 104 - Advisory Committees; Tentative Schedule of Meetings for 2013

    Science.gov (United States)

    2013-01-02

    ... determined. Medical Devices Dispute Resolution Date(s), if needed, to be Panel. determined. Microbiology... determined. Medical Imaging Drugs Advisory February 14 and May date to be Committee. determined... March 4-5, July 9. Health Drugs. [[Page 105

  15. Regional expression levels of drug transporters and metabolizing enzymes along the pig and human intestinal tract and comparison with Caco-2 cells

    NARCIS (Netherlands)

    Vaessen, S.F.C.; Lipzig, M.M.H. van; Pieters, R.H.H.; Krul, C.A.M.; Wortelboer, H.M.; Steeg, E. van de

    2017-01-01

    Intestinal transporter proteins and metabolizing enzymes play a crucial role in the oral absorption of a wide variety of drugs. The aim of the current study was to characterize better available intestinal in vitro models by comparing expression levels of these proteins and enzymes between porcine

  16. Regional expression levels of drug transporters and metabolizing enzymes along the pig and human intestinal tract and comparison with Caco-2 cells

    NARCIS (Netherlands)

    Vaessen, Stefan F C; van Lipzig, Marola M H; Pieters, Raymond H H; Krul, Cyrille A M; Wortelboer, Heleen M; van de Steeg, Evita

    2017-01-01

    Intestinal transporter proteins and metabolizing enzymes play a crucial role in the oral absorption of a wide variety of drugs. The aim of the current study was to better characterize available intestinal in vitro models by comparing expression levels of these proteins and enzymes between porcine

  17. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs

    NARCIS (Netherlands)

    Ruokolainen, Miina; Gül, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-01-01

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and

  18. The potential of inhibitors of endocannabinoid metabolism as anxiolytic and antidepressive drugs--A practical view.

    Science.gov (United States)

    Fowler, Christopher J

    2015-06-01

    The endocannabinoid system, comprising cannabinoid CB1 and CB2 receptors, their endogenous ligands anandamide and 2-arachidonoylglyerol, and their synthetic and metabolic enzymes, are involved in many biological processes in the body, ranging from appetite to bone turnover. Compounds inhibiting the breakdown of anandamide and 2-arachidonoylglycerol increase brain levels of these lipids and thus modulate endocannabinoid signalling. In the present review, the preclinical evidence that these enzymes are good targets for development of novel therapies for anxiety and depression are discussed from a practical, rather than mechanistic, point of view. It is concluded that the preclinical data are promising, albeit tempered by problems of tolerance as well as effects upon learning and memory for irreversible monoacylglycerol lipase inhibitors, and limited by a focus upon male rodents alone. Clinical data so far has been restricted to safety studies with inhibitors of anandamide hydrolysis and a hitherto unpublished study on such a compound in elderly patients with major depressive disorders, but under the dose regimes used, they are well tolerated and show no signs of "cannabis-like" behaviours. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  19. [Metformin and AMPK: an old drug and a new enzyme in the context of metabolic syndrome].

    Science.gov (United States)

    Santomauro Júnior, Augusto Cézar; Ugolini, Michelle Remião; Santomauro, Ana Teresa; Souto, Ricardo Peres do

    2008-02-01

    Metformin is one of the most commonly prescribed oral antidiabetic agents worldwide. However, its mechanism of action remains unknown. The Diabetes Prevention Program Research Group studies have shown that metformin administration and lifestyle-intervention (diet and exercise) reduce the incidence of Diabetes Mellitus type 2 (DM2). A possible biochemical connection between both therapies may be the AMP-activated protein kinase (AMPK). This enzyme was originally described as a sensor of cellular energy status, being activated in exercise. On the other hand, several experimental evidences indicate that AMPK may be an important target of metformin action. This paper discusses various ways for AMPK regulation, suggesting a possible mechanism for its activation by metformin that involves the production of reactive nitrogen species. AMPK activation determines a wide variety of physiological effects, including enhanced glucose uptake by skeletal muscle and enhanced lipid catabolism. Thus, it may be a key player not only in the prevention and treatment of DM2, but also in the development of new treatments for obesity and the metabolic syndrome. The finding of AMPK activation by metformin draws attention to this enzyme as an important pharmacological target.

  20. A poor metabolizer of both CYP2C19 and CYP2D6 identified by mechanistic pharmacokinetic simulation in a fatal drug poisoning case involving venlafaxine

    DEFF Research Database (Denmark)

    Jornil, J; Nielsen, T S; Rosendal, I

    2013-01-01

    pharmacokinetic simulations suggested that the low metabolite ratio was the result of combined poor metabolizer (PM) status of cytochrome P450 (CYP) 2C19 and CYP2D6. This hypothesis was confirmed by genetic analysis. Simulations revealed that it was likely that the combined missing CYP2D6 and CYP2C19 activity...... would cause higher concentrations of VEN, but the simulations also suggested that there could be additional reasons to explain the high VEN concentration found in this case. Thus, it seems likely that the potentially toxic VEN concentration was caused by reduced metabolic capacity. The simulations...... combined with genotyping were considered very useful in this fatal drug poisoning case. Keywords CYP2D6; CYP2C19; Venlafaxine; Poor metabolizer; Drug poisoning; Mechanistic pharmacokinetic simulation --------------------------------------------------------------------------------...

  1. CNS metabolism in high-risk drug abuse, German version. Insights gained from 1H- and 31P MRS and PET

    International Nuclear Information System (INIS)

    Bodea, S.V.

    2017-01-01

    High-risk drug consumption is a considerable problem for public health actors in industrialised countries. The latest trends show a market tendency towards diversification and increasing demand for high-purity synthetic drugs. Whilst most consumers seek medical help after cannabis use, it is high-risk drugs like cocaine, heroin and amphetamines that account for most of the 1000 drug-related deaths that occur in Germany every year. This article presents the most prominent in vivo cerebral metabolic information in cocaine, heroin and methamphetamine users provided by MRI spectroscopy and PET imaging. We reviewed the literature reporting neuroimaging studies of in vivo metabolic data for methamphetamine, cocaine and heroin consumption published up to March 2017. The search was conducted using PubMed with the following key words: methamphetamine, cocaine, heroin, MR spectroscopy, PET. MRI and PET are indispensable tools in gauging brain metabolic response to illegal drug abuse. Future breakthroughs in this field will most likely come from the investigation of novel neurotransmitter systems in PET and imaging phosphorus and carbon metabolites in MRI. (orig.) [de

  2. [CNS metabolism in high-risk drug abuse, German version : Insights gained from 1H- and 31P MRS and PET].

    Science.gov (United States)

    Bodea, S V

    2017-06-01

    High-risk drug consumption is a considerable problem for public health actors in industrialised countries. The latest trends show a market tendency towards diversification and increasing demand for high-purity synthetic drugs. Whilst most consumers seek medical help after cannabis use, it is high-risk drugs like cocaine, heroin and amphetamines that account for most of the 1000 drug-related deaths that occur in Germany every year. This article presents the most prominent in vivo cerebral metabolic information in cocaine, heroin and methamphetamine users provided by MRI spectroscopy and PET imaging. We reviewed the literature reporting neuroimaging studies of in vivo metabolic data for methamphetamine, cocaine and heroin consumption published up to March 2017. The search was conducted using PubMed with the following key words: methamphetamine, cocaine, heroin, MR spectroscopy, PET. MRI and PET are indispensable tools in gauging brain metabolic response to illegal drug abuse. Future breakthroughs in this field will most likely come from the investigation of novel neurotransmitter systems in PET and imaging phosphorus and carbon metabolites in MRI.

  3. Predicting the Metabolic Sites by Flavin-Containing Monooxygenase on Drug Molecules Using SVM Classification on Computed Quantum Mechanics and Circular Fingerprints Molecular Descriptors.

    Directory of Open Access Journals (Sweden)

    Chien-Wei Fu

    Full Text Available As an important enzyme in Phase I drug metabolism, the flavin-containing monooxygenase (FMO also metabolizes some xenobiotics with soft nucleophiles. The site of metabolism (SOM on a molecule is the site where the metabolic reaction is exerted by an enzyme. Accurate prediction of SOMs on drug molecules will assist the search for drug leads during the optimization process. Here, some quantum mechanics features such as the condensed Fukui function and attributes from circular fingerprints (called Molprint2D are computed and classified using the support vector machine (SVM for predicting some potential SOMs on a series of drugs that can be metabolized by FMO enzymes. The condensed Fukui function fA- representing the nucleophilicity of central atom A and the attributes from circular fingerprints accounting the influence of neighbors on the central atom. The total number of FMO substrates and non-substrates collected in the study is 85 and they are equally divided into the training and test sets with each carrying roughly the same number of potential SOMs. However, only N-oxidation and S-oxidation features were considered in the prediction since the available C-oxidation data was scarce. In the training process, the LibSVM package of WEKA package and the option of 10-fold cross validation are employed. The prediction performance on the test set evaluated by accuracy, Matthews correlation coefficient and area under ROC curve computed are 0.829, 0.659, and 0.877 respectively. This work reveals that the SVM model built can accurately predict the potential SOMs for drug molecules that are metabolizable by the FMO enzymes.

  4. Metabolic and functional MR biomarkers of antiepileptic drug effectiveness: A review.

    Science.gov (United States)

    van Veenendaal, Tamar M; IJff, Dominique M; Aldenkamp, Albert P; Hofman, Paul A M; Vlooswijk, Marielle C G; Rouhl, Rob P W; de Louw, Anton J; Backes, Walter H; Jansen, Jacobus F A

    2015-12-01

    As a large number of patients with epilepsy do not respond favorably to antiepileptic drugs (AEDs), a better understanding of treatment failure and the cause of adverse side effects is required. The working mechanisms of AEDs also alter neurotransmitter concentrations and brain activity, which can be measured using MR spectroscopy and functional MR imaging, respectively. This review presents an overview of clinical research of MR spectroscopy and functional MR imaging studies to the effects of AEDs on the brain. Despite the scarcity of studies associating MR findings to the effectiveness of AEDs, the current research shows clear potential regarding this matter. Several GABAergic AEDs have been shown to increase the GABA concentration, which was related to seizure reductions, while language problems due to topiramate have been associated with altered activation patterns measured with functional MR imaging. MR spectroscopy and functional MR imaging provide biomarkers that may predict individual treatment outcomes, and enable the assessment of mechanisms of treatment failure and cognitive side effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A microfluidic hepatic coculture platform for cell-based drug metabolism studies.

    Science.gov (United States)

    Novik, Eric; Maguire, Timothy J; Chao, Piyun; Cheng, K C; Yarmush, Martin L

    2010-04-01

    Within the global pharmaceutical and biotech industries, there is significant interest in identifying in vitro screening systems that are more human-relevant-i.e., that offer greater utility in predicting subcellular and cellular physiological responses in humans in vivo-and that thereby allow investigators to reduce the incidence of costly late-stage failures during pharmaceutical clinical trials, as well as to reduce the use of animals in drug testing. Currently incumbent in vitro screening methods, such as culturing human hepatocytes in suspension, while useful, are limited by a lack of long term cellular function. In order to address this limitation, we have established an integrated, microfluidic, in vitro platform that combines the patented HmuREL((R)) microdevice with a hepatic coculture system. In the present report, we use this platform to study clearance and metabolite generation of a battery of molecular entities. The results show that the flow-based coculture system is capable of clearing, with improved resolution and predictive value, compounds with high, medium, and low clearance values. In addition, when coculture is coupled with flow, higher metabolite production rates are obtained than in static systems. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    International Nuclear Information System (INIS)

    Mizutani, T.

    2010-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the non inhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of O 12 originating on xanthene dyes by light irradiation, because inhibition was prevented by O 12 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  7. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    Science.gov (United States)

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  8. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    Science.gov (United States)

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  9. Evaluations of in vitro metabolism, drug-drug interactions mediated by reversible and time-dependent inhibition of CYPs, and plasma protein binding of MMB4 DMS.

    Science.gov (United States)

    Hong, S Peter; Lusiak, Bozena D; Burback, Brian L; Johnson, Jerry D

    2013-01-01

    1,1'-Methylenebis[4-[(hydroxyimino)methyl]-pyridinium] (MMB4) dimethanesulfonate (DMS) is a bisquaternary pyridinium aldoxime that reactivates acetylcholinesterase inhibited by organophosphorus nerve agent. Drug metabolism and plasma protein binding for MMB4 DMS were examined using various techniques and a wide range of species. When (14)C-MMB4 DMS was incubated in liver microsomes, 4-pyridine aldoxime (4-PA) and an additional metabolite were detected in all species tested. Identity of the additional metabolite was postulated to be isonicotinic acid (INA) based on liquid chromatography with a tandem mass spectrometry analysis, which was confirmed by comparison with authentic INA. Formation of INA was dependent on species, with the highest level found in monkey liver microsomes. The MMB4 DMS exhibited reversible inhibition in a concentration-dependent manner toward cytochrome P450 1A2 (CYP1A2), CYP2C9, CYP2C19, CYP2D6, and CYP3A4 in human liver microsomes showing the highest inhibition for CYP2D6. Human recombinant CYPs were used to evaluate inhibitory curves more adequately and determine detailed kinetic constants for reversible inhibition and potential time-dependent inhibition (TDI). The MMB4 DMS exhibited reversible inhibition toward human-recombinant CYP2D6 with an inhibition constant (K i) value of 66.6 µmol/L. Based on the k inact/K I values, MMB4 DMS was found to exhibit the most potent TDI toward CYP2D6. The MMB4 DMS at 5 different concentrations was incubated in plasma for 5 hours using an equilibrium dialysis device. For all species tested, there were no concentration-dependent changes in plasma protein binding, ranging from 10% to 17%. These results suggest that MMB4 was not extensively bound to plasma protein, and there were no overt species-related differences in the extent of MMB4 bound to plasma protein.

  10. 76 FR 71033 - Federal Advisory Committee Act; Technological Advisory Council

    Science.gov (United States)

    2011-11-16

    ... COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications Commission. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Advisory Committee Act... Advisory Council will hold a meeting on Tuesday, December 20, 2011 in the Commission Meeting Room, from 1 p...

  11. 78 FR 12059 - Federal Advisory Committee Act; Technological Advisory Council

    Science.gov (United States)

    2013-02-21

    ... COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications Commission. ] ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Advisory Committee...) Technological Advisory Council will hold a meeting on Monday, March 11, 2013 in the Commission Meeting Room...

  12. 75 FR 60430 - Federal Advisory Committee; Threat Reduction Advisory Committee

    Science.gov (United States)

    2010-09-30

    ... of the Secretary Federal Advisory Committee; Threat Reduction Advisory Committee AGENCY: Office of... meeting. SUMMARY: Under the provisions of the Federal Advisory Committee Act of 1972 (5 U.S.C., Appendix... announces a meeting of the Threat Reduction Advisory Committee (hereafter referred to as ``the Committee...

  13. 77 FR 30289 - Federal Advisory Committee Act; Technological Advisory Council

    Science.gov (United States)

    2012-05-22

    ... COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications Commission. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Advisory Committee Act... Advisory Council will hold a meeting on Wednesday, June 27, 2012 in the Commission Meeting Room, from 1 p.m...

  14. 77 FR 12839 - Federal Advisory Committee Act; Technological Advisory Council

    Science.gov (United States)

    2012-03-02

    ... COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications Commission. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Advisory Committee Act... Advisory Council will hold a meeting on Wednesday, March 28, 2012 in the Commission Meeting Room, from 1 p...

  15. 75 FR 43156 - Federal Advisory Committee; Missile Defense Advisory Committee

    Science.gov (United States)

    2010-07-23

    ... Office of the Secretary Federal Advisory Committee; Missile Defense Advisory Committee AGENCY: Missile... Advisory Committee Act of 1972 (5 U.S.C., Appendix, as amended) and the Government in the Sunshine Act of... Missile Defense Advisory Committee will meet on August 4 and 5, 2010, in Washington, DC. DATES: The...

  16. 78 FR 55255 - Federal Advisory Committee Act; Technological Advisory Council

    Science.gov (United States)

    2013-09-10

    ... COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications Commission. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Advisory Committee Act... Advisory Council (TAC) will hold a meeting in the Commission Meeting Room to discuss progress on work...

  17. 78 FR 67362 - Federal Advisory Committee Act; Technological Advisory Council

    Science.gov (United States)

    2013-11-12

    ... COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications Commission. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Advisory Committee Act... Advisory Council will hold a meeting on Monday, December 9, 2013 in the Commission Meeting Room, from 1 p.m...

  18. 77 FR 52332 - Federal Advisory Committee Act; Technological Advisory Council

    Science.gov (United States)

    2012-08-29

    ... COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications Commission. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Advisory Committee Act... Advisory Council will hold a meeting on Monday, September 24, 2012 in the Commission Meeting Room, from 1 p...

  19. 76 FR 14009 - Federal Advisory Committee Act; Technological Advisory Council

    Science.gov (United States)

    2011-03-15

    ... COMMISSION Federal Advisory Committee Act; Technological Advisory Council AGENCY: Federal Communications Commission. ACTION: Notice of public meeting. SUMMARY: In accordance with the Federal Advisory Committee Act... Advisory Council will hold a meeting on Wednesday, March 30, 2011 in the Commission Meeting Room, from 1 p...

  20. 75 FR 30002 - Federal Advisory Committee; Threat Reduction Advisory Committee

    Science.gov (United States)

    2010-05-28

    ... Office of the Secretary Federal Advisory Committee; Threat Reduction Advisory Committee AGENCY: Department of Defense (DoD). ACTION: Renewal of Federal advisory committee. SUMMARY: Under the provisions of the Federal Advisory Committee Act of 1972, (5 U.S.C. Appendix), the Government in the Sunshine Act of...

  1. Mechanisms of metabonomic for a gateway drug: nicotine priming enhances behavioral response to cocaine with modification in energy metabolism and neurotransmitter level.

    Directory of Open Access Journals (Sweden)

    Hongyu Li

    Full Text Available Nicotine, one of the most commonly used drugs, has become a major concern because tobacco serves as a gateway drug and is linked to illicit drug abuse, such as cocaine and marijuana. However, previous studies mainly focused on certain genes or neurotransmitters which have already been known to participate in drug addiction, lacking endogenous metabolic profiling in a global view. To further explore the mechanism by which nicotine modifies the response to cocaine, we developed two conditioned place preference (CPP models in mice. In threshold dose model, mice were pretreated with nicotine, followed by cocaine treatment at the dose of 2 mg/kg, a threshold dose of cocaine to induce CPP in mice. In high-dose model, mice were only treated with 20 mg/kg cocaine, which induced a significant CPP. (1H nuclear magnetic resonance based on metabonomics was used to investigate metabolic profiles of the nucleus accumbens (NAc and striatum. We found that nicotine pretreatment dramatically increased CPP induced by 2 mg/kg cocaine, which was similar to 20 mg/kg cocaine-induced CPP. Interestingly, metabolic profiles showed considerable overlap between these two models. These overlapped metabolites mainly included neurotransmitters as well as the molecules participating in energy homeostasis and cellular metabolism. Our results show that the reinforcing effect of nicotine on behavioral response to cocaine may attribute to the modification of some specific metabolites in NAc and striatum, thus creating a favorable metabolic environment for enhancing conditioned rewarding effect of cocaine. Our findings provide an insight into the effect of cigarette smoking on cocaine dependence and the underlying mechanism.

  2. Mechanisms of Metabonomic for a Gateway Drug: Nicotine Priming Enhances Behavioral Response to Cocaine with Modification in Energy Metabolism and Neurotransmitter Level

    Science.gov (United States)

    Li, Hongyu; Bu, Qian; Chen, Bo; Shao, Xue; Hu, Zhengtao; Deng, Pengchi; Lv, Lei; Deng, Yi; Zhu, Ruiming; Li, Yan; Zhang, Baolai; Hou, Jing; Du, Changman; Zhao, Qian; Fu, Dengqi; Zhao, Yinglan; Cen, Xiaobo

    2014-01-01

    Nicotine, one of the most commonly used drugs, has become a major concern because tobacco serves as a gateway drug and is linked to illicit drug abuse, such as cocaine and marijuana. However, previous studies mainly focused on certain genes or neurotransmitters which have already been known to participate in drug addiction, lacking endogenous metabolic profiling in a global view. To further explore the mechanism by which nicotine modifies the response to cocaine, we developed two conditioned place preference (CPP) models in mice. In threshold dose model, mice were pretreated with nicotine, followed by cocaine treatment at the dose of 2 mg/kg, a threshold dose of cocaine to induce CPP in mice. In high-dose model, mice were only treated with 20 mg/kg cocaine, which induced a significant CPP. 1H nuclear magnetic resonance based on metabonomics was used to investigate metabolic profiles of the nucleus accumbens (NAc) and striatum. We found that nicotine pretreatment dramatically increased CPP induced by 2 mg/kg cocaine, which was similar to 20 mg/kg cocaine-induced CPP. Interestingly, metabolic profiles showed considerable overlap between these two models. These overlapped metabolites mainly included neurotransmitters as well as the molecules participating in energy homeostasis and cellular metabolism. Our results show that the reinforcing effect of nicotine on behavioral response to cocaine may attribute to the modification of some specific metabolites in NAc and striatum, thus creating a favorable metabolic environment for enhancing conditioned rewarding effect of cocaine. Our findings provide an insight into the effect of cigarette smoking on cocaine dependence and the underlying mechanism. PMID:24489831

  3. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication

    Directory of Open Access Journals (Sweden)

    Mohamed eOuzzine

    2014-10-01

    Full Text Available UDP-glucuronosyltransferases (UGTs form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-Dglucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds by the linkage of glucuronic acid from the high energy donor, UDP-αD-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier. They are also associated to brain interfaces devoid of blood-brain barrier, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed.

  4. Sickle Cell Anemia Patients in Use of Hydroxyurea: Association between Polymorphisms in Genes Encoding Metabolizing Drug Enzymes and Laboratory Parameters

    Directory of Open Access Journals (Sweden)

    Sètondji Cocou Modeste Alexandre Yahouédéhou

    2018-01-01

    Full Text Available This study investigated associations between SNPs in genes encoding metabolizing drug enzymes and laboratory parameters in sickle cell anemia patients under hydroxyurea (SCA-HU+. We evaluated hematologic and biochemical parameters by electronic methods and SNPs by PCR-RFLP and multiplex PCR in 35 SCA-HU+ patients and 67 SCA-HU− patients. The HbS, total cholesterol, lactate dehydrogenase, aspartate aminotransferase, total bilirubin and fractions levels, and leukocyte, eosinophil, monocyte, and erythroblast counts were reduced in SCA-HU+ patients (pA and c1c2 + c2c2 of CYP2E1 −1293G>C/−1053C>T were higher in SCA-HU+ patients (pA, CYP2E1 −1293G>C/−1053C>T, and GSTT1 can be associated with alterations in lipid, inflammatory, renal, hemolytic, and hepatic profiles. However, further studies are needed to elucidate these associations.

  5. Suppression of hepatic cytochrome p450-mediated drug metabolism during the late stage of sepsis in rats.

    Science.gov (United States)

    Lee, Sang-Ho; Lee, Sun-Mee

    2005-02-01

    The effects of polymicrobial sepsis on the activity and gene expression of hepatic microsomal cytochrome P450 (CYP) were examined. Rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). Liver and blood samples were taken 2, 6, and 24 h after CLP. The serum aminotransferase levels and lipid peroxidation increased 24 h after CLP. The hepatic concentrations of reduced glutathione and total CYP content decreased 24 h after CLP. The CYP1A1 activity and its protein level decreased 24 h after CLP. The CYP1A2 activity decreased 2 h and 24 h after CLP. Although the CYP2B1 mRNA expression level decreased 6 h and 24 h after CLP, the CYP2B1 activity and its protein level did not change in any of the experimental groups. The CYP2E1 activity and its protein level decreased 24 h after CLP. The CYP2E1 mRNA levels were lower at both 6 h and 24 h after CLP. The TNF-alpha mRNA expression level increased 2, 6, and 24 h after CLP. The iNOS mRNA expression level increased 24 h after CLP. These findings suggest that sepsis causes abnormalities in the microsomal drug-metabolizing function, particularly in the late stage, which is associated with higher level of oxidant stress and lipid peroxidation.

  6. Application of a novel regulatable Cre recombinase system to define the role of liver and gut metabolism in drug oral bioavailability.

    Science.gov (United States)

    Henderson, Colin J; McLaughlin, Lesley A; Osuna-Cabello, Maria; Taylor, Malcolm; Gilbert, Ian; McLaren, Aileen W; Wolf, C Roland

    2015-02-01

    The relative contribution of hepatic compared with intestinal oxidative metabolism is a crucial factor in drug oral bioavailability and therapeutic efficacy. Oxidative metabolism is mediated by the cytochrome P450 mono-oxygenase system to which cytochrome P450 reductase (POR) is the essential electron donor. In order to study the relative importance of these pathways in drug disposition, we have generated a novel mouse line where Cre recombinase is driven off the endogenous Cyp1a1 gene promoter; this line was then crossed on to a floxed POR mouse. A 40 mg/kg dose of the Cyp1a1 inducer 3-methylcholanthrene (3MC) eliminated POR expression in both liver and small intestine, whereas treatment at 4 mg/kg led to a more targeted deletion in the liver. Using this approach, we have studied the pharmacokinetics of three probe drugs--paroxetine, midazolam, nelfinavir--and show that intestinal metabolism is a determinant of oral bioavailability for the two latter compounds. The Endogenous Reductase Locus (ERL) mouse represents a significant advance on previous POR deletion models as it allows direct comparison of hepatic and intestinal effects on drug and xenobiotic clearance using lower doses of a single Cre inducing agent, and in addition minimizes any cytotoxic effects, which may compromise interpretation of the experimental data.

  7. Metabolic profiling of urine and blood plasma in rat models of drug addiction on the basis of morphine, methamphetamine, and cocaine-induced conditioned place preference.

    Science.gov (United States)

    Zaitsu, Kei; Miyawaki, Izuru; Bando, Kiyoko; Horie, Hiroshi; Shima, Noriaki; Katagi, Munehiro; Tatsuno, Michiaki; Bamba, Takeshi; Sato, Takako; Ishii, Akira; Tsuchihashi, Hitoshi; Suzuki, Koichi; Fukusaki, Eiichiro

    2014-02-01

    The metabolic profiles of urine and blood plasma in drug-addicted rat models based on morphine (MOR), methamphetamine (MA), and cocaine (COC)-induced conditioned place preference (CPP) were investigated. Rewarding effects induced by each drug were assessed by use of the CPP model. A mass spectrometry (MS)-based metabolomics approach was applied to urine and plasma of MOR, MA, and COC-addicted rats. In total, 57 metabolites in plasma and 70 metabolites in urine were identified by gas chromatography-MS. The metabolomics approach revealed that amounts of some metabolites, including tricarboxylic acid cycle intermediates, significantly changed in the urine of MOR-addicted rats. This result indicated that disruption of energy metabolism is deeply relevant to MOR addiction. In addition, 3-hydroxybutyric acid, L-tryptophan, cystine, and n-propylamine levels were significantly changed in the plasma of MOR-addicted rats. Lactose, spermidine, and stearic acid levels were significantly changed in the urine of MA-addicted rats. Threonine, cystine, and spermidine levels were significantly increased in the plasma of COC-addicted rats. In conclusion, differences in the metabolic profiles were suggestive of different biological states of MOR, MA, and COC addiction; these may be attributed to the different actions of the drugs on the brain reward circuitry and the resulting adaptation. In addition, the results showed possibility of predict the extent of MOR addiction by metabolic profiling. This is the first study to apply metabolomics to CPP models of drug addiction, and we demonstrated that metabolomics can be a multilateral approach to investigating the mechanism of drug addiction.

  8. Simulation of Metabolic Drug-Drug Interactions Perpetrated by Fluvoxamine Using Hybridized Two-Compartment Hepatic Drug-Pool-Based Tube Modeling and Estimation of In Vivo Inhibition Constants.

    Science.gov (United States)

    Iga, Katsumi

    2015-10-01

    Co-administration of fluvoxamine (FLV) (perpetrator) and ramelteon (victim, high-clearance CYP1A2 substrate) reportedly showed a 130-fold increase in the area under blood-ramelteon-levels curve (AUCR), which is unpredictable by any method assuming the traditional well-stirred hepatic extraction (Eh ) model. Thus, in order to predict this drug interaction (DDI), a mathematical method that allows simulation of dynamic changes in blood victim levels in response to metabolic inhibition by a perpetrator, without the use of any specialized tools, was derived using hybridized two-compartment hepatic drug-pool-based tube modeling. Using this method, the ramelteon-victimized DDI could be simulated in comparison with other victim DDIs, assuming a consistent FLV dosing regimen. Despite large differences in AUCRs, CYP1A2 or CYP2C19 substrate-victimized DDIs resulted in equivalent inhibition constants (Ki , around 3 nM) and net enzymatic inhibitory activities calculated by eliminating hepatic availability increases for victims. Thus, the unusually large ramelteon DDI could be attributed to the Eh of ramelteon itself. This DDI risk could also be accurately predicted from Ki s estimated in the other CYP1A2 or CYP2C19-substrate interactions. Meanwhile, dynamic changes in blood perpetrator levels were demonstrated to have a small effect on DDI, thus suggesting the usefulness of a tube-based static method for DDI prediction. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Advisory Committee Handbook.

    Science.gov (United States)

    Black Hawk Coll., Moline, IL.

    An advisory committee is generally comprised of persons outside the education profession who have specialized knowledge in a given area. The committee advises, makes recommendations, and gives service to the college and its students, instructors, and administrators. At Black Hawk College, there are four types of advisory committees: community,…

  10. Gene-gene-environment interactions between drugs, transporters, receptors, and metabolizing enzymes: Statins, SLCO1B1, and CYP3A4 as an example.

    Science.gov (United States)

    Sadee, Wolfgang

    2013-09-01

    Pharmacogenetic biomarker tests include mostly specific single gene-drug pairs, capable of accounting for a portion of interindividual variability in drug response and toxicity. However, multiple genes are likely to contribute, either acting independently or epistatically, with the CYP2C9-VKORC1-warfarin test panel, an example of a clinically used gene-gene-dug interaction. I discuss here further instances of gene-gene-drug interactions, including a proposed dynamic effect on statin therapy by genetic variants in both a transporter (SLCO1B1) and a metabolizing enzyme (CYP3A4) in liver cells, the main target site where statins block cholesterol synthesis. These examples set a conceptual framework for developing diagnostic panels involving multiple gene-drug combinations. Copyright © 2013 Wiley Periodicals, Inc.

  11. Drug-DNA adducts as biomarkers for metabolic activation of the nitro-aromatic nitrogen mustard prodrug PR-104A.

    Science.gov (United States)

    Stornetta, Alessia; Deng, Kai-Cheng Kieren; Danielli, Sara; Liyanage, H D Sarath; Sturla, Shana J; Wilson, William R; Gu, Yongchuan

    2018-04-07

    PR-104A is a clinical-stage nitrogen mustard prodrug that is activated for DNA alkylation by reduction of a nitro group to the corresponding hydroxylamine (PR-104H) or amine (PR-104M). Metabolic reduction is catalysed by flavoreductases such as cytochrome P450 oxidoreductase (POR) under hypoxia, or by aldo-ketoreductase 1C3 (AKR1C3) independently of hypoxia. The unstable reduced metabolites are challenging to measure in biological samples, and biomarkers of the metabolic activation of PR-104A have not been used in the clinical evaluation of PR-104 to date. Here, we employ a selected reaction monitoring mass spectrometry assay for DNA crosslinks to assess the capacity of human cancer cells to bioactivate PR-104A. We also test whether the more abundant DNA monoadducts could be used for the same purpose. DNA monoadducts and crosslinks from PR-104A itself, and from its reduced metabolites, accumulated over 4 h in AKR1C3-expressing TF1 erythroleukaemia cells under hypoxia, whereas intracellular concentrations of unstable PR-104H and PR-104M reached steady state within 1 h. We then varied rates of PR-104A reduction by manipulating hypoxia or reductase expression in a panel of cell lines, in which AKR1C3 and POR were quantified by targeted proteomics. Hypoxia or reductase overexpression induced large increases in PR-104A sensitivity (inhibition of proliferation), DNA damage response (γH2AX formation), steady-state concentrations of PR-104H/M and formation of reduced drug-DNA adducts but not DNA adducts retaining the dinitro groups of PR-104A. The fold-change in the sum of PR-104H and PR-104M correlated with the fold-change in reduced crosslinks or monoadducts (R 2  = 0.87 for both), demonstrating their potential for assessing the capacity of cancer cells to bioactivate PR-104A. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Real Time Extraction Kinetics of Electro Membrane Extraction Verified by Comparing Drug Metabolism Profiles Obtained from a Flow-Flow Electro Membrane Extraction-Mass Spectrometry System with LC-MS

    DEFF Research Database (Denmark)

    Fuchs, David; Jensen, Henrik; Pedersen-Bjergaard, Stig

    2015-01-01

    A simple to construct and operate, "dip-in" electromembrane extraction (EME) probe directly coupled to electrospray ionization-mass spectrometry (ESI-MS) for rapid extraction and real time analysis of various analytes was developed. The setup demonstrated that EME-MS can be used as a viable...... alternative to conventional protein precipitation followed by liquid chromatography-mass spectrometry (LC-MS) for studying drug metabolism. Comparison of EME-MS with LC-MS for drug metabolism analysis demonstrated for the first time that real time extraction of analytes by EME is possible. Metabolism kinetics...... were investigated for three different drugs: amitriptyline, promethazine, and methadone. By comparing the EME-MS extraction profiles of the drug substances and formed drug metabolites with the metabolism profiles obtained by conventional protein precipitation followed by LC-MS good correlation...

  13. Anti-hypertensive drug treatment of patients with and the metabolic syndrome and obesity: a review of evidence, meta-analysis, post hoc and guidelines publications.

    Science.gov (United States)

    Owen, Jonathan G; Reisin, Efrain

    2015-06-01

    Epidemiological studies have shown an increasing prevalence of obesity and the metabolic syndrome worldwide. Lifestyle modifications that include dietary changes, weight reduction, and exercise are the cornerstones in the treatment of this pathology. However, adherence to this approach often meets with failure in clinical practice; therefore, drug therapy should not be delayed. The ideal pharmacological antihypertensive regimen should target the underlying mechanisms involved in this syndrome, including sympathetic activation, increased renal tubular sodium reabsorption, and overexpression of the renin-angiotensin-aldosterone system by the adipocyte. Few prospective trials have been conducted in the search of the ideal antihypertensive regimen in patients with obesity and the metabolic syndrome. We summarize previously published ad hoc studies, prospective studies, and guideline publications regarding the treatment of hypertension in patients with obesity and the metabolic syndrome. We conclude that the optimal antihypertensive drug therapy in these patients has not been defined. Though caution exists regarding the use of thiazide diuretics due to potential metabolic derangements, there is insufficient data to show worsened cardiovascular or renal outcomes in patients treated with these drugs. In regard to beta blockers, the risk of accelerating conversion to diabetes and worsening of inflammatory mediators described in patients treated with traditional beta blockers appears much less pronounced or absent when using the vasodilating beta blockers. Renin-angiotensin-aldosterone system (RAAS) inhibition with an ACE or an ARB and treatment with calcium channel blockers appears safe and well tolerated in obesity-related hypertension and in patients with metabolic syndrome. Future prospective pharmacological studies in this population are needed.

  14. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... Meetings & Events Media Guide About NIDA Director's Page Organization Legislative Activities Advisory Boards & Groups Working at NIDA Donating to ... 2005 –Ongoing Behaviors associated with drug misuse are among the main ...

  15. Drugs + HIV, Learn the Link

    Medline Plus

    Full Text Available ... About NIDA Director's Page Organization Legislative Activities Advisory Boards & Groups Working at NIDA Donating to NIDA Frequently ... is partly due to the addictive and intoxicating effects of many drugs, which can alter judgment and ...

  16. 78 FR 16684 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2013-03-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food...

  17. 75 FR 49940 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2010-08-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food...

  18. 75 FR 36102 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2010-06-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food...

  19. 76 FR 62419 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-10-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food...

  20. 76 FR 14415 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-03-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food...

  1. 77 FR 20642 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2012-04-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food...

  2. 76 FR 39882 - General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of...

    Science.gov (United States)

    2011-07-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0478] General and Plastic Surgery Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice announces a forthcoming meeting of a public advisory committee of the Food...

  3. The efficacy of black cumin seed (Nigella sativa) oil and hypoglycemic drug combination to reduce HbA1c level in patients with metabolic syndrome risk

    Science.gov (United States)

    Rachman, P. N. R.; Akrom; Darmawan, E.

    2017-11-01

    Metabolic syndrome is a conditions caused by metabolic abnormalities include central obesity, atherogenic dyslipidemia, hypertension, and insulin resistance. HbA1c examination is required to study the long-term glycemic status and to prevent diabetic complications of metabolic syndrome. The purpose of this study is to determine the efficacy of black cumin seed (Nigella sativa) oil and hypoglycemic drug combination to reduce HbA1c level in patients with metabolic syndrome risk. This research performed using an experimental randomized single - blind controlled trial design. A total of 99 outpatients at the Jetis I Public Health Center, Yogyakarta, Indonesia with metabolic syndrome risk were divided into three groups: The control group received placebo and two treatment groups received black seed oil orally at dose of 1.5 mL/day and 3 mL/day, respectively, for 20 days. The clinical conditions such as blood pressure, pulse rate, BMI, blood glucose serum and HbA1c levels were examined on day 0 and 21. The results obtained were analyzed with one-way ANOVA test. The mean of HbA1c levels of all groups before treatment was higher than the normal values and there was no significant difference in HbA1c value on day 0. Administration of 1.5 and 3 mL/day of black seed oil for 20 days decreased (p<0.05) HbA1c levels. It can be concluded that administration of black cumin seed oil and hypoglycemic drug combination for 20 days in patients at risk of metabolic syndrome may reduce to HbA1c levels.

  4. The effects of anticholinergic drugs on regional cerebral blood flow, and oxygen metabolism in previously untreated patients with Parkinson's disease

    International Nuclear Information System (INIS)

    Obara, Satoko; Takahashi, Satoshi; Yonezawa, Hisashi; Sato, Yoshitomo

    1998-01-01

    Regional cerebral blood flow (rCBF) and oxygen metabolism (rCMRO 2 ) were measured using the steady-state 15 O technique and positron emission tomography (PET) in six previously untreated patients with Parkinson's disease before and after trihexyphenidyl (THP) treatment. The patients comprised of 4 men and 2 women with Hoehn-Yahr stage II-III. Their ages at the onset of the study ranged from 46 to 57 years (mean±SD, 51.8±3.7) and the duration of the illness ranged from 10 to 48 months (mean±SD, 28.8±15.5). The PET study, assessments of the disability and cognitive function were undergone twice. The first time assessments were done was when the patients were not receiving any drugs, and the second time was one to three months after administration of 6 mg THP. All patients showed clinical improvement after THP treatment. The mean disability score of Unified Parkinson's Disease Rating Scale decreased from 35.1 (SD±11.3) to 25.7 (SD±11.6). The cognitive function assessed by Hasegawa's dementia rating scale-revised, Mini-Mental State Examination, Wechsler Adult Intelligence Scale-Revised, and Wechsler Memory Scale-Revised, were not significantly different before and after the THP treatment. After the THP treatment, rCBF and rCMRO 2 decreased significantly in the striatum (about 15%) and all cerebral cortices (about 10%) on both sides contralateral and ipsilateral to the predominantly symptomatic limbs. We conclude that an anticholinergic THP decreases the rCBF and rCMRO 2 significantly in the cerebral cortices without cognitive impairment in early untreated patients with Parkinson's disease. (author)

  5. Influence of Sulforaphane Metabolites on Activities of Human Drug-Metabolizing Cytochrome P450 and Determination of Sulforaphane in Human Liver Cells.

    Science.gov (United States)

    Vanduchova, Alena; Tomankova, Veronika; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-12-01

    The influence of metabolites of sulforaphane, natural compounds present in broccoli (Brassica oleracea var. botrytis italica) and in other cruciferous vegetables, on drug-metabolizing cytochrome P450 (CYP) enzymes in human liver microsomes and possible entry of sulforaphane into human hepatic cells were investigated. Metabolites studied are compounds derived from sulforaphane by the mercapturic acid pathway (conjugation with glutathione and by following reactions), namely sulforaphane glutathione and sulforaphane cysteine conjugates and sulforaphane-N-acetylcysteine. Their possible effect on four drug-metabolizing CYP enzymes, CYP3A4 (midazolam 1'-hydroxylation), CYP2D6 (bufuralol 1'-hydroxylation), CYP1A2 (7-ethoxyresorufin O-deethylation), and CYP2B6 (7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation), was tested. Inhibition of four prototypical CYP activities by sulforaphane metabolites was studied in pooled human liver microsomes. Sulforaphane metabolites did not considerably affect biological function of drug-metabolizing CYPs in human liver microsomes except for CYP2D6, which was found to be inhibited down to 73-78% of the original activity. Analysis of the entry of sulforaphane into human hepatocytes was done by cell disruption by sonication, methylene chloride extraction, and modified high-performance liquid chromatography method. The results have shown penetration of sulforaphane into the human hepatic cells.

  6. 78 FR 64505 - Request for Nominations for Voting Members on a Public Advisory Committee; Tobacco Products...

    Science.gov (United States)

    2013-10-29

    ... for Tobacco Products. FDA seeks to include the views of women and men, members of all racial and.../default.htm . SUPPLEMENTARY INFORMATION: FDA is requesting nominations for voting members on the Tobacco... Advisory Committee; Tobacco Products Scientific Advisory Committee AGENCY: Food and Drug Administration...

  7. 78 FR 20927 - Tobacco Products Scientific Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-08

    ... that are sold or distributed for use to reduce harm or the risk of tobacco-related disease associated... HUMAN SERVICES Food and Drug Administration Tobacco Products Scientific Advisory Committee; Notice of... the meeting will be closed to the public. Name of Committee: Tobacco Products Scientific Advisory...

  8. 77 FR 42746 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General...

  9. 77 FR 41790 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2012-07-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General...

  10. 75 FR 8368 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2010-02-24

    ...] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General... responses, both beneficial and harmful, to certain drugs; (2) a new patient-centric clinical pharmacology...

  11. 76 FR 38188 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2011-06-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General...

  12. 78 FR 58314 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2013-09-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General...

  13. 78 FR 42966 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2013-07-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General...

  14. 78 FR 58315 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2013-09-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General...

  15. 75 FR 10488 - Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting

    Science.gov (United States)

    2010-03-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Advisory Committee for Pharmaceutical Science and Clinical Pharmacology; Notice of Meeting AGENCY: Food and... of Committee: Advisory Committee for Pharmaceutical Science and Clinical Pharmacology. General...

  16. 77 FR 42319 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-07-18

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide... consideration of the appropriateness of cell lines derived from human tumors for vaccine manufacture. FDA...

  17. 78 FR 20663 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-05

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function..., Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, FDA. FDA intends to...

  18. 75 FR 2876 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-19

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Vaccines and Related Biological Products Advisory Committee. General Function of the Committee: To provide... virus vaccine for the 2010 - 2011 influenza season. FDA intends to make background material available to...

  19. 75 FR 47605 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-08-06

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Laboratory of Vector Borne Virus Diseases, Division of Viral Products, Office of Vaccines Research and Review...

  20. 78 FR 60884 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-02

    ...] Vaccines and Related Biological Products Advisory Committee; Notice of Meeting AGENCY: Food and Drug... public. Name of Committee: Vaccines and Related Biological Products Advisory Committee. General Function... Immunoregulation, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics...