Energy Technology Data Exchange (ETDEWEB)
NONE
2017-01-15
The availability of electrical energy in all areas of life is guaranteed by a widely ramified power grid. When electricity is transported, magnetic fields are created in addition to the electrical fields. In this brochure one will learn more about the causes and effects of electrical and magnetic fields as well as protection concepts and preventive measures. [German] Die Verfuegbarkeit von elektrischer Energie in allen Lebensbereichen wird von einem weit verzweigten Stromnetz gewaehrleistet. Wird Elektrizitaet transportiert, entstehen zusaetzlich zu den elektrischen auch magnetische Felder. In dieser Broschuere erfaehrt man mehr zu Ursachen und Wirkungen elektrischer und magnetischer Felder sowie Schutzkonzepten und Vorsorgemassnahmen.
Magnetic cooling. The future or utopia?; Magnetische koeling. Toekomst of utopie?
Energy Technology Data Exchange (ETDEWEB)
Krosse, L.; Vermeeren, R.J.F.; Verwoerd, M. [Sectie Thermische en Fysische Processen, TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands)
2004-10-01
In accordance with the Kyoto agreement the Netherlands have the ambition to reduce the greenhouse gas emissions by 50 Mton CO2-eq. during 2008-2012, compared to 1990-1995. In the field of refrigeration still a lot of greenhouse gases are being used. One option to reduce the emission of greenhouse gases is to apply an alternative refrigeration technology like magnetic cooling. Magnetic cooling is based on the reversible magneto-caloric effect (MCE). Cooling can be obtained by magnetising and demagnetising MCE-materials with permanent magnets, so very little electrical energy is needed. Furthermore, any fluid, such as water or air can be used as the heat transfer medium. Among the advantages of magnetic cooling are: silent operation, application of environmentally benign heat transfer media and energy efficiency. On the other hand it is stilt an immature technology, unknown by most manufactures, and multiple step systems are needed to bridge a sufficient temperature gradient at acceptable cooling capacities. In this study a number of system concepts were identified for magnetic cooling in conventional cooling applications such as domestic refrigerators, cabinets, mobile air-conditioners and stationary airconditioners. At this stage of the development it is essential that the feasibility of the concepts wilt be experimentally validated. Furthermore, the MCE-material research at the universities needs to be followed closely, because it will bring better systems within reach. [Dutch] In overeenstemming met de afspraken gemaakt op de klimaatconferentie in Kyoto streeft Nederland na een reductie van broeikasgas emissies met 50 Mton CO2-eq. in de periode 2008-2012 ten opzichte van 1990-1995. Binnen de koudetechniek worden nog veel broeikasgassen (HFK's) gebruikt, waarvan een deel geemitteerd wordt. Een optie om deze emissies te beperken, is het toepassen van een alternatieve koeltechnologie: magnetische koeling. Magnetische koeling is gebaseerd op het verschijnsel dat
Energy Technology Data Exchange (ETDEWEB)
Levermann-Vollmer, D. [DB Energie GmbH, Frankfurt a.M. (Germany); Thiede, J. [Balfour Beatty Rail GmbH, Power Systems, Offenbach am Main (Germany)
2002-10-01
After conversion of Prenzlau-Stralsund line in 2002 to autotransformer supply measurements have shown advantages of this system by lower impedances and interference voltages compared to the conventional system and delivered decision criterias for future projects. (orig.) [German] Die Strecke Prenzlau-Stralsund wurde im Jahr 2002 auf Speisung mit Autotransformern umgestellt. Messungen haben die Vorteile dieses Systems in Form niedrigerer Impedanzen und Beeinflussungsspannungen gegenueber der herkoemmlichen Speisung bestaetigt und Entscheidungshilfen fuer kuenftige Projekte geliefert. (orig.)
Kopferman, H; Massey, H S W
1958-01-01
Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl
Paul R. Reed; Carol J. Cumber
2000-01-01
In October, 1996 Private Moments, an adult novelty store, opened for business in Huntsville, Texas. Huntsville had no ordinances in place to prevent the opening of this type of business. In fact, the local Small Business Development Center provided guidance and assistance to Edward Delagarza, the founder and owner of Private Moments. Many of the Huntsville citizens, unhappy with the opening of Private Moments, approached the City Council requesting that it be closed immediately and asked for ...
Energy Technology Data Exchange (ETDEWEB)
Keller, J.
2007-07-02
In this work, magnetic semiconductors were investigated. As ferromagnetic compound semiconductor, EuS was investigated as thin film system. Particular attention was paid to the influence of the substrate temperature during growth on the sample properties. The samples grown and investigated here show an anomalous Hall effect. As diluted magnetic semiconductors (DMS), GaN films magnetically doped with Mn or Gd were investigated. In both material systems, ferromagnetism far above room temperature was demonstrated.While GaGdN shows a homogeneous magnetism, all ferromagnetic GaMnN samples show small clusters (phase separations). In addition, measurements of the optical absorption and the magnetic circular dichroism (MCD) were performed on the GaMnN samples. In the optical measurements, the Mn was identified as deep acceptor. At low temperatures, both the magneto-absorption and the MCD show a Zeeman-shift of an absorption band for all doping levels. The exchange energies between valence band and localized magnetic moments can be extracted from fits of the Brillouin function to the Zeeman shifts. This yields values between 1.4 eV and 1.7 eV for the lowest doping levels and between 1.7 eV and 2.1 eV for the highest doped sample. At low temperatures, no ferromagnetic behavior was found in the magneto-optical experiments. The signal is dominated by the localized Mn spin system. At room temperature, the MCD shows a ferromagnetic signature. At elevated temperatures, the signal from the Mn spin system is small enough that the influence of the clusters on the band structure of the host lattice becomes visible. Contrary to the GaMnN samples, the GaGdN films show a homogeneous magnetism. The magnetically doped GaN thin film systems investigated here exhibit different behavior. The exchange mechanism proposed for GaGdN leads to a homogeneous ferromagnetism and is similar to the magnetic exchange in the Eu chalcogenides. The interplay between this intra-atomic f-d exchange and the
Energy Technology Data Exchange (ETDEWEB)
Troschke, B.; Burkhardt, H. [Technische Univ. Berlin (Germany). Fachgebiet Angewandte Goephysik
1997-12-01
Due to high costs core recovery in many wells is strongly restricted. To determine thermal conductivity in these cases measurements on cuttings are necessary, since in situ measurements are expensive and protracted, too. Therefore cores from three hydrogeothermal wells of the north-east part of the German sedimentary basin were grinded to compare the results of measurements on cuttings with known values of thermal conductivity from the original cores. By a suitable model of the two-phase-system cuttings-water it is possible to calculate the thermal conductivity of the rock-matrix. On the basis of this value and a suitable rock-model an average thermal conductivity for the water saturated rock can be estimated. Certainly all influences of the texture (anisotropy, grain bond) and of the characteristics of the porespace (porosity, internal surface, saturation, permeability) are lost with measurements on cuttings. Therefore for the different systems cuttings-water and rock-porefluid as well as for different rock types different models are necessary. (orig.) [Deutsch] In vielen Bohrungen werden aus Kostengruenden keine Kerne gezogen. Fuer die Ermittlung der Waermeleitfaehigkeit koennen deshalb nur in-situ-Messungen, die ebenfalls zeit- und kostenintensiv sind, oder Messungen am Bohrklein herangezogen werden. Es wurden daher Kerne aus drei Hydrogeothermalbohrungen des nordostdeutschen Beckens aufgemahlen, um so vergleichende Messungen am `Bohrklein` aus Kernen mit bekannter Waermeleitfaehigkeit durzhzufuehren. Durch eine geeignete Modellvorstellung des Zwei-Phasen-Systems Bohrklein/Wasser laesst sich die Waermeleitfaehigkeit der Gesteinsmatrix bestimmen und aus dieser durch ein Gesteinsmodell auch eine mittlere Waermeleitfaehigkeit des wassergesaettigten Festgesteins berechnen. Klar ist, dass bei Messungen am Bohrklein Einfluesse, die durch Gefuege (Anisotropie, Kornbindung) und Porenraumeigenschaften (Porositaet, Saettigung, Permeabilitaet) hervorgerufen werden
Energy Technology Data Exchange (ETDEWEB)
Zuern, Klaus P.
2009-12-17
In the dissertation on hand monodisperse, wellordered magnetic cobalt and cobalt hydride nanoparticles have been produced and investigated magnetically. The preparation was achieved by diblock-copolymer-micelles filled with cobalt salt, from which nanoparticles of elementary cobalt respectively cobalt hydride were generated in different steps of the procedure. It was evident that the cobalthydride generated by the hydrogen plasma was surprisingly stable. It could even be taken into consideration as a hydrogen storage device for fuel cell. The magnetic properties of the particles has been investigated by x-ray magnetic circular dichroism (XMCD). In addition it was evident, that it was principally impossible to investigate a film layered on a substrate with a SQUID-magnetometer, if this film produces only a small signal as well absolutely as relatively to the magnetically measured total moment of the sample. (orig.)
DEFF Research Database (Denmark)
Hastrup, Kirsten Blinkenberg
2017-01-01
as an experiment in real time, where insights gained intersubjectively gradually shape up as knowledge through analysis. This line of thought is brought to bear on a discussion of collaboration between anthropologists, archaeologists, and biologists in North West Greenland. Through actual experiences from...... the field, this article shows how knowledge generated on the edge of one’s familiar disciplinary territory may both expand and intensify the anthropological field. Collaborative moments are seen to make new anthropological insights emerge through the co-presence of several analytical perspectives...
Assembling Transgender Moments
Greteman, Adam J.
2017-01-01
In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…
International Nuclear Information System (INIS)
Lipkin, H.J.
1983-06-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties are encountered which are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing present in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the ω - moment may indicate that the strange quark contribution to the ω moments is considerably larger than the value μ(#betta#) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the μ - moment include a value very close to -(1/2)μ(μ + ) which would indicate that strange quarks do not contribute at all to the μ moments. (author)
Solvents level dipole moments.
Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E
2011-11-03
The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule.
Energy Technology Data Exchange (ETDEWEB)
Durst, B.
2000-11-01
The interaction between turbulence and hydrogen-flames was investigated in an explosion tube. The flow velocity around single flow obstacles was measured with a laser-Doppler system and compared to the flame velocity which was recorded using photodiodes. The highest turbulence intensity (up to 10 m/s) and correspondingly the highest flame acceleration was measured in the shear layer downstream of the obstacle with the highest blockage ratio. A closure model based on probability density functions (PDF) was developed for the time averaged chemical reaction rate for the purpose of simulating turbulent combustion processes. Comparisons of the results gained from simulations using the PDF combustion modell showed good agreement with the measurements performed. [German] Die Wechselwirkung zwischen Turbulenz und Wasserstoff-Flammen wurde in einem Explosionsrohr untersucht. Die Stroemungsgeschwindigkeit wurde mit einem Laser-Doppler System an Einzelhindernissen gemessen und mit der Flammengeschwindigkeit, die mittels Photodioden erfasst wurde, verglichen. In der Scherschicht hinter dem Hindernis mit der hoechsten Blockierrate wurde die hoechste Turbulenzintensitaet (bis 10 m/s) und damit die hoechste Flammenbeschleunigung gemessen. Fuer numerische Simulationen der turbulenten Verbrennung wurde ein Schliessungsansatz fuer die zeitgemittelte chemische Reaktionsrate entwickelt, der auf Wahrscheinlichkeitsdichtefunktionen (englisch: PDF) basiert. Vergleichsrechnungen mit dem PDF-Verbrennungsmodell zeigten gute Uebereinstimmung mit den durchgefuehrten Messungen.
Marciano, William J
2010-01-01
This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o
International Nuclear Information System (INIS)
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-01-01
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments
Energy Technology Data Exchange (ETDEWEB)
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-03-29
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.
Electric dipole moments reconsidered
International Nuclear Information System (INIS)
Rupertsberger, H.
1989-01-01
The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)
Moment graphs and representations
DEFF Research Database (Denmark)
Jantzen, Jens Carsten
2012-01-01
Moment graphs and sheaves on moment graphs are basically combinatorial objects that have be used to describe equivariant intersectiion cohomology. In these lectures we are going to show that they can be used to provide a direct link from this cohomology to the representation theory of simple Lie...
Schmüdgen, Konrad
2017-01-01
This advanced textbook provides a comprehensive and unified account of the moment problem. It covers the classical one-dimensional theory and its multidimensional generalization, including modern methods and recent developments. In both the one-dimensional and multidimensional cases, the full and truncated moment problems are carefully treated separately. Fundamental concepts, results and methods are developed in detail and accompanied by numerous examples and exercises. Particular attention is given to powerful modern techniques such as real algebraic geometry and Hilbert space operators. A wide range of important aspects are covered, including the Nevanlinna parametrization for indeterminate moment problems, canonical and principal measures for truncated moment problems, the interplay between Positivstellensätze and moment problems on semi-algebraic sets, the fibre theorem, multidimensional determinacy theory, operator-theoretic approaches, and the existence theory and important special topics of multidime...
Energy Technology Data Exchange (ETDEWEB)
Gacic, Milan
2009-04-24
to the ferromagnetic moment which is due to metallic Cobalt segregations. This contribution could be much higher than the intrinsic one. However, XMCD measurements show that Cobalt is not contributing to the ferromagnetism at all. All things considered, there are indications that magnetic defects play a crucial role in the magnetism of Zn{sub 0.95}Co{sub 0.05}O. (orig.)
International Nuclear Information System (INIS)
Krivoruchenko, M.I.
1985-01-01
In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model
González-Sprinberg, G. A.; Vidal, J.
2017-10-01
The τ lepton magnetic moment theoretical predictions and measurements are reviewed. While it is believed that such a high mass particle is a good candidate to show up new physics, this is not the case up to now. The magnetic moment of elementary fermions, and in particular the anomalous magnetic moment of the electron, had an historical impact both in relativistic quantum mechanics and in quantum field theories. Besides, many new physics models were discarded when confronted with these magnitudes. More recently, the discrepancy of the experiments and the theoretical predictions for the muon anomalous magnetic moment is still an open issue. For the τ lepton, instead, while the theoretical prediction is well known for the standard model and some new physics models, the data are very far of determining even its sign or the first figure. We will discuss the most important theoretical aspects of the τ magnetic moment, and also the current accepted measurements and future perspectives, in particular related to B-factories.
Energy Technology Data Exchange (ETDEWEB)
Hanks, T.C.; Kanamori, H.
1979-05-10
The nearly conincident forms of the relations between seismic moment M/sub o/ and the magnitudes M/sub L/, M/sub s/, and M/sub w/ imply a moment magnitude scale M=2/3 log M/sub o/-10.7 which is uniformly valid for 3< or approx. =M/sub L/< or approx. = 7, 5 < or approx. =M/sub s/< or approx. =7 1/2 and M/sub w/> or approx. = 7 1/2.
International Nuclear Information System (INIS)
Vysotsky, M.I.
1990-03-01
I would like to discuss the problem of a neutrino magnetic moment which is of interest since it deals with the probable time anticorrelation of the solar v flux with the Sun magnetic activity. (author). 19 refs, 2 figs, 1 tab
International Nuclear Information System (INIS)
Towner, I.S.; Khanna, F.C.
1984-01-01
Consideration of core polarization, isobar currents and meson-exchange processes gives a satisfactory understanding of the ground-state magnetic moments in closed-shell-plus (or minus)-one nuclei, A = 3, 15, 17, 39 and 41. Ever since the earliest days of the nuclear shell model the understanding of magnetic moments of nuclear states of supposedly simple configurations, such as doubly closed LS shells +-1 nucleon, has been a challenge for theorists. The experimental moments, which in most cases are known with extraordinary precision, show a small yet significant departure from the single-particle Schmidt values. The departure, however, is difficult to evaluate precisely since, as will be seen, it results from a sensitive cancellation between several competing corrections each of which can be as large as the observed discrepancy. This, then, is the continuing fascination of magnetic moments. In this contribution, we revisit the subjet principally to identify the role played by isobar currents, which are of much concern at this conference. But in so doing we warn quite strongly of the dangers of considering just isobar currents in isolation; equal consideration must be given to competing processes which in this context are the mundane nuclear structure effects, such as core polarization, and the more popular meson-exchange currents
DEFF Research Database (Denmark)
Madsen, T. B.; Swann, A.
2012-01-01
and third Lie algebra Betti numbers are zero. We show that these form a special class of solvable Lie groups and provide a structural characterisation. We provide many examples of multi-moment maps for different geometries and use them to describe manifolds with holonomy contained in G(2) preserved by a two...
Higgins, Chris
2014-01-01
In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…
Czech Academy of Sciences Publication Activity Database
Suk, Tomáš; Flusser, Jan
2004-01-01
Roč. 26, č. 10 (2004), s. 1364-1367 ISSN 0162-8828 R&D Projects: GA ČR GA201/03/0675 Institutional research plan: CEZ:AV0Z1075907 Keywords : projective transform * moment invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.352, year: 2004 http://library.utia.cas.cz/prace/20040112.pdf
Distributions on unbounded moment spaces and random moment sequences
Dette, Holger; Nagel, Jan
2012-01-01
In this paper we define distributions on moment spaces corresponding to measures on the real line with an unbounded support. We identify these distributions as limiting distributions of random moment vectors defined on compact moment spaces and as distributions corresponding to random spectral measures associated with the Jacobi, Laguerre and Hermite ensemble from random matrix theory. For random vectors on the unbounded moment spaces we prove a central limit theorem where the centering vecto...
Face recognition using Krawtchouk moment
Indian Academy of Sciences (India)
Abstract. Feature extraction is one of the important tasks in face recognition. Moments are widely used feature extractor due to their superior discriminatory power and geometrical invariance. Moments generally capture the global features of the image. This paper proposes Krawtchouk moment for feature extraction in face ...
Face recognition using Krawtchouk moment
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... Feature extraction is one of the important tasks in face recognition. Moments are widely used feature extractor due to their superior discriminatory power and geometrical invariance. Moments generally capture the global features of the image. This paper proposes Krawtchouk moment for feature extraction ...
Paul Callaghan luminous moments
Callaghan, Paul
2013-01-01
Acknowledged internationally for his ground-breaking scientific research in the field of magnetic resonance, Sir Paul Callaghan was a scientist and visionary with a rare gift for promoting science to a wide audience. He was named New Zealander of the Year in 2011. His death in early 2012 robbed New Zealand of an inspirational leader. Paul Callaghan: Luminous Moments brings together some of his most significant writing. Whether he describes his childhood in Wanganui, reflects on discovering the beauty of science, sets out New Zealand's future potential or discusses the experience of fa
SELECTION MOMENTS AND GENERALIZED METHOD OF MOMENTS FOR HETEROSKEDASTIC MODELS
Directory of Open Access Journals (Sweden)
Constantin ANGHELACHE
2016-06-01
Full Text Available In this paper, the authors describe the selection methods for moments and the application of the generalized moments method for the heteroskedastic models. The utility of GMM estimators is found in the study of the financial market models. The selection criteria for moments are applied for the efficient estimation of GMM for univariate time series with martingale difference errors, similar to those studied so far by Kuersteiner.
2002-01-01
Experiment IS358 uses the intense and pure beams of copper isotopes provided by the ISOLDE RILIS (resonance ionization laser ion source). The isotopes are implanted and oriented in the low temperature nuclear orientation set-up NICOLE. Magnetic moments are measured by $\\beta$-NMR. Copper (Z=29), with a single proton above the proton-magic nickel isotopes provides an ideal testground for precise shell model calculations of magnetic moments and their experimental verification. In the course of our experiments we already determined the magnetic moments of $^{67}$Ni, $^{67}$Cu, $^{68g}$Cu, $^{69}$Cu and $^{71}$Cu which provide important information on the magicity of the N=40 subshell closure. In 2001 we plan to conclude our systematic investigations by measuring the magnetic moment of the neutron-deficient isotope $^{59}$Cu. This will pave the way for a subsequent study of the magnetic moment of $^{57}$Cu with a complementary method.
Moment Magnitude discussion in Austria
Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang
2017-04-01
We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.
Dimensional reduction and moment maps
Nagatomo, Yasuyuki
2002-03-01
We give a unified viewpoint of moment maps in the case of symplectic, hyper-Kähler, quaternion-Kähler and holomorphic contact manifolds. The Higgs field can be regarded as a moment map under some additional conditions in each case. Using dimensional reductions and moment maps, we reduce the standard 1 instanton on HP 1≅S 4 to an SO(3) instanton on CP 1× CP 1 and the standard 1 instanton on HP n to the standard 1 instanton on Gr 2( Cn+1) .
International Nuclear Information System (INIS)
Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.
2004-01-01
The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived
Energy Technology Data Exchange (ETDEWEB)
Antoniak, C.
2007-12-14
Besides the determination of magnetic properties of epitaxial grown Fe{sub x}Pt{sub 1-x} films like e.g. the magnetic anisotropy, effective magnetisation, exchange length and damping as reference data, wet-chemically synthesised spherical Fe{sub x}Pt{sub 1-x} nanoparticles with different sizes, compositions and crystal structures were examined systematically after the reduction of Fe oxides by a hydrogen plasma treatment. Organic ligands surrounding the particles after the synthesis, were removed as well during this procedure. These ligands prevent the agglomeration of the nanoparticles when deposited onto a substrate, but do not have any measurable effect on the oxide formation under air exposure and do not change the magnetic properties of oxidised nanoparticles within experimental error bars. Static and dynamic magnetic properties were determined using the ferromagnetic resonance technique and themeasurement of the x-ray absorption, especially the analysis of the X-ray circular dichroism. The analysis of the element-specific magnetic moments shows that the effective magnetic spin moment ({mu}{sup eff}{sub s}) of the Fe{sub x}Pt{sub 1-x} nanoparticles is reduced by 20.30% with respect to the one of the corresponding Fe{sub x}Pt{sub 1-x} film due to the inhomogeneous composition within the nanoparticles which was found by the analysis of the extended X-ray absorption fine structure. With decreasing particle size, {mu}{sup eff}{sub s} is further decreasing while the ratio of orbital-to-effective-spin magnetic moment ({mu}{sub l}/{mu}{sup eff}{sub s}) increases. Annealing at 600 C of a sample consisting of Fe{sub 0.50}Pt{sub 0.50} nanoparticles with a mean diameter around 6 nm yields a strong increase of the {mu}{sub l}/{mu}{sup eff}{sub s} ratio at the Fe sites: it reaches a value of about 9% and is as large as the value at the Pt sites. This is accompanied by an enhancement of the coercive field from (36{+-}5) mT to (292{+-}8) mT after annealing that can be
Energy Technology Data Exchange (ETDEWEB)
Dmitrieva, O.
2007-09-21
reconstruction method. An expansion of about 10% of the outer shells of the particles was observed. This expansion can be attributed to the oxidation of the surface of the particles. The thickness of the oxide shell was estimated by EELS and XAS to be about 1-2 atomic layers. Using X-ray magnetic circular dichroism the spin and orbital magnetic moments and the magnetization loop corresponding to Fe atoms were obtained. The enhanced value of the orbital magnetic moment of 0.2 {mu}{sub B} observed in the particles can be attributed to the tetragonal distortion of the L1{sub 0}-ordered lattice. (orig.)
Fast computation of Krawtchouk moments
Czech Academy of Sciences Publication Activity Database
Honarvar Shakibaei Asli, B.; Flusser, Jan
2014-01-01
Roč. 288, č. 1 (2014), s. 73-86 ISSN 0020-0255 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Krawtchouk polynomial * Krawtchouk moment * Geometric moment * Impulse response * Fast computation * Digital filter Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.038, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0432452.pdf
Moment Distributions of Phase Type
DEFF Research Database (Denmark)
Bladt, Mogens; Nielsen, Bo Friis
2011-01-01
Moment distributions of phase-type and matrix-exponential distributions are shown to remain within their respective classes. We provide a probabilistic phase-type representation for the former case and an alternative representation, with an analytically appealing form, for the latter. First order...... moment distributions are of special interest in areas like demography and economics, and we calculate explicit formulas for the Lorenz curve and Gini index used in these disciplines....
Energy Technology Data Exchange (ETDEWEB)
Bulut, Furkan
2008-10-13
In this work, I present results concerning structural and magnetic properties of massselected iron-cobalt alloy clusters with diameters between 5 and 15 nm. I have studied the structure of FeCo alloy clusters with high resolution transmission electron microscopy (HRTEM) and scanning tunneling microscopy (STM). I have also investigated the crystalline structure of pure iron and pure cobalt clusters with HRTEM to ensure a reliable determination of the lattice parameter for the alloy clusters. The FeCo nanoparticles have a truncated dodecahedral shape with a CsCl-structure. The clusters were produced with a continuously working arc cluster ion source and subsequently mass-selected with an electrostatic quadrupole deflector. The composition of the alloy clusters was checked with energy dispersive x-ray spectroscopy (EDX). The lateral size distribution was investigated by TEM and the height of the deposited FeCo clusters on the (110) surface of tungsten was determined by STM. Comparing the results I have observed that the supported clusters were flattened due to the high surface energy of W(110). The decrease in height of the mass-selected supported clusters amounts to about 1 nm. Furthermore, element specific magnetic studies performed by means of X-ray magnetic circular dichroism (XMCD) have shown that magnetic moments of Fe{sub 50}Co{sub 50} alloy clusters are in good agreement with the theoretically expected values in the bulk. I have also examined the behavior of the alloy clusters at elevated temperatures. The clusters exhibit an anisotropic melting on the W(110) surface. (orig.)
Image Recognition Using Modified Zernike Moments
Directory of Open Access Journals (Sweden)
Min HUANG
2014-03-01
Full Text Available Zernike moments are complex moments with the orthogonal Zernike polynomials as kernel function, compared with other moments; Zernike moments have greater advantages in image rotation and low noise sensitivity. Because of the Zernike moments have image rotation invariance, and can construct arbitrary high order moments, it can be used for target recognition. In this paper, the Zernike moment algorithm is improved, which makes it having scale invariance in the processing of digital image. At last, an application of the improved Zernike moments in image recognition is given.
Energy Technology Data Exchange (ETDEWEB)
Krumme, Bernhard
2012-07-17
A Moessbauer-spectroscopic investigation of Fe{sub 3} films on GaAs(100) and MgO(100) revealed a disordered growth mode of Fe{sub 3}Si on GaAs(100), which is caused by an interdiffusion of Ga/As atoms. Implementing a 3 nm thick MgO tunnelbarrier on the GaAs suface inhibits the interdiffusion and enables an epitaxial film growth of Fe{sub 3}Si. By comparing experimental X-ray absorption measurements with DFT calculations we are able to resolve the contribution of the different Fe sublattices to the XAS and XMCD signal. Taking into account atomic disorder arising from Ga/As atoms within DFT calculation yields a small reduction of the spin polarization of Fe{sub 3}Si, indicating that the system Fe{sub 3}Si/GaAs(100) still is an interesting candidate for spintronic applications. For the Heusler compounds Co{sub 2}MnSi and Co{sub 2}FeSi the influence of the 3d transition metals Mn/Fe on the hybridization was determined by X-ray absorption and DFT calculations. A depth-selective study of the electronic structure of Mn in Co{sub 2}MnSi at the vicinity to a MgO tunnelbarrier indicates an increased number of unoccupied d states referring a MnSi terminated interface. The electronic structure of Si-rich Co{sub 2}FeSi depends on the external magnetic field. This points to magnetostrictive effects in this compound. Furthermore, the Heusler compound Ni{sub 51.6}Mn{sub 32.9}Sn{sub 15.5} was studied in this work. The compound is a shape memory alloy exhibiting a large inverse magnetocaloric effect. In this work the focus was put on the element-specific magnetic properties of Ni and Mn. For Mn a strong increase of the ratio of orbital to spin magnetic moment m{sub l}/m{sub S} was observed. In the austenite phase this ratio accounts for 5 %, whereas in the martensite this value becomes 13.5 %. For Ni m{sub l}/m{sub S} is almost constant at 28 %. applying a magnetic field of 3 T in the martensite phase leads to a reduction of m{sub l}/m{sub S} for both elements, indicating a field
Stochastic Generalized Method of Moments
Yin, Guosheng
2011-08-16
The generalized method of moments (GMM) is a very popular estimation and inference procedure based on moment conditions. When likelihood-based methods are difficult to implement, one can often derive various moment conditions and construct the GMM objective function. However, minimization of the objective function in the GMM may be challenging, especially over a large parameter space. Due to the special structure of the GMM, we propose a new sampling-based algorithm, the stochastic GMM sampler, which replaces the multivariate minimization problem by a series of conditional sampling procedures. We develop the theoretical properties of the proposed iterative Monte Carlo method, and demonstrate its superior performance over other GMM estimation procedures in simulation studies. As an illustration, we apply the stochastic GMM sampler to a Medfly life longevity study. Supplemental materials for the article are available online. © 2011 American Statistical Association.
Characterizing flow fluctuations with moments
Directory of Open Access Journals (Sweden)
Rajeev S. Bhalerao
2015-03-01
Full Text Available We present a complete set of multiparticle correlation observables for ultrarelativistic heavy-ion collisions. These include moments of the distribution of the anisotropic flow in a single harmonic and also mixed moments, which contain the information on correlations between event planes of different harmonics. We explain how all these moments can be measured using just two symmetric subevents separated by a rapidity gap. This presents a multi-pronged probe of the physics of flow fluctuations. For instance, it allows to test the hypothesis that event-plane correlations are generated by non-linear hydrodynamic response. We illustrate the method with simulations of events in A MultiPhase Transport (AMPT model.
Method of moments in electromagnetics
Gibson, Walton C
2007-01-01
Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t
Quiet Moment around the Campfire
Centers for Disease Control (CDC) Podcasts
2014-06-18
Byron Breedlove reads his essay, "Quiet Moment around the Campfire," about the art of Frederic Remington and the transmission of pathogens as frontiers expand. Created: 6/18/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID). Date Released: 6/19/2014.
Updating neutrino magnetic moment constraints
Directory of Open Access Journals (Sweden)
B.C. Cañas
2016-02-01
Full Text Available In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs, discussing both the constraints on the magnitudes of the three transition moments Λi and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1×10−11μB at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Λ1|≤5.6×10−11μB, |Λ2|≤4.0×10−11μB, and |Λ3|≤3.1×10−11μB (90% C.L., irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.
Moment methods and Lanczos methods
International Nuclear Information System (INIS)
Whitehead, R.R.
1980-01-01
In contrast to many of the speakers at this conference I am less interested in average properties of nuclei than in detailed spectroscopy. I will try to show, however, that the two are very closely connected and that shell-model calculations may be used to give a great deal of information not normally associated with the shell-model. It has been demonstrated clearly to us that the level spacing fluctuations in nuclear spectra convey very little physical information. This is true when the fluctuations are averaged over the entire spectrum but not if one's interest is in the lowest few states, whose spacings are relatively large. If one wishes to calculate a ground state (say) accurately, that is with an error much smaller than the excitation energy of the first excited state, very high moments, μ/sub n/, n approx. 200, are needed. As I shall show, we use such moments as a matter of course, albeit without actually calculating them; in fact I will try to show that, if at all possible, the actual calculations of moments is to be avoided like the plague. At the heart of the new shell-model methods embodied in the Glasgow shell-model program and one or two similar ones is the so-called Lanczos method and this, it turns out, has many deep and subtle connections with the mathematical theory of moments. It is these connections that I will explore here
Moment Invariants in Image Analysis
Czech Academy of Sciences Publication Activity Database
Flusser, Jan
2006-01-01
Roč. 11, č. 2 (2006), s. 196-201 ISSN 1305-5313 R&D Projects: GA MŠk 1M0572; GA ČR GA102/04/0155 Institutional research plan: CEZ:AV0Z10750506 Keywords : moment invariants * pattern recognition Subject RIV: JD - Computer Applications, Robotics
Face recognition using Krawtchouk moment
Indian Academy of Sciences (India)
Artificial Intelligence 17(1): 41–62. Hu M K 1962 Visual pattern recognition by moment invariants. IRE Trans. on Information Theory, IT-8,. 179–187. Huang F T, Zhou Z, Zhang H-J and Chen T 2000 Pose invariant face recognition, Proc. Fourth IEEE. International Conference on Automatic Face and Gesture Recognition, ...
Particle electric dipole-moments
Energy Technology Data Exchange (ETDEWEB)
Pendlebury, J.M. [Sussex Univ., Brighton (United Kingdom)
1997-04-01
The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.
Maximal Electric Dipole Moments of Nuclei with Enhanced Schiff Moments
Ellis, John; Pilaftsis, Apostolos
2011-01-01
The electric dipole moments (EDMs) of heavy nuclei, such as 199Hg, 225Ra and 211Rn, can be enhanced by the Schiff moments induced by the presence of nearby parity-doublet states. Working within the framework of the maximally CP-violating and minimally flavour-violating (MCPMFV) version of the MSSM, we discuss the maximal values that such EDMs might attain, given the existing experimental constraints on the Thallium, neutron and Mercury EDMs. The maximal EDM values of the heavy nuclei are obtained with the help of a differential-geometrical approach proposed recently that enables the maxima of new CP-violating observables to be calculated exactly in the linear approximation. In the case of 225Ra, we find that its EDM may be as large as 6 to 50 x 10^{-27} e.cm.
2006-01-01
One of the first events reconstructed in the Muon Drift Tubes, the Hadron Calorimeter and elements of the Silicon Tracker (TK) at 3 Tesla. The atmosphere in the CMS control rooms was electric. Everbody was at the helm for the first full-scale testing of the experiment. This was a crunch moment for the entire collaboration. On Tuesday, 22 August the magnet attained almost its nominal power of 4 Tesla! At the same moment, in a tiny improvised control room, the physicists were keyed up to test the entire detector system for the first time. The first cosmic ray tracks appeared on their screens in the week of 15 August. The tests are set to continue for several weeks more until the first CMS components are lowered into their final positions in the cavern.
Moment Closure for the Stochastic Logistic Model
National Research Council Canada - National Science Library
Singh, Abhyudai; Hespanha, Joao P
2006-01-01
..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...
Wild bootstrap versus moment-oriented bootstrap
Sommerfeld, Volker
1997-01-01
We investigate the relative merits of a “moment-oriented” bootstrap method of Bunke (1997) in comparison with the classical wild bootstrap of Wu (1986) in nonparametric heteroscedastic regression situations. The “moment-oriented” bootstrap is a wild bootstrap based on local estimators of higher order error moments that are smoothed by kernel smoothers. In this paper we perform an asymptotic comparison of these two dierent bootstrap procedures. We show that the moment-oriented bootstrap is in ...
On the interpretation of the support moment
Hof, AL
2000-01-01
It has been suggested by Winter (J. Biomech. 13 (1980) 923-927) that the 'support moment', the sum of the sagittal extension moments, shows less variability in walking than any of the joint moments separately. A simple model is put forward to explain this finding. It is proposed to reformulate the
some deficiencies in using moment generating functions
African Journals Online (AJOL)
Two deficiencies in using moment-generating functions are given and illustrated with examples. Many distributions do not have moment generating functions, but every distribution has a unique characteristic function. The use of characteristic functions is preferred to moment-generating functions. KEY WORDS: ...
Electromagnetic moments of 22F
Mihara, M.; Matsuta, K.; Komurasaki, J.; Hirano, H.; Nishimura, D.; Momota, S.; Ohtsubo, T.; Izumikawa, T.; Shimbara, Y.; Kubo, T.; Kameda, D.; Zhou, Dongmei; Zheng, Yongnan; Yuan, Daqing; Zhu, Shengyun; Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S.; Nagatomo, T.; Matsumiya, R.; Ishikawa, D.; Fukuda, M.; Minamisono, T.; Nojiri, Y.; Alonso, J. R.; Crebs, G. F.; Symons, T. J. M.
2010-03-01
The magnetic dipole (μ) and electric quadrupole (Q) moments of short-lived nucleus 22F (Iπ=4+, T=4.2s) have been measured for the first time by means of the β-NMR technique. A spin polarized 22F beam was produced through the charge exchange reaction of 22Ne and was implanted into single crysltals of NaF and MgF2 for μ and Q measurements, respectively. As a result, |μ(F22)|=(2.69443±0.00039)μ and |Q(F22)|=(3±2)mb was obtained. These values are well reproduced by the shell model calculations.
Electric and Magnetic Dipole Moments
CERN. Geneva
2005-01-01
The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.
Reconstruction of convex bodies from moments
DEFF Research Database (Denmark)
Hörrmann, Julia; Kousholt, Astrid
We investigate how much information about a convex body can be retrieved from a finite number of its geometric moments. We give a sufficient condition for a convex body to be uniquely determined by a finite number of its geometric moments, and we show that among all convex bodies, those which......- rithm that approximates a convex body using a finite number of its Legendre moments. The consistency of the algorithm is established using the stabil- ity result for Legendre moments. When only noisy measurements of Legendre moments are available, the consistency of the algorithm is established under...
Predicting Robust Learning with the Visual Form of the Moment-by-Moment Learning Curve
Baker, Ryan S.; Hershkovitz, Arnon; Rossi, Lisa M.; Goldstein, Adam B.; Gowda, Sujith M.
2013-01-01
We present a new method for analyzing a student's learning over time for a specific skill: analysis of the graph of the student's moment-by-moment learning over time. Moment-by-moment learning is calculated using a data-mined model that assesses the probability that a student learned a skill or concept at a specific time during learning (Baker,…
Harmonic moment dynamics in Laplacian growth
Leshchiner, Alexander; Thrasher, Matthew; Mineev-Weinstein, Mark B.; Swinney, Harry L.
2010-01-01
Harmonic moments are integrals of integer powers of z=x+iy over a domain. Here, the domain is an exterior of a bubble of air growing in an oil layer between two horizontal closely spaced plates. Harmonic moments are a natural basis for such Laplacian growth phenomena because, unlike other representations, these moments linearize the zero surface tension problem [S. Richardson, J. Fluid Mech. 56, 609 (1972)], so that all moments except the lowest one (the area of the bubble) are conserved in time. In our experiments, we directly determine the harmonic moments and show that for nonzero surface tension, all moments (except the lowest one) decay in time rather than exhibiting the divergences of other representations. Further, we derive an expression that relates the derivative of the kth harmonic moment Mk to measurable quantities (surface tension, viscosity, the distance between the plates, and a line integral over the contour encompassing the growing bubble). The laboratory observations are in good accord with the expression we derive for dMk/dt , which is proportional to the surface tension; thus in the zero surface tension limit, the moments (above k=0 ) are all conserved, in accord with Richardson’s theory. In addition, from the measurements of the time evolution of the harmonic moments we obtain a value for the surface tension that is within 20% of the accepted value. In conclusion, our analysis and laboratory observations demonstrate that an interface dynamics description in terms of harmonic moments is physically realizable and robust.
Solving moment hierarchies for chemical reaction networks
Krishnamurthy, Supriya; Smith, Eric
2017-10-01
The study of chemical reaction networks (CRN’s) is a very active field. Earlier well-known results (Feinberg 1987 Chem. Enc. Sci. 42 2229, Anderson et al 2010 Bull. Math. Biol. 72 1947) identify a topological quantity called deficiency, for any CRN, which, when exactly equal to zero, leads to a unique factorized steady-state for these networks. No results exist however for the steady states of non-zero-deficiency networks. In this paper, we show how to write the full moment-hierarchy for any non-zero-deficiency CRN obeying mass-action kinetics, in terms of equations for the factorial moments. Using these, we can recursively predict values for lower moments from higher moments, reversing the procedure usually used to solve moment hierarchies. We show, for non-trivial examples, that in this manner we can predict any moment of interest, for CRN’s with non-zero deficiency and non-factorizable steady states.
Solving moment hierarchies for chemical reaction networks.
Krishnamurthy, Supriya; Smith, Eric
2017-10-20
The study of chemical reaction networks (CRN's) is a very active field. Earlier well-known results (Feinberg 1987 Chem. Enc. Sci . 42 2229, Anderson et al 2010 Bull. Math. Biol . 72 1947) identify a topological quantity called deficiency, for any CRN, which, when exactly equal to zero, leads to a unique factorized steady-state for these networks. No results exist however for the steady states of non-zero-deficiency networks. In this paper, we show how to write the full moment-hierarchy for any non-zero-deficiency CRN obeying mass-action kinetics, in terms of equations for the factorial moments. Using these, we can recursively predict values for lower moments from higher moments, reversing the procedure usually used to solve moment hierarchies. We show, for nontrivial examples, that in this manner we can predict any moment of interest, for CRN's with non-zero deficiency and non-factorizable steady states.
Muon Dipole Moment Experiments Interpretation and Prospects
Feng, J L; Shadmi, Y; Feng, Jonathan L; Matchev, Konstantin T.; Shadmi, Yael
2001-01-01
We examine the prospects for discovering new physics through muon dipole moments. The current deviation in $g_{\\mu}-2$ may be due entirely to the muon's {\\em electric} dipole moment. We note that the precession frequency in the proposed BNL muon EDM experiment is also subject to a similar ambiguity, but this can be resolved by up-down asymmetry measurements. We then review the theoretical expectations for the muon's electric dipole moment in supersymmetric models.
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.
1983-01-01
The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt
Electric dipole moment of diatomic molecules
International Nuclear Information System (INIS)
Rosato, A.
1983-01-01
The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt
The neutron electric dipole moment
International Nuclear Information System (INIS)
He, X.G.; McKellar, B.H.J.; Pakvasa, S.
1989-01-01
A systematic study was made of the electric dipole moment (EDM) of neutron D n in various models of CP violation. It was found that in the standard KM model with 3 families the neutron EDM is in the range 1.4x10 -33 ≤ D n ≤ 1.6x10 -31 ecm; that the two Higgs doublet model has approximately the same value of D n as the standard model; that D n in the Weinberg model is predicted to satisfy D n > 10 -25 ecm; that in a class of left-right symmetric models D n is of the order of 10 -26-11 ecm; that in supersymmetric models D n is of the order 10 -22 φ ecm with φ being the possible phase difference of the phases of gluino mass and the gluino-quark-smark mixing matrix and that the strong CP parameter θ is found to be θ -9 , using the present experimental limit that D n -25 ecm with 90% confidence. 65 refs., 10 figs
Stereo Correspondence Using Moment Invariants
Premaratne, Prashan; Safaei, Farzad
Autonomous navigation is seen as a vital tool in harnessing the enormous potential of Unmanned Aerial Vehicles (UAV) and small robotic vehicles for both military and civilian use. Even though, laser based scanning solutions for Simultaneous Location And Mapping (SLAM) is considered as the most reliable for depth estimation, they are not feasible for use in UAV and land-based small vehicles due to their physical size and weight. Stereovision is considered as the best approach for any autonomous navigation solution as stereo rigs are considered to be lightweight and inexpensive. However, stereoscopy which estimates the depth information through pairs of stereo images can still be computationally expensive and unreliable. This is mainly due to some of the algorithms used in successful stereovision solutions require high computational requirements that cannot be met by small robotic vehicles. In our research, we implement a feature-based stereovision solution using moment invariants as a metric to find corresponding regions in image pairs that will reduce the computational complexity and improve the accuracy of the disparity measures that will be significant for the use in UAVs and in small robotic vehicles.
Statistical Inference Based on L-Moments
Directory of Open Access Journals (Sweden)
Tereza Šimková
2017-03-01
Full Text Available To overcome drawbacks of central moments and comoment matrices usually used to characterize univariate and multivariate distributions, respectively, their generalization, termed L-moments, has been proposed. L-moments of all orders are defined for any random variable or vector with finite mean. L-moments have been widely employed in the past 20 years in statistical inference. The aim of the paper is to present the review of the theory of L-moments and to illustrate their application in parameter estimating and hypothesis testing. The problem of estimating the three-parameter generalized Pareto distribution’s (GPD parameters that is generally used in modelling extreme events is considered. A small simulation study is performed to show the superiority of the L-moment method in some cases. Because nowadays L-moments are often employed in estimating extreme events by regional approaches, the focus is on the key assumption of index-flood based regional frequency analysis (RFA, that is homogeneity testing. The benefits of the nonparametric L-moment homogeneity test are implemented on extreme meteorological events observed in the Czech Republic.
6-quark contribution to nuclear magnetic moments
International Nuclear Information System (INIS)
Ito, H.
1985-01-01
The magnetic moments of nuclei with LS closed shell +/-1 particle are calculated. Core polarization and meson exchange current are treated realistically in order to single out the 6-quark contribution. Overall agreement with experimental values is quite good. It is shown that the 6-quark system contributes to the respective iso-vector and iso-scalar moments with reasonable magnitudes
Closed forms and multi-moment maps
DEFF Research Database (Denmark)
Madsen, Thomas Bruun; Swann, Andrew Francis
We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps...
Fixed-J moments: exact calculations
International Nuclear Information System (INIS)
Jacquemin, C.
1980-01-01
We show that the two first fixed J moments of the Hamiltonian operator can be easily calculated over the whole fixed particle number shell model space as well as over configurations. The method may be extended to higher moments of H and to include the isotopic spin T
Closed forms and multi-moment maps
DEFF Research Database (Denmark)
Madsen, T. B.; Swann, A.
2013-01-01
We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps are gu...
Real object recognition using moment invariants
Indian Academy of Sciences (India)
contour-based shape descriptors and region-based shape descriptors (Kim & Sung 2000). Regular moment invariants are one of the most popular and widely used contour-based shape descriptors is a set of derived by Hu (1962). These geometrical moment invariants have been then extended to larger sets by Wong & Siu ...
Teachable Moment: Google Earth Takes Us There
Williams, Ann; Davinroy, Thomas C.
2015-01-01
In the current educational climate, where clearly articulated learning objectives are required, it is clear that the spontaneous teachable moment still has its place. Authors Ann Williams and Thomas Davinroy think that instructors from almost any discipline can employ Google Earth as a tool to take advantage of teachable moments through the…
Toroidal Dipole Moment of a Massless Neutrino
International Nuclear Information System (INIS)
Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes
2009-01-01
We obtain the toroidal dipole moment of a massless neutrino τ v l M using the results for the anapole moment of a massless Dirac neutrino a v l D , which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2) L x U(1) Y .
Blurred image recognition by legendre moment invariants
Zhang, Hui; Shu, Huazhong; Han, Guo-Niu; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis
2010-01-01
Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pattern recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have better discriminative power than the methods based on geometric or complex moments. PMID:19933003
Measurement of excited state static moments
International Nuclear Information System (INIS)
Sergolle, Henri
Electric quadrupole and magnetic dipole moments are defined from a classical description of the nucleus and a quantum expression is given for the operators. The principal characteristics of the moment interaction with an outer electric or magnetic field are recalled. The study of the perturbed angular distributions of nuclear reaction products allows half-lives of high spin isomer states to be measured (from a few ps to several hours). The decay gamma rays present, under certain conditions, a strong anisotropy; in principle only one detector is sufficient to observe the angular distribution; coincidences are unnecessary and a high counting rate becomes possible. The measurement of the Coulomb excitation probabilities give the electric (dynamic and static) moments and indirectly quadrupolar moments; two techniques are used: the analysis of elastically and inelastically scattered particles and measurement of the deexcitation γ rays in coincidence with the scattered ions. Quadrupole moments can be measured from the precession of the angular distribution [fr
Blur invariants constructed from arbitrary moments.
Kautsky, Jaroslav; Flusser, Jan
2011-12-01
This paper deals with moment invariants with respect to image blurring. It is mainly a reaction to the works of Zhang and Chen , recently published in these Transactions. We present a general method on how to construct blur invariants from arbitrary moments and show that it is no longer necessary to separately derive the invariants for each polynomial basis. We show how to discard dependent terms in blur invariants definition and discuss a proper implementation of the invariants in orthogonal bases using recurrent relations. An example for Legendre moments is given. © 2011 IEEE
Making Knowledge Actionable: Three Key Translation Moments
Directory of Open Access Journals (Sweden)
John R. Austin
2013-12-01
Full Text Available Leaders regularly experience pressure to move innovation and change initiatives through their organizations. They face the challenge of transforming organizational changes and innovations from ideas into sustained behavior. In this commentary, I argue that successful implementation requires leaders to engage in a translation process that contains three key translation “moments”. The challenges presented by these translation moments are magnified by the difficulty leaders often have in shifting from one moment to the next. Techniques for handling each translation moment are discussed.
On recursive relations and moment problems
International Nuclear Information System (INIS)
El Wahbi, B.; Rachidi, M.; Zerouali, E.H.
2001-09-01
We investigate in this paper the link between the moment problem for sequences, the associated Jacobi matrices and the Pade approximants of the associated analytic functions. We generalize some classical results by providing simple proofs that use functional calculus. (author)
Moments of inertia in a semiclassical approach
International Nuclear Information System (INIS)
Benchein, K.
1993-01-01
Semiclassical calculations have been performed for 31 nuclei. As a result of preliminary non-fully self-consistent calculations, the moments of inertia in investigated nuclei abd spin degrees of freedom are found
Moments of the very high multiplicity distributions
International Nuclear Information System (INIS)
Nechitailo, V.A.
2004-01-01
In experiment, the multiplicity distributions of inelastic processes are truncated due to finite energy, insufficient statistics, or special choice of events. It is shown that the moments of such truncated multiplicity distributions possess some typical features. In particular, the oscillations of cumulant moments at high ranks and their negative values at the second rank can be considered as ones most indicative of the specifics of these distributions. They allow one to distinguish between distributions of different type
Affine Moment Invariants Generated by Graph Method
Czech Academy of Sciences Publication Activity Database
Suk, Tomáš; Flusser, Jan
2011-01-01
Roč. 44, č. 9 (2011), 2047 – 2056 ISSN 0031-3203 R&D Projects: GA ČR(CZ) GA102/08/1593 Institutional research plan: CEZ:AV0Z10750506 Keywords : Image moments * Object recognition * Affine transformation * Affine moment invariants * Pseudoinvariants * Graph representation * Irreducibility * Independence Subject RIV: IN - Informatics, Computer Science Impact factor: 2.292, year: 2011 http://library.utia.cas.cz/separaty/2011/ZOI/suk-0359752.pdf
Moment approach to tandem mirror radial transport
International Nuclear Information System (INIS)
Siebert, K.D.; Callen, J.D.
1986-02-01
A moment approach is proposed for the study of tandem mirror radial transport in the resonant plateau regime. The salient features of the method are described with reference to axisymmetric tokamak transport theory. In particular, the importance of momentum conservation to the establishment of the azimuthal variations in the electrostatic potential is demonstrated. Also, an ad hoc drift kinetic equation is solved to determine parallel viscosity coefficients which are required to close the moment system
Performance Evaluation of Moment Connections of Moment Resisting Frames Against Progressive Collapse
Directory of Open Access Journals (Sweden)
M. Mahmoudi
2017-02-01
Full Text Available When a primary structural element fails due to sudden load such as explosion, the building undergoes progressive collapse. The method for design of moment connections during progressive collapse is different to seismic design of moment connections. Because in this case, the axial force on the connections makes it behave differently. The purpose of this paper is to evaluate the performance of a variety of moment connections in preventing progressive collapse in steel moment frames. To achieve this goal, three prequalified moment connections (BSEEP, BFP and WUP-W were designed according seismic codes. These moment connections were analyzed numerically using ABAQUS software for progressive collapse. The results show that the BFP connection (bolted flange plate has capacity much more than other connections because of the use of plates at the junction of beam-column.
Effect of torsion moment on failure bending moment for circumferentially cracked pipe
International Nuclear Information System (INIS)
Li, Yinsheng; Hasegawa, Kunio; Ida, Wataru; Hoang, Phuong H.; Bezensek, Bostjan
2010-01-01
When a crack is detected in a stainless steel pipe during in-service inspection, the limit load criterion given in the codes such as JSME Rules on Fitness-for-Service for Nuclear Power Plants or ASME Boiler and Pressure Vessel Code Section XI can be applied to evaluate the integrity of the pipe. However, in the current codes, the limit load criterion is only provided considering pressure and bending moment. The torsion moment is not considered, although torsion moment does exist in the nuclear power piping system. In this paper, finite element analyses are carried out for stainless steel pipe containing a circumferential surface crack under the combination of bending moment and torsion moment, considering different pipe dimensions and flaw sizes. Based upon the analysis results, a plastic collapse estimation method is proposed considering the existence of the torsion moment and its magnitude, and this method make it possible to evaluate the integrity of the pipe for general loading conditions. (author)
Benalcazar, Wladimir A.; Bernevig, B. Andrei; Hughes, Taylor L.
2017-12-01
We extend the theory of dipole moments in crystalline insulators to higher multipole moments. As first formulated in Benalcazar et al. [Science 357, 61 (2017), 10.1126/science.aah6442], we show that bulk quadrupole and octupole moments can be realized in crystalline insulators. In this paper, we expand in great detail the theory presented previously [Benalcazar et al., Science 357, 61 (2017), 10.1126/science.aah6442] and extend it to cover associated topological pumping phenomena, and a class of three-dimensional (3D) insulator with chiral hinge states. We start by deriving the boundary properties of continuous classical dielectrics hosting only bulk dipole, quadrupole, or octupole moments. In quantum mechanical crystalline insulators, these higher multipole bulk moments manifest themselves by the presence of boundary-localized moments of lower dimension, in exact correspondence with the electromagnetic theory of classical continuous dielectrics. In the presence of certain symmetries, these moments are quantized, and their boundary signatures are fractionalized. These multipole moments then correspond to new symmetry-protected topological phases. The topological structure of these phases is described by "nested" Wilson loops, which we define. These Wilson loops reflect the bulk-boundary correspondence in a way that makes evident a hierarchical classification of the multipole moments. Just as a varying dipole generates charge pumping, a varying quadrupole generates dipole pumping, and a varying octupole generates quadrupole pumping. For nontrivial adiabatic cycles, the transport of these moments is quantized. An analysis of these interconnected phenomena leads to the conclusion that a new kind of Chern-type insulator exists, which has chiral, hinge-localized modes in 3D. We provide the minimal models for the quantized multipole moments, the nontrivial pumping processes, and the hinge Chern insulator, and describe the topological invariants that protect them.
Dipole moment dark matter at the LHC
Energy Technology Data Exchange (ETDEWEB)
Barger, Vernon [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Keung, Wai-Yee [Department of Physics, University of Illinois at Chicago, IL 60607 (United States); Marfatia, Danny, E-mail: marfatia@ku.edu [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Tseng, Po-Yan [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China)
2012-10-22
Monojet and monophoton final states with large missing transverse energy (E/{sub T}) are important for dark matter (DM) searches at colliders. We present analytic expressions for the differential cross sections for the parton-level processes, qq{sup Macron }(qg){yields}g(q){chi}{chi}{sup Macron} and qq{sup Macron }{yields}{gamma}{chi}{chi}{sup Macron }, for a neutral DM particle with a magnetic dipole moment (MDM) or an electric dipole moment (EDM). We collectively call such DM candidates dipole moment dark matter (DMDM). We also provide monojet cross sections for scalar, vector and axial-vector interactions. We then use ATLAS/CMS monojet+E/{sub T} data and CMS monophoton+E/{sub T} data to constrain DMDM. We find that 7 TeV LHC bounds on the MDM DM-proton scattering cross section are about six orders of magnitude weaker than on the conventional spin-independent cross section.
The moments of inertia of mars
International Nuclear Information System (INIS)
Bills, B.G.
1989-01-01
The mean moment of inertia of Mars is, at present, very poorly constrained. The generally accepted value of 0.365 MR 2 is obtained by assuming that the observed second degree gravity field can be decomposed into a hydrostatic oblate spheroid and a nonhydrostatic prolate spheroid with an equatorial axis of symmetry. An alternative decomposition is advocated in the present analysis. If the nonhydrostatic component is a maximally triaxial ellipsoid (intermediate moment midway between greatest and least) the hydrostatic component is consistent with a mean moment of 0.345 MR 2 . The plausibility of this decomposition is supported by statistical arguments and comparison with the Earth, Moon and Venus. If confirmed, this new value would have significant implications for the inferred composition and climatic history of Mars. The Mars Observer mission may help resolve this issue
The anomalous magnetic moment of the muon
Jegerlehner, Friedrich
2017-01-01
This research monograph covers extensively the theory of the muon anomalous magnetic moment and provides estimates of the theoretical uncertainties. The muon anomalous magnetic moment is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. In addition, quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. Perspectives fo...
A corrector for spacecraft calculated electron moments
Directory of Open Access Journals (Sweden)
J. Geach
2005-03-01
Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.
Baryon magnetic moments: Symmetries and relations
Energy Technology Data Exchange (ETDEWEB)
Parreno, Assumpta [University of Barcelona; Savage, Martin [Univ. of Washington, Seattle, WA (United States); Tiburzi, Brian [City College of New York, NY (United States); City Univ. (CUNY), NY (United States); Wilhelm, Jonas [Justus-Liebig-Universitat Giessen, Giessen, Germany; Univ. of Washington, Seattle, WA (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2018-04-01
Magnetic moments of the octet baryons are computed using lattice QCD in background magnetic fields, including the first treatment of the magnetically coupled Σ0- Λ system. Although the computations are performed for relatively large values of the up and down quark masses, we gain new insight into the symmetries and relations between magnetic moments by working at a three-flavor mass-symmetric point. While the spinflavor symmetry in the large Nc limit of QCD is shared by the naïve constituent quark model, we find instances where quark model predictions are considerably favored over those emerging in the large Nc limit. We suggest further calculations that would shed light on the curious patterns of baryon magnetic moments.
Nuclear moments of nuclei near sphericity
International Nuclear Information System (INIS)
El Hajjaji, O.
1987-05-01
Magnetic and electric hyperfine interactions are studied by means of low temperature nuclear orientation. The magnetic moment of the 149 Gd isotope and that of 151 Gd are determined. The values follow the same trend as literature values of neighbouring nuclei. The calculated moments of the 7/2 - states using the Mottelson-Nilsson model without configuration mixing are nearly independent of deformation. Thus we assign the decrease of the magnetic moment versus neutron number to many particle coupling in the f shell. The Moessbauer effect detection of nuclear orientation is discussed. Two series of experiences are performed with different finalities. In the first one we determined the electric quadrupole moments of 125m Te and 129 Te. The quadrupole moments confirm the nearly spherical shape of these nuclei. In the second series we describe the Moessbauer effect of the radiation emitted by the daigleter nucleus of 125 I, implanted in two semiconductor matrices, locally oriented at low temperature by the electric field gradient of impurity-vacancy coupling. Despite the difficulty of the cooling down of Te nuclei to lattice temperature, we have shown the existence of the electric field gradient of implanted I into Si and α-Sn and determined their signs. The level mixing resonance is applied on oriented nuclei technique to determine the weak prolate deformation of silver nuclei. Studying the Δm = 3 resonance of 107 Ag m , we etablished the quadrupole moment of this state, which is in good agreement with the theoretical estimations of Moeller and Nix [fr
Scale invariants from Gaussian-Hermite moments
Czech Academy of Sciences Publication Activity Database
Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš
2017-01-01
Roč. 132, č. 1 (2017), s. 77-84 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Scale invariants * Gaussian–Hermite moments * Variable modulation * Normalization * Zernike moments Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0466031.pdf
Practical method for balancing airplane moments
Hamburger, H
1924-01-01
The present contribution is the sequel to a paper written by Messrs. R. Fuchs, L. Hopf, and H. Hamburger, and proposes to show that the methods therein contained can be practically utilized in computations. Furthermore, the calculations leading up to the diagram of moments for three airplanes, whose performance in war service gave reason for complaint, are analyzed. Finally, it is shown what conclusions can be drawn from the diagram of moments with regard to the defects in these planes and what steps may be taken to remedy them.
Nuclear moments of inertia at high spin
International Nuclear Information System (INIS)
Deleplanque, M.A.
1982-10-01
The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei
Macroscopic quantum tunneling of the magnetic moment
Tejada, J.; Hernandez, J. M.; del Barco, E.
1999-05-01
In this paper we review the work done on magnetic relaxation during the last 10 years on both single-domain particles and magnetic molecules and its contribution to the discovery of quantum tunneling of the magnetic moment (Chudnovsky and Tejada, Macroscopic Quantum tunneling of the Magnetic moment, Cambridge University press, Cambridge, 1998). We present first the theoretical expressions and their connection to quantum relaxation and secondly, we show and discuss the experimental results. Finally, we discuss very recent hysteresis data on Mn 12Ac molecules at extremely large sweeping rate for the external magnetic field which suggest the existence of quantum spin—phonon avalanches.
Spin and orbital moments in actinide compounds
DEFF Research Database (Denmark)
Lebech, B.; Wulff, M.; Lander, G.H.
1991-01-01
experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced......The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...
Relativistic expressions for current electric moments of nuclei
International Nuclear Information System (INIS)
Silenko, A.J.
2000-01-01
Relativistic expressions for the operators of current electric moments caused by electromagnetic spin-orbit interaction are obtained. Formulas for the matrix elements of the current electric moments of nuclei are derived. The contributions of the current electric moments to the quadrupole moment of the deuteron and to its root-mean-square radius are calculated with allowance for relativistic effects
Relativistic expressions for electric current moments of nuclei
International Nuclear Information System (INIS)
Silenko, A.Ya.
2000-01-01
The relativistic expressions for electric current moments operators, due to the electromagnetic spin-orbital interaction, are obtained. The formulae for matrix elements of nuclear electric current moments are deduced. The contributions of electric current moments to both quadrupole moment and root-mean-square radius of deuteron are calculated with the account of the relativistic effects [ru
Wonderful Life : Exploring Wonder in Meaningful Moments
van de Goor, Marie Jacqueline; Sools, Anna Maria; Westerhof, Gerben Johan; Bohlmeijer, Ernst Thomas
In this article, we bring the study of meaning together with the emerging field of study focusing on the emotions of wonder: wonder, enchantment, awe, and being moved. It is in meaningful moments that these two meet, and in our empirical study, we used the emotions of wonder as a lens to investigate
Real moments of the restrictive factor
Indian Academy of Sciences (India)
... Discussion Meetings · Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 119; Issue 4. Real Moments of the Restrictive Factor. Andrew Ledoan Alexandru Zaharescu. Volume 119 Issue 4 September 2009 pp 559-566 ...
Expert judgement combination using moment methods
International Nuclear Information System (INIS)
Wisse, Bram; Bedford, Tim; Quigley, John
2008-01-01
Moment methods have been employed in decision analysis, partly to avoid the computational burden that decision models involving continuous probability distributions can suffer from. In the Bayes linear (BL) methodology prior judgements about uncertain quantities are specified using expectation (rather than probability) as the fundamental notion. BL provides a strong foundation for moment methods, rooted in work of De Finetti and Goldstein. The main objective of this paper is to discuss in what way expert assessments of moments can be combined, in a non-Bayesian way, to construct a prior assessment. We show that the linear pool can be justified in an analogous but technically different way to linear pools for probability assessments, and that this linear pool has a very convenient property: a linear pool of experts' assessments of moments is coherent if each of the experts has given coherent assessments. To determine the weights of the linear pool we give a method of performance based weighting analogous to Cooke's classical model and explore its properties. Finally, we compare its performance with the classical model on data gathered in applications of the classical model
Inequalities and asymptotics for some moment integrals.
Abi-Khuzam, Faruk
2017-01-01
For [Formula: see text], we obtain two-sided inequalities for the moment integral [Formula: see text]. These are then used to give the exact asymptotic behavior of the integral as [Formula: see text]. The case [Formula: see text] corresponds to the asymptotics of Ball's inequality, and [Formula: see text] corresponds to a kind of novel "oscillatory" behavior.
Moment matrices, border bases and radical computation
B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)
2013-01-01
htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and
Moment matrices, border bases and radical computation
B. Mourrain; J.B. Lasserre; M. Laurent (Monique); P. Rostalski; P. Trebuchet (Philippe)
2011-01-01
htmlabstractIn this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming it complex (resp. real) variety is nte. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and
Moment matrices, border bases and radical computation
Lasserre, J.B.; Laurent, M.; Mourrain, B.; Rostalski, P.; Trébuchet, P.
2013-01-01
In this paper, we describe new methods to compute the radical (resp. real radical) of an ideal, assuming its complex (resp. real) variety is finite. The aim is to combine approaches for solving a system of polynomial equations with dual methods which involve moment matrices and semi-definite
Using Aha! Moments to Understand Leadership Theory
Moore, Lori L.; Lewis, Lauren J.
2012-01-01
As Huber (2002) noted, striving to understand how leadership is taught and learned is both a challenge and an opportunity facing leadership educators. This article describes the "Leadership Aha! Moment" assignment used in a leadership theory course to help students recognize the intersection of leadership theories and their daily lives while…
Theory of anisotropic diamagnetism, local moment magnetization ...
Indian Academy of Sciences (India)
Theory of anisotropic diamagnetism, local moment magnetization and carrier spin-polarization in Pb1-EuTe ... Gopalpur 761 002, India; Department of Physics, Jagannath Institute for Technology and Management, Parlakhemundi 761 211, India; Department of Physics, Berhampur University, Berhampur 760 007, India ...
Magnitude of localized magnetic moments in metals
International Nuclear Information System (INIS)
Kiwi, M.; Pestana, E.; Ramirez, R.
1979-01-01
The magnitude of the localized magnetic moment of a transition or rare earth element impurity in a metal is evaluated within the framework of the Anderson model. Rotational invariance is preserved throughout. Graphs of the magnitude of the magnetization as a function of the relevant parameters of the model are provided and discussed. (author)
On the photon anomalous magnetic moment
International Nuclear Information System (INIS)
Perez Rojas, Hugo
2006-01-01
It is shown that, due to radioactive corrections, the photon exhibits a nonzero anomalous magnetic moment whenever it has a nonzero perpendicular momentum component to an external constant magnetic field. Its behaviour is discussed near the first threshold of pair creation. The results might be interesting due to its astrophysical consequenc
The Doubling Moment: Resurrecting Edgar Allan Poe
Minnick, J. Bradley; Mergil, Fernando
2008-01-01
This article expands upon Jeffrey Wilhelm's and Brian Edmiston's (1998) concept of a doubling of viewpoints by encouraging middle level students to use dramatization to take on multiple perspectives, to pose interpretive questions, and to enhance critical inquiry from inside and outside of texts. The doubling moment is both the activation of…
Rovibrational matrix elements of the multipole moments
Indian Academy of Sciences (India)
Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is ...
Real object recognition using moment invariants
Indian Academy of Sciences (India)
associative memory was used to create a system, recognizing objects regardless of changes in rotation or scale by Wechsler & Zimmerman (1998) 3-D object simulations were ..... Hu M 1962 Visual pattern recognition by moment invariants. IRE Trans. Inf. Theor. IT-8: 179–187. Khotanzad A, Lu J-H 1990 Classification of ...
Magnetic moment densities in selected UTX compounds
Czech Academy of Sciences Publication Activity Database
Javorský, P.; Schweizer, J.; Givord, F.; Boucherle, J.-X.; Andreev, Alexander V.; Diviš, M.; Lelievre-Berna, E.; Sechovský, V.
2004-01-01
Roč. 350, - (2004), e131-e134 ISSN 0921-4526 R&D Projects: GA ČR GA202/03/0550 Institutional research plan: CEZ:AV0Z1010914 Keywords : uranium compound * polarized neutron scattering * magnetic moment Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.679, year: 2004
Measurement of the neutron electric dipole moment
International Nuclear Information System (INIS)
Dress, W.B.; Perrin, P.; Miller, P.D.; Pendlebury, J.M.; Ramsey, N.F.
1975-01-01
Experiments have been performed in view of improving the accuracy in measuring the electric dipole moment of the neutron (EDM). This EDM is written as eD where e is the electron charge and D the dipole length. The analysis of the data indicates that /D/ 24 cm with 90% confidence [fr
Asymptotic theory of integrated conditional moment tests
Bierens, H.J.; Ploberger, W.
1995-01-01
In this paper we derive the asymptotic distribution of the test statistic of a generalized version of the integrated conditional moment (ICM) test of Bierens (1982, 1984), under a class of Vn-local alternatives, where n is the sample size. The generalized version involved includes neural network
Microbial hotspots and hot moments in soil
Kuzyakov, Yakov; Blagodatskaya, Evgenia
2015-04-01
Soils are the most heterogeneous parts of the biosphere, with an extremely high differentiation of properties and processes within nano- to macroscales. The spatial and temporal heterogeneity of input of labile organics by plants creates microbial hotspots over short periods of time - the hot moments. We define microbial hotspots as small soil volumes with much faster process rates and much more intensive interactions compared to the average soil conditions. Such hotspots are found in the rhizosphere, detritusphere, biopores (including drilosphere) and on aggregate surfaces, but hotspots are frequently of mixed origin. Hot moments are short-term events or sequences of events inducing accelerated process rates as compared to the averaged rates. Thus, hotspots and hot moments are defined by dynamic characteristics, i.e. by process rates. For this hotspot concept we extensively reviewed and examined the localization and size of hotspots, spatial distribution and visualization approaches, transport of labile C to and from hotspots, lifetime and process intensities, with a special focus on process rates and microbial activities. The fraction of active microorganisms in hotspots is 2-20 times higher than in the bulk soil, and their specific activities (i.e. respiration, microbial growth, mineralization potential, enzyme activities, RNA/DNA ratio) may also be much higher. The duration of hot moments in the rhizosphere is limited and is controlled by the length of the input of labile organics. It can last a few hours up to a few days. In the detritusphere, however, the duration of hot moments is regulated by the output - by decomposition rates of litter - and lasts for weeks and months. Hot moments induce succession in microbial communities and intense intra- and interspecific competition affecting C use efficiency, microbial growth and turnover. The faster turnover and lower C use efficiency in hotspots counterbalances the high C inputs, leading to the absence of strong
Trunk muscle activation. The effects of torso flexion, moment direction, and moment magnitude.
Lavender, S; Trafimow, J; Andersson, G B; Mayer, R S; Chen, I H
1994-04-01
This study was performed to quantify the electromyographic trunk muscle activities in response to variations in moment magnitude and direction while in forward-flexed postures. Recordings were made over eight trunk muscles in 19 subjects who maintained forward-flexed postures of 30 degrees and 60 degrees. In each of the two flexed postures, external moments of 20 Nm and 40 Nm were applied via a chest harness. The moment directions were varied in seven 30 degrees increments to a subject's right side, such that the direction of the applied load ranged from the upper body's anterior midsagittal plane (0 degree) to the posterior midsagittal plane (180 degrees). Statistical analyses yielded significant moment magnitude by moment-direction interaction effects for the EMG output from six of the eight muscles. Trunk flexion by moment-direction interactions were observed in the responses from three muscles. In general, the primary muscle supporting the torso and the applied load was the contralateral (left) erector spinae. The level of electromyographic activity in the anterior muscles was quite low, even with the posterior moment directions.
Trunk muscle cocontraction: the effects of moment direction and moment magnitude.
Lavender, S A; Tsuang, Y H; Andersson, G B; Hafezi, A; Shin, C C
1992-09-01
This study investigated the cocontraction of eight trunk muscles during the application of asymmetric loads to the torso. External moments of 10, 20, 30, 40, and 50 Nm were applied to the torso via a harness system. The direction of the applied moment was varied by 30 degrees increments to the subjects' right side between the sagittally symmetric orientations front and rear. Electromyographic (EMG) data from the left and right latissimus dorsi, erector spinae, external oblique, and rectus abdominus were collected from 10 subjects. The normalized EMG data were tested using multivariate and univariate analyses of variance procedures. These analyses showed significant interactions between the moment magnitude and the moment direction for seven of the eight muscles. Most of the interactions could be characterized as due to changes in muscle recruitment with changes in the direction of the external moment. Analysis of the relative activation levels, which were computed for each combination of moment magnitude and direction, indicated large changes in muscle recruitment due to asymmetry, but only small adjustments in the relative activation levels due to increased moment magnitude.
Exploration of Learning Strategies Associated With Aha Learning Moments.
Pilcher, Jobeth W
2016-01-01
Educators recognize aha moments as powerful aspects of learning. Yet limited research has been performed regarding how to promote these learning moments. This article describes an exploratory study of aha learning moments as experienced and described by participants. Findings showed use of visuals, scenarios, storytelling, Socratic questions, and expert explanation led to aha learning moments. The findings provide guidance regarding the types of learning strategies that can be used to promote aha moments.
Moment-to-Moment Optimal Branding in TV Commercials: Preventing Avoidance by Pulsing
Thales S. Teixeira; Michel Wedel; Rik Pieters
2010-01-01
We develop a conceptual framework about the impact that branding activity (the audiovisual representation of brands) and consumers' focused versus dispersed attention have on consumer moment-to-moment avoidance decisions during television advertising. We formalize this framework in a dynamic probit model and estimate it with Markov chain Monte Carlo methods. Data on avoidance through zapping, along with eye tracking on 31 commercials for nearly 2,000 participants, are used to calibrate the mo...
Moment distributions of phase-type
DEFF Research Database (Denmark)
Bladt, Mogens; Nielsen, Bo Friis
2012-01-01
-normal, Pareto and gamma distributions. We provide explicit representations for both the matrix-exponential class and for the phase-type distributions, where the latter class may also use the former representations, but for various reasons it is desirable to establish a phase-type representation when dealing......Both matrix-exponential and phase-type distributions have a number of important closure properties. Among those are the distributions of the age and residual life-time of a stationary renewal process with inter-arrivals of either type. In this talk we show that the spread, which is the sum...... of the age an residual life-time, is also phase-type distributed. Moreover, we give some explicit representations. The spread is known to have a first order moment distribution. If X is a positive random variable and ?i is its i'th moment, then the function fi(x) = xif(x)/?i is a density function...
Solar wind velocity and geomagnetic moment variations
International Nuclear Information System (INIS)
Kalinin, Yu.D.; Rozanova, T.S.
1982-01-01
The mean year values of the solar wind velocity have been calculated from the mean-year values of a geomagnetic activity index am according to the Svalgard equation of regression for the pe-- riod from 1930 to 1960. For the same years the values of the geomagnetic moment M and separately of its ''inner'' (causes of which'' are inside the Earth) and ''external'' (causes of which are outside the Earth) parts have been calculated from the mean year data of 12 magnetic observatories. The proof of the presence of the 11-year variation in the moment M has been obtained. It is concluded that the 11-year variations in M result from the variations of the solar wind velocity
Sequence Classification Using Third-Order Moments
DEFF Research Database (Denmark)
Troelsgaard, Rasmus; Hansen, Lars Kai
2017-01-01
. The proposed method provides lower computational complexity at classification time than the usual likelihood-based methods. In order to demonstrate the properties of the proposed method, we perform classification of both simulated data and empirical data from a human activity recognition study.......Model-based classification of sequence data using a set of hidden Markov models is a well-known technique. The involved score function, which is often based on the class-conditional likelihood, can, however, be computationally demanding, especially for long data sequences. Inspired by recent...... theoretical advances in spectral learning of hidden Markov models, we propose a score function based on third-order moments. In particular, we propose to use the Kullback-Leibler divergence between theoretical and empirical third-order moments for classification of sequence data with discrete observations...
Glueball masses from an infrared moment problem.
Dudal, D; Guimaraes, M S; Sorella, S P
2011-02-11
We set up an infrared-based moment problem to obtain estimates of the masses of the scalar, pseudoscalar, and tensor glueballs in Euclidean Yang-Mills theories using the refined Gribov-Zwanziger (RGZ) version of the Landau gauge, which takes into account nonperturbative physics related to gauge copies. Employing lattice input for the mass scales of the RGZ gluon propagator, the lowest order moment problem approximation gives the values m(0++) ≈ 1.96 GeV, m(2++) ≈ 2.04 GeV, and m(0-+) ≈ 2.19 GeV in the SU(3) case, all within a 20% range of the corresponding lattice values. We also recover the mass hierarchy m(0++) < m(2++) < m(0-+).
Matrix elements from moments of correlation functions
Energy Technology Data Exchange (ETDEWEB)
Chang, Chia Cheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bouchard, Chris [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-10-01
Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.
3D rotation invariants by complex moments
Czech Academy of Sciences Publication Activity Database
Suk, Tomáš; Flusser, Jan; Boldyš, Jiří
2015-01-01
Roč. 48, č. 11 (2015), s. 3516-3526 ISSN 0031-3203 R&D Projects: GA ČR(CZ) GA13-29225S; GA ČR(CZ) GA15-16928S Institutional support: RVO:67985556 Keywords : Complex moment * spherical harmonic * group representation theory * 3D rotation invariant Subject RIV: IN - Informatics, Computer Science Impact factor: 3.399, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/suk-0445882.pdf
A big measurement of a small moment
E Sauer, B.; Devlin, J. A.; Rabey, I. M.
2017-07-01
A beam of ThO molecules has been used to make the most precise measurement of the electron’s electric dipole moment (EDM) to date. In their recent paper, the ACME collaboration set out in detail their experimental and data analysis techniques. In a tour-de-force, they explain the many ways in which their apparatus can produce a signal which mimics the EDM and show how these systematic effects are measured and controlled.
Some special moments from last month
Claudia Marcelloni de Oliveira
Integration of the three shells into the ATLAS pixel barrel last month. Lowering of the first sector of the MDT Muon Big Wheel on side C in the ATLAS cavern in December 2006. Some intense moment during the first ATLAS integration run from the main ATLAS control room. Muriel was one of the 20000 ATLAS cavern visitors in 2006 to enjoy herself during her visit.
Monte Carlo Volcano Seismic Moment Tensors
Waite, G. P.; Brill, K. A.; Lanza, F.
2015-12-01
Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.
Kairos time at the moment of birth.
Crowther, Susan; Smythe, Elizabeth; Spence, Deb
2015-04-01
there is something extraordinary in the lived experience of being there at the time of birth. Yet the meaning and significance of this special time, named Kairos time in this paper, have received little attention. to describe the lived-experience of Kairos time at birth and surface its meaning. this is an interpretive hermeneutic phenomenology study informed by the writings of Heidegger and Gadamer. 14 in-depth interviews with mothers, birth partners, midwives and obstetricians were transcribed and stories from the data were hermeneutically analysed. there is a time, like no other, at the moment of birth that is widely known and valued. This paper reveals and names this phenomenon Kairos time. This is a felt-time that is lineal, process and cyclic time and more. Kairos time describes an existential temporal experience that is rich in significant sacred meaning; a time of emergent insight rarely spoken about in practice yet touches everyone present. The notion of Kairos time in relation to the moment of birth is introduced as a reminder of something significant that matters. Kairos time is revealed as a moment in and beyond time. It has a temporal enigmatic mystery involving spiritual connectedness. Kairos time is a time of knowing and remembrance of our shared natality. In this time life is disclosed as extraordinary and beyond everyday personal and professional concerns. It is all this and more. Kairos time at birth is precious and powerful yet vulnerable. It needs to be safeguarded to ensure its presence continues to emerge. This means maternity care providers and others at birth need to shelter and protect Kairos time from the sometimes harsh realities of birth and the potentially insensitive ways of being there at the moments of birth. Those who find themselves at birth need to pause and allow the profundity of its meaning to surface and inspire their actions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Moments, positive polynomials and their applications
Lasserre, Jean Bernard
2009-01-01
Many important applications in global optimization, algebra, probability and statistics, applied mathematics, control theory, financial mathematics, inverse problems, etc. can be modeled as a particular instance of the Generalized Moment Problem (GMP) . This book introduces a new general methodology to solve the GMP when its data are polynomials and basic semi-algebraic sets. This methodology combines semidefinite programming with recent results from real algebraic geometry to provide a hierarchy of semidefinite relaxations converging to the desired optimal value. Applied on appropriate cones,
Electric dipole moment of light nuclei
Energy Technology Data Exchange (ETDEWEB)
Gibson, Benjamin [Los Alamos National Laboratory; Afnan, I R [Los Alamos National Laboratory
2010-01-01
We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.
Breakthrough curve moments scaling in hyporheic exchange
Bellin, A.; Tonina, D.; Marzadri, A.
2015-02-01
The interaction between stream flow and bed forms creates an uneven distribution of near-bed energy heads, which is the driving force of hyporheic exchange. Owing to the large disparity of advection characteristic times in the stream and within the hyporheic zone, solute mass exchange is often modeled by considering the latter as an immobile region. In a recent contribution Gónzalez-Pinzón et al. (2013) showed that existing models employing this hypothesis are structurally inconsistent with the scaling revealed by the analysis of 384 breakthrough curves collected in 44 streams across five continents. Motivated by this result, we analyze the scaling characteristics of a model that we recently developed by combining the analytical solution of the advective flow within the hyporheic zone with a Lagrangian solute transport model. Results show that similarly to the experimental data our model predicts breakthrough curves with a constant skewness, irrespective of the stream size, and that the scaling of the first three moments observed by Gónzalez-Pinzón et al. (2013) is also respected. Moreover, we propose regression curves that relate the first three moments of the residence time distribution with the alternate bar dimensionless depth (YBM*), a quantity that is easily measurable in the field. The connection between BTC moments and YBM* opens new possibilities for modeling transport processes at the catchment scale.
Energy Technology Data Exchange (ETDEWEB)
Correll, F.D.; Madansky, L.; Hardekopf, R.A.; Sunier, J.W.
1983-08-01
The ground-state magnetic dipole and electric quadrupole moments of the ..beta.. emitter /sup 9/Li (J/sup ..pi../ = (3/2)/sup -/, T/sub 1/2/ = 0.176 s) have been measured for the first time. Polarized /sup 9/Li nuclei were produced in the /sup 7/Li(t,p) reaction, using 5--6 MeV polarized tritons. The recoiling /sup 9/Li nuclei were stopped either in Au foils or in LiNbO/sub 3/ single crystals, and their polarization was detected by measuring the ..beta..-decay asymmetry. Nuclear magnetic resonance techniques were used to depolarize the nuclei, and the resonant frequencies were deduced from changes in the asymmetry. The /sup 9/Li dipole moment was deduced from the measured Larmor frequency in Au; the result, including corrections for diamagnetic shielding and the Knight shift, is Vertical Bar..mu..Vertical Bar = 3.4391(6) ..mu../sub N/. The ratio of the /sup 9/Li quadrupole moment to that of /sup 7/Li was derived from their respective quadrupole couplings in LiNbO/sub 3/; the value is Vertical BarQ( /sup 9/Li)/Q( /sup 7/Li)Vertical Bar = 0. 88 +- 0.18. Both results are in agreement with shell model predictions.
Relativistic dynamics of point magnetic moment
Rafelski, Johann; Formanek, Martin; Steinmetz, Andrew
2018-01-01
The covariant motion of a classical point particle with magnetic moment in the presence of (external) electromagnetic fields is revisited. We are interested in understanding extensions to the Lorentz force involving point particle magnetic moment (Stern-Gerlach force) and how the spin precession dynamics is modified for consistency. We introduce spin as a classical particle property inherent to Poincaré symmetry of space-time. We propose a covariant formulation of the magnetic force based on a `magnetic' 4-potential and show how the point particle magnetic moment relates to the Amperian (current loop) and Gilbertian (magnetic monopole) descriptions. We show that covariant spin precession lacks a unique form and discuss the connection to g-2 anomaly. We consider the variational action principle and find that a consistent extension of the Lorentz force to include magnetic spin force is not straightforward. We look at non-covariant particle dynamics, and present a short introduction to the dynamics of (neutral) particles hit by a laser pulse of arbitrary shape.
On the multipole moments of charge distributions
International Nuclear Information System (INIS)
Khare, P.L.
1977-01-01
There are two different standard methods for showing the equivalence of a charge distribution in a small volume tau surrounding a point O, to the superposition of a monopole, a dipole, a quadrupole and poles of higher moments at the point O: (a) to show that the electrostatic potential due to the charge distribution at an outside point is the same as due to these superposed multipoles (including a monopole). (b) to show that the energy of interaction of an external field with the charge distribution is the same as with the superposed equivalent monopole and multipoles. Neither of these methods gives a physical picture of the equivalence of a charge distribution to the superposition of different multipoles. An attempt is made to interpret in physical terms the emergence of the multipoles of different order, that are equivalent to a charge distribution and to show that the magnitudes of the moments of these multipoles are in agreement with the results of both the approaches (a) and (b). This physical interpretation also helps to understand, in a simple manner, some of the wellknown properties of the multipole moments of atoms and nuclei. (K.B.)
Moments of the Wigner delay times
International Nuclear Information System (INIS)
Berkolaiko, Gregory; Kuipers, Jack
2010-01-01
The Wigner time delay is a measure of the time spent by a particle inside the scattering region of an open system. For chaotic systems, the statistics of the individual delay times (whose average is the Wigner time delay) are thought to be well described by random matrix theory. Here we present a semiclassical derivation showing the validity of random matrix results. In order to simplify the semiclassical treatment, we express the moments of the delay times in terms of correlation functions of scattering matrices at different energies. In the semiclassical approximation, the elements of the scattering matrix are given in terms of the classical scattering trajectories, requiring one to study correlations between sets of such trajectories. We describe the structure of correlated sets of trajectories and formulate the rules for their evaluation to the leading order in inverse channel number. This allows us to derive a polynomial equation satisfied by the generating function of the moments. Along with showing the agreement of our semiclassical results with the moments predicted by random matrix theory, we infer that the scattering matrix is unitary to all orders in the semiclassical approximation.
The Anomalous Magnetic Moment of the Muon
Jegerlehner, Friedrich
2008-01-01
This book reviews the present state of knowledge of the anomalous magnetic moment a=(g-2)/2 of the muon. The muon anomalous magnetic moment amy is one of the most precisely measured quantities in elementary particle physics and provides one of the most stringent tests of relativistic quantum field theory as a fundamental theoretical framework. It allows for an extremely precise check of the standard model of elementary particles and of its limitations. Recent experiments at the Brookhaven National Laboratory now reach the unbelievable precision of 0.5 parts per million, improving the accuracy of previous g-2 experiments at CERN by a factor of 14. A major part of the book is devoted to the theory of the anomalous magnetic moment and to estimates of the theoretical uncertainties. Quantum electrodynamics and electroweak and hadronic effects are reviewed. Since non-perturbative hadronic effects play a key role for the precision test, their evaluation is described in detail. After the overview of theory, the exper...
The Koszul complex of a moment map
DEFF Research Database (Denmark)
Herbig, Hans-Christian; Schwarz, Gerald W.
2013-01-01
Let $K\\to\\U(V)$ be a unitary representation of the compact Lie group $K$. Then there is a canonical moment mapping $\\rho\\colon V\\to\\liek^*$. We have the Koszul complex ${\\mathcal K}(\\rho,\\mathcal C^\\infty(V))$ of the component functions $\\rho_1,\\dots,\\rho_k$ of $\\rho$. Let $G=K_\\C$, the complexif......Let $K\\to\\U(V)$ be a unitary representation of the compact Lie group $K$. Then there is a canonical moment mapping $\\rho\\colon V\\to\\liek^*$. We have the Koszul complex ${\\mathcal K}(\\rho,\\mathcal C^\\infty(V))$ of the component functions $\\rho_1,\\dots,\\rho_k$ of $\\rho$. Let $G......$ be a moment mapping and consider the Koszul complex given by the component functions of $\\rho$. We show that the Koszul complex is a resolution of the smooth functions on $Z=\\rho\\inv(0)$ if and only if the complexification of each symplectic slice representation at a point of $Z$ is $1$-large....
On moments-based Heisenberg inequalities
Zozor, Steeve; Portesi, Mariela; Sanchez-Moreno, Pablo; Dehesa, Jesus S.
2011-03-01
In this paper we revisit the quantitative formulation of the Heisenberg uncertainty principle. The primary version of this principle establishes the impossibility of refined simultaneous measurement of position x and momentum u for a (1-dimensional) quantum particle in terms of variances: ⩾1/4. Since this inequality applies provided each variance exists, some authors proposed entropic versions of this principle as an alternative (employing Shannon's or Rényi's entropies). As another alternative, we consider moments-based formulations and show that inequalities involving moments of orders other than 2 can be found. Our procedure is based on the Rényi entropic versions of the Heisenberg relation together with the search for the maximal entropy under statistical moments' constraints ( and ). Our result improves a relation proposed very recently by Dehesa et al.. [1] where the same approach was used but starting with the Shannon version of the entropic uncertainty relation. Furthermore, we show that when a =b, the best bound we can find with our approach coincides with that of Ref. [1] and, in addition, for a = b = 2 the variance-based Heisenberg relation is recovered. Finally, we illustrate our results in the cases of d-dimensional hydrogenic systems.
Energy Technology Data Exchange (ETDEWEB)
Schroeder, L. [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Medizinische Physik in der Radiologie; California Univ., Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab., Berkeley, CA (United States). Dept. of Chemistry
2007-07-01
The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)
Improved moment scaling estimation for multifractal signals
Directory of Open Access Journals (Sweden)
D. Veneziano
2009-11-01
Full Text Available A fundamental problem in the analysis of multifractal processes is to estimate the scaling exponent K(q of moments of different order q from data. Conventional estimators use the empirical moments μ^_{r}^{q}=⟨ | ε_{r}(τ|^{q}⟩ of wavelet coefficients ε_{r}(τ, where τ is location and r is resolution. For stationary measures one usually considers "wavelets of order 0" (averages, whereas for functions with multifractal increments one must use wavelets of order at least 1. One obtains K^(q as the slope of log( μ^_{r}^{q} against log(r over a range of r. Negative moments are sensitive to measurement noise and quantization. For them, one typically uses only the local maxima of | ε_{r}(τ| (modulus maxima methods. For the positive moments, we modify the standard estimator K^(q to significantly reduce its variance at the expense of a modest increase in the bias. This is done by separately estimating K(q from sub-records and averaging the results. For the negative moments, we show that the standard modulus maxima estimator is biased and, in the case of additive noise or quantization, is not applicable with wavelets of order 1 or higher. For these cases we propose alternative estimators. We also consider the fitting of parametric models of K(q and show how, by splitting the record into sub-records as indicated above, the accuracy of standard methods can be significantly improved.
Energy Technology Data Exchange (ETDEWEB)
NONE
2004-07-01
Although there are high rates of vacancies in some regions, the 2 million flats in the flat-roof buildings in the new states (Eastern Germany) are a part of Germany's residential buildings which cannot be done without. Almost one tenth of them is likely to be torn down within the next years, but the major part must be converted into energy-saving, well-functioning and well-accepted building if they are not to come down to 21st century-slums. The Albert-Schweitzer Quarter was renovated as a model where strategies to achieve these objectives were tested. The model project covers the energetic rehabilitation and elimination of construction-related damage in the residential blockP2, Albert-Schweitzer-Str. 31-40 with a total of 100 flats. The project was started in January 2001. The works were finished by the end of 2001. The project including measurements and evaluations continued until December 2003. [German] Trotz punktuell hoher Leerstandsquoten bilden die 2 Millionen Wohnungen in den Plattenbauten der neuen Bundeslaender insgesamt einen unverzichtbaren Bestandteil des Wohngebaeudebestandes. Etwa ein Zehntel dieser Substanz wird in den naechsten Jahren wohl abgerissen, aber der weitaus groesste Teil muss in energiesparende, gut funktionierende und Akzeptanz findende Gebaeude umgewandelt werden, sollen diese Siedlungen nicht zu den Slums des 21. Jahrhunderts verkommen. In der modellhaften Sanierung Albert-Scheitzer-Viertel wurden Strategien zum Erreichen dieser Ziele erprobt. Das Modellvorhaben umfasst die energetische Sanierung und Bauschadensbeseitigung des P2-Wohnblockes Albert-Schweitzer-Str. Nr. 31-40 mit insgesamt 100 Wohnungen. Projektstart war im Januar 2001. Die Baumassnahmen wurden Ende 2001 abgeschlossen, das Vorhaben lief einschliesslich der Messungen und Auswertungen bis Dezember 2003. (orig.)
Calculation of the atomic electric dipole moment of Pb2+ induced by nuclear Schiff moment
Ramachandran, S. M.; Latha, K. V. P.; Meenakshisundaram, N.
2017-07-01
We report the atomic electric dipole moment induced by the P, T violating interactions in the nuclear/sub-nuclear level, for 207Pb2+ and 207Pb, owing to the recent interest in the ferroelectric crystal PbTiO3 as one of the candidates for investigating macroscopic P, T-odd effects. In this paper, we calculate the atomic electric dipole moments of 207Pb and Pb2+, parametrized in terms of the P, T-odd coupling parameter, the nuclear Schiff moment (NSM), S, in the frame-work of the coupled-perturbed Hartree-Fock theory. We estimate the Schiff moment of Pb2+ using the experimental result of a system, which is electronically similar to the Pb2+ ion. We present the dominant contributions of the electric dipole moment (EDM) matrix elements and the important correlation effects contributing to the atomic EDM of Pb2+. Our results provide the first ever calculated EDM of the Pb2+ ion, and an estimate of its NSM from which the P, T-odd energy shift in a PbTiO3 crystal can be evaluated.
Full Coulomb collision operator in the moment expansion
International Nuclear Information System (INIS)
Ji, Jeong-Young; Held, Eric D.
2009-01-01
The full Coulomb collision operator and its moments including nonlinear terms are analytically calculated in the moment expansion. In coupling nonlinear terms, the product formula which expresses a product of two harmonic tensors as a series of single harmonic tensors is derived. The collision operators and moments are written in explicit formulas for arbitrary moments and for arbitrary temperature and mass ratios. These expressions easily reduce to formulas for the small mass-ratio approximation or for like species.
Moment-ration imaging of seismic regions for earthquake prediction
Lomnitz, Cinna
1993-10-01
An algorithm for predicting large earthquakes is proposed. The reciprocal ratio (mri) of the residual seismic moment to the total moment release in a region is used for imaging seismic moment precursors. Peaks in mri predict recent major earthquakes, including the 1985 Michoacan, 1985 central Chile, and 1992 Eureka, California earthquakes.
Energy Technology Data Exchange (ETDEWEB)
Raeder, C.
2006-09-22
-constant K{sub eff} is extrapolated to 2 K: Tt results in K{sub eff}(T=2 K)=7.5.10{sup 4} J/m{sup 3}. Measurement of the temperature dependence of the coercive field yields a value of K{sub eff}(T=2 K)=6.1.10{sup 4} J/m{sup 3}. With the same procedure one obtains K{sub eff}(T=2 K)=7.25.10{sup 4} J/m{sup 3} for a sample with a higher concentration (13 vol%). Both the particles and the bulk material are also examined by means of X-ray circular dichroism. With the help of the sum rules the element specific spin and orbital moments are determined and converted into the g-factor. (orig.)
Effective gluon operators and neutron dipole moment
International Nuclear Information System (INIS)
Bigi, I.; Ural'tsev, N.G.
1991-01-01
The role of the purely gluon CP odd six-dimension effective arising in various CP-breaking models is discussed. This operators of most interest in the nonminimal Higgs sector models, the right W models and supersymmetric theories, where it may induce the neutron dipole moment at the level of the experimental restriction. The method for evaluating the magnitude d n is proposed and the reasons are given in favor that the original Weiberg's estimate based on the naive Dimensional Analysis is overdone significantly. The Peccei -Quinn mechanism, impact on the magnitude of d n , which generally may be very essential, is discussed
International Nuclear Information System (INIS)
Avishai, Y.; Fabre de la Ripelle, M.
1986-01-01
The contribution of a CP-nonconserving nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated in view of a recent proposal for its experimental detection. We use two models of CP-nonconserving interactions in combination with a Reid soft-core strong nucleon-nucleon interaction. In the Kobayashi-Maskawa model of CP nonconservation the order of magnitude is 10 -30 eX while the presence of the theta term in the QCD Langrangian contributes an order of magnitude 10 -16 theta-bar e cm
Neutron Electric Dipole Moment on the Lattice
Directory of Open Access Journals (Sweden)
Yoon Boram
2018-01-01
Full Text Available For the neutron to have an electric dipole moment (EDM, the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
Neutron Electric Dipole Moment on the Lattice
Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan
2018-03-01
For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
Electric dipole moment: theory and experiments
International Nuclear Information System (INIS)
Hinds, E.
2002-01-01
There are 2 motivations for studying electric dipole moments (EDM): 1) EDM is deeply connected to CP violation (since it violates T symmetry) and to the matter-antimatter asymmetry of the universe, and 2) EDM is effectively zero in standard model but big enough to measure in non-standard models and serves as a direct test of physics beyond the standard model. In this series of slides the author reviews various experiments concerning EDM: the mercury EDM experiment, the neutron EDM experiment, the thallium EDM experiment and the ytterbium EDM experiment, and considers the implications of their results on supersymmetry
Precise calculations of the deuteron quadrupole moment
Energy Technology Data Exchange (ETDEWEB)
Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-06-01
Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.
EDM: Neutron electric dipole moment measurement
Directory of Open Access Journals (Sweden)
Peter Fierlinger
2016-02-01
Full Text Available An electric dipole moment (EDM of the neutron would be a clear sign of new physics beyond the standard model of particle physics. The search for this phenomenon is considered one of the most important experiments in fundamental physics and could provide key information on the excess of matter versus antimatter in the universe. With high measurement precision, this experiment aims to ultimately achieve a sensitivity of 10-28 ecm, a 100-fold improvement in the sensitivity compared to the state-of-the-art. The EDM instrument is operated by an international collaboration based at the Technische Universität München.
Multipole moments using extended coupled cluster method
Joshi, Sayali P.; Vaval, Nayana
2013-05-01
Using analytic extended coupled cluster (ECC) response approach quadrupole moments, dipole-quadrupole polarizabilities and dipole polarizabilities are studied. In the current implementation of the functional we have included all the double linked terms within (CCSD) approximation. These terms will be important for the accurate description of properties at the stretched geometries. We report the properties for carbon monoxide and hydrogen fluoride molecules, as a function of bond distance and compare our results for carbon monoxide with the full CI results. We have also reported the properties of methane, tetrafluoromethane, acetylene, difluoroacetylene, water and ammonia.
New discrete orthogonal moments for signal analysis
Czech Academy of Sciences Publication Activity Database
Honarvar Shakibaei Asli, Barmak; Flusser, Jan
2017-01-01
Roč. 141, č. 1 (2017), s. 57-73 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Orthogonal polynomials * Moment functions * Z-transform * Rodrigues formula * Hypergeometric form Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0475248.pdf
The Magnetic Moment of the Lambda Hyperon
Energy Technology Data Exchange (ETDEWEB)
Schachinger, Lindsay Carol [Rutgers Univ., Piscataway, NJ (United States)
1978-10-01
The magnetic moment of the lambda hyperon has been measured to be· -0.613S±0.0047 nuclear magneton. The experiment was performed in the neutral hyperon beam at the Fermi National Accelerator Laboratory. Three million $\\Lambda^0 \\to p \\pi^-$ decays were detected in a multi-wire proportional chamber spectrometer. The lambda sample, produced inclusively by 400 Gev protons, had an. average momentum of 114 Gev / c and an average polarization of 0.085. This polarization was precessed through angles as large as 153 degrees
The anomalous magnetic moment of the muon
International Nuclear Information System (INIS)
Farley, F.J.M.
1975-01-01
A historical survey of the measurements of the gyromagnetic ratio g of the muon. A brief introduction is given to the theory of the 'anomalous magnetic moment' a equivalent to 1/2(g-2) and its significance is explained. The main part of the review concerns the successive (g-2) experiments to measure a directly, with gradually increasing accuracy. At present experiment and theory agree to (13+-29) parts in 10 9 in g, and the muon still obeys the rules of quantum electrodynamics for a structureless point charge. (author)
Searches for the electron electric dipole moment and nuclear anapole moments in solids
International Nuclear Information System (INIS)
Mukhamedjanov, T.N.; Sushkov, O.P.; Cadogan, J.M.; Dzuba, V.A.
2004-01-01
Full text: We consider effects caused by the electron electric dipole moment (EDM) in gadolinium garnets. Our estimates show that the experimental studies of these effects could improve the current upper limit on the electron EDM by several orders of magnitude. We suggest a consistent theoretical model and perform calculations of observable effects in gadolinium gallium garnet and gadolinium iron garnet. It is also possible to probe for nuclear anapole moments in a solid state experiment. We suggest such NMR-type experiment and perform estimates of the expected results
Edwards, Benjamin; Allmann, Bettina; Fäh, Donat; Clinton, John
2017-01-01
Moment magnitudes (MW) are computed for small and moderate earthquakes using a spectral fitting method. 40 of the resulting values are compared with those from broadband moment tensor solutions and found to match with negligible offset and scatter for available MW values of between 2.8 and 5.0. Using the presented method, MW are computed for 679 earthquakes in Switzerland with a minimum ML= 1.3. A combined bootstrap and orthogonal L1 minimization is then used to produce a scaling relation bet...
Directory of Open Access Journals (Sweden)
Isabelle Rogowski
Full Text Available This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2. An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.
Distribution functions and moments in the theory of coagulation
International Nuclear Information System (INIS)
Pich, J.
1990-04-01
Different distribution functions and their moments used in the Theory of coagulation are summarized and analysed. Relations between the moments of these distribution functions are derived and the physical meaning of individual moments is briefly discussed. The time evolution of the moment of order zero (total number concentration) during the coagulation process is analysed for the general kernel of the Smoluchowski equation. On this basis the time evolution of certain physically important quantities related to this moment such as mean particle size, surface and volume as well as surface concentration is described. Equations for the half time of coagulation for the general collision frequency factor are derived. (orig.) [de
Fractional-moment CAPM with loss aversion
International Nuclear Information System (INIS)
Wu Yahao; Wang Xiaotian; Wu Min
2009-01-01
In this paper, we present a new fractional-order value function which generalizes the value function of Kahneman and Tversky [Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica 1979;47:263-91; Tversky A, Kahneman D. Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 1992;4:297-323], and give the corresponding fractional-moment versions of CAPM in the cases of both the prospect theory [Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica 1979;47:263-91; Tversky A, Kahneman D. Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 1992;4:297-323] and the expected utility model. The models that we obtain can be used to price assets when asset return distributions are likely to be asymmetric stable Levy distribution during panics and stampedes in worldwide security markets in 2008. In particular, from the prospect theory we get the following fractional-moment CAPM with loss aversion: E(R i -R 0 )=(E[(W-W 0 ) + -0.12 (R i -R 0 )]+2.25E[(W 0 -W) + -0.12 (R i -R 0 )])/ (E[(W-W 0 ) + -0.12 (W-R 0 )]+2.25E[(W 0 -W) + -0.12 (W-R 0 )]) .E(W-R 0 ), where W 0 is a fixed reference point distinguishing between losses and gains.
Quadrupole moments measured by nuclear orientation
International Nuclear Information System (INIS)
Bouchta, H.
1985-01-01
Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr
Sum rules and systematics for baryon magnetic moments
International Nuclear Information System (INIS)
Lipkin, H.J.
1984-01-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks, e.g. from a pion cloud. The large magnitude of the Ψ - moment may indicate that the strange quark contribution to the Ψ moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -1/2μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (orig.)
Sum rules and systematics for baryon magnetic moments
International Nuclear Information System (INIS)
Lipkin, H.J.
1983-11-01
The new experimental values of hyperon magnetic moments are compared with sum rules predicted from general quark models. Three difficulties encountered are not easily explained by simple models. The isovector contributions of nonstrange quarks to hyperon moments are smaller than the corresponding contribution to nucleon moments, indicating either appreciable configuration mixing in hyperon wave functions and absent in nucleons or an additional isovector contribution beyond that of valence quarks; e.g. from a pion cloud. The large magnitude of the THETA - moment may indicate that the strange quark contribution to the THETA moments is considerably larger than the value μ(Λ) predicted by simple models which have otherwise been very successful. The set of controversial values from different experiments of the Σ - moment include a value very close to -(1/2)μ(Σ + ) which would indicate that strange quarks do not contribute at all to the Σ moments. (author)
A Necessary Moment Condition for the Fractional Central Limit Theorem
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Morten
2012-01-01
We discuss the moment condition for the fractional functional central limit theorem (FCLT) for partial sums of x(t)=¿^{-d}u(t) , where -1/2classical condition is existence of q=2 and q>1/(d+1/2) moments...... of the innovation sequence. When d is close to -1/2 this moment condition is very strong. Our main result is to show that when -1/2conditions on u(t), the existence of q=1/(d+1/2) moments is in fact necessary for the FCLT for fractionally integrated processes and that q>1/(d+1....../2) moments are necessary for more general fractional processes. Davidson and de Jong (2000, Econometric Theory 16, 643-- 666) presented a fractional FCLT where onlyq>2 finite moments are assumed. As a corollary to our main theorem we show that their moment condition is not sufficient and hence...
Algorithm Indicating Moment of P-Wave Arrival Based on Second-Moment Characteristic
Directory of Open Access Journals (Sweden)
Jakub Sokolowski
2016-01-01
Full Text Available The moment of P-wave arrival can provide us with many information about the nature of a seismic event. Without adequate knowledge regarding the onset moment, many properties of the events related to location, polarization of P-wave, and so forth are impossible to receive. In order to save time required to indicate P-wave arrival moment manually, one can benefit from automatic picking algorithms. In this paper two algorithms based on a method finding a regime switch point are applied to seismic event data in order to find P-wave arrival time. The algorithms are based on signals transformed via a basic transform rather than on raw recordings. They involve partitioning the transformed signal into two separate series and fitting logarithm function to the first subset (which corresponds to pure noise and therefore it is considered stationary, exponent or power function to the second subset (which corresponds to nonstationary seismic event, and finding the point at which these functions best fit the statistic in terms of sum of squared errors. Effectiveness of the algorithms is tested on seismic data acquired from O/ZG “Rudna” underground copper ore mine with moments of P-wave arrival initially picked by broadly known STA/LTA algorithm and then corrected by seismic station specialists. The results of proposed algorithms are compared to those obtained using STA/LTA.
Spins, moments and radii of Cd isotopes
International Nuclear Information System (INIS)
Hammen, Michael
2013-01-01
The complex nature of the nucleon-nucleon interaction and the wide range of systems covered by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear structure. Among the most prominent ones is the occurence of shell closures at so-called ''magic numbers'', which are explained by the nuclear shell model. Although the shell model already is on duty for several decades, it is still constantly extended and improved. For this process of extension, fine adjustment and verification, it is important to have experimental data of nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the motivation for the work performed in this thesis: the measurement and analysis of nuclear ground state properties of the isotopic chain of 100-130 Cd by collinear laser spectroscopy. The experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cadmium from A = 106 to A = 126 and extends the measured isotopes to even more exotic species. The required gain in sensitivity is mainly achieved by using a radiofrequency cooler and buncher for background reduction and by using the strong 5s 2 S 1/2 →5p 2 P 3/2 transition in singly ionized Cd. The latter requires a continuous wave laser system with a wavelength of 214.6 nm, which has been developed during this thesis. Fourth harmonic generation of an infrared titanium sapphire laser is achieved by two subsequent cavity-enhanced second harmonic generations, leading to the production of deep-UV laser light up to about 100 mW. The acquired data of the Z=48 Cd isotopes, having one proton pair less than the Z=50 shell closure at tin, covers the isotopes from N=52 up to N=82 and therefore almost the complete region between the neutron shell closures N=50 and N=82. The isotope shifts and the hyperfine structures of these isotopes have been recorded and the magnetic dipole moments
Exotic fermions and electric dipole moments
International Nuclear Information System (INIS)
Joshipura, A.S.
1991-01-01
The contributions of mirror fermions to the electric dipole moments (EDM's) of leptons and neutrons are studied using the available limits on the mixing of the relevant fermions to their mirror partners. These limits imply EDM's several orders of magnitude larger than the current experimental bounds in the case of the electron and the neutron if the relevant CP-violating phases are not unnaturally small. If these phases are large, then the bounds on the EDM's can be used to improve upon the limits on mixing between the ordinary (f) and the mirror (F) fermions. In the specific case of the latter mixing angle being given by (m f /M F ) 1/2 , one can obtain the electron and the neutron EDM's close to experimental bounds
Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.
Shaniv, R; Akerman, N; Ozeri, R
2016-04-08
We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations.
Fractional-moment CAPM with loss aversion
Energy Technology Data Exchange (ETDEWEB)
Wu Yahao [Dep. of Math., South China University of Technology, Guangzhou 510640 (China); Wang Xiaotian [Dep. of Math., South China University of Technology, Guangzhou 510640 (China)], E-mail: swa001@126.com; Wu Min [Dep. of Math., South China University of Technology, Guangzhou 510640 (China)
2009-11-15
In this paper, we present a new fractional-order value function which generalizes the value function of Kahneman and Tversky [Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica 1979;47:263-91; Tversky A, Kahneman D. Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 1992;4:297-323], and give the corresponding fractional-moment versions of CAPM in the cases of both the prospect theory [Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk. Econometrica 1979;47:263-91; Tversky A, Kahneman D. Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertainty 1992;4:297-323] and the expected utility model. The models that we obtain can be used to price assets when asset return distributions are likely to be asymmetric stable Levy distribution during panics and stampedes in worldwide security markets in 2008. In particular, from the prospect theory we get the following fractional-moment CAPM with loss aversion: E(R{sub i}-R{sub 0})=(E[(W-W{sub 0}){sub +}{sup -0.12}(R{sub i}-R{sub 0})]+2.25E[(W{sub 0}-W){sub +}{sup -0.12}(R{sub i}-R{sub 0})])/ (E[(W-W{sub 0}){sub +}{sup -0.12} (W-R{sub 0})]+2.25E[(W{sub 0}-W){sub +}{sup -0.12}(W-R{sub 0})]) .E(W-R{sub 0}), where W{sub 0} is a fixed reference point distinguishing between losses and gains.
The perfect message at the perfect moment.
Kalyanam, Kirthi; Zweben, Monte
2005-11-01
Marketers planning promotional campaigns ask questions to boost the odds that the messages will be accepted: Who should receive each message? What should be its content? How should we deliver it? The one question they rarely ask is, when should we deliver it? That's too bad, because in marketing, timing is arguably the most important variable of all. Indeed, there are moments in a customer's relationship with a business when she wants to communicate with that business because something has changed. If the company contacts her with the right message in the right format at the right time, there's a good chance of a warm reception. The question of "when" can be answered by a new computer-based model called "dialogue marketing," which is, to date, the highest rung on an evolutionary ladder that ascends from database marketing to relationship marketing to one-to-one marketing. Its principle advantages over older approaches are that it is completely interactive, exploits many communication channels, and is "relationship aware": that is, it continuously tracks every nuance of the customer's interaction with the business. Thus, dialogue marketing responds to each transition in that relationship at the moment the customer requires attention. Turning a traditional marketing strategy into a dialogue-marketing program is a straightforward matter. Begin by identifying the batch communications you make with customers, then ask yourself what events could trigger those communications to make them more timely. Add a question or call to action to each message and prepare a different treatment or response for each possible answer. Finally, create a series of increasingly urgent calls to action that kick in if the question or call to action goes unanswered by the customer. As dialogue marketing proliferates, it may provide the solid new footing that Madison Avenue seeks.
Evolution of truncated moments of singlet parton distributions
International Nuclear Information System (INIS)
Forte, S.; Magnea, L.; Piccione, A.; Ridolfi, G.
2001-01-01
We define truncated Mellin moments of parton distributions by restricting the integration range over the Bjorken variable to the experimentally accessible subset x 0 ≤x≤1 of the allowed kinematic range 0≤x≤1. We derive the evolution equations satisfied by truncated moments in the general (singlet) case in terms of an infinite triangular matrix of anomalous dimensions which couple each truncated moment to all higher moments with orders differing by integers. We show that the evolution of any moment can be determined to arbitrarily good accuracy by truncating the system of coupled moments to a sufficiently large but finite size, and show how the equations can be solved in a way suitable for numerical applications. We discuss in detail the accuracy of the method in view of applications to precision phenomenology
Quantum tunneling of the magnetic moment in a free nanoparticle
International Nuclear Information System (INIS)
O'Keeffe, M.F.; Chudnovsky, E.M.; Garanin, D.A.
2012-01-01
We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: ► We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. ► The quantum phase diagram shows magnetic moment dependence on rotator shape and size. ► Our work explains magnetic properties of free atomic clusters and magnetic molecules.
Quantum tunneling of the magnetic moment in a free nanoparticle
Energy Technology Data Exchange (ETDEWEB)
O' Keeffe, M.F. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Chudnovsky, E.M., E-mail: eugene.chudnovsky@lehman.cuny.edu [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States); Garanin, D.A. [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, New York, 10468-1589 (United States)
2012-09-15
We study tunneling of the magnetic moment in a particle that has full rotational freedom. Exact energy levels are obtained and the ground-state magnetic moment is computed for a symmetric rotor. The effect of mechanical freedom on spin tunneling manifests itself in a strong dependence of the magnetic moment on the moments of inertia of the rotor. The energy of the particle exhibits quantum phase transitions between states with different values of the magnetic moment. Particles of various shapes are investigated and the quantum phase diagram is obtained. - Highlights: Black-Right-Pointing-Pointer We obtain an exact analytical solution of a tunneling spin in a mechanical rotator. Black-Right-Pointing-Pointer The quantum phase diagram shows magnetic moment dependence on rotator shape and size. Black-Right-Pointing-Pointer Our work explains magnetic properties of free atomic clusters and magnetic molecules.
Endogenous opioids regulate moment-to-moment neuronal communication and excitability
Winters, Bryony L.; Gregoriou, Gabrielle C.; Kissiwaa, Sarah A.; Wells, Oliver A.; Medagoda, Danashi I.; Hermes, Sam M.; Burford, Neil T.; Alt, Andrew; Aicher, Sue A.; Bagley, Elena E.
2017-01-01
Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. PMID:28327612
On the limitations of gyrokinetics: Magnetic moment conservation
Stephens, Cole D.; Brzozowski, Robert W.; Jenko, Frank
2017-10-01
The gyrokinetic theory is a popular and efficient approach to study low-frequency phenomena in magnetized plasmas. Its applicability is rooted in the invariance of a charged particle's magnetic moment. We calculate the maximum non-conservation of this magnetic moment in various elementary combinations of electromagnetic fields. The situation is ameliorated by introducing magnetic moments that account for the drift behavior of the guiding center. Based on these results, we discuss the limitations of gyrokinetics on a quantifiable basis.
Properties of Orthogonal Gaussian-Hermite Moments and Their Applications
Directory of Open Access Journals (Sweden)
Jun Shen
2005-03-01
Full Text Available Moments are widely used in pattern recognition, image processing, and computer vision and multiresolution analysis. In this paper, we first point out some properties of the orthogonal Gaussian-Hermite moments, and propose a new method to detect the moving objects by using the orthogonal Gaussian-Hermite moments. The experiment results are reported, which show the good performance of our method.
3D rotation invariants of Gaussian-Hermite moments
Czech Academy of Sciences Publication Activity Database
Yang, Bo; Flusser, Jan; Suk, Tomáš
2015-01-01
Roč. 54, č. 1 (2015), s. 18-26 ISSN 0167-8655 R&D Projects: GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal moments * Gaussian–Hermite moments * 3D moment invariants Subject RIV: IN - Informatics, Computer Science Impact factor: 1.586, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/yang-0438325.pdf
Study upon the Moment of Ovulation in Sows to Establish the Optimum Moment for Semen Inoculation
Directory of Open Access Journals (Sweden)
Mariana Sandu
2012-05-01
Full Text Available Efficiency of artificial insemination depends equaly by semen quality and time of inoculation. The optimal time for inoculation was calculated usually from the moment of detection of heat, for double insemination, so that one of the two inoculations to approach the time of ovulation. To increase the efficiency of boars exploitation is necesary to change the method to a single insemination. To ensure normal fertility parameters with only one inoculation it is necessary to chose with great precision the moment of insemination ,in order to ensure the time for sperm capacitation and penetration of viable oocytes. Starting from the fact that major events such as forrowing and death occur, according to the circadian rhythm, in the second half of the night, this study aims to detect from this point of view the moment of ovulation, to find a more reliable calculation for the time of semen inoculation. The experiments were conducted on puberal gilts, which were not treated for induction of ovulation; the control for detecting the follicular dehiscence was done only on physiological oestrus. Females having symptoms at heat control were subject to series of laparatomias, complete with collection and examination of oocytes.
Induced Magnetic Moment in Defected Single-Walled Carbon Nanotubes
International Nuclear Information System (INIS)
Liu Hong
2006-01-01
The existence of a large induced magnetic moment in defect single-walled carbon nanotube(SWNT) is predicted using the Green's function method. Specific to this magnetic moment of defect SWNT is its magnitude which is several orders of magnitude larger than that of perfect SWNT. The induced magnetic moment also shows certain remarkable features. Therefore, we suggest that two pair-defect orientations in SWNT can be distinguished in experiment through the direction of the induced magnetic moment at some Specific energy points
Direct computation of harmonic moments for tomographic reconstruction
International Nuclear Information System (INIS)
Nara, Takaaki; Ito, Nobutaka; Takamatsu, Tomonori; Sakurai, Tetsuya
2007-01-01
A novel algorithm to compute harmonic moments of a density function from its projections is presented for tomographic reconstruction. For projection p(r, θ), we define harmonic moments of projection by ∫ π 0 ∫ ∞ -∞ p(r,θ)(re iθ ) n drd θ and show that it coincides with the harmonic moments of the density function except a constant. Furthermore, we show that the harmonic moment of projection of order n can be exactly computed by using n+ 1 projection directions, which leads to an efficient algorithm to reconstruct the vertices of a polygon from projections.
Extension of moment projection method to the fragmentation process
Energy Technology Data Exchange (ETDEWEB)
Wu, Shaohua [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Yapp, Edward K.Y.; Akroyd, Jethro; Mosbach, Sebastian [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore); Yang, Wenming [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Kraft, Markus, E-mail: mk306@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)
2017-04-15
The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.
Extension of moment projection method to the fragmentation process
Wu, Shaohua; Yapp, Edward K. Y.; Akroyd, Jethro; Mosbach, Sebastian; Xu, Rong; Yang, Wenming; Kraft, Markus
2017-04-01
The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.
Electric Dipole Moments in the MSSM Reloaded
Ellis, Jonathan Richard; Pilaftsis, Apostolos
2008-01-01
We present a detailed study of the Thallium, neutron, Mercury and deuteron electric dipole moments (EDMs) in the CP-violating Minimal Supersymmetric extension of the Standard Model (MSSM). We take into account the complete set of one-loop graphs, the dominant Higgs-mediated two-loop diagrams, the complete CP-odd dimension-six Weinberg operator and the Higgs-mediated four-fermion operators. We improve upon earlier calculations by including the resummation effects due to CP-violating Higgs-boson mixing and to threshold corrections to the Yukawa couplings of all up- and down-type quarks and charged leptons. As an application of our study, we analyse the EDM constraints on the CPX, trimixing and Maximally CP- and Minimally Flavour-Violating (MCPMFV) scenarios. Cancellations may occur among the CP-violating contributions to the three measured EDMs arising from the 6 CP-violating phases in the MCPMFV scenario, leaving open the possibility of relatively large contributions to other CP-violating observables. The anal...
Yamanaka, Nodoka; Yamada, Taiichi; Hiyama, Emiko; Funaki, Yasuro
2017-06-01
We calculate for the first time the electric dipole moment (EDM) of 13C generated by the isovector charge conjugation-parity (CP)-odd pion exchange nuclear force in the α -cluster model, which describes well the structures of low-lying states of the 13C nucleus. The linear dependence of the EDM of 13C on the neutron EDM and the isovector CP-odd nuclear coupling is found to be d13C=-0.33 dn-0.0020 G¯π(1 ) . The linear enhancement factor of the CP-odd nuclear coupling is smaller than that of the deuteron, due to the difference of the structure between the 1 /21- state and the opposite-parity (1 /2+ ) states. We clarify the role of the structure played in the enhancement of the EDM. This result provides good guiding principles to search for other nuclei with large enhancement factor. We also mention the role of the EDM of 13C in determining the new physics beyond the standard model.
Experimental constraint on quark electric dipole moments
Liu, Tianbo; Zhao, Zhiwen; Gao, Haiyan
2018-04-01
The electric dipole moments (EDMs) of nucleons are sensitive probes of additional C P violation sources beyond the standard model to account for the baryon number asymmetry of the universe. As a fundamental quantity of the nucleon structure, tensor charge is also a bridge that relates nucleon EDMs to quark EDMs. With a combination of nucleon EDM measurements and tensor charge extractions, we investigate the experimental constraint on quark EDMs, and its sensitivity to C P violation sources from new physics beyond the electroweak scale. We obtain the current limits on quark EDMs as 1.27 ×10-24 e .cm for the up quark and 1.17 ×10-24 e .cm for the down quark at the scale of 4 GeV2 . We also study the impact of future nucleon EDM and tensor charge measurements, and show that upcoming new experiments will improve the constraint on quark EDMs by about 3 orders of magnitude leading to a much more sensitive probe of new physics models.
Looking for permanent electric dipole moment
International Nuclear Information System (INIS)
Sakemi, Yasuhiro
2007-01-01
Exploration of the permanent electric dipole moment (EDM) is one of the important ways to promote the research of fundamental symmetries and interactions. In this paper the progress of the exploration up to the present is overviewed and then the present status and expectation in future of the experiment using cooled unstable atoms which is the hopeful method to measure electron EDM is presented. At first the physical meaning of the CPT symmetry breaking is introduced and the upper limit of EDM of electron, muon, tau, proton, neutron, Λ hyperon and 199 Hg are tabulated. It is explained how EDM appears in the theory beyond the standard model, the supersymmetry model e.g. The on-going experiments of EDM exploration of neutrons, nuclei, electrons, molecules and charged particles are briefly reviewed. Finally the experiment to use the Bose-Einstein condensation (BEC) to produce ultra low temperature of nK range by using the laser to cool down radioactive element is presented. Since the amplification of EDM is expected to be large in heavy unstable atoms, francium isotopes which are obtained by heavy ion fusion of 197 Au target bombarded with 18 O beam are chosen in this experiment. It has been confirmed that Rb can be kept in the instrument for 20 minutes up to the present. Progress toward trapping Fr is under way by optimizing numbers of experimental parameters. Experiments by the groups in foreign countries are overviewed briefly. (S. Funahashi)
Higher Moments of Underlying Event Distributions
Xu, Zhen
2017-01-01
We perform an Underlying Event analysis for real data sets from pp collisions at center of mass energy $ \\sqrt{s}=5 $ and 13 TeV and pPb collisions at $ \\sqrt{s}=7 $ TeV at the LHC, together with the Monte Carlo data sets generated with Pythia8 and EPOS in the same conditions. The analysis is focused on the transverse region which is more sensitive to the Underlying Event, and performed as a function of the leading track transverse - momentum $p_t$ in each event. In our work, not only the average underlying event activity but also its fluctuation, namely its root mean square (RMS), Skewness and Kurtosis, are analyzed. We find that the particle density, energy density and their fluctuation magnitude (RMS) are suppressed at leading $p_t\\approx$ 5 GeV/c for all these cases, with EPOS having evident deviation of 10\\%-25\\%. The higher moments skewness and kurtosis decrease rapidly in low leading $p_t$ region, and follow an interesting Gaussian-like peak centered at leading $p_t\\approx$ 15 GeV/c.
Electric dipole moments of light nuclei
Mereghetti, Emanuele
2017-01-01
Electric dipole moments (EDMs) are extremely sensitive probes of physics beyond the Standard Model (SM). A vibrant experimental program is in place, with the goal to improve the existing neutron EDM bound by one/two orders of magnitude, and to test new ideas for the measurement of EDMs of light ions, such as deuteron and helium, at a comparable level. The success of this program, and its implications for physics beyond the SM, relies on the precise calculation of the EDMs in terms of the couplings of CP-violating operators. In light of the non-perturbative nature both of QCD at low energy and of the nuclear interactions, these calculations have proven difficult, and are affected by large theoretical uncertainties. In this talk I will review the progress that in recent years has been achieved on different aspects of the calculation of hadronic and nuclear EDMs. In particular, I will discuss how the interplay between lattice QCD and Chiral Effective Field Theory (EFT) has allowed to reduce a set of hadronic uncertainties. Finally, I will discuss how the measurements of th EDMs of one, two and three nucleon systems can be used to discriminate between various possible mechanisms of time-reversal violation at high energy.
Moments of real relationship in psychoanalytic supervision.
Watkins, C Edward
2012-09-01
What role does the real relationship play in psychoanalytic supervision? While the real relationship's role has long been and continues to be considered with regard to psychoanalysis, it has received virtually no attention in the supervision literature. In this paper, using Horney's construct of the real self as conceptual anchor, I attempt to: (1) situate the real relationship squarely within the borders of the psychoanalytic supervision relationship; (2) examine the relevance of real relationship phenomena for the supervision experience; (3) provide some simple, ordinary yet meaningful examples of case dialogue that illustrate moments of real relationship in supervision; and (4) introduce the concept of real relationship rupture and consider its potential ramifications for and impact upon the supervisor-supervisee relationship. Just as ruptures can occur in the supervisory alliance, I propose that ruptures can also transpire in the supervisory real relationship, have the potential to reverberate throughout the entirety of the supervision experience, and depending upon how they are handled, can prove either constructive and relationally energizing and enlivening or enervating and eviscerating to supervision process and outcome.
Rovibrational matrix elements of the multipole moments and of the ...
Indian Academy of Sciences (India)
Comparison with gas phase matrix elements shows that the effect of solid state interactions is marginal. Keywords. Multipole moments; linear polarizability; solid hydrogen, matrix elements. PACS Nos 33.15.Kr; 33.70.-w; 34.20.Gj. 1. Introduction. The rovibrational matrix elements of the multipole moments and polarizability of.
Effective magnetic moment of neutrinos in strong magnetic fields
Pérez, A; Masood, S S; Gaitan, R; Rodríguez, S
2002-01-01
In this paper we compute the effective magnetic moment of neutrinos propagating in dense high magnetized medium. Taking typical values of magnetic field and densities of astrophysical objects (such as the cores of supernovae and neutron stars) we obtain an effective type of dipole magnetic moment in agreement with astrophysical and cosmological bounds. (Author)
How Can You Make the Most of Those "WOW Moments"?
Hardman, Sally; Luke, Sue
2016-01-01
Children are naturally curious about the world around them and are often intrigued by everyday objects and experiences. Primary school teachers frequently make use of "WOW moments" to generate children's interest in science (Feasey, 2005). These moments capitalise on the children's fascination with objects and experiences in their…
Score Function of Distribution and Revival of the Moment Method
Czech Academy of Sciences Publication Activity Database
Fabián, Zdeněk
2016-01-01
Roč. 45, č. 4 (2016), s. 1118-1136 ISSN 0361-0926 R&D Projects: GA MŠk(CZ) LG12020 Institutional support: RVO:67985807 Keywords : characteristics of distributions * data characteristics * general moment method * Huber moment estimator * parametric methods * score function Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.311, year: 2016
Discrete Hermite moments and their application in chemometrics
Czech Academy of Sciences Publication Activity Database
Honarvar Shakibaei Asli, Barmak; Flusser, Jan
2018-01-01
Roč. 177, č. 1 (2018), s. 83-88 ISSN 0169-7439 Institutional support: RVO:67985556 Keywords : Orthogonal polynomials * Discrete polynomials * Tchebichef moment * Hermite moment * Gauss–Hermite quadrature Subject RIV: IN - Informatics, Computer Science OBOR OECD: Electrical and electronic engineering Impact factor: 2.303, year: 2016 http://library.utia.cas.cz/separaty/2018/ZOI/honarvar-0489186. pdf
Factorial moment -generating function and the Pascal distribution ...
African Journals Online (AJOL)
Given a distribution, the cumulants or factorial moments can be used to obtain the skewness and kurtosis which in turn are used to determine the normal approximation of the given distribution. It is shown in this paper that for the Pascal Distribution, the factorial moment generating function provides a simpler technique.
Higher Moments of Weighted Integrals of Non-Gaussian Fields
DEFF Research Database (Denmark)
Mohr, Gunnar
1996-01-01
In general , the exact probability distribution of a definite non-Gaussian random field is not known. Some information about this unknown distribution can be obtained from the 3rd and 4th moment of the integral. Approximations to these moments are calculated by a numerical technique based...
Complete moment convergence of weighted sums for processes ...
Indian Academy of Sciences (India)
[15] extended Theorem C to moving average processes of AANA sequence. The purpose of this paper is to further study the limit properties of weighted sums for sequences of identically distributed AANA random variables and to obtain complete moment convergence by using the Rosenthal type moment inequality.
The status of the electric dipole moment of the neutron
International Nuclear Information System (INIS)
Grimus, W.
1990-01-01
The electric dipole moment of particles in quantum mechanics and quantum field theory is discussed. Furthermore, calculations of the neutron electric dipole moment in the standard model and several of its low-energy extensions are reviewed. 47 refs., 7 figs. (Author)
Model Reduction by Moment Matching for Linear Switched Systems
DEFF Research Database (Denmark)
Bastug, Mert; Petreczky, Mihaly; Wisniewski, Rafal
2014-01-01
A moment-matching method for the model reduction of linear switched systems (LSSs) is developed. The method is based based upon a partial realization theory of LSSs and it is similar to the Krylov subspace methods used for moment matching for linear systems. The results are illustrated by numerical...
Quadrupole moment of superdeformed bands in Tb-151
Finck, C; Stezowski, O; Beck, FA; Appelbe, DE; Byrski, T; Courtin, S; Cullen, DM; Curien, D; de France, G; Duchene, G; Erturk, S; Gall, BJP; Garg, U; Haas, B; Khadiri, N; Kharraja, B; Kintz, N; Nourreddine, A; Prevost, D; Rigollet, C; Savajols, H; Twin, PJ; Vivien, JP; Zuber, K
The quadrupole moments of the first two superdeformed (SD) bands in the nucleus Tb-151 have been measured with the Doppler Shift Attenuation Method (DSAM) using the EUROGAM gamma-ray spectrometer, The first excited band (B2) is identical to the yrast SD band of Dy-152 in terms of dynamical moments
Elliptic integral evaluations of Bessel moments
Energy Technology Data Exchange (ETDEWEB)
Bailey, David H.; Borwein, Jonathan M.; Broadhurst, David; Glasser, M.L.
2008-01-06
We record what is known about the closed forms for variousBessel function moments arising in quantum field theory, condensed mattertheory and other parts of mathematical physics. More generally, wedevelop formulae for integrals of products of six or fewer Besselfunctions. In consequence, we are able to discover and prove closed formsfor c(n,k) := Int_0 inf tk K_0 n(t) dt, with integers n = 1, 2, 3, 4 andk greater than or equal to 0, obtaining new results for the even momentsc3,2k and c4,2k . We also derive new closed forms for the odd momentss(n,2k+1) := Int_0 inf t(2k+1) I_0(t) K_0n(t) dt,with n = 3, 4 and fort(n,2k+1) := Int_0 inf t(2k+1) I_02(t) K_0(n-2) dt, with n = 5, relatingthe latter to Green functions on hexagonal, diamond and cubic lattices.We conjecture the values of s(5,2k+1), make substantial progress on theevaluation of c(5,2k+1), s(6,2k+1) and t(6,2k+1) and report more limitedprogress regarding c(5,2k), c(6,2k+1) and c(6,2k). In the process, weobtain 8 conjectural evaluations, each of which has been checked to 1200decimal places. One of these lies deep in 4-dimensional quantum fieldtheory and two are probably provable by delicate combinatorics. Thereremains a hard core of five conjectures whose proofs would be mostinstructive, to mathematicians and physicists alike.
Apple Shape Classification Method Based on Wavelet Moment
Directory of Open Access Journals (Sweden)
Jiangsheng Gui
2014-09-01
Full Text Available Shape is not only an important indicator for assessing the grade of the apple, but also the important factors for increasing the value of the apple. In order to improve the apple shape classification accuracy rate, an approach for apple shape sorting based on wavelet moments was proposed, the image was first subjected to a normalization process using its regular moments to obtain scale and translation invariance, the rotation invariant wavelet moment features were then extracted from the scale and translation normalized images and the method of cluster analysis was used for finished the shape classification. This method performs better than traditional approaches such as Fourier descriptors and Zernike moments, because of that Wavelet moments can provide time-domain and frequency domain window, which was verified by experiments. The normal fruit shape, mild deformity and severe deformity classification accuracy is 86.21 %, 85.82 %, 90.81 % by our method.
Model independent bounds on magnetic moments of Majorana neutrinos
International Nuclear Information System (INIS)
Bell, Nicole F.; Gorchtein, Mikhail; Ramsey-Musolf, Michael J.; Vogel, Petr; Wang, Peng
2006-01-01
We analyze the implications of neutrino masses for the magnitude of neutrino magnetic moments. By considering electroweak radiative corrections to the neutrino mass, we derive model-independent naturalness upper bounds on neutrino magnetic moments, μ ν , generated by physics above the electroweak scale. For Dirac neutrinos, the bound is several orders of magnitude more stringent than present experimental limits. However, for Majorana neutrinos the magnetic moment contribution to the mass is Yukawa suppressed. The bounds we derive for magnetic moments of Majorana neutrinos are weaker than present experimental limits if μ ν is generated by new physics at ∼1 TeV, and surpass current experimental sensitivity only for new physics scales >10-100 TeV. The discovery of a neutrino magnetic moment near present limits would thus signify that neutrinos are Majorana particles
A Comparison of Moments-Based Logo Recognition Methods
Directory of Open Access Journals (Sweden)
Zili Zhang
2014-01-01
Full Text Available Logo recognition is an important issue in document image, advertisement, and intelligent transportation. Although there are many approaches to study logos in these fields, logo recognition is an essential subprocess. Among the methods of logo recognition, the descriptor is very vital. The results of moments as powerful descriptors were not discussed before in terms of logo recognition. So it is unclear which moments are more appropriate to recognize which kind of logos. In this paper we find out the relations between logos with different transforms and moments, which moments are fit for logos with different transforms. The open datasets are employed from the University of Maryland. The comparisons based on moments are carried out from the aspects of logos with noise, and rotation, scaling, rotation and scaling.
Edwards, Benjamin; Allmann, Bettina; Fäh, Donat; Clinton, John
2010-10-01
Moment magnitudes (MW) are computed for small and moderate earthquakes using a spectral fitting method. 40 of the resulting values are compared with those from broadband moment tensor solutions and found to match with negligible offset and scatter for available MW values of between 2.8 and 5.0. Using the presented method, MW are computed for 679 earthquakes in Switzerland with a minimum ML = 1.3. A combined bootstrap and orthogonal L1 minimization is then used to produce a scaling relation between ML and MW. The scaling relation has a polynomial form and is shown to reduce the dependence of the predicted MW residual on magnitude relative to an existing linear scaling relation. The computation of MW using the presented spectral technique is fully automated at the Swiss Seismological Service, providing real-time solutions within 10 minutes of an event through a web-based XML database. The scaling between ML and MW is explored using synthetic data computed with a stochastic simulation method. It is shown that the scaling relation can be explained by the interaction of attenuation, the stress-drop and the Wood-Anderson filter. For instance, it is shown that the stress-drop controls the saturation of the ML scale, with low-stress drops (e.g. 0.1-1.0 MPa) leading to saturation at magnitudes as low as ML = 4.
A Study of Moment Based Features on Handwritten Digit Recognition
Directory of Open Access Journals (Sweden)
Pawan Kumar Singh
2016-01-01
Full Text Available Handwritten digit recognition plays a significant role in many user authentication applications in the modern world. As the handwritten digits are not of the same size, thickness, style, and orientation, therefore, these challenges are to be faced to resolve this problem. A lot of work has been done for various non-Indic scripts particularly, in case of Roman, but, in case of Indic scripts, the research is limited. This paper presents a script invariant handwritten digit recognition system for identifying digits written in five popular scripts of Indian subcontinent, namely, Indo-Arabic, Bangla, Devanagari, Roman, and Telugu. A 130-element feature set which is basically a combination of six different types of moments, namely, geometric moment, moment invariant, affine moment invariant, Legendre moment, Zernike moment, and complex moment, has been estimated for each digit sample. Finally, the technique is evaluated on CMATER and MNIST databases using multiple classifiers and, after performing statistical significance tests, it is observed that Multilayer Perceptron (MLP classifier outperforms the others. Satisfactory recognition accuracies are attained for all the five mentioned scripts.
Effect of hammer mass on upper extremity joint moments.
Balendra, Nilanthy; Langenderfer, Joseph E
2017-04-01
This study used an OpenSim inverse-dynamics musculoskeletal model scaled to subject-specific anthropometrics to calculate three-dimensional intersegmental moments at the shoulder, elbow and wrist while 10 subjects used 1 and 2 lb hammers to drive nails. Motion data were collected via an optoelectronic system and the interaction of the hammer with nails was recorded with a force plate. The larger hammer caused substantial increases (50-150%) in moments, although increases differed by joint, anatomical component, and significance of the effect. Moment increases were greater in cocking and strike/follow-through phases as opposed to swinging and may indicate greater potential for injury. Compared to shoulder, absolute increases in peak moments were smaller for elbow and wrist, but there was a trend toward larger relative increases for distal joints. Shoulder rotation, elbow varus-valgus and pronation-supination, and wrist radial-ulnar deviation and rotation demonstrated large relative moment increases. Trial and phase durations were greater for the larger hammer. Changes in moments and timing indicate greater loads on musculoskeletal tissues for an extended period with the larger hammer. Additionally, greater variability in timing with the larger hammer, particularly for cocking phase, suggests differences in control of the motion. Increased relative moments for distal joints may be particularly important for understanding disorders of the elbow and wrist associated with hammer use. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stochastic analysis of complex reaction networks using binomial moment equations.
Barzel, Baruch; Biham, Ofer
2012-09-01
The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.
The cranking moment of inertia in a static potential
International Nuclear Information System (INIS)
Bengtsson, R.; Hamamoto, I.; Ibarra, R.H.
1978-01-01
Taking into account the self-consistency condition for the deformation, the authors estimate the cranking moment of inertia in the absence of pair-correlations for the Woods-Saxon potential and various versions of the modified oscillator potential. The authors investigate the expectation that in a static potential the moment of inertia is almost equal to the rigid-body moment of inertia at the self-consistent deformation. They examine especially the consequence of the presence of the l 2 term in the conventional modified oscillator potential. (Auth.)
On the moment system and a flexible Prandtl number
Machado, Raúl
2014-02-01
The Maxwell-Boltzmann moment system can be seen as a particular case of a mathematically more general moment system proposed by Machado.1 These last moments, of which a suggested continuous distribution and an integral generating form are presented here for some orders, are used in this paper to theoretically show (one of) their usefulness: A flexible Prandtl number can be obtained in both the Boltzmann equation and in the lattice Boltzmann equation with a conventional single relaxation time Bhatnagar-Gross-Krook (BGK) collision model.
Higher moments of weighted integrals of non-Gaussian fields
DEFF Research Database (Denmark)
Mohr, Gunnar
1999-01-01
In general, the exact probability distribution of a definite integral of a given non-Gaussian random field is not known. Some information about this unknown distribution can be obtained from the 3rd and 4th moment of the integral. Approximations to these moments can be calculated by discretizing...... the integral and replacing the integrand by third-degree polynomials of correlated Gaussian Variables which reproduce the first four moments and the correlation function of the field correctly. The method described (see Ditlevsen O, Mohr G, Hoffmeyer P. Integration of non-Gaussian fields. Probabilistic...
Moments of inertia and the shapes of Brownian paths
International Nuclear Information System (INIS)
Fougere, F.; Desbois, J.
1993-01-01
The joint probability law of the principal moments of inertia of Brownian paths (open or closed) is computed, using constrained path integrals and Random Matrix Theory. The case of two-dimensional paths is discussed in detail. In particular, it is shown that the ratio of the average values of the largest and smallest moments is equal to 4.99 (open paths) and 3.07 (closed paths). Results of numerical simulations are also presented, which include investigation of the relationships between the moments of inertia and the arithmetic area enclosed by a path. (authors) 28 refs., 2 figs
Ocular dominance affects magnitude of dipole moment: An MEG study
Shima, Hiroshi; Hasegawa, Mitsuhiro; Tachibana, Osamu; Nomura, Motohiro; Yamashita, Junkoh; Ozaki, Yuzo; Kawai, Jun; Higuchi, Masanori; Kado, Hisashi
2010-01-01
To investigate whether the ocular dominance affects laterality in the activity of the primary visual cortex, we examined the relationship between the ocular dominance and latency or dipole moment measured by checkerboard-pattern and magnetoencephalography in 11 right-handed healthy male participants. Participants with left-eye dominance showed a dipole moment of 21.5±6.1 nAm with left-eye stimulation and 16.1±3.6 nAm with right, whereas those with right-eye dominance showed a dipole moment of...
Conditional Hyperbolic Quadrature Method of Moments for Kinetic Equations
Fox, Rodney,; Laurent, Frédérique; Vié, Aymeric
2017-01-01
The conditional quadrature method of moments (CQMOM) was introduced by Yuan and Fox [J. Comput. Phys. 230 (22), 8216–8246 (2011)] to reconstruct a velocity distribution function (VDF) from a finite set of its integer moments. The reconstructed VDF takes the form of a sum of weighted Dirac delta functions in velocity phase space, and provides a closure for the spatial flux term in the corresponding kinetic equation. The CQMOM closure for the flux leads to a weakly hyperbolic system of moment e...
Chong, Helen C; Tennant, Liana M; Kingston, David C; Acker, Stacey M
2017-03-01
(1) Characterize knee joint moments and peak knee flexion moment timing during kneeling transitions, with the intent of identifying high-risk postures. (2) Determine whether safety footwear worn by kneeling workers (construction workers, tile setters, masons, roofers) alters high flexion kneeling mechanics. Fifteen males performed high flexion kneeling transitions. Kinetics and kinematics were analyzed for differences in ascent and descent in the lead and trail legs. Mean±standard deviation peak external knee adduction and flexion moments during transitions ranged from 1.01±0.31 to 2.04±0.66% body weight times height (BW∗Ht) and from 3.33 to 12.6% BW∗Ht respectively. The lead leg experienced significantly higher adduction moments compared to the trail leg during descent, when work boots were worn (interaction, p=0.005). There was a main effect of leg (higher lead vs. trail) on the internal rotation moment in both descent (p=0.0119) and ascent (p=0.0129) phases. Peak external knee adduction moments during transitions did not exceed those exhibited during level walking, thus increased knee adduction moment magnitude is likely not a main factor in the development of knee OA in occupational kneelers. Additionally, work boots only significantly increased the adduction moment in the lead leg during descent. In cases where one knee is painful, diseased, or injured, the unaffected knee should be used as the lead leg during asymmetric bilateral kneeling. Peak flexion moments occurred at flexion angles above the maximum flexion angle exhibited during walking (approximately 60°), supporting the theory that the loading of atypical surfaces may aid disease development or progression. Copyright © 2016 Elsevier B.V. All rights reserved.
Determination of nuclear moments in experiments on charged particle beams
International Nuclear Information System (INIS)
Hrynkiewicz, A.Z.
Nuclear magnetic moment measurements by in-beam perturbed angular correlation method are discussed, with special emphasis on the use of transient fields. Measurements on states in several sd and dsup(5/2) nuclei are reported [fr
Regularized κ-distributions with non-diverging moments
Scherer, K.; Fichtner, H.; Lazar, M.
2017-12-01
For various plasma applications the so-called (non-relativistic) κ-distribution is widely used to reproduce and interpret the suprathermal particle populations exhibiting a power-law distribution in velocity or energy. Despite its reputation the standard κ-distribution as a concept is still disputable, mainly due to the velocity moments M l which make a macroscopic characterization possible, but whose existence is restricted only to low orders l definition of the κ-distribution itself is conditioned by the existence of the moment of order l = 2 (i.e., kinetic temperature) satisfied only for κ > 3/2 . In order to resolve these critical limitations we introduce the regularized κ-distribution with non-diverging moments. For the evaluation of all velocity moments a general analytical expression is provided enabling a significant step towards a macroscopic (fluid-like) description of space plasmas, and, in general, any system of κ-distributed particles.
The relation between anomalous magnetic moment and axial anomaly
International Nuclear Information System (INIS)
Teryaev, O.V.
1990-12-01
The conservation of total angular momentum of spinor particle leads to a simple relation between the famous Schwinger and Adler coefficients determining axial anomaly and anomalous magnetic moment, respectively. (author). 8 refs, 1 fig
A note on goodness of fit test using moments
Directory of Open Access Journals (Sweden)
Alex Papadopoulos
2007-10-01
Full Text Available The purpose of this article is to introduce a general moment-based approach to derive formal goodness of fit tests of a parametric family. We show that, in general, an approximate normal test or a chi-squared test can be derived by exploring the moment structure of a parametric family, when moments up to certain order exist. The idea is simple and the resulting tests are easy to implement. To illustrate the use of this approach, we derive moment-based goodness of fit tests for some common discrete and continuous parametric families. We also compare the proposed tests with the well known Pearson-Fisher chi-square test and some distance tests in a simulation study.
Electromagnetic moments of hadrons and quarks in a hybrid model
International Nuclear Information System (INIS)
Gerasimov, S.B.
1989-01-01
Magnetic moments of baryons are analyzed on the basis of general sum rules following from the theory of broken symmetries and quark models including the relativistic effects and hadronic corrections due to the meson exchange currents. A new sum rule is proposed for the hyperon magnetic moments, which is in accord with the most precise new data and also with a theory of the electromagnetic ΛΣ 0 mixing. The numerical values of the quark electromagnetic moments are obtained within a hybrid model treating the pion cloud effects through the local coupling of the pion field with the constituent massive quarks. Possible sensitivity of the weak neutral current magnetic moments to violation of the Okubo-Zweig-Izuki rule is emphasized nand discussed. 39 refs.; 1 fig
Magnetotransport in Layered Dirac Fermion System Coupled with Magnetic Moments
Iwasaki, Yoshiki; Morinari, Takao
2018-03-01
We theoretically investigate the magnetotransport of Dirac fermions coupled with localized moments to understand the physical properties of the Dirac material EuMnBi2. Using an interlayer hopping form, which simplifies the complicated interaction between the layers of Dirac fermions and the layers of magnetic moments in EuMnBi2, the theory reproduces most of the features observed in this system. The hysteresis observed in EuMnBi2 can be caused by the valley splitting that is induced by the spin-orbit coupling and the external magnetic field with the molecular field created by localized moments. Our theory suggests that the magnetotransport in EuMnBi2 is due to the interplay among Dirac fermions, localized moments, and spin-orbit coupling.
VOYAGER 2 SATURN PLASMA DERIVED ION MOMENTS 96 SEC
National Aeronautics and Space Administration — THIS DATA SET CONTAINS ESTIMATES OF THE ION MOMENT DENSITY IN THE PLS VOLTAGE RANGE (10-5950 EV/Q) AT SATURN DURING THE VOYAGER 2 ENCOUNTER. RIGID COROTATION IS...
Ocular dominance affects magnitude of dipole moment: an MEG study.
Shima, Hiroshi; Hasegawa, Mitsuhiro; Tachibana, Osamu; Nomura, Motohiro; Yamashita, Junkoh; Ozaki, Yuzo; Kawai, Jun; Higuchi, Masanori; Kado, Hisashi
2010-08-23
To investigate whether the ocular dominance affects laterality in the activity of the primary visual cortex, we examined the relationship between the ocular dominance and latency or dipole moment measured by checkerboard-pattern and magnetoencephalography in 11 right-handed healthy male participants. Participants with left-eye dominance showed a dipole moment of 21.5+/-6.1 nAm with left-eye stimulation and 16.1+/-3.6 nAm with right, whereas those with right-eye dominance showed a dipole moment of 18.0+/-5.2 and 21.5+/-2.7 nAm with left-eye and right-eye stimulation of the infero-medial quadrant visual field, respectively. Thus, the dipole moment was higher when the dominant eye was stimulated, which implies that ocular dominance is regulated by the ipsilateral occipital lobe.
Real time monitoring of moment magnitude by waveform inversion
Lee, J.; Friederich, W.; Meier, T.
2012-01-01
An instantaneous measure of the moment magnitude (Mw) of an ongoing earthquake is estimated from the moment rate function (MRF) determined in real-time from available seismic data using waveform inversion. Integration of the MRF gives the moment function from which an instantaneous Mw is derived. By repeating the inversion procedure at regular intervals while seismic data are coming in we can monitor the evolution of seismic moment and Mw with time. The final size and duration of a strong earthquake can be obtained within 12 to 15 minutes after the origin time. We show examples of Mw monitoring for three large earthquakes at regional distances. The estimated Mw is only weakly sensitive to changes in the assumed source parameters. Depending on the availability of seismic stations close to the epicenter, a rapid estimation of the Mw as a prerequisite for the assessment of earthquake damage potential appears to be feasible.
Mindfulness Matters Can Living in the Moment Improve Your Health?
... Special Issues Subscribe January 2012 Print this issue Mindfulness Matters Can Living in the Moment Improve Your ... good for your health. The idea is called mindfulness. This ancient practice is about being completely aware ...
A Hybrid Joint Moment Ratio Test for Financial Time Series
Groenendijk, Patrick A.; Lucas, André; Vries, de Casper G.
1998-01-01
We advocate the use of absolute moment ratio statistics in conjunctionwith standard variance ratio statistics in order to disentangle lineardependence, non-linear dependence, and leptokurtosis in financial timeseries. Both statistics are computed for multiple return horizonssimultaneously, and the
Magnetic moments of composite quarks and leptons: further difficulties
International Nuclear Information System (INIS)
Lipkin, H.J.
1980-05-01
The previously noted difficulty of obtaining Dirac magnetic moments in composite models with two basic building blocks having different charges is combined with the observation by Shaw et al., that a light bound fermion state built from heavy constituents must have the Dirac moment in a renormalizable theory. The new constraint on any model that builds leptons from two fundamental fields bound by non-electromagnetic forces is that the ratio of the magnetic moment to the total charge of the bound state is independent of the values of the charges of the constituents; e.g., such a bound state of a spin-1/2 fermion and a scalar boson will have the same magnetic moment if the fermion is neutral and the boson has charge -e or vice versa
The Determination of the Muon Magnetic Moment from Cosmic Rays
Amsler, C.
1974-01-01
Describes an experiment suited for use in an advanced laboratory course in particle physics. The magnetic moment of cosmic ray muons which have some polarization is determined with an error of about five percent. (Author/GS)
Searching for the corner seismic moment in worldwide data
International Nuclear Information System (INIS)
Felgueiras, Miguel; Santos, Rui; Martins, João Paulo
2015-01-01
In this paper the existence of the corner frequency value for the seismic moment distribution is investigated, analysing worldwide data. Pareto based distributions, usually considered as the most suitable to this type of data, are fitted to the most recent data, available in a global earthquake catalog. Despite the undeniable finite nature of the seismic moment data, we conclude that no corner frequency can be established considering the available data set
Constraining neutrino magnetic moment with solar and reactor neutrino data
Tortola, M. A.
2004-01-01
We use solar neutrino data to derive stringent bounds on Majorana neutrino transition moments (TMs). Such moments, if present, would contribute to the neutrino-electron scattering cross section and hence alter the signal observed in Super-Kamiokande. Using the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, we perform a simultaneous fit of the oscillation parameters and TMs. Furthermore, we include data from the reactor experiments Rovno, TEXONO and MU...
Aseismic moment release associated with rapid tremor reversals in Cascadia
Hawthorne, J. C.; Bostock, M. G.; Royer, A. A.; Thomas, A.; Savard, G.
2015-12-01
We identify variations in slow slip moment rate associated with rapid tremor reversals (RTRs) beneath Vancouver Island, in Cascadia. The RTRs were identified by Royer et. al., 2015 with their high-quality tremor catalog based on low frequency earthquakes. In most of them, tremor propagates a few tens of kilometers over a few hours. We use PBO borehole strain data to search for aseismic moment rate variations associated with the reversals. We isolate components of strain that have high signal to noise ratios by avoiding components that have a strong response to atmospheric pressure. In the corrected strain data, the strain rate is systematically higher during the RTRs than during the 4 days surrounding them. On average, the strain rate increases by a factor of 2 during the reversals.This factor of 2 increase in strain rate can be roughly interpreted as a factor of 2 increase in moment rate. The location of slip moves by just a few tens of kilometers during the 4-day periods of interest, so the Green's functions do not change dramatically. If we scale this moment rate by the moment rate of the slow slip event, and account for the RTR durations, we estimate that each reversal releases a moment similar to that in a M 5 earthquake. If the along-dip width of the reversals is comparable to the width of the whole slow slip event, the estimated moment implies a stress drop of order 1 kPa. This is comparable to the tidal stresses and less than 10% of the slow slip stress drop. If the along-dip width of the RTRs is smaller---say 20 km---the aseismic moment implies a stress drop of order 5 kPa, only a factor of a few smaller than the slow slip stress drop.
Rotation invariants of vector fields from orthogonal moments
Czech Academy of Sciences Publication Activity Database
Yang, B.; Kostková, Jitka; Flusser, Jan; Suk, Tomáš; Bujack, R.
2018-01-01
Roč. 74, č. 1 (2018), s. 110-121 ISSN 0031-3203 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Vector field * Total rotation * Invariants * Gaussian–Hermite moments * Zernike moments * Numerical stability Subject RIV: JD - Computer Applications, Robotics Impact factor: 4.582, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0478329.pdf
Moments of nucleon spin-dependent generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Wolfram Schroers; Richard Brower; Patrick Dreher; Robert Edwards; George Fleming; P. Hagler; Urs Heller; Thomas Lippert; John Negele; Andrew Pochinsky; Dru Renner; David Richards; Klaus Schilling
2004-03-01
We present a lattice measurement of the first two moments of the spin-dependent GPD H-tilde(x,xi,t). From these we obtain the axial coupling constant and the second moment of the spin-dependent forward parton distribution. The measurements are done in full QCD using Wilson fermions. In addition, we also present results from a first exploratory study of full QCD using Asqtad sea and domain-wall valence fermions.
Rapid Moment Magnitude Estimation Using Strong Motion Derived Static Displacements
Muzli, Muzli; Asch, Guenter; Saul, Joachim; Murjaya, Jaya
2015-01-01
The static surface deformation can be recovered from strong motion records. Compared to satellite-based measurements such as GPS or InSAR, the advantage of strong motion records is that they have the potential to provide real-time coseismic static displacements. The use of these valuable data was optimized for the moment magnitude estimation. A centroid grid search method was introduced to calculate the moment magnitude by using1 model. The method to data sets was applied of the 2011...
Innovative moments and change in client-centered therapy
Gonçalves, Miguel M.; Mendes, Inês; Cruz, Graciete; Ribeiro, António P.; Sousa, Inês; Angus, Lynne; Greenberg, Leslie S.
2012-01-01
Previous studies have used the Innovative Moments Coding System (IMCS) to describe the process of change in Narrative Therapy (NT) and in Emotion-Focused Therapy (EFT). This study aims to extend this research program to a sample of Client-Centered Therapy (CCT). The IMCS was applied to six cases of CCT for depression to track the Innovative Moments (IMs) which are exceptions to the problematic self-narrative in therapeutic conversation. Results suggest that IMCS can be applied to ...
Social Moments: A Perspective on Interaction for Social Robotics
Directory of Open Access Journals (Sweden)
Gautier Durantin
2017-06-01
Full Text Available During a social interaction, events that happen at different timescales can indicate social meanings. In order to socially engage with humans, robots will need to be able to comprehend and manipulate the social meanings that are associated with these events. We define social moments as events that occur within a social interaction and which can signify a pragmatic or semantic meaning. A challenge for social robots is recognizing social moments that occur on short timescales, which can be on the order of 102 ms. In this perspective, we propose that understanding the range and roles of social moments in a social interaction and implementing social micro-abilities—the abilities required to engage in a timely manner through social moments—is a key challenge for the field of human robot interaction (HRI to enable effective social interactions and social robots. In particular, it is an open question how social moments can acquire their associated meanings. Practically, the implementation of these social micro-abilities presents engineering challenges for the fields of HRI and social robotics, including performing processing of sensors and using actuators to meet fast timescales. We present a key challenge of social moments as integration of social stimuli across multiple timescales and modalities. We present the neural basis for human comprehension of social moments and review current literature related to social moments and social micro-abilities. We discuss the requirements for social micro-abilities, how these abilities can enable more natural social robots, and how to address the engineering challenges associated with social moments.
Social Moments: A Perspective on Interaction for Social Robotics
Durantin, Gautier; Heath, Scott; Wiles, Janet
2017-01-01
During a social interaction, events that happen at different timescales can indicate social meanings. In order to socially engage with humans, robots will need to be able to comprehend and manipulate the social meanings that are associated with these events. We define social moments as events that occur within a social interaction and which can signify a pragmatic or semantic meaning. A challenge for social robots is recognizing social moments that occur on short timescales, which can be on t...
Radial densities of nuclear matter and charge via moment methods
International Nuclear Information System (INIS)
Dalton, B.J.
1980-01-01
In this report I will discuss some initial efforts in our program to describe radial densities of nuclear matter and charge with the use of moment methods. A brief introduction to trace reduction formulas and computation problems along with proposed methods to overcome them will be given. This will be followed by a general discussion on computation of expectation values using moment methods with particular emphasis on formulation for the radial density applications
Higher moments of Banach space valued random variables
Janson, Svante
2015-01-01
The authors define the k:th moment of a Banach space valued random variable as the expectation of its k:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. The authors study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals, Pettis integrals and Dunford integrals.
Magnetic dipole moments of the heavy tensor mesons in QCD
International Nuclear Information System (INIS)
Aliev, T.M.; Barakat, T.; Savci, M.
2015-01-01
The magnetic dipole moments of the D 2 , and D S 2 , B 2 , and B S 2 heavy tensor mesons are estimated in framework of the light cone QCD sum rules. It is observed that the magnetic dipole moments for the charged mesons are larger than that of its neutral counterpart. It is found that the SU(3) flavor symmetry violation is about 10 % in both b and c sectors. (orig.)
Torsional Moment Measurement on Bucket Wheel Shaft of Giant Machine
Directory of Open Access Journals (Sweden)
Jiří FRIES
2011-06-01
Full Text Available Bucket wheel loading at the present time (torsional moment on wheel shaft, peripheral cutting force is determined from electromotor incoming power or reaction force measured on gearbox hinge. Both methods together are weighted by steel construction absorption of driving units and by inertial forces of motor rotating parts. In the article is described direct method of the torsional moment measurement, which eliminates mentioned unfavourable impacts except absorption of steel construction of bucket wheel itself.
Heeling Moment Acting on a River Cruiser in Manoeuvring Motion
Directory of Open Access Journals (Sweden)
Tabaczek Tomasz
2016-01-01
Full Text Available By using fully theoretical method the heeling moment due to centrifugal forces has been determined for a small river cruiser in turning manoeuvre. The authors applied CFD software for determination of hull hydrodynamic forces, and open water characteristics of ducted propeller for estimation of thrust of rudder-propellers. Numerical integration of equations of 3DOF motion was used for prediction of ship trajectory and time histories of velocities, forces and heeling moment.
Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy
International Nuclear Information System (INIS)
Park, J-W; Lee, E-C; Ju, H; Yoo, I S; Chang, W-S; Chung, B H; Kim, B S
2008-01-01
Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)
Electric dipole moments of highly excited molecular vibrational states
Theulé, Patrice; Rizzo, Thomas
2005-01-01
In this work, new spectroscopic techniques have been developed to measure electric dipole moments of highly excited rovibrational states of small polyatomic molecules in the gas phase. These techniques make use of lasers arid of microwave synthesizers. They enable one to measure the change on a molecular system caused by applying an external electric field, which is called Stark effect and from this, extract the dipole moment. The first technique, called microwave Stark spectroscopy, makes us...
Moment aberrations in magneto-electrostatic plasma lenses (computer simulation)
Butenko, V I
2001-01-01
In this work moment aberrations in the plasma magneto-electrostatic lenses are considered in more detail with the use of the computer modeling. For solution of the problem we have developed a special computer code - the model of plasma optical focusing device, allowing to display the main parameters and operations of experimental sample of a lens, to simulate the moment and geometrical aberrations and give recommendations on their elimination.
Pairing field and moments of inertia of superdeformed nuclei
Chen Yong; Xu Fu Xin
2002-01-01
The authors have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD) bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model
Magnetic moment test report for the model SAR 8108 battery
Ludwig, G. O.; Delbosco, E.; Montes, A.
1988-05-01
The procedures are described for determining the magnetic moment of the Eagle-Picher Model SAR 8108 Battery. The results of a test performed with this battery is presented. The experimental method used was to map the flux density field around the battery. The value of the magnetic moment was evaluated from the experimental data by a numerical procedure based on a spherical harmonic analysis and was found to be 0.050 + or - 0.005 A sq m.
A new online database of nuclear electromagnetic moments
Mertzimekis, Theo J.
2017-09-01
Nuclear electromagnetic (EM) moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (http://magneticmoments.info) focusing on nuclear EM moments has been recently developed to disseminate experimental data to the community. The database includes non-evaluated experimental data of nuclear EM moments, giving strong emphasis on frequent updates (life cycle is 3 months) and direct connection to the sources via DOI and NSR hyperlinks. It has been recently integrated in IAEA LiveChart [1], but can also be found as a standalone webapp [2]. A detailed review of the database features, as well as plans for further development and expansion in the near future is discussed.
A new online database of nuclear electromagnetic moments
Directory of Open Access Journals (Sweden)
Mertzimekis Theo J.
2017-01-01
Full Text Available Nuclear electromagnetic (EM moments, i.e., the magnetic dipole and the electric quadrupole moments, provide important information of nuclear structure. As in other types of experimental data available to the community, measurements of nuclear EM moments have been organized systematically in compilations since the dawn of nuclear science. However, the wealth of recent moments measurements with radioactive beams, as well as earlier existing measurements, lack an online, easy-to-access, systematically organized presence to disseminate information to researchers. In addition, available printed compilations suffer a rather long life cycle, being left behind experimental measurements published in journals or elsewhere. A new, online database (http://magneticmoments.info focusing on nuclear EM moments has been recently developed to disseminate experimental data to the community. The database includes non–evaluated experimental data of nuclear EM moments, giving strong emphasis on frequent updates (life cycle is 3 months and direct connection to the sources via DOI and NSR hyperlinks. It has been recently integrated in IAEA LiveChart [1], but can also be found as a standalone webapp [2]. A detailed review of the database features, as well as plans for further development and expansion in the near future is discussed.
Effects of moment of inertia on restricted motion swing speed.
Schorah, David; Choppin, Simon; James, David
2015-06-01
In many sports, the maximum swing speed of a racket, club, or bat is a key performance parameter. Previous research in multiple sports supports the hypothesis of an inverse association between the swing speed and moment of inertia of an implement. The aim of this study was to rigorously test and quantify this relationship using a restricted swinging motion. Eight visually identical rods with a common mass but variable moment of inertia were manufactured. Motion capture technology was used to record eight participants' maximal effort swings with the rods. Strict exclusion criteria were applied to data that did not adhere to the prescribed movement pattern. The study found that for all participants, swing speed decreased with respect to moment of inertia according to a power relationship. However, in contrast to previous studies, the rate of decrease varied from participant to participant. With further analysis it was found that participants performed more consistently at the higher end of the moment of inertia range tested. The results support the inverse association between swing speed and moment of inertia but only for higher moment of inertia implements.
Maximum entropy principle and partial probability weighted moments
Deng, Jian; Pandey, M. D.; Xie, W. C.
2012-05-01
Maximum entropy principle (MaxEnt) is usually used for estimating the probability density function under specified moment constraints. The density function is then integrated to obtain the cumulative distribution function, which needs to be inverted to obtain a quantile corresponding to some specified probability. In such analysis, consideration of higher ordermoments is important for accurate modelling of the distribution tail. There are three drawbacks for this conventional methodology: (1) Estimates of higher order (>2) moments from a small sample of data tend to be highly biased; (2) It can merely cope with problems with complete or noncensored samples; (3) Only probability weighted moments of integer orders have been utilized. These difficulties inevitably induce bias and inaccuracy of the resultant quantile estimates and therefore have been the main impediments to the application of the MaxEnt Principle in extreme quantile estimation. This paper attempts to overcome these problems and presents a distribution free method for estimating the quantile function of a non-negative randomvariable using the principle of maximum partial entropy subject to constraints of the partial probability weighted moments estimated from censored sample. The main contributions include: (1) New concepts, i.e., partial entropy, fractional partial probability weighted moments, and partial Kullback-Leibler measure are elegantly defined; (2) Maximum entropy principle is re-formulated to be constrained by fractional partial probability weighted moments; (3) New distribution free quantile functions are derived. Numerical analyses are performed to assess the accuracy of extreme value estimates computed from censored samples.
From aerosol microphysics to geophysics using the method of moments
McGraw, R.; Wright, D. L.; Benkovitz, C. M.; Schwartz, S. E.
2000-08-01
We describe new developments in the application of the Quadrature Method of Moments (QMOM) [1]. These include the first application of the QMOM in a 3-D chemical transformation and transport model on the sub-hemispheric scale [2]. The QMOM simultaneously tracks an arbitrary (even) number of moments of a particle size distribution directly in space and time without the need for explicitly representing the distribution itself. The present implementation evolves the six lowest-order radial moments for each of several externally-mixed aerosol populations. From these moments we report modeled geographic distributions of several aerosol properties, including a shortwave radiative forcing obtained using the Multiple Isomomental Distribution Aerosol Surrogate (MIDAS) technique [3]. These results demonstrate the capabilities of these moment-based techniques to simultaneously represent aerosol nucleation, condensation, coagulation, dry deposition, wet removal, cloud activation, and transport processes in a large-scale model, and to yield aerosol optical properties and radiative influence from the modeled aerosol moments. We report on recent extensions of the method for simulation of internal mixtures and generally-mixed aerosols, and on a bivariate extension of the QMOM for modeling simultaneous coagulation and sintering of particle populations [4].
Possibility of a new determination of the magnetic moment of the neutron
International Nuclear Information System (INIS)
Miller, P.D.
1974-01-01
In the lecture the development of an electric dipole moment spectrometer for the determination of the magnetic moment of the neutron is described. The possibility of a more accurate determination of the magnetic moment with the apparatus is discussed
Spin moments, orbital moments and magnetic anisotropy of finite-length Co wires deposited on Pd(110)
International Nuclear Information System (INIS)
Felix-Medina, R; Dorantes-Davila, J; Pastor, G M
2002-01-01
The ground-state spin moments (S z ), orbital moments (L z ) and magnetic anisotropy energy (MAE) of Co N one-dimensional (1D) clusters (N≤12) deposited on the Pd(110) surface are determined in the framework of a self-consistent, real-space tight-binding method. Remarkably large total magnetic moments per Co atom, M z =(2(S z )+(L z ))/N=2.8-2.9 μ B , are obtained, which can be understood as the result of three physically distinct effects. The first and leading contribution is given by the local spin moments (S iz ) at the Co atoms i=1, N (2(S iz ) Co ≅1.6 μ B ). Second, significant spin moments are induced at the Pd atoms i > N close to the Co-Pd interface, which amount to about 25% of M z (2(S iz ) Pd =0.2-0.3 μ B ). Finally, enhanced orbital magnetic moments (L iz ) are responsible for approximately 20% of M z . In the case of the Co atoms, (L iz ) Co =0.28-0.33 μ B is almost a factor of three larger than the Co bulk orbital moment, while in Pd atoms (L iz ) Pd =0.05 μ B represents about 15% of the total local moment μ iz =2(S iz )+(L iz ). These results and the associated MAEs are analysed from a local perspective. The role of the cluster-surface interactions is discussed by comparison with the corresponding results for free-standing wires. Particularly in the case of monatomic 1D Co chains we observe that the lowest-energy magnetization direction (easy axis) changes from in line to off plane upon deposition on Pd(110). Wire-substrate hybridizations are therefore crucial for the magneto-anisotropic behaviour of 1D magnetic nanostructures on metallic substrates
Coda-derived source spectra, moment magnitudes and energy-moment scaling in the western Alps
Morasca, P.; Mayeda, K.; Malagnini, L.; Walter, William R.
2005-01-01
A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. for events ranging between MW~ 1.0 and ~5.0. Path corrections for consecutive narrow frequency bands ranging between 0.3 and 25.0 Hz were included using a simple 1-D model for five three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0 Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne cm by using independent moment magnitudes from long-period waveform modelling for three moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0 Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to fmax, as well as to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (i) we derived stable estimates of seismic moment, M0, (and hence MW) as well as radiated S-wave energy, (ES), from waveforms recorded by as few as one station, for events that were too small to be waveform modelled (i.e. events less than MW~ 3.5); (ii) the source spectra were used to derive an equivalent local magnitude, ML(coda), that is in excellent agreement with the network averaged values using direct S waves; (iii) scaled energy, , where ER, the radiated seismic energy, is comparable to results from other tectonically active regions (e.g. western USA, Japan) and supports the idea that there is a fundamental
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
Energy Technology Data Exchange (ETDEWEB)
Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
Corrugated Waveguide Mode Content Analysis Using Irradiance Moments.
Jawla, Sudheer K; Shapiro, Michael A; Idei, Hiroshi; Temkin, Richard J
2014-10-21
We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE 11 mode, with <8% of the power in high-order modes.
Analysis of dynamical corrections to baryon magnetic moments
International Nuclear Information System (INIS)
Ha, Phuoc; Durand, Loyal
2003-01-01
We present and analyze QCD corrections to the baryon magnetic moments in terms of the one-, two-, and three-body operators which appear in the effective field theory developed in our recent papers. The main corrections are extended Thomas-type corrections associated with the confining interactions in the baryon. We investigate the contributions of low-lying angular excitations to the baryon magnetic moments quantitatively and show that they are completely negligible. When the QCD corrections are combined with the nonquark model contributions of the meson loops, we obtain a model which describes the baryon magnetic moments within a mean deviation of 0.04 μ N . The nontrivial interplay of the two types of corrections to the quark-model magnetic moments is analyzed in detail, and explains why the quark model is so successful. In the course of these calculations, we parametrize the general spin structure of the j=(1/2) + baryon wave functions in a form which clearly displays the symmetry properties and the internal angular momentum content of the wave functions, and allows us to use spin-trace methods to calculate the many spin matrix elements which appear in the expressions for the baryon magnetic moments. This representation may be useful elsewhere
Moment arms of the muscles crossing the anatomical shoulder
Ackland, David C; Pak, Ponnaren; Richardson, Martin; Pandy, Marcus G
2008-01-01
The objective of the present study was to determine the instantaneous moment arms of 18 major muscle sub-regions crossing the glenohumeral joint during coronal-plane abduction and sagittal-plane flexion. Muscle moment-arm data for sub-regions of the shoulder musculature during humeral elevation are currently not available. The tendon-excursion method was used to measure instantaneous muscle moment arms in eight entire upper-extremity cadaver specimens. Significant differences in moment arms were reported across sub-regions of the deltoid, pectoralis major, latissimus dorsi, subscapularis, infraspinatus and supraspinatus (P shoulder muscles of broad origins into sub-regions highlighted distinct functional differences across those sub-regions. Most significantly, we found that the superior sub-region of the pectoralis major had the capacity to exert substantial torque in flexion, whereas the middle and inferior sub-regions tended to behave as a stabilizer and extensor, respectively. Knowledge of moment arm differences between muscle sub-regions may assist in identifying the functional effects of muscle sub-region tears, assist surgeons in planning tendon reconstructive surgery, and aid in the development and validation of biomechanical computer models used in implant design. PMID:18691376
Moment resistance of steel pipes subjected to combined loads
International Nuclear Information System (INIS)
Ozkan, Istemi F.; Mohareb, Magdi
2009-01-01
The first part of this paper provides a review of recent investigations on steel pipes subjected to combined loads. Attention is given to studies involving both numerical and experimental components aimed at quantifying the modified moment resistance of pipes subjected to internal pressure and axial force. The comparison of experimental and finite element results indicate that the nonlinear shell finite element analysis is a reliable tool for predicting moment capacities of pipes. The second part of the paper reports two additional full-scale tests recently conducted at the University of Ottawa aimed at expanding the existing experimental database to pipes subjected to more complex load combinations involving twisting moment and shear (in addition to axial force, internal pressure, and bending). The finite element analysis for both tests is shown to provide excellent predictions of pipe moment capacity. The third part of the paper is a systematic parametric study based on the FEA model verified in previous and present investigations, aimed to assess the ability of pipe sections to attain their modified elastic and/or plastic moment resistance as predicted by analytically derived interaction equations. The parameters investigated are the applied torsion, internal pressure, axial force, and the diameter-to-thickness ratio of the pipe
τ dipole moments via radiative leptonic τ decays
Energy Technology Data Exchange (ETDEWEB)
Eidelman, S. [Budker Institute of Nuclear Physics SB RAS,Novosibirsk 630090 (Russian Federation); Novosibirsk State University,Novosibirsk 630090 (Russian Federation); Epifanov, D. [Budker Institute of Nuclear Physics SB RAS,Novosibirsk 630090 (Russian Federation); Novosibirsk State University,Novosibirsk 630090 (Russian Federation); The University of Tokyo,7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Fael, M. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern, CH-3012 Bern (Switzerland); Mercolli, L. [Federal Office of Public Health FOPH,CH-3003 Bern (Switzerland); Passera, M. [INFN - Sezione di Padova,I-35131 Padova (Italy)
2016-03-21
We propose a new method to probe the magnetic and electric dipole moments of the τ lepton using precise measurements of the differential rates of radiative leptonic τ decays at high-luminosity B factories. Possible deviations of these moments from the Standard Model values are analyzed in an effective Lagrangian approach, thus providing model-independent results. Analytic expressions for the relevant non-standard contributions to the differential decay rates are presented. Earlier proposals to probe the τ dipole moments are examined. A detailed feasibility study of our method is performed in the conditions of the Belle and Belle II experiments at the KEKB and Super-KEKB colliders, respectively. This study shows that our approach, applied to the planned full set of Belle II data for radiative leptonic τ decays, has the potential to improve the present experimental bound on the τ anomalous magnetic moment. On the contrary, its foreseen sensitivity is not expected to lower the current experimental limit on the τ electric dipole moment.
Valence Topological Charge-Transfer Indices for Dipole Moments
Directory of Open Access Journals (Sweden)
Francisco Torrens
2003-01-01
Full Text Available New valence topological charge-transfer indices are applied to the calculation of dipole moments. The algebraic and vector semisum charge-transfer indices are defined. The combination of the charge-transfer indices allows the estimation of the dipole moments. The model is generalized for molecules with heteroatoms. The ability of the indices for the description of the molecular charge distribution is established by comparing them with the dipole moments of a homologous series of phenyl alcohols. Linear and non-linear correlation models are obtained. The new charge-transfer indices improve the multivariable non-linear regression equations for the dipole moment. When comparing with previous results, the variance decreases 92%. No superposition of the corresponding GkÃ¢Â€Â“Jk and GkV Ã¢Â€Â“ JkV pairs is observed. This diminishes the risk of co-linearity. Inclusion of the oxygen atom in the p-electron system is beneficial for the description of the dipole moment, owing to either the role of the additional p orbitals provided by the heteroatom or the role of steric factors in the p-electron conjugation. Linear and non-linear correlations between the fractal dimension and various descriptors point not only to a homogeneous molecular structure but also to the ability to predict and tailor drug properties.
Color-invariant shape moments for object recognition
Zhou, Qiang; Celenk, Mehmet
2001-05-01
Geometric moments have been widely used in many shape recognition and object classification tasks. These monomials are usually computed from binary or gray-level images for the object shape recognition invariant to rotation, translation, and scaling. In this paper, we attempt to calculate the shape related moments from color images, and study their noise immunity and color invariance property for the application areas of face recognition and content based image retrieval. To this end, we describe a computationally efficient method of converting a vector-valued color image into a gray scale for robust moment computation. Geometric moments are calculated from the resultant scalar representation of a color image data, and proven to be robust shape descriptors for the face and flower images. The generated shape invariants appear to have better noise immunity than the Hu moments and exhibit characteristics invariant to hue changes in the object colors. As compared to the Zernike polynomials, the proposed feature set has higher discriminatory power although the Zernike polynomials present superior noise rejection capability. Robust performance, computational efficiency, high noise immunity, and hue invariance property of the new approach are particularly useful for fast image retrieval tasks requiring high query accuracy.
Inversion for seismic moment tensors from 6-component waveform data
Donner, Stefanie; Bernauer, Felix; Wassermann, Joachim; Igel, Heiner
2017-04-01
Waveform inversion for the seismic moment tensor nowadays is a well-established standard method in teleseismic distances. Nevertheless, several difficulties remain, especially for shallow and/or regional/local distances. These difficulties include e.g. the resolution of the mechanism, especially the non-double-couple components and the resolution of the centroid depth but also the uncertainty of a determined moment tensor. During the last decade, the observation of rotational ground motions gained increasing attention amongst seismologists. So far, studies were based on one (vertical) component ring laser data but 3-component ring laser data and even data from portable rotation sensors are in reach. These new developments can contribute to solve the difficulties in waveform inversion for moment tensors. Here, we present results for moment tensors, mainly in the regional distance range, derived from collocated translational and rotational ground motion measurements. These results are based on numerical and real-data studies. We inverted the ground motions recorded by a network of stations but also addressed the question of how reliable the inversion for moment tensors is from a single 6-component measurement.
Joint moments required to hold a posture while somersaulting.
Mikl, Joanne
2018-02-01
A pure somersault is a key skill in diving and gymnastics, and involves rotation about the transverse axis of the body. As the rotational speed increases the effort required to maintain a specified posture increases. This paper derives equations for the joint moments required for an athlete to hold three sport specific postures as a function of rotational speed. The joint moment is related to the isometric muscular strength and is the limiting factor of an athlete in their ability to hold a fixed posture while somersaulting. One inertial property data set was used to explore the joint moments required for three sport specific postures -tuck, pike and layout-. Even though the joint moments are proportional to the square of angular velocity, the constant of proportionality differs for each joint, and so greater isometric strength is required at some joints; especially the hips and through the torso. The situation when the hands were allowed to hold the legs and when they did not has been considered. It was found that the arms holding an observed point on the lower legs could reduce the joint moments required through the legs and torso. The direction of the pull of the hands against the legs is critical for effectiveness. For the tuck this included a large component tangential to the shank and so emphasises the need to maximise friction between the shank and hands. For the pike the pull normal to the shank was more important. Copyright © 2017 Elsevier B.V. All rights reserved.
Sparse aerosol models beyond the quadrature method of moments
McGraw, Robert
2013-05-01
This study examines a class of sparse aerosol models derived from linear programming (LP). The widely used quadrature method of moments (QMOM) is shown to fall into this class. Here it is shown how other sparse aerosol models can be constructed, which are not based on moments of the particle size distribution. The new methods enable one to bound atmospheric aerosol physical and optical properties using arbitrary combinations of model parameters and measurements. Rigorous upper and lower bounds, e.g. on the number of aerosol particles that can activate to form cloud droplets, can be obtained this way from measurement constraints that may include total particle number concentration and size distribution moments. The new LP-based methods allow a much wider range of aerosol properties, such as light backscatter or extinction coefficient, which are not easily connected to particle size moments, to also be assimilated into a list of constraints. Finally, it is shown that many of these more general aerosol properties can be tracked directly in an aerosol dynamics simulation, using SAMs, in much the same way that moments are tracked directly in the QMOM.
Theoretical Expectations for the Muon's Electric Dipole Moment
Feng, J L; Shadmi, Y; Feng, Jonathan L; Matchev, Konstantin T.; Shadmi, Yael
2001-01-01
We examine the muon's electric dipole moment $\\dmu$ from a variety of theoretical perspectives. We point out that the reported deviation in the muon's g-2 can be due partially or even entirely to a new physics contribution to the muon's {\\em electric} dipole moment. In fact, the recent g-2 measurement provides the most stringent bound on $\\dmu$ to date. This ambiguity could be definitively resolved by the dedicated search for $\\dmu$ recently proposed. We then consider both model-independent and supersymmetric frameworks. Under the assumptions of scalar degeneracy, proportionality, and flavor conservation, the theoretical expectations for $\\dmu$ in supersymmetry fall just below the proposed sensitivity. However, non-degeneracy can give an order of magnitude enhancement, and lepton flavor violation can lead to $\\dmu$ of order $10^{-22}$ e cm, two orders of magnitude above the sensitivity of the $\\dmu$ experiment. We present compact expressions for leptonic dipole moments and lepton flavor violating amplitudes. ...
Temperature-dependent particle-number projected moment of inertia
International Nuclear Information System (INIS)
Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.
2008-01-01
Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy
Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment
Directory of Open Access Journals (Sweden)
A. Kou
2017-08-01
Full Text Available Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.
Fluxonium-Based Artificial Molecule with a Tunable Magnetic Moment
Kou, A.; Smith, W. C.; Vool, U.; Brierley, R. T.; Meier, H.; Frunzio, L.; Girvin, S. M.; Glazman, L. I.; Devoret, M. H.
2017-07-01
Engineered quantum systems allow us to observe phenomena that are not easily accessible naturally. The LEGO®-like nature of superconducting circuits makes them particularly suited for building and coupling artificial atoms. Here, we introduce an artificial molecule, composed of two strongly coupled fluxonium atoms, which possesses a tunable magnetic moment. Using an applied external flux, one can tune the molecule between two regimes: one in which the ground-excited state manifold has a magnetic dipole moment and one in which the ground-excited state manifold has only a magnetic quadrupole moment. By varying the applied external flux, we find the coherence of the molecule to be limited by local flux noise. The ability to engineer and control artificial molecules paves the way for building more complex circuits for quantum simulation and protected qubits.
Solution of the Stieltjes truncated matrix moment problem
Directory of Open Access Journals (Sweden)
Vadim M. Adamyan
2005-01-01
Full Text Available The truncated Stieltjes matrix moment problem consisting in the description of all matrix distributions \\(\\boldsymbol{\\sigma}(t\\ on \\([0,\\infty\\ with given first \\(2n+1\\ power moments \\((\\mathbf{C}_j_{n=0}^j\\ is solved using known results on the corresponding Hamburger problem for which \\(\\boldsymbol{\\sigma}(t\\ are defined on \\((-\\infty,\\infty\\. The criterion of solvability of the Stieltjes problem is given and all its solutions in the non-degenerate case are described by selection of the appropriate solutions among those of the Hamburger problem for the same set of moments. The results on extensions of non-negative operators are used and a purely algebraic algorithm for the solution of both Hamburger and Stieltjes problems is proposed.
Spins, moments and charge radii beyond $^{48}$Ca
Neyens, G; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Garcia ruiz, R F; Kreim, K D; Budincevic, I
Laser spectroscopy of $^{49-54}$Ca is proposed as a continuation of the experimental theme initiated with IS484 “Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy” and expanded in INTC-I-117 “Moments, Spins and Charge Radii Beyond $^{48}$Ca.” It is anticipated that the charge radii of these isotopes can show strong evidence for the existence of a sub-shell closure at N=32 and could provide a first tentative investigation into the existence of a shell effect at N=34. Furthermore the proposed experiments will simultaneously provide model-independent measurements of the spins, magnetic moments and quadrupole moments of $^{51,53}$Ca permitting existing and future excitation spectra to be pinned to firm unambiguous ground states.
Lepton Dipole Moments in Supersymmetric Low-Scale Seesaw Models
Ilakovac, Amon; Popov, Luka
2014-01-01
We study the anomalous magnetic and electric dipole moments of charged leptons in supersymmetric low-scale seesaw models with right-handed neutrino superfields. We consider a minimally extended framework of minimal supergravity, by assuming that CP violation originates from complex soft SUSY-breaking bilinear and trilinear couplings associated with the right-handed sneutrino sector. We present numerical estimates of the muon anomalous magnetic moment and the electron electric dipole moment (EDM), as functions of key model parameters, such as the Majorana mass scale mN and tan(\\beta). In particular, we find that the contributions of the singlet heavy neutrinos and sneutrinos to the electron EDM are naturally small in this model, of order 10^{-27} - 10^{-28} e cm, and can be probed in the present and future experiments.
Vibrational transition moments of CH4 from first principles
Yurchenko, Sergei N.; Tennyson, Jonathan; Barber, Robert J.; Thiel, Walter
2013-09-01
New nine-dimensional (9D), ab initio electric dipole moment surfaces (DMSs) of methane in its ground electronic state are presented. The DMSs are computed using an explicitly correlated coupled cluster CCSD(T)-F12 method in conjunction with an F12-optimized correlation consistent basis set of the TZ-family. A symmetrized molecular bond representation is used to parameterise these 9D DMSs in terms of sixth-order polynomials. Vibrational transition moments as well as band intensities for a large number of IR-active vibrational bands of 12CH4 are computed by vibrationally averaging the ab initio dipole moment components. The vibrational wavefunctions required for these averages are computed variationally using the program TROVE and a new ‘spectroscopic’ 12CH4 potential energy surface. The new DMSs will be used to produce a hot line list for 12CH4.
Relativistic effects due to gravimagnetic moment of a rotating body
Ramírez, Walberto Guzmán; Deriglazov, Alexei A.
2017-12-01
We compute the exact Hamiltonian (and corresponding Dirac brackets) for a spinning particle with gravimagnetic moment κ in an arbitrary gravitational background. The case κ =0 corresponds to the Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations. κ =1 leads to modified MPTD equations with improved behavior in the ultrarelativistic limit. So we study the modified equations in the leading post-Newtonian approximation. The rotating body with unit gravimagnetic moment has qualitatively different behavior as compared with the MPTD body: (A) If a number of gyroscopes with various rotation axes are freely traveling together, the angles between the axes change with time. (B) For specific binary systems, gravimagnetic moment gives a contribution to the frame-dragging effect with the magnitude that turns out to be comparable with that of Schiff frame dragging.
Lapped Block Image Analysis via the Method of Legendre Moments
Directory of Open Access Journals (Sweden)
El Fadili Hakim
2003-01-01
Full Text Available Research investigating the use of Legendre moments for pattern recognition has been performed in recent years. This field of research remains quite open. This paper proposes a new technique based on block-based reconstruction method (BBRM using Legendre moments compared with the global reconstruction method (GRM. For alleviating the blocking artifact involved in the processing, we propose a new approach using lapped block-based reconstruction method (LBBRM. For the problem of selecting the optimal number of moment used to represent a given image, we propose the maximum entropy principle (MEP method. The main motivation of the proposed approaches is to allow fast and efficient reconstruction algorithm, with improvement of the reconstructed images quality. A binary handwritten musical character and multi-gray-level Lena image are used to demonstrate the performance of our algorithm.
Measurements of DSD Second Moment Based on Laser Extinction
Lane, John E.; Jones, Linwood; Kasparis, Takis C.; Metzger, Philip
2013-01-01
Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through rain (or dust in the rocket case) yields an estimate of the 2nd moment of the particle cloud, and rainfall drop size distribution (DSD) in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rainfall make in direct measurements of the DSD. Most common of these instruments are the rainfall rate gauge measuring the 1 1/3 th moment, (when using a D(exp 2/3) dependency on terminal velocity). Instruments that scatter microwaves off of hydrometeors, such as the WSR-880, vertical wind profilers, and microwave disdrometers, measure the 6th moment of the DSD. By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain, yield a measurement of the DSD 2nd moment, using the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required, depending on the intensity of the rainfall rate. For moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in optical extinction using a digital camera. A photo-detector could replace the camera, for automated installations. In order to spatially correlate the 2nd moment measurements to a collocated disdrometer or tipping bucket, the laser's beam path can be reflected multiple times using mirrors to restrict the spatial extent of the measurement. In cases where a disdrometer is not available, complete DSD estimates can be produced by parametric fitting of DSD model to the 2nd moment data in conjunction with tipping bucket data. In cases where a disdrometer is collocated, the laser extinction technique may yield a significant improvement to insitu disdrometer validation and calibration strategies
Precise Determination of the Strangeness Magnetic Moment of the Nucleon
Energy Technology Data Exchange (ETDEWEB)
Leinweber, D B; Boinepalli, S; Cloet, I C; Thomas, A W; Williams, A G; Young, R D; Zanotti, J M; Zhang, J B
2005-06-01
By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low mass lattice QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the proton. The result, namely G{sub M}{sup s} = -0.051 +/- 0.021 mu{sub N}, is consistent with the latest experimental measurements but an order of magnitude more precise. This poses a tremendous challenge for future experiments.
Nonlinear Radon Transform Using Zernike Moment for Shape Analysis
Directory of Open Access Journals (Sweden)
Ziping Ma
2013-01-01
Full Text Available We extend the linear Radon transform to a nonlinear space and propose a method by applying the nonlinear Radon transform to Zernike moments to extract shape descriptors. These descriptors are obtained by computing Zernike moment on the radial and angular coordinates of the pattern image's nonlinear Radon matrix. Theoretical and experimental results validate the effectiveness and the robustness of the method. The experimental results show the performance of the proposed method in the case of nonlinear space equals or outperforms that in the case of linear Radon.
Indirect Inference for Stochastic Differential Equations Based on Moment Expansions
Ballesio, Marco
2016-01-06
We provide an indirect inference method to estimate the parameters of timehomogeneous scalar diffusion and jump diffusion processes. We obtain a system of ODEs that approximate the time evolution of the first two moments of the process by the approximation of the stochastic model applying a second order Taylor expansion of the SDE s infinitesimal generator in the Dynkin s formula. This method allows a simple and efficient procedure to infer the parameters of such stochastic processes given the data by the maximization of the likelihood of an approximating Gaussian process described by the two moments equations. Finally, we perform numerical experiments for two datasets arising from organic and inorganic fouling deposition phenomena.
Determination of the magnetic moment of $^{140}$Pr
Kowalska, M; Kreim, K D; Krieger, A R; Litvinov, Y
We propose to measure the nuclear magnetic moment of the neutron-deficient isotope $^{140}$Pr using collinear laser spectroscopy at the COLLAPS experiment. This nuclide is one of two nuclear systems for which a modulated electron capture decay has been observed in hydrogen-like ions in a storage ring. The firm explanation of the observed phenomenon is still missing but some hypotheses suggest an interaction of the unpaired electron with the surrounding magnetic fields of the ring. In order to verify or discard these hypotheses the magnetic moment of $^{140}$Pr is required since this determines the energy of the 1s hyperfine splitting.
Identification and Speed Control of PMDC Motor Using Time Moments
Directory of Open Access Journals (Sweden)
Prasanta SARKAR
2010-08-01
Full Text Available In this paper identification and speed control of Permanent Magnet DC Motor is presented. A combination of output error identification technique and method of time moments is used for identification and speed control. The time constraint is expressed using equality between the time moments of the closed loop system and that of a reference model. The reference model is developed from the classical time, frequency and complex domain specifications which guarantee both stability and performance in a model matching framework. Both the simulation and experimental validation show the usefulness of the proposed work.
Discrete Hermite moments and their application in chemometrics
Czech Academy of Sciences Publication Activity Database
Honarvar Shakibaei Asli, Barmak; Flusser, Jan
2018-01-01
Roč. 177, č. 1 (2018), s. 83-88 ISSN 0169-7439 R&D Projects: GA ČR GA18-07247S; GA ČR GJ18-26018Y Institutional support: RVO:67985556 Keywords : Orthogonal polynomials * Discrete polynomials * Tchebichef moment * Hermite moment * Gauss–Hermite quadrature Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Automation and control systems Impact factor: 2.303, year: 2016 http://library.utia.cas.cz/separaty/2018/ZOI/honarvar-0489147. pdf
Moment techniques in atomic and molecular scattering theory
International Nuclear Information System (INIS)
Reinhardt, W.P.
1980-01-01
Moment techniques have recently been shown to be useful in ab initio calculation of atomic and molecular continuum processes. We illustrate these methods in a discussion of the photoeffect in hydrogen (H) and H - , and in a discussion of e + -H scattering. As further illustrations of the utility of moments in non-relativistic scattering we consider their use in extracting information from classical trajectory treatments of molecular collisions, and their phenomenological application in correlating experimental data via the information theory approach of Bernstein and Levine
Projection Operators and Moment Invariants to Image Blurring
Czech Academy of Sciences Publication Activity Database
Flusser, Jan; Suk, Tomáš; Boldyš, Jiří; Zitová, Barbara
2015-01-01
Roč. 37, č. 4 (2015), s. 786-802 ISSN 0162-8828 R&D Projects: GA ČR GA13-29225S; GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Blurred image * N-fold rotation symmetry * projection operators * image moments * moment invariants * blur invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 6.077, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0434521.pdf
Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders
DEFF Research Database (Denmark)
Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav
2011-01-01
An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis of metamat......An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...
Study of magnetic moments of nuclear excited states at TRISTAN
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.; Wolf, A.; Berant, Z.; Gill, R.L.; Kruse, H.
1984-01-01
Measurement of the static magnetic dipole moments of nuclear excited states are of interest since they reveal information on nuclear structure not available by other means. A system has been constructed at the TRISTAN separator to measure magnetic dipole moments of excited states in neutron-rich nuclei using the method of perturbed angular correlations (PAC). High magnetic fields are not available through the use of a superconducting magnet. The capability of the TRISTAN system is discussed and the PAC measuring apparatus is described. Final results from recent g factor measurements at TRISTAN on 4 + states in the N = 82 isotones are discussed in some detail. Studies in progress are briefly outlined
A six-component force/moment sensor calibration stand
Estlow, Edward G. W.; Kovacevic, Nebojsa
1990-06-01
A compact portable stand for calibration of multicomponent internal balances is described. The stand is designed to control/eliminate misalignments between load trains and the balance being calibrated; it generates forces and moments with pneumatic cylinders for all but rolling moment, which is applied with conventional weights. Load application control is discussed, and performance is analyzed. It is noted that the calibration stand has the ability to sense off-axis loads resulting from distortion/deflections due to the primary loading. Having sensed these off-axis loads, the system can be adjusted to minimize or eliminate them while retaining correct alignment of the primary load with the balance.
Magiera, Andrzej
2017-09-01
Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.
Bandyopadhyay, Debades; Bhat, Sajad A.; Char, Prasanta; Chatterjee, Debarati
2018-02-01
We investigate the impact of strange-matter equations of state involving Λ hyperons, Bose-Einstein condensate of K- mesons and first-order hadron-quark phase transition on moment of inertia, quadrupole moment and tidal deformability parameter of slowly rotating neutron stars. All these equations of state are compatible with the 2 M_{solar} constraint. The main findings of this investigation are the universality of the I- Q and I -Love number relations, which are preserved by the EoSs including Λ hyperons and antikaon condensates, but broken in the presence of a first-order hadron-quark phase transition. Furthermore, it is also noted that the quadrupole moment approaches the Kerr value of a black hole for maximum-mass neutron stars.
Magnetic moments of Jsup(P) = 1/2+ baryons in broken SU(8)
International Nuclear Information System (INIS)
Verma, R.C.
1981-01-01
Symmetry breaking effects on the magnetic moments of baryons are studied in the SU(8) framework. We obtain a low value of μ(Σ + ) in agreement with a recent experiment. The transition moment (p|μ|Δ + ) seems to require isospin breaking , which also improves the overall fit to magnetic moments. Charmed baryon magnetic moments are calculated with and without isospin breaking. (author)
Spin moments, orbital moments and magnetic anisotropy of finite-length Co wires deposited on Pd(110)
Energy Technology Data Exchange (ETDEWEB)
Felix-Medina, R [Escuela de Ciencias FIsico-Matematicas, Universidad Autonoma de Sinaloa, Culiacan, Sinaloa (Mexico); Dorantes-Davila, J [Instituto de FIsica, Universidad Autonoma de San Luis PotosI, Alvaro Obregon 64, San Luis PotosI (Mexico); Pastor, G M [Laboratoire de Physique Quantique, Centre National de la Recherche Scientifique, Universite Paul Sabatier, Toulouse (France)
2002-12-01
The ground-state spin moments (S{sub z}), orbital moments (L{sub z}) and magnetic anisotropy energy (MAE) of Co{sub N} one-dimensional (1D) clusters (N{<=}12) deposited on the Pd(110) surface are determined in the framework of a self-consistent, real-space tight-binding method. Remarkably large total magnetic moments per Co atom, M{sub z}=(2(S{sub z})+(L{sub z}))/N=2.8-2.9 {mu}{sub B}, are obtained, which can be understood as the result of three physically distinct effects. The first and leading contribution is given by the local spin moments (S{sub iz}) at the Co atoms i=1, N (2(S{sub iz}){sub Co} {approx_equal}1.6 {mu}{sub B}). Second, significant spin moments are induced at the Pd atoms i > N close to the Co-Pd interface, which amount to about 25% of M{sub z} (2(S{sub iz}){sub Pd}=0.2-0.3 {mu}{sub B}). Finally, enhanced orbital magnetic moments (L{sub iz}) are responsible for approximately 20% of M{sub z}. In the case of the Co atoms, (L{sub iz}){sub Co}=0.28-0.33 {mu}{sub B} is almost a factor of three larger than the Co bulk orbital moment, while in Pd atoms (L{sub iz}){sub Pd}=0.05 {mu}{sub B} represents about 15% of the total local moment {mu}{sub iz}=2(S{sub iz})+(L{sub iz}). These results and the associated MAEs are analysed from a local perspective. The role of the cluster-surface interactions is discussed by comparison with the corresponding results for free-standing wires. Particularly in the case of monatomic 1D Co chains we observe that the lowest-energy magnetization direction (easy axis) changes from in line to off plane upon deposition on Pd(110). Wire-substrate hybridizations are therefore crucial for the magneto-anisotropic behaviour of 1D magnetic nanostructures on metallic substrates.
Vibrationally averaged dipole moments of methane and benzene isotopologues
Energy Technology Data Exchange (ETDEWEB)
Arapiraca, A. F. C. [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil); Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, CEFET-MG, Campus I, 30.421-169 Belo Horizonte, MG (Brazil); Mohallem, J. R., E-mail: rachid@fisica.ufmg.br [Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx, Universidade Federal de Minas Gerais, P. O. Box 702, 30123-970 Belo Horizonte, MG (Brazil)
2016-04-14
DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C{sub 6}H{sub 3}D{sub 3} is about twice as large as the measured dipole moment of C{sub 6}H{sub 5}D. Computational progress is advanced concerning applications to larger systems and the choice of appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.
Electric charge quantization and the muon anomalous magnetic moment
International Nuclear Information System (INIS)
Pires, C.A.S. de; Rodrigues da Silva, P.S.
2002-01-01
We investigate some proposals to solve the electric charge quantization puzzle that simultaneously explain the recent measured deviation on the muon anomalous magnetic moment. For this we assess extensions of the electro-weak standard model spanning modifications on the scalar sector only. It is interesting to verify that one can have modest extensions which easily account for the solution for both problems
Outside the Box Teaching Moments: Classroom-Tested Innovations
Whalen, D. Joel; Coker, Kesha K.
2016-01-01
The 2015 Society for Marketing Advances Teaching Moments sessions offered a wide variety of teaching interventions centered on gaining students' attention, increasing class participation, using lively student-engaging demonstrations, using props during lecture, using sales technology classroom applications, using social media, and many more.…
Eternity in Each Moment: Temporal Strategies in Ravel's "Le Gibet"
DEFF Research Database (Denmark)
Fillerup, Jessie
2013-01-01
of “moment form” (further developed by Jonathan Kramer), revealing multiply directed temporal strategies that assert points of stasis, nonlinearity, continuity, and discontinuity. In the poem by Aloysius Bertrand that inspired Ravel’s music, the poetic devices typical of French Romanticism contrast...
Evaluation of an Online "Teachable Moment" Dietary Intervention
Marks, Leah; Ogden, Jane
2017-01-01
Purpose: The purpose of this paper is to evaluate an online "teachable moment" intervention to promote healthy eating for overweight and food intolerance symptoms. Design/methodology/approach: The study involves a 2×2 factorial design with two conditions: group (weight loss vs food intolerance) and condition (intervention vs control).…
Aesthetic Relationships and Ethics in "The Oh Fuck Moment"
Breel, Astrid
2015-01-01
This article explores the aesthetics and ethics of participatory performance through "The Oh Fuck Moment" by Hannah Jane Walker and Chris Thorpe, a performance that aesthetically explores ethically troubling material and manipulation. Ethical criticism of participatory art in recent years has focused on the way the audience member is…
Effect of entry bending moment on exit curvature in asymmetrical ...
African Journals Online (AJOL)
user
increasing the reduction in thickness the average pressure is increased. Keywords: Asymmetrical Rolling; Modified Slab Method; Pressure Difference; Rolling Force; Bending Moment. 1. Introduction. In practice, rolling of plate and sheet asymmetry arises due to inequality in roll radii, roll velocity and interface friction. These.
Sensorless adaptive optics system based on image second moment measurements
Agbana, T.E.; Yang, H.; Soloviev, O.A.; Vdovine, Gleb; Verhaegen, M.H.G.; Schelkens, Peter; Ebrahimi, Touradj; Cristóbal, Gabriel; Truchetet, Frédéric; Saarikko, Pasi
2016-01-01
This paper presents experimental results of a static aberration control algorithm based on the linear relation be- tween mean square of the aberration gradient and the second moment of point spread function for the generation of control signal input for a deformable mirror (DM). Results presented in
Heavy triplets: electric dipole moments vs. proton decay
Energy Technology Data Exchange (ETDEWEB)
Masina, Isabella; Savoy, Carlos A
2004-01-15
The experimental limit on the electron electric dipole moment constrains the pattern of supersymmetric grand unified theories with right-handed neutrinos. We show that such constraints are already competing with the well known ones derived by the limit on proton lifetime.
SNO results and neutrino magnetic moment solution to the solar ...
Indian Academy of Sciences (India)
that the solar neutrino deficit is due to the interaction of neutrino transition magnetic moment with the solar magnetic ... Another new feature in the analysis is that for the global analysis, we have replaced the spectrum by its centroid. ... rise to mean potentials Va for neutrinos which are proportional to the number density of.
On complete moment convergence for nonstationary negatively associated random variables
Directory of Open Access Journals (Sweden)
Mi-Hwa Ko
2016-05-01
Full Text Available Abstract The purpose of this paper is to establish the complete moment convergence for nonstationary negatively associated random variables satisfying the weak mean domination condition. The result is an improvement of complete convergence in Marcinkiewicz-Zygmund-type SLLN for negatively associated random variables in Kuczmaszewska (Acta Math. Hung. 128:116-130, 2010.
Effective equations for the quantum pendulum from momentous quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Hector H.; Chacon-Acosta, Guillermo [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua 31125 (Mexico); Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120 (Mexico)
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
Quadrupole moments of low-lying baryons with spin
Indian Academy of Sciences (India)
The chiral constituent quark model ( CQM) with general parametrization (GP) method has been formulated to calculate the quadrupole moments of the spin − 3 2 + decuplet baryons and spin − 3 2 + → 1 2 + transitions. The implications of such a model have been investigated in detail for the effects of symmetry breaking ...
An evaluation of solutions to moment method of biochemical oxygen ...
African Journals Online (AJOL)
This paper evaluated selected solutions of moment method in respect to Biochemical Oxygen Demand (BOD) kinetics with the aim of ascertain error free solution. Domestic - institutional wastewaters were collected two - weekly for three months from waste - stabilization ponds in Obafemi Awolowo University, Ile - Ife.
E6-lepton mixing and lepton magnetic moment
International Nuclear Information System (INIS)
Vendramin, I.
1988-01-01
The contributions to the lepton magnetic moment due to the E 6 -exotic fermions and an extra vector boson Z' have been considered. Using the experimental limits on the E 6 -lepton mixing angles, these contributions are at least one order of magnitude smaller than the standard-model ones
Bolted flanged connections subjected to longitudinal bending moments
International Nuclear Information System (INIS)
Blach, A.E.
1992-01-01
Flanges in piping systems and also pressure vessel flanges on tall columns are often subjected to longitudinal bending moments of considerable magnitude, be it from thermal expansion stresses in piping systems or from wind or seismic loadings on tall vertical pressure vessels. Except for the ASME Code, Section III, Subsections NB, NC, and ND, other pressure vessel and piping codes do not contain design ASME Nuclear Power Plant Code (Section III), an empirical formula is given, expressing a longitudinal bending moment in bolted flanged connections in terms of an equivalent internal pressure to be added to the design pressure of the flange. In this paper, an attempt is made to analyse the stresses on flanges and bolting due to external bending moments and to compare flange thicknesses thus obtained with thicknesses required using the equivalent design pressure specified in Subsections NB, NC, and ND. A design method is proposed, based on analysis and experimental work, which may be suitable for flange bending moment analysis when the rules of the Nuclear Power Plant Code are not mandatory. (orig.)
Current searches for the electric dipole moment of the neutron
International Nuclear Information System (INIS)
Miranda, P.C.
1985-01-01
The two most sensitive experiments currently searching for a neutron electric dipole moment (ILL, France and LNPI. USSR) ared described. The present upper limit on the neutron EDM is /dsub(n)/ -25 e.cm at the 90% confidence level. An improvement on this limit by about one order of magnitude is expected in the near future. 5 refs.
The neutron electric dipole moment in the cloudy bag model
International Nuclear Information System (INIS)
Morgan, M.A.; Miller, G.A.
1986-01-01
An evaluation of the neutron electric dipole moment (NEDM), using the cloudy bag model (CBM) shows that two CP-violating effects (a quark mass term and a pion-quark interaction) have contributions that are about equal in magnitude, but opposite in sign. This cancellation allows the upper limit on the θ parameter to increase by about an order of magnitude. (orig.)
Moments of spectral functions: Monte Carlo evaluation and verification.
Predescu, Cristian
2005-11-01
The subject of the present study is the Monte Carlo path-integral evaluation of the moments of spectral functions. Such moments can be computed by formal differentiation of certain estimating functionals that are infinitely differentiable against time whenever the potential function is arbitrarily smooth. Here, I demonstrate that the numerical differentiation of the estimating functionals can be more successfully implemented by means of pseudospectral methods (e.g., exact differentiation of a Chebyshev polynomial interpolant), which utilize information from the entire interval . The algorithmic detail that leads to robust numerical approximations is the fact that the path-integral action and not the actual estimating functional are interpolated. Although the resulting approximation to the estimating functional is nonlinear, the derivatives can be computed from it in a fast and stable way by contour integration in the complex plane, with the help of the Cauchy integral formula (e.g., by Lyness' method). An interesting aspect of the present development is that Hamburger's conditions for a finite sequence of numbers to be a moment sequence provide the necessary and sufficient criteria for the computed data to be compatible with the existence of an inversion algorithm. Finally, the issue of appearance of the sign problem in the computation of moments, albeit in a milder form than for other quantities, is addressed.
Improved Estimates of Moments and Winds from Radar Wind Profiler
Energy Technology Data Exchange (ETDEWEB)
Helmus, Jonathan [Argonne National Lab. (ANL), Argonne, IL (United States); Ghate, Virendra P. [Argonne National Lab. (ANL), Argonne, IL (United States)
2017-01-02
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates nine radar wind profilers (RWP) across its sites. These RWPs operate at 915 MHz or 1290 MHz frequency and report the first three moments of the Doppler spectrum. The operational settings of the RWP were modified in summer, 2015 to have single pulse length setting for the wind mode and two pulse length settings for the precipitation mode. The moments data collected during the wind mode are used to retrieve horizontal winds. The vendor-reported winds are available at variable time resolution (10 mins, 60 mins, etc.) and contain a significant amount of contamination due to noise and clutter. In this data product we have recalculated the moments and the winds from the raw radar Doppler spectrum and have made efforts to mitigate the contamination due to instrument noise in the wind estimates. Additionally, the moments and wind data has been reported in a harmonized layout identical for all locations and sites.
Precise asymptotics for complete moment convergence in Hilbert ...
Indian Academy of Sciences (India)
gence in Banach spaces. Further, the exact convergence rates of the complete moment convergence have also been studied, and one can refer to Jiang and Zhang [11] and Li. [12] for details. Recently, Huang and Zhang [8] obtained the precise rates in the law of the loga- rithm for Hilbert-space valued random variables.
Masses and magnetic moments of triple heavy flavour baryons in ...
Indian Academy of Sciences (India)
Using the spin-flavour structure of the constituting quarks and by defining effective mass of the confined quarks within the baryons, the magnetic moments are computed with no additional free parameters. Keywords. Hypercentral constituent quark model; charmed and beauty baryons; hyper-. Coulomb plus power potential; ...
Intrinsic electric dipole moments of paramagnetic atoms : Rubidium and cesium
Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.
2008-01-01
The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar-pseudoscalar (S-PS) electron-nucleus interaction. The electron EDM and the S-PS contributions to the EDMs of these atoms scale as approximate to
Preservice Teachers' In-the-Moment Teaching Decisions in Reading
Griffith, Robin
2017-01-01
This study examines the types of in-the-moment teaching decisions 97 preservice teachers made while teaching reading and how their growing bodies of teacher knowledge influenced their abilities to think, know, feel and act like a teacher (Feiman-Nemser, 2008). Findings indicated that the teacher educator's use of "metacognitive…
The Public Health Journey: The Meaning and the Moment
Koh, Howard K.
2013-01-01
The public health journey is a remarkable one, filled with twists and turns as well as risks and rewards. Because promoting the health of others represents a mission brimming with meaning, our professional work is also profoundly personal. At this extraordinary moment in our nation's public health history, I reflect on the purpose of the…
Data driven design of an orthogonal wavelet with vanishing moments
Peeters, Ralf; Karel, Joël
2014-01-01
We present a framework to design an orthogonal wavelet with compact support and vanishing moments, tuned to a given application. This is achieved by optimizing a criterion, such that a prototype signal, which is characteristic for the application, becomes sparse in the wavelet domain. This approach
A Hybrid Joint Moment Ratio Test for Financial Time Series
P.A. Groenendijk (Patrick); A. Lucas (André); C.G. de Vries (Casper)
1998-01-01
textabstractWe advocate the use of absolute moment ratio statistics in conjunction with standard variance ratio statistics in order to disentangle linear dependence, non-linear dependence, and leptokurtosis in financial time series. Both statistics are computed for multiple return horizons
experimental validation of optimum resistance moment of concrete ...
African Journals Online (AJOL)
user
Fibre-Reinforced Plastics (FRPs) have been suggested as suitable reinforcement for concrete structures among other solutions to combat corrosion problems in steel reinforced concrete. This paper presents the experimental validation of optimum resistance moment of concrete slabs reinforced with Carbon-Fibre ...
Experimental validation of optimum resistance moment of concrete ...
African Journals Online (AJOL)
Fibre-Reinforced Plastics (FRPs) have been suggested as suitable reinforcement for concrete structures among other solutions to combat corrosion problems in steel reinforced concrete. This paper presents the experimental validation of optimum resistance moment of concrete slabs reinforced with Carbon-Fibre ...
On the representation of distributions with rational moment generating functions
DEFF Research Database (Denmark)
Bladt, Mogens; Nielsen, Bo Friis
This paper addresses a question concerning the generality of certain parameterisations of distributions which have a multivariate rational moment generating function. It is shown that the class of bilateral matrix-exponential distributions, as introduced in [2], is strictly larger than...
EKSTRAKSI CIRI PLAT NOMOR MOBIL MENGGUNAKAN MOMENT PUSAT
Directory of Open Access Journals (Sweden)
Nur Wakhidah
2013-01-01
Full Text Available Pencarian citra dengan menggunakan pengenalan bentuk dapat diterapkan dalam mendekteksi plat nomor mobil dari latar belakang pada sebuah citra. Citra input yang masih memiliki noise diperbaiki dengan beberapa metode seperti graylevel, morfology dan edge detection. Hasil dari citra enhancement dikenai metode segmentasi menggunakan moment untuk ekstraksi cirinya sehingga mampu menghasilkan pemisahan citra plat nomor mobil.
Rovibrational matrix elements of the multipole moments and of the ...
Indian Academy of Sciences (India)
The rovibrational matrix elements of the multipole moments and polarizability of molecules find applications in the study of infrared spectra, intermolecular potential and collision-induced absorption phenomena, especially in homonuclear molecules. Because of its simplicity and fundamental importance, the hydrogen ...
Parity- and Time-Reversal-Violating Moments of Light Nuclei
Vries, Jordy de
2012-01-01
I present the calculation of parity- and time-reversal-violating moments of the nucleon and light nuclei, originating from the QCD term and eective dimension-six operators. By applying chiral eective eld theory these calculations are performed in a unied framework. I argue that measurements of a few
Simulation of Light Collection for Neutron Electrical Dipole Moment measurement
Ji, Pan; nEDM Collaboration
2017-09-01
nEDM (Neutron Electrical Dipole moment) measurement addresses a critical topic in particle physics and Standard Model, that is CPT violation in neutron electrical dipole moment if detected in which the Time reversal violation is connected to the matter/antimatter imparity of the universe. The neutron electric dipole moment was first measured in 1950 by Smith, Purcell, and Ramsey at the Oak Ridge Reactor - the first intense neutron source. This measurement showed that the neutron was very nearly round (to better than one part in a million). The goal of the nEDM experiment is to further improve the precision of this measurement by another factor of 100. The signal from the experiment is detected by collecting the photons generated when neutron beams were captured by liquid helium 3. The Geant4 simulation project that I participate simulates the process of light collection to improve the design for higher capture efficiency. The simulated geometry includes light source, reflector, wavelength shifting fibers, wavelength shifting TPB and acrylic as in real experiment. The UV photons exiting from Helium go through two wavelength-shifting processes in TPB and fibers to be finally captured. Oak Ridge National Laboratory Neutron Electric Dipole Moment measurement project.
Electric dipole moments of the nucleon and light nuclei
Energy Technology Data Exchange (ETDEWEB)
Wirzba, Andreas
2014-08-15
The electric dipole moments of the nucleon and light ions are discussed and strategies for disentangling the underlying sources of CP violation beyond the Kobayashi–Maskawa quark-mixing mechanism of the Standard Model are indicated. Contribution to “45 years of nuclear theory at Stony Brook: a tribute to Gerald E. Brown”.
Permanent Electric Dipole Moment Search in 129Xe
Grasdijk, Jan; Bluemler, P.; Almendinger, F.; Heil, Werner; Jungmann, Klaus-Peter; Karpuk, S.; Krause, Hans-Joachim; Offenhaeuser, Andreas; Repetto, M.; Schmidt, Ulrich; Sobolev, Y.; Willmann, Lorenz; Zimmer, Stefan
2017-01-01
A permanent electric dipole moment (EDM) implies breakdown of P (parity) and T (time reversal) symmetries. Provided CPT holds, this implies CP violation. Observation of an EDM at achievable experimental sensitivity would provide unambiguous evidence for physics beyond the Standard Model and limits
Adaptive Integral Method for Higher Order Method of Moments
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Meincke, Peter
2008-01-01
The adaptive integral method (AIM) is combined with the higher order method of moments (MoM) to solve integral equations. The technique takes advantage of the low computational complexity and memory requirements of the AIM and the reduced number of unknowns and higher order convergence of higher...
More about the moment of inertia of Mars
Kaula, William M.; Sleep, Norman H.; Phillips, Roger J.
1989-01-01
Differences between Mars and other terrestrial planets are discussed. Unlike other terrestrial planets, Mars has two nonhydrostatic components of moments of inertia that are nearly equal. The most probable value of I/MR-squared is slightly less than 0.3650.
A calculation method of cracking moment for the high strength ...
Indian Academy of Sciences (India)
In this study, a method is given to calculate cracking moments of high strength reinforced concrete beams under the effect of pure torsion. To determine the method, both elastic and plastic theories were used. In this method, dimensions of beam cross-section were considered besides stirrup and longitudinal reinforcements.
Induced moment due to perpendicular field cycling in trained ...
Indian Academy of Sciences (India)
This induced magnetism into the AF layer is unique in its nature as it results from direct manipulation of the uncompensated moments at the AF–FM interface. Such manipulation obviously fails to restore the untrained state [10]. One may note that all the structural as well as magnetic properties are initially estimated.
On a variational approach to truncated problems of moments
Czech Academy of Sciences Publication Activity Database
Ambrozie, Calin-Grigore
2013-01-01
Roč. 138, č. 1 (2013), s. 105-112 ISSN 0862-7959 R&D Projects: GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : problem of moments * representing measure Subject RIV: BA - General Mathematics http://www.dml.cz/handle/10338.dmlcz/143233
Dynamic process analysis by moments of extreme orders
Czech Academy of Sciences Publication Activity Database
Šimberová, Stanislava; Suk, Tomáš
2016-01-01
Roč. 14, January (2016), s. 43-51 ISSN 2213-1337 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985815 ; RVO:67985556 Keywords : high-order moments * principal component analysis * frequency analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BD - Theory of Information (UTIA-B) Impact factor: 2.010, year: 2016
SNO results and neutrino magnetic moment solution to the solar ...
Indian Academy of Sciences (India)
Kamiokande (SK) experiments (1258 days) and also the new results that came from Sudbury Neu- trino Observatory (SNO) charge current (CC) and elastic scattering (ES) experiments considering that the solar neutrino deficit is due to the interaction of neutrino transition magnetic moment with the solar magnetic field.
Effect of entry bending moment on exit curvature in asymmetrical ...
African Journals Online (AJOL)
In addition, employing a bending moment at entry of the roll gap in a symmetrical rolling process causes pressure difference on the rolls and warping at the outlet, as happens in an asymmetrical rolling process. Similarly, increasing the roll diameter ratio increases the pressure differences, but the average pressure between ...
Some properties of normal moment distribution | Olosunde | Ife ...
African Journals Online (AJOL)
This paper provides an introductory overview of a portion of distribution theory in which we propose a new family of an extended form of a normal distribution called normal moment distribution; some of its properties are obtained. The cumulative distribution function which is not in close form but the table of the approximate ...
Moments of the weighted sum-of-digits function | Larcher ...
African Journals Online (AJOL)
The weighted sum-of-digits function is a slight generalization of the well known sum-of-digits function with the difference that here the digits are weighted by some weights. So for example in this concept also the alternated sum-of-digits function is included. In this paper we compute the first and the second moment of the ...
Moments of Inertia of Disks and Spheres without Integration
Hong, Seok-Cheol; Hong, Seok-In
2013-01-01
Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…
Neck forces and moments and head accelerations in side impact.
Yoganandan, Narayan; Pintar, Frank A; Maiman, Dennis J; Philippens, Mat; Wismans, Jac
2009-03-01
Although side-impact sled studies have investigated chest, abdomen, and pelvic injury mechanics, determination of head accelerations and the associated neck forces and moments is very limited. The purpose of the present study was therefore to determine the temporal forces and moments at the upper neck region and head angular accelerations and angular velocities using postmortem human subjects (PMHS). Anthropometric data and X-rays were obtained, and the specimens were positioned upright on a custom-designed seat, rigidly fixed to the platform of the sled. PMHS were seated facing forward with the Frankfort plane horizontal, and legs were stretched parallel to the mid-sagittal plane. The normal curvature and alignment of the dorsal spine were maintained without initial torso rotation. A pyramid-shaped nine-accelerometer package was secured to the parietal-temporal region of the head. The test matrix consisted of groups A and B, representing the fully restrained torso condition, and groups C and D, representing the three-point belt-restrained torso condition. The change in velocity was 12.4 m/s for groups A and C, 17.9 m/s for group B, and 8.7 m/s for group D tests. Two specimens were tested in each group. Injuries were scored based on the Abbreviated Injury Scale. The head mass, center of gravity, and moment of inertia were determined for each specimen. Head accelerations and upper neck forces and moments were determined before head contact. Neck forces and moments and head angular accelerations and angular velocities are presented on a specimen-by-specimen basis. In addition, a summary of peak magnitudes of biomechanical data is provided because of their potential in serving as injury reference values characterizing head-neck biomechanics in side impacts. Though no skull fractures occurred, AIS 0 to 3 neck traumas were dependent on the impact velocity and restraint condition. Because specimen-specific head center of gravity and mass moment of inertia were determined
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
International Nuclear Information System (INIS)
Córsico, A.H.; Althaus, L.G.; Bertolami, M.M. Miller; Kepler, S.O.; García-Berro, E.
2014-01-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ ν ) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ ν ∼< 10 -11 μ B . This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound
Do bacteria have an electric permanent dipole moment?
Stoylov, S P; Gyurova, A; Georgieva, R; Danova, S
2008-07-15
In the scientific literature in the last 40 years, some data for the permanent dipole moment and the electric polarizability of Escherichia coli can be found [S.P. Stoylov, Colloid Electro-Optics - Theory, Techniques and Application, Academic Press, London, 1991]. In this paper the data based mainly on electro-optic investigation is considered as much as some dipolophoretic (most often called dielectrophoretic) studies. Serious grounds are found to doubt the conclusions made for the electric dipole moments of bacteria by one of the authors of this paper (SPS) and by some other researchers. This concerns both the permanent dipole moment and the electric charge dependent polarizabilities of E. coli. Here, along with the discussion of the old experimental data, new experimental data are shown for a strain of E. coli HB101. The conclusions from the analysis of the old and the new experimental data is that they do not provide correct evidence for the presence of a permanent dipole moment. It seems that all statements for the existence of electric permanent dipole moment in bacteria [S.P. Stoylov, Colloid Electro-Optics - Theory, Techniques and Application, Academic Press, London, 1991; S.P. Stoylov, S. Sokerov, I. Petkanchin, N. Ibroshev, Dokl. AN URSS 180 (1968) 1165; N.A. Tolstoy, A.A. Spartakov, A.A. Trusov, S.A. Schelkunova, Biofizika 11 (1966) 453; V. Morris, B. Jennings, J. Chem. Soc. Faraday Trans. II 71 (1975) 1948; V. Morris, B. Jennings, J. Colloid Interface Sci. 55 (1978) 313; S.P. Stoylov, V.N. Shilov, S.S. Dukhin, S. Sokerov, I. Petkanchin, in: S.S. Dukhin (Ed.), Electro-optics of Colloids, Naukova Dumka, Kiev, 1977 (in Russian).] based on electro-optic studies are result of incorrect interpretation. Therefore, they should be further ignored.
Constraining the neutrino magnetic dipole moment from white dwarf pulsations
Energy Technology Data Exchange (ETDEWEB)
Córsico, A.H.; Althaus, L.G. [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata (Argentina); Bertolami, M.M. Miller [Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina); Kepler, S.O. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970, RS (Brazil); García-Berro, E., E-mail: acorsico@fcaglp.unlp.edu.ar, E-mail: althaus@fcaglp.unlp.edu.ar, E-mail: marcelo@MPA-Garching.MPG.DE, E-mail: kepler@if.ufrgs.br, E-mail: enrique.garcia-berro@upc.edu [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860, Castelldefels (Spain)
2014-08-01
Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.
Directory of Open Access Journals (Sweden)
Mahdi Golpayegani
2017-08-01
Full Text Available In recent years some studies have been done on the moment rredistribution in buildings and new methods offered for calculating of redistribution. Observations demonstrated that the combination of moment and shear force is important in analysis of reinforced concrete structures. But little research is done about the effect of redistribution by using moding in software. In order to study the effect of moment redistribution on the stability of RC moment resisting frame structures, four buildings with 4, 7, 10 and 13 story have been considered. In these models, the nonlinear behavior of elements (beam and column is considered by the use of interaction PMM hinges. The average plastic rotation was calculated by performing pushover analysis and storing stiffness matrix for 5 points and then the buckling coefficients were obtained by conducting buckling analysis. By the use of modal analysis natural frequency was calculated and it was attempted to be related the average plastic rotation with the buckling coefficients and the natural frequency. It could be concluded that increase in the plastic rotation reduce the buckling coefficients to about 96% which this amount of reduction is related to the average plastic rotation. Moreover, the buildings experience instability state when the average plastic rotation reached to 0.006 radian.
Vernon, Ty W.
2014-01-01
Young children with autism often experience limited social motivation and responsiveness that restricts establishment of crucial social momentum. These characteristics can lead to decreased opportunities for parental engagement and the social learning associated with these moments. Early social interventions that capitalize on pre-existing…
Schubert, Thomas W; Zickfeld, Janis H; Seibt, Beate; Fiske, Alan Page
2018-02-01
Feeling moved or touched can be accompanied by tears, goosebumps, and sensations of warmth in the centre of the chest. The experience has been described frequently, but psychological science knows little about it. We propose that labelling one's feeling as being moved or touched is a component of a social-relational emotion that we term kama muta (its Sanskrit label). We hypothesise that it is caused by appraising an intensification of communal sharing relations. Here, we test this by investigating people's moment-to-moment reports of feeling moved and touched while watching six short videos. We compare these to six other sets of participants' moment-to-moment responses watching the same videos: respectively, judgements of closeness (indexing communal sharing), reports of weeping, goosebumps, warmth in the centre of the chest, happiness, and sadness. Our eighth time series is expert ratings of communal sharing. Time series analyses show strong and consistent cross-correlations of feeling moved and touched and closeness with each other and with each of the three physiological variables and expert-rated communal sharing - but distinctiveness from happiness and sadness. These results support our model.
Large Contrast Between the Moment Magnitude of Tremor and the Moment Magnitude of Slip in ETS Events
Kao, H.; Wang, K.; Dragert, H.; Rogers, G. C.; Kao, J. Y.
2009-12-01
We have developed an algorithm to estimate the moment magnitudes (Mw) of seismic tremors that are recorded during episodic tremor and slip (ETS) events beneath the northern Cascadia margin. The tremor “cloud” during an ETS episode consists of numerous individual tremor bursts. For each tremor burst, the hypocenter is first determined by the Source-Scanning Algorithm [Kao and Shan, 2004]. From the derived source location, we calculate a set of synthetic seismograms for each station based on a fixed seismic moment but different focal mechanisms. The maximum tremor amplitude observed at each station is then compared to that of the synthetics to give an estimate of the corresponding seismic moment of the tremor burst. The seismic moment averaged over all stations is used to calculate the final tremor burst Mw. We have applied this method to local earthquakes for calibration and the results are very consistent with the magnitudes listed in the catalogue. For each of the 8 northern Cascadia ETS episodes whose GPS coverage is sufficient for slip distribution inversion, the cumulative tremor Mw for the entire tremor cloud, determined from the combined moments of all individual tremor bursts in the ETS episode, is ~3 orders less than the corresponding slip Mw in the same episode (e.g., 3.7 vs. 6.7). This result suggests that aseismic slip is the predominant mode of deformation during ETS. The majority of individual tremor bursts in northern Cascadia have Mw ranging between 1.0 and 1.7 with the mean of 1.34. Only 5% of all tremors are larger than 2.0 with the largest being ~2.5.
Salimbeni, S.; Pondrelli, S.; D'Amico, V.; Meletti, C.; Rovida, A.
2016-12-01
In the frame of the elaboration of a new seismic hazard model of Italy, the identification of the areas with homogeneous tectonic regime is needed as one of the objective elements for designing the seismic source zones.A collection of all seismic moment tensors available for Italy for earthquakes with magnitude greater than or equal to 4.0 since 1960 was gathered. It contains data from different catalogs or datasets, mainly populated by moment tensors computed through inversion of seismic waves (e.g. CMT, RCMT, GFZ and ETHZ MT and so on). However, for great earthquakes of the past, i.e. the 1962 Irpinia or the 1968 Belice earthquakes (both max Mw > 6.0) we used data obtained with other methods, but always considered the best available information for that time.All these data helped to find the predominant fault mechanism, considered the typical tectonic style for a region or, using regular grids, for all seismic areas of the Italian peninsula and regions around. To identify the most seismic regions, we used data from historical and recent instrumental seismicity (CPTI15, http://emidius.mi.ingv.it/CPTI15-DBMI15/ and INGV bulletins, http://iside.rm.ingv.it/) combined on a regular grid, obtaining seismic moment release maps. Overlapping cumulative moment tensors to seismic moment release maps, we identified regions clearly characterized by different tectonics. In particular, the extension is the principal type of deformation along most of the Apennines, somewhere interrupted by strike-slip mechanism. Compressive deformation appears in the eastern Alps, in the outer part of the northernmost sector of the Apennines, in several parts of the Adriatic Sea and in the off shore of Northern Sicily. We considered this tectonic style mapping to help with drawing seismic area sources for the new seismic hazard model of Italy.
Sun, Dan; Garmory, Andrew; Page, Gary J.
2017-02-01
For flows where the particle number density is low and the Stokes number is relatively high, as found when sand or ice is ingested into aircraft gas turbine engines, streams of particles can cross each other's path or bounce from a solid surface without being influenced by inter-particle collisions. The aim of this work is to develop an Eulerian method to simulate these types of flow. To this end, a two-node quadrature-based moment method using 13 moments is proposed. In the proposed algorithm thirteen moments of particle velocity, including cross-moments of second order, are used to determine the weights and abscissas of the two nodes and to set up the association between the velocity components in each node. Previous Quadrature Method of Moments (QMOM) algorithms either use more than two nodes, leading to increased computational expense, or are shown here to give incorrect results under some circumstances. This method gives the computational efficiency advantages of only needing two particle phase velocity fields whilst ensuring that a correct combination of weights and abscissas is returned for any arbitrary combination of particle trajectories without the need for any further assumptions. Particle crossing and wall bouncing with arbitrary combinations of angles are demonstrated using the method in a two-dimensional scheme. The ability of the scheme to include the presence of drag from a carrier phase is also demonstrated, as is bouncing off surfaces with inelastic collisions. The method is also applied to the Taylor-Green vortex flow test case and is found to give results superior to the existing two-node QMOM method and is in good agreement with results from Lagrangian modelling of this case.
Regional Moment Tensor Inversion for Source Type Identification
Dreger, D. S.; Ford, S. R.; Walter, W. R.
2008-12-01
With Green's functions from calibrated seismic velocity models it is possible to use regional distance moment tensor inversion for source-type identification. The deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western US, are calculated using a regional time-domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. We investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with a low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02-0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity models perturbations that cause less than a half-cycle shift (explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness-of-fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio (SNR) is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50-200%. However, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data has a good SNR. Finally, the sensitivity
Higher moments method for generalized Pareto distribution in flood frequency analysis
Zhou, C. R.; Chen, Y. F.; Huang, Q.; Gu, S. H.
2017-08-01
The generalized Pareto distribution (GPD) has proven to be the ideal distribution in fitting with the peak over threshold series in flood frequency analysis. Several moments-based estimators are applied to estimating the parameters of GPD. Higher linear moments (LH moments) and higher probability weighted moments (HPWM) are the linear combinations of Probability Weighted Moments (PWM). In this study, the relationship between them will be explored. A series of statistical experiments and a case study are used to compare their performances. The results show that if the same PWM are used in LH moments and HPWM methods, the parameter estimated by these two methods is unbiased. Particularly, when the same PWM are used, the PWM method (or the HPWM method when the order equals 0) shows identical results in parameter estimation with the linear Moments (L-Moments) method. Additionally, this phenomenon is significant when r ≥ 1 that the same order PWM are used in HPWM and LH moments method.
Iris recognition using image moments and k-means algorithm.
Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed
2014-01-01
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.
Cross sections, multiplicity and moment distributions at the LHC
Energy Technology Data Exchange (ETDEWEB)
Beggio, P.C. [Laboratório de Ciências Matemáticas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ (Brazil); Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto Alegre, RS (Brazil); Luna, E.G.S. [Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto Alegre, RS (Brazil)
2014-09-15
The unitarity of the S-matrix requires that the absorptive part of the elastic scattering amplitude receives contributions from both the inelastic and the elastic channels. We explore this unitarity condition in order to describe, in a connected way, hadron–hadron observables like the total and elastic differential cross sections, the ratio of the real to imaginary part of the forward scattering amplitude and the inclusive multiplicity distributions in full phase space, over a large range of energies. We introduce non-perturbative QCD effects in the forward scattering amplitude by using the infrared QCD effective charge dependent on the dynamical gluon mass. In our analysis we pay special attention to the theoretical uncertainties in the predictions due to this mass scale variation. We also present quantitative predictions for the H{sub q} moments at high energies. Our results reproduce the moment oscillations observed in experimental data, and are consistent with the behavior predicted by QCD.
Nuclear quadrupole moment of the 99Tc ground state
International Nuclear Information System (INIS)
Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan
2008-01-01
By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced
Collider detection of dark matter electromagnetic anapole moments
Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver
2018-03-01
Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.
Magnetic resonance signal moment determination using the Earth's magnetic field
Fridjonsson, Einar Orn
2015-03-01
We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.
Rotation Detection Using the Precession of Molecular Electric Dipole Moment
Ke, Yi; Deng, Xiao-Bing; Hu, Zhong-Kun
2017-11-01
We present a method to detect the rotation by using the precession of molecular electric dipole moment in a static electric field. The molecular electric dipole moments are polarized under the static electric field and a nonzero electric polarization vector emerges in the molecular gas. A resonant radio-frequency pulse electric field is applied to realize a 90° flip of the electric polarization vector of a particular rotational state. After the pulse electric field, the electric polarization vector precesses under the static electric field. The rotation induces a shift in the precession frequency which is measured to deduce the angular velocity of the rotation. The fundamental sensitivity limit of this method is estimated. This work is only a proposal and does not involve experimental results.
Effective particle magnetic moment of multi-core particles
Energy Technology Data Exchange (ETDEWEB)
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden); Wetterskog, Erik; Svedlindh, Peter [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lak, Aidin; Ludwig, Frank [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, D‐38106 Braunschweig Germany (Germany); IJzendoorn, Leo J. van [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Westphal, Fritz; Grüttner, Cordula [Micromod Partikeltechnologie GmbH, D ‐18119 Rostock (Germany); Gehrke, Nicole [nanoPET Pharma GmbH, D ‐10115 Berlin Germany (Germany); Gustafsson, Stefan; Olsson, Eva [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls backe 4, SE-411 33 Göteborg (Sweden)
2015-04-15
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm.
Moment Capacity of Timber Reinforced with Punched Metal Plate Fasteners
DEFF Research Database (Denmark)
Nielsen, Jacob; Ellegaard, Peter
of the section is obtained, resulting in a more economic truss design. In order to develop design methods for sections with plate reinforcement, bending tests have been made. The timber is Swedish spruce of strength class K-18(S8) and K-24(S10) with a thickness of 45 mm. The punched metal plate is from Gang......When designing timber trusses it is often found that the cross section controlling the dimensions of the top chord is located at a joint with a moment peak. However, the timber volume affected by the moment peak is rather limited and by embedding a punched metal plate in this area a reinforcement......-Nail System, type GNA 20 S with a thickness of 1 mm. The tests and the results are described....
Measurement of nuclear moments and radii by collinear laser spectroscopy
Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S
2002-01-01
%IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...
Iris Recognition Using Image Moments and k-Means Algorithm
Directory of Open Access Journals (Sweden)
Yaser Daanial Khan
2014-01-01
Full Text Available This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.
Observations of Cluster Substructure using Weakly Lensed Sextupole Moments
Energy Technology Data Exchange (ETDEWEB)
Irwin, John
2003-08-01
Since dark matter clusters and groups may have substructure, we have examined the sextupole content of Hubble images looking for a curvature signature in background galaxies that would arise from galaxy-galaxy lensing. We describe techniques for extracting and analyzing sextupole and higher weakly lensed moments. Indications of substructure, via spatial clumping of curved background galaxies, were observed in the image of CL0024 and then surprisingly in both Hubble deep fields. We estimate the dark cluster masses in the deep field. Alternatives to a lensing hypothesis appear improbable, but better statistics will be required to exclude them conclusively. Observation of sextupole moments would then provide a means to measure dark matter structure on smaller length scales than heretofore.
Comparison of exit time moment spectra for extrinsic metric balls
DEFF Research Database (Denmark)
Hurtado, Ana; Markvorsen, Steen; Palmer, Vicente
2012-01-01
We prove explicit upper and lower bounds for the $L^1$-moment spectra for the Brownian motion exit time from extrinsic metric balls of submanifolds $P^m$ in ambient Riemannian spaces $N^n$. We assume that $P$ and $N$ both have controlled radial curvatures (mean curvature and sectional curvature......, respectively) as viewed from a pole in $N$. The bounds for the exit moment spectra are given in terms of the corresponding spectra for geodesic metric balls in suitably warped product model spaces. The bounds are sharp in the sense that equalities are obtained in characteristic cases. As a corollary we also...... obtain new intrinsic comparison results for the exit time spectra for metric balls in the ambient manifolds $N^n$ themselves....
Nucleon electric dipole moments in high-scale supersymmetric models
International Nuclear Information System (INIS)
Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi
2015-01-01
The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.
Moments of drawing: an approach to the school context
Directory of Open Access Journals (Sweden)
Héctor Alonso Monsalve Pulido
2010-06-01
Full Text Available This reflection article aims at reconstructing the meaning of drawing in order to make its reading possible in the school context. The emphasis is placed on the process of achievement called moment, defined as the active position of the concept of drawing. This perspective looks for a way to describe the process of development of graphic expression which appears at the school age, including the elements involved during its development. In this way the unilateral objectual position usually associated with children’s drawing is subverted. Through observation from a distance, by means of narrative description of moments, we are able to interact with the factors and procedures that achieve creation, which will be relevant for pedagogical analysis.
Effective particle magnetic moment of multi-core particles
International Nuclear Information System (INIS)
Ahrentorp, Fredrik; Astalan, Andrea; Blomgren, Jakob; Jonasson, Christian; Wetterskog, Erik; Svedlindh, Peter; Lak, Aidin; Ludwig, Frank; IJzendoorn, Leo J. van; Westphal, Fritz; Grüttner, Cordula; Gehrke, Nicole; Gustafsson, Stefan; Olsson, Eva; Johansson, Christer
2015-01-01
In this study we investigate the magnetic behavior of magnetic multi-core particles and the differences in the magnetic properties of multi-core and single-core nanoparticles and correlate the results with the nanostructure of the different particles as determined from transmission electron microscopy (TEM). We also investigate how the effective particle magnetic moment is coupled to the individual moments of the single-domain nanocrystals by using different measurement techniques: DC magnetometry, AC susceptometry, dynamic light scattering and TEM. We have studied two magnetic multi-core particle systems – BNF Starch from Micromod with a median particle diameter of 100 nm and FeraSpin R from nanoPET with a median particle diameter of 70 nm – and one single-core particle system – SHP25 from Ocean NanoTech with a median particle core diameter of 25 nm
Anomalous superconductivity in the tJ model; moment approach
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Rodriguez-Nunez, J.J.
1997-01-01
By extending the moment approach of Nolting (Z, Phys, 225 (1972) 25) in the superconducting phase, we have constructed the one-particle spectral functions (diagonal and off-diagonal) for the tJ model in any dimensions. We propose that both the diagonal and the off-diagonal spectral functions...... Hartree shift which in the end result enlarges the bandwidth of the free carriers allowing us to take relative high values of J/t and allowing superconductivity to live in the T-c-rho phase diagram, in agreement with numerical calculations in a cluster, We have calculated the static spin susceptibility......, chi(T), and the specific heat, C-v(T), within the moment approach. We find that all the relevant physical quantities show the signature of superconductivity at T-c in the form of kinks (anomalous behavior) or jumps, for low density, in agreement with recent published literature, showing a generic...
Limits on the scaling of nucleon magnetic moments in nuclei
International Nuclear Information System (INIS)
Ericson, T.E.O.; State Univ. of New York, Stony Brook; Richter, A.; State Univ. of New York, Stony Brook
1987-01-01
In view of the suggestion that nucleon magnetic moments inside nuclei may be modified due to a rescaling of the nucleon size, we investigate empirically how large such an effect can be. The method is based on a nearly model-independent scaling relation between the axial vector matrix element and the main part of the corresponding magnetic dipole matrix element supplemented by a small and well understood contribution from the one-pion exchange current. Taking the mass A = 3 and 12 systems as examples the upper limit, for such a change of the nucleon magnetic moment inside nuclei is found to be about 2%, considerably smaller than previous estimates in the literature. (orig.)
Gate-dependent orbital magnetic moments in carbon nanotubes
DEFF Research Database (Denmark)
Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Flensberg, Karsten
2011-01-01
We investigate how the orbital magnetic moments of electron and hole states in a carbon nanotube quantum dot depend on the number of carriers on the dot. Low temperature transport measurements are carried out in a setup where the device can be rotated in an applied magnetic field, thus enabling...... accurate alignment with the nanotube axis. The field dependence of the level structure is measured by excited state spectroscopy and excellent correspondence with a single-particle calculation is found. In agreement with band structure calculations we find a decrease of the orbital magnetic moment...... with increasing electron or hole occupation of the dot, with a scale given by the band gap of the nanotube....
Moment of inertia of liquid in a tank
Directory of Open Access Journals (Sweden)
Gyeong Joong Lee
2014-03-01
Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.
Efficient Implicit Plasma Simulation Using Quadrature Moment Inverson
Larson, David
2017-10-01
Quadrature moment inversion algorithms are one route to reducing the computational effort required for fully implicit PIC plasma simulation. These algorithms compute a sparse quadrature representation of the velocity distribution from a set of velocity moments. A Jacobian-free Newton Krylov (JFNK) solver can then be used to concurrently solve Maxwell's equations and the quadrature node equations of motion implicitly differenced in time using the midpoint rule, retaining the fully kinetic character of the overall system. The results of several test problems will be presented along with an exploration of routes to achieving convergence of the complete set of PIC particles and field equations. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Precise asymptotics for complete moment convergence in Hilbert ...
Indian Academy of Sciences (India)
if and only if E|X|r < ∞ and when r ≥ 1, EX = 0. For r = 2, p = 1, the sufficiency was proved by Hsu and Robbins [10], and the necessity by Erdös [6,7]. For the case r = p = 1, we refer to Spitzer [16], and for the general result to Baum and Katz [2]. Also Chow [4] first discussed the complete moment convergence of i.i.d. random.
Ground state energy values and moments of the anharmonic oscillator
International Nuclear Information System (INIS)
Seetharaman, M.; Raghavan, Sekhar; Subba Rao, G.
1981-01-01
It is shown that a very satisfactory estimate of the energy values (for all values of the anharmonicity) and moments of the ground state of the quartic anharmonic oscillator can be obtained in the variational method, by considering trial wavefunctions which have the correct asymptotic properties. The results derived with a single variational parameter are a considerable improvement over the recent results of C.A. Ginsburg and E.W. Montroll (1978). (author)
Extreme black hole with an electric dipole moment
International Nuclear Information System (INIS)
Horowitz, G.T.; Tada, T.
1996-01-01
We construct a new extreme black hole solution in a toroidally compactified heterotic string theory. The black hole saturates the Bogomol close-quote nyi bound, has zero angular momentum, but a nonzero electric dipole moment. It is obtained by starting with a higher-dimensional rotating charged black hole, and compactifying one direction in the plane of rotation. copyright 1996 The American Physical Society
Explicit expression for effective moment of inertia of RC beams
Patel, K.A.; Bhardwaj, A.; Chaudhary, S.; Nagpal, A.K.
2015-01-01
AbstractDeflection is an important design parameter for structures subjected to service load. This paper provides an explicit expression for effective moment of inertia considering cracking, for uniformly distributed loaded reinforced concrete (RC) beams. The proposed explicit expression can be used for rapid prediction of short-term deflection at service load. The explicit expression has been obtained from the trained neural network considering concrete cracking, tension stiffening and entir...
Single-well moment tensor inversion of tensile microseismic events
Czech Academy of Sciences Publication Activity Database
Grechka, V.; Li, Z.; Howell, B.; Vavryčuk, Václav
2016-01-01
Roč. 81, č. 6 (2016), KS219-KS229 ISSN 0016-8033 R&D Projects: GA ČR(CZ) GAP210/12/1491; GA ČR(CZ) GC16-19751J Institutional support: RVO:67985530 Keywords : microseismic events * moment tensor inversion * mathematical formulation Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.391, year: 2016
On the second moment for primes in an arithmetic progression
Goldston, D. A.; Yildirim, C. Y.
Assuming the Generalized Riemann Hypothesis, we obtain a lower bound within a constant factor of the conjectured asymptotic result for the second moment for primes in an individual arithmetic progression in short intervals. Previous results were averaged over all progression of a given modulus. The method uses a short divisor sum approximation for the von Mangoldt function, together with some new results for binary correlations of this divisor sum approximation in arithmetic progressions.
Negative Binomial Distribution and the multiplicity moments at the LHC
International Nuclear Information System (INIS)
Praszalowicz, Michal
2011-01-01
In this work we show that the latest LHC data on multiplicity moments C 2 -C 5 are well described by a two-step model in the form of a convolution of the Poisson distribution with energy-dependent source function. For the source function we take Γ Negative Binomial Distribution. No unexpected behavior of Negative Binomial Distribution parameter k is found. We give also predictions for the higher energies of 10 and 14 TeV.
Numerical problems with the Pascal triangle in moment computation
Czech Academy of Sciences Publication Activity Database
Kautsky, J.; Flusser, Jan
2016-01-01
Roč. 306, č. 1 (2016), s. 53-68 ISSN 0377-0427 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : moment computation * Pascal triangle * appropriate polynomial basis * numerical problems Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.357, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0459096.pdf
Distributionally Robust Joint Chance Constrained Problem under Moment Uncertainty
Directory of Open Access Journals (Sweden)
Ke-wei Ding
2014-01-01
Full Text Available We discuss and develop the convex approximation for robust joint chance constraints under uncertainty of first- and second-order moments. Robust chance constraints are approximated by Worst-Case CVaR constraints which can be reformulated by a semidefinite programming. Then the chance constrained problem can be presented as semidefinite programming. We also find that the approximation for robust joint chance constraints has an equivalent individual quadratic approximation form.
Rotation invariants from Gaussian-Hermite moments of color images
Czech Academy of Sciences Publication Activity Database
Yang, B.; Suk, Tomáš; Flusser, Jan; Shi, Z.; Chen, X.
2018-01-01
Roč. 143, č. 1 (2018), s. 282-291 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Color images * Object recognition * Rotation invariants * Gaussian–Hermite moments * Joint invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/suk-0479748. pdf
Chromomagnetic dipole moment of the top quark revisited
International Nuclear Information System (INIS)
Martinez, R.; Perez, M.A.; Poveda, N.
2008-01-01
We study the complete one-loop contributions to the chromagnetic dipole moment Δκ of the top quark in the standard model, two Higgs doublet models, topcolor assisted technicolor models, 331 models and extended models with a single extra dimension. We find that the SM predicts Δκ=-0.056 and the predictions of the other models are also consistent with the constraints imposed on Δκ by low-energy precision measurements. (orig.)
Chromomagnetic dipole moment of the top quark revisited
Energy Technology Data Exchange (ETDEWEB)
Martinez, R. [Universidad Nacional, Departamento de Fisica, Bogota (Colombia); Perez, M.A. [Cinvestav - IPN, Departamento de Fisica, Merida (Mexico); Poveda, N. [Universidad Nacional, Departamento de Fisica, Bogota (Colombia); Universidad Pedagogica y Tecnologica de Colombia, Departamento de Fisica, Tunja (Colombia)
2008-01-15
We study the complete one-loop contributions to the chromagnetic dipole moment {delta}{kappa} of the top quark in the standard model, two Higgs doublet models, topcolor assisted technicolor models, 331 models and extended models with a single extra dimension. We find that the SM predicts {delta}{kappa}=-0.056 and the predictions of the other models are also consistent with the constraints imposed on {delta}{kappa} by low-energy precision measurements. (orig.)
Gauss-Green cubature and moment computation over arbitrary geometries
Sommariva, Alvise; Vianello, Marco
2009-09-01
We have implemented in Matlab a Gauss-like cubature formula over arbitrary bivariate domains with a piecewise regular boundary, which is tracked by splines of maximum degree p (spline curvilinear polygons). The formula is exact for polynomials of degree at most 2n-1 using N~cmn2 nodes, 1directly on univariate Gauss-Legendre quadrature via Green's integral formula. Several numerical tests are presented, including computation of standard as well as orthogonal moments over a nonstandard planar region.
Prediction of conformationally dependent atomic multipole moments in carbohydrates.
Cardamone, Salvatore; Popelier, Paul L A
2015-12-15
The conformational flexibility of carbohydrates is challenging within the field of computational chemistry. This flexibility causes the electron density to change, which leads to fluctuating atomic multipole moments. Quantum Chemical Topology (QCT) allows for the partitioning of an "atom in a molecule," thus localizing electron density to finite atomic domains, which permits the unambiguous evaluation of atomic multipole moments. By selecting an ensemble of physically realistic conformers of a chemical system, one evaluates the various multipole moments at defined points in configuration space. The subsequent implementation of the machine learning method kriging delivers the evaluation of an analytical function, which smoothly interpolates between these points. This allows for the prediction of atomic multipole moments at new points in conformational space, not trained for but within prediction range. In this work, we demonstrate that the carbohydrates erythrose and threose are amenable to the above methodology. We investigate how kriging models respond when the training ensemble incorporating multiple energy minima and their environment in conformational space. Additionally, we evaluate the gains in predictive capacity of our models as the size of the training ensemble increases. We believe this approach to be entirely novel within the field of carbohydrates. For a modest training set size of 600, more than 90% of the external test configurations have an error in the total (predicted) electrostatic energy (relative to ab initio) of maximum 1 kJ mol(-1) for open chains and just over 90% an error of maximum 4 kJ mol(-1) for rings. © 2015 Wiley Periodicals, Inc.
Improving Bending Moment Measurements on Wind Turbine Blades
Energy Technology Data Exchange (ETDEWEB)
Post, Nathan L.
2016-03-15
Full-scale fatigue testing of wind turbine blades is conducted using resonance test techniques where the blade plus additional masses is excited at its first resonance frequency to achieve the target loading amplitude. Because there is not a direct relationship between the force applied by an actuator and the bending moment, the blade is instrumented with strain gauges that are calibrated under static loading conditions to determine the sensitivity or relationship between strain and applied moment. Then, during dynamic loading the applied moment is calculated using the strain response of the structure. A similar procedure is also used in the field to measure in-service loads on turbine blades. Because wind turbine blades are complex twisted structures and the deflections are large, there is often significant cross-talk coupling in the sensitivity of strain gauges placed on the structure. Recent work has shown that a sensitivity matrix with nonzero cross terms must be employed to find constant results when a blade is subjected to both flap and lead-lag loading. However, even under controlled laboratory conditions, potential for errors of 3 percent or more in the measured moment exist when using the typical cross-talk matrix approach due to neglecting the influence of large deformations and torsion. This is particularly critical when considering a biaxial load as would be applied on the turbine or during a biaxial fatigue test. This presentation describes these results demonstrating errors made when performing current loads measurement practices on wind turbine blades in the lab and evaluating potential improvements using enhanced cross-talk matrix approaches and calibration procedures.
Potential energy and transition dipole moment functions of C2-
Czech Academy of Sciences Publication Activity Database
Šedivcová, Tereza; Špirko, Vladimír
2006-01-01
Roč. 104, 13/14 (2006), s. 1999-2005 ISSN 0026-8976 R&D Projects: GA AV ČR(CZ) IAA400550511; GA MŠk(CZ) LC512; GA ČR(CZ) GD203/05/H001 Institutional research plan: CEZ:AV0Z40550506 Keywords : ab initio calculation * transition moments * potential energy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.690, year: 2006
Near infrared face recognition using Zernike moments and Hermite kernels
Czech Academy of Sciences Publication Activity Database
Farokhi, Sajad; Sheikh, U.U.; Flusser, Jan; Yang, Bo
2015-01-01
Roč. 316, č. 1 (2015), s. 234-245 ISSN 0020-0255 R&D Projects: GA ČR(CZ) GA13-29225S Keywords : face recognition * Zernike moments * Hermite kernel * Decision fusion * Near infrared Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.364, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0444205.pdf
What can nuclear physics learn from nuclear moments
International Nuclear Information System (INIS)
Faessler, A.
1981-01-01
The information which can be obtained from static electric quadrupole and magnetic moments is discussed for some specific examples. A new highly controversial measurement of the g-factor of the 4 + state in 20 Ne is used to show the importance of magnetic moments on the understanding of nuclear structure. If the g-factor of the 4 + state in 20 Ne would indeed be zero which is very unlikely it would change our whole understanding of the sd-shell nuclei. In the second chapter we discuss a possible test of the nature of the anomaly of the moment of inertia in the rare earth nuclei. If it is an alignment of two i(13/2) neutrons along the total angular momentum the g-factor should drop to a very small value for angular momenta near backbending at the beginning of the rare earth region. In section 3 we discuss the change of the sign of the spectroscopic quadrupole moments for the 13/ 2 + isomeric state in the Hg isotopes as an example for a change from strong coupling to decoupling if one fills up the i(13/2) neutron shell. In section 4 we discuss the nature of the 8 + , 10 + and 12 + states in the even mass Hg and Pt isotopes which show an irregular energy spacing. Detailed theoretical calculations indicate that in the Hg isotopes up to mass number A = 196 the 8 + and 10 + states are formed by the partial and full alignment of two h(11/2) proton hole states, while in 198,200Hg the 8 + , 10 + and 12 + states are formed by partial and full alignment of two i(13/2) neutron holes. A recent argument using the energy position of the two quasi particle states claims the those states should be in all Hg isotopes i(13/2) quasi particle states. A measurement of the g-factors of those states could clear up their nature. (orig.)
Tuning the magnetic moments in zigzag graphene nanoribbons
DEFF Research Database (Denmark)
Chen, Jingzhe; Vanin, Marco; Hu, Yibin
2012-01-01
We report a systematic theoretical investigation of the effects of metal substrates on the local magnetic moments of zigzag graphene nanoribbons (ZGNRs). Representative metal surfaces of Au, Pt, Ni, Cu, Al, Ag, and Pd have been analyzed from atomic first principles. Results show that the local...... hybridization between the metal states and the nonbonding π orbital of the ZGNRs; thereby the tuning effect is reduced. We identify the microscopic physical reason behind the bias tuning of the magnetic properties of the ZGNRs....
Partial Generalized Probability Weighted Moments for Exponentiated Exponential Distribution
Directory of Open Access Journals (Sweden)
Neema Mohamed El Haroun
2015-09-01
Full Text Available The generalized probability weighted moments are widely used in hydrology for estimating parameters of flood distributions from complete sample. The method of partial generalized probability weighted moments was used to estimate the parameters of distributions from censored sample. This article offers new method called partial generalized probability weighted moments (PGPWMs for the analysis of censored data. The method of PGPWMs is an extended class from partial generalized probability weighted moments. To illustrate the new method, estimation of the unknown parameters from exponentiated exponential distribution based on doubly censored sample is considered. PGPWMs estimators for right and left censored samples are obtained as special cases. Simulation study is conducted to investigate performance of estimates for exponentiated exponential distribution. Comparison between estimators is made through simulation via their biases and mean square errors. An illustration with real data is provided. Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"جدول عادي"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;}
Measurement of Forces and Moments Transmitted to the Residual Limb
2010-10-01
the floor, but only changes the length of the heel and toe lever arms. Additional evidence statements and the associated levels of confidence...Interface Biomechanical Correlate Force X Anterior-Posterior Force Perpendicular to Pylon Anterior-Posterior Force on Limb Braking and Propulsion...heel lever arm. The other significant changes were all less than 10% of the absolute values of the forces and moments. Significant differences in
Manifestation of the cyclo-toroid nuclear moment in anomalous conversion and Lamb shift
Tkalya, E. V.
2005-01-01
We offer the hypothesis that atomic nuclei, nucleons, and atoms possess a new type of electromagnetic moment, that we call a ``cyclo-toroid moment''. In nuclei, this moment arises when the toroid dipole (anapole) moments are arrayed in the form of a ring, or, equivalently, when the magnetic moments of the nucleons are arranged in the form of rings which, in turn, constitute the surface of a torus. We establish theoretically that the cyclo-toroid moment plays a role in the processes of the ato...
Weibull distribution and the multiplicity moments in p p (p p¯) collisions
Pandey, Ashutosh Kumar; Sett, Priyanka; Dash, Sadhana
2017-10-01
A higher moment analysis of multiplicity distribution is performed using the Weibull description of particle production in p p (p p ¯) collisions at Super Proton Synchrotron (SPS) and LHC energies. The calculated normalized moments and factorial moments of Weibull distribution are compared to the measured data. The calculated Weibull moments are found to be in good agreement with the measured higher moments (up to fifth order) reproducing the observed breaking of Koba, Nielsen, and Olesen scaling in the data. The moments for p p collisions at √{s }=13 TeV are also predicted.
Absence of toroidal moments in 'aromagnetic' anthracene
Energy Technology Data Exchange (ETDEWEB)
Alborghetti, S; Coey, J M D [School of Physics, Trinity College, Dublin 2 (Ireland); Puppin, E; Brenna, M; Pinotti, E; Zanni, P [Dipartimento di Fisica, Politecnico di Milano, Milano (Italy)], E-mail: alborgs@tcd.ie
2008-06-15
Colloidal suspensions of anthracene and other aromatic compounds have been shown to respond to a magnetic field as if they possessed a permanent magnetic moment. This phenomenon was named 'aromagnetism' by Spartakov and Tolstoi, and it was subsequently attributed to the interaction of an electric toroidal moment with a time-varying magnetic field. However, there has been no independent confirmation of the original work. Here, we have selected purified anthracene crystallites which respond to a low magnetic field and investigate how this response depends on the gradient and the time derivative of the field. We conclude that the anomaly cannot be attributed to a toroidal interaction but is due to a constant magnetic moment of the particles. Close examinations using magnetometry and scanning electron microscopy reveal metallic clusters of Fe and Ni up to a few hundred nanometres in size embedded in the anomalous crystallites. These inclusions represent 1.8 ppm by weight of the sample. The observed presence of ferromagnetic inclusions in the ppm range is sufficient to explain the anomalous magnetic properties of micron-sized anthracene crystals, including the reported optical properties of the colloidal suspensions.
Extracting the Omega- electric quadrupole moment from lattice QCD data
Energy Technology Data Exchange (ETDEWEB)
G. Ramalho, M.T. Pena
2011-03-01
The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our prediction is Q_Omega= (0.96 +/- 0.02)*10^(-2) efm2 [GE2(0)=0.680 +/- 0.012].
Theoretical expectations for the muon's electric dipole moment
International Nuclear Information System (INIS)
Feng, Jonathan L.; Matchev, Konstantin T.; Shadmi, Yael
2001-01-01
We examine the muon's electric dipole moment d μ from a variety of theoretical perspectives. We point out that the reported deviation in the muon's g-2 can be due partially or even entirely to a new physics contribution to the muon's electric dipole moment. In fact, the recent g-2 measurement provides the most stringent bound on d μ to date. This ambiguity could be definitively resolved by the dedicated search for d μ recently proposed. We then consider both model-independent and supersymmetric frameworks. Under the assumptions of scalar degeneracy, proportionality, and flavor conservation, the theoretical expectations for d μ in supersymmetry fall just below the proposed sensitivity. However, nondegeneracy can give an order of magnitude enhancement, and lepton flavor violation can lead to d μ ∼10 -22 e cm, two orders of magnitude above the sensitivity of the d μ experiment. We present compact expressions for leptonic dipole moments and lepton flavor violating amplitudes. We also derive new limits on the amount of flavor violation allowed and demonstrate that approximations previously used to obtain such limits are highly inaccurate in much of parameter space
Biocompatible magnetic nanoparticles with high magnetic moment for cancer treatment
Sharma, Amit; Qiang, You; Muldoon, Leslie; Meyer, Daniel; Hass, Jamie
2007-05-01
Non-toxic iron oxide naoparticles have extended the boundary in medical world; with size range form 2 to 400 nm they can be compiled with most of the small cells and tissues in living body. We have prepared monodispersive iron-iron oxide core-shell nanoparticles in our novel cluster deposition system. The nanoparticles have very high magnetic moment up to 200 emu/g. To test the nontoxicity and uptake we incubated the nanoparticles coated with dextrin and non-coated iron naoparticles with LXI SCLC lung cancer cells found in rats. Results indicate that both coated and noncoated cells were successfully untaken by the cells indicating that the core-shell nanoparticles are not toxic. Due to the high magnetic moment offered by the nanoparticles we propose that even in low applied external alternating field desired temperature can be reached for hyperthermia treatment in comparison to the commercially available iron oxide nanoparticles (magnetic moment less than 20 emu/g). We also found that our ferromagnetic nanoparticles were uptaken by the cancer cells without adding protamine sulfate, which is normally needed to prevent the coagulation of cells for the commercial nanoparticles. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.B4.5
Realistic Hamiltonians for no-core moment method studies
International Nuclear Information System (INIS)
Vary, J.P.
1980-01-01
Motivated by the need to test the adequacy of realistic nucleon-nucleon potentials for yielding the dynamics of many-nucleon systems we develop effective Hamiltonians for large-space moment method studies. These Hamiltonians consist of the relative kinetic energy operator and an exact Brueckner G-matrix acting between all pairs of nucleons in the nucleus. That is, there is no core and the nuclear properties are obtained through moment methods as a function of the size of the model space. The primary initial emphasis is to obtain the binding energy and comparisons are made with results of the coupled-cluster or exp(s) calculations. We find a systematic but slow decrease in the importance of three and higher body effective forces as the model space is increased. The results with the Reid soft core interaction for the binding energy of 16 O appear to be converging close the the exp(s) results. Further tests of the moment methods themselves are indicated as well as the desirability of increasing still further the model space for the no-core studies
Multivariate moment closure techniques for stochastic kinetic models
Energy Technology Data Exchange (ETDEWEB)
Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H., E-mail: m.stumpf@imperial.ac.uk [Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ (United Kingdom)
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.
Investigation on Thrust and Moment Coefficients of a Centrifugal Turbomachine
Directory of Open Access Journals (Sweden)
Bo Hu
2018-04-01
Full Text Available In radial pumps and turbines, the centrifugal through-flow in both the front and the back chambers is quite common. It strongly impacts the core swirl ratio, pressure distribution, axial thrust and frictional torque. In order to investigate these relationships experimentally, a test rig was designed at the University of Duisburg-Essen and described in this paper. Based on both the experimental and numerical results, correlations are determined to predict the impacts of the centrifugal through-flow on the core swirl ratio, the thrust coefficient and the moment coefficient. Two correlations respectively are determined to associate the core swirl ratio with the local through-flow coefficient for both Batchelor type flow and Stewartson type flow. The correlations describing the thrust coefficient and the moment coefficient in a rotor-stator cavity with centripetal through-flow (Hu et al., 2017 are modified for the case of centrifugal through-flow. The Daily and Nece diagram distinguishing between different flow regimes in rotor-stator cavities is extended with a through-flow coordinate into 3D. The achieved results provide a comprehensive data base which is intended to support the calculation of axial thrust and moment coefficients during the design process of radial pumps and turbines in a more accurate manner.
Parallax adjustment algorithm based on Susan-Zernike moments
Deng, Yan; Zhang, Kun; Shen, Xiaoqin; Zhang, Huiyun
2018-02-01
Precise parallax detection through definition evaluation and the adjustment of the assembly position of the objective lens or the reticle are important means of eliminating the parallax of the telescope system, so that the imaging screen and the reticle are clearly focused at the same time. An adaptive definition evaluation function based on Susan-Zernike moments is proposed. First, the image is preprocessed by the Susan operator to find the potential boundary edge. Then, the Zernike moments operator is used to determine the exact region of the reticle line with sub-pixel accuracy. The image definition is evaluated only in this related area. The evaluation function consists of the gradient difference calculated by the Zernike moments operator. By adjusting the assembly position of the objective lens, the imaging screen and the reticle will be simultaneously in the state of maximum definition, so the parallax can be eliminated. The experimental results show that the definition evaluation function proposed in this paper has the advantages of good focusing performance, strong anti-interference ability compared with the other commonly used definition evaluation functions.
Explicit expression for effective moment of inertia of RC beams
Directory of Open Access Journals (Sweden)
K.A. Patel
Full Text Available AbstractDeflection is an important design parameter for structures subjected to service load. This paper provides an explicit expression for effective moment of inertia considering cracking, for uniformly distributed loaded reinforced concrete (RC beams. The proposed explicit expression can be used for rapid prediction of short-term deflection at service load. The explicit expression has been obtained from the trained neural network considering concrete cracking, tension stiffening and entire practical range of reinforcement. Three significant structural parameters have been identified that govern the change in effective moment of inertia and therefore deflection. These three parameters are chosen as inputs to train neural network. The training data sets for neural network are generated using finite element software ABAQUS. The explicit expression has been validated for a number of simply supported and continuous beams and it is shown that the predicted deflections have reasonable accuracy for practical purpose. A sensitivity analysis has been performed, which indicates substantial dependence of effective moment of inertia on the selected input parameters.
Grad-type fourteen-moment theory for dilute granular gases
Indian Academy of Sciences (India)
moment equations for dilute granular gases. ... the homogeneous cooling state solution, and it is shown that the nonlinear terms of scalar fourth moment have practically no effect on ...... panel depicts the stable root of the cubic equation (48) while.
Brauer, Carolyn S; Craddock, Matthew B; Kilian, Jacob; Grumstrup, Erik M; Orilall, M Christopher; Mo, Yirong; Gao, Jiali; Leopold, Kenneth R
2006-08-24
The Stark effect has been observed in the rotational spectra of several gas-phase amine-hydrogen halide complexes and the following electric dipole moments have been determined: H(3)(15)N-H(35)Cl (4.05865 +/- 0.00095 D), (CH(3))(3)(15)N-H(35)Cl (7.128 +/- 0.012 D), H(3)(15)N-H(79)Br (4.2577 +/- 0.0022 D), and (CH(3))(3)(15)N-H(79)Br (8.397 +/- 0.014 D). Calculations of the binding energies and electric dipole moments for the full set of complexes R(n)()(CH(3))(3)(-)(n)()N-HX (n = 0-3; X = F, Cl, Br) at the MP2/aug-cc-pVDZ level are also reported. The block localized wave function (BLW) energy decomposition method has been used to partition the binding energies into contributions from electrostatic, exchange, distortion, polarization, and charge-transfer terms. Similarly, the calculated dipole moments have been decomposed into distortion, polarization, and charge-transfer components. The complexes studied range from hydrogen-bonded systems to proton-transferred ion pairs, and the total interaction energies vary from 7 to 17 kcal/mol across the series. The individual energy components show a much wider variation than this, but cancellation of terms accounts for the relatively narrow range of net binding energies. For both the hydrogen-bonded complexes and the proton-transferred ion pairs, the electrostatic and exchange terms have magnitudes that increase with the degree of proton transfer but are of opposite sign, leaving most of the net stabilization to arise from polarization and charge transfer. In all of the systems studied, the polarization terms contribute the most to the induced dipole moment, followed by smaller but still significant contributions from charge transfer. A significant contribution to the induced moment of the ion pairs also arises from distortion of the HX monomer.
Analysis on origin of oscillation of H moment in high-energy hh collision
International Nuclear Information System (INIS)
Wu Tao; Zhou Daicui
2000-01-01
Multiplicity distributions of negative binomial distribution (NBD) and modified (NBD are obtained from a birth process model with an immigration. The ratio of factorial cumulant moment to factorial moment, i.e., H moment is calculated from different multiplicity distributions of NBD, modified NBD and the three fireball model, which shows an oscillatory behavior when there is a truncation of multiplicity. The oscillation of H moment is related to the common character of the truncated multiplicity distributions
Net-Proton Nonstatistical Moments in High-Energy pp Collisions in PACIAE Model
International Nuclear Information System (INIS)
Poonsawat, Wanchaloem; Limphirat, Ayut; Kobdaj, Chinorat; Yan, Yupeng; Zhou, Dai-Mei; Srisawad, Pornrad; Yan, Yu-Liang; Sa, Ben-Hao
2014-01-01
The parton and hadron cascade model, PACIAE 2.0, is employed to calculate the net-proton nonstatistical moments in pp collisions at RHIC and LHC energies. By analyzing the results in the full phase space, it is found that the nonstatistical moments and moments products are significantly dependent on the collision energy. It is suggested that the net-proton nonstatistical moments in pp collisions may be studied in partial phase spaces with the PACIAE model. (author)
Directory of Open Access Journals (Sweden)
Gökhan Gökdere
2014-05-01
Full Text Available In this paper, closed form expressions for the moments of the truncated Pareto order statistics are obtained by using conditional distribution. We also derive some results for the moments which will be useful for moment computations based on ordered data.
Teachable Moments in Jewish Education: An Informal Approach in a Reform Summer Camp
Cohen, Erik H.; Bar-Shalom, Yehuda
2010-01-01
Utilizing "teachable moments" within daily situations to impart knowledge and transmit values is a type of informal education. In a structured camp environment, such teachable moments may be integrated into the educational curriculum. "Jewish teachable moments" may be used to address Judaism and Jewish Peoplehood holistically,…
Isolating magnetic moments from individual grains within a magnetic assemblage
Béguin, A.; Fabian, K.; Jansen, C.; Lascu, I.; Harrison, R.; Barnhoorn, A.; de Groot, L. V.
2017-12-01
Methods to derive paleodirections or paleointensities from rocks currently rely on measurements of bulk samples (typically 10 cc). The process of recording and storing magnetizations as function of temperature, however, differs for grains of various sizes and chemical compositions. Most rocks, by their mere nature, consist of assemblages of grains varying in size, shape, and chemistry. Unraveling the behavior of individual grains is a holy grail in fundamental rock magnetism. Recently, we showed that it is possible to obtain plausible magnetic moments for individual grains in a synthetic sample by a micromagnetic tomography (MMT) technique. We use a least-squares inversion to obtain these magnetic moments based on the physical locations and dimensions of the grains obtained from a MicroCT scanner and a magnetic flux density map of the surface of the sample. The sample used for this proof of concept, however, was optimized for success: it had a low dispersion of the grains, and the grains were large enough so they were easily detected by the MicroCT scanner. Natural lavas are much more complex than the synthetic sample analyzed so far: the dispersion of the magnetic markers is one order of magnitude higher, the grains differ more in composition and size, and many small (submicron) magnetic markers may be present that go undetected by the MicroCT scanner. Here we present the first results derived from a natural volcanic sample from the 1907-flow at Hawaii. To analyze the magnetic flux at the surface of the sample at room temperature, we used the Magnetic Tunneling Junction (MTJ) technique. We were able to successfully obtain MicroCT and MTJ scans from the sample and isolate plausible magnetic moments for individual grains in the top 70 µm of the sample. We discuss the potential of the MMT technique applied to natural samples and compare the MTJ and SSM methods in terms of work flow and quality of the results.
Rapid objective measurement of gamma camera resolution using statistical moments.
Hander, T A; Lancaster, J L; Kopp, D T; Lasher, J C; Blumhardt, R; Fox, P T
1997-02-01
An easy and rapid method for the measurement of the intrinsic spatial resolution of a gamma camera was developed. The measurement is based on the first and second statistical moments of regions of interest (ROIs) applied to bar phantom images. This leads to an estimate of the modulation transfer function (MTF) and the full-width-at-half-maximum (FWHM) of a line spread function (LSF). Bar phantom images were acquired using four large field-of-view (LFOV) gamma cameras (Scintronix, Picker, Searle, Siemens). The following factors important for routine measurements of gamma camera resolution with this method were tested: ROI placement and shape, phantom orientation, spatial sampling, and procedural consistency. A 0.2% coefficient of variation (CV) between repeat measurements of MTF was observed for a circular ROI. The CVs of less than 2% were observed for measured MTF values for bar orientations ranging from -10 degrees to +10 degrees with respect to the x and y axes of the camera acquisition matrix. A 256 x 256 matrix (1.6 mm pixel spacing) was judged sufficient for routine measurements, giving an estimate of the FWHM to within 0.1 mm of manufacturer-specified values (3% difference). Under simulated clinical conditions, the variation in measurements attributable to procedural effects yielded a CV of less than 2% in newer generation cameras. The moments method for determining MTF correlated well with a peak-valley method, with an average difference of 0.03 across the range of spatial frequencies tested (0.11-0.17 line pairs/mm, corresponding to 4.5-3.0 mm bars). When compared with the NEMA method for measuring intrinsic spatial resolution, the moments method was found to be within 4% of the expected FWHM.
Magnetic dipole moments of odd-odd lanthanides
International Nuclear Information System (INIS)
Sharma, S.D.; Gandhi, R.
1988-01-01
Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs
Lattice Results for Low Moments of Light Meson Distribution Amplitudes
Arthur, R; Brommel, D; Donnellan, M A; Flynn, J M; Juttner, A; Rae, T D; Sachrajda, C T.C
2011-01-01
As part of the UKQCD and RBC collaborations' N_f=2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons pion and kaon and the (longitudinally-polarised) vector mesons rho, K-star and phi. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI'/MOM technique.
Comparison of an exact and moments calculation of reliability
International Nuclear Information System (INIS)
Hockenbury, R.W.; Yeater, M.L.; Hawkins, J.M.; Wilkinson, J.W.
1976-01-01
Present methods for calculating the reliability of reactor systems usually assume constant failure rates for individual components of the system. In principle, if the uncertainty in component failure rates can be expressed in terms of a probability density function, then the probability density function for the overall system reliability can be obtained. The system reliability distribution can then be used to calculate confidence bounds, for example. The probability distribution for the system reliability can also be found by an approximate method, namely the method of moments. In order to compare the exact and approximate results, a simple two element series system is modeled
Fluid moments of the nonlinear Landau collision operator
Energy Technology Data Exchange (ETDEWEB)
Hirvijoki, E.; Pfefferlé, D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lingam, M.; Bhattacharjee, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Comisso, L. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Candy, J. [General Atomics, San Diego, California 92186 (United States)
2016-08-15
An important problem in plasma physics is the lack of an accurate and complete description of Coulomb collisions in associated fluid models. To shed light on the problem, this Letter introduces an integral identity involving the multivariate Hermite tensor polynomials and presents a method for computing exact expressions for the fluid moments of the nonlinear Landau collision operator. The proposed methodology provides a systematic and rigorous means of extending the validity of fluid models that have an underlying inverse-square force particle dynamics to arbitrary collisionality and flow.
Fantastic Learning Moments and Where to Find Them
Directory of Open Access Journals (Sweden)
Alexander Y. Sheng
2017-12-01
Full Text Available Introduction Experiential learning is crucial for the development of all learners. Literature exploring how and where experiential learning happens in the modern clinical learning environment is sparse. We created a novel, web-based educational tool called “Learning Moment” (LM to foster experiential learning among our learners. We used data captured by LM as a research database to determine where learning experiences were occuring within our emergency department (ED. We hypothesized that these moments would occur more frequently at the physician workstations as opposed to the bedside. Methods We implemented LM at a single ED’s medical student clerkship. The platform captured demographic data including the student’s intended specialty and year of training as well as “learning moments,” defined as logs of learner self-selected learning experiences that included the clinical “pearl,” clinical scenario, and location where the “learning moment” occurred. We presented data using descriptive statistics with frequencies and percentages. Locations of learning experiences were stratified by specialty and training level. Results A total of 323 “learning moments” were logged by 42 registered medical students (29 fourth-year medical students (MS 4 and 13 MS 3 over a six-month period. Over half (52.4% intended to enter the field of emergency medicine (EM. Of these “learning moments,” 266 included optional location data. The most frequently reported location was patient rooms (135 “learning moments”, 50.8%. Physician workstations hosted the second most frequent “learning moments” (67, 25.2%. EM-bound students reported 43.7% of “learning moments” happening in patient rooms, followed by workstations (32.8%. On the other hand, non EM-bound students reported that 66.3% of “learning moments” occurred in patient rooms and only 8.4% at workstations (p<0.001. Conclusion LM was implemented within our ED as an innovative, web
Bayesian ISOLA: new tool for automated centroid moment tensor inversion
Vackář, Jiří; Burjánek, Jan; Gallovič, František; Zahradník, Jiří; Clinton, John
2017-04-01
Focal mechanisms are important for understanding seismotectonics of a region, and they serve as a basic input for seismic hazard assessment. Usually, the point source approximation and the moment tensor (MT) are used. We have developed a new, fully automated tool for the centroid moment tensor (CMT) inversion in a Bayesian framework. It includes automated data retrieval, data selection where station components with various instrumental disturbances and high signal-to-noise are rejected, and full-waveform inversion in a space-time grid around a provided hypocenter. The method is innovative in the following aspects: (i) The CMT inversion is fully automated, no user interaction is required, although the details of the process can be visually inspected latter on many figures which are automatically plotted.(ii) The automated process includes detection of disturbances based on MouseTrap code, so disturbed recordings do not affect inversion.(iii) A data covariance matrix calculated from pre-event noise yields an automated weighting of the station recordings according to their noise levels and also serves as an automated frequency filter suppressing noisy frequencies.(iv) Bayesian approach is used, so not only the best solution is obtained, but also the posterior probability density function.(v) A space-time grid search effectively combined with the least-squares inversion of moment tensor components speeds up the inversion and allows to obtain more accurate results compared to stochastic methods. The method has been tested on synthetic and observed data. It has been tested by comparison with manually processed moment tensors of all events greater than M≥3 in the Swiss catalogue over 16 years using data available at the Swiss data center (http://arclink.ethz.ch). The quality of the results of the presented automated process is comparable with careful manual processing of data. The software package programmed in Python has been designed to be as versatile as possible in
Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2011-04-01
This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)
Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments
International Nuclear Information System (INIS)
Stone, N.J.
2014-02-01
This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)
Magnetic moments and non-Fermi-liquid behavior in quasicrystals
Andrade, Eric
Motivated by the intrinsic non-Fermi-liquid behavior observed in the heavy-fermion quasicrystal Au51Al34Yb15, we study the low-temperature behavior of dilute magnetic impurities placed in metallic quasicrystals. We find that a large fraction of the magnetic moments are not quenched down to very low temperatures, leading to a power-law distribution of Kondo temperatures, accompanied by a non-Fermi-liquid behavior, in a remarkable similarity to the Kondo-disorder scenario found in disordered heavy-fermion metals. This work was supported by FAPESP (Brazil) Grant No. 2013/00681-8.
Regional Moment Tensor Source-Type Discrimination Analysis
2015-11-16
66 34: COSO and Amargosa full moment tensor inversion results with 1D and 3D Green’s functions...Md) COSO 1990/03/10, 16:00:00.08 37.104 -116.075 417 4.50 (Md) HOYA 1991/09/14, 19:00:00.08 37.226 -116.429 658 5.40 (Md) JUNCTION 1992/03/26...explosions (METROPOLIS, COSO , HOYA and JUNCTION), we fix the source depth at 1 km for both 1D and 3D GFs. For the comparison at different frequency
Effective hamiltonian of the nuclear moments electronic shielding
International Nuclear Information System (INIS)
Zentsov, V.P.
1990-01-01
An information is given allowing to use the second quantization and the effective operator methods in the ligand field theory. The operator was constructed accounting for the interaction of the multi-shell electronic configurations through a one-particle perturbation V 0 . The expression obtained is believed to be useful in microscopic calculations and phenomenological interpretation of spectroscopic experiments. As an illustration, the effective hamiltonian of the nuclear moments electronic shielding has been deduced. It was found, in particular, that the dipolar part of the hyperfine interaction contributes to the shift of the nuclear g-factor in the systems with the electronic spin S>0. (orig.)
Moment estimation of customer loss rates from transactional data
Directory of Open Access Journals (Sweden)
D. J. Daley
1998-01-01
Full Text Available Moment estimators are proposed for the arrival and customer loss rates of a many-server queueing system with a Poisson arrival process with customer loss via balking or reneging. These estimators are based on the lengths {Sj1} of the initial inter-departure intervals of the busy periods j=1,…,M observed in a dataset consisting of service starting and finishing times and encompassing both busy and idle periods of the process, and whether those busy periods are of length 1 or >1. The estimators are compared with maximum likelihood and parametric model-based estimators found previously.
pth Moment Exponential Stability of Nonlinear Hybrid Stochastic Heat Equations
Directory of Open Access Journals (Sweden)
Xuetao Yang
2014-01-01
Full Text Available We are concerned with the exponential stability problem of a class of nonlinear hybrid stochastic heat equations (known as stochastic heat equations with Markovian switching in an infinite state space. The fixed point theory is utilized to discuss the existence, uniqueness, and pth moment exponential stability of the mild solution. Moreover, we also acquire the Lyapunov exponents by combining the fixed point theory and the Gronwall inequality. At last, two examples are provided to verify the effectiveness of our obtained results.
Intrinsic Electric Dipole Moments of Paramagnetic Atoms: Rubidium and Cesium
Nataraj, H. S.; Sahoo, B. K.; Das, B. P.; Mukherjee, D.
2008-01-01
The electric dipole moment (EDM) of paramagnetic atoms is sensitive to the intrinsic EDM contribution from that of its constituent electrons and a scalar--pseudo-scalar (S-PS) electron-nucleus interactions. The electron EDM and the S-PS EDM contribution to atomic EDM scales as Z^3. Thus, the heavy paramagnetic atomic systems will exhibit large enhancement factors. However, the nature of the coupling is so small that it becomes an interest of high precision atomic experiments. In this work, we...
Hamiltonian action of spinning particle with gravimagnetic moment
International Nuclear Information System (INIS)
Deriglazov, Alexei A; Ramírez, W Guzmán
2016-01-01
We develop Hamiltonian variational problem for spinning particle non-minimally interacting with gravity through the gravimagnetic moment κ. For κ = 0 our model yields Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations, the latter show unsatisfactory behavior of MPTD-particle in ultra-relativistic regime: its longitudinal acceleration increases with velocity. κ = 1 yields a modification of MPTD-equations with the reasonable behavior: in the homogeneous fields, both longitudinal acceleration and (covariant) precession of spin-tensor vanish as v→c. (paper)
Probing CP Violation with the Deuteron Electric Dipole Moment
Lebedev, Oleg; Pospelov, Maxim; Ritz, Adam; Lebedev, Oleg; Olive, Keith A.; Pospelov, Maxim; Ritz, Adam
2004-01-01
We present an analysis of the electric dipole moment (EDM) of the deuteron as induced by CP-violating operators of dimension 4, 5 and 6 including theta QCD, the EDMs and color EDMs of quarks, four-quark interactions and the Weinberg operator. We demonstrate that the precision goal of the EDM Collaboration's proposal to search for the deuteron EDM, (1-3)\\times 10^{-27} e cm, will provide an improvement in sensitivity to these sources of one-two orders of magnitude relative to the existing bounds. We consider in detail the level to which CP-odd phases can be probed within the MSSM.
Magnetic moment of extremely proton-rich nucleus 23Al
International Nuclear Information System (INIS)
Nagatomo, T; Matsuta, K; Ozawa, A; Nakashima, Y; Matsumiya, R; Mihara, M; Yasuno, T; Chiba, A; Yamada, K; Momota; Ohtsubo, T; Ohta, M; Shinojima, D; Izumikawa, T; Tanaka, H; Yamaguchi, T; Nakajima, S; Maemura, H; Muranaka, K; Kumashiro, S; Fujiwara, H; Yoshida, K; Sumikama, T; Tanaka, K; Ogura, M; Minamisono, K; Fukuda, M; Minamisono, T; Nojiri, Y; Suzuki, T; Tanihata, I; Alonso, J R; Krebs, G F; Symons, T J M
2005-01-01
The g-factor of the extremely proton-rich nucleus 23 Al (T 1/2 = 0.47 s) has been measured by means of the β-NMR method for the first time. The g-factor were determined as |g| = 1.557(88) from the obtained NMR spectra. From the comparison between the experimental value and the shell model calculation, the spin parity of the ground state of 23 Al was determined as I π = 5/2 + . Thus, the magnetic moment of 23 Al was determined as vertical bar μvertical bar = 3.89(22)μ N
Electric dipole moment searches using the isotope 129-xenon
Energy Technology Data Exchange (ETDEWEB)
Kuchler, Florian
2014-11-13
Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.
Moments of general Heisenberg Hamiltonians up to sixth order
Schmidt, Heinz-Juergen; Lohmann, Andre; Richter, Johannes
2010-01-01
We explicitly calculate the moments t_n of general Heisenberg Hamiltonians up to sixth order. They have the form of finite sums of products of two factors, the first factor being represented by a multigraph and the second factor being a polynomial in the variable s(s + 1), where s denotes the individual spin quantum number. As an application we determine the corresponding coefficients of the expansion of the free energy and the zero field susceptibility in powers of the inverse temperature. T...
Spins, Electromagnetic Moments, and Isomers of 107-129Cd
Yordanov, D T; Bieron, J; Bissell, M L; Blaum, K; Budincevic, I; Fritzsche, S; Frommgen, N; Georgiev, G; Geppert, Ch; Hammen, M; Kowalska, M; Kreim, K; Krieger, A; Neugart, R; Nortershauser, W; Papuga, J; Schmidt, S
2013-01-01
The neutron-rich isotopes of cadmium up to the N=82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11/2- quadrupole moments. Remarkably, this mechanism is found to act well beyond the h11/2 shell.
Toroidal Dipole Moment of the Lightest Neutralino in the MSSM
International Nuclear Information System (INIS)
Cabral-Rosetti, L G; Mondragon, M; Perez, E Reyes
2011-01-01
In order to characterize one of the most favored candidates for dark matter, we calculate the anapole form factor of the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM) at the one-loop level. As a Majorana fermion, this particle only shows one electromagnetic property, the toroidal dipole moment, which is directly related to the anapole form factor. We obtain the result analitically in terms of two- and three-points Passarino-Veltman scalar functions and evaluate it for a given spectrum of supersymmetric masses and matrix elements. This work is part of a broader project still in progress.
Lattice results for low moments of light meson distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Arthur, R.; Boyle, P.A. [Edinburgh Univ. (United Kingdom). SUPA, School of Physics; Broemmel, D.; Flynn, J.M.; Rae, T.D.; Sachrajda, C.T.C. [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Donnellan, M.A. [NIC/DESY Zeuthen (Germany); Juettner, A. [CERN, Geneva (Switzerland). Physics Dept.
2010-12-15
As part of the UKQCD and RBC collaborations' N{sub f} = 2+1 domain-wall fermion phenomenology programme, we calculate the first two moments of the light-cone distribution amplitudes of the pseudoscalar mesons {pi} and K and the (longitudinally-polarised) vector mesons {rho}, K{sup *} and {phi}. We obtain the desired quantities with good precision and are able to discern the expected quark-mass dependence of SU(3)-flavour breaking effects. An important ingredient of the calculation is the nonperturbative renormalisation of lattice operators using the RI{sup '}/MOM technique. (orig.)
Muscle moment arms of the gibbon hind limb: implications for hylobatid locomotion
Channon, Anthony J; Crompton, Robin H; Guenther, Michael M; Vereecke, Evie
2010-01-01
Muscles facilitate skeletal movement via the production of a torque or moment about a joint. The magnitude of the moment produced depends on both the force of muscular contraction and the size of the moment arm used to rotate the joint. Hence, larger muscle moment arms generate larger joint torques and forces at the point of application. The moment arms of a number of gibbon hind limb muscles were measured on four cadaveric specimens (one Hylobates lar, one H. moloch and two H. syndactylus). ...
Numerically Stable Evaluation of Moments of Random Gram Matrices With Applications
Elkhalil, Khalil
2017-07-31
This paper focuses on the computation of the positive moments of one-side correlated random Gram matrices. Closed-form expressions for the moments can be obtained easily, but numerical evaluation thereof is prone to numerical stability, especially in high-dimensional settings. This letter provides a numerically stable method that efficiently computes the positive moments in closed-form. The developed expressions are more accurate and can lead to higher accuracy levels when fed to moment based-approaches. As an application, we show how the obtained moments can be used to approximate the marginal distribution of the eigenvalues of random Gram matrices.
Loftus, A. M.; Cotton, W. R.
2014-12-01
Microphysical parameterizations in numerical cloud models continue to grow in complexity as our capability to represent microphysical processes increases owing to greater knowledge of these processes as well as advances in computing power. In Part I of this study, a new triple-moment bulk hail microphysics scheme (3MHAIL) that predicts the spectral shape parameter of the hail size distribution was presented and evaluated against lower order-moment schemes. In this paper, the 3MHAIL scheme is verified in simulations of a well-observed supercell storm that occurred over northwest Kansas on 29 June 2000 during the Severe Thunderstorm and Electrification and Precipitation Study (STEPS). Comparisons of the simulation results with the observations for this case, as well as with results of simulations using two different two-moment (2M) configurations of the RAMS microphysics schemes, suggest a significant improvement of the simulated storm structure and evolution is achieved with the 3MHAIL scheme. The generation of large hail and subsequent fallout in the simulation using 3MHAIL microphysics show particularly good agreement with surface hail reports for this storm as well as with previous studies of hail-producing supercell storms. On the other hand, the simulation with 2M microphysics produces only small hail aloft and virtually no hail at the surface, whereas a 2M version of the 3MHAIL scheme (with a fixed spectral shape parameter) produces unrealistically high amounts of large hail at low levels as a result of artificial shifts in the hail size spectra towards larger diameter hail during the melting process.
Determining and correcting "moment bias" in gradient polymer elution chromatography.
Striegel, André M
2003-05-09
Gradient polymer elution chromatography (GPEC) is rapidly becoming the analytical method of choice for determining the chemical composition distribution (CCD) of synthetic polymers. GPEC can be performed in traditional (strict precipitation-redissolution mechanism) or interactive (normal- and reversed-phase) modes, and results may be qualitative, semi-quantitative, or fully quantitative. Quantitative approaches have thus far relied on colligative or end group techniques for determining the values of standards used in constructing the GPEC calibration curve. While the values obtained from said methods are number-averages, they are assigned to the peak apexes of the standards (i.e. assigned as peak averages). This creates a determinate error in the quantitation, referred to herein as "moment bias". In this paper we determine moment bias for a series of styrene-acrylonitrile (SAN) copolymers, where the distribution and averages of the AN% have been measured using normal-phase (NP) GPEC. We also correct for the effect via statistical treatment of the chromatographic data.
The moment segmentation analysis of heart sound pattern.
Yan, Zhonghong; Jiang, Zhongwei; Miyamoto, Ayaho; Wei, Yunlong
2010-05-01
This paper presents two new ideas. The first one is to apply the Viola integral waveform method to analyze the heart sounds recorded by an electric stethoscope, and the multi-scale moment analysis is proposed to locate each cycle of heart sounds. A fast algorithm for calculating characteristic waveform (CW) and characteristic moment waveform (CMW) of heart sound can be expressed by the Viola integral method, and their calculation time has nothing to do with their scales. The second idea is easier to segment the heart sound based on its approximate cyclical characteristic than the ordinary methods. Each heart sound cycle can be quickly found by CMW's Local Extreme Points (LEPs). Based on the information of LEPs and CW, a high accurate search algorithm to segment S1 and S2 sounds is submitted. By numerical experiments, the important parameters of time scale delta=0.05s for CW and l=0.45s for CMW are obtained and validated for segmentation of heart sound. More exact segmentation boundaries of the heart sound signal could be located fast in an automated way, and a further performance analysis is presented. Owing to the use of the rhythm of CMW curves, the proposed method not only gives a higher success segmentation rate, but also it is actually simpler and faster than the wavelet method. Crown Copyright (c) 2009. Published by Elsevier Ireland Ltd. All rights reserved.
Time reversal violating nuclear polarizability and atomic electric dipole moment
International Nuclear Information System (INIS)
Ginges, J.S.M.; Flambaum, V.V.; Mititelu, G.
2000-01-01
Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -β ik E i H k , where β ik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ 0 and ψ n are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -β ik E i H k , where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψ n is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation
Electromagnetic moments and electric dipole transitions in carbon isotopes
International Nuclear Information System (INIS)
Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi
2003-01-01
We carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the configuration dependence of the quadrupole and magnetic moments of the odd C isotopes, which will be useful to find out the deformations and the spin parities of the ground states of these nuclei. We also study the electric dipole states of C isotopes, focusing on the interplay between low energy pigmy strength and giant dipole resonances. As far as the energies of the resonances are concerned, reasonable agreement is obtained with available experimental data for the photoreaction cross sections in 12 C, 13 C, and 14 C, both in the low energy region below (ℎ/2π)ω=14 MeV and in the high energy giant resonance region (14 MeV 15 C is found to exhaust about 12-16 % of the classical Thomas-Reiche-Kuhn sum rule value and 50-80 % of the cluster sum rule value
Tunisian gamma source load planning using multipole moment method
International Nuclear Information System (INIS)
Loussaief, Abdelkader; Mannai, Kais; Trabelsi, Adel
2005-01-01
Many methods, especially Monte Carlo simulation technique and Point Kernel method are idely used for radiation profile studies. However, these methods are either time consuming or fairly accurate when dealing with extended gamma sources particularly for optimization studies. Furthermore, while the buildup factor and the attenuation effects were well investigated in the literature, little work was done about the systematic influence of the source extension. In this work we focus on the effect of the source geometry using the generalized Laplace's expansion. We express the bare gamma photon flux rate in terms of the standard Cartesian multipole moments. Using the properties of these moments we establish a close relationship between the radiation profile and the geometrical features of the source. As applications we propose to use the multipole expansion method to investigate the radiation profile isotropy of the source. A detailed study of the arrangement of the unit pencil sources of the tunisian irradiation facility is performed. Using this method, millions of possible configurations for various load plans investigated, in few minutes and even multisteps scenarios were considered. As a result, the current configuration of the source was found to be not optimized. Furthermore, using these analytical method it was possible to optimize the activity of each new unit source
Effect of Posture on Hip Angles and Moments during Gait
Lewis, Cara L.; Sahrmann, Shirley A.
2014-01-01
Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. PMID:25262565
Effect of posture on hip angles and moments during gait.
Lewis, Cara L; Sahrmann, Shirley A
2015-02-01
Anterior hip pain is common in young, active adults. Clinically, we have noted that patients with anterior hip pain often walk in a swayback posture, and that their pain is reduced when the posture is corrected. The purpose of this study was to investigate a potential mechanism for the reduction in pain by testing the effect of posture on movement patterns and internal moments during gait in healthy subjects. Fifteen subjects were instructed to walk while maintaining three postures: 1) natural, 2) swayback, and 3) forward flexed. Kinematic and force data were collected using a motion capture system and a force plate. Walking in the swayback posture resulted in a higher peak hip extension angle, hip flexor moment and hip flexion angular impulse compared to natural posture. In contrast, walking in a forward flexed posture resulted in a decreased hip extension angle and decreased hip flexion angular impulse. Based on these results, walking in a swayback posture may result in increased forces required of the anterior hip structures, potentially contributing to anterior hip pain. This study provides a potential biomechanical mechanism for clinical observations that posture correction in patients with hip pain is beneficial. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shell structure of potassium isotopes deduced from their magnetic moments
Papuga, J.; Kreim, K; Barbieri, C; Blaum, K; De Rydt, M; Duguet, T; Garcia Ruiz, R F; Heylen, H; Kowalska, M; Neugart, R; Neyens, G; Nortershauser, W; Rajabali, M M; Sanchez, R; Smirnova, N; Soma, V; Yordanov, D T
2014-09-29
$\\textbf{Background:}$ Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \\\\ \\\\ $\\textbf{Purpose:}$ Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \\\\ \\\\ $\\textbf{Method:}$ High-resolution collinear laser spectroscopy on bunched atomic beams. \\\\ \\\\ $\\textbf{Results:}$ From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the levels, the experimental data were compared to shell-model calculations using SDPF-NR and SDPF-U effective interactions. In addition, a detailed discussion about the evolution of the gap between proton $1d_{3/2}$ and $2s_{1/2}$ in the shell model and $\\textit{ab initio}$ framework is al...
Transition quadrupole moments in the superdeformed band of 40Ca
International Nuclear Information System (INIS)
Chiara, C.J.; Ideguchi, E.; Devlin, M.; LaFosse, D.R.; Lerma, F.; Reviol, W.; Ryu, S.K.; Sarantites, D.G.; Baktash, C.; Galindo-Uribarri, A.; Carpenter, M.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Reiter, P.; Seweryniak, D.; Fallon, P.; Goergen, A.; Macchiavelli, A.O.; Rudolph, D.
2003-01-01
The transition quadrupole moments Q t for the superdeformed band in 40 Ca have been determined through thin-target Doppler-shift attenuation analyses. A best-fit value of Q t =1.30±0.05 e b is obtained when a single value is assumed for the entire band. Fitting separate quadrupole moments for in-band transitions decaying from the high-spin states and the presumably admixed low-spin states results in Q t (high)=1.81 -0.26 +0.41 e b and Q t (low)=1.18 -0.05 +0.06 e b, respectively. Q t values extracted for individual transitions in a Doppler-broadened line-shape analysis also indicate smaller Q t values at lower spins. These results are consistent with the interpretation of this band as an eight-particle-eight-hole superdeformed band with a significant admixture of less-collective configurations at low spins
Evaluation of bending moment and deflection of cantilever supported excavations
Directory of Open Access Journals (Sweden)
Seyed Hamid Yasrebi
2017-11-01
Full Text Available In many conditions, because of several restrictions, cantilever walls are the only way to stabilize the excavations. It is no doubt that one of the most important parameters in design of such walls is wall stiffness. Therefore, in this study, a large number of case histories are collected and the most commonly used range of wall thickness and stiffness are determined based on this database. In addition, validation of limit equilibrium method (LEM in granular soils showed that this method can only estimate bending moment of rigid walls. Therefore, for more accurate estimating, a new equation is presented for the most commonly used range of wall stiffness and various types of granular soils. Moreover, LEM based equation is replaced with a modified version. The new equation was successfully validated using 70 numerical models and results lied in range of 85% to 115% times the predicted values obtained from FEM. According to the results, in loose and very loose soils, the common cantilever walls can only stabilize the excavations with depth less than 10 m. While if depth is more than 15 m, soil type should be dense or very dense with “E” more than about 70 MPa. The results also show that the effect of wall stiffness is negligible in bending moments less than 2000 kN.m.
The magnetic moments of the proton and the antiproton
Ulmer, S.; Blaum, K.; Braeuninger, S.; Franke, K.; Kracke, H.; Leiteritz, C.; Matsuda, Y.; Nagahama, H.; Ospelkaus, C.; Rodegheri, C.C.; Quint, W.; Schneider, G.; Smorra, C.; Van Gorp, S.; Walz, J.; Yamazaki, Y.
2014-01-01
Recent exciting progress in the preparation and manipulation of the motional quantum states of a single trapped proton enabled the first direct detection of the particle's spin state. Based on this success the proton magnetic moment $\\mu_p$ was measured with ppm precision in a Penning trap with a superimposed magnetic field inhomogeneity. An improvement by an additional factor of 1000 in precision is possible by application of the so-called double Penning trap technique. In a recent paper we reported the first demonstration of this method with a single trapped proton, which is a major step towards the first direct high-precision measurement of $\\mu_p$. The techniques required for the proton can be directly applied to measure the antiproton magnetic moment $\\mu_{\\bar{p}}$. An improvement in precision of $\\mu_{\\bar{p}}$ by more than three orders of magnitude becomes possible, which will provide one of the most sensitive tests of CPT invariance. To achieve this research goal we are currently setting up the Baryo...
Satellite communication performance evaluation: Computational techniques based on moments
Omura, J. K.; Simon, M. K.
1980-01-01
Computational techniques that efficiently compute bit error probabilities when only moments of the various interference random variables are available are presented. The approach taken is a generalization of the well known Gauss-Quadrature rules used for numerically evaluating single or multiple integrals. In what follows, basic algorithms are developed. Some of its properties and generalizations are shown and its many potential applications are described. Some typical interference scenarios for which the results are particularly applicable include: intentional jamming, adjacent and cochannel interferences; radar pulses (RFI); multipath; and intersymbol interference. While the examples presented stress evaluation of bit error probilities in uncoded digital communication systems, the moment techniques can also be applied to the evaluation of other parameters, such as computational cutoff rate under both normal and mismatched receiver cases in coded systems. Another important application is the determination of the probability distributions of the output of a discrete time dynamical system. This type of model occurs widely in control systems, queueing systems, and synchronization systems (e.g., discrete phase locked loops).
Hadronic electric dipole moments in R-parity violating supersymmetry
International Nuclear Information System (INIS)
Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Kovalenko, Sergey
2006-01-01
We calculate the electric dipole moments (EDM) of the neutral 199 Hg atom, neutron and deuteron within a generic R-parity violating SUSY model (Re p SUSY) on the basis of a one-pion-exchange model with CP-odd pion-nucleon interactions. We consider two types of the Re p SUSY contributions to the above hadronic EDMs: via the quark chromoelectric dipole moments (CEDM) and CP-violating 4-quark interactions. We demonstrate that the former contributes to all the three studied EDMs while the latter appears only in the nuclear EDMs via the CP-odd nuclear forces. We find that the Re p SUSY induced 4-quark interactions arise at tree level through the sneutrino exchange and involve only s and b quarks. Therefore, their effect in hadronic EDMs is determined by the strange and bottom-quark sea of the nucleon. From the null experimental results on the hadronic EDMs we derive the limits on the imaginary parts of certain products Im(λ ' λ ' *) of the trilinear Re p -couplings and show that the currently best limits come from the 199 Hg EDM experiments. We demonstrate that some of these limits are better than those existing in the literature. We argue that future storage ring experiments on the deuteron EDM are able to improve these limits by several orders of magnitude
Habit predicts in-the-moment alcohol consumption.
Albery, Ian P; Collins, Isabelle; Moss, Antony C; Frings, Daniel; Spada, Marcantonio M
2015-02-01
The objective of this study was to examine whether habit predicts in-the-moment behavioural intention (amount of alcohol poured) and behavioural enactment (amount and proportion of alcohol consumed) controlling for craving and positive alcohol expectancies. Forty-six college students, who defined themselves as social drinkers, were tested individually in a laboratory setting. After completing a measure of craving they were given a bottle of non-alcoholic beer and a cup, asked to pour a drink, and then drink as much as they liked. They were not informed that the beer was non-alcoholic. They were subsequently asked to complete measures of alcohol use and misuse, positive alcohol expectancies and habit. Positive alcohol expectancies were positively and significantly associated with the amount of alcohol poured and the amount and proportion of alcohol consumed. Habit was positively and significantly associated with the amount and proportion of alcohol consumed but not with the amount of alcohol poured. Hierarchical regression analyses revealed that only habit was a significant predictor of both the amount and proportion of alcohol consumed. Even though measures of intention (amount of alcohol poured) and behaviour (amount and proportion of alcohol consumed) were positively correlated, habit was shown to effectively discriminate between these measures. These findings suggest that habit predicts in-the-moment behavioural enactment in terms of the amount and proportion of alcohol consumed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Magic moment? Maternal marriage for children born out of wedlock.
Gibson-Davis, Christina
2014-08-01
To test the existence of the "magic moment" for parental marriage immediately post-birth and to inform policies that preferentially encourage biological over step parent marriage, this study estimates the incidence and stability of maternal marriage for children born out of wedlock. Data came from the National Survey of Family Growth on 5,255 children born non maritally. By age 15, 29 % of children born non maritally experienced a biological-father marriage, and 36 % experienced a stepfather marriage. Stepfather marriages occurred much later in a child's life-one-half occurred after the child turned age 7-and had one-third higher odds of dissolution. Children born to black mothers had qualitatively different maternal marriage experiences than children born to white or Hispanic mothers, with less biological-parent marriage and higher incidences of divorce. Findings support the existence of the magic moment and demonstrate that biological marriages were more enduring than stepfather marriages. Yet relatively few children born out of wedlock experienced stable, biological-parent marriages as envisioned by marriage promotion programs.
Molecular alloy with diluted magnetic moments-molecular Kondo system.
Idobata, Yuki; Zhou, Biao; Kobayashi, Akiko; Kobayashi, Hayao
2012-01-18
[Ni(1-x)Cu(x)(tmdt)(2)] (tmdt = trimethylenetetrathiafulvalenedithiolate) was prepared for realizing molecular Kondo systems. Magnetic moments (S = (1)/(2)) are considered to exist at the central {CuS(4)} parts of Cu(tmdt)(2) molecules. The χT-versus-T curve of the system with x ≈ 0.15 showed a broad peak at ~10 K. The decrease in the χT value below 10 K is consistent with a singlet ground state, as expected for a Kondo system. However, in the system with x ≈ 0.27, the χT value decreased when the temperature was lowered to 2 K, indicating antiferromagnetic interactions between magnetic moments through π-d interactions. Although the susceptibility anomaly suggested that the π-d interactions become important at T K. However, the differential resistivity Δρ(T) = ρ(obs) - ρ(L)(T) showed a logarithmic resistivity increase at 8-20 K with decreasing temperature, where ρ(L)(T) is a fitted function of ρ(obs) obtained at T > 50 K that is considered to represent approximately the temperature dependence of the resistivity without spin scattering of the conduction electrons. © 2011 American Chemical Society
Relations between pressurized triaxial cavities and moment tensor distributions
Directory of Open Access Journals (Sweden)
Claudio Ferrari
2015-09-01
Full Text Available Pressurized cavities are commonly used to compute ground deformation in volcanic areas: the set of available solutions is limited and in some cases the moment tensors inferred from inversion of geodetic data cannot be associated with any of the available models. Two different source models (pure tensile source, TS and mixed tensile/shear source, MS are studied using a boundary element approach for rectangular dislocations buried in a homogeneous elastic medium employing a new C/C++ code which provides a new implementation of the dc3d Okada fortran code. Pressurized triaxial cavities are obtained assigning the overpressure in the middle of each boundary element distributed over the cavity surface. The MS model shows a moment domain very similar to triaxial ellipsoidal cavities. The TS and MS models are also compared in terms of the total volume increment limiting the analysis to cubic sources: the observed discrepancy (~10% is interpreted in terms of the different deformation of the source interior which provides significantly different internal contributions (~30%. Comparing the MS model with a Mogi source with the some volume, the overpressure of the latter must be ~37% greater than the former, in order to obtain the same surface deformation; however the outward expansion and the inner contraction separately differ by ~±10% and the total volume increments differ only by ~2%. Thus, the density estimations for the intrusion extracted from the MS model and the Mogi model are nearly identical.
Reversible 90-Degree Rotation of Fe Magnetic Moment Using Hydrogen.
Hsu, Chuan-Che; Chang, Po-Chun; Chen, Yi-Hua; Liu, Chak-Ming; Wu, Chun-Te; Yen, Hung-Wei; Lin, Wen-Chin
2018-02-19
[Pd/Fe] 2 multilayers were deposited on a flat MgO(001) to study the effect of hydrogen on magnetic interlayer coupling. Complex magnetic hysteresis behavior, including single, double, and triple loops, were measured as a function of the azimuthal angle in a longitudinal and transverse direction. With a combination of a 2-fold magnetic anisotropy energy (MAE) in the bottom-Fe and a 4-fold MAE in the top-Fe, the complex magnetic hysteresis behavior could be clearly explained. Two well-split hysteresis loops with almost zero Kerr remanence were measured by choosing a suitable Pd thickness and applying the magnetic field perpendicular to the easy axis of the bottom-Fe. The split double loops originated from the 90°-rotation of the top-Fe moment. On exposure to a hydrogen gas atmosphere, the separation of the two minor loops increased, indicating that Pd-hydride formation enhanced the ferromagnetic coupling between the two Fe layers. Based on these observations, we proposed that, by applying a suitable constant magnetic field, the top-Fe moment could undergo reversible 90°-rotation following hydrogen exposure. The results suggest that the Pd space layer used for mediating the magnetic interlayer coupling is sensitive to hydrogen, and therefore, the multilayer system can function as a giant magnetoresistance-type sensor suitable for hydrogen gas.
Moment of inertia of liquid in a tank
Directory of Open Access Journals (Sweden)
Lee Gyeong Joong
2014-03-01
Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green’s 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solu¬tions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.
Pixel classification based color image segmentation using quaternion exponent moments.
Wang, Xiang-Yang; Wu, Zhi-Fang; Chen, Liang; Zheng, Hong-Liang; Yang, Hong-Ying
2016-02-01
Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. In recent years, many image segmentation algorithms have been developed, but they are often very complex and some undesired results occur frequently. In this paper, we propose a pixel classification based color image segmentation using quaternion exponent moments. Firstly, the pixel-level image feature is extracted based on quaternion exponent moments (QEMs), which can capture effectively the image pixel content by considering the correlation between different color channels. Then, the pixel-level image feature is used as input of twin support vector machines (TSVM) classifier, and the TSVM model is trained by selecting the training samples with Arimoto entropy thresholding. Finally, the color image is segmented with the trained TSVM model. The proposed scheme has the following advantages: (1) the effective QEMs is introduced to describe color image pixel content, which considers the correlation between different color channels, (2) the excellent TSVM classifier is utilized, which has lower computation time and higher classification accuracy. Experimental results show that our proposed method has very promising segmentation performance compared with the state-of-the-art segmentation approaches recently proposed in the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.
How to Detect Insight Moments in Problem Solving Experiments
Directory of Open Access Journals (Sweden)
Ruben E. Laukkonen
2018-03-01
Full Text Available Arguably, it is not possible to study insight moments during problem solving without being able to accurately detect when they occur (Bowden and Jung-Beeman, 2007. Despite over a century of research on the insight moment, there is surprisingly little consensus on the best way to measure them in real-time experiments. There have also been no attempts to evaluate whether the different ways of measuring insight converge. Indeed, if it turns out that the popular measures of insight diverge, then this may indicate that researchers who have used one method may have been measuring a different phenomenon to those who have used another method. We compare the strengths and weaknesses of the two most commonly cited ways of measuring insight: The feelings-of-warmth measure adapted from Metcalfe and Wiebe (1987, and the self-report measure adapted from Bowden and Jung-Beeman (2007. We find little empirical agreement between the two measures, and conclude that the self-report measure of Aha! is superior both methodologically and theoretically, and provides a better representation of what is commonly regarded as insight. We go on to describe and recommend a novel visceral measure of insight using a dynamometer as described in Creswell et al. (2016.
Rotations et moments angulaires enmécanique quantique
van de Wiele, J.
Rotations and angular moments in quantum mechanics As in classical mechanics, rotation in quantum mechanics is a transformation which deals with angular momentum. The difference with classical mechanics comes from the fact that angular momentum is a vector operator and not a usual vector and its components do not commute. As for any transformation in quantum mechanics, to each rotation we can associate an operator which acts in state space. The expression of this operator depends on whether the rotation is passive, that is we do a rotation of the coordinate axes and the physical system is left unchanged, or active, in which case the coordinate axes are unchanged and the rotation is performed on the physical system. In the first part (Chaps. 1 and 2) of this book, details concerning both aspects are given. Following the definition of the geometrical transformation associated with the most general rotation, we give the expression of the rotation operator for specific cases. Transformation laws for scalar fields, vector fields and spinor fields are given as well as transformation laws for scalar operators, vector operators and more generally, for operators of any rank. The second part (Chaps. 3 and 4) deals with angular momentum algebra. We define the coupling coefficients of 2, 3 and 4 angular momenta as well as the recoupling coefficients. The definition of the irreductible tensor operator, which is a generalisation of scalar and vector operators, is given as well as the Wigner-Eckart theorem. The application of this theorem to more complex cases is studied. Comme en mécanique classique, la rotation en mécanique quantique est une transformation qui fait intervenir le moment cinétique. La différence avec la mécanique classique vient du fait que le moment cinétique est un opérateur vectoriel et non pas un vecteur ordinaire, et que ses composantes ne commutent pas deux-à-deux. Comme pour toute transformation en mécanique quantique, à chaque rotation est
Temporal Characteristics of Lower Extremity Moment Generation in Children with Cerebral Palsy
Downing, Andrea L.; Ganley, Kathleen J.; Fay, Deanne R.; Abbas, James J.
2009-01-01
Lower extremity weakness has been documented in children with cerebral palsy (CP). However, the temporal characteristics of moment generation have not been characterized, and they may be important to function. This study tested ankle, knee, and hip flexion and extension moment generation capabilities in children with CP and in able-bodied children. Maximum voluntary isometric contractions (MVIC), the maximum rates of moment development and relaxation, and the time to produce and reduce the moments were quantified. Relationships between the temporal measures, Gross Motor Function Measure-66 (GMFM-66), and MVICs were also examined. Children with CP had significantly reduced MVICs, maximum development and relaxation rates, and increased times to produce and reduce moments. The maximum rates of moment development and relaxation at some joints were correlated with the GMFM-66 and MVICs. These results suggest that both the magnitude and temporal characteristics of moment generation need to be targeted during therapeutic interventions for children with CP. PMID:19260049
The verification of the Taylor-expansion moment method in solving aerosol breakage
Directory of Open Access Journals (Sweden)
Yu Ming-Zhou
2012-01-01
Full Text Available The combination of the method of moment, characterizing the particle population balance, and the computational fluid dynamics has been an emerging research issue in the studies on the aerosol science and on the multiphase flow science. The difficulty of solving the moment equation arises mainly from the closure of some fractal moment variables which appears in the transform from the non-linear integral-differential population balance equation to the moment equations. Within the Taylor-expansion moment method, the breakage-dominated Taylor-expansion moment equation is first derived here when the symmetric fragmentation mechanism is involved. Due to the high efficiency and the high precision, this proposed moment model is expected to become an important tool for solving population balance equations.
International Nuclear Information System (INIS)
Oztekin, E.
2010-01-01
In this study, magnetic multipole moment integrals are calculated by using Slater type orbitals (STOs), Fourier transform and translation formulas. Firstly, multipole moment operators which appear in the three-center magnetic multipole moment integrals are translated to b-center from 0-center. So, three-center magnetic multipole moment integrals have been reduced to the two-center. Then, the obtained analytical expressions have been written in terms of overlap integrals. When the magnetic multipole moment integrals calculated, matrix representations for x-, y- and z-components of multipole moments was composed and every component was separately calculated to analytically. Consequently, magnetic multipole moment integrals are also given in terms of the same and different screening parameters.
You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi
2016-01-15
The analytic potential energy functions (APEFs) of the X(1)Σ(+), 2(1)Σ(+), a(3)Σ(+), and 2(3)Σ(+) states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations. Copyright © 2015 Elsevier B.V. All rights reserved.
Magnitude conversion to unified moment magnitude using orthogonal regression relation
Das, Ranjit; Wason, H. R.; Sharma, M. L.
2012-05-01
Homogenization of earthquake catalog being a pre-requisite for seismic hazard assessment requires region based magnitude conversion relationships. Linear Standard Regression (SR) relations fail when both the magnitudes have measurement errors. To accomplish homogenization, techniques like Orthogonal Standard Regression (OSR) are thus used. In this paper a technique is proposed for using such OSR for preparation of homogenized earthquake catalog in moment magnitude Mw. For derivation of orthogonal regression relation between mb and Mw, a data set consisting of 171 events with observed body wave magnitudes (mb,obs) and moment magnitude (Mw,obs) values has been taken from ISC and GCMT databases for Northeast India and adjoining region for the period 1978-2006. Firstly, an OSR relation given below has been developed using mb,obs and Mw,obs values corresponding to 150 events from this data set. M=1.3(±0.004)m-1.4(±0.130), where mb,proxy are body wave magnitude values of the points on the OSR line given by the orthogonality criterion, for observed (mb,obs, Mw,obs) points. A linear relation is then developed between these 150 mb,obs values and corresponding mb,proxy values given by the OSR line using orthogonality criterion. The relation obtained is m=0.878(±0.03)m+0.653(±0.15). The accuracy of the above procedure has been checked with the rest of the data i.e., 21 events values. The improvement in the correlation coefficient value between mb,obs and Mw estimated using the proposed procedure compared to the correlation coefficient value between mb,obs and Mw,obs shows the advantage of OSR relationship for homogenization. The OSR procedure developed in this study can be used to homogenize any catalog containing various magnitudes (e.g., ML, mb, MS) with measurement errors, by their conversion to unified moment magnitude Mw. The proposed procedure also remains valid in case the magnitudes have measurement errors of different orders, i.e. the error variance ratio is
The Strain Energy, Seismic Moment and Magnitudes of Large Earthquakes
Purcaru, G.
2004-12-01
The strain energy Est, as potential energy, released by an earthquake and the seismic moment Mo are two fundamental physical earthquake parameters. The earthquake rupture process ``represents'' the release of the accumulated Est. The moment Mo, first obtained in 1966 by Aki, revolutioned the quantification of earthquake size and led to the elimination of the limitations of the conventional magnitudes (originally ML, Richter, 1930) mb, Ms, m, MGR. Both Mo and Est, not in a 1-to-1 correspondence, are uniform measures of the size, although Est is presently less accurate than Mo. Est is partitioned in seismic- (Es), fracture- (Eg) and frictional-energy Ef, and Ef is lost as frictional heat energy. The available Est = Es + Eg (Aki and Richards (1980), Kostrov and Das, (1988) for fundamentals on Mo and Est). Related to Mo, Est and Es, several modern magnitudes were defined under various assumptions: the moment magnitude Mw (Kanamori, 1977), strain energy magnitude ME (Purcaru and Berckhemer, 1978), tsunami magnitude Mt (Abe, 1979), mantle magnitude Mm (Okal and Talandier, 1987), seismic energy magnitude Me (Choy and Boatright, 1995, Yanovskaya et al, 1996), body-wave magnitude Mpw (Tsuboi et al, 1998). The available Est = (1/2μ )Δ σ Mo, Δ σ ~=~average stress drop, and ME is % \\[M_E = 2/3(\\log M_o + \\log(\\Delta\\sigma/\\mu)-12.1) ,\\] % and log Est = 11.8 + 1.5 ME. The estimation of Est was modified to include Mo, Δ and μ of predominant high slip zones (asperities) to account for multiple events (Purcaru, 1997): % \\[E_{st} = \\frac{1}{2} \\sum_i {\\frac{1}{\\mu_i} M_{o,i} \\Delta\\sigma_i} , \\sum_i M_{o,i} = M_o \\] % We derived the energy balance of Est, Es and Eg as: % \\[ E_{st}/M_o = (1+e(g,s)) E_s/M_o , e(g,s) = E_g/E_s \\] % We analyzed a set of about 90 large earthquakes and found that, depending on the goal these magnitudes quantify differently the rupture process, thus providing complementary means of earthquake characterization. Results for some
Moment Tensor code for the Antelope Environmental Monitoring System
Reyes, J.; Newman, R.; Vernon, F.; van den Hazel, G.
2012-04-01
The time domain seismic moment tensor inversion software package written by Dreger (2003) and updated by Minson & Dreger (2008) has been rewritten for inclusion into the open-source contributed code repository for the Boulder Real Time Technology (BRTT) Antelope Environmental Monitoring System. The new code-base was written natively in the Python language and utilizes the Python interface to Antelope (Lindquist et al., 2008) for data access, Scientific Tools for Python library (Eric Jones et al., 2001) for computation and analysis, and the ObsPy library (Beyreuther et al., 2010) for graphical representation. The new code archives all data products into a Center for Seismic Studies (CSS) 3.0 schema table for easy access and distribution of solutions. Stability of the analysis, verification of results and correlation of solutions with similar methods are discussed in this presentation. Analysis is focused on regional earthquakes recorded by Earthscope's USArray network and event parameters are taken from real time and post-event processed data analysis at the Array Network Facility (ANF). A calibrated velocity model representative of the south-west continental United States is used for the analysis. Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. and Wassermann, J. (2010) ObsPy: A Python Toolbox for Seismology, Seismic Research Letters, 81(3), 530-533. Dreger, D. (2003) TDMT_INV: Time Domain Seismic Moment Tensor INVersion, International Handbook of Earthquake and Engineering Seismology, Volume 81B, p 1627. Eric Jones, Travis Oliphant, Pearu Peterson (2001) SciPy: Open Source Scientific Tools for Python, "http://www.scipy.org/" Lindquist, K.G., Clemesha, A., Newman, R.L. and Vernon, F.L. (2008) The Python Interface to Antelope and Applications. Eos Trans. AGU 89(53), Fall Meet. Suppl., Abstract G43A-0671 Minson, S. & Dreger, D. (2008) Stable inversions for complete moment tensors. Geophys. J. Int., 174, 585-592 Saikia, C. (1994) Modified frequency
Numerical integration of discontinuous functions: moment fitting and smart octree
Hubrich, Simeon; Di Stolfo, Paolo; Kudela, László; Kollmannsberger, Stefan; Rank, Ernst; Schröder, Andreas; Düster, Alexander
2017-11-01
A fast and simple grid generation can be achieved by non-standard discretization methods where the mesh does not conform to the boundary or the internal interfaces of the problem. However, this simplification leads to discontinuous integrands for intersected elements and, therefore, standard quadrature rules do not perform well anymore. Consequently, special methods are required for the numerical integration. To this end, we present two approaches to obtain quadrature rules for arbitrary domains. The first approach is based on an extension of the moment fitting method combined with an optimization strategy for the position and weights of the quadrature points. In the second approach, we apply the smart octree, which generates curved sub-cells for the integration mesh. To demonstrate the performance of the proposed methods, we consider several numerical examples, showing that the methods lead to efficient quadrature rules, resulting in less integration points and in high accuracy.
Electric dipole moment constraints on minimal electroweak baryogenesis
Huber, S J; Ritz, A; Huber, Stephan J.; Pospelov, Maxim; Ritz, Adam
2007-01-01
We study the simplest generic extension of the Standard Model which allows for conventional electroweak baryogenesis, through the addition of dimension six operators in the Higgs sector. At least one such operator is required to be CP-odd, and we study the constraints on such a minimal setup, and related scenarios with minimal flavor violation, from the null results of searches for electric dipole moments (EDMs), utilizing the full set of two-loop contributions to the EDMs. The results indicate that the current bounds are stringent, particularly that of the recently updated neutron EDM, but fall short of ruling out these scenarios. The next generation of EDM experiments should be sufficiently sensitive to provide a conclusive test.
Analytic moment method calculations of the drift wave spectrum
International Nuclear Information System (INIS)
Thayer, D.R.; Molvig, K.
1985-11-01
A derivation and approximate solution of renormalized mode coupling equations describing the turbulent drift wave spectrum is presented. Arguments are given which indicate that a weak turbulence formulation of the spectrum equations fails for a system with negative dissipation. The inadequacy of the weak turbulence theory is circumvented by utilizing a renormalized formation. An analytic moment method is developed to approximate the solution of the nonlinear spectrum integral equations. The solution method employs trial functions to reduce the integral equations to algebraic equations in basic parameters describing the spectrum. An approximate solution of the spectrum equations is first obtained for a mode dissipation with known solution, and second for an electron dissipation in the NSA
Contribution from neutrino Yukawa couplings to lepton electric dipole moments
Farzan, Yasaman; Peskin, Michael E.
2004-11-01
To explain the observed neutrino masses through the seesaw mechanism, a supersymmetric generalization of the standard model should include heavy right-handed neutrino supermultiplets. Then the neutrino Yukawa couplings can induce CP violation in the lepton sector. In this paper, we compute the contribution of these CP violating terms to lepton electric dipole moments. We introduce a new formalism that makes use of supersymmetry to expose the Glashow-Iliopoulos-Maiani cancellations. In the region of small tan(β, we find a different result from that given previously by Ellis, Hisano, Raidal, and Shimizu. We confirm the structure found by this group, but with a much smaller overall coefficient. In the region of large tan(β, we recompute the leading term that has been identified by Masina and confirm her result up to minor factors. We discuss the implications of these results for constraints on the Yν.
Toward verification of electroweak baryogenesis by electric dipole moments
Directory of Open Access Journals (Sweden)
Kaori Fuyuto
2016-04-01
Full Text Available We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU and electric dipole moments (EDMs in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.
Towards a new measurement of the neutron electric dipole moment
International Nuclear Information System (INIS)
Ban, G.; Bodek, K.; Daum, M.; Henneck, R.; Heule, S.; Kasprzak, M.; Khomytov, N.; Kirch, K.; Knecht, A.; Kistryn, S.; Knowles, P.; Kuzniak, M.; Lefort, T.; Naviliat-Cuncic, O.; Pichlmaier, A.; Plonka, C.; Quemener, G.; Rebetez, M.; Rebreyend, D.; Rogel, G.
2006-01-01
Precision measurements of particle electric dipole moments (EDMs) provide extremely sensitive means to search for non-standard mechanisms of T (or CP) violation. For the neutron EDM, the upper limit has been reduced by eight orders of magnitude in 50 years thereby excluding several CP violation scenarios. We report here on a new effort aiming at improving the neutron EDM limit by two orders of magnitude, down to a level of 3 x 10 -28 e.cm. The two central elements of the approach are the use of the higher densities which will be available at the new dedicated spallation UCN source at the Paul Scherrer Institute, and the optimization of the in-vacuum Ramsey resonance technique, with storage chambers at room temperature, to reach new limits of sensitivity.
Relativistic correction to the deuteron magnetic moment and angular condition
International Nuclear Information System (INIS)
Kondratyuk, L.A.; Strikman, M.I.
1983-01-01
The relativistic correction (RC) to the deuteron magnetic moment μsub(d) is investigated using the light-cone dynamics. The restrictions imposed by the angular condition on the electromagnetic current operator of deuteron are discussed in detail. It is shown that the additive model for the current operator of interacting consistuencies is consistent with the angular condition only for the two first terms of expansion of the ''good'' electromagnetic current component jsub(+) in powers of the momentum transfer q. The RC into μsub(d) is calculated using the mattix element of the ''good'' component. The account of RC decreases essentially the discrepancy between the theoretical and experimental values. The value of Δsub(μ) is determined for the Hamada-Johnston potential hard core potential (0.93x10 -2 ) for the Reid soft core potential (0.71x10 -2 ) and for the Paris potential (0.63x10 -2 )
Neutron electric dipole moment and extension of the standard model
International Nuclear Information System (INIS)
Oshimo, Noriyuki
2001-01-01
A nonvanishing value for the electric dipole moment (EDM) of the neutron is a prominent signature for CP violation. The EDM induced by the Kobayashi-Maskawa mechanism of the standard model (SM) has a small magnitude and its detection will be very difficult. However, since baryon asymmetry of the universe cannot be accounted for by the SM, there should exist some other source of CP violation, which may generate a large magnitude for the EDM. One of the most hopeful candidates for physics beyond the SM is the supersymmetric standard model, which contains such sources of CP violation. This model suggests that the EDM has a magnitude not much smaller than the present experimental bounds. Progress in measuring the EDM provides very interesting information about extension of the SM. (author)
Neutron electric dipole moment in the minimal supersymmetric standard model
International Nuclear Information System (INIS)
Inui, T.; Mimura, Y.; Sakai, N.; Sasaki, T.
1995-01-01
The neutron electric dipole moment (EDM) due to the single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in the parameters of soft supersymmetry breaking at low energies. The chargino one-loop diagram is found to give the dominant contribution of the order of 10 -27 similar 10 -29 e.cm for the quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. The gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions. (orig.)
Search for the permanent electric dipole moment of 129Xe
Sachdeva, Natasha; Chupp, Timothy; Gong, Fei; Babcock, Earl; Salhi, Zahir; Burghoff, Martin; Fan, Isaac; Killian, Wolfgang; Knappe-Grüneberg, Silvia; Schabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Degenkolb, Skyler; Fierlinger, Peter; Krägeloh, Eva; Lins, Tobias; Marino, Michael; Meinel, Jonas; Niessen, Benjamin; Stuiber, Stefan; Terrano, William; Kuchler, Florian; Singh, Jaideep
2017-09-01
CP-violation in Beyond-the-Standard-Model physics, necessary to explain the baryon asymmetry, gives rise to permanent electric dipole moments (EDMs). EDM measurements of the neutron, electron, paramagnetic and diamagnetic atoms constrain CP-violating parameters. The current limit for the 129Xe EDM is 6 ×10-27 e . cm (95 % CL). The HeXeEDM experiment at FRM-II (Munich Research Reactor) and BMSR-2 (Berlin Magnetically Shielded Room) uses a stable magnetic field in a magnetically shielded room and 3He comagnetometer with potential to improve the limit by two orders of magnitude. Polarized 3He and 129Xe free precession is detected with SQUID magnetometers in the presence of applied electric and magnetic fields. Conclusions from recent measurements will be presented.
Toward verification of electroweak baryogenesis by electric dipole moments
International Nuclear Information System (INIS)
Fuyuto, Kaori; Hisano, Junji; Senaha, Eibun
2016-01-01
We study general aspects of the CP-violating effects on the baryon asymmetry of the Universe (BAU) and electric dipole moments (EDMs) in models extended by an extra Higgs doublet and a singlet, together with electroweak-interacting fermions. In particular, the emphasis is on the structure of the CP-violating interactions and dependences of the BAU and EDMs on masses of the relevant particles. In a concrete mode, we investigate a relationship between the BAU and the electron EDM for a typical parameter set. As long as the BAU-related CP violation predominantly exists, the electron EDM has a strong power in probing electroweak baryogenesis. However, once a BAU-unrelated CP violation comes into play, the direct correlation between the BAU and electron EDM can be lost. Even in such a case, we point out that verifiability of the scenario still remains with the help of Higgs physics.
Can measurements of electric dipole moments determine the seesaw parameters?
International Nuclear Information System (INIS)
Demir, Durmus A.; Farzan, Yasaman
2005-01-01
In the context of the supersymmetrized seesaw mechanism embedded in the Minimal Supersymmetric Standard Model (MSSM), complex neutrino Yukawa couplings can induce Electric Dipole Moments (EDMs) for the charged leptons, providing an additional route to seesaw parameters. However, the complex neutrino Yukawa matrix is not the only possible source of CP violation. Even in the framework of Constrained MSSM (CMSSM), there are additional sources, usually attributed to the phases of the trilinear soft supersymmetry breaking couplings and the mu-term, which contribute not only to the electron EDM but also to the EDMs of neutron and heavy nuclei. In this work, by combining bounds on various EDMs, we analyze how the sources of CP violation can be discriminated by the present and planned EDM experiments
The Early Lunar Orbit and Principal Moments of Inertia
Garrick-Bethell, I.; Zuber, M. T.
2007-12-01
If taken at face value, the principal lunar moments of inertia suggest that the Moon froze in a past tidal and rotational state during a high eccentricity orbit [1]. At this time the Moon may have been in either synchronous rotation or in a 3:2 resonance of spin and mean motion. We have performed further investigations of the plausibility of past high eccentricity lunar orbits on the basis of orbital evolution, the dynamics of entry into any past 3:2 resonance, and tidal dissipation. We have found that the requisite permanent (B-A)/C (where A, B, and C are the principal moments of inertia) for a 3:2 resonance can be achieved in a magma ocean if a density anomaly is present shortly after lunar accretion. In a high eccentricity orbit, tidal dissipation will affect the Moon's ability to develop lithospheric strength. The Moon is presently able to support degree-two loads, while Io, which is approximately the same size as the Moon and strongly heated by tidal dissipation, probably cannot [2]. Therefore, somewhere between the present lunar radioactive heating rate (~1012 W), and Io's observed dissipation (~1014 W), the Moon may develop lithospheric strength. We use 1014 W as a loose upper bound on where freeze-in may begin and find that in a 3:2 resonance tidal dissipation [3] can drop below 1014 W at a = 25 RE and e = 0.17, and the present moments of inertia can be approximately reproduced for lunar values of QM = 475 (where a is the lunar semimajor axis, RE is the Earth radius, and Q is the specific dissipation function). This value of QM is somewhat large, but the biggest problem with a 3:2 resonance that lasts until 25 RE is how to achieve the current low eccentricity synchronous orbit. The required damping cannot be easily achieved unless the Moon is knocked out of a 3:2 resonance by an impactor that would produce a crater approximately 800 km in diameter. In sum, there is no single strong constraint that completely rules out a 3:2 resonance, but it would require a
Static and dynamic moments of the 7Li nucleus
International Nuclear Information System (INIS)
Barker, F.C.; Kondo, Y.; Spear, R.H.
1989-09-01
The data of Weller et al. (1985) on the tensor analysing powers for elastic and inelastic Coulomb scattering of aligned 7 Li ions have been reanalyzed in order to obtain information on the values of the four 7 Li moments Q, B(E2)↑, τ 11 and τ 12 . It is shown that a single set of values, chosen primarily to be consistent with the value of Q measured by molecular techniques and the values of B(E2)↑ and τ 12 . required to fit unpolarized 7 Li data, and also with the theoretical constraint τ 11 ≅-[τ 12 ], gives a good fit to the aligned 7 Li data. 19 refs., 6 figs
Pinning down top dipole moments with ultra-boosted tops
Aguilar-Saavedra, Juan A.; Mangano, Michelangelo L.
2015-01-01
We investigate existing and future hadron-collider constraints on the top dipole chromomagnetic and chromoelectric moments, two quantities that are expected to be modified in the presence of new physics. We focus first on recent measurements of the inclusive top pair production cross section at the Tevatron and at the Large Hadron Collider. We then analyse the role of top-antitop events produced at very large invariant masses, in the context of the forthcoming 13-14 TeV runs of the LHC, and at a future 100 TeV proton-proton collider. In this latter case, the selection of semileptonic decays to hard muons allows to tag top quarks boosted to the multi-TeV regime, strongly reducing the QCD backgrounds and leading to a significant improvement in the sensitivity to anomalous top couplings.
New Third-Order Moments for the PBL
Canuto, V. M.; Cheng, Y.; Howard, A.; Hansen, James E. (Technical Monitor)
2000-01-01
Turbulent convection is inherently non-local and a primary condition for a successful treatment of the PBL is a reliable model of non-locality. In the dynamic equations governing the convective flux, turbulent kinetic energy, etc, non-locality enters through the third-order moments, TOMs. Since the simplest form, the so-called down gradient approximation (DGA , severely underestimates the TOMs (by up to an order of magnitude), a more physical model is needed. In 1994, an analytical model was presented which was derived directly from the dynamical equations for the TOMs. It considerably improved the DGA but was a bit cumbersome to use. Here, we present a new analytic expression for the TOMs which is considerably simpler than the 1994 expression and which at the same time yields a much better fit to the LES data.
Electric dipole moments of light nuclei in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Bsaisou, Jan; Liebig, Susanna; Minossi, David [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Hanhart, Christoph; Nogga, Andreas; Vries, Jordy de; Wirzba, Andreas [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Meissner, UlfG. [Institut fuer Kernphysik, Forschungszentrum Juelich (Germany); Juelich Center for Hadron Physics, Forschungszentrum Juelich (Germany); Institute for Advanced Simulation, Forschungszentrum Juelich (Germany); JARA - Forces and Matter Experiments, Forschungszentrum Juelich (Germany); Helmholtz-Institut fuer Strahlen und Kernphysik, Universitaet Bonn (Germany)
2014-07-01
Electric dipole moments (EDMs) break parity (P) and time-reversal (T) symmetry and thus, by the CPT-theorem, CP-symmetry. Once measured, they will be unambiguous signs of new physics since CP-violation from the standard mechanism predicts EDMs that are experimentally inaccessible in the foreseeable future. We calculate within the framework of effective field theory the two-nucleon contributions to the EDMs of the deuteron, helion, and triton induced by P- and T-violating terms that arise from the QCD θ-term or dimension-6 sources of physics beyond the Standard Model (SM). We demonstrate what insights into physics beyond the SM can be gained from a suitable combination of measurements and, if needed, supplementary lattice QCD calculations.
Review of the electric dipole moment of light nuclei
Yamanaka, Nodoka
In this paper, we summarize the theoretical development on the electric dipole moment (CEDM) of light nuclei. We first describe the nucleon level CP violation and its parametrization. We then present the results of calculations of the EDM of light nuclei in the ab initio approach and in the cluster model. The analysis of the effect of several models beyond standard model (CBSM) is presented together with the prospects for its discovery. The advantage of the EDM of light nuclei is focused in the point of view of the many-body physics. The evaluations of the nuclear EDM generated by the θ-term and by the CP phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are also reviewed.
Charged point particles with magnetic moment in general relativity
International Nuclear Information System (INIS)
Amorim, R.; Tiomno, J.
1978-01-01
Halbwachs Lagrangean formalism for the theory of charged point particles with spin (g = 2) is generalized and formulated in General Relativity for particles of arbitrary charge and magnetic moment. Equations are obtained, both corresponding to Frenkel's condition S sub(μν) x sup(ν)=0 and to Nakano's condition S sub(μν) P sup(ν)=0. With the later condition the exact equations are highly coupled and non linear. When linearized in the electromagnetic and gravitational fields they coincide with de Groot-Suttorp equations for vanishing gravitational field and with Dixon-Wald equations in the absence of electromagnetic field. The equations corresponding to Frenkel's condition, when linearized in S sub(μν), coincide with Papapetrou's and Frenkel's equations in the corresponding limits [pt
Singularity problem of control moment gyro cluster with vibration isolators
Directory of Open Access Journals (Sweden)
Cui Yinghui
2016-02-01
Full Text Available As powerful torque amplification actuators, control moment gyros (CMGs are often used in the attitude control of many state-of-the-art high resolution satellites. However, the disturbance generated by the CMGs can not only reduce the attitude stability of a satellite but also deteriorate the performance of optic payloads. Currently, CMG vibration isolators are widely used to target this problem. The isolators can affect the singularity of the CMG system as they are placed between the CMGs and the satellite bus and provide additional freedoms to the CMG system due to their flexibility. The formulation of the output torque of a CMG is studied first considering the dynamic imbalance of its spin rotor and then the deformation angle as a result of the isolator’s flexibility is calculated. With the additional freedoms, the influence of isolator on the singularity problem is studied and a new steering logic to escape from the singular states is proposed.
Lifetimes and magnetic moments in odd-odd 70 As
International Nuclear Information System (INIS)
Pantelica, D.; Negoita, F.; Stanoiu, M.
1998-01-01
The extensive experimental and theoretical work on the structure of N∼Z, A = 60-80 nuclei revealed many interesting features: large prolate deformations (β = 0.4), strong shape variations as a function of particle number, excitation energy, spin and shape coexistence effects. They are related with drastic changes of properties observed in nuclei with Z≥33 when going from spherical nuclei with N = 50 to neutron deficient nuclei with N = 38 or 40. Both the rapid changes in structure and the shape coexistence appear to reflect the competition between the shell gaps which occur at large oblate and prolate deformations near nucleon numbers 36 and 38 for both protons and neutrons. For N∼Z nuclei the same shell gaps appear simultaneously for both protons and neutrons and reinforce each other. The microscopic structure of the nuclei in the mass region A = 60-80 is essentially determined by the 1g 9/2 , 2p 1/2 , 1f 5/2 and 2p 3/2 orbitals. Because no unique interpretation of the unusual features discovered in these nuclei exists, the systematic experimental study of structure of these nuclei is still an interesting subject. As part of a systematic experimental study undertaken to investigate the structure of neutron deficient, odd-odd As nuclei, 68,70,72 As, the level scheme of 70 As was investigated using heavy ion induced reactions and in-beam γ-ray spectroscopy techniques. At energies between 500 and 900 keV a multiplet of negative parity levels has been observed. At higher energies a high-spin positive parity sequence of levels starting with a E x = 1676 keV, J π 8 + level is strongly populated. Additional information is required in order to establish the structure of low and high-spin levels of both parities. The magnetic moments of the 8 + and 9 + levels have been measured using the time-integral perturbed angular distribution technique and the lifetimes of four levels have been determined using the recoil-distance method. From the measured lifetime for the 9
Electric dipole moments as probes of new physics
Pospelov, M; Pospelov, Maxim; Ritz, Adam
2005-01-01
We review several aspects of flavour-diagonal CP violation, focussing on the role played by the electric dipole moments (EDMs) of leptons, nucleons, atoms and molecules, which consitute the source of several stringent constraints on new CP-violating physics. We dwell specifically on the calculational aspects of applying the hadronic EDM constraints, reviewing in detail the application of QCD sum-rules to the calculation of nucleon EDMs and CP-odd pion-nucleon couplings. We also consider the current status of EDMs in the Standard Model, and on the ensuing constraints on the underlying sources of CP-violation in physics beyond the Standard Model, focussing on weak-scale supersymmetry.
Gravity field, shape, and moment of inertia of Titan.
Iess, Luciano; Rappaport, Nicole J; Jacobson, Robert A; Racioppa, Paolo; Stevenson, David J; Tortora, Paolo; Armstrong, John W; Asmar, Sami W
2010-03-12
Precise radio tracking of the spacecraft Cassini has provided a determination of Titan's mass and gravity harmonics to degree 3. The quadrupole field is consistent with a hydrostatically relaxed body shaped by tidal and rotational effects. The inferred moment of inertia factor is about 0.34, implying incomplete differentiation, either in the sense of imperfect separation of rock from ice or a core in which a large amount of water remains chemically bound in silicates. The equilibrium figure is a triaxial ellipsoid whose semi-axes a, b, and c differ by 410 meters (a-c) and 103 meters (b-c). The nonhydrostatic geoid height variations (up to 19 meters) are small compared to the observed topographic anomalies of hundreds of meters, suggesting a high degree of compensation appropriate to a body that has warm ice at depth.
Even larger contributions to the neutron electric dipole moment
International Nuclear Information System (INIS)
Rujula, A. de; Gavela, M.B.; Vegas, F.J.
1990-01-01
Constraints on theories of CP-violation, from limits on the neutron electric dipole moment, and mediated by a CP-odd three-gluon operator, are current best sellers. We introduce novel CP-odd operators involving one photon and three gluons. We find that effects mediated by these operators result on bounds on supersymmetry an order of magnitude more stringent than earlier results: they are the tightest known bounds. For left-right models we derive richer limits than previously found. We also recalculate the anomalous dimensions of the three-gluon operator and find them to be minus those originally used; this weakens considerably its strictures on theory, though it still mediates the dominant effect in multi-Higgs models. (orig.)
Transition Dipole Moments and Transition Probabilities of the CN Radical
Yin, Yuan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue
2018-04-01
This paper studies the transition probabilities of electric dipole transitions between 10 low-lying states of the CN radical. These states are X2Σ+, A2Π, B2Σ+, a4Σ+, b4Π, 14Σ‑, 24Π, 14Δ, 16Σ+, and 16Π. The potential energy curves are calculated using the CASSCF method, which is followed by the icMRCI approach with the Davidson correction. The transition dipole moments between different states are calculated. To improve the accuracy of potential energy curves, core–valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energies to the complete basis set limit are included. The Franck–Condon factors and Einstein coefficients of emissions are calculated. The radiative lifetimes are determined for the vibrational levels of the A2Π, B2Σ+, b4Π, 14Σ‑, 24Π, 14Δ, and 16Π states. According to the transition probabilities and radiative lifetimes, some guidelines for detecting these states spectroscopically are proposed. The spin–orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The splitting energy in the A2Π state is determined to be 50.99 cm‑1, which compares well with the experimental ones. The potential energy curves, transition dipole moments, spectroscopic parameters, and transition probabilities reported in this paper can be considered to be very reliable. The results obtained here can be used as guidelines for detecting these transitions, in particular those that have not been measured in previous experiments or have not been observed in the Sun, comets, stellar atmospheres, dark interstellar clouds, and diffuse interstellar clouds.