WorldWideScience

Sample records for messenger rna processing

  1. Processivity and coupling in messenger RNA transcription.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2010-01-01

    Full Text Available The complexity of messenger RNA processing is now being uncovered by experimental techniques that are capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics. This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These processes include elongation, which has a minimum time for completion and processing that is not captured in the model.In this paper, we explore the impact on the mRNA distribution of representing the elongation process in more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise summary of the distribution, showing statistically-significant differences across much of the feasible parameter range.We conclude that processivity is not fully consistent with the on/off model unless the probability of successfully completing elongation is low--as has been observed. The results also suggest that some form of coupling between the promoter and a rate-limiting step in transcription may explain the cell's inability to maintain high mRNA levels at low noise--a prediction of the on/off model that has no supporting evidence.

  2. Nuclear Export of Messenger RNA

    Directory of Open Access Journals (Sweden)

    Jun Katahira

    2015-03-01

    Full Text Available Transport of messenger RNA (mRNA from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex.

  3. Nuclear Export of Messenger RNA

    Science.gov (United States)

    Katahira, Jun

    2015-01-01

    Transport of messenger RNA (mRNA) from the nucleus to the cytoplasm is an essential step of eukaryotic gene expression. In the cell nucleus, a precursor mRNA undergoes a series of processing steps, including capping at the 5' ends, splicing and cleavage/polyadenylation at the 3' ends. During this process, the mRNA associates with a wide variety of proteins, forming a messenger ribonucleoprotein (mRNP) particle. Association with factors involved in nuclear export also occurs during transcription and processing, and thus nuclear export is fully integrated into mRNA maturation. The coupling between mRNA maturation and nuclear export is an important mechanism for providing only fully functional and competent mRNA to the cytoplasmic translational machinery, thereby ensuring accuracy and swiftness of gene expression. This review describes the molecular mechanism of nuclear mRNA export mediated by the principal transport factors, including Tap-p15 and the TREX complex. PMID:25836925

  4. A Contemporary, Laboratory-Intensive Course on Messenger RNA Transcription and Processing

    Science.gov (United States)

    Carson, Sue; Miller, Heather

    2012-01-01

    Messenger ribonucleic acid (mRNA) plays a pivotal role in the central dogma of molecular biology. Importantly, molecular events occurring during and after mRNA synthesis have the potential to create multiple proteins from one gene, leading to some of the remarkable protein diversity that genomes hold. The North Carolina State University…

  5. Messenger RNA surveillance: neutralizing natural nonsense

    DEFF Research Database (Denmark)

    Weischelfeldt, Joachim Lütken; Lykke-Andersen, Jens; Porse, Bo

    2005-01-01

    Messenger RNA transcripts that contain premature stop codons are degraded by a process termed nonsense-mediated mRNA decay (NMD). Although previously thought of as a pathway that rids the cell of non-functional mRNAs arising from mutations and processing errors, new research suggests a more general...

  6. Messenger RNA 3' end formation in plants.

    Science.gov (United States)

    Hunt, A G

    2008-01-01

    Messenger RNA 3' end formation is an integral step in the process that gives rise to mature, translated messenger RNAs in eukaryotes. With this step, a pre-messenger RNA is processed and polyadenylated, giving rise to a mature mRNA bearing the characteristic poly(A) tract. The poly(A) tract is a fundamental feature of mRNAs, participating in the process of translation initiation and being the focus of control mechanisms that define the lifetime of mRNAs. Thus messenger RNA 3' end formation impacts two steps in mRNA biogenesis and function. Moreover, mRNA 3' end formation is something of a bridge that integrates numerous other steps in mRNA biogenesis and function. While the process is essential for the expression of most genes, it is also one that is subject to various forms of regulation, such that both quantitative and qualitative aspects of gene expression may be modulated via the polyadenylation complex. In this review, the current status of understanding of mRNA 3' end formation in plants is discussed. In particular, the nature of mRNA 3' ends in plants is reviewed, as are recent studies that are beginning to yield insight into the functioning and regulation of plant polyadenylation factor subunits.

  7. Radiation sensitivity of messenger RNA

    International Nuclear Information System (INIS)

    Ponta, H.; Pfennig-Yeh, M.L.; Herrlich, P.; Karlsruhe Univ.; Wagner, E.F.; Schweiger, M.

    1979-01-01

    Messenger RNA function is inactivated by irradiation with ultraviolet light. A unit length mRNA (in bases) is 2-3 times more sensitive than a unit length of DNA (in base pairs) with respect to the inactivation of template function. These data stem from four experimental systems all of which do not repair DNA: the translation of E. coli mRNA in rifampicin-treated cells, of T7 mRNA in infected E.coli, of f2 phage RNA in vivo, and of stable mRNA in chromosomeless minicells. The comparison of relative sensitivities to UV is relevant to the technique of UV mapping of transcription units which enjoys increasing popularity in pro- and eukaryotic genetic research. (orig.) [de

  8. Radiation sensitivity of messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Ponta, H; Pfennig-Yeh, M L; Herrlich, P [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Genetik und Toxikologie von Spaltstoffen; Karlsruhe Univ. (TH) (Germany, F.R.). Inst. fuer Genetik); Wagner, E F; Schweiger, M [Innsbruck Univ. (Austria). Inst. fuer Biochemie

    1979-08-01

    Messenger RNA function is inactivated by irradiation with ultraviolet light. A unit length mRNA (in bases) is 2-3 times more sensitive than a unit length of DNA (in base pairs) with respect to the inactivation of template function. These data stem from four experimental systems all of which do not repair DNA: the translation of E. coli mRNA in rifampicin-treated cells, of T7 mRNA in infected E.coli, of f2 phage RNA in vivo, and of stable mRNA in chromosomeless minicells. The comparison of relative sensitivities to UV is relevant to the technique of UV mapping of transcription units which enjoys increasing popularity in pro- and eukaryotic genetic research.

  9. RNA decay by messenger RNA interferases

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Overgaard, Martin; Winther, Kristoffer Skovbo

    2008-01-01

    Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mR...... cleaving enzymes such as RelE of Escherichia coli and the corresponding antitoxin RelB. In particular, we describe a set of plasmid vectors useful for the detailed analysis of cleavage sites in model mRNAs.......Two abundant toxin-antitoxin (TA) gene families, relBE and mazEF, encode mRNA cleaving enzymes whose ectopic overexpression abruptly inhibits translation and thereby induces a bacteriostatic condition. Here we describe and discuss protocols for the overproduction, purification, and analysis of mRNA...

  10. Complex degradation processes lead to non-exponential decay patterns and age-dependent decay rates of messenger RNA.

    Directory of Open Access Journals (Sweden)

    Carlus Deneke

    Full Text Available Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data.

  11. Alterations in messenger RNA and small nuclear RNA metabolism resulting from fluorouracil incorporation

    International Nuclear Information System (INIS)

    Armstrong, R.D.; Cadman, E.C.

    1985-01-01

    Studies were completed to examine the effect of 5-fluorouracil (FUra) incorporation on messenger RNA (mRNA) and small molecular weight nuclear RNA (SnRNA) metabolism. Studies of mRNA were completed using cDNA-mRNA hybridization methods to specifically examine dihydrofolate reductase (DHFR) mRNA. C 3 -L5178Y murine leukemia cells which are gene-amplified for DHFR, were exposed to FUra for 6, 12 or 24 hr, and the nuclear and cytoplasmic levels of DHFR-mRNA determined by hybridization with 32 P-DHFR-cDNA. FUra produced a dose-dependent increase in nuclear DHFR-mRNA levels, while total cytoplasmic DHFR-mRNA levels appeared to be unchanged. To examine only mRNA synthesized during FUra exposure, cells were also treated concurrently with [ 3 H] cytidine, and the [ 3 H]mRNA-cDNA hybrids measured following S 1 -nuclease treatment. FUra produced a concentration-dependent increase in nascent nuclear DHFR-mRNA levels, and a decrease in nascent cytoplasmic DHFR-mRNAs levels. These results suggest that FUra produces either an inhibition of mRNA processing, or an inhibition of nuclear-cytoplasmic transport. Preliminary experiments to examine ATP-dependent mRNA transport were completed with isolated nuclei from cells treated with FUra for 1 or 24 hr and then pulse-labeled for 1 hr with [ 3 H] cytidine. The results demonstrate a FUra-concentration and time-dependent inhibition of ATP-mediated mRNA efflux

  12. Bifurcations in the interplay of messenger RNA, protein and nonprotein coding RNA

    International Nuclear Information System (INIS)

    Zhdanov, Vladimir P

    2008-01-01

    The interplay of messenger RNA (mRNA), protein, produced via translation of this RNA, and nonprotein coding RNA (ncRNA) may include regulation of the ncRNA production by protein and (i) ncRNA-protein association resulting in suppression of the protein regulatory activity or (ii) ncRNA-mRNA association resulting in degradation of the miRNA-mRNA complex. The kinetic models describing these two scenarios are found to predict bistability provided that protein suppresses the ncRNA formation

  13. Localization of calcium-binding proteins and GABA transporter (GAT-1) messenger RNA in the human subthalamic nucleus

    International Nuclear Information System (INIS)

    Augood, S.J.; Waldvogel, H.J.; Muenkle, M.C.; Faull, R.L.M.; Emson, P.C.

    1999-01-01

    The distribution of messenger RNA encoding the human GAT-1 (a high-affinity GABA transporter) was investigated in the subthalamic nucleus of 10 neurologically normal human post mortem cases. Further, the distribution of messenger RNA and protein encoding the three neuronally expressed calcium-binding proteins (calbindin D28k, parvalbumin and calretinin) was similarly investigated using in situ hybridization and immunohistochemical techniques. Cellular sites of calbindin D28k, parvalbumin, calretinin and GAT-1 messenger RNA expression were localized using human-specific oligonucleotide probes radiolabelled with [ 35 S]dATP. Sites of protein localization were visualized using specific anti-calbindin D28k, anti-parvalbumin and anti-calretinin antisera. Examination of emulsion-coated tissue sections processed for in situ hybridization revealed an intense signal for GAT-1 messenger RNA within the human subthalamic nucleus, indeed the majority of Methylene Blue-counterstained cells were enriched in this transcript. Further, a marked heterogeneity was noted with regard to the expression of the messenger RNA's encoding the three calcium-binding proteins; this elliptical nucleus was highly enriched in parvalbumin messenger RNA-positive neurons and calretinin mRNA-positive cells but not calbindin messenger RNA-positive cells. Indeed, only an occasional calbindin messenger RNA-positive cell was detected within the mediolateral extent of the nucleus. In marked contrast, numerous parvalbumin messenger RNA-positive cells and calretinin messenger RNA-positive cells were detected and they were topographically distributed; parvalbumin messenger RNA-positive cells were highly enriched in the dorsal subthalamic nucleus extending mediolaterally; calretinin messenger RNA-positive cells were more enriched ventrally although some degree of overlap was apparent. Computer-assisted analysis of the average cross-sectional somatic area of parvalbumin, calretinin and GAT-1 messenger RNA

  14. Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Jbilo, O.; Barteles, C.F.; Chatonnet, A.; Toutant, J.P.; Lockridge, O.

    1994-12-31

    Tissue distribution of human acetyicholinesterase and butyryicholinesterase messenger RNA. 1 Cholinesterase inhibitors occur naturally in the calabar bean (eserine), green potatoes (solanine), insect-resistant crab apples, the coca plant (cocaine) and snake venom (fasciculin). There are also synthetic cholinesterase inhibitors, for example man-made insecticides. These inhibitors inactivate acetyicholinesterase and butyrylcholinesterase as well as other targets. From a study of the tissue distribution of acetylcholinesterase and butyrylcholinesterase mRNA by Northern blot analysis, we have found the highest levels of butyrylcholinesterase mRNA in the liver and lungs, tissues known as the principal detoxication sites of the human body. These results indicate that butyrylcholinesterase may be a first line of defense against poisons that are eaten or inhaled.

  15. Shielding the messenger (RNA): microRNA-based anticancer therapies

    Science.gov (United States)

    Sotillo, Elena; Thomas-Tikhonenko, Andrei

    2011-01-01

    It has been a decade since scientists realized that microRNAs (miRNAs) are not an oddity invented by worms to regulate gene expression at post-transcriptional levels. Rather, many of these 21–22-nucleotide-short RNAs exist in invertebrates and vertebrates alike and some of them are in fact highly conserved. miRNAs are now recognized as an important class of non-coding small RNAs that inhibit gene expression by targeting mRNA stability and translation. In the last ten years, our knowledge of the miRNAs world was expanding at vertiginous speed, propelled by the development of computational engines for miRNA identification and target prediction, biochemical tools and techniques to modulate miRNA activity, and last but not least, the emergence of miRNA-centric animal models. One important conclusion that has emerged from this effort is that many microRNAs and their cognate targets are strongly implicated in cancer, either as oncogenes or tumor and metastasis suppressors. In this review we will discuss the diverse role that miRNAs play in cancer initiation and progression and also the tools with which miRNA expression could be corrected in vivo. While the idea of targeting microRNAs towards therapeutic ends is getting considerable traction, basic, translational, and clinical research done in the next few years will tell whether this promise is well-founded. PMID:21514318

  16. Phenotypic characterization of neurotensin messenger RNA-expressing cells in the neuroleptic-treated rat striatum: a detailed cellular co-expression study

    International Nuclear Information System (INIS)

    Emson, P.C.; Westmore, K.; Augood, S.J.

    1996-01-01

    The chemical phenotype of proneurotensin messenger RNA-expressing cells was determined in the acute haloperidol-treated rat striatum using a combination of [ 35 S]-labelled and alkaline phosphatase-labelled oligonucleotides. Cellular sites of proneurotensin messenger RNA expression were visualized simultaneously on tissue sections processed to reveal cellular sites of preproenkephalin A messenger RNA or the dopamine and adenylate cyclase phosphoprotein-32, messenger RNA. The cellular co-expression of preproenkepahlin A and preprotachykinin messenger RNA was also examined within forebrain structures. Cellular sites of preproenkephalin A and dopamine and adenylate cyclase phosphoprotein-32 messenger RNAs were visualized using alkaline phosphatase-labelled oligonucleotides whilst sites of preprotachykinin and proneurotensin messenger RNA expression were detected using [ 35 S]-labelled oligos. Cellular sites of enkephalin and dopamine and adenylate cyclase phosphoprotein-32 gene expression were identified microscopically by the concentration of purple alkaline phosphatase reaction product within the cell cytoplasm, whereas sites of substance P and proneurotensin gene expression were identified by the dense clustering of silver grains overlying cells.An intense hybridization signal was detected for all three neuropeptide messenger RNAs in the striatum, the nucleus accumbens and septum. Dopamine and adenylate cyclase phosphoprotein-32 messenger RNA was detected within the neostriatum but not within the septum. In all forebrain regions examined, with the exception of the islands of Cajella, the cellular expression of enkephalin messenger RNA and substance P messenger RNA was discordant; the two neuropeptide messenger RNAs were detected essentially in different cells, although in the striatum and nucleus accumbens occasional isolated cells were detected which contained both hybridization signals; dense clusters of silver grains overlay alkaline phosphatase-positive cells

  17. Phenotypic characterization of neurotensin messenger RNA-expressing cells in the neuroleptic-treated rat striatum: a detailed cellular co-expression study

    Energy Technology Data Exchange (ETDEWEB)

    Emson, P C; Westmore, K; Augood, S J [MRC Molecular Neuroscience Group, The Department of Neurobiology, The Babraham Institute, Babraham, Cambridge (United Kingdom)

    1996-12-11

    The chemical phenotype of proneurotensin messenger RNA-expressing cells was determined in the acute haloperidol-treated rat striatum using a combination of [{sup 35}S]-labelled and alkaline phosphatase-labelled oligonucleotides. Cellular sites of proneurotensin messenger RNA expression were visualized simultaneously on tissue sections processed to reveal cellular sites of preproenkephalin A messenger RNA or the dopamine and adenylate cyclase phosphoprotein-32, messenger RNA. The cellular co-expression of preproenkepahlin A and preprotachykinin messenger RNA was also examined within forebrain structures. Cellular sites of preproenkephalin A and dopamine and adenylate cyclase phosphoprotein-32 messenger RNAs were visualized using alkaline phosphatase-labelled oligonucleotides whilst sites of preprotachykinin and proneurotensin messenger RNA expression were detected using [{sup 35}S]-labelled oligos. Cellular sites of enkephalin and dopamine and adenylate cyclase phosphoprotein-32 gene expression were identified microscopically by the concentration of purple alkaline phosphatase reaction product within the cell cytoplasm, whereas sites of substance P and proneurotensin gene expression were identified by the dense clustering of silver grains overlying cells.An intense hybridization signal was detected for all three neuropeptide messenger RNAs in the striatum, the nucleus accumbens and septum. Dopamine and adenylate cyclase phosphoprotein-32 messenger RNA was detected within the neostriatum but not within the septum. In all forebrain regions examined, with the exception of the islands of Cajella, the cellular expression of enkephalin messenger RNA and substance P messenger RNA was discordant; the two neuropeptide messenger RNAs were detected essentially in different cells, although in the striatum and nucleus accumbens occasional isolated cells were detected which contained both hybridization signals; dense clusters of silver grains overlay alkaline phosphatase

  18. ESTRADIOL-INDUCED SYNTHESIS OF VITELLOGENIN .3. ISOLATION AND CHARACTERIZATION OF VITELLOGENIN MESSENGER-RNA FROM AVIAN LIVER

    NARCIS (Netherlands)

    AB, G.; Roskam, W. G.; Dijkstra, J.; Mulder, J.; Willems, M.; van der Ende, A.; Gruber, M.

    1976-01-01

    The messenger RNA of the hormone-induced protein vitellogenin was isolated from the liver of estrogen-treated roosters. Starting from total polysomal RNA, the vitellogenin messenger was purified 67-fold by oligo (dT)-cellulose chromatography and sizing on a sucrose gradient. The messenger was

  19. Effects of ionizing radiation and partial hepatectomy on messenger RNA synthesis

    International Nuclear Information System (INIS)

    Abdel-Halim, M.N.

    1979-01-01

    Newly synthesized messenger RNA, as measured by a 40 min uptake of the radioactive precursor (6- 14 C) orotic acid, was studied in the regenerating livers of non-irradiated and gamma-irradiated (1800 rad) adrenal-intact and adrenalectomized rats 24 and 48 hours after partial hepatectomy. Two groups of rats, one with and one without adrenal glands were each divided into four subgroups: (1) control rats, (2) irradiated rats, (3) partially hepatectomized rats and (4) irradiated, partially hepatectomized rats. The radioactive profile of polyribosome formation and distribution was determined by sucrose density gradient centrifugation (10 to 40 per cent). The result of this study indicates that ionizing radiation decreases the synthesis of newly formed messenger RNA in regenerating livers of adrenal-intact rats. However, adrenalectomy largely abolished that inhibition. These data suggest that the decrease in messenger RNA synthesis may be explained by the disturbance of adrenal hormones induced by partial hepatectomy and ionizing radiation. (author)

  20. Guardian of Genetic Messenger-RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Antje Anji

    2016-01-01

    Full Text Available RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins.

  1. Characterization of long noncoding RNA and messenger RNA signatures in melanoma tumorigenesis and metastasis.

    Directory of Open Access Journals (Sweden)

    Siqi Wang

    Full Text Available The incidence of melanoma, the most aggressive and life-threatening form of skin cancer, has significantly risen over recent decades. Therefore, it is essential to identify the mechanisms that underlie melanoma tumorigenesis and metastasis and to explore novel and effective melanoma treatment strategies. Accumulating evidence s uggests that aberrantly expressed long noncoding RNAs (lncRNAs have vital functions in multiple cancers. However, lncRNA functions in melanoma tumorigenesis and metastasis remain unclear. In this study, we investigated lncRNA and messenger RNA (mRNA expression profiles in primary melanomas, metastatic melanomas and normal skin samples from the Gene Expression Omnibus database. We used GSE15605 as the training set (n = 74 and GSE7553 as the validation set (n = 58. In three comparisons (primary melanoma versus normal skin, metastatic melanoma versus normal skin, and metastatic melanoma versus primary melanoma, 178, 295 and 48 lncRNAs and 847, 1758, and 295 mRNAs were aberrantly expressed, respectively. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses to examine the differentially expressed mRNAs, and potential core lncRNAs were predicted by lncRNA-mRNA co-expression networks. Based on our results, 15 lncRNAs and 144 mRNAs were significantly associated with melanoma tumorigenesis and metastasis. A subsequent analysis suggested a critical role for a five-lncRNA signature during melanoma tumorigenesis and metastasis. Low expression of U47924.27 was significantly associated with decreased survival of patients with melanoma. To the best of our knowledge, this study is the first to explore the expression patterns of lncRNAs and mRNAs during melanoma tumorigenesis and metastasis by re-annotating microarray data from the Gene Expression Omnibus (GEO microarray dataset. These findings reveal potential roles for lncRNAs during melanoma tumorigenesis and metastasis and provide a rich candidate

  2. Effects of insulin on messenger RNA activities in rat liver

    International Nuclear Information System (INIS)

    Hill, R.E.; Lee, K.L.; Kenney, F.T.

    1981-01-01

    Liver poly(A) RNA, isolated from adrenalectomized rats after insulin treatment, was translated in a nuclease-treated lysate of rabbit reticulocytes and quantitated for both total activity and the capacity to synthesize the insulin-inducible enzyme tyrosine amino-transferase. Analysis of the translated products from poly(A) RNA isolated 1 h after insulin treatment showed a 2.7-fold increase in activity of tyrosine aminotransferase mRNA. During the same interval, the capacity of poly(A) RNA to direct the synthesis of total protein in lysates also changed, showing a 30 to 40% increase in translational activity/unit of RNA. Increased translatability was apparent in all fractions of poly(A) RNA separated by centrifugation on sucrose gradients. Insulin thus appears to mediated a generalized changed in mRNAs leading to increased capacity for translation; induction of tyrosine aminotransferase may reflect unusual sensitivity to this effect of the hormone

  3. The synthesis of polyadenylated messenger RNA in herpes simplex type I virus infected BHK cells.

    Science.gov (United States)

    Harris, T J; Wildy, P

    1975-09-01

    The pattern of polyadenylated messenger RNA (mRNA) synthesis in BHK cell monolayers, infected under defined conditions with herpes simplex type I virus has been investigated by polyacrylamide gel electrophoresis or pulse-labelled RNA isolated by oligo dT-cellulose chromatography. Two classes of mRNA molecules were synthesized in infected cells; these were not detected in uninfected cells. The rate of synthesis of the larger, 18 to 30S RNA class reached a maximum soon after injection and then declined, whereas the rate of synthesis of the 7 to 11 S RNA class did not reach a maximum until much later and did not decline. In the presence of cytosine arabinoside, the rate of mRNA synthesis in infected cells was reduced but the electrophoretic pattern remained the same.

  4. A thermostable messenger RNA based vaccine against rabies.

    Science.gov (United States)

    Stitz, Lothar; Vogel, Annette; Schnee, Margit; Voss, Daniel; Rauch, Susanne; Mutzke, Thorsten; Ketterer, Thomas; Kramps, Thomas; Petsch, Benjamin

    2017-12-01

    Although effective rabies virus vaccines have been existing for decades, each year, rabies virus infections still cause around 50.000 fatalities worldwide. Most of these cases occur in developing countries, where these vaccines are not available. The reasons for this are the prohibitive high costs of cell culture or egg grown rabies virus vaccines and the lack of a functional cold chain in many regions in which rabies virus is endemic. Here, we describe the excellent temperature resistance of a non-replicating mRNA based rabies virus vaccine encoding the rabies virus glycoprotein (RABV-G). Prolonged storage of the vaccine from -80°C to up to +70°C for several months did not impact the protective capacity of the mRNA vaccine. Efficacy after storage was demonstrated by the induction of rabies specific virus neutralizing antibodies and protection in mice against lethal rabies infection. Moreover, storing the vaccine at oscillating temperatures between +4° and +56°C for 20 cycles in order to simulate interruptions of the cold chain during vaccine transport, did not affect the vaccine's immunogenicity and protective characteristics, indicating that maintenance of a cold chain is not essential for this vaccine.

  5. Postage for the messenger: Designating routes for Nuclear mRNA Export

    Science.gov (United States)

    Natalizio, Barbara J.; Wente, Susan R.

    2013-01-01

    Transcription of messenger(m) RNA occurs in the nucleus, making the translocation of mRNA across the nuclear envelope (NE) boundary a critical determinant of proper gene expression and cell survival. A major mRNA export route occurs via the NXF1-dependent pathway through the nuclear pore complexes (NPCs) embedded in the NE. However, recent findings have discovered new evidence supporting the existence of multiple mechanisms for crossing the NE, including both NPC-mediated and NE budding-mediated pathways. An analysis of the trans-acting factors and cis components that define these pathways reveals shared elements as well as mechanistic differences. We review here the current understanding of the mechanisms that characterize each pathway and highlight the determinants that influence mRNA transport fate. PMID:23583578

  6. Antigen-presenting cells transfected with Hsp65 messenger RNA fail to treat experimental tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, C.D.; Trombone, A.P.F.; Lorenzi, J.C.C.; Almeida, L.P.; Gembre, A.F.; Padilha, E. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Ramos, S.G. [Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Silva, C.L.; Coelho-Castelo, A.A.M. [Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-09-21

    In the last several years, the use of dendritic cells has been studied as a therapeutic strategy against tumors. Dendritic cells can be pulsed with peptides or full-length protein, or they can be transfected with DNA or RNA. However, comparative studies suggest that transfecting dendritic cells with messenger RNA (mRNA) is superior to other antigen-loading techniques in generating immunocompetent dendritic cells. In the present study, we evaluated a new therapeutic strategy to fight tuberculosis using dendritic cells and macrophages transfected with Hsp65 mRNA. First, we demonstrated that antigen-presenting cells transfected with Hsp65 mRNA exhibit a higher level of expression of co-stimulatory molecules, suggesting that Hsp65 mRNA has immunostimulatory properties. We also demonstrated that spleen cells obtained from animals immunized with mock and Hsp65 mRNA-transfected dendritic cells were able to generate a mixed Th1/Th2 response with production not only of IFN-γ but also of IL-5 and IL-10. In contrast, cells recovered from mice immunized with Hsp65 mRNA-transfected macrophages were able to produce only IL-5. When mice were infected with Mycobacterium tuberculosis and treated with antigen-presenting cells transfected with Hsp65 mRNA (therapeutic immunization), we did not detect any decrease in the lung bacterial load or any preservation of the lung parenchyma, indicating the inability of transfected cells to confer curative effects against tuberculosis. In spite of the lack of therapeutic efficacy, this study reports for the first time the use of antigen-presenting cells transfected with mRNA in experimental tuberculosis.

  7. The ribosome uses two active mechanisms to unwind messenger RNA during translation.

    Science.gov (United States)

    Qu, Xiaohui; Wen, Jin-Der; Lancaster, Laura; Noller, Harry F; Bustamante, Carlos; Tinoco, Ignacio

    2011-07-06

    The ribosome translates the genetic information encoded in messenger RNA into protein. Folded structures in the coding region of an mRNA represent a kinetic barrier that lowers the peptide elongation rate, as the ribosome must disrupt structures it encounters in the mRNA at its entry site to allow translocation to the next codon. Such structures are exploited by the cell to create diverse strategies for translation regulation, such as programmed frameshifting, the modulation of protein expression levels, ribosome localization and co-translational protein folding. Although strand separation activity is inherent to the ribosome, requiring no exogenous helicases, its mechanism is still unknown. Here, using a single-molecule optical tweezers assay on mRNA hairpins, we find that the translation rate of identical codons at the decoding centre is greatly influenced by the GC content of folded structures at the mRNA entry site. Furthermore, force applied to the ends of the hairpin to favour its unfolding significantly speeds translation. Quantitative analysis of the force dependence of its helicase activity reveals that the ribosome, unlike previously studied helicases, uses two distinct active mechanisms to unwind mRNA structure: it destabilizes the helical junction at the mRNA entry site by biasing its thermal fluctuations towards the open state, increasing the probability of the ribosome translocating unhindered; and it mechanically pulls apart the mRNA single strands of the closed junction during the conformational changes that accompany ribosome translocation. The second of these mechanisms ensures a minimal basal rate of translation in the cell; specialized, mechanically stable structures are required to stall the ribosome temporarily. Our results establish a quantitative mechanical basis for understanding the mechanism of regulation of the elongation rate of translation by structured mRNAs. ©2011 Macmillan Publishers Limited. All rights reserved

  8. Early changes of placenta-derived messenger RNA in maternal plasma – potential value for preeclampsia prediction?

    Directory of Open Access Journals (Sweden)

    Surugiu Sebastian

    2015-12-01

    Full Text Available Objective: the pourpose of the study was to determine if there are any differences between placenta derived plasmatic levels of messenger RNA in normal and future preeclamptic pregnancies and if these placental transcripts can predict preeclampsia long before clinical onset

  9. Fox-2 protein regulates the alternative splicing of scleroderma-associated lysyl hydroxylase 2 messenger RNA.

    Science.gov (United States)

    Seth, Puneet; Yeowell, Heather N

    2010-04-01

    Scleroderma (systemic sclerosis [SSc]) is a complex connective tissue disorder characterized by hardening and thickening of the skin. One hallmark of scleroderma is excessive accumulation of collagen accompanied by increased levels of pyridinoline collagen crosslinks derived from hydroxylysine residues in the collagen telopeptide domains. Lysyl hydroxylase 2 (LH2), an important alternatively spliced enzyme in collagen biosynthesis, acts as a collagen telopeptide hydroxylase. Changes in the pattern of LH2 alternative splicing, favoring increased inclusion of the alternatively spliced LH2 exon 13A, thereby increasing the levels of the long transcript of LH2 (LH2[long]), are linked to scleroderma disease. This study was undertaken to examine the role played by RNA binding protein Fox-2 in regulating exon 13A inclusion, which leads to the generation of scleroderma-associated LH2(long) messenger RNA (mRNA). Phylogenetic sequence analysis of introns flanking exon 13A was performed. A tetracycline-inducible system in T-Rex 293 cells was used to induce Fox-2 protein, and endogenous LH2(long) mRNA was determined by reverse transcriptase-polymerase chain reaction. An LH2 minigene was designed, validated, and used in Fox-2 overexpression and mutagenesis experiments. Knockdown of Fox-2 was performed in mouse embryonic fibroblasts and in fibroblasts from SSc patients. Overexpression of Fox-2 enhanced the inclusion of exon 13A and increased the generation of LH2(long) mRNA, whereas knockdown of Fox-2 decreased LH2(long) transcripts. Mutational analysis of an LH2 minigene demonstrated that 2 of the 4 Fox binding motifs flanking LH2 exon 13A are required for inclusion of exon 13A. In early passage fibroblasts derived from patients with scleroderma, the knockdown of Fox-2 protein significantly decreased the endogenous levels of LH2(long) mRNA. Our findings indicate that Fox-2 plays an integral role in the regulation of LH2 splicing. Knockdown of Fox-2 and other methods to decrease

  10. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J

    2010-10-18

    GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells. RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells. The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  11. The microRNA and messengerRNA profile of the RNA-induced silencing complex in human primary astrocyte and astrocytoma cells.

    Directory of Open Access Journals (Sweden)

    Joanna J Moser

    2010-10-01

    Full Text Available GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA-mediated messenger RNA (mRNA silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC. To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells.RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1 miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2 astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3 miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4 the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells.The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies.

  12. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing.

    Science.gov (United States)

    Hanson, E; Ingold, S; Haas, C; Ballantyne, J

    2018-05-01

    The recovery of a DNA profile from the perpetrator or victim in criminal investigations can provide valuable 'source level' information for investigators. However, a DNA profile does not reveal the circumstances by which biological material was transferred. Some contextual information can be obtained by a determination of the tissue or fluid source of origin of the biological material as it is potentially indicative of some behavioral activity on behalf of the individual that resulted in its transfer from the body. Here, we sought to improve upon established RNA based methods for body fluid identification by developing a targeted multiplexed next generation mRNA sequencing assay comprising a panel of approximately equal sized gene amplicons. The multiplexed biomarker panel includes several highly specific gene targets with the necessary specificity to definitively identify most forensically relevant biological fluids and tissues (blood, semen, saliva, vaginal secretions, menstrual blood and skin). In developing the biomarker panel we evaluated 66 gene targets, with a progressive iteration of testing target combinations that exhibited optimal sensitivity and specificity using a training set of forensically relevant body fluid samples. The current assay comprises 33 targets: 6 blood, 6 semen, 6 saliva, 4 vaginal secretions, 5 menstrual blood and 6 skin markers. We demonstrate the sensitivity and specificity of the assay and the ability to identify body fluids in single source and admixed stains. A 16 sample blind test was carried out by one lab with samples provided by the other participating lab. The blinded lab correctly identified the body fluids present in 15 of the samples with the major component identified in the 16th. Various classification methods are being investigated to permit inference of the body fluid/tissue in dried physiological stains. These include the percentage of reads in a sample that are due to each of the 6 tissues/body fluids tested and

  13. Skeletal muscle microRNA and messenger RNA profiling in cofilin-2 deficient mice reveals cell cycle dysregulation hindering muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah U Morton

    Full Text Available Congenital myopathies are rare skeletal muscle diseases presenting in early age with hypotonia and weakness often linked to a genetic defect. Mutations in the gene for cofilin-2 (CFL2 have been identified in several families as a cause of congenital myopathy with nemaline bodies and cores. Here we explore the global messenger and microRNA expression patterns in quadriceps muscle samples from cofillin-2-null mice and compare them with sibling-matched wild-type mice to determine the molecular pathways and mechanisms involved. Cell cycle processes are markedly dysregulated, with altered expression of genes involved in mitotic spindle formation, and evidence of loss of cell cycle checkpoint regulation. Importantly, alterations in cell cycle, apoptosis and proliferation pathways are present in both mRNA and miRNA expression patterns. Specifically, p21 transcript levels were increased, and the expression of p21 targets, such as cyclin D and cyclin E, was decreased. We therefore hypothesize that deficiency of cofilin-2 is associated with interruption of the cell cycle at several checkpoints, hindering muscle regeneration. Identification of these pathways is an important step towards developing appropriate therapies against various congenital myopathies.

  14. Identification of messenger RNA of fetoplacental source in maternal plasma of women with normal pregnancies and pregnancies with intrauterine growth restriction.

    Science.gov (United States)

    Ayala Ramírez, Paola; García Robles, Reggie; Rojas, Juan Diego; Bermúdez, Martha; Bernal, Jaime

    2012-07-01

    to quantify placenta-specific RNA in plasma of women carrying foetuses with intrauterine growth restriction and pregnant women with normal pregnancies. 8 pregnant women with foetuses with intrauterine growth restriction were studied as well as 18 women with uncomplicated pregnancies in the third pregnancy trimester. Total free RNA was quantified in maternal plasma by spectrophotometry and the gene expression of hPL (Human Placental Lactogen) at the messenger RNA level through technical Real Time-Chain Reaction Polymerase. plasma RNA of fetoplacental origin was successfully detected in 100% of pregnant women. There were no statistically significant differences between the values of total RNA extracted from plasma (p= 0.5975) nor in the messenger RNA expression of hPL gene (p= 0.5785) between cases and controls. messenger RNA of fetoplacental origin can be detected in maternal plasma during pregnancy.

  15. In vivo expression of ß-galactosidase by rat oviduct exposed to naked DNA or messenger RNA

    Directory of Open Access Journals (Sweden)

    MARIANA RIOS

    2002-01-01

    Full Text Available Intra-oviductal administration of RNA obtained from oviducts of estradiol-treated rats resulted in accelerated egg transport (Ríos et al., 1997. It is probable that estradiol-induced messenger RNA (mRNA entered oviductal cells and was translated into the proteins involved in accelerated egg transport. In order to test this interpretation we deposited in vivo 50 µg of pure ß-galactosidase (ß-gal mRNA, 50 µg of pure DNA from the reporter gene ß-gal under SV40 promoter or the vehicle (control oviducts into the oviductal lumen of rats. Twenty four hours later the ß-gal activity was assayed in oviductal tissue homogenates using o-nitrophenyl-ß-D-galactopyranoside as a substrate. The administration of ß-gal mRNA and pSVBgal plasmid increased ß-gal activity by 71% and 142%, respectively, over the control oviducts. These results indicate that naked DNA and mRNA coding for ß-gal can enter oviductal cells and be translated into an active enzyme. They are consistent with the interpretation that embryo transport acceleration caused by the injection of estradiol-induced RNA in the oviduct involves translation of the injected mRNA

  16. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives

    Directory of Open Access Journals (Sweden)

    Jozef Julian Bujarski

    2013-03-01

    Full Text Available RNA recombination is one of the driving forces of genetic variability in (+-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings along with nonreplicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (i How various factors modulate the ability of viral replicase to switch templates, (ii What is the intracellular location of RNA-RNA template switchings, (iii Mechanisms and factors responsible for non-replicative RNA recombination, (iv Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (v What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.

  17. Genetic recombination in plant-infecting messenger-sense RNA viruses: overview and research perspectives.

    Science.gov (United States)

    Bujarski, Jozef J

    2013-01-01

    RNA recombination is one of the driving forces of genetic variability in (+)-strand RNA viruses. Various types of RNA-RNA crossovers were described including crosses between the same or different viral RNAs or between viral and cellular RNAs. Likewise, a variety of molecular mechanisms are known to support RNA recombination, such as replicative events (based on internal or end-to-end replicase switchings) along with non-replicative joining among RNA fragments of viral and/or cellular origin. Such mechanisms as RNA decay or RNA interference are responsible for RNA fragmentation and trans-esterification reactions which are likely accountable for ligation of RNA fragments. Numerous host factors were found to affect the profiles of viral RNA recombinants and significant differences in recombination frequency were observed among various RNA viruses. Comparative analyses of viral sequences allowed for the development of evolutionary models in order to explain adaptive phenotypic changes and co-evolving sites. Many questions remain to be answered by forthcoming RNA recombination research. (1) How various factors modulate the ability of viral replicase to switch templates, (2) What is the intracellular location of RNA-RNA template switchings, (3) Mechanisms and factors responsible for non-replicative RNA recombination, (4) Mechanisms of integration of RNA viral sequences with cellular genomic DNA, and (5) What is the role of RNA splicing and ribozyme activity. From an evolutionary stand point, it is not known how RNA viruses parasitize new host species via recombination, nor is it obvious what the contribution of RNA recombination is among other RNA modification pathways. We do not understand why the frequency of RNA recombination varies so much among RNA viruses and the status of RNA recombination as a form of sex is not well documented.

  18. Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Mikkel; Gerdes, Kenn

    2008-01-01

    Prokaryotic toxin-antitoxin loci encode mRNA cleaving enzymes that inhibit translation. Two types are known: those that cleave mRNA codons at the ribosomal A site and those that cleave any RNA site specifically. RelE of Escherichia coli cleaves mRNA at the ribosomal A site in vivo and in vitro bu...

  19. DNA Methylation of MMP9 Is Associated with High Levels of MMP-9 Messenger RNA in Periapical Inflammatory Lesions.

    Science.gov (United States)

    Campos, Kelma; Gomes, Carolina Cavalieri; Farias, Lucyana Conceição; Silva, Renato Menezes; Letra, Ariadne; Gomez, Ricardo Santiago

    2016-01-01

    Matrix metalloproteinases (MMPs) are the major class of enzymes responsible for degradation of extracellular matrix components and participate in the pathogenesis of periapical inflammatory lesions. MMP expression may be regulated by DNA methylation. The purpose of the present investigation was to analyze the expression of MMP2 and MMP9 in periapical granulomas and radicular cysts and to test the hypothesis that, in these lesions, their transcription may be modulated by DNA methylation. Methylation-specific polymerase chain reaction was used to evaluate the DNA methylation pattern of the MMP2 gene in 13 fresh periapical granuloma samples and 10 fresh radicular cyst samples. Restriction enzyme digestion was used to assess methylation of the MMP9 gene in 12 fresh periapical granuloma samples and 10 fresh radicular cyst samples. MMP2 and MMP9 messenger RNA transcript levels were measured by quantitative real-time polymerase chain reaction. All periapical lesions and healthy mucosa samples showed partial methylation of the MMP2 gene; however, periapical granulomas showed higher MMP2 mRNA expression levels than healthy mucosa (P = .014). A higher unmethylated profile of the MMP9 gene was found in periapical granulomas and radicular cysts compared with healthy mucosa. In addition, higher MMP9 mRNA expression was observed in the periapical lesions compared with healthy tissues. The present study suggests that the unmethylated status of the MMP9 gene in periapical lesions may explain the observed up-regulation of messenger RNA transcription in these lesions. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Blockade of OX40/OX40 ligand to decrease cytokine messenger RNA expression in acute renal allograft rejection in vitro.

    Science.gov (United States)

    Wang, Y-L; Li, G; Fu, Y-X; Wang, H; Shen, Z-Y

    2013-01-01

    The aim of this study was to investigate cytokine messenger RNA (mRNA) expression by peripheral blood mononuclear cells (PBMCs) from renal recipients experiencing acute rejection by blocking OX40-OX40L interactions with recombinant human OX40-Fc fusion protein (rhOX40Fc) in vitro. PBMCs were isolated from 20 recipients experiencing acute rejection episodes (rejection group) and 20 recipients with stable graft function (stable group). Levels of Th1 (interferon [IFN]-γ) and Th2 (interleukin [IL]-4) mRNA expressions by PBMCs were measured using real-time reverse transcriptase-polymerase chain reactions. IFN-γ mRNA expression levels were significantly higher in the rejection than the stable group (P rejection group, rhOX40Fc reduced significantly the expression of IFN-γ and IL-4 mRNA by anti-CD3-monoclonal antibody stimulated PBMCs (P type cytokines. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Maternal provision of non-sex-specific transformer messenger RNA in sex determination of the wasp Asobara tabida.

    Science.gov (United States)

    Geuverink, E; Verhulst, E C; van Leussen, M; van de Zande, L; Beukeboom, L W

    2018-02-01

    In many insect species maternal provision of sex-specifically spliced messenger RNA (mRNA) of sex determination genes is an essential component of the sex determination mechanism. In haplodiploid Hymenoptera, maternal provision in combination with genomic imprinting has been shown for the parasitoid Nasonia vitripennis, known as maternal effect genomic imprinting sex determination (MEGISD). Here, we characterize the sex determination cascade of Asobara tabida, another hymenopteran parasitoid. We show the presence of the conserved sex determination genes doublesex (dsx), transformer (tra) and transformer-2 (tra2) orthologues in As. tabida. Of these, At-dsx and At-tra are sex-specifically spliced, indicating a conserved function in sex determination. At-tra and At-tra2 mRNA is maternally provided to embryos but, in contrast to most studied insects, As. tabida females transmit a non-sex-specific splice form of At-tra mRNA to the eggs. In this respect, As. tabida sex determination differs from the MEGISD mechanism. How the paternal genome can induce female development in the absence of maternal provision of sex-specifically spliced mRNA remains an open question. Our study reports a hitherto unknown variant of maternal effect sex determination and accentuates the diversity of insect sex determination mechanisms. © 2017 The Authors. Insect Molecular Biology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

  2. Electrochemical Branched-DNA Assay for Polymerase Chain Reaction-Free Detection and Quantification of Oncogenes in Messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ai Cheng; Dai, Ziyu; Chen, Baowei; Wu, Hong; Wang, Jun; Zhang, Aiguo; Zhang, Lurong; Lim, Tit-Meng; Lin, Yuehe

    2008-12-01

    We describe a novel electrochemical branched-DNA (bDNA) assay for polymerase chain reaction (PCR)-free detection and quantification of p185 BCR-ABL leukemia fusion transcript in the population of messenger RNA (mRNA) extracted from cell lines. The bDNA amplifier carrying high loading of alkaline phosphatase (ALP) tracers was used to amplify targets signal. The targets were captured on microplate well surfaces through cooperative sandwich hybridization prior to the labeling of bDNA. The activity of captured ALP was monitored by square-wave voltammetric (SWV) analysis of the electroactive enzymatic product in the presence of 1-napthyl-phosphate. The specificity and sensitivity of assay enabled direct detection of target transcript in as little as 4.6 ng mRNA without PCR amplification. In combination with the use of a well-quantified standard, the electrochemical bDNA assay was capable of direct use for a PCR-free quantitative analysis of target transcript in total mRNA population. The approach thus provides a simple, sensitive, accurate and quantitative tool alternate to the RQ-PCR for early disease diagnosis.

  3. Efficient ex vivo delivery of chemically modified messenger RNA using lipofection and magnetofection.

    Science.gov (United States)

    Badieyan, Zohreh Sadat; Pasewald, Tamara; Mykhaylyk, Olga; Rudolph, Carsten; Plank, Christian

    2017-01-22

    Recently, chemically modified mRNA (cmRNA) therapeutics have been the subject of extensive application-oriented research in both academia and industry as a safer alternative for gene and recombinant protein therapies. However, the lack of an efficient delivery system hinders widespread application. Here we used ∼100-nm lipoplexes and magnetic lipoplexes that can protect cmRNA from RNases and efficiently deliver it into muscle and fat tissues as well as to the endothelium of the carotid artery. Establishing magnetofection for ex vivo cmRNA delivery for the first time, we suggest this method for potential enhanced and targeted delivery of cmRNA. This study introduces optimal cmRNA complexes with high ex vivo efficiency as good candidates for further in vivo cmRNA delivery. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription

    International Nuclear Information System (INIS)

    Dreyfuss, G.; Adam, S.A.; Choi, Y.D.

    1984-01-01

    Exposure of intact cells to UV light brings about cross-linking of polyadenylated mRNA to a set of cytoplasmic proteins which are in direct contact with the mRNA in vivo. Substantial amounts of an additional protein of molecular weight 38,000 become cross-linked to the mRNA when cells are treated with inhibitors of mRNA synthesis (actinomycin D, camptothecin, and 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole) or after infection with vesicular stomatitis virus. Cordycepin, which inhibits polyadenylation but not mRNA synthesis, has no such effect. Inhibitors of protein synthesis and of rRNA synthesis are also without effect on 38K cross-linking to mRNA. The onset of the effect of inhibitors of mRNA synthesis on the UV cross-linkable interaction between mRNA and 38K is rapid and reaches a maximal level in less than 60 min, and it is completely and rapidly reversible. In cells treated with actinomycin D, the amount of 38K which becomes cross-linked to mRNA is proportional to the extent of inhibition of mRNA synthesis. The association of 38K with mRNA during transcriptional arrest does not require protein synthesis because simultaneous treatment with the protein synthesis inhibitor emetine does not interfere with it. The effectors which promote the interaction of 38K with mRNA do not affect the proteins which are in contact with polyadenylated heterogeneous nuclear RNA and do not markedly affect protein synthesis in the cell. The 38K protein can be isolated with the polyribosomal polyadenylated fraction from which it was purified, and monoclonal antibodies against it were prepared

  5. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces

    DEFF Research Database (Denmark)

    Barends, Sharief; Zehl, Martin; Bialek, Sylwia

    2010-01-01

    coelicolor, trans-translation has a specialized role in stress management. Analysis of proteins that were carboxy-terminally His(8)-tagged by a recombinant tmRNA identified only 10 targets, including the stress proteins: DnaK heat-shock protein 70, thiostrepton-induced protein A, universal stress protein A...... functionality for tmRNA, promoting the translation of the same mRNA it targets, at the expense of sacrificing the first nascent protein. In streptomycetes, tmRNA has evolved into a dedicated task force that ensures the instantaneous response to the exposure to stress....

  6. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates

    Directory of Open Access Journals (Sweden)

    Santiago Grijalvo

    2018-02-01

    Full Text Available Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs or restoring the anomalous levels of non-coding RNAs (ncRNAs that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs, carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs, peptide nucleic acids (PNAs as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.

  7. Appendix: a solution hybridization assay to detect radioactive globin messenger RNA nucleotide sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J

    1976-09-15

    In view of the sensitivity and specificity of the solution hybridization assay for unlabeled globin mRNA a similar technique has been devised to detect radioactive globin mRNA sequences with unlabeled globin cDNA. Several properties of the hybridization reaction are presented since RNA kinetic experiments reported recently depend on the validity of this assay. Data on hybridization analysis of (/sup 3/H)RNA from mouse fetal liver or erythroleukemia cell cytoplasm are presented. These data indicate that the excess cDNA solution assay for radioactive globin mRNA detection is specific for globin mRNA sequences. It can be performed rapidly and is highly reproducible from experiment. It is at least 500-fold less sensitive than the assay for unlabeled globin mRNA, due to the RNAase backgrounds of 0.05 to 0.15 %. However, this limitation has not affected kinetic experiments with non-dividing fetal liver erythroid cells, which synthesize relatively large quantities of globin mRNA.

  8. Illuminating Messengers: An Update and Outlook on RNA Visualization in Bacteria

    Directory of Open Access Journals (Sweden)

    Lieke A. van Gijtenbeek

    2017-06-01

    Full Text Available To be able to visualize the abundance and spatiotemporal features of RNAs in bacterial cells would permit obtaining a pivotal understanding of many mechanisms underlying bacterial cell biology. The first methods that allowed observing single mRNA molecules in individual cells were introduced by Bertrand et al. (1998 and Femino et al. (1998. Since then, a plethora of techniques to image RNA molecules with the aid of fluorescence microscopy has emerged. Many of these approaches are useful for the large eukaryotic cells but their adaptation to study RNA, specifically mRNA molecules, in bacterial cells progressed relatively slow. Here, an overview will be given of fluorescent techniques that can be used to reveal specific RNA molecules inside fixed and living single bacterial cells. It includes a critical evaluation of their caveats as well as potential solutions.

  9. Increased efficiency of exogenous messenger RNA translation in a Krebs ascites cell lysate.

    Science.gov (United States)

    Metafora, S; Terada, M; Dow, L W; Marks, P A; Bank, A

    1972-05-01

    Addition of a 0.5 M KCl wash fraction from rabbit reticulocyte ribosomes causes a 3- to 10-fold increase in the extent of translation of natural mRNAs by Krebs-cell lysates. In the presence of the wash fraction, 1 pmol of rabbit or mouse 10S RNA directs the incorporation of 80 pmol of leucine into rabbit globin. The addition of human 10S RNA results in the synthesis of equal amounts of human alpha and beta chains, identified by column chromatography. The stimulation by the wash fraction is almost completely dependent on added mammalian tRNA. In contrast to the wash fraction from rabbit reticulocytes, the wash fraction isolated from Krebs-cell ribosomes is inhibitory to both endogenous and exogenous mRNA translation. The stimulation by the wash fraction from rabbit ribosomes is not specific for globin mRNAs, but also increases endogenous, phage Qbeta, and viral RNA-directed protein synthesis.

  10. Expression of μ, κ, and δ opioid receptor messenger RNA in the human CNS: a 33P in situ hybridization study

    International Nuclear Information System (INIS)

    Peckys, D.; Landwehrmeyer, G.B.

    1999-01-01

    The existence of at least three opioid receptor types, referred to as μ, κ, and δ, is well established. Complementary DNAs corresponding to the pharmacologically defined μ, κ, and δ opioid receptors have been isolated in various species including man. The expression patterns of opioid receptor transcripts in human brain has not been established with a cellular resolution, in part because of the low apparent abundance of opioid receptor messenger RNAs in human brain. To visualize opioid receptor messenger RNAs we developed a sensitive in situ hybridization histochemistry method using 33 P-labelled RNA probes. In the present study we report the regional and cellular expression of μ, κ, and δ opioid receptor messenger RNAs in selected areas of the human brain. Hybridization of the different opioid receptor probes resulted in distinct labelling patterns. For the μ and κ opioid receptor probes, the most intense regional signals were observed in striatum, thalamus, hypothalamus, cerebral cortex, cerebellum and certain brainstem areas as well as the spinal cord. The most intense signals for the δ opioid receptor probe were found in cerebral cortex. Expression of opioid receptor transcripts was restricted to subpopulations of neurons within most regions studied demonstrating differences in the cellular expression patterns of μ, κ, and δ opioid receptor messenger RNAs in numerous brain regions. The messenger RNA distribution patterns for each opioid receptor corresponded in general to the distribution of opioid receptor binding sites as visualized by receptor autoradiography. However, some mismatches, for instance between μ opioid receptor receptor binding and μ opioid receptor messenger RNA expression in the anterior striatum, were observed. A comparison of the distribution patterns of opioid receptor messenger RNAs in the human brain and that reported for the rat suggests a homologous expression pattern in many regions. However, in the human brain, κ

  11. Photoreversible UV-inactivation of messenger RNA in an insect embryo (Smittia spec., chironomidae, diptera)

    International Nuclear Information System (INIS)

    Jaeckle, H.; Kalthoff, K.

    1980-01-01

    Smittia embryos were UV-irradiated during intravitelline cleavage while nuclei are heavily shielded by yolk-rich cytoplasm and do not synthesize detectable amounts of RNA. Irradiation at 265, 285 and 295 nm wavelength caused biological inactivation, and pyrimidine dimer formation in maternal RNA. Marked effects on protein synthesis were also observed: (1) the overall rate of 35 S-methionine incorporation in vivo was reduced to less than half of the normal rate, (2) two dimensional gel electrophoresis revealed quantitative variations in the synthetic rate of some polypeptides and the appearance of new ones in UV-irradiated embryos, (3) translation of polyadenylated RNA from Smittia embryos in a cell-free system was inhibited by UV-irradiation in vivo, (4) the apparent degradation during early embryogenesis, of maternal polyadenylated RNA was retarded in UV-irradiated embryos. Exposure to light (400 nm) after UV caused partial photoreversal of all UV effects observed. This is the first data showing that animal mRNA, after UV-irradiation, can be photoreactivated in vivo. The results also strongly suggest that the photorepairable lesions consist of pyrimidine dimers generated in a photosensitized reaction. (author)

  12. Transforming growth factor-beta messenger RNA and protein in murine colitis

    DEFF Research Database (Denmark)

    Whiting, C V; Williams, A M; Claesson, Mogens Helweg

    2001-01-01

    Using a CD4+ T-cell-transplanted SCID mouse model of colitis, we have analyzed TGF-beta transcription and translation in advanced disease. By in situ hybridization, the epithelium of both control and inflamed tissues transcribed TGF-beta1 and TGF-beta3 mRNAs, but both were expressed significantly...... farther along the crypt axis in disease. Control lamina propria cells transcribed little TGF-beta1 or TGF-beta3 mRNA, but in inflamed tissues many cells expressed mRNA for both isoforms. No TGF-beta2 message was detected in either control or inflamed tissues. Immunohistochemistry for latent and active TGF...

  13. INDUCTION OF INTERLEUKIN-1-BETA MESSENGER-RNA AFTER FOCAL CEREBRAL-ISCHEMIA IN THE RAT

    NARCIS (Netherlands)

    BUTTINI, M; SAUTER, A; BODDEKE, HWGM

    The expression of interleukin-1beta (IL-1beta) mRNA in the brain in response to cerebral ischaemia in rats was examined using in situ hybridization histochemistry. Focal cerebral ischaemia was induced in spontaneously hypertensive rats by permanent occlusion of the left middle cerebral artery

  14. Rational design of avian metapneumovirus live attenuated vaccines by inhibiting viral messenger RNA cap methyltransferase

    Science.gov (United States)

    Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...

  15. Fetuin and fetuin messenger RNA in granulosa cells of the rat ovary

    DEFF Research Database (Denmark)

    Høyer, Poul Erik; Terkelsen, O B; Grete Byskov, A

    2001-01-01

    during maturation of the oocyte. We demonstrated fetuin mRNA in the rat ovary by reverse transcriptase-polymerase chain reaction and localized it by in situ hybridization. Fetuin mRNA was present in all granulosa cells of growing and large follicles. Immunohistochemical analysis revealed that the fetuin...... protein was only present in some of the small, growing follicles. In large, healthy follicles, fetuin protein was confined to cumulus cells and granulosa cells bordering the antrum. Fetuin was present in atretic follicles, but the staining pattern differed from that of healthy follicles. The follicular...... antrum contained a substantial amount of fetuin, but whether granulosa cells secreted it or it originated in the ovarian blood supply could not be confirmed. We concluded that at least a portion of the fetuin is produced by granulosa cells of growing and large follicles, suggesting that fetuin may...

  16. Tissue-specific splicing pattern of fibronectin messenger RNA precursor during development and aging in rat

    OpenAIRE

    1991-01-01

    Fibronectin isoforms are generated by the alternative splicing of a primary transcript derived from a single gene. In rat at least three regions of the molecule are involved: EIIIA, EIIIB, and V. This study investigated the splicing patterns of these regions during development and aging, by means of ribonuclease protection analysis. Between fetal and adult rat, the extent of inclusion of the EIIIA and/or EIIIB region in fibronectin mRNA varied according to the type of tissue analyzed; but the...

  17. MCT-1 protein interacts with the cap complex and modulates messenger RNA translational profiles

    DEFF Research Database (Denmark)

    Reinert, Line; Shi, B; Nandi, S

    2006-01-01

    MCT-1 is an oncogene that was initially identified in a human T cell lymphoma and has been shown to induce cell proliferation as well as activate survival-related pathways. MCT-1 contains the PUA domain, a recently described RNA-binding domain that is found in several tRNA and rRNA modification...... enzymes. Here, we established that MCT-1 protein interacts with the cap complex through its PUA domain and recruits the density-regulated protein (DENR/DRP), containing the SUI1 translation initiation domain. Through the use of microarray analysis on polysome-associated mRNAs, we showed that up......-regulation of MCT-1 was able to modulate the translation profiles of BCL2L2, TFDP1, MRE11A, cyclin D1, and E2F1 mRNAs, despite equivalent levels of mRNAs in the cytoplasm. Our data establish a role for MCT-1 in translational regulation, and support a linkage between translational control and oncogenesis....

  18. Expression of preprotachykinin-A and neuropeptide-Y messenger RNA in the thymus.

    Science.gov (United States)

    Ericsson, A; Geenen, V; Robert, F; Legros, J J; Vrindts-Gevaert, Y; Franchimont, P; Brene, S; Persson, H

    1990-08-01

    The preprotachykinin-A gene, the common gene of mRNAs encoding both substance-P (SP) and neurokinin-A (NKA), was shown to be expressed in Sprague-Dawley rat thymus by detection of specific mRNA in gel-blot analyses. In situ hybridization revealed dispersed PPT-A-labeled cells in sections from rat thymus, with a concentration of grains over a subpopulation of cells in the thymic medulla. Also, neuropeptide-Y mRNA-expressing cells were found in the rat thymus, primarily in the thymic medulla. Rat thymic extracts contained SP-like immunoreactivity (SP-LI), and the major part of the immunoreactivity coeluted with authentic SP and SP sulfoxide standards. SP-LI was also detected in human thymus, which contained between 0.09-0.88 ng SP-LI/g wet wt. Evidence for translation of preprotachykinin-A mRNA in the rat thymus was obtained from the demonstration of NKA-LI in thymic cells with an epithelial-like cell morphology. Combined with previous observations on the immunoregulatory roles of tachykinin peptides and the existence of specific receptors on immunocompetent cells, the demonstration of intrathymic synthesis of NKA suggests a role for NKA-LI peptides in T-cell differentiation in the thymus.

  19. Quantitative correlation between promoter methylation and messenger RNA levels of the reduced folate carrier

    Directory of Open Access Journals (Sweden)

    Kheradpour Albert

    2008-05-01

    Full Text Available Abstract Background Methotrexate (MTX uptake is mediated by the reduced folate carrier (RFC. Defective drug uptake in association with decreased RFC expression is a common mechanism of MTX resistance in many tumor types. Heavy promoter methylation was previously identified as a basis for the complete silencing of RFC in MDA-MB-231 breast cancer cells, its role and prevalence in RFC transcription regulation are, however, not widely studied. Methods In the current study, RFC promoter methylation was assessed using methylation specific PCR in a panel of malignant cell lines (n = 8, including MDA-MB-231, and M805, a MTX resistant cell line directly established from the specimen of a patient with malignant fibrohistocytoma, whom received multiple doses of MTX. A quantitative approach of real-time PCR for measuring the extent of RFC promoter methylation was developed, and was validated by direct bisulfite genomic sequencing. RFC mRNA levels were determined by quantitative real-time RT-PCR and were related to the extent of promoter methylation in these cell lines. Results A partial promoter methylation and RFC mRNA down-regulation were observed in M805. Using the quantitative approach, a reverse correlation (correlation coefficient = -0.59, p Conclusion This study further suggests that promoter methylation is a potential basis for MTX resistance. The quantitative correlation identified in this study implies that promoter methylation is possibly a mechanism involved in the fine regulation of RFC transcription.

  20. Labeling of eukaryotic messenger RNA 5' terminus with phosphorus -32: use of tobacco acid pyrophosphatase for removal of cap structures

    International Nuclear Information System (INIS)

    Lockard, R.E.; Rieser, L.; Vournakis, J.N.

    1981-01-01

    In recent years, there has been a growing appreciation of the potential applications of 5'- 32 P-end-labeled mRNA, not only for screening recombinant clones and mapping gene structure, but also for revealing possible nucleotide sequence and structural signals within mRNA molecules themselves, which may be important for eukaryotic mRNA processing and turnover and for controlling differential rates of translational initiation. Three major problems, however, have retarded progress in this area, lack of methods for efficient and reproducible removal of m7G5ppp5'-cap structures, which maintain the integrity of an RNA molecule; inability to generate a sufficient amount of labeled mRNA, owing to the limited availability of most pure mRNA species; and the frequent problem of RNA degradation during in vitro end-labeling owing to RNAse contamination. The procedures presented here permit one to decap and label minute quantities of mRNA, effectively. Tobacco acid pyrophosphatase is relatively efficient in removing cap structures from even nanogram quantities of available mRNA, and enough radioactivity can be easily generated from minute amounts ofintact mRNA with very high-specific-activity [gamma- 32 P]ATP and the inhibition of ribonuclease contamination with diethylpyrocarbonate. These procedures can be modified and applied to almost any other type of RNA molecule as well. In Section III of this volume, we explore in detail how effectively 5'-end-labeled mRNA can be used not only for nucleotide sequence analysis, but also for mapping mRNA secondary structure

  1. Insulin-like growth factor II messenger RNA-binding protein-3 is an independent prognostic factor in uterine leiomyosarcoma.

    Science.gov (United States)

    Yasutake, Nobuko; Ohishi, Yoshihiro; Taguchi, Kenichi; Hiraki, Yuka; Oya, Masafumi; Oshiro, Yumi; Mine, Mari; Iwasaki, Takeshi; Yamamoto, Hidetaka; Kohashi, Kenichi; Sonoda, Kenzo; Kato, Kiyoko; Oda, Yoshinao

    2018-04-01

    The aim of this study was to identify the prognostic factors of uterine leiomyosarcoma (ULMS). We reviewed 60 cases of surgically resected ULMSs and investigated conventional clinicopathological factors, together with the expression of insulin-like growth factor II messenger RNA-binding protein-3 (IMP3), hormone receptors and cell cycle regulatory markers by immunohistochemistry. Mediator complex subunit 12 (MED12) mutation analysis was also performed. Univariate analyses revealed that advanced stage (P < 0.0001), older age (P = 0.0244) and IMP3 expression (P = 0.0011) were significant predictors of a poor outcome. Multivariate analysis revealed advanced stage (P < 0.0001) and IMP3 (P = 0.0373) as independent predictors of a poor prognosis. Expressions of cell cycle markers and hormone receptors, and MED12 mutations (12% in ULMSs) were not identified as prognostic markers in this study. IMP3 expression in ULMS could be a marker of a poor prognosis. © 2017 John Wiley & Sons Ltd.

  2. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Directory of Open Access Journals (Sweden)

    Akira Ito

    Full Text Available Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH and citrate synthase (CS, which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1 and aggrecan (ACAN, was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y-box 9 (SOX9, which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and

  3. Culture temperature affects human chondrocyte messenger RNA expression in monolayer and pellet culture systems.

    Science.gov (United States)

    Ito, Akira; Nagai, Momoko; Tajino, Junichi; Yamaguchi, Shoki; Iijima, Hirotaka; Zhang, Xiangkai; Aoyama, Tomoki; Kuroki, Hiroshi

    2015-01-01

    Cell-based therapy has been explored for articular cartilage regeneration. Autologous chondrocyte implantation is a promising cell-based technique for repairing articular cartilage defects. However, there are several issues such as chondrocyte de-differentiation. While numerous studies have been designed to overcome some of these issues, only a few have focused on the thermal environment that can affect chondrocyte metabolism and phenotype. In this study, the effects of different culture temperatures on human chondrocyte metabolism- and phenotype-related gene expression were investigated in 2D and 3D environments. Human chondrocytes were cultured in a monolayer or in a pellet culture system at three different culture temperatures (32°C, 37°C, and 41°C) for 3 days. The results showed that the total RNA level, normalized to the threshold cycle value of internal reference genes, was higher at lower temperatures in both culture systems. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and citrate synthase (CS), which are involved in glycolysis and the citric acid cycle, respectively, were expressed at similar levels at 32°C and 37°C in pellet cultures, but the levels were significantly lower at 41°C. Expression of the chondrogenic markers, collagen type IIA1 (COL2A1) and aggrecan (ACAN), was higher at 37°C than at 32°C and 41°C in both culture systems. However, this phenomenon did not coincide with SRY (sex-determining region Y)-box 9 (SOX9), which is a fundamental transcription factor for chondrogenesis, indicating that a SOX9-independent pathway might be involved in this phenomenon. In conclusion, the expression of chondrocyte metabolism-related genes at 32°C was maintained or enhanced compared to that at 37°C. However, chondrogenesis-related genes were further induced at 37°C in both culture systems. Therefore, manipulating the culture temperature may be an advantageous approach for regulating human chondrocyte metabolic activity and chondrogenesis.

  4. Primary structure of the α-subunit of Na+, K+-ATPase. II. Isolation, reverse transcription, and cloning of messenger RNA

    International Nuclear Information System (INIS)

    Petrukhin, K.E.; Broude, N.E.; Arsenyan, S.G.; Grishin, A.V.; Dzhandzhugazyan, K.N.; Modyanov, N.N.

    1986-01-01

    The messenger RNA coding the α-subunit of Na + ,K + -ATPase has been isolated from the outer medullary layer of porcine kidneys. The mRNA gives a specific hybridization band in the 25S-26S region with three oligonucleotide probes synthesized on the basis of information on the structure of three peptides isolated from a tryptic hydrolyzate of the α-subunit of Na + ,K + -ATPase. The translation of the mRNA in Xenopus laevis oocytes followed by immunochemical identification of the products of synthesis confirmed the presence of the mRNA of the α-subunit of Na + ,K + -ATPase in an enriched fraction of poly(A + )-RNA. This preparation has been used for the synthesis of cloning of double-stranded cDNA

  5. Primary structure of the. cap alpha. -subunit of Na/sup +/, K/sup +/-ATPase. II. Isolation, reverse transcription, and cloning of messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, K.E.; Broude, N.E.; Arsenyan, S.G.; Grishin, A.V.; Dzhandzhugazyan, K.N.; Modyanov, N.N.

    1986-10-01

    The messenger RNA coding the ..cap alpha..-subunit of Na/sup +/,K/sup +/-ATPase has been isolated from the outer medullary layer of porcine kidneys. The mRNA gives a specific hybridization band in the 25S-26S region with three oligonucleotide probes synthesized on the basis of information on the structure of three peptides isolated from a tryptic hydrolyzate of the ..cap alpha..-subunit of Na/sup +/,K/sup +/-ATPase. The translation of the mRNA in Xenopus laevis oocytes followed by immunochemical identification of the products of synthesis confirmed the presence of the mRNA of the ..cap alpha..-subunit of Na/sup +/,K/sup +/-ATPase in an enriched fraction of poly(A/sup +/)-RNA. This preparation has been used for the synthesis of cloning of double-stranded cDNA.

  6. Diagnostic accuracy of circulating thyrotropin receptor messenger RNA combined with neck ultrasonography in patients with Bethesda III-V thyroid cytology.

    Science.gov (United States)

    Aliyev, Altay; Patel, Jinesh; Brainard, Jennifer; Gupta, Manjula; Nasr, Christian; Hatipoglu, Betul; Siperstein, Allan; Berber, Eren

    2016-01-01

    The aim of this study was to analyze the usefulness of thyrotropin receptor messenger RNA (TSHR-mRNA) combined with neck ultrasonography (US) in the management of thyroid nodules with Bethesda III-V cytology. Cytology slides of patients with a preoperative fine needle aspiration (FNA) and TSHR-mRNA who underwent thyroidectomy between 2002 and 2011 were recategorized based on the Bethesda classification. Results of thyroid FNA, TSHR-mRNA, and US were compared with the final pathology. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. There were 12 patients with Bethesda III, 112 with Bethesda IV, and 58 with Bethesda V cytology. The sensitivity of TSHR-mRNA in predicting cancer was 33%, 65%, and 79 %, and specificity was 67%, 66%, and 71%, for Bethesda III, IV, and V categories, respectively. For the same categories, the PPV of TSHR-mRNA was 25%, 33%, and 79%, respectively; whereas the NPV was 75%, 88%, and 71%, respectively. The addition of neck US to TSHR-mRNA increased the NPV to 100% for Bethesda III, and 86%, for Bethesda IV, and 82% for Bethesda V disease. This study documents the potential usefulness of TSHR-mRNA for thyroid nodules with Bethesda III-V FNA categories. TSHR-mRNA may be used to exclude Bethesda IV disease. A large sample analysis is needed to determine its accuracy for Bethesda category III nodules. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Ultra-sensitive DNA assay based on single-molecule detection coupled with fluorescent quantum dot-labeling and its application to determination of messenger RNA

    International Nuclear Information System (INIS)

    Li Li; Li Xincang; Li Lu; Wang Jinxing; Jin Wenrui

    2011-01-01

    An ultra-sensitive single-molecule detection (SMD) method for quantification of DNA using total internal reflection fluorescence microscopy (TIRFM) coupled with fluorescent quantum dot (QD)-labeling was developed. In this method, the target DNA (tDNA) was captured by the capture DNA immobilized on the silanized coverslip blocked with ethanolamine and bovine serum albumin. Then, the QD-labeled probe DNA was hybridized to the tDNA. Ten fluorescent images of the QD-labeled sandwich DNA hybrids on the coverslip were taken by a high-sensitive CCD. The tDNA was quantified by counting the bright spots on the images using a calibration curve. The LOD of the method was 1 x 10 -14 mol L -1 . Several key factors, including image acquirement, fluorescence probe, substrate preparation, noise elimination from solutions and glass coverslips, and nonspecific adsorption and binding of solution-phase detection probes were discussed in detail. The method could be applied to quantify messenger RNA (mRNA) in cells. In order to determine mRNA, double-stranded RNA-DNA hybrids consisting of mRNA and corresponding cDNA were synthesized from the cellular mRNA template using reverse transcription in the presence of reverse transcriptase. After removing the mRNA in the double-stranded hybrids using ribonuclease, cDNA was quantified using the SMD-based TIRFM. Osteopontin mRNA in decidual stromal cells was chosen as the model analyte.

  8. Ultra-sensitive DNA assay based on single-molecule detection coupled with fluorescent quantum dot-labeling and its application to determination of messenger RNA

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Li Xincang [School of Life Sciences, Shandong University, Jinan 250100 (China); Li Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2011-01-24

    An ultra-sensitive single-molecule detection (SMD) method for quantification of DNA using total internal reflection fluorescence microscopy (TIRFM) coupled with fluorescent quantum dot (QD)-labeling was developed. In this method, the target DNA (tDNA) was captured by the capture DNA immobilized on the silanized coverslip blocked with ethanolamine and bovine serum albumin. Then, the QD-labeled probe DNA was hybridized to the tDNA. Ten fluorescent images of the QD-labeled sandwich DNA hybrids on the coverslip were taken by a high-sensitive CCD. The tDNA was quantified by counting the bright spots on the images using a calibration curve. The LOD of the method was 1 x 10{sup -14} mol L{sup -1}. Several key factors, including image acquirement, fluorescence probe, substrate preparation, noise elimination from solutions and glass coverslips, and nonspecific adsorption and binding of solution-phase detection probes were discussed in detail. The method could be applied to quantify messenger RNA (mRNA) in cells. In order to determine mRNA, double-stranded RNA-DNA hybrids consisting of mRNA and corresponding cDNA were synthesized from the cellular mRNA template using reverse transcription in the presence of reverse transcriptase. After removing the mRNA in the double-stranded hybrids using ribonuclease, cDNA was quantified using the SMD-based TIRFM. Osteopontin mRNA in decidual stromal cells was chosen as the model analyte.

  9. Reprogramming human umbilical cord mesenchymal stromal cells to islet-like cells with the use of in vitro-synthesized pancreatic-duodenal homebox 1 messenger RNA.

    Science.gov (United States)

    Wang, Xiao Li; Hu, Pei; Guo, Xing Rong; Yan, Ding; Yuan, Yahong; Yan, Shi Rong; Li, Dong Sheng

    2014-11-01

    Human umbilical cord mesenchymal stromal cells (hUC-MSCs) hold great potential as a therapeutic candidate to treat diabetes, owing to their unlimited source and ready availability. In this study, we differentiated hUC-MSCs with in vitro-synthesized pancreatic-duodenal homebox 1 (PDX1) messenger (m)RNA into islet-like cell clusters. hUC-MSCs were confirmed by both biomarker detection and functional differentiation. In vitro-synthesized PDX1 messenger RNA can be transfected into hUC-MSCs efficiently. The upregulated expression of PDX1 protein can be detected 4 h after transfection and remains detectable for 36 h. The induction of islet-like structures was confirmed by means of morphology and dithizone staining. Reverse transcriptase-polymerase chain reaction results revealed the expression of some key pancreatic transcription factors, such as PDX1, NeuroD, NKX6.1, Glut-2 and insulin in islet-like cell clusters. Immunofluorescence analysis showed that differentiated cells express both insulin and C-peptide. Enzyme-linked immunosorbent assay analysis validated the insulin secretion of islet-like cell clusters in response to the glucose stimulation. Our results demonstrate the use of in vitro-synthesized PDX1 messenger RNA to differentiate hUC-MSCs into islet-like cells and pave the way toward the development of reprogramming and directed-differentiation methods for the expression of encoded proteins. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. The MESSENGER mission to Mercury: new insights into geological processes and evolution

    Science.gov (United States)

    Head, James W., III; Solomon, Sean C.; McNutt, Ralph L., Jr.; Blewett, David T.; Chapman, Clark R.; Domingue, Deborah L.; Evans, Larry G.; Gillis-Davis, Jeffrey J.; Hawkins, S. Edward, III; Helbert, Jörn; Holsclaw, Gregory M.; Izenberg, Noam R.; McClintock, William E.; McCoy, Timothy J.; Merline, William J.; Murchie, Scott L.; Nittler, Larrz R.; Phillips, Roger J.; Prockter, Louise M.; Robinson, Mark S.; Sprague, Ann L.; Strom, Robert G.; Vilas, Faith; Watters, Thomas R.; Zuber, Maria T.

    2008-09-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, a part of NASA's Discovery Program, was designed to answer six questions [1]: (1) What planetary formational processes led to Mercury's high ratio of metal to silicate? (2) What is the geological history of Mercury? (3) What are the nature and origin of Mercury's magnetic field? (4) What are the structure and state of Mercury's core? (5) What are the radar-reflective materials at Mercury's poles? (6) What are the important volatile species and their sources and sinks near Mercury? MESSENGER is currently midway through a complex interplanetary cruise phase that involves three flybys of Mercury. The first of these, on 14 January 2008, provided important new information relating to several of the questions above [2-13]. Here we summarize observations made during the flyby that are most relevant to new insights about geological processes that have operated on Mercury and implications for the planet's history [3, 8-13]. The instruments that provided the most direct information on the geological history of Mercury during this first encounter were the Mercury Dual Imaging System (MDIS) [14], the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) [15], and the Mercury Laser Altimeter (MLA) [16]. Among the many specific questions remaining following the Mariner 10 mission to Mercury (1974- 1975) were (1) the level of mineralogical and compositional diversity of the crust, which appeared relatively bland in Mariner 10 data, (2) the nature of the rest of the huge Caloris impact basin seen only partially in Mariner 10 images, (3) the origin of the extensive plains observed on the surface (ponded impact ejecta or extrusive lava flows?), (4) the diversity and global distribution of tectonic features that have deformed the crust and their implications for strain as a function of time, and (5) the bombardment chronology and geological history of Mercury [1, 17-19]. The viewing

  11. Mercury's Messenger

    Science.gov (United States)

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  12. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    Directory of Open Access Journals (Sweden)

    Katja Meyer

    2015-07-01

    Full Text Available Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  13. Immunohistochemical identification of messenger RNA-related proteins in basophilic inclusions of adult-onset atypical motor neuron disease.

    Science.gov (United States)

    Fujita, Kengo; Ito, Hidefumi; Nakano, Satoshi; Kinoshita, Yoshimi; Wate, Reika; Kusaka, Hirofumi

    2008-10-01

    This report concerns an immunohistochemical investigation on RNA-related proteins in the basophilic inclusions (BIs) from patients with adult-onset atypical motor neuron disease. Formalin-fixed, paraffin-embedded sections of the motor cortex and the lumbar spinal cord were examined. The BIs appeared blue in color with H&E and Nissl stain, and pink with methylgreen-pyronin stain. Ribonuclease pretreatment abolished the methylgreen-pyronin staining, suggesting that the BIs contained RNA. Immunohistochemically, the BIs were distinctly labeled with the antibodies against poly(A)-binding protein 1, T cell intracellular antigen 1, and ribosomal protein S6. These proteins are essential constituents of stress granules. In contrast, the BIs were not immunoreactive for ribosomal protein L28 and decapping enzyme 1, which are core components of transport ribonucleoprotein particles and processing bodies, respectively. Moreover, the BIs were not immunopositive for TDP-43. Our results imply that translation attenuation could be involved in the processes of BI formation in this disorder.

  14. Growth differentiation factor 3 is induced by bone morphogenetic protein 6 (BMP-6) and BMP-7 and increases luteinizing hormone receptor messenger RNA expression in human granulosa cells.

    Science.gov (United States)

    Shi, Jia; Yoshino, Osamu; Osuga, Yutaka; Akiyama, Ikumi; Harada, Miyuki; Koga, Kaori; Fujimoto, Akihisa; Yano, Tetsu; Taketani, Yuji

    2012-04-01

    To examine the relevance of growth differentiation factor 3 (GDF-3) and bone morphogenetic protein (BMP) cytokines in human ovary. Molecular studies. Research laboratory. Eight women undergoing salpingo-oophorectomy and 30 women undergoing ovarian stimulation for in vitro fertilization. Localizing GDF-3 protein in human ovaries; granulosa cells (GC) cultured with GDF-3, BMP-6, or BMP-7 followed by RNA extraction. The localization of GDF-3 protein in normal human ovaries via immunohistochemical analysis, GDF-3 messenger RNA (mRNA) expression evaluation via quantitative real-time reverse transcription and polymerase chain reaction (RT-PCR), and evaluation of the effect of GDF-3 on leuteinizing hormone (LH) receptor mRNA expression via quantitative real-time RT-PCR. In the ovary, BMP cytokines, of the transforming growth factor beta (TGF-β) superfamily, are known as a luteinization inhibitor by suppressing LH receptor expression in GC. Growth differentiation factor 3, a TGF-β superfamily cytokine, is recognized as an inhibitor of BMP cytokines in other cells. Immunohistochemical analysis showed that GDF-3 was strongly detected in the GC of antral follicles. An in vitro assay revealed that BMP-6 or BMP-7 induced GDF-3 mRNA in GC. Also, GDF-3 increased LH receptor mRNA expression and inhibited the effect of BMP-7, which suppressed the LH receptor mRNA expression in GC. GDF-3, induced with BMP-6 and BMP-7, might play a role in folliculogenesis by inhibiting the effect of BMP cytokines. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Lower glutamic acid decarboxylase 65-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia.

    Science.gov (United States)

    Glausier, Jill R; Kimoto, Sohei; Fish, Kenneth N; Lewis, David A

    2015-01-15

    Altered gamma-aminobutyric acid (GABA) signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in patients with schizophrenia and schizoaffective disorder. Levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67-kDa isoform (GAD67) in the PFC have been consistently reported to be lower in patients with these disorders, but the status of the second GABA-synthesizing enzyme, glutamic acid decarboxylase 65-kDa isoform (GAD65), remains unclear. GAD65 messenger RNA (mRNA) levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. In a subset of subject pairs, GAD65 relative protein levels were quantified by confocal immunofluorescence microscopy. Mean GAD65 mRNA levels were 13.6% lower in subjects with schizoaffective disorder but did not differ in subjects with schizophrenia relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein levels within subjects with schizoaffective disorder were not attributable to factors commonly comorbid with the diagnosis. In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in patients with schizoaffective disorder relative to patients with schizophrenia, these findings may support an interpretation that GAD65 downregulation provides a homeostatic response complementary to GAD67 downregulation that serves to reduce inhibition in the face of lower PFC network activity. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc

  16. Association of Cocaine- and Amphetamine-Regulated Transcript (CART) Messenger RNA Level, Food Intake, and Growth in Channel Catfish

    Science.gov (United States)

    Cocaine-and Amphetamine-Regulated Transcript (CART) is a potent hypothalamic anorectic peptide in mammals and fish. We hypothesized that increased food intake is associated with changes in expression of CART mRNA within the brain of channel catfish. Objectives were to clone the CART gene, examine ...

  17. P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes

    Czech Academy of Sciences Publication Activity Database

    Flemr, Matyáš; Ma, J.; Schultz, R. M.; Svoboda, Petr

    2010-01-01

    Roč. 82, č. 5 (2010), s. 1008-1017 ISSN 0006-3363 R&D Project s: GA MŠk ME09039 Grant - others:EMBO SDIG(DE) project 1483 Institutional research plan: CEZ:AV0Z50520514 Keywords : oocyte * mRNA * cortex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.870, year: 2010

  18. SIMULTANEOUS EXPRESSION AND REGULATION OF G-CSF AND IL-6 MESSENGER-RNA IN ADHERENT HUMAN MONOCYTES AND FIBROBLASTS

    NARCIS (Netherlands)

    VELLENGA, E; VANDERVINNE, B; DEWOLF, JTM; HALIE, MR

    The regulation of granulocyte-colony stimulating factor (G-CSF) and interleukin-6 (IL-6) mRNA was studied in human adherent monocytes in response to the protein kinase C activator, oleolyl-acetylglycerol (OAG), the calcium-ionophore A23187 and the cyclic AMP elevating agents, dibutyryl c-AMP

  19. Detailed mapping of serotonin 5-HT1B and 5-HT1D receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function

    International Nuclear Information System (INIS)

    Leysen, J.E.; Schotte, A.; Jurzak, M.; Luyten, W.H.M.L.; Voorn, P.; Bonaventure, P.

    1997-01-01

    The similar pharmacology of the 5-HT 1B and 5-HT 1D receptors, and the lack of selective compounds sufficiently distinguishing between the two receptor subtypes, have hampered functional studies on these receptors. In order to provide clues for differential functional roles of the two subtypes, we performed a parallel localization study throughout the guinea-pig brain and the trigeminal ganglia by means of quantitative in situ hybridization histochemistry (using [ 35 S]-labelled riboprobes probes for receptor messenger RNA) and receptor autoradiography (using a new radioligand [ 3 H]alniditan).The anatomical patterns of 5-HT 1B and 5-HT 1D receptor messenger RNA were quite different. While 5-HT 1B receptor messenger RNA was abundant throughout the brain (with highest levels in the striatum, nucleus accumbens, olfactory tubercle, cortex, hypothalamus, hippocampal formation, amygdala, thalamus, dorsal raphe and cerebellum), 5-HT 1D receptor messenger RNA exhibited a more restricted pattern; it was found mainly in the olfactory tubercle, entorhinal cortex, dorsal raphe, cerebellum, mesencephalic trigeminal nucleus and in the trigeminal ganglion. The density of 5-HT 1B/1D binding sites (combined) obtained with [ 3 H]alniditan autoradiography was high in the substantia nigra, superior colliculus and globus pallidus, whereas lower levels were detected in the caudate-putamen, hypothalamus, hippocampal formation, amygdala, thalamus and central gray. This distribution pattern was indistinguishable from specific 5-HT 1B receptor labelling in the presence of ketanserin under conditions to occlude 5-HT 1D receptor labelling; hence the latter were below detection level. Relationships between the regional distributions of the receptor messenger RNAs and binding sites and particular neuroanatomical pathways are discussed with respect to possible functional roles of the 5-HT 1B and 5-HT 1D receptors. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Finding Order in Randomness: Single-Molecule Studies Reveal Stochastic RNA Processing | Center for Cancer Research

    Science.gov (United States)

    Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.

  1. Distribution of precursor amyloid-β-protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques

    International Nuclear Information System (INIS)

    Lewis, D.A.; Higgins, G.A.; Young, W.G.; Goldgaber, D.; Gajdusek, D.C.; Wilson, M.C.; Morrison, J.H.

    1988-01-01

    Neurofibrillary tangles (NFT) and neuritic plaques (NP), two neuropathological markers of Alzheimer disease, may both contain peptide fragments derived from the human amyloid β protein. However, the nature of the relationship between NFT and NP and the source of the amyloid β proteins found in each have remained unclear. The authors used in situ hybridization techniques to map the anatomical distribution of precursor amyloid-β-protein mRNA in the neocortex of brains from three subjects with no known neurologic disease and from five patients with Alzheimer disease. In brains from control subjects, positively hybridizing neurons were present in cortical regions and layers that contain a high density of neuropathological markers in Alzheimer disease, as well as in those loci that contain NP but few NFT. Quantitative analyses of in situ hybridization patterns within layers III and V of the superior frontal cortex revealed that the presence of high numbers of NFT in Alzheimer-diseased brains was associated with a decrease in the number of positively hybridizing neurons compared to controls and Alzheimer-diseased brains with few NFT. These findings suggest that the expression of precursor amyloid-β-protein mRNA may be a necessary but is clearly not a sufficient prerequisite for NFT formation. In addition, these results may indicate that the amyloid β protein, present in NP in a given region or layer of cortex, is not derived from the resident neuronal cell bodies that express the mRNA for the precursor protein

  2. Translational recognition of the 5'-terminal 7-methylguanosine of globin messenger RNA as a function of ionic strength.

    Science.gov (United States)

    Chu, L Y; Rhoads, R E

    1978-06-13

    The translation of rabbit globin mRNA in cell-free systems derived from either wheat germ or rabbit reticulocyte was studied in the presence of various analogues of the methylated 5' terminus (cap) as a function of ionic strength. Inhibition by these analogues was strongly enhanced by increasing concentrations of KCl, K(OAc), Na(OAc), or NH4(OAc). At appropriate concentrations of K(OAc), both cell-free systems were equally sensitive to inhibition by m7GTP. At 50 mM K(OAc), the reticulocyte system was not sensitive to m7GMP or m7GTP, but at higher concentrations up to 200 mM K(OAc), both nucleotides caused strong inhibition. The compound in m7G5'ppp5'Am was inhibitory at all concentrations of K(OAc) ranging from 50 to 200 mM, although more strongly so at the higher concentrations. Over the same range of nucleotide concentrations, the compounds GMP, GTP, and G5'ppp5'Am were not inhibitors. The mobility on sodium dodecyl sulfate-polyacrylamide electrophoresis of the translation product was that of globin at all K(OAc) concentrations in the presence of m7GTP. Globin mRNA from which the terminal m7GTP group had been removed by chemical treatment (periodate-cyclohexylamine-alkaline phosphatase) or enzymatic treatment (tobacco acid pyrophosphatase-alkaline phosphatase) was translated less efficiently than untreated globin mRNA at higher K(OAc) concentrations, but retained appreciable activity at low K(OAc) concentrations.

  3. Development of Anti-Human Mesothelin-Targeted Chimeric Antigen Receptor Messenger RNA-transfected Peripheral Blood Lymphocytes for Ovarian Cancer Therapy.

    Science.gov (United States)

    Hung, Chien-Fu; Xu, Xuequn; Li, Linhong; Ma, Ying; Jin, Qiu; Viley, Angelia; Allen, Cornell; Natarajan, Pachai; Shivakumar, Rama; Peshwa, Madhusudan V; Emens, Leisha A

    2018-04-02

    CD19-targeted chimeric antigen receptor (CAR) engineered T/natural killer (NK)-cell therapies can result in durable clinical responses in B-cell malignancies. However, CAR-based immunotherapies have been much less successful in solid cancers, in part due to "on-target off-tumor" toxicity related to expression of target tumor antigens on normal tissue. Based on preliminary observations of safety and clinical activity in proof-of-concept clinical trials, tumor antigen-specific messenger RNA (mRNA) CAR transfection into selected, activated, and expanded T/NK cells may permit prospective control of "on-target off-tumor" toxicity. To develop a commercial product for solid tumors, mesothelin was selected as an antigen target based on its association with poor prognosis and overexpression in multiple solid cancers. It was hypothesized that selecting, activating, and expanding cells ex vivo prior to mRNA CAR transfection would not be necessary, thus simplifying the complexity and cost of manufacturing. Now, the development of anti-human mesothelin mRNA CAR transfected peripheral blood lymphocytes (CARMA-hMeso) is reported, demonstrating the manufacture and cryopreservation of multiple cell aliquots for repeat administrations from a single human leukapheresis. A rapid, automated, closed system for cGMP-compliant transfection of mRNA CAR in up to 20 × 10 9 peripheral blood lymphocytes was developed. Here we show that CARMA-hMeso cells recognize and lyse tumor cells in a mesothelin-specific manner. Expression of CAR was detectable over approximately 7 days in vitro, with a progressive decline of CAR expression that appears to correlate with in vitro cell expansion. In a murine ovarian cancer model, a single intraperitoneal injection of CARMA-hMeso resulted in the dose-dependent inhibition of tumor growth and improved survival of mice. Furthermore, repeat weekly intraperitoneal administrations of the optimal CARMA-hMeso dose further prolonged disease control and survival

  4. Common acute lymphoblastic leukemia antigen: partial characterization by in vivo labeling and isolation of its messenger RNA

    International Nuclear Information System (INIS)

    Heinsohn, S.; Kabisch, H.

    1987-01-01

    Common acute lymphoblastic leukemia (ALL) antigen (CALLA)-like proteins were detected by in vivo labeling experiments carried out with human lymphoblastoid cell line KM3 and also in cell-free translation, directed by CALLA-specific mRNA prepared from immunoadsorbed KM3 polysomes. The CALLA-like structure found in both systems shows an Mr of 95kDa. Additional CALLA-like proteins could be identified in the in vivo experiments with calculated Mrs of 40kDa in the cells and 85 and 38kDa in the culture medium. In the cell-free translation system, an additional product of Mr 80kDa could be detected

  5. Isolation and characterization of the messenger RNA and the gene coding for a proline-rich zein from corn endosperm

    International Nuclear Information System (INIS)

    Wang, S.Z.

    1985-01-01

    Gamma-zein, a proline-rich protein from corn endosperm, was investigated at the molecular level. Immunological and electrophoretic data indicated that gamma-zein was deposited into protein bodies in corn endosperm. Both isolated polysomes and poly(A) + mRNA were found to direct into vitro synthesis of gamma-zein in a wheat germ system. In vitro synthesized gamma-zein was immunoprecipitated from the total in vitro translation products. A cDNA expression library was constructed by reverse transcription of total poly(A) + mRNA using pUC8 plasmid as vector and E. coli strain DH1 as host. The library was screened for the expression of gamma-zein and alpha-zein by specific antibodies. The library was also screened with 32 P-labeled gamma-zein and alpha-zein cDNA probes. The results indicated that gamma-zein and its fragments were readily expressed in E. coli while alpha-zein was not. Seven independently selected clones, six of which were selected by antibody and one by a cDNA probe, were sequenced. A comparison of sequence information from seven clones revealed that their overlapping regions were identical. This suggests that gamma-zein is encoded by a single gene. This finding is in conflict with what was expected on the basis of extensive charge heterogeneity of gamma-zein in isoelectric focusing. Individual bands cut from an IEF gel were rerun and shown to give several bands suggesting that the charge heterogeneity of gamma-zein may be an artifact. Sequence information of gamma-zein indicated that the gene encodes a mature protein whose primary structure includes 204 amino acids and has a molecular weight of 21,824 daltons

  6. Stability of Reference Genes for Messenger RNA Quantification by Real-Time PCR in Mouse Dextran Sodium Sulfate Experimental Colitis.

    Directory of Open Access Journals (Sweden)

    Nour Eissa

    Full Text Available Many animal models have been developed to characterize the complexity of colonic inflammation. In dextran sodium sulfate (DSS experimental colitis in mice the choice of reference genes is critical for accurate quantification of target genes using quantitative real time PCR (RT-qPCR. No studies have addressed the performance of reference genes in mice DSS-experimental colitis. This study aimed to determine the stability of reference genes expression (RGE in DSS-experimental murine colitis.Colitis was induced in male C57BL/6 mice using DSS5% for 5 days, control group received water. RNA was extracted from inflamed and non-inflamed colon. Using RT-qPCR, comparative analysis of 13 RGE was performed according to predefined criteria and relative colonic TNF-α and IL-1β gene expression was determined by calculating the difference in the threshold cycle.Colitis significantly altered the stability of mucosal RGE. Commonly used glyceraldehyde-3-phosphate dehydrogenase (Gapdh, β-actin (Actb, or β2-microglobulin (β2m showed the highest variability within the inflamed and control groups. Conversely, TATA-box-binding protein (Tbp and eukaryotic translation elongation factor 2 (Eef2 were not affected by inflammation and were the most stable genes. Normalization of colonic TNF-α and IL-1β mRNA levels was dependent on the reference gene used. Depending on the genes used to normalize the data, statistical significance varied from significant when TBP / Eef2 were used to non-significant when Gapdh, Actb or β2m were used.This study highlights the appropriate choice of RGE to ensure adequate normalization of RT-qPCR data when using this model. Suboptimal RGE may explain controversial results from published studies. We recommend using Tbp and Eef2 instead of Gapdh, Actb or β2m as reference genes.

  7. Host apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G is an innate defensive factor and drug target against hepatitis C virus.

    Science.gov (United States)

    Peng, Zong-Gen; Zhao, Zhi-Yun; Li, Yan-Ping; Wang, Yu-Ping; Hao, Lan-Hu; Fan, Bo; Li, Yu-Huan; Wang, Yue-Ming; Shan, Yong-Qiang; Han, Yan-Xing; Zhu, Yan-Ping; Li, Jian-Rui; You, Xue-Fu; Li, Zhuo-Rong; Jiang, Jian-Dong

    2011-04-01

    Host cellular factor apolipoprotein B messenger RNA (mRNA)-editing enzyme catalytic polypeptide-like 3G (hA3G) is a cytidine deaminase that inhibits a group of viruses including human immunodeficiency virus-1 (HIV-1). In the continuation of our research on hA3G, we found that hA3G stabilizing compounds significantly inhibited hepatitis C virus (HCV) replication. Therefore, this study investigated the role of hA3G in HCV replication. Introduction of external hA3G into HCV-infected Huh7.5 human hepatocytes inhibited HCV replication; knockdown of endogenous hA3G enhanced HCV replication. Exogenous HIV-1 virion infectivity factor (Vif) decreased intracellular hA3G and therefore enhanced HCV proliferation, suggesting that the presence of Vif might be an explanation for the HIV-1/HCV coinfection often observed in HIV-1(+) individuals. Treatment of the HCV-infected Huh7.5 cells with RN-5 or IMB-26, two known hA3G stabilizing compounds, increased intracellular hA3G and accordingly inhibited HCV replication. The compounds inhibit HCV through increasing the level of hA3G incorporated into HCV particles, but not through inhibiting HCV enzymes. However, G/A hypermutation in the HCV genome were not detected, suggesting a new antiviral mechanism of hA3G in HCV, different from that in HIV-1. Stabilization of hA3G by RN-5 was safe in vivo. hA3G appears to be a cellular restrict factor against HCV and could be a potential target for drug discovery. 2011 American Association for the Study of Liver Diseases.

  8. Changes in growth hormone (GH) messenger RNA (GH mRNA) expression in the rat anterior pituitary after single interferon (IFN) alpha administration

    International Nuclear Information System (INIS)

    Romanowski, W.; Braczkowski, R.; Nowakowska-Zajdel, E.; Muc-Wierzgon, M.; Zubelewicz-Szkodzinska, B.; Kosiewicz, J.; Korzonek, I.

    2006-01-01

    Introduction: Interferon a (IFN-a) is a cytokine with pleiotropic effects which, via different pathways, influences the secretion of certain cytokines and hormones. Growth hormone (GH) secreted from the pituitary has physiological effects on various target tissues. The question is how IFN-a administered in various types of disease influences GH secretion. This study investigated the acute effect of IFN-a on GH mRNA expression in the rat anterior pituitary. Objective: The aim of the study was to measure the cellular expression of GH mRNA by in situ hybridisation in the anterior pituitary after a single administration of IFN-a. Material and methods: Rats were administered an intraperitoneal injection of IFN-a or saline. The rat pituitaries were taken 2 and 4 hours after IFN/saline administration and kept frozen until in situ hybridisation histochemistry. A 31 - base 35S -labelled oligonucleotide probe complementary to part of the exonic mRNA sequence coding for GH mRNA was used. All control and experimental sections were hybridised in the same hybridisation reaction. Results: Acute administration of interferon a increased GH mRNA expression in the anterior pituitary in the 4-hour group in comparison with the control group, and there was no difference between the control group and the 2-hour rats. Conclusion: A single IFN-a administration was found to exert an influence on anterior pituitary GH mRNA expression. These observations may pave the way for presenting a possible new action of IFN-a. (author) GH mRNA, anterior pituitary, interferon

  9. Messenger RNA for membrane-type 2 matrix metalloproteinase, MT2-MMP, is expressed in human placenta of first trimester.

    Science.gov (United States)

    Bjørn, S F; Hastrup, N; Larsen, J F; Lund, L R; Pyke, C

    2000-01-01

    An intimately regulated cell surface activation of matrix metalloproteinases (MMPs) is believed to be of critical importance for the control of trophoblast invasion. A histological investigation of the expression and localization of three different MMPs, the membrane-type matrix metalloproteinases 1 and 2 (MT1-MMP, MT2-MMP) and matrix metalloproteinase 2 (MMP-2/gelatinase A) was performed by in situ hybridization on consecutive sections from human placentae of first trimester pregnancies. Cytokeratin immunostaining identified trophoblast cells. Both normal and tubal implantation sites were studied. We observed a high degree of coexpression of MT2-MMP, MT1-MMP and MMP-2 mRNAs in single extravillous cytotrophoblasts that had invaded the endometrium and tubal wall. Furthermore, mRNAs for all three genes were also seen in cytotrophoblasts of cell islands. In contrast to this coexpression pattern, MT2-MMP expression was absent from cell columns and decidual cells, in which signals for MT1-MMP and MMP-2 mRNAs were seen. The present data on the cellular expression of MT2-MMP mRNA in placenta extend our knowledge of the proteolytic events that take place during early pregnancy. The data suggest that MT2-MMP, capable of activating MMP-2 in vitro, is involved in the invasion of extravillous cytotrophoblast, possibly related to the physiological activation of MMP-2. Copyright 2000 Harcourt Publishers Ltd.

  10. mRNA processing in yeast

    International Nuclear Information System (INIS)

    Stevens, A.

    1982-01-01

    Investigations in this laboratory center on basic enzymatic reactions of RNA. Still undefined are reactions involved in the conversion of precursors of mRA (pre-mRNA) to mRNA in eukaryotes. The pre-mRNA is called heterogeneous nuclear RNA and is 2 to 6 times larger than mRNA. The conversion, called splicing, involves a removal of internal sequences called introns by endoribonuclease action followed by a rejoining of the 3'- and 5'-end fragments, called exons, by ligating activity. It has not been possible yet to study the enzymes involved in vitro. Also undefined are reactions involved in the turnover or discarding of certain of the pre-mRNA molecules. Yeast is a simple eukaryote and may be expected to have the same, but perhaps simpler, processing reactions as the higher eukaryotes. Two enzymes involved in the processing of pre-mRNA and mRNA in yeast are under investigation. Both enzymes have been partially purified from ribonucleoprotein particles of yeast. The first is a unique decapping enzyme which cleaves [ 3 H]m 7 Gppp [ 14 C]RNA-poly (A) of yeast, yielding [ 3 H]m 7 GDP and is suggested by the finding that the diphosphate product, m 7 GpppA(G), and UDP-glucose are not hydrolyzed. The second enzyme is an endoribonuclease which converts both the [ 3 H] and [ 14 C] labels of [ 3 H]m 7 Gppp[ 14 C]RNA-poly(A) from an oligo(dT)-cellulose bound form to an unbound, acid-insoluble form. Results show that the stimulation involves an interaction of the labeled RNA with the small nuclear RNA. The inhibition of the enzyme by ethidium bromide and its stimulation by small nuclear RNA suggest that it may be a processing ribonuclease, requiring specific double-stranded features in its substrate. The characterization of the unique decapping enzyme and endoribonuclease may help to understand reactions involved in the processing of pre-mRNA and mRNA in eukaryotes

  11. Differential effects of common variants in SCN2A on general cognitive ability, brain physiology, and messenger RNA expression in schizophrenia cases and control individuals.

    Science.gov (United States)

    Dickinson, Dwight; Straub, Richard E; Trampush, Joey W; Gao, Yuan; Feng, Ningping; Xie, Bin; Shin, Joo Heon; Lim, Hun Ki; Ursini, Gianluca; Bigos, Kristin L; Kolachana, Bhaskar; Hashimoto, Ryota; Takeda, Masatoshi; Baum, Graham L; Rujescu, Dan; Callicott, Joseph H; Hyde, Thomas M; Berman, Karen F; Kleinman, Joel E; Weinberger, Daniel R

    2014-06-01

    One approach to understanding the genetic complexity of schizophrenia is to study associated behavioral and biological phenotypes that may be more directly linked to genetic variation. To identify single-nucleotide polymorphisms associated with general cognitive ability (g) in people with schizophrenia and control individuals. Genomewide association study, followed by analyses in unaffected siblings and independent schizophrenia samples, functional magnetic resonance imaging studies of brain physiology in vivo, and RNA sequencing in postmortem brain samples. The discovery cohort and unaffected siblings were participants in the National Institute of Mental Health Clinical Brain Disorders Branch schizophrenia genetics studies. Additional schizophrenia cohorts were from psychiatric treatment settings in the United States, Japan, and Germany. The discovery cohort comprised 339 with schizophrenia and 363 community control participants. Follow-up analyses studied 147 unaffected siblings of the schizophrenia cases and independent schizophrenia samples including a total of an additional 668 participants. Imaging analyses included 87 schizophrenia cases and 397 control individuals. Brain tissue samples were available for 64 cases and 61 control individuals. We studied genomewide association with g, by group, in the discovery cohort. We used selected genotypes to test specific associations in unaffected siblings and independent schizophrenia samples. Imaging analyses focused on activation in the prefrontal cortex during working memory. Brain tissue studies yielded messenger RNA expression levels for RefSeq transcripts. The schizophrenia discovery cohort showed genomewide-significant association of g with polymorphisms in sodium channel gene SCN2A, accounting for 10.4% of g variance (rs10174400, P = 9.27 × 10(-10)). Control individuals showed a trend for g/genotype association with reversed allelic directionality. The genotype-by-group interaction was also genomewide

  12. Effect of escitalopram versus placebo on GRα messenger RNA expression in peripheral blood cells of healthy individuals with a family history of depression - a secondary outcome analysis from the randomized AGENDA trial

    DEFF Research Database (Denmark)

    Knorr, Ulla; Koefoed, Pernille; Gluud, Christian

    2016-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed as first-line drugs for the treatment of depression. However, the mechanisms of action for SSRIs are unclear and besides neurotransmitter modulation may depend on modulation of the hypothalamic-pituitary-adrenal (HPA......) system. The glucocorticoid receptor (GR) isoform α plays an important role in the negative feedback regulation of the HPA axis and reduced GRα messenger RNA (mRNA) expression has been shown in mood disorder patients and first-degree relatives compared to healthy individuals with no family history...

  13. Detailed mapping of serotonin 5-HT{sub 1B} and 5-HT{sub 1D} receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function

    Energy Technology Data Exchange (ETDEWEB)

    Leysen, J.E. [Graduate School Neurosciences, Amsterdam (Netherlands); Schotte, A.; Jurzak, M.; Luyten, W.H.M.L. [Department of Biochemical Pharmacology, Janssen Research Foundation, Beerse (Belgium); Voorn, P.; Bonaventure, P. [Graduate School Neurosciences, Amsterdam (Netherlands)

    1997-10-17

    The similar pharmacology of the 5-HT{sub 1B} and 5-HT{sub 1D} receptors, and the lack of selective compounds sufficiently distinguishing between the two receptor subtypes, have hampered functional studies on these receptors. In order to provide clues for differential functional roles of the two subtypes, we performed a parallel localization study throughout the guinea-pig brain and the trigeminal ganglia by means of quantitative in situ hybridization histochemistry (using [{sup 35}S]-labelled riboprobes probes for receptor messenger RNA) and receptor autoradiography (using a new radioligand [{sup 3}H]alniditan).The anatomical patterns of 5-HT{sub 1B} and 5-HT{sub 1D} receptor messenger RNA were quite different. While 5-HT{sub 1B} receptor messenger RNA was abundant throughout the brain (with highest levels in the striatum, nucleus accumbens, olfactory tubercle, cortex, hypothalamus, hippocampal formation, amygdala, thalamus, dorsal raphe and cerebellum), 5-HT{sub 1D} receptor messenger RNA exhibited a more restricted pattern; it was found mainly in the olfactory tubercle, entorhinal cortex, dorsal raphe, cerebellum, mesencephalic trigeminal nucleus and in the trigeminal ganglion. The density of 5-HT{sub 1B/1D} binding sites (combined) obtained with [{sup 3}H]alniditan autoradiography was high in the substantia nigra, superior colliculus and globus pallidus, whereas lower levels were detected in the caudate-putamen, hypothalamus, hippocampal formation, amygdala, thalamus and central gray. This distribution pattern was indistinguishable from specific 5-HT{sub 1B} receptor labelling in the presence of ketanserin under conditions to occlude 5-HT{sub 1D} receptor labelling; hence the latter were below detection level. Relationships between the regional distributions of the receptor messenger RNAs and binding sites and particular neuroanatomical pathways are discussed with respect to possible functional roles of the 5-HT{sub 1B} and 5-HT{sub 1D} receptors. (Copyright (c

  14. Application of RNA interference in treating human diseases

    Indian Academy of Sciences (India)

    ference than either strand individually. After injection into ... antisense strand to messenger RNAs (mRNAs) that bear ... processing of longer dsRNA and stem loop precursors (Nov- ... RNAi has several applications in biomedical research,.

  15. Complementary DNA and derived amino acid sequence of the α subunit of human complement protein C8: evidence for the existence of a separate α subunit messenger RNA

    International Nuclear Information System (INIS)

    Rao, A.G.; Howard, O.M.Z.; Ng, S.C.; Whitehead, A.S.; Colten, H.R.; Sodetz, J.M.

    1987-01-01

    The entire amino acid sequence of the α subunit (M/sub r/ 64,000) of the eight component of complement (C8) was determined by characterizing cDNA clones isolated from a human liver cDNA library. Two clones with overlapping inserts of net length 2.44 kilobases (kb) were isolated and found to contain the entire α coding region [1659 base pairs (bp)]. The 5' end consists of an untranslated region and a leader sequence of 30 amino acids. This sequence contains an apparent initiation Met, signal peptide, and propeptide which ends with an arginine-rich sequence that is characteristic of proteolytic processing sites found in the pro form of protein precursors. The 3' untranslated region contains two polyadenylation signals and a poly(A)sequence. RNA blot analysis of total cellular RNA from the human hepatoma cell line HepG2 revealed a message size of ∼2.5 kb. Features of the 5' and 3' sequences and the message size suggest that a separate mRNA codes for α and argues against the occurrence of a single-chain precursor form of the disulfide-linked α-λ subunit found in mature C8. Analysis of the derived amino acid sequence revealed several membrane surface seeking domains and a possible transmembrane domain. Analysis of the carbohydrate composition indicates 1 or 2 asparagine-linked but no O-linked oligosaccharide chains, a result consistent with predictions from the amino acid sequence. Most significantly, it exhibits a striking overall homology to human C9, with values of 24% on the basis of identity and 46% when conserved substitutions are allowed. As described in an accompanying report this homology also extends to the β subunit of C8

  16. Mpn1, Mutated in Poikiloderma with Neutropenia Protein 1, Is a Conserved 3′-to-5′ RNA Exonuclease Processing U6 Small Nuclear RNA

    Directory of Open Access Journals (Sweden)

    Vadim Shchepachev

    2012-10-01

    Full Text Available Clericuzio-type poikiloderma with neutropenia (PN is a rare genodermatosis associated with mutations in the C16orf57 gene, which codes for the uncharacterized protein hMpn1. We show here that, in both fission yeasts and humans, Mpn1 processes the spliceosomal U6 small nuclear RNA (snRNA posttranscriptionally. In Mpn1-deficient cells, U6 molecules carry 3′ end polyuridine tails that are longer than those in normal cells and lack a terminal 2′,3′ cyclic phosphate group. In mpn1Δ yeast cells, U6 snRNA and U4/U6 di-small nuclear RNA protein complex levels are diminished, leading to precursor messenger RNA splicing defects, which are reverted by expression of either yeast or human Mpn1 and by overexpression of U6. Recombinant hMpn1 is a 3′-to-5′ RNA exonuclease that removes uridines from U6 3′ ends, generating terminal 2′,3′ cyclic phosphates in vitro. Finally, U6 degradation rates increase in mpn1Δ yeasts and in lymphoblasts established from individuals affected by PN. Our data indicate that Mpn1 promotes U6 stability through 3′ end posttranscriptional processing and implicate altered U6 metabolism as a potential mechanism for PN pathogenesis.

  17. A discontinuous RNA platform mediates RNA virus replication: building an integrated model for RNA-based regulation of viral processes.

    Directory of Open Access Journals (Sweden)

    Baodong Wu

    2009-03-01

    Full Text Available Plus-strand RNA viruses contain RNA elements within their genomes that mediate a variety of fundamental viral processes. The traditional view of these elements is that of local RNA structures. This perspective, however, is changing due to increasing discoveries of functional viral RNA elements that are formed by long-range RNA-RNA interactions, often spanning thousands of nucleotides. The plus-strand RNA genomes of tombusviruses exemplify this concept by possessing different long-range RNA-RNA interactions that regulate both viral translation and transcription. Here we report that a third fundamental tombusvirus process, viral genome replication, requires a long-range RNA-based interaction spanning approximately 3000 nts. In vivo and in vitro analyses suggest that the discontinuous RNA platform formed by the interaction facilitates efficient assembly of the viral RNA replicase. This finding has allowed us to build an integrated model for the role of global RNA structure in regulating the reproduction of a eukaryotic RNA virus, and the insights gained have extended our understanding of the multifunctional nature of viral RNA genomes.

  18. RNA.

    Science.gov (United States)

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  19. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    Science.gov (United States)

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  20. Architecture of eukaryotic mRNA 3′-end processing machinery

    Science.gov (United States)

    Hill, Chris H.; Easter, Ashley D.; Emsley, Paul; Degliesposti, Gianluca; Gordiyenko, Yuliya; Santhanam, Balaji; Wolf, Jana; Wiederhold, Katrin; Dornan, Gillian L.; Skehel, Mark; Robinson, Carol V.; Passmore, Lori A.

    2018-01-01

    Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3′ ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four β propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3′-end processing. PMID:29074584

  1. Targeted CRISPR disruption reveals a role for RNase MRP RNA in human preribosomal RNA processing.

    Science.gov (United States)

    Goldfarb, Katherine C; Cech, Thomas R

    2017-01-01

    MRP RNA is an abundant, essential noncoding RNA whose functions have been proposed in yeast but are incompletely understood in humans. Mutations in the genomic locus for MRP RNA cause pleiotropic human diseases, including cartilage hair hypoplasia (CHH). Here we applied CRISPR-Cas9 genome editing to disrupt the endogenous human MRP RNA locus, thereby attaining what has eluded RNAi and RNase H experiments: elimination of MRP RNA in the majority of cells. The resulting accumulation of ribosomal RNA (rRNA) precursor-analyzed by RNA fluorescent in situ hybridization (FISH), Northern blots, and RNA sequencing-implicates MRP RNA in pre-rRNA processing. Amelioration of pre-rRNA imbalance is achieved through rescue of MRP RNA levels by ectopic expression. Furthermore, affinity-purified MRP ribonucleoprotein (RNP) from HeLa cells cleaves the human pre-rRNA in vitro at at least one site used in cells, while RNP isolated from cells with CRISPR-edited MRP loci loses this activity, and ectopic MRP RNA expression restores cleavage activity. Thus, a role for RNase MRP in human pre-rRNA processing is established. As demonstrated here, targeted CRISPR disruption is a valuable tool for functional studies of essential noncoding RNAs that are resistant to RNAi and RNase H-based degradation. © 2017 Goldfarb and Cech; Published by Cold Spring Harbor Laboratory Press.

  2. Characterizing the transcriptome upon depletion of RNA processing factors

    DEFF Research Database (Denmark)

    Herudek, Jan

    , it is not clear how they target and discriminate their RNA substrates. Moreover, many novel RNA species are poorly characterized and their function is not understood. Over the last decade, protein function has been studied using RNA interference. However, this approach does not allow investigation of instant......The human genome is pervasively transcribed and produces an enormous amount of non-coding RNA (ncRNA). Compared to protein-coding transcripts, many classes of ncRNAs are very unstable and rapidly degraded by the RNA decay machinery. The RNA exosome complex is a main RNA ‘degrader’ in the human...... nucleus and is responsible for the proper processing and decay of a wide range of RNA molecules. Notably, the RNA exosome complex associates with a plethora of co-factors and activators that assist in the recognition of specific RNA substrates. Although many exosome partners have been characterized...

  3. Fragile X Mental Retardation Protein and Dendritic Local Translation of the Alpha Subunit of the Calcium/Calmodulin-Dependent Kinase II Messenger RNA Are Required for the Structural Plasticity Underlying Olfactory Learning.

    Science.gov (United States)

    Daroles, Laura; Gribaudo, Simona; Doulazmi, Mohamed; Scotto-Lomassese, Sophie; Dubacq, Caroline; Mandairon, Nathalie; Greer, Charles August; Didier, Anne; Trembleau, Alain; Caillé, Isabelle

    2016-07-15

    In the adult brain, structural plasticity allowing gain or loss of synapses remodels circuits to support learning. In fragile X syndrome, the absence of fragile X mental retardation protein (FMRP) leads to defects in plasticity and learning deficits. FMRP is a master regulator of local translation but its implication in learning-induced structural plasticity is unknown. Using an olfactory learning task requiring adult-born olfactory bulb neurons and cell-specific ablation of FMRP, we investigated whether learning shapes adult-born neuron morphology during their synaptic integration and its dependence on FMRP. We used alpha subunit of the calcium/calmodulin-dependent kinase II (αCaMKII) mutant mice with altered dendritic localization of αCaMKII messenger RNA, as well as a reporter of αCaMKII local translation to investigate the role of this FMRP messenger RNA target in learning-dependent structural plasticity. Learning induces profound changes in dendritic architecture and spine morphology of adult-born neurons that are prevented by ablation of FMRP in adult-born neurons and rescued by an metabotropic glutamate receptor 5 antagonist. Moreover, dendritically translated αCaMKII is necessary for learning and associated structural modifications and learning triggers an FMRP-dependent increase of αCaMKII dendritic translation in adult-born neurons. Our results strongly suggest that FMRP mediates structural plasticity of olfactory bulb adult-born neurons to support olfactory learning through αCaMKII local translation. This reveals a new role for FMRP-regulated dendritic local translation in learning-induced structural plasticity. This might be of clinical relevance for the understanding of critical periods disruption in autism spectrum disorder patients, among which fragile X syndrome is the primary monogenic cause. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Deep Sequencing Insights in Therapeutic shRNA Processing and siRNA Target Cleavage Precision.

    Science.gov (United States)

    Denise, Hubert; Moschos, Sterghios A; Sidders, Benjamin; Burden, Frances; Perkins, Hannah; Carter, Nikki; Stroud, Tim; Kennedy, Michael; Fancy, Sally-Ann; Lapthorn, Cris; Lavender, Helen; Kinloch, Ross; Suhy, David; Corbau, Romu

    2014-02-04

    TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

  5. Regulation of human histone gene expression: transcriptional and posttranscriptional control in the coupling of histone messenger RNA stability with DNA replication

    International Nuclear Information System (INIS)

    Baumbach, L.L.; Stein, G.S.; Stein, J.L.

    1987-01-01

    The extent to which transcriptional and posttranscriptional regulation contributes to the coupling of histone gene expression and DNA replication was examined during the cell cycle in synchronized HeLa S3 cells. Rates of transcription were determined in vitro in isolated nuclei. A 3-5-fold increase in cell cycle dependent histone gene transcription was observed in early S phase, prior to the peak of DNA synthesis. This result is consistent with a previous determination of histone mRNA synthesis in intact cells. The transcription of these genes did not change appreciably after inhibition of DNA replication by hydroxyurea treatment, although Northern blot analysis indicated that cellular levels of histone mRNA decreased rapidly in the presence of the drug. Total cellular levels of histone mRNA closely parallel the rate of DNA synthesis as a function of cell cycle progression, reaching a maximal 20-fold increase as compared with non S phase levels. This DNA synthesis dependent accumulation of histone mRNA occurs predominantly in the cytoplasm and appears to be mediated primarily by control of histone mRNA stability. Changes in nuclear histone mRNA levels were less pronounced. These combined observations suggest that both transcriptional regulation and posttranscriptional regulation contribute toward control of the cell cycle dependent accumulation of histone mRNA during S phase, while the stability of histone mRNA throughout S phase and the selective turnover of histone mRNAs, either at the natural termination of S phase or following inhibition of DNA synthesis, are posttranscriptionally regulated

  6. Quantitation of O6-methylguanine-DNA methyltransferase gene messenger RNA in gliomas by means of real-time RT-PCR and clinical response to nitrosoureas.

    Science.gov (United States)

    Tanaka, Satoshi; Oka, Hidehiro; Fujii, Kiyotaka; Watanabe, Kaoru; Nagao, Kumi; Kakimoto, Atsushi

    2005-09-01

    1. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was measured in 50 malignant gliomas that had received 1-(4-amino-2-methyl-5-pyrimidynyl) methyl-3-(2-chloroethyl)-3-nitrosourea hydrochloride (ACNU) after the resection of the tumor by real-time reverse transcription-polymerase chain reaction (RT-PCR) using TaqMan probe. 2. The mean absolute value of MGMTmRNA normalized to the level of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) for 50 tumors was 1.29 x 10(4)+/- 1.28 x 10(4) copy/microg RNA (mean +/- SD). The amount of MGMTmRNA less than 6 x 10(3) copy/microg RNA was the most significant factor in predicting the initial effect of treatment with ACNU by multi-variant regression analysis (p = 0.0157). 3. These results suggest that quantitation of MGMTmRNA is the excellent method for predicting for the effect of ACNU in glioma therapy.

  7. Messengers of the universe

    International Nuclear Information System (INIS)

    Becker, J.K.; Spurio, M.

    2011-01-01

    The observation of the solar neutrinos and of a neutrino burst from the supernova explosion 1987A opened a new observation field which in the next years could be complemented with the detection of astrophysical highenergy neutrinos. Neutrino astronomy is a young discipline derived from the fundamental necessity of extending conventional astronomy beyond the usual electro-magnetic messengers. This is a summary of recent results on those new 'messengers of the universe', based on the presentations in Branch IV of the Neutrino Oscillation Workshop 2010 (NOW2010).

  8. RNA processing and ribonucleoprotein assembly studied in vivo by RNA transfection

    International Nuclear Information System (INIS)

    Kleinschmidt, A.M.; Pederson, T.

    1990-01-01

    The authors present a method for studying RNA processing and ribonucleoprotein assembly in vivo, by using RNA synthesized in vitro. SP6-transcribed 32 P-labeled U2 small nuclear RNA precursor molecules were introduced into cultured human 293 cells by calcium phosphate-mediated uptake, as in standard DNA transfection experiments. RNase protection mapping demonstrated that the introduced pre-U2 RNA underwent accurate 3' end processing. The introduced U2 RNA was assembled into ribonucleoprotein particles that reacted with an antibody specific for proteins known to be associated with the U2 small nuclear ribonucleoprotein particle. The 3' end-processed, ribonucleoprotein-assembled U2 RNA accumulated in the nuclear fraction. When pre-U2 RNA with a 7-methylguanosine group at the 5' end was introduced into cells, it underwent conversion to a 2,2,7-trimethylguanosine cap structure, a characteristic feature of the U-small nuclear RNAs. Pre-U2 RNA introduced with an adenosine cap (Ap-ppG) also underwent processing, small nuclear ribonucleoprotein assembly, and nuclear accumulation, establishing that a methylated guanosine cap structure is not required for these steps in U2 small nuclear ribonucleprotein biosynthesis. Beyond its demonstrated usefulness in the study of small nuclear ribonucleoprotein biosynthesis, RNA transfection may be of general applicability to the investigation of eukaryotic RNA processing in vivo and may also offer opportunities for introducing therapeutically targeted RNAs (ribozymes or antisense RNA) into cells

  9. Interleukin 18 messenger RNA and proIL-18 protein expression in chorioamniotic membranes from pregnant women with preterm prelabor rupture of membranes.

    Science.gov (United States)

    Polettini, Jossimara; Vieira, Eliane Passarelli; Santos, Mariana Perlati dos; Peraçoli, José Carlos; Witkin, Steven S; da Silva, Márcia Guimarães

    2012-04-01

    To quantify the expression of IL-18 mRNA and protein in the chorioamniotic membranes of pregnant women with PPROM and correlate expression with histological chorioamnionitis. A case control study that included 42 pregnant women not in labor in the following groups: PPROM (n=28) and controls with intact membranes submitted to selective cesarean section at term (n=14). Expression of IL-18 mRNA in chorioamniotic membranes was determined by real-time polymerase chain reaction, and IL-18 protein expression was measured by western blot. Histopathological analyses and immunolocalization of IL-18 by immunohistochemistry were also performed. Analyses were performed using the Mann-Whitney or Fisher's exact tests and the group effect was considered significant if the adjusted p-values were <0.05 and the magnitude of change was greater than 2-fold for mRNA expression. IL-18 mRNA was present in 100% of samples and no difference in expression was observed between term vs. PPROM membranes (fold-change 0.12; p=0.88). In the PPROM group, no difference was observed in IL-18 mRNA regarding gestational age (fold-change 0.11; p=0.42) or the presence of histological chorioamnionitis (fold-change 0.26; p=0.15). ProIL-18 was present in all samples. IL-18 was immunolocalized to amnion, chorion and decidua cells, with intense immunohistochemical staining at the choriodecidual junction. Chorioamniotic membranes are sources of IL-18 mRNA and proIL-18, and their expression is unrelated to PPROM or histological chorioamnionitis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. IL-2 induction of IL-1 beta mRNA expression in monocytes. Regulation by agents that block second messenger pathways

    DEFF Research Database (Denmark)

    Kovacs, E J; Brock, B; Varesio, L

    1989-01-01

    We have previously shown that in mixed cultures of PBL incubation with human rIL-2 induces the rapid expression of IL-1 alpha and IL-1 beta mRNA. Because studies have demonstrated that IL-2R can be expressed on the surface of human peripheral blood monocytes, we chose to investigate whether IL-1 ...

  11. Effects of dietary nitrogen concentration on messenger RNA expression and protein abundance of urea transporter-B and aquaporins in ruminal papillae from lactating Holstein cows

    DEFF Research Database (Denmark)

    Røjen, Betina Amdisen; Poulsen, Søren Brandt; Theil, Peter Kappel

    2011-01-01

    To test the hypothesis that dietary N concentrations affect gut epithelial urea transport by modifying the expression of urea transporter B (UT-B) and aquaporins (AQP), the mRNA expression and protein abundance of UT-B and AQP3, AQP7, AQP8, and AQP10 were investigated in ruminal papillae from 9...... lactating dairy cows. Ruminal papillae were harvested from cows fed low N (12.9% crude protein) and high N (17.1% crude protein) diets in a crossover design with 21-d periods. The mRNA expression was determined by real-time reverse transcription-PCR and protein abundance by immunoblotting. The m......RNA expression of UT-B was not affected by dietary treatment, whereas mRNA expression of AQP3, 7, and 10 were greater in the high N compared with the low N fed cows. Using peptide-derived rabbit antibodies to cow AQP3, 7, and 8, immunoblotting revealed bands of approximately 27, 27, and 24 kDa in ruminal...

  12. NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs

    Directory of Open Access Journals (Sweden)

    Shobbir Hussain

    2013-07-01

    Full Text Available Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs, yet the identification of cytosine methylation in other RNA species has been hampered by the lack of sensitive and reliable molecular techniques. Here, we describe miCLIP as an additional approach for identifying RNA methylation sites in transcriptomes. miCLIP is a customized version of the individual-nucleotide-resolution crosslinking and immunoprecipitation (iCLIP method. We confirm site-specific methylation in tRNAs and additional messenger and noncoding RNAs (ncRNAs. Among these, vault ncRNAs contained six NSun2-methylated cytosines, three of which were confirmed by RNA bisulfite sequencing. Using patient cells lacking the NSun2 protein, we further show that loss of cytosine-5 methylation in vault RNAs causes aberrant processing into Argonaute-associated small RNA fragments that can function as microRNAs. Thus, impaired processing of vault ncRNA may contribute to the etiology of NSun2-deficiency human disorders.

  13. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Michael Bordonaro

    2013-01-01

    Full Text Available RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation. Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC, has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for

  14. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer.

    Science.gov (United States)

    Bordonaro, Michael

    2013-01-01

    RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation). Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC), has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for therapeutic benefit

  15. A high ratio of insulin-like growth factor II/insulin-like growth factor binding protein 2 messenger RNA as a marker for anaplasia in meningiomas.

    Science.gov (United States)

    Nordqvist, A C; Peyrard, M; Pettersson, H; Mathiesen, T; Collins, V P; Dumanski, J P; Schalling, M

    1997-07-01

    Insulin-like growth factors (IGFs) I and II have been implicated as autocrine or paracrine growth promoters. These growth factors bind to specific receptors, and the response is modulated by interaction with IGF-binding proteins (IGFBPs). We observed a strong correlation between anaplastic/atypical histopathology and a high IGF-II/IGFBP-2 mRNA ratio in a set of 68 sporadic meningiomas. A strong correlation was also found between clinical outcome and IGF-II/IGFBP-2 ratio, whereas previously used histochemical markers were less correlated to outcome. We suggest that a high IGF-II/IGFBP-2 mRNA ratio may be a sign of biologically aggressive behavior in meningiomas that can influence treatment strategies. We propose that low IGFBP-2 levels in combination with increased levels of IGF-II would result in more free IGF-II and consequently greater stimulation of proliferation.

  16. Making Sense of the Information Seeking Process of Undergraduates in a Specialised University: Revelations from Dialogue Journaling on WhatsApp Messenger

    Directory of Open Access Journals (Sweden)

    Dorcas E Krubu

    2017-01-01

    Full Text Available Aim/Purpose: The research work investigated the information seeking process of undergraduates in a specialised university in Nigeria, in the course of a group assignment. Background: Kuhlthau’s Information Search Process (ISP model is used as lens to reveal how students interact with information in the affective, cognitive and physical realms. Methodology: Qualitative research methods were employed. The entire seventy-seven third year students in the Department of Petroleum and Natural Gas and their course lecturer were the participants. Group assignment question was analysed using Bloom’s Taxonomy while the information seeking process of the students was garnered through dialogue journaling on WhatsApp Messenger. Contribution: The research explicates how students’ information seeking behaviour can be captured beyond the four walls of a classroom by using a Web 2.0 tool such as WhatsApp Messenger. Findings: The apparent level of uncertainty, optimism, and confusion/doubt common in the initiation, selection, and exploration phases of the ISP model and low confidence levels were not markedly evident in the students. Consequently, Kuhlthau’s ISP model could not be applied in its entirety to the study’s particular context of teaching and learning due to the nature of the assignment. Recommendations for Practitioners: The study recommends that the Academic Planning Unit (APU should set a benchmark for all faculties and, by extension, the departments in terms of the type/scope and number of assignments per semester, including learning outcomes. Recommendation for Researchers: Where elements of a guided approach to learning are missing, Kuhlthau’s ISP may not be employed. Therefore, alternative theory, such as Theory of Change could explain the poor quality of education and the type of intervention that could enhance students’ learning. Impact on Society: The ability to use emerging technologies is a form of literacy that is required by

  17. RNA assemblages orchestrate complex cellular processes

    DEFF Research Database (Denmark)

    Nielsen, Finn Cilius; Hansen, Heidi Theil; Christiansen, Jan

    2016-01-01

    Eukaryotic mRNAs are monocistronic, and therefore mechanisms exist that coordinate the synthesis of multiprotein complexes in order to obtain proper stoichiometry at the appropriate intracellular locations. RNA-binding proteins containing low-complexity sequences are prone to generate liquid drop...

  18. Short communication: Acute but transient increase in serum insulin reduces messenger RNA expression of hepatic enzymes associated with progesterone catabolism in dairy cows.

    Science.gov (United States)

    Vieira, F V R; Cooke, R F; Aboin, A C; Lima, P; Vasconcelos, J L M

    2013-02-01

    The objective of this experiment was to evaluate the effects of glucose infusion on serum concentrations of glucose, insulin, and progesterone (P4), as well as mRNA expression of hepatic CYP2C19 and CYP3A4 in nonlactating, ovariectomized cows in adequate nutritional status. Eight Gir × Holstein cows were maintained on a low-quality Brachiaria brizantha pasture with reduced forage availability, but they individually received, on average, 3 kg/cow daily (as fed) of a corn-based concentrate from d -28 to 0 of the experiment. All cows had an intravaginal P4-releasing device inserted on d -14, which remained in cows until the end of the experiment (d 1). On d 0, cows were randomly assigned to receive, in a crossover design containing 2 periods of 24h each (d 0 and 1), (1) an intravenous glucose infusion (GLUC; 0.5 g of glucose/kg of BW, over a 3-h period) or (2) an intravenous saline infusion (SAL; 0.9%, over a 3-h period). Cows were fasted for 12h before infusions, and they remained fasted during infusion and sample collections. Blood samples were collected at 0, 3, and 6h relative to the beginning of infusions. Liver biopsies were performed concurrently with blood collections at 0 and 3h. After the last blood collection of period 1, cows received concentrate and returned to pasture. Cows gained BW (16.5 ± 3.6 kg) and BCS (0.08 ± 0.06) from d -28 to 0. Cows receiving GLUC had greater serum glucose and insulin concentrations at 3h compared with SAL cohorts. No treatment effects were detected for serum P4 concentrations, although mRNA expression of CYP2C19 and CYP3A4 after the infusion period was reduced for cows in the GLUC treatment compared with their cohorts in the SAL treatment. In conclusion, hepatic CYP3A4 and CYP2C19 mRNA expression can be promptly modulated by glucose infusion followed by acute increases in circulating insulin, which provides novel insight into the physiological mechanisms associating nutrition and reproductive function in dairy cows

  19. Effect of N-Feruloylserotonin and Methotrexate on Severity of Experimental Arthritis and on Messenger RNA Expression of Key Proinflammatory Markers in Liver

    Directory of Open Access Journals (Sweden)

    Ľudmila Pašková

    2016-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease, leading to progressive destruction of joints and extra-articular tissues, including organs such as liver and spleen. The purpose of this study was to compare the effects of a potential immunomodulator, natural polyphenol N-feruloylserotonin (N-f-5HT, with methotrexate (MTX, the standard in RA therapy, in the chronic phase of adjuvant-induced arthritis (AA in male Lewis rats. The experiment included healthy controls (CO, arthritic animals (AA, AA given N-f-5HT (AA-N-f-5HT, and AA given MTX (AA-MTX. N-f-5HT did not affect the body weight change and clinical parameters until the 14th experimental day. Its positive effect was rising during the 28-day experiment, indicating a delayed onset of N-f-5HT action. Administration of either N-f-5HT or MTX caused reduction of inflammation measured as the level of CRP in plasma and the activity of LOX in the liver. mRNA transcription of TNF-α and iNOS in the liver was significantly attenuated in both MTX and N-f-5HT treated groups of arthritic rats. Interestingly, in contrast to MTX, N-f-5HT significantly lowered the level of IL-1β in plasma and IL-1β mRNA expression in the liver and spleen of arthritic rats. This speaks for future investigations of N-f-5HT as an agent in the treatment of RA in combination therapy with MTX.

  20. Reduction in PSA messenger-RNA expression and clinical recurrence in patients with prostatic cancer undergoing neoadjuvant therapy before radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Baruffi Marco

    2004-04-01

    Full Text Available Abstract Background We assessed the incidence of micro-metastases at surgical margins (SM and pelvic lymph nodes (LN in patients submitted to radical retropubic prostatectomy (RP after neoadjuvant therapy (NT or to RP alone. We compared traditional staging to molecular detection of PSA using Taqman-based quantitative real-time PCR (qrt-PCR never used before for this purpose. Methods 29 patients were assigned to NT plus RP (arm A or RP alone (arm B. Pelvic LN were dissected for qrt-PCR analysis, together with right and left lateral SM. Results 64,3% patients of arm B and 26.6% of arm A had evidence of PSA mRNA expression in LN and/or SM. 17,2% patients, all of arm B, had biochemical recurrence. Conclusions Qrt-PCR may be more sensitive, compared to conventional histology, in identifying presence of viable prostate carcinoma cells in SM and LN. Gene expression of PSA in surgical periprostatic samples might be considered as a novel and reliable indicator of minimal residual disease after NT.

  1. Reduction in PSA messenger-RNA expression and clinical recurrence in patients with prostatic cancer undergoing neoadjuvant therapy before radical prostatectomy

    Science.gov (United States)

    Grasso, Marco; Lania, Caterina; Blanco, Salvatore; Baruffi, Marco; Mocellin, Simone

    2004-01-01

    Background We assessed the incidence of micro-metastases at surgical margins (SM) and pelvic lymph nodes (LN) in patients submitted to radical retropubic prostatectomy (RP) after neoadjuvant therapy (NT) or to RP alone. We compared traditional staging to molecular detection of PSA using Taqman-based quantitative real-time PCR (qrt-PCR) never used before for this purpose. Methods 29 patients were assigned to NT plus RP (arm A) or RP alone (arm B). Pelvic LN were dissected for qrt-PCR analysis, together with right and left lateral SM. Results 64,3% patients of arm B and 26.6% of arm A had evidence of PSA mRNA expression in LN and/or SM. 17,2% patients, all of arm B, had biochemical recurrence. Conclusions Qrt-PCR may be more sensitive, compared to conventional histology, in identifying presence of viable prostate carcinoma cells in SM and LN. Gene expression of PSA in surgical periprostatic samples might be considered as a novel and reliable indicator of minimal residual disease after NT. PMID:15104791

  2. siRNAs targeted to certain polyadenylation sites promote specific, RISC-independent degradation of messenger RNAs.

    Science.gov (United States)

    Vickers, Timothy A; Crooke, Stanley T

    2012-07-01

    While most siRNAs induce sequence-specific target mRNA cleavage and degradation in a process mediated by Ago2/RNA-induced silencing complex (RISC), certain siRNAs have also been demonstrated to direct target RNA reduction through deadenylation and subsequent degradation of target transcripts in a process which involves Ago1/RISC and P-bodies. In the current study, we present data suggesting that a third class of siRNA exist, which are capable of promoting target RNA reduction that is independent of both Ago and RISC. These siRNAs bind the target messenger RNA at the polyA signal and are capable of redirecting a small amount of polyadenylation to downstream polyA sites when present, however, the majority of the activity appears to be due to inhibition of polyadenylation or deadenylation of the transcript, followed by exosomal degradation of the immature mRNA.

  3. RNA-SeQC: RNA-seq metrics for quality control and process optimization.

    Science.gov (United States)

    DeLuca, David S; Levin, Joshua Z; Sivachenko, Andrey; Fennell, Timothy; Nazaire, Marc-Danie; Williams, Chris; Reich, Michael; Winckler, Wendy; Getz, Gad

    2012-06-01

    RNA-seq, the application of next-generation sequencing to RNA, provides transcriptome-wide characterization of cellular activity. Assessment of sequencing performance and library quality is critical to the interpretation of RNA-seq data, yet few tools exist to address this issue. We introduce RNA-SeQC, a program which provides key measures of data quality. These metrics include yield, alignment and duplication rates; GC bias, rRNA content, regions of alignment (exon, intron and intragenic), continuity of coverage, 3'/5' bias and count of detectable transcripts, among others. The software provides multi-sample evaluation of library construction protocols, input materials and other experimental parameters. The modularity of the software enables pipeline integration and the routine monitoring of key measures of data quality such as the number of alignable reads, duplication rates and rRNA contamination. RNA-SeQC allows investigators to make informed decisions about sample inclusion in downstream analysis. In summary, RNA-SeQC provides quality control measures critical to experiment design, process optimization and downstream computational analysis. See www.genepattern.org to run online, or www.broadinstitute.org/rna-seqc/ for a command line tool.

  4. Dynamical Messengers for Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2011-08-17

    We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.

  5. Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing

    KAUST Repository

    Iwata, Yuji; Takahashi, Masateru; Fedoroff, Nina V.; Hamdan, Samir

    2013-01-01

    ). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that SE is integral to pri-miRNA processing by DCL1. SE stimulates DCL1 cleavage of the pri-miRNA in an ionic strength

  6. Selective blockade of microRNA processing by Lin-28

    Science.gov (United States)

    Viswanathan, Srinivas R.; Daley, George Q.; Gregory, Richard I.

    2012-01-01

    MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked post-transcriptionally in embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and primary tumors. Here we show that Lin-28, a developmentally regulated RNA-binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we demonstrate that Lin-28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin-28 as a negative regulator of miRNA biogenesis and suggest that Lin-28 may play a central role in blocking miRNA-mediated differentiation in stem cells and certain cancers. PMID:18292307

  7. MESSENGER: Exploring Mercury's Magnetosphere

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  8. Hydrogen peroxide is a second messenger in the salicylic acid-triggered adventitious rooting process in mung bean seedlings.

    Directory of Open Access Journals (Sweden)

    Wei Yang

    Full Text Available In plants, salicylic acid (SA is a signaling molecule that regulates disease resistance responses, such as systemic acquired resistance (SAR and hypertensive response (HR. SA has been implicated as participating in various biotic and abiotic stresses. This study was conducted to investigate the role of SA in adventitious root formation (ARF in mung bean (Phaseolus radiatus L hypocotyl cuttings. We observed that hypocotyl treatment with SA could significantly promote the adventitious root formation, and its effects were dose and time dependent. Explants treated with SA displayed a 130% increase in adventitious root number compared with control seedlings. The role of SA in mung bean hypocotyl ARF as well as its interaction with hydrogen peroxide (H2O2 were also elucidated. Pretreatment of mung bean explants with N, N'-dimethylthiourea (DMTU, a scavenger for H2O2, resulted in a significant reduction of SA-induced ARF. Diphenyleneiodonium (DPI, a specific inhibitor of membrane-linked NADPH oxidase, also inhibited the effect of adventitious rooting triggered by SA treatment. The determination of the endogenous H2O2 level indicated that the seedlings treated with SA could induce H2O2 accumulation compared with the control treatment. Our results revealed a distinctive role of SA in the promotion of adventitious rooting via the process of H2O2 accumulation. This conclusion was further supported by antioxidant enzyme activity assays. Based on these results, we conclude that the accumulation of free H2O2 might be a downstream event in response to SA-triggered adventitious root formation in mung bean seedlings.

  9. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export.

    Science.gov (United States)

    Müller-McNicoll, Michaela; Botti, Valentina; de Jesus Domingues, Antonio M; Brandl, Holger; Schwich, Oliver D; Steiner, Michaela C; Curk, Tomaz; Poser, Ina; Zarnack, Kathi; Neugebauer, Karla M

    2016-03-01

    Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends. © 2016 Müller-McNicoll et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Translational Influence on Messenger Stability

    DEFF Research Database (Denmark)

    Eriksen, Mette

    -termination to be a global phenomena in gene regulation. The influence of codon usage in the early coding region on messenger stability was examined, in order to establish how fast or slow the ribosome has to decode the sequence for it to protect the messenger from degradation. The experiments demonstrated that very fast...

  11. Segundos mensajeros Second messengers

    Directory of Open Access Journals (Sweden)

    Diana Patricia Díaz Hernández

    1989-01-01

    Full Text Available

    En esta revisión se describen, de manera esquemática, los mecanismos de acción empleados por los SEGUNDOS MENSAJEROS comenzando por el estimulo del receptor y continuando con las reacciones en cadena que conducen finalmente a una respuesta celular.

    This review schematically describes the different mechanisms of action that Second Messengers employ to stimulate receptors and then Initiate a chain of reactions that finally lead to appropriate cellular responses.

  12. G-Quadruplexes influence pri-microRNA processing.

    Science.gov (United States)

    Rouleau, Samuel G; Garant, Jean-Michel; Bolduc, François; Bisaillon, Martin; Perreault, Jean-Pierre

    2018-02-01

    RNA G-Quadruplexes (G4) have been shown to possess many biological functions, including the regulation of microRNA (miRNA) biogenesis and function. However, their impact on pri-miRNA processing remains unknown. We identified G4 located near the Drosha cleavage site in three distinct pri-miRNAs: pri-mir200c, pri-mir451a, and pri-mir497. The folding of the potential G4 motifs was determined in solution. Subsequently, mutations disrupting G4 folding led to important changes in the mature miRNAs levels in cells. Moreover, using small antisense oligonucleotides binding to the pri-miRNA, it was possible to modulate, either positively or negatively, the mature miRNA levels. Together, these data demonstrate that G4 motifs could contribute to the regulation of pri-mRNA processing, a novel role for G4. Considering that bio-informatics screening indicates that between 9% and 50% of all pri-miRNAs contain a putative G4, these structures possess interesting potential as future therapeutic targets.

  13. Vitellogenin messenger rna in rooster liver

    NARCIS (Netherlands)

    Bos, Ebo Sijbren

    1975-01-01

    The investigations described in this thesis were carried out as a part of the studies in our laboratory on the control of gene expression in animal cells. They represent an example of the hormonal regulation of protein synthesis, viz. the induction of vitellogenin synthesis in rooster liver by the

  14. MESSENGER'S First Flyby of Mercury

    Science.gov (United States)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. An overview of the MESSENGER mission and its January 14th close flyby of Mercury will be provided. Primary science objectives and the science instrumentation will be described. Initial results from MESSENGER'S first flyby on January 14th, 2008 will be discussed with an emphasis on the magnetic field and charged particle measurements.

  15. Nuclear pre-mRNA processing in plants

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A.S.N. [Colorado State Univ., Fort Collins, CO (United States). Dept. of Biology and Program in Molecular Plant Biology; Golovkin, M. (eds.) [Thomas Jefferson Univ., Philadelphia, PA (United States). Dept. of Microbiology

    2008-07-01

    This volume of CTMI, entitled Nuclear premRNA Processing in Plants, with 16 chapters from leading scientists in this area, summarizes recent advances in nuclear pre-mRNA processing and its role in plant growth and development. It provides researchers in the field, as well as those in related areas, with an up-to-date and comprehensive, yet concise, overview of the current status and future potential of this research in understanding plant biology. The first four chapters focus on spliceosome composition, genome-wide alternative splicing, and splice site requirements for U1 and U12 introns using computational and empirical approaches. Analysis of sequenced plant genomes has revealed that 80% of all protein-coding nuclear genes contain one or more introns. The lack of an in vitro plant splicing system has made it difficult to identify general and plant-specific components of splicing machinery in plants. The next three chapters focus on serine/arginine-rich (SR) proteins, a family of highly conserved proteins, which are known to play key roles in constitutive and regulated splicing of pre-mRNA and other aspects of RNA metabolism in metazoans. These proteins engage both in RNA binding and protein.protein interactions and function as splicing regulators at multiple stages of spliceosome assembly. This family of proteins has expanded considerably in plants with several plant-specific SR proteins. Several serendipitous discoveries made using forward genetics are indicating that RNA metabolism (alternative splicing, alternative polyadenylation, mRNA transport) plays an important role in many aspects of plant growth and development and in plant responses to biotic and abiotic stresses. The next seven chapters focus on these aspects of RNA metabolism. The plant hormone abscisic acid (ABA) regulates a number of physiological processes during plant growth and development. The next chapter or A.B. Rose discusses the ways introns affect gene expression both positively and

  16. Nuclear pre-mRNA processing in plants

    International Nuclear Information System (INIS)

    Reddy, A.S.N.; Golovkin, M.

    2008-01-01

    This volume of CTMI, entitled Nuclear premRNA Processing in Plants, with 16 chapters from leading scientists in this area, summarizes recent advances in nuclear pre-mRNA processing and its role in plant growth and development. It provides researchers in the field, as well as those in related areas, with an up-to-date and comprehensive, yet concise, overview of the current status and future potential of this research in understanding plant biology. The first four chapters focus on spliceosome composition, genome-wide alternative splicing, and splice site requirements for U1 and U12 introns using computational and empirical approaches. Analysis of sequenced plant genomes has revealed that 80% of all protein-coding nuclear genes contain one or more introns. The lack of an in vitro plant splicing system has made it difficult to identify general and plant-specific components of splicing machinery in plants. The next three chapters focus on serine/arginine-rich (SR) proteins, a family of highly conserved proteins, which are known to play key roles in constitutive and regulated splicing of pre-mRNA and other aspects of RNA metabolism in metazoans. These proteins engage both in RNA binding and protein.protein interactions and function as splicing regulators at multiple stages of spliceosome assembly. This family of proteins has expanded considerably in plants with several plant-specific SR proteins. Several serendipitous discoveries made using forward genetics are indicating that RNA metabolism (alternative splicing, alternative polyadenylation, mRNA transport) plays an important role in many aspects of plant growth and development and in plant responses to biotic and abiotic stresses. The next seven chapters focus on these aspects of RNA metabolism. The plant hormone abscisic acid (ABA) regulates a number of physiological processes during plant growth and development. The next chapter or A.B. Rose discusses the ways introns affect gene expression both positively and

  17. miRNA-Processing Gene Methylation and Cancer Risk.

    Science.gov (United States)

    Joyce, Brian T; Zheng, Yinan; Zhang, Zhou; Liu, Lei; Kocherginsky, Masha; Murphy, Robert; Achenbach, Chad J; Musa, Jonah; Wehbe, Firas; Just, Allan; Shen, Jincheng; Vokonas, Pantel; Schwartz, Joel; Baccarelli, Andrea A; Hou, Lifang

    2018-05-01

    Background: Dysregulation of miRNA and methylation levels are epigenetic hallmarks of cancer, potentially linked via miRNA-processing genes. Studies have found genetic alterations to miRNA-processing genes in cancer cells and human population studies. Our objective was to prospectively examine changes in DNA methylation of miRNA-processing genes and their associations with cancer risk. Methods: We examined cohort data from the Department of Veterans' Affairs Normative Aging Study. Participants were assessed every 3 to 5 years starting in 1999 through 2013 including questionnaires, medical record review, and blood collection. Blood from 686 consenting participants was analyzed using the Illumina 450K BeadChip array to measure methylation at CpG sites throughout the genome. We selected 19 genes based on a literature review, with 519 corresponding CpG sites. We then used Cox proportional hazards models to examine associations with cancer incidence, and generalized estimating equations to examine associations with cancer prevalence. Associations at false discovery rate time to cancer development (positively for cg06751583, inversely for cg23230564 and cg21034183), whereas methylation of one CpG site ( DROSHA : cg16131300) was positively associated with cancer prevalence. Conclusions: DNA methylation of DROSHA , a key miRNA-processing gene, and TNRC6B may play a role in early carcinogenesis. Impact: Changes in miRNA processing may exert multiple effects on cancer development, including protecting against it via altered global miRNAs, and may be a useful early detection biomarker of cancer. Cancer Epidemiol Biomarkers Prev; 27(5); 550-7. ©2018 AACR . ©2018 American Association for Cancer Research.

  18. The Messenger Mission to Mercury

    CERN Document Server

    Domingue, D. L

    2007-01-01

    NASA’s MESSENGER mission, launched on 3 August, 2004 is the seventh mission in the Discovery series. MESSENGER encounters the planet Mercury four times, culminating with an insertion into orbit on 18 March 2011. It carries a comprehensive package of geophysical, geological, geochemical, and space environment experiments to complete the complex investigations of this solar-system end member, which begun with Mariner 10. The articles in this book, written by the experts in each area of the MESSENGER mission, describe the mission, spacecraft, scientific objectives, and payload. The book is of interest to all potential users of the data returned by the MESSENGER mission, to those studying the nature of the planet Mercury, and by all those interested in the design and implementation of planetary exploration missions.

  19. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    , regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA......Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  20. Exosomes as divine messengers: are they the Hermes of modern molecular oncology?

    Science.gov (United States)

    Braicu, C; Tomuleasa, C; Monroig, P; Cucuianu, A; Berindan-Neagoe, I; Calin, G A

    2015-01-01

    Exosomes are cell-derived vesicles that convey key elements with the potential to modulate intercellular communication. They are known to be secreted from all types of cells, and are crucial messengers that can regulate cellular processes by ‘trafficking' molecules from cells of one tissue to another. The exosomal content has been shown to be broad, composed of different types of cytokines, growth factors, proteins, or nucleic acids. Besides messenger RNA (mRNA) they can also contain noncoding transcripts such as microRNAs (miRNAs), which are small endogenous cellular regulators of protein expression. In diseases such as cancer, exosomes can facilitate tumor progression by altering their vesicular content and supplying the tumor niche with molecules that favor the progression of oncogenic processes such as proliferation, invasion and metastasis, or even drug resistance. The packaging of their molecular content is known to be tissue specific, a fact that makes them interesting tools in clinical diagnostics and ideal candidates for biomarkers. In the current report, we describe the main properties of exosomes and explain their involvement in processes such as cell differentiation and cell death. Furthermore, we emphasize the need of developing patient-targeted treatments by applying the conceptualization of exosomal-derived miRNA-based therapeutics. PMID:25236394

  1. The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation.

    Science.gov (United States)

    Tessier, Shannon N; Audas, Timothy E; Wu, Cheng-Wei; Lee, Stephen; Storey, Kenneth B

    2014-11-01

    Mammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation. We characterized the amino acid sequences of three RNA processing proteins (T cell intracellular antigen 1 (TIA-1), TIA1-related (TIAR), and poly(A)-binding proteins (PABP-1)) from thirteen-lined ground squirrels (Ictidomys tridecemlineatus), which all displayed a high degree of sequence identity with other mammals. Alternate Tia-1 and TiaR gene variants were found in the liver with higher expression of isoform b versus a in both cases. The localization of RNA-binding proteins to subnuclear structures was assessed by immunohistochemistry and confirmed by subcellular fractionation; TIA-1 was identified as a major component of subnuclear structures with up to a sevenfold increase in relative protein levels in the nucleus during hibernation. By contrast, there was no significant difference in the relative protein levels of TIARa/TIARb in the nucleus, and a decrease was observed for TIAR isoforms in cytoplasmic fractions of torpid animals. Finally, we used solubility tests to analyze the formation of reversible aggregates that are associated with TIA-1/R function during stress; a shift towards the soluble fraction (TIA-1a, TIA-1b) was observed during hibernation suggesting enhanced protein aggregation was not present during torpor. The present study identifies novel posttranscriptional regulatory mechanisms that may play a role in reducing translational rates and/or mRNA processing under unfavorable environmental conditions.

  2. MESSENGER at Mercury: Early Orbital Operations

    Science.gov (United States)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; hide

    2013-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission

  3. Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing

    KAUST Repository

    Iwata, Yuji

    2013-08-05

    Efficient and precise microRNA (miRNA) biogenesis in Arabidopsis is mediated by the RNaseIII-family enzyme DICER-LIKE 1 (DCL1), double-stranded RNA-binding protein HYPONASTIC LEAVES 1 and the zinc-finger (ZnF) domain-containing protein SERRATE (SE). In the present study, we examined primary miRNA precursor (pri-miRNA) processing by highly purified recombinant DCL1 and SE proteins and found that SE is integral to pri-miRNA processing by DCL1. SE stimulates DCL1 cleavage of the pri-miRNA in an ionic strength-dependent manner. SE uses its N-terminal domain to bind to RNA and requires both N-terminal and ZnF domains to bind to DCL1. However, when DCL1 is bound to RNA, the interaction with the ZnF domain of SE becomes indispensible and stimulates the activity of DCL1 without requiring SE binding to RNA. Our results suggest that the interactions among SE, DCL1 and RNA are a potential point for regulating pri-miRNA processing. 2013 The Author(s) 2013.

  4. Sample preservation, transport and processing strategies for honeybee RNA extraction: Influence on RNA yield, quality, target quantification and data normalization.

    Science.gov (United States)

    Forsgren, Eva; Locke, Barbara; Semberg, Emilia; Laugen, Ane T; Miranda, Joachim R de

    2017-08-01

    Viral infections in managed honey bees are numerous, and most of them are caused by viruses with an RNA genome. Since RNA degrades rapidly, appropriate sample management and RNA extraction methods are imperative to get high quality RNA for downstream assays. This study evaluated the effect of various sampling-transport scenarios (combinations of temperature, RNA stabilizers, and duration) of transport on six RNA quality parameters; yield, purity, integrity, cDNA synthesis efficiency, target detection and quantification. The use of water and extraction buffer were also compared for a primary bee tissue homogenate prior to RNA extraction. The strategy least affected by time was preservation of samples at -80°C. All other regimens turned out to be poor alternatives unless the samples were frozen or processed within 24h. Chemical stabilizers have the greatest impact on RNA quality and adding an extra homogenization step (a QIAshredder™ homogenizer) to the extraction protocol significantly improves the RNA yield and chemical purity. This study confirms that RIN values (RNA Integrity Number), should be used cautiously with bee RNA. Using water for the primary homogenate has no negative effect on RNA quality as long as this step is no longer than 15min. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Mercury's Reference Frames After the MESSENGER Mission

    Science.gov (United States)

    Stark, A.; Oberst, J.; Preusker, F.; Burmeister, S.; Steinbrügge, G.; Hussmann, H.

    2018-05-01

    We provide an overview of Mercury's reference frames based on MESSENGER observations. We discuss the dynamical, the principal-axes, the ellipsoid, as well as the cartographic frame, which was adopted for MESSENGER data products.

  6. Pathophysiological implications of the chemical messengers

    International Nuclear Information System (INIS)

    Blazquez Fernandez, E.

    2009-01-01

    To maintain a physical organization and a different composition of its surroundings environment, living beings use a great part of the energy that they produce. Vital processes require an elevated number of reactions which are regulated and integrated by chemical messengers. They use autocrine, paracrine, endocrine and synaptic signals through receptors of cell surface, nuclear or associated with ionic channels, enzymes, trim eric G proteins and to intracellular kinases. Through these mechanisms pheromones play an important role in the relationships between different individuals, and hormones are able to regulate the integrative functions of our organism. In the nervous system, neurotransmitters, neuromodulators, sensors and receptors between other messengers, play functions of great relevance, while growth factors stimulate cell proliferation and cytokines have many effects but the most important is the ones related with the control of the immflamatory process. Alterations of these messengers permit us a better understanding of the diseases and possibly of its treatments in a near future. Modifications of the expression of genes from the nuclear and mitochondrial genomes are responsible of monogenic, polygenic and mitochondrial diseases, while alterations in the activities of dopamine and serotonin neurotransmitters are related with schizophrenia, Parkinson disease and depression, respectively. Other example is the hyperthyroidism of the Graves-Bassedow disease due to the competitive interference of the LATS immunoglobulin with TSH at the level of the follicular cells producing thyroid hormones Twenty five years ago in the reviews on the mechanisms of insulin action, there was presentations in which the insulin receptor was located in the plasma membrane of the target cells while in the cytoplasm only a big interrogative was observed, that at present is replaced by chemical mediators cascades responsible of the multiple effects of insulin. This finding is similar

  7. Mercury's Na Exosphere from MESSENGER Data

    Science.gov (United States)

    Killen, Rosemary M.; Burger, M. H.; Cassidy, T. A.; Sarantos, M.; Vervack, R. J.; McClintock, W. El; Merkel, A. W.; Sprague, A. L.; Solomon, S. C.

    2012-01-01

    MESSENGER entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UWS) channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) has been observing Mercury's exosphere nearly continuously. Daily measurements of Na brightness were fitted with non-uniform exospheric models. With Monte Carlo sampling we traced the trajectories of a representative number of test particles, generally one million per run per source process, until photoionization, escape from the gravitational well, or permanent sticking at the surface removed the atom from the simulation. Atoms were assumed to partially thermally accommodate on each encounter with the surface with accommodation coefficient 0.25. Runs for different assumed source processes are run separately, scaled and co-added. Once these model results were saved onto a 3D grid, we ran lines of sight from the MESSENGER spacecraft :0 infinity using the SPICE kernels and we computed brightness integrals. Note that only particles that contribute to the measurement can be constrained with our method. Atoms and molecules produced on the nightside must escape the shadow in order to scatter light if the excitation process is resonant-light scattering, as assumed here. The aggregate distribution of Na atoms fits a 1200 K gas, with a PSD distribution, along with a hotter component. Our models constrain the hot component, assumed to be impact vaporization, to be emitted with a 2500 K Maxwellian. Most orbits show a dawnside enhancement in the hot component broadly spread over the leading hemisphere. However, on some dates there is no dawn/dusk asymmetry. The portion of the hot/cold source appears to be highly variable.

  8. miRNA-target chimeras reveal miRNA 3'-end pairing as a major determinant of Argonaute target specificity

    DEFF Research Database (Denmark)

    Moore, Michael J; Scheel, Troels K H; Luna, Joseph M

    2015-01-01

    microRNAs (miRNAs) act as sequence-specific guides for Argonaute (AGO) proteins, which mediate posttranscriptional silencing of target messenger RNAs. Despite their importance in many biological processes, rules governing AGO-miRNA targeting are only partially understood. Here we report a modifie...

  9. miRge - A Multiplexed Method of Processing Small RNA-Seq Data to Determine MicroRNA Entropy.

    Directory of Open Access Journals (Sweden)

    Alexander S Baras

    Full Text Available Small RNA RNA-seq for microRNAs (miRNAs is a rapidly developing field where opportunities still exist to create better bioinformatics tools to process these large datasets and generate new, useful analyses. We built miRge to be a fast, smart small RNA-seq solution to process samples in a highly multiplexed fashion. miRge employs a Bayesian alignment approach, whereby reads are sequentially aligned against customized mature miRNA, hairpin miRNA, noncoding RNA and mRNA sequence libraries. miRNAs are summarized at the level of raw reads in addition to reads per million (RPM. Reads for all other RNA species (tRNA, rRNA, snoRNA, mRNA are provided, which is useful for identifying potential contaminants and optimizing small RNA purification strategies. miRge was designed to optimally identify miRNA isomiRs and employs an entropy based statistical measurement to identify differential production of isomiRs. This allowed us to identify decreasing entropy in isomiRs as stem cells mature into retinal pigment epithelial cells. Conversely, we show that pancreatic tumor miRNAs have similar entropy to matched normal pancreatic tissues. In a head-to-head comparison with other miRNA analysis tools (miRExpress 2.0, sRNAbench, omiRAs, miRDeep2, Chimira, UEA small RNA Workbench, miRge was faster (4 to 32-fold and was among the top-two methods in maximally aligning miRNAs reads per sample. Moreover, miRge has no inherent limits to its multiplexing. miRge was capable of simultaneously analyzing 100 small RNA-Seq samples in 52 minutes, providing an integrated analysis of miRNA expression across all samples. As miRge was designed for analysis of single as well as multiple samples, miRge is an ideal tool for high and low-throughput users. miRge is freely available at http://atlas.pathology.jhu.edu/baras/miRge.html.

  10. Phenomenologies of Higgs messenger models

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Sibo; Yu Yao; Wu Xinggang [Department of Physics, Chongqing University, Chongqing 401331 (China)

    2011-08-11

    In this Letter, we investigate the phenomenologies of models where the Higgs sector plays the role of messengers in gauge mediation. The minimal Higgs sector and its extension are considered respectively. We find that there exist viable models when an appropriate parity is imposed. Phenomenological features in these kind of models include three sum rules for scalar masses, light gluino as well as one-loop {mu} and two-loop B{mu} terms.

  11. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease....

  12. Reproducible pattern of microRNA in normal human skin

    DEFF Research Database (Denmark)

    Holst, Line; Kaczkowski, Bogumil; Gniadecki, Robert

    2010-01-01

    RNA expression pattern in normal human skin. Here we investigated miRNA expression profiles from skin biopsies of 8 healthy volunteers taken from sun protected and mildly photo damaged skin using the modified protocol for miRNA extraction. We were able to show a constant pattern of miRNA expression between...... different individuals. We did not find any significant differences in miRNA expression between sun protected and mildly photodamaged skin. These results may be valuable for future design of studies on miRNA expression in skin disease.......MicroRNAs (miRNAs) regulate cell growth, differentiation and apoptosis via specific targeting of messenger RNA (mRNA). Aberrant mRNA expression contributes to pathological processes such as carcinogenesis. To take advantage of miRNA profiling in skin disease it is essential to investigate mi...

  13. Geodesy at Mercury with MESSENGER

    Science.gov (United States)

    Smith, David E.; Zuber, Maria t.; Peale, Stanley J.; Phillips, Roger J.; Solomon, Sean C.

    2006-01-01

    In 2011 the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft will enter Mercury orbit and begin the mapping phase of the mission. As part of its science objectives the MESSENGER mission will determine the shape and gravity field of Mercury. These observations will enable the topography and the crustal thickness to be derived for the planet and will determine the small libration of the planet about its axis, the latter critical to constraining the state of the core. These measurements require very precise positioning of the MESSENGER spacecraft in its eccentric orbit, which has a periapsis altitude as low as 200 km, an apoapsis altitude near 15,000 km, and a closest approach to the surface varying from latitude 60 to about 70 N. The X-band tracking of MESSENGER and the laser altimetry are the primary data that will be used to measure the planetary shape and gravity field. The laser altimeter, which has an expected range of 1000 to 1200 km, is expected to provide significant data only over the northern hemisphere because of MESSENGER's eccentric orbit. For the southern hemisphere, radio occultation measurements obtained as the spacecraft passes behind the planet as seen from Earth and images obtained with the imaging system will be used to provide the long-wavelength shape of the planet. Gravity, derived from the tracking data, will also have greater resolution in the northern hemisphere, but full global models for both topography and gravity will be obtained at low harmonic order and degree. The limiting factor for both gravity and topography is expected to be knowledge of the spacecraft location. Present estimations are that in a combined tracking, altimetry, and occultation solution the spacecraft position uncertainty is likely to be of order 10 m. This accuracy should be adequate for establishing an initial geodetic coordinate system for Mercury that will enable positioning of imaged features on the surface, determination of

  14. Some Metabolites Act as Second Messengers in Yeast Chronological Aging

    Directory of Open Access Journals (Sweden)

    Karamat Mohammad

    2018-03-01

    Full Text Available The concentrations of some key metabolic intermediates play essential roles in regulating the longevity of the chronologically aging yeast Saccharomyces cerevisiae. These key metabolites are detected by certain ligand-specific protein sensors that respond to concentration changes of the key metabolites by altering the efficiencies of longevity-defining cellular processes. The concentrations of the key metabolites that affect yeast chronological aging are controlled spatially and temporally. Here, we analyze mechanisms through which the spatiotemporal dynamics of changes in the concentrations of the key metabolites influence yeast chronological lifespan. Our analysis indicates that a distinct set of metabolites can act as second messengers that define the pace of yeast chronological aging. Molecules that can operate both as intermediates of yeast metabolism and as second messengers of yeast chronological aging include reduced nicotinamide adenine dinucleotide phosphate (NADPH, glycerol, trehalose, hydrogen peroxide, amino acids, sphingolipids, spermidine, hydrogen sulfide, acetic acid, ethanol, free fatty acids, and diacylglycerol. We discuss several properties that these second messengers of yeast chronological aging have in common with second messengers of signal transduction. We outline how these second messengers of yeast chronological aging elicit changes in cell functionality and viability in response to changes in the nutrient, energy, stress, and proliferation status of the cell.

  15. Alterations in polyribosome and messenger ribonucleic acid metabolism and messenger ribonucleoprotein utilization in osmotically stressed plant seedlings

    International Nuclear Information System (INIS)

    Mason, H.S.

    1986-01-01

    Polyribosome aggregation state in growing tissues of barley and wheat leaf of stems of pea and squash was studied in relation to seedling growth and water status of the growing tissue in plants at various levels of osmotic stress. It was found to be highly correlated with water potential and osmotic potential of the growing tissue and with leaf of stem elongation rate. Stress rapidly reduced polyribosome content and water status in growing tissues of barley leaves; changes were slow and slight in the non-growing leaf blade. Membrane-bound and free polyribosomes were equally sensitive to stress-induced disaggregation. Incorporation of 32 PO 4 3- into ribosomal RNA was rapidly inhibited by stress, but stability of poly(A) + RNA relative to ribosomal RNA was similar in stressed and unstressed tissues, with a half-life of about 12 hours. Stress also caused progressive loss of poly(A) + RNA from these tissues. Quantitation of poly(A) and in vitro messenger template activity in polysome gradient fractions showed a shift of activity from the polysomal region to the region of 20-60 S in stressed plants. Messenger RNA in the 20-60 S region coded for the same peptides as mRNA found in the polysomal fraction. Nonpolysomal and polysome-derived messenger ribonucleoprotein complexes (mRNP) were isolated, and characteristic proteins were found associated with either fraction. Polysomal mRNP from stressed or unstressed plants were translated with similar efficiency in a wheat germ cell-free system. It was concluded that no translational inhibitory activity was associated with nonpolysomal mRNP from barley prepared as described

  16. Allele-Specific Alternative mRNA processing (ASARP) | Informatics Technology for Cancer Research (ITCR)

    Science.gov (United States)

    A software pipeline for prediction of allele-specific alternative RNA processing events using single RNA-seq data. The current version focuses on prediction of alternative splicing and alternative polyadenylation modulated by genetic variants.

  17. Insights into the Nature of Mercury's Exosphere: Early Results from the MESSENGER Orbital Mission Phase

    Science.gov (United States)

    McClintock, William E.; Burger, Matthew H.; Killen, Rosemary M.; Merkel, Aimee W.; Sarantos, Menelaos; Sprague, Ann L.; Solomon, Sean C.; Vervack, Ronald J., Jr.

    2011-01-01

    The Ultraviolet and Visible Spectrometer aboard the MESSENGER spacecraft has been making routine observations of Mercury's exosphere since March 29, 2011. Correlations of the spatial distributions of Ca, Mg, and Na with MESSENGER magnetic field and energetic particle distribution data provide insight into the processes that populate the neutral exosphere

  18. Full-length mRNA sequencing uncovers a widespread coupling between transcription initiation and mRNA processing.

    Science.gov (United States)

    Anvar, Seyed Yahya; Allard, Guy; Tseng, Elizabeth; Sheynkman, Gloria M; de Klerk, Eleonora; Vermaat, Martijn; Yin, Raymund H; Johansson, Hans E; Ariyurek, Yavuz; den Dunnen, Johan T; Turner, Stephen W; 't Hoen, Peter A C

    2018-03-29

    The multifaceted control of gene expression requires tight coordination of regulatory mechanisms at transcriptional and post-transcriptional level. Here, we studied the interdependence of transcription initiation, splicing and polyadenylation events on single mRNA molecules by full-length mRNA sequencing. In MCF-7 breast cancer cells, we find 2700 genes with interdependent alternative transcription initiation, splicing and polyadenylation events, both in proximal and distant parts of mRNA molecules, including examples of coupling between transcription start sites and polyadenylation sites. The analysis of three human primary tissues (brain, heart and liver) reveals similar patterns of interdependency between transcription initiation and mRNA processing events. We predict thousands of novel open reading frames from full-length mRNA sequences and obtained evidence for their translation by shotgun proteomics. The mapping database rescues 358 previously unassigned peptides and improves the assignment of others. By recognizing sample-specific amino-acid changes and novel splicing patterns, full-length mRNA sequencing improves proteogenomics analysis of MCF-7 cells. Our findings demonstrate that our understanding of transcriptome complexity is far from complete and provides a basis to reveal largely unresolved mechanisms that coordinate transcription initiation and mRNA processing.

  19. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  20. Nitric oxide: a physiologic messenger.

    Science.gov (United States)

    Lowenstein, C J; Dinerman, J L; Snyder, S H

    1994-02-01

    To review the physiologic role of nitric oxide, an unusual messenger molecule that mediates blood vessel relaxation, neurotransmission, and pathogen suppression. A MEDLINE search of articles published from 1987 to 1993 that addressed nitric oxide and the enzyme that synthesizes it, nitric oxide synthase. Animal and human studies were selected from 3044 articles to analyze the clinical importance of nitric oxide. Descriptions of the structure and function of nitric oxide synthase were selected to show how nitric oxide acts as a biological messenger molecule. Biochemical and physiologic studies were analyzed if the same results were found by three or more independent observers. Two major classes of nitric oxide synthase enzymes produce nitric oxide. The constitutive isoforms found in endothelial cells and neurons release small amounts of nitric oxide for brief periods to signal adjacent cells, whereas the inducible isoform found in macrophages releases large amounts of nitric oxide continuously to eliminate bacteria and parasites. By diffusing into adjacent cells and binding to enzymes that contain iron, nitric oxide plays many important physiologic roles. It regulates blood pressure, transmits signals between neurons, and suppresses pathogens. Excess amounts, however, can damage host cells, causing neurotoxicity during strokes and causing the hypotension associated with sepsis. Nitric oxide is a simple molecule with many physiologic roles in the cardiovascular, neurologic, and immune systems. Although the general principles of nitric oxide synthesis are known, further research is necessary to determine what role it plays in causing disease.

  1. Altered expression of estrogen receptor-α variant messenger RNAs between adjacent normal breast and breast tumor tissues

    International Nuclear Information System (INIS)

    Leygue, Etienne; Dotzlaw, Helmut; Watson, Peter H; Murphy, Leigh C

    2000-01-01

    Using semiquantitative reverse transcription-polymerase chain reaction assays, we investigated the expression of variant messenger RNAs relative to wild-type estrogen receptor (ER)-α messenger RNA in normal breast tissues and their adjacent matched breast tumor tissues. Higher ER variant truncated after sequences encoding exon 2 of the wild-type ER-α (ERC4) messenger RNA and a lower exon 3 deleted ER-α variant (ERD3) messenger RNA relative expression in the tumor compartment were observed in the ER-positive/PR-positive and the ER-positive subsets, respectively. A significantly higher relative expression of exon 5 deleted ER-α varient (ERD5) messenger RNA was observed in tumor components overall. These data demonstrate that changes in the relative expression of ER-α variant messenger RNAs occur between adjacent normal and neoplastic breast tissues. We suggest that these changes might be involved in the mechanisms that underlie breast tumorigenesis. Estrogen receptor (ER)-α and ER-β are believed to mediate the action of estradiol in target tissues. Several ER-α and ER-β variant messenger RNAs have been identified in both normal and neoplastic human tissues. Most of these variants contain a deletion of one or more exons of the wild-type (WT) ER messenger RNAs. The putative proteins that are encoded by these variant messenger RNAs would therefore be missing some functional domains of the WT receptors, and might interfere with WT-ER signaling pathways. The detection of ER-α variants in both normal and neoplastic human breast tissues raised the question of their possible role in breast tumorigenesis. We have previously reported an increased relative expression of exon 5 deleted ER-α variant (ERD5) messenger RNA and of another ER-α variant truncated of all sequences following the exon 2 of the WT ER-α (ERC4) messenger RNA in breast tumor samples versus independent normal breast tissues. In contrast, a decreased relative expression of exon 3 deleted ER

  2. Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Li, Long; Pintel, David J., E-mail: pinteld@missouri.edu

    2012-04-25

    Translation of goose parvovirus (GPV) 72 kDa Rep 1 is initiated from unspliced P9-generated mRNAs in ORF1 from the first in-frame AUG (537 AUG); however, this AUG is bypassed in spliced P9-generated RNA: translation of the 52 kDa Rep 2 protein from spliced RNA is initiated in ORF2 at the next AUG downstream (650 AUG). Usage of the 537 AUG was restored in spliced RNA when the GPV intron was replaced with a chimeric SV40 intron, or following specific mutations of the GPV intron which did not appear in the final spliced mRNA. Additionally, 650 AUG usage was gained in unspliced RNA when the GPV intron splice sites were debilitated. Splicing-dependent regulation of translation initiation was mediated in cis by GPV RNA surrounding the target AUGs. Thus, nuclear RNA processing of GPV P9-generated pre-mRNAs has a complex, but significant, effect on alternative translation initiation of the GPV Rep proteins.

  3. Splicing of goose parvovirus pre-mRNA influences cytoplasmic translation of the processed mRNA

    International Nuclear Information System (INIS)

    Li, Long; Pintel, David J.

    2012-01-01

    Translation of goose parvovirus (GPV) 72 kDa Rep 1 is initiated from unspliced P9-generated mRNAs in ORF1 from the first in-frame AUG (537 AUG); however, this AUG is bypassed in spliced P9-generated RNA: translation of the 52 kDa Rep 2 protein from spliced RNA is initiated in ORF2 at the next AUG downstream (650 AUG). Usage of the 537 AUG was restored in spliced RNA when the GPV intron was replaced with a chimeric SV40 intron, or following specific mutations of the GPV intron which did not appear in the final spliced mRNA. Additionally, 650 AUG usage was gained in unspliced RNA when the GPV intron splice sites were debilitated. Splicing-dependent regulation of translation initiation was mediated in cis by GPV RNA surrounding the target AUGs. Thus, nuclear RNA processing of GPV P9-generated pre-mRNAs has a complex, but significant, effect on alternative translation initiation of the GPV Rep proteins.

  4. Methods and compositions for controlling gene expression by RNA processing

    Science.gov (United States)

    Doudna, Jennifer A.; Qi, Lei S.; Haurwitz, Rachel E.; Arkin, Adam P.

    2017-08-29

    The present disclosure provides nucleic acids encoding an RNA recognition sequence positioned proximal to an insertion site for the insertion of a sequence of interest; and host cells genetically modified with the nucleic acids. The present disclosure also provides methods of modifying the activity of a target RNA, and kits and compositions for carrying out the methods.

  5. Expression of somatotropin receptor messenger ribonucleic acid in bovine tissues

    International Nuclear Information System (INIS)

    Lucy, M.C.; Boyd, C.K.; Koenigsfeld, A.T.; Okamura, C.S.

    1998-01-01

    The somatotropin receptor mRNA is controlled by at least two different gene promoters that generate 2 two variants with different exon 1 sequences (1A and 1B). The location of 1A and 1B somatotropin receptor mRNA within cattle tissues and, hence, the tissue specificity of the 1A and 1B promoters are unknown. In addition, the cDNA sequence of the 1B somatotropin receptor has not been determined. Our objective, therefore, was to sequence a cDNA for the 1B somatotropin receptor and to analyze bovine tissues for expression of 1A and 1B somatotropin receptor mRNA. Twenty adult tissues and six fetal tissues were collected at slaughter from each of four cows and two fetuses. Messenger RNA was analyzed using ribonuclease protection assays. The adult liver expressed both 1A and 1B mRNA. All other adult tissues expressed 1B mRNA but not 1A mRNA. The greatest amount of 1B mRNA was detected in liver and adipose (abdominal and subcutaneous) tissues. Other tissues had approximately one-half to one-tenth of the amount of 1B mRNA in the liver or adipose tissue. Fetal tissues (including fetal liver) expressed 1B mRNA and not 1A mRNA. Based on cDNA sequencing, the protein encoded by the 1A and 1B mRNA was nearly identical. We concluded that 1A somatotropin receptor mRNA is specific to adult bovine liver. Other adult and fetal bovine tissues expressed 1B somatotropin receptor mRNA with a predicted protein sequence that was similar to the 1A somatotropin receptor

  6. Making Sense of the Information Seeking Process of Undergraduates in a Specialised University: Revelations from Dialogue Journaling on WhatsApp Messenger

    Science.gov (United States)

    Krubu, Dorcas Ejemeh; Zinn, Sandy; Hart, Genevieve

    2017-01-01

    Aim/Purpose: The research work investigated the information seeking process of undergraduates in a specialised university in Nigeria, in the course of a group assignment. Background: Kuhlthau's Information Search Process (ISP) model is used as lens to reveal how students interact with information in the affective, cognitive and physical realms.…

  7. New RNA playgrounds : non-coding RNAs and RNA-binding proteins control cellular processes

    NARCIS (Netherlands)

    Kedde, Martijn

    2009-01-01

    Het eiwit Dead End noodzakelijk is voor het overleven van geslachtscellen. Het beschermt enkele genen tegen blokkades door microRNA’s. Dat stelt onderzoeker Martijn Kedde van het NKI-AVL in zijn proefschrift. Kedde promoveert donderdag 22 januari. MicroRNA’s, kleine stukjes RNA, blokkeren de

  8. Can we always sweep the details of RNA-processing under the carpet?

    International Nuclear Information System (INIS)

    Klironomos, Filippos D; Berg, Johannes; De Meaux, Juliette

    2013-01-01

    RNA molecules follow a succession of enzyme-mediated processing steps from transcription to maturation. The participating enzymes, for example the spliceosome for mRNAs and Drosha and Dicer for microRNAs, are also produced in the cell and their copy-numbers fluctuate over time. Enzyme copy-number changes affect the processing rate of the substrate molecules; high enzyme numbers increase the processing rate, while low enzyme numbers decrease it. We study different RNA-processing cascades where enzyme copy-numbers are either fixed or fluctuate. We find that for the fixed enzyme copy-numbers, the substrates at steady-state are Poisson-distributed, and the whole RNA cascade dynamics can be understood as a single birth–death process of the mature RNA product. In this case, solely fluctuations in the timing of RNA processing lead to variation in the number of RNA molecules. However, we show analytically and numerically that when enzyme copy-numbers fluctuate, the strength of RNA fluctuations increases linearly with the RNA transcription rate. This linear effect becomes stronger as the speed of enzyme dynamics decreases relative to the speed of RNA dynamics. Interestingly, we find that under certain conditions, the RNA cascade can reduce the strength of fluctuations in the expression level of the mature RNA product. Finally, by investigating the effects of processing polymorphisms, we show that it is possible for the effects of transcriptional polymorphisms to be enhanced, reduced or even reversed. Our results provide a framework to understand the dynamics of RNA processing. (paper)

  9. Effect of Thymine Starvation on Messenger Ribonucleic Acid Synthesis in Escherichia coli

    Science.gov (United States)

    Luzzati, Denise

    1966-01-01

    Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435–1446. 1966.—During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation. PMID:5332402

  10. Deep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming

    NARCIS (Netherlands)

    Harwig, Alex; Herrera-Carrillo, Elena; Jongejan, Aldo; van Kampen, Antonius Hubertus; Berkhout, Ben

    2015-01-01

    The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was

  11. Mercury's exosphere: observations during MESSENGER's First Mercury flyby.

    Science.gov (United States)

    McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C

    2008-07-04

    During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.

  12. Sweet Spot Supersymmetry and Composite Messengers

    International Nuclear Information System (INIS)

    Ibe, Masahiro; Kitano, Ryuichiro

    2007-01-01

    Sweet spot supersymmetry is a phenomenologically and cosmologically perfect framework to realize a supersymmetric world at short distance. We discuss a class of dynamical models of supersymmetry breaking and its mediation whose low-energy effective description falls into this framework. Hadron fields in the dynamical models play a role of the messengers of the supersymmetry breaking. As is always true in the models of the sweet spot supersymmetry, the messenger scale is predicted to be 10 5 GeV ∼ mess ∼ 10 GeV. Various values of the effective number of messenger fields N mess are possible depending on the choice of the gauge group

  13. MESSENGER'S First and Second Flybys of Mercury

    Science.gov (United States)

    Slavin, James A.

    2009-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only approximately 1000 km above the surface. An overview of the MESSENGER mission and its January 14th and October 6th, 2008 close flybys of Mercury will be provided. Primary science objectives and the science instrumentation will be described. Initial results from MESSENGER will be discussed with an emphasis on the magnetic field and charged particle measurements.

  14. Theoretical analysis of the distribution of isolated particles in totally asymmetric exclusion processes: Application to mRNA translation rate estimation

    Science.gov (United States)

    Dao Duc, Khanh; Saleem, Zain H.; Song, Yun S.

    2018-01-01

    The Totally Asymmetric Exclusion Process (TASEP) is a classical stochastic model for describing the transport of interacting particles, such as ribosomes moving along the messenger ribonucleic acid (mRNA) during translation. Although this model has been widely studied in the past, the extent of collision between particles and the average distance between a particle to its nearest neighbor have not been quantified explicitly. We provide here a theoretical analysis of such quantities via the distribution of isolated particles. In the classical form of the model in which each particle occupies only a single site, we obtain an exact analytic solution using the matrix ansatz. We then employ a refined mean-field approach to extend the analysis to a generalized TASEP with particles of an arbitrary size. Our theoretical study has direct applications in mRNA translation and the interpretation of experimental ribosome profiling data. In particular, our analysis of data from Saccharomyces cerevisiae suggests a potential bias against the detection of nearby ribosomes with a gap distance of less than approximately three codons, which leads to some ambiguity in estimating the initiation rate and protein production flux for a substantial fraction of genes. Despite such ambiguity, however, we demonstrate theoretically that the interference rate associated with collisions can be robustly estimated and show that approximately 1% of the translating ribosomes get obstructed.

  15. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides.

    Science.gov (United States)

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S; McBee, Megan E; Dedon, Peter C

    2015-03-11

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Deep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming.

    Science.gov (United States)

    Harwig, Alex; Herrera-Carrillo, Elena; Jongejan, Aldo; van Kampen, Antonius Hubertus; Berkhout, Ben

    2015-07-14

    The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA) molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp). This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3' strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3' tail of 1-3 A-nucleotides (nt) and we present evidence that this product is subsequently trimmed by the poly(A)-specific ribonuclease (PARN).

  17. Depletion of key protein components of the RISC pathway impairs pre-ribosomal RNA processing.

    Science.gov (United States)

    Liang, Xue-Hai; Crooke, Stanley T

    2011-06-01

    Little is known about whether components of the RNA-induced silencing complex (RISC) mediate the biogenesis of RNAs other than miRNA. Here, we show that depletion of key proteins of the RISC pathway by antisense oligonucleotides significantly impairs pre-rRNA processing in human cells. In cells depleted of Drosha or Dicer, different precursors to 5.8S rRNA strongly accumulated, without affecting normal endonucleolytic cleavages. Moderate yet distinct processing defects were also observed in Ago2-depleted cells. Physical links between pre-rRNA and these proteins were identified by co-immunoprecipitation analyses. Interestingly, simultaneous depletion of Dicer and Drosha led to a different processing defect, causing slower production of 28S rRNA and its precursor. Both Dicer and Ago2 were detected in the nuclear fraction, and reduction of Dicer altered the structure of the nucleolus, where pre-rRNA processing occurs. Together, these results suggest that Drosha and Dicer are implicated in rRNA biogenesis.

  18. Global identification of new substrates for the yeast endoribonuclease, RNase mitochondrial RNA processing (MRP).

    Science.gov (United States)

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E

    2012-10-26

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.

  19. An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process.

    Directory of Open Access Journals (Sweden)

    Lim Chee Liew

    Full Text Available Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RNAi-associated genes are also involved in epigenetic regulation via RNA-directed DNA methylation and post-transcriptional gene silencing. Soybean, a major crop legume, requires a short day to induce flowering. How histone modifications regulate the plant response to external cues that initiate flowering is still largely unknown. Here, we used RNA-seq to address the dynamics of transcripts that are potentially involved in the epigenetic programming and RNAi mediated gene silencing during the floral initiation of soybean. Soybean is a paleopolyploid that has been subjected to at least two rounds of whole genome duplication events. We report that the expanded genomic repertoire of histone modifiers and RNA silencing genes in soybean includes 14 histone acetyltransferases, 24 histone deacetylases, 47 histone methyltransferases, 15 protein arginine methyltransferases, 24 JmjC domain-containing demethylases and 47 RNAi-associated genes. To investigate the role of these histone modifiers and RNA silencing genes during floral initiation, we compared the transcriptional dynamics of the leaf and shoot apical meristem at different time points after a short-day treatment. Our data reveal that the extensive activation of genes that are usually involved in the epigenetic programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral development following an exposure to inductive conditions.

  20. Calcium in Mercury's Exosphere: Modeling MESSENGER Data

    Science.gov (United States)

    Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee; Vervack, Ronald J.; Sarantos, Menelaos; Sprague, Ann L.

    2011-01-01

    Mercury is surrounded by a surface-bounded exosphere comprised of atomic species including hydrogen, sodium, potassium, calcium, magnesium, and likely oxygen. Because it is collisionless. the exosphere's composition represents a balance of the active source and loss processes. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface. Space ENvironment. GEochemistry. and Ranging (MESSENGER) spacecraft has made high spatial-resolution observations of sodium, calcium, and magnesium near Mercury's surface and in the extended, anti-sunward direction. The most striking feature of these data has been the substantial differences in the spatial distribution of each species, Our modeling demonstrates that these differences cannot be due to post-ejection dynamics such as differences in photo-ionization rate and radiation pressure. but instead point to differences in the source mechanisms and regions on the surface from which each is ejected. The observations of calcium have revealed a strong dawn/dusk asymmetry. with the abundance over the dawn hemisphere significantly greater than over the dusk. To understand this asymmetry, we use a Monte Carlo model of Mercury's exosphere that we developed to track the motions of exospheric neutrals under the influence of gravity and radiation pressure. Ca atoms can be ejected directly from the surface or produced in a molecular exosphere (e.g., one consisting of CaO). Particles are removed from the system if they stick to the surface or escape from the model region of interest (within 15 Mercury radii). Photoionization reduces the final weighting given to each particle when simulating the Ca radiance. Preliminary results suggest a high temperature ( I-2x 10(exp 4) K) source of atomic Ca concentrated over the dawn hemisphere. The high temperature is consistent with the dissociation of CaO in a near-surface exosphere with scale height <= 100 km, which imparts 2 eV to the freshly produced Ca atom. This

  1. The models evaluating courier and messenger companies in Poland

    Directory of Open Access Journals (Sweden)

    Chodakowska Ewa

    2016-12-01

    Full Text Available Data Envelopment Analysis (DEA is a well-established, popular, and often used method for efficiency evaluation of units from all sector, both commercial and non-profit organisations, of any scale of operations. Network DEA models are a relatively recent approach used to examine the efficiency of decision-making units (DMUs having an internal structure of sub-processes. The article presents the concept of DEA network models in estimating the efficiency of courier and messenger companies with relations to their business clients. The considerations are supported by an example of data concerning leaders from the sector of couriers and messengers in Poland and one of the biggest and most popular online stores. The results are compared with the traditional DEA approach. In addition, to measure reliability for DEA scores, the jackknife procedure was performed. The author proves the usefulness of network DEA as a research and management tool.

  2. Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations

    Science.gov (United States)

    Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Sarantos, Menelaos

    2014-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variations, but there are no obvious year-to-year variations in most of the observations. We do not see the episodic variability reported by some ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere, at about 1200 K, is much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.

  3. Higgs mass from neutrino-messenger mixing

    International Nuclear Information System (INIS)

    Byakti, Pritibhajan; Khosa, Charanjit K.; Mummidi, V.S.; Vempati, Sudhir K.

    2017-01-01

    The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A t , relaxing these constraints. The detailed survey of these models (DOI: 10.1007/JHEP05(2013)055; 10.1007/JHEP08(2013)093 ) so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ∼1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

  4. Higgs mass from neutrino-messenger mixing

    Energy Technology Data Exchange (ETDEWEB)

    Byakti, Pritibhajan [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India); Department of Theoretical Physics, Indian Association for the Cultivation of Science,2A & 2B Raja S.C. Mullick Road, Kolkata 700 032 (India); Khosa, Charanjit K. [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India); Mummidi, V.S. [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Vempati, Sudhir K. [Center for High Energy Physics, Indian Institute of Science,C.V. Raman Ave, Bangalore 560012 (India)

    2017-03-06

    The discovery of the Higgs particle at 125 GeV has put strong constraints on minimal messenger models of gauge mediation, pushing the stop masses into the multi-TeV regime. Extensions of these models with matter-messenger mixing terms have been proposed to generate a large trilinear parameter, A{sub t}, relaxing these constraints. The detailed survey of these models (DOI: 10.1007/JHEP05(2013)055; 10.1007/JHEP08(2013)093 ) so far considered messenger mixings with only MSSM superfields. In the present work, we extend the survey to MSSM with inverse-seesaw mechanism. The neutrino-sneutrino corrections to the Higgs mass in the inverse seesaw model are not significant in the minimal gauge mediation model, unless one considers messenger-matter interaction terms. We classify all possible models with messenger-matter interactions and perform thorough numerical analysis to find out the promising models. We found that out of the 17 possible models 9 of them can lead to Higgs mass within the observed value without raising the sfermion masses significantly. The successful models have stop masses ∼1.5 TeV with small or negligible mixing and yet a light CP even Higgs at 125 GeV.

  5. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes.

    Science.gov (United States)

    Göertz, G P; Fros, J J; Miesen, P; Vogels, C B F; van der Bent, M L; Geertsema, C; Koenraadt, C J M; van Rij, R P; van Oers, M M; Pijlman, G P

    2016-11-15

    cycle is important to identify novel targets to interfere with disease and to aid development of virus control strategies. Flaviviruses produce an abundant noncoding viral RNA called sfRNA in both arthropod and mammalian cells. To evaluate the role of sfRNA in flavivirus transmission, we infected mosquitoes with the flavivirus West Nile virus and an sfRNA-deficient mutant West Nile virus. We demonstrate that sfRNA determines the infection and transmission rates of West Nile virus in Culex pipiens mosquitoes. Comparison of infection via the blood meal versus intrathoracic injection, which bypasses the midgut, revealed that sfRNA is important to overcome the mosquito midgut barrier. We also show that sfRNA is processed by the antiviral RNA interference machinery in mosquitoes. This is the first report to describe a pivotal biological function of sfRNA in arthropods. The results explain why sfRNA production is evolutionarily conserved. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing

    Directory of Open Access Journals (Sweden)

    C Pellicciari

    2009-06-01

    Full Text Available Advancing adult age is associated with a progressive decrease in skeletal muscle mass, strength and quality known as sarcopenia. The mechanisms underlying age-related skeletal muscle wasting and weakness are manifold and still remain to be fully elucidated. Despite the increasing evidence that the progress of muscle diseases leading to muscle atrophy/dystrophy may be related to defective RNA processing, no data on the morpho-functional features of skeletal muscle nuclei in sarcopenia are available at present. In this view, we have investigated, by combining morphometry and immunocytochemistry at light and electron microscopy, the fine structure of myonuclei as well as the distribution and amount of RNA processing factors in skeletal myofibres of biceps brachii and quadriceps femoris from adult and old rats. Results demonstrate that the myonuclei of aged type II fibres show an increased amount of condensed chromatin and lower amounts of phosphorylated polymerase II and DNA/RNA hybrid molecules, clearly indicating a decrease in pre-mRNA transcription rate compared to adult animals. In addition, myonuclei of aged fibres show decreased amounts of nucleoplasmic splicing factors and an accumulation of cleavage factors, polyadenilated RNA and perichromatin granules, suggesting a reduction in the processing and transport rate of premRNA. During ageing, it seems therefore that in rat myonuclei the entire production chain of mRNA, from synthesis to cytoplasmic export, is less efficient. This failure likely contributes to the reduced responsiveness of muscle cells to anabolic stimuli in the elderly.

  7. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2016-05-01

    Full Text Available Plants have varying abilities to tolerate chilling (low but not freezing temperatures, and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.

  8. The Morphology of Craters on Mercury: Results from MESSENGER Flybys

    Science.gov (United States)

    Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.

    2012-01-01

    Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.

  9. Regulation of photosensitisation processes by an RNA aptamer

    Science.gov (United States)

    Thoa, Tran Thi Thanh; Minagawa, Noriko; Aigaki, Toshiro; Ito, Yoshihiro; Uzawa, Takanori

    2017-02-01

    One of the most powerful attributes of proteins is their ability to bind to and modulate the chemistry of cofactors and prosthetic groups. Here, we demonstrated the ability of an artificial nucleic acid (an aptamer) to similarly control the functionality of a non-biological element. Specifically, we selected an RNA aptamer that binds tris(bipyridine) ruthenium (II), Ru(bpy)32+, an inorganic complex that has attracted intense interest due to its photoredox chemistry, including its ability to split water by visible light. We found that a newly discovered aptamer strongly and enantioselectively binds Λ-Ru(bpy)32+ (Kd = 65 nM) and, in doing so, selectively suppresses deactivation via energy transfer, thereby elongating the lifetime of its photo-excited state by four-fold. The ability of the aptamer to enhance this important aspect of Ru(bpy)32+ chemistry illustrates a broader point concerning the potential power of combining in vitro-created biomolecules with non-biological reactants to perform enhanced chemical reactions.

  10. Inhibition of Escherichia coli precursor-16S rRNA processing by mouse intestinal contents

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Tolker-Nielsen, Tim; Holmstrøm, Kim

    1999-01-01

    . We have applied fluorescence in situ hybridization of pre-16S rRNA to Escherichia coli cells growing in vitro in extracts from two different compartments of the mouse intestine: the caecal mucus layer, where E. coli grew rapidly, and the contents of the caecum, which supported much slower bacterial...... content of pre-16S rRNA than cultures of the same strain growing rapidly in rich media. We present results suggesting that the mouse intestinal contents contain an agent that inhibits the growth of E. coli by disturbing its ability to process pre-16S rRNA....

  11. Deep Sequence Analysis of AgoshRNA Processing Reveals 3’ A Addition and Trimming

    Directory of Open Access Journals (Sweden)

    Alex Harwig

    2015-01-01

    Full Text Available The RNA interference (RNAi pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA, was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2 slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA molecules is a major determinant for Dicer versus Ago2 processing. Here we present the results of a deep sequence study on the processing of shRNAs with different stem length and a top G·U wobble base pair (bp. This analysis revealed some unexpected properties of these so-called AgoshRNA molecules that are processed by Ago2 instead of Dicer. First, we confirmed the gradual shift from Dicer to Ago2 processing upon shortening of the hairpin length. Second, hairpins with a stem larger than 19 base pair are inefficiently cleaved by Ago2 and we noticed a shift in the cleavage site. Third, the introduction of a top G·U bp in a regular shRNA can promote Ago2-cleavage, which coincides with a loss of Ago2-loading of the Dicer-cleaved 3’ strand. Fourth, the Ago2-processed AgoshRNAs acquire a short 3’ tail of 1–3 A-nucleotides (nt and we present evidence that this product is subsequently trimmed by the poly(A-specific ribonuclease (PARN.

  12. Footprints of a trypanosomatid RNA world: pre-small subunit rRNA processing by spliced leader addition trans-splicing

    Directory of Open Access Journals (Sweden)

    Mario Gustavo Mayer

    2012-06-01

    Full Text Available The addition of a capped mini-exon [spliced leader (SL] through trans-splicing is essential for the maturation of RNA polymerase (pol II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS region. Additionally, we detected the SL-5'ETS molecule using three distinct methods and located the acceptor site between two known 5'ETS rRNA processing sites (A' and A1 in four different trypanosomatids. Moreover, we detected a polyadenylated 5'ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin, we observed SL-5'ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA led to the accumulation of SL-5'ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.

  13. Plasma processing conditions substantially influence circulating microRNA biomarker levels.

    Science.gov (United States)

    Cheng, Heather H; Yi, Hye Son; Kim, Yeonju; Kroh, Evan M; Chien, Jason W; Eaton, Keith D; Goodman, Marc T; Tait, Jonathan F; Tewari, Muneesh; Pritchard, Colin C

    2013-01-01

    Circulating, cell-free microRNAs (miRNAs) are promising candidate biomarkers, but optimal conditions for processing blood specimens for miRNA measurement remain to be established. Our previous work showed that the majority of plasma miRNAs are likely blood cell-derived. In the course of profiling lung cancer cases versus healthy controls, we observed a broad increase in circulating miRNA levels in cases compared to controls and that higher miRNA expression correlated with higher platelet and particle counts. We therefore hypothesized that the quantity of residual platelets and microparticles remaining after plasma processing might impact miRNA measurements. To systematically investigate this, we subjected matched plasma from healthy individuals to stepwise processing with differential centrifugation and 0.22 µm filtration and performed miRNA profiling. We found a major effect on circulating miRNAs, with the majority (72%) of detectable miRNAs substantially affected by processing alone. Specifically, 10% of miRNAs showed 4-30x variation, 46% showed 30-1,000x variation, and 15% showed >1,000x variation in expression solely from processing. This was predominantly due to platelet contamination, which persisted despite using standard laboratory protocols. Importantly, we show that platelet contamination in archived samples could largely be eliminated by additional centrifugation, even in frozen samples stored for six years. To minimize confounding effects in microRNA biomarker studies, additional steps to limit platelet contamination for circulating miRNA biomarker studies are necessary. We provide specific practical recommendations to help minimize confounding variation attributable to plasma processing and platelet contamination.

  14. An image processing approach to computing distances between RNA secondary structures dot plots

    Directory of Open Access Journals (Sweden)

    Sapiro Guillermo

    2009-02-01

    Full Text Available Abstract Background Computing the distance between two RNA secondary structures can contribute in understanding the functional relationship between them. When used repeatedly, such a procedure may lead to finding a query RNA structure of interest in a database of structures. Several methods are available for computing distances between RNAs represented as strings or graphs, but none utilize the RNA representation with dot plots. Since dot plots are essentially digital images, there is a clear motivation to devise an algorithm for computing the distance between dot plots based on image processing methods. Results We have developed a new metric dubbed 'DoPloCompare', which compares two RNA structures. The method is based on comparing dot plot diagrams that represent the secondary structures. When analyzing two diagrams and motivated by image processing, the distance is based on a combination of histogram correlations and a geometrical distance measure. We introduce, describe, and illustrate the procedure by two applications that utilize this metric on RNA sequences. The first application is the RNA design problem, where the goal is to find the nucleotide sequence for a given secondary structure. Examples where our proposed distance measure outperforms others are given. The second application locates peculiar point mutations that induce significant structural alternations relative to the wild type predicted secondary structure. The approach reported in the past to solve this problem was tested on several RNA sequences with known secondary structures to affirm their prediction, as well as on a data set of ribosomal pieces. These pieces were computationally cut from a ribosome for which an experimentally derived secondary structure is available, and on each piece the prediction conveys similarity to the experimental result. Our newly proposed distance measure shows benefit in this problem as well when compared to standard methods used for assessing

  15. Multi-Messenger Astronomy with Gravitational Waves

    Indian Academy of Sciences (India)

    Sound + images show Bailey was out in the India-Australia match on 12 Jan 2016. Image credit: Rediff / Fox news / Twitter. Page 10. Electromagnetic follow up: the Indian context. Page 11. Multi-Messenger Astronomy with Gravitational Waves | LIGO-G1601377-v2. Varun Bhalerao (IUCAA) | 1 July 2016. 11. 20 – 60 keV:.

  16. Mobile MSN Messenger: Still a Complement?

    Directory of Open Access Journals (Sweden)

    Marcus Nyberg

    2008-10-01

    Full Text Available In order to understand how mobile instant messaging services can fit into the users’ current communication behavior, Ericsson Research performed a qualitative user study in Sweden in May 2007. The results showed that the respondents were positive towards (free of charge mobile MSN Messenger and perceived it as an ex¬tension of the computer-based version that could be used anywhere. However, although MSN Messenger on the com¬puter definitely was considered as a ‘must-have’ application, the mobile version was only perceived as a ‘nice-to-have’ application and a complement to text mes¬saging (SMS. Almost one year later, in April 2008, Ericsson Research performed a short qualita¬tive follow-up study with the same set of respondents to un¬derstand if and how the mobile MSN Messenger usage had changed. The results actually revealed that none of the re¬spondents used mobile MSN Messenger anymore as the application no longer was free of charge. On a general level, the study highlights important considera¬tions when intro¬ducing computer-based concepts and Internet services in a mo¬bile environment.

  17. 12 CFR 7.1012 - Messenger service.

    Science.gov (United States)

    2010-01-01

    ... service” means any service, such as a courier service or armored car service, used by a national bank and... service do not advertise, or otherwise represent, that the bank itself is providing the service, although the bank may advertise that its customers may use one or more third party messenger services to...

  18. What history tells us XLV. The 'instability' of messenger RNA

    Indian Academy of Sciences (India)

    Michel Morange

    2018-04-23

    Apr 23, 2018 ... By using heavy isotopes, Rudolph Schoenheimer observed at the ... firmed the relation existing between the instability of ... was problematic is eliminated. ... Harris H 1963 Rapidly labelled ribonucleic acid in the cell nucleus.

  19. Circuit Formation by Spatio-Temporal Control of Messenger RNA ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The connections inside the brain need to be wired in a precise manner during development to ensure its proper function. This project will provide insight into circuit formation to help us understand how axon regeneration can improve clinical outcomes. Brain wiring, damage, and developmental defects Researchers have ...

  20. Ribonucleoprotein organization of eukaryotic RNA. XXXII. U2 small nuclear RNA precursors and their accurate 3' processing in vitro as ribonucleoprotein particles.

    Science.gov (United States)

    Wieben, E D; Nenninger, J M; Pederson, T

    1985-05-05

    Biosynthetic precursors of U2 small nuclear RNA have been identified in cultured human cells by hybrid-selection of pulse-labeled RNA with cloned U2 DNA. These precursor molecules are one to approximately 16 nucleotides longer than mature U2 RNA and contain 2,2,7-trimethylguanosine "caps". The U2 RNA precursors are associated with proteins that react with a monoclonal antibody for antigens characteristic of small nuclear ribonucleoprotein particles. Like previously described precursors of U1 and U4 small nuclear RNAs, the pre-U2 RNAs are recovered in cytoplasmic fractions, although it is not known if this is their location in vivo. The precursors are processed to mature-size U2 RNA when cytoplasmic extracts are incubated in vitro at 37 degrees C. Mg2+ is required but ATP is not. The ribonucleoprotein structure of the pre-U2 RNA is maintained during the processing reaction in vitro, as are the 2,2,7-trimethylguanosine caps. The ribonucleoprotein organization is of major importance, as exogenous, protein-free U2 RNA precursors are degraded rapidly in the in vitro system. Two lines of evidence indicate that the conversion of U2 precursors to mature-size U2 RNA involves a 3' processing reaction. First, the reaction is unaffected by a large excess of mature U2 small nuclear RNP, whose 5' trimethylguanosine caps would be expected to compete for a 5' processing activity. Second, when pre-U2 RNA precursors are first stoichiometrically decorated with an antibody specific for 2,2,7-trimethylguanosine, the extent of subsequent processing in vitro is unaffected. These results provide the first demonstration of a eukaryotic RNA processing reaction in vitro occurring within a ribonucleoprotein particle.

  1. Regulatory Role of N6 -methyladenosine (m6 A) Methylation in RNA Processing and Human Diseases.

    Science.gov (United States)

    Wei, Wenqiang; Ji, Xinying; Guo, Xiangqian; Ji, Shaoping

    2017-09-01

    N 6 -methyladenosine (m 6 A) modification is an abundant and conservative RNA modification in bacterial and eukaryotic cells. m 6 A modification mainly occurs in the 3' untranslated regions (UTRs) and near the stop codons of mRNA. Diverse strategies have been developed for identifying m 6 A sites in single nucleotide resolution. Dynamic regulation of m 6 A is found in metabolism, embryogenesis, and developmental processes, indicating a possible epigenetic regulation role along RNA processing and exerting biological functions. It has been known that m 6 A editing involves in nuclear RNA export, mRNA degradation, protein translation, and RNA splicing. Deficiency of m 6 A modification will lead to kinds of diseases, such as obesity, cancer, type 2 diabetes mellitus (T2DM), infertility, and developmental arrest. Some specific inhibitors against methyltransferase and demethylase have been developed to selectively regulate m 6 A modification, which may be advantageous for treatment of m 6 A related diseases. J. Cell. Biochem. 118: 2534-2543, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli.

    Science.gov (United States)

    Smith, Brian A; Gupta, Neha; Denny, Kevin; Culver, Gloria M

    2018-06-08

    Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes.

    Science.gov (United States)

    Sittka, Alexandra; Sharma, Cynthia M; Rolle, Katarzyna; Vogel, Jörg

    2009-01-01

    The bacterial Sm-like protein, Hfq, is a key factor for the stability and function of small non-coding RNAs (sRNAs) in Escherichia coli. Homologues of this protein have been predicted in many distantly related organisms yet their functional conservation as sRNA-binding proteins has not entirely been clear. To address this, we expressed in Salmonella the Hfq proteins of two eubacteria (Neisseria meningitides, Aquifex aeolicus) and an archaeon (Methanocaldococcus jannaschii), and analyzed the associated RNA by deep sequencing. This in vivo approach identified endogenous Salmonella sRNAs as a major target of the foreign Hfq proteins. New Salmonella sRNA species were also identified, and some of these accumulated specifically in the presence of a foreign Hfq protein. In addition, we observed specific RNA processing defects, e.g., suppression of precursor processing of SraH sRNA by Methanocaldococcus Hfq, or aberrant accumulation of extracytoplasmic target mRNAs of the Salmonella GcvB, MicA or RybB sRNAs. Taken together, our study provides evidence of a conserved inherent sRNA-binding property of Hfq, which may facilitate the lateral transmission of regulatory sRNAs among distantly related species. It also suggests that the expression of heterologous RNA-binding proteins combined with deep sequencing analysis of RNA ligands can be used as a molecular tool to dissect individual steps of RNA metabolism in vivo.

  4. Mercury's complex exosphere: results from MESSENGER's third flyby.

    Science.gov (United States)

    Vervack, Ronald J; McClintock, William E; Killen, Rosemary M; Sprague, Ann L; Anderson, Brian J; Burger, Matthew H; Bradley, E Todd; Mouawad, Nelly; Solomon, Sean C; Izenberg, Noam R

    2010-08-06

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal altitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere.

  5. Mercury's Complex Exosphere: Results from MESSENGER's Third Flyby

    Science.gov (United States)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Anderson, Brian J.; Burger, Matthew H.; Bradley, E. Todd; Mouawad, Nelly; Solomon, Sean C.; Izenberg, Noam R.

    2010-01-01

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal attitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere,

  6. Global Identification of New Substrates for the Yeast Endoribonuclease, RNase Mitochondrial RNA Processing (MRP)*

    Science.gov (United States)

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E.

    2012-01-01

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27Kip1, SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease. PMID:22977255

  7. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome.

    Science.gov (United States)

    Aktaş, Tuğçe; Avşar Ilık, İbrahim; Maticzka, Daniel; Bhardwaj, Vivek; Pessoa Rodrigues, Cecilia; Mittler, Gerhard; Manke, Thomas; Backofen, Rolf; Akhtar, Asifa

    2017-04-06

    Transposable elements are viewed as 'selfish genetic elements', yet they contribute to gene regulation and genome evolution in diverse ways. More than half of the human genome consists of transposable elements. Alu elements belong to the short interspersed nuclear element (SINE) family of repetitive elements, and with over 1 million insertions they make up more than 10% of the human genome. Despite their abundance and the potential evolutionary advantages they confer, Alu elements can be mutagenic to the host as they can act as splice acceptors, inhibit translation of mRNAs and cause genomic instability. Alu elements are the main targets of the RNA-editing enzyme ADAR and the formation of Alu exons is suppressed by the nuclear ribonucleoprotein HNRNPC, but the broad effect of massive secondary structures formed by inverted-repeat Alu elements on RNA processing in the nucleus remains unknown. Here we show that DHX9, an abundant nuclear RNA helicase, binds specifically to inverted-repeat Alu elements that are transcribed as parts of genes. Loss of DHX9 leads to an increase in the number of circular-RNA-producing genes and amount of circular RNAs, translational repression of reporters containing inverted-repeat Alu elements, and transcriptional rewiring (the creation of mostly nonsensical novel connections between exons) of susceptible loci. Biochemical purifications of DHX9 identify the interferon-inducible isoform of ADAR (p150), but not the constitutively expressed ADAR isoform (p110), as an RNA-independent interaction partner. Co-depletion of ADAR and DHX9 augments the double-stranded RNA accumulation defects, leading to increased circular RNA production, revealing a functional link between these two enzymes. Our work uncovers an evolutionarily conserved function of DHX9. We propose that it acts as a nuclear RNA resolvase that neutralizes the immediate threat posed by transposon insertions and allows these elements to evolve as tools for the post

  8. How short RNAs impact the human ribonuclease Dicer activity: putative regulatory feedback-loops and other RNA-mediated mechanisms controlling microRNA processing.

    Science.gov (United States)

    Koralewska, Natalia; Hoffmann, Weronika; Pokornowska, Maria; Milewski, Marek; Lipinska, Andrea; Bienkowska-Szewczyk, Krystyna; Figlerowicz, Marek; Kurzynska-Kokorniak, Anna

    2016-01-01

    Ribonuclease Dicer plays a pivotal role in RNA interference pathways by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. While details of Dicer regulation by a variety of proteins are being elucidated, less is known about non-protein factors, e.g. RNA molecules, that may influence this enzyme's activity. Therefore, we decided to investigate the question of whether the RNA molecules can function not only as Dicer substrates but also as its regulators. Our previous in vitro studies indicated that the activity of human Dicer can be influenced by short RNA molecules that either bind to Dicer or interact with its substrates, or both. Those studies were carried out with commercial Dicer preparations. Nevertheless, such preparations are usually not homogeneous enough to carry out more detailed RNA-binding studies. Therefore, we have established our own system for the production of human Dicer in insect cells. In this manuscript, we characterize the RNA-binding and RNA-cleavage properties of the obtained preparation. We demonstrate that Dicer can efficiently bind single-stranded RNAs that are longer than ~20-nucleotides. Consequently, we revisit possible scenarios of Dicer regulation by single-stranded RNA species ranging from ~10- to ~60-nucleotides, in the context of their binding to this enzyme. Finally, we show that siRNA/miRNA-sized RNAs may affect miRNA production either by binding to Dicer or by participating in regulatory feedback-loops. Altogether, our studies suggest a broad regulatory role of short RNAs in Dicer functioning.

  9. Interactions between mRNA export commitment, 3'-end quality control, and nuclear degradation

    DEFF Research Database (Denmark)

    Libri, Domenico; Dower, Ken; Boulay, Jocelyne

    2002-01-01

    Several aspects of eukaryotic mRNA processing are linked to transcription. In Saccharomyces cerevisiae, overexpression of the mRNA export factor Sub2p suppresses the growth defect of hpr1 null cells, yet the protein Hpr1p and the associated THO protein complex are implicated in transcriptional el...... results show that several classes of defective RNPs are subject to a quality control step that impedes release from transcription site foci and suggest that suboptimal messenger ribonucleoprotein assembly leads to RNA degradation by Rrp6p....

  10. Parthanatos, a messenger of death

    OpenAIRE

    David, Karen Kate; Andrabi, Shaida Ahmad; Dawson, Ted Murray; Dawson, Valina Lynn

    2009-01-01

    Poly-ADP-ribose polymerase-1 (PARP-1)'s multiple roles in the cell span from maintaining life to inducing death. The processes PARP-1 is involved in include, but are not limited to DNA repair, DNA transcription, mitosis, and cell death. Of PARP-1's different cellular functions, its active role in cell death is of particular interest to designing therapies for diseases. Genetic deletion of PARP-1 revealed that PARP-1 over activation underlies cell death in experimental models of stroke, diabet...

  11. Messengers of the universe: Session IV Summary

    International Nuclear Information System (INIS)

    Bernardini, Elisa; Serpico, Pasquale Dario

    2013-01-01

    Being stable, light and neutral weakly interacting particles, neutrinos are ideal messengers of the deep universe and a channel of choice in particular to explore the very high energy Galactic and Extragalactic sky, playing a synergic role most notably with gamma-ray observations. Neutrino astronomy—long after the SN1987A detection in the MeV range—is mature enough for decisive tests of astrophysical paradigms. Its current status constitutes one of the two big pillars of the “Messengers of the universe” session of the Neutrino Oscillation Workshop 2012. Neutrinos may also play a role in some cosmological contexts, such as the early universe and the dark matter problem. We review both aspects in this session summary report

  12. Bacterial nucleotide-based second messengers.

    Science.gov (United States)

    Pesavento, Christina; Hengge, Regine

    2009-04-01

    In all domains of life nucleotide-based second messengers transduce signals originating from changes in the environment or in intracellular conditions into appropriate cellular responses. In prokaryotes cyclic di-GMP has emerged as an important and ubiquitous second messenger regulating bacterial life-style transitions relevant for biofilm formation, virulence, and many other bacterial functions. This review describes similarities and differences in the architecture of the cAMP, (p)ppGpp, and c-di-GMP signaling systems and their underlying signaling principles. Moreover, recent advances in c-di-GMP-mediated signaling will be presented and the integration of c-di-GMP signaling with other nucleotide-based signaling systems will be discussed.

  13. The Energy Messenger, Number 1, Volume 4

    International Nuclear Information System (INIS)

    Stancil, J.

    1995-01-01

    'The Energy Messenger' is a Department of Energy publication on energy activities of interest to American Indians. The first issue of 1995 (in a magazine format) includes articles on: tribes winning grants to develop energy resources, recruiting of internships for DOE, information about Title XXVI-Indian Energy Resources, American Indian Heritage Month, tribal perspective on DOE actions, joint ventures between tribes and the DOE, and brief description of recent DOE activities

  14. The Energy Messenger, Number 1, Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Stancil, J. [ed.

    1995-01-01

    `The Energy Messenger` is a Department of Energy publication on energy activities of interest to American Indians. The first issue of 1995 (in a magazine format) includes articles on: tribes winning grants to develop energy resources, recruiting of internships for DOE, information about Title XXVI-Indian Energy Resources, American Indian Heritage Month, tribal perspective on DOE actions, joint ventures between tribes and the DOE, and brief description of recent DOE activities.

  15. Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma

    NARCIS (Netherlands)

    Kluiver, J.; van den Berg, Anke; de Jong, Doetje; Blokzijl, T.; Harms, G.; Bouwman, E.; Jacobs, Susan; Poppema, Sibrand; Kroesen, Bart-Jan

    2007-01-01

    BIC is a primary microRNA (pri-miR-155) that can be processed to mature miR-155. In this study, we show the crucial involvement of protein kinase C (PKC) and nuclear factor-kappa B (NF-kappa B) in the regulation of BIC expression upon B-cell receptor triggering. Surprisingly, Northern blot analysis

  16. Holographic gauge mediation via strongly coupled messengers

    International Nuclear Information System (INIS)

    McGuirk, Paul; Shiu, Gary; Sumitomo, Yoske

    2010-01-01

    We consider a relative of semidirect gauge mediation where the hidden sector exists at large 't Hooft coupling. Such scenarios can be difficult to describe using perturbative field theory methods but may fall into the class of holographic gauge mediation scenarios, meaning that they are amenable to the techniques of gauge/gravity duality. We use a recently found gravity solution to examine one such case, where the hidden sector is a cascading gauge theory resulting in a confinement scale not much smaller than the messenger mass. In the original construction of holographic gauge mediation, as in other examples of semidirect gauge mediation at strong coupling, the primary contributions to visible sector soft terms come from weakly coupled messenger mesons. In contrast to these examples, we describe the dual of a gauge theory where there are significant contributions from scales in which the strongly coupled messenger quarks are the effective degrees of freedom. In this regime, the visible sector gaugino mass can be calculated entirely from holography.

  17. Analysis of RNA metabolism in fission yeast

    DEFF Research Database (Denmark)

    Wise, Jo Ann; Nielsen, Olaf

    2017-01-01

    Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles....

  18. Regulatory RNAs derived from transfer RNA?

    Science.gov (United States)

    Pederson, Thoru

    2010-10-01

    Four recent studies suggest that cleavages of transfer RNAs generate products with microRNA-like features, with some evidence of function. If their regulatory functions were to be confirmed, these newly revealed RNAs would add to the expanding repertoire of small noncoding RNAs and would also provide new perspectives on the coevolution of transfer RNA and messenger RNA.

  19. Rare Drosha Splice Variants Are Deficient in MicroRNA Processing but Do Not Affect General MicroRNA Expression in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Stefanie E. Grund

    2012-03-01

    Full Text Available Drosha is a key enzyme in microRNA biogenesis, generating the precursor miRNA (pre-miRNA by excising the stem-loop embedded in the primary transcripts (pri-miRNA. The specificity for the pri-miRNAs and determination of the cleavage site are provided by its binding partner DGCR8, which is necessary for efficient processing. The crucial Drosha domains for pri-miRNA cleavage are the middle part, the two enzymatic RNase III domains (RIIID, and the dsRNA binding domain (dsRBD in the C-terminus. Here, we identify alternatively spliced transcripts in human melanoma and NT2 cell lines, encoding C-terminally truncated Drosha proteins lacking part of the RIIIDb and the entire dsRBD. Proteins generated from these alternative splice variants fail to bind to DGCR8 but still interact with Ewing sarcoma protein (EWS. In vitro as well as in vivo, the Drosha splice variants are deficient in pri-miRNA processing. However, the aberrant transcripts in melanoma cells do not consistently reduce mature miRNA levels compared with melanoma cell lines lacking those splice variants, possibly owing to their limited abundance. Our findings show that alternative processing-deficient Drosha splice variants exist in melanoma cells. In elevated amounts, these alternatively spliced transcripts could provide one potential mechanism accounting for the deregulation of miRNAs in cancer cells. On the basis of our results, the search for alternative inactive splice variants might be fruitful in different tumor entities to unravel the molecular basis of the previously observed decreased microRNA processing efficiency in cancer.

  20. Parthanatos, a messenger of death

    Science.gov (United States)

    David, Karen Kate; Andrabi, Shaida Ahmad; Dawson, Ted Murray; Dawson, Valina Lynn

    2015-01-01

    Poly-ADP-ribose polymerase-1 (PARP-1)'s multiple roles in the cell span from maintaining life to inducing death. The processes PARP-1 is involved in include, but are not limited to DNA repair, DNA transcription, mitosis, and cell death. Of PARP-1's different cellular functions, its active role in cell death is of particular interest to designing therapies for diseases. Genetic deletion of PARP-1 revealed that PARP-1 over activation underlies cell death in experimental models of stroke, diabetes, inflammation and neurodegeneration. Since interfering with PARP-1 mediated cell death will be clinically beneficial, great effort has been invested into designing PARP-1 inhibitors and understanding mechanisms downstream of PARP-1 over activation. PARP-1 overactivation may kill by depleting cellular energy through nicotinamide adenine dinucleotide (NAD+) consumption, and by releasing the cell death effector apoptosis-inducing factor (AIF). Unexpectedly, recent evidence shows that poly-ADP ribose (PAR) polymer itself, and not the consumption of NAD+ is the source of cytotoxicity. Thus, PAR polymer acts as a cell death effector downstream of PARP-1-mediated cell death signaling. We coined the term parthanatos after Thanatos, the personification of death in Greek mythology, to refer to PAR-mediated cell death. In this review, we will summarize the proposed mechanisms by which PARP-1 overactivation kills. We will present evidence for parthanatos, and the questions raised by these recent findings. It is evident that further understanding of parthanatos opens up new avenues for therapy in ameliorating diseases related to PARP-1 over activation. PMID:19273119

  1. Audience and Witnessing: Research into Dramatherapy using Vignettes and aMSN Messenger

    Science.gov (United States)

    Jones, Phil

    2008-01-01

    This article describes the process of research undertaken to examine therapists' responses to the concept of the core processes of change in dramatherapy. The research uses a combination of vignette description and analysis using aMSN messenger. The article describes the theoretical underpinning and rationale to the approach, and the…

  2. Global investigation of RNA 3'end processing and transcription termination pathways

    DEFF Research Database (Denmark)

    Molska, Ewa

    2018-01-01

    . For example, contrary to prediction, a subset of protein-coding genes utilise the machinery used by genes encoding U snRNAs. This same machinery is predominantly used by a class of lncRNA genes, encoding so-called PROMPTs, despite the presence of sequence elements predicted to guide the usage of the pathway......RNA polymerases transcribe diverse classes of genes and the produced RNAs need to be targeted to their appropriate cognate biochemical maturation pathways. The vast majority of the human transcriptome consists of long non-coding RNAs (lncRNAs), which is a heterogeneous group of RNAs...... that is inadequately divided into classes based e.g. on length, stability and association with protein-coding genes. We reasoned that further classification based on biochemical properties, in this case transcription termination and the mechanistically coupled RNA 3’-end processing, would enable a better understanding...

  3. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    Directory of Open Access Journals (Sweden)

    Nicole Ludwig

    2016-03-01

    Full Text Available Wilms tumor (WT is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT.

  4. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries

    Directory of Open Access Journals (Sweden)

    Daniela Toro-Ascuy

    2016-11-01

    Full Text Available The human immunodeficiency virus type-1 (HIV-1 unspliced transcript is used both as mRNA for the synthesis of structural proteins and as the packaged genome. Given the presence of retained introns and instability AU-rich sequences, this viral transcript is normally retained and degraded in the nucleus of host cells unless the viral protein REV is present. As such, the stability of the HIV-1 unspliced mRNA must be particularly controlled in the nucleus and the cytoplasm in order to ensure proper levels of this viral mRNA for translation and viral particle formation. During its journey, the HIV-1 unspliced mRNA assembles into highly specific messenger ribonucleoproteins (mRNPs containing many different host proteins, amongst which are well-known regulators of cytoplasmic mRNA decay pathways such as up-frameshift suppressor 1 homolog (UPF1, Staufen double-stranded RNA binding protein 1/2 (STAU1/2, or components of miRNA-induced silencing complex (miRISC and processing bodies (PBs. More recently, the HIV-1 unspliced mRNA was shown to contain N6-methyladenosine (m6A, allowing the recruitment of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2, an m6A reader host protein involved in mRNA decay. Interestingly, these host proteins involved in mRNA decay were shown to play positive roles in viral gene expression and viral particle assembly, suggesting that HIV-1 interacts with mRNA decay components to successfully accomplish viral replication. This review summarizes the state of the art in terms of the interactions between HIV-1 unspliced mRNA and components of different host mRNA decay machineries.

  5. Mechanisms controlling mRNA processing and translation : decoding the regulatory layers defining gene expression through RNA sequencing

    NARCIS (Netherlands)

    Klerk, Eleonora de

    2015-01-01

    The work described in this thesis focuses on the mechanisms that give rise to alternative mRNAs and their alternative translation into proteins. Each of the described studies has been based on a specific set of high-throughput RNA sequencing technologies. An overview of the available RNA sequencing

  6. Salinity inhibits post transcriptional processing of chloroplast 16S rRNA in shoot cultures of jojoba (Simmondsia chinesis).

    Science.gov (United States)

    Mizrahi-Aviv, Ela; Mills, David; Benzioni, Aliza; Bar-Zvi, Dudy

    2005-03-01

    Chloroplast metabolism is rapidly affected by salt stress. Photosynthesis is one of the first processes known to be affected by salinity. Here, we report that salinity inhibits chloroplast post-transcriptional RNA processing. A differentially expressed 680-bp cDNA, containing the 3' sequence of 16S rRNA, transcribed intergenic spacer, exon 1 and intron of tRNA(Ile), was isolated by differential display reverse transcriptase PCR from salt-grown jojoba (Simmondsia chinesis) shoot cultures. Northern blot analysis indicated that although most rRNA appears to be fully processed, partially processed chloroplast 16S rRNA accumulates in salt-grown cultures. Thus, salinity appears to decrease the processing of the rrn transcript. The possible effect of this decreased processing on physiological processes is, as yet, unknown.

  7. Myb-binding protein 1a (Mybbp1a) regulates levels and processing of pre-ribosomal RNA.

    Science.gov (United States)

    Hochstatter, Julia; Hölzel, Michael; Rohrmoser, Michaela; Schermelleh, Lothar; Leonhardt, Heinrich; Keough, Rebecca; Gonda, Thomas J; Imhof, Axel; Eick, Dirk; Längst, Gernot; Németh, Attila

    2012-07-13

    Ribosomal RNA gene transcription, co-transcriptional processing, and ribosome biogenesis are highly coordinated processes that are tightly regulated during cell growth. In this study we discovered that Mybbp1a is associated with both the RNA polymerase I complex and the ribosome biogenesis machinery. Using a reporter assay that uncouples transcription and RNA processing, we show that Mybbp1a represses rRNA gene transcription. In addition, overexpression of the protein reduces RNA polymerase I loading on endogenous rRNA genes as revealed by chromatin immunoprecipitation experiments. Accordingly, depletion of Mybbp1a results in an accumulation of the rRNA precursor in vivo but surprisingly also causes growth arrest of the cells. This effect can be explained by the observation that the modulation of Mybbp1a protein levels results in defects in pre-rRNA processing within the cell. Therefore, the protein may play a dual role in the rRNA metabolism, potentially linking and coordinating ribosomal DNA transcription and pre-rRNA processing to allow for the efficient synthesis of ribosomes.

  8. Altered expression of circulating microRNA in plasma of patients with primary osteoarthritis and in silico analysis of their pathways.

    Directory of Open Access Journals (Sweden)

    Verónica M Borgonio Cuadra

    Full Text Available OBJECTIVE: To analyze a set of circulating microRNA (miRNA in plasma from patients with primary Osteoarthritis (OA and describe the biological significance of altered miRNA in OA based on an in silico analysis of their target genes. METHODS: miRNA expression was analyzed using TaqMan Low Density Arrays and independent assays. The search for potential messenger RNA (mRNA targets of the differentially expressed miRNA was performed by means of the miRWalk and miRecords database; we conducted the biological relevance of the predicted miRNA targets by pathway analysis with the Reactome and DAVID databases. RESULTS: We measured the expression of 380 miRNA in OA; 12 miRNA were overexpressed under the OA condition (p value, ≤0.05; fold change, >2. These results were validated by the detection of some selected miRNA by quantitative PCR (qPCR. In silico analysis showed that target messenger RNA (mRNA were potentially regulated by these miRNA, including genes such as SMAD1, IL-1B, COL3A, VEGFA, and FGFR1, important in chondrocyte maintenance and differentiation. Some metabolic pathways affected by the miRNA: mRNA ratio are signaling Bone morphogenetic proteins (BMP, Platelet-derived growth factor (PDGF, and Nerve growth factor (NGF, these latter two involved in the process of pain. CONCLUSIONS: We identified 12 miRNA in the plasma of patients with primary OA. Specific miRNA that are altered in the disease could be released into plasma, either due to cartilage damage or to an inherent cellular mechanism. Several miRNA could regulate genes and pathways related with development of the disease; eight of these circulating miRNA are described, to our knowledge, for first time in OA.

  9. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site.

    Science.gov (United States)

    Hatoum-Aslan, Asma; Maniv, Inbal; Marraffini, Luciano A

    2011-12-27

    Precise RNA processing is fundamental to all small RNA-mediated interference pathways. In prokaryotes, clustered, regularly interspaced, short palindromic repeats (CRISPR) loci encode small CRISPR RNAs (crRNAs) that protect against invasive genetic elements by antisense targeting. CRISPR loci are transcribed as a long precursor that is cleaved within repeat sequences by CRISPR-associated (Cas) proteins. In many organisms, this primary processing generates crRNA intermediates that are subject to additional nucleolytic trimming to render mature crRNAs of specific lengths. The molecular mechanisms underlying this maturation event remain poorly understood. Here, we defined the genetic requirements for crRNA primary processing and maturation in Staphylococcus epidermidis. We show that changes in the position of the primary processing site result in extended or diminished maturation to generate mature crRNAs of constant length. These results indicate that crRNA maturation occurs by a ruler mechanism anchored at the primary processing site. We also show that maturation is mediated by specific cas genes distinct from those genes involved in primary processing, showing that this event is directed by CRISPR/Cas loci.

  10. Comprehensive processing of high-throughput small RNA sequencing data including quality checking, normalization, and differential expression analysis using the UEA sRNA Workbench.

    Science.gov (United States)

    Beckers, Matthew; Mohorianu, Irina; Stocks, Matthew; Applegate, Christopher; Dalmay, Tamas; Moulton, Vincent

    2017-06-01

    Recently, high-throughput sequencing (HTS) has revealed compelling details about the small RNA (sRNA) population in eukaryotes. These 20 to 25 nt noncoding RNAs can influence gene expression by acting as guides for the sequence-specific regulatory mechanism known as RNA silencing. The increase in sequencing depth and number of samples per project enables a better understanding of the role sRNAs play by facilitating the study of expression patterns. However, the intricacy of the biological hypotheses coupled with a lack of appropriate tools often leads to inadequate mining of the available data and thus, an incomplete description of the biological mechanisms involved. To enable a comprehensive study of differential expression in sRNA data sets, we present a new interactive pipeline that guides researchers through the various stages of data preprocessing and analysis. This includes various tools, some of which we specifically developed for sRNA analysis, for quality checking and normalization of sRNA samples as well as tools for the detection of differentially expressed sRNAs and identification of the resulting expression patterns. The pipeline is available within the UEA sRNA Workbench, a user-friendly software package for the processing of sRNA data sets. We demonstrate the use of the pipeline on a H. sapiens data set; additional examples on a B. terrestris data set and on an A. thaliana data set are described in the Supplemental Information A comparison with existing approaches is also included, which exemplifies some of the issues that need to be addressed for sRNA analysis and how the new pipeline may be used to do this. © 2017 Beckers et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Modeling MESSENGER Observations of Calcium in Mercury's Exosphere

    Science.gov (United States)

    Burger, Matthew Howard; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Merkel, Aimee W.; Sprague, Ann L.; Sarantos, Menelaos

    2012-01-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.

  12. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    Science.gov (United States)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  13. Gravitational Waves and Multi-Messenger Astronomy

    Science.gov (United States)

    Centrella, Joan M.

    2010-01-01

    Gravitational waves are produced by a wide variety of sources throughout the cosmos, including the mergers of black hole and neutron star binaries/compact objects spiraling into central black holes in galactic nuclei, close compact binaries/and phase transitions and quantum fluctuations in the early universe. Observing these signals can bring new, and often very precise, information about their sources across vast stretches of cosmic time. In this talk we will focus on thee opening of this gravitational-wave window on the universe, highlighting new opportunities for discovery and multi-messenger astronomy.

  14. The RB/E2F pathway and regulation of RNA processing

    Energy Technology Data Exchange (ETDEWEB)

    Ahlander, Joseph [Department of Molecular and Cellular Biology, 1007 East Lowell Street, University of Arizona, Tucson, AZ 85721 (United States); Bosco, Giovanni, E-mail: gbosco@email.arizona.edu [Department of Molecular and Cellular Biology, 1007 East Lowell Street, University of Arizona, Tucson, AZ 85721 (United States)

    2009-07-03

    The retinoblastoma tumor suppressor protein (RB) is inactivated in a majority of cancers. RB restricts cell proliferation by inhibiting the E2F family of transcription factors. The current model for RB/E2F function describes its role in regulating transcription at gene promoters. Whether the RB or E2F proteins might play a role in gene expression beyond transcription initiation is not well known. This review describes evidence that points to a novel role for the RB/E2F network in the regulation of RNA processing, and we propose a model as a framework for future research. The elucidation of a novel role of RB in RNA processing will have a profound impact on our understanding of the role of this tumor suppressor family in cell and developmental biology.

  15. Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.

    Science.gov (United States)

    Wakefield, Noelle; Rajan, Rakhi; Sontheimer, Erik J

    2015-10-07

    In many bacteria and archaea, an adaptive immune system (CRISPR-Cas) provides immunity against foreign genetic elements. This system uses CRISPR RNAs (crRNAs) derived from the CRISPR array, along with CRISPR-associated (Cas) proteins, to target foreign nucleic acids. In most CRISPR systems, endonucleolytic processing of crRNA precursors (pre-crRNAs) is essential for the pathway. Here we study the Cas6 endonuclease responsible for crRNA processing in the Type III-A CRISPR-Cas system from Staphylococcus epidermidis RP62a, a model for Type III-A CRISPR-Cas systems, and define substrate requirements for SeCas6 activity. We find that SeCas6 is necessary and sufficient for full-length crRNA biogenesis in vitro, and that it relies on both sequence and stem-loop structure in the 3' half of the CRISPR repeat for recognition and processing. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Exploiting Pre-rRNA Processing in Diamond Blackfan Anemia Gene Discovery and Diagnosis

    Science.gov (United States)

    Farrar, Jason E.; Quarello, Paola; Fisher, Ross; O’Brien, Kelly A.; Aspesi, Anna; Parrella, Sara; Henson, Adrianna L.; Seidel, Nancy E.; Atsidaftos, Eva; Prakash, Supraja; Bari, Shahla; Garelli, Emanuela; Arceci, Robert J.; Dianzani, Irma; Ramenghi, Ugo; Vlachos, Adrianna; Lipton, Jeffrey M.; Bodine, David M.; Ellis, Steven R.

    2014-01-01

    Diamond Blackfan anemia (DBA), a syndrome primarily characterized by anemia and physical abnormalities, is one among a group of related inherited bone marrow failure syndromes (IBMFS) which share overlapping clinical features. Heterozygous mutations or single-copy deletions have been identified in 12 ribosomal protein genes in approximately 60% of DBA cases, with the genetic etiology unexplained in most remaining patients. Unlike many IBMFS, for which functional screening assays complement clinical and genetic findings, suspected DBA in the absence of typical alterations of the known genes must frequently be diagnosed after exclusion of other IBMFS. We report here a novel deletion in a child that presented such a diagnostic challenge and prompted development of a novel functional assay that can assist in the diagnosis of a significant fraction of patients with DBA. The ribosomal proteins affected in DBA are required for pre-rRNA processing, a process which can be interrogated to monitor steps in the maturation of 40S and 60S ribosomal subunits. In contrast to prior methods used to assess pre-rRNA processing, the assay reported here, based on capillary electrophoresis measurement of the maturation of rRNA in pre-60S ribosomal subunits, would be readily amenable to use in diagnostic laboratories. In addition to utility as a diagnostic tool, we applied this technique to gene discovery in DBA, resulting in the identification of RPL31 as a novel DBA gene. PMID:25042156

  17. Multi-Messenger Astronomy and Dark Matter

    Science.gov (United States)

    Bergström, Lars

    This chapter presents the elaborated lecture notes on Multi-Messenger Astronomy and Dark Matter given by Lars Bergström at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". One of the main problems of astrophysics and astro-particle physics is that the nature of dark matter remains unsolved. There are basically three complementary approaches to try to solve this problem. One is the detection of new particles with accelerators, the second is the observation of various types of messengers from radio waves to gamma-ray photons and neutrinos, and the third is the use of ingenious experiments for direct detection of dark matter particles. After giving an introduction to the particle universe, the author discusses the relic density of particles, basic cross sections for neutrinos and gamma-rays, supersymmetric dark matter, detection methods for neutralino dark matter, particular dark matter candidates, the status of dark matter detection, a detailled calculation on an hypothetical "Saas-Fee Wimp", primordial black holes, and gravitational waves.

  18. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases.

    Science.gov (United States)

    Tomecki, Rafal; Sikorski, Pawel J; Zakrzewska-Placzek, Monika

    2017-07-01

    Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans. © 2017 Federation of European Biochemical Societies.

  19. DEAH-RHA helicase•Znf cofactor systems in kinetoplastid RNA editing and evolutionarily distant RNA processes

    Science.gov (United States)

    Cruz-Reyes, Jorge; Mooers, Blaine H.M.; Abu-Adas, Zakaria; Kumar, Vikas; Gulati, Shelly

    2016-01-01

    Multi-zinc finger proteins are an emerging class of cofactors in DEAH-RHA RNA helicases across highly divergent eukaryotic lineages. DEAH-RHA helicase•zinc finger cofactor partnerships predate the split of kinetoplastid protozoa, which include several human pathogens, from other eukaryotic lineages 100–400 Ma. Despite a long evolutionary history, the prototypical DEAH-RHA domains remain highly conserved. This short review focuses on a recently identified DEAH-RHA helicase•zinc finger cofactor system in kinetoplastid RNA editing, and its potential functional parallels with analogous systems in embryogenesis control in nematodes and antivirus protection in humans. PMID:27540585

  20. LAMMER kinase Kic1 is involved in pre-mRNA processing

    International Nuclear Information System (INIS)

    Tang, Zhaohua; Luca, Maria; Portillio, Jessica; Ngo, Benson; Chang, Cathey; Wen, Teresa; Murray, Johanne; Carr, Antony

    2011-01-01

    The LAMMER kinases are conserved through evolution. They play vital roles in cell growth/differentiation, development, and metabolism. One of the best known functions of the kinases in animal cells is the regulation of pre-mRNA splicing. Kic1 is the LAMMER kinase in fission yeast Schizosaccharomyces pombe. Despite the reported pleiotropic effects of kic1 + deletion/overexpression on various cellular processes the involvement of Kic1 in splicing remains elusive. In this study, we demonstrate for the first time that Kic1 not only is required for efficient splicing but also affects mRNA export, providing evidence for the conserved roles of LAMMER kinases in the unicellular context of fission yeast. Consistent with the hypothesis of its direct participation in multiple steps of pre-mRNA processing, Kic1 is predominantly present in the nucleus during interphase. In addition, the kinase activity of Kic1 plays a role in modulating its own cellular partitioning. Interestingly, Kic1 expression oscillates in a cell cycle-dependent manner and the peak level coincides with mitosis and cytokinesis, revealing a potential mechanism for controlling the kinase activity during the cell cycle. The novel information about the in vivo functions and regulation of Kic1 offers insights into the conserved biological roles fundamental to LAMMER kinases in eukaryotes.

  1. Spatial Organization and Dynamics of Transcription Elongation and Pre-mRNA Processing in Live Cells

    Directory of Open Access Journals (Sweden)

    Miguel Sánchez-Álvarez

    2011-01-01

    Full Text Available During the last 30 years, systematic biochemical and functional studies have significantly expanded our knowledge of the transcriptional molecular components and the pre-mRNA processing machinery of the cell. However, our current understanding of how these functions take place spatiotemporally within the highly compartmentalized eukaryotic nucleus remains limited. Moreover, it is increasingly clear that “the whole is more than the sum of its parts” and that an understanding of the dynamic coregulation of genes is essential for fully characterizing complex biological phenomena and underlying diseases. Recent technological advances in light microscopy in addition to novel cell and molecular biology approaches have led to the development of new tools, which are being used to address these questions and may contribute to achieving an integrated and global understanding of how the genome works at a cellular level. Here, we review major hallmarks and novel insights in RNA polymerase II activity and pre-mRNA processing in the context of nuclear organization, as well as new concepts and challenges arising from our ability to gather extensive dynamic information at the single-cell resolution.

  2. Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in saccharomyces cerevisiae: application and validation of high-content, image-based profiling.

    Science.gov (United States)

    Iwaki, Aya; Ohnuki, Shinsuke; Suga, Yohei; Izawa, Shingo; Ohya, Yoshikazu

    2013-01-01

    Vanillin, generated by acid hydrolysis of lignocellulose, acts as a potent inhibitor of the growth of the yeast Saccharomyces cerevisiae. Here, we investigated the cellular processes affected by vanillin using high-content, image-based profiling. Among 4,718 non-essential yeast deletion mutants, the morphology of those defective in the large ribosomal subunit showed significant similarity to that of vanillin-treated cells. The defects in these mutants were clustered in three domains of the ribosome: the mRNA tunnel entrance, exit and backbone required for small subunit attachment. To confirm that vanillin inhibited ribosomal function, we assessed polysome and messenger ribonucleoprotein granule formation after treatment with vanillin. Analysis of polysome profiles showed disassembly of the polysomes in the presence of vanillin. Processing bodies and stress granules, which are composed of non-translating mRNAs and various proteins, were formed after treatment with vanillin. These results suggest that vanillin represses translation in yeast cells.

  3. TargetRNA: a tool for predicting targets of small RNA action in bacteria

    OpenAIRE

    Tjaden, Brian

    2008-01-01

    Many small RNA (sRNA) genes in bacteria act as posttranscriptional regulators of target messenger RNAs. Here, we present TargetRNA, a web tool for predicting mRNA targets of sRNA action in bacteria. TargetRNA takes as input a genomic sequence that may correspond to an sRNA gene. TargetRNA then uses a dynamic programming algorithm to search each annotated message in a specified genome for mRNAs that evince basepair-binding potential to the input sRNA sequence. Based on the calculated basepair-...

  4. Natural RNA circles function as efficient microRNA sponges

    DEFF Research Database (Denmark)

    Hansen, Thomas Birkballe; Jensen, Trine I; Clausen, Bettina Hjelm

    2013-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called comp......MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so......-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more...... sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA....

  5. Sequestration of DROSHA and DGCR8 by Expanded CGG RNA Repeats Alters MicroRNA Processing in Fragile X-Associated Tremor/Ataxia Syndrome

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    2013-03-01

    Full Text Available Fragile X-associated tremor/ataxia syndrome (FXTAS is an inherited neurodegenerative disorder caused by the expansion of 55–200 CGG repeats in the 5′ UTR of FMR1. These expanded CGG repeats are transcribed and accumulate in nuclear RNA aggregates that sequester one or more RNA-binding proteins, thus impairing their functions. Here, we have identified that the double-stranded RNA-binding protein DGCR8 binds to expanded CGG repeats, resulting in the partial sequestration of DGCR8 and its partner, DROSHA, within CGG RNA aggregates. Consequently, the processing of microRNAs (miRNAs is reduced, resulting in decreased levels of mature miRNAs in neuronal cells expressing expanded CGG repeats and in brain tissue from patients with FXTAS. Finally, overexpression of DGCR8 rescues the neuronal cell death induced by expression of expanded CGG repeats. These results support a model in which a human neurodegenerative disease originates from the alteration, in trans, of the miRNA-processing machinery.

  6. Genetic determinants of PAM-dependent DNA targeting and pre-crRNA processing in Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Wenfang; Li, Huan; Hallstrøm, Søren

    2013-01-01

    -adjacent motif (PAM)-dependent DNA targeting activity and mature CRISPR RNA (crRNA) production in this organism, mutants deleting individual genes of the type IA system or removing each of other Cas modules were constructed. Characterization of these mutants revealed that Cas7, Cas5, Cas6, Cas3' and Cas3......" are essential for PAM-dependent DNA targeting activity, whereas Csa5, along with all other Cas modules, is dispensable for the targeting in the crenarchaeon. Cas6 is implicated as the only enzyme for pre-crRNA processing and the crRNA maturation is independent of the DNA targeting activity. Importantly, we show...

  7. Mercury's Interior from MESSENGER Radio Science Data

    Science.gov (United States)

    Genova, A.; Mazarico, E.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2017-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft provided precise radio tracking data in orbit about Mercury for more than 4 years, from March 2011 to April 2015. These geodetic measurements enable us to investigate the interior structure of the planet from the inner core to the crust. The first three years of radio data allowed us to determine the gravity field of Mercury with a resolution of 150 km in the northern hemisphere (degree and order 50 in spherical harmonics) since the periapsis was located at higher latitudes (>65˚N) and 200-500 km altitudes. The comparison of this gravity solution with Mercury's topography, which was retrieved by using over 25 million individual measurements of the Mercury Laser Altimeter (MLA), resulted in a preliminary map of the crustal thickness of the planet. However, those results were limited by the resolution of the gravity field since the topography was defined in spherical harmonics up to degree and order 125. The last year of the MESSENGER extended mission was dedicated to a low-altitude campaign, where the spacecraft periapsis was maintained at altitudes between 25 and 100 km. The radio data collected during this mission phase allowed us to significantly improve the resolution of the gravity field locally in the northern hemisphere up to degree and order 100 in spherical harmonics. We present the gravity anomalies and crustal thickness maps that lead to a better understanding on the formation and evolution of specific regions. We present our estimated orientation model, which slightly differs from the solutions that were obtained by using Earth-based radar measurements and the co-registration of MESSENGER imaging and altimetry data. These previous estimates provide a direct measurement of the surface response, whereas the orientation model from gravity is more sensitive to the inner and outer core. A discrepancy between core and surface obliquities may provide fundamental

  8. MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.

    Science.gov (United States)

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H

    2009-05-01

    Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.

  9. Methylation of miRNA genes and oncogenesis.

    Science.gov (United States)

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  10. Towards RNAi based therapy of liver diseases : diversity and complexity of shRNA and miRNA processing and functions

    NARCIS (Netherlands)

    Maczuga, Piotr

    2013-01-01

    Familial hypercholesterolemia (FH) is a genetic disorder characterized by high levels of low density lipoprotein cholesterol (LDL-C) and increasing the risk of cardio vascular diseases. FH and many other liver diseases can possibly be treated with RNA interference (RNAi). RNAi is a natural process

  11. The MESSENGER mission to Mercury: scientific objectives and implementation

    Science.gov (United States)

    Solomon, Sean C.; McNutt, Ralph L.; Gold, Robert E.; Acuña, Mario H.; Baker, Daniel N.; Boynton, William V.; Chapman, Clark R.; Cheng, Andrew F.; Gloeckler, George; Head, James W., III; Krimigis, Stamatios M.; McClintock, William E.; Murchie, Scott L.; Peale, Stanton J.; Phillips, Roger J.; Robinson, Mark S.; Slavin, James A.; Smith, David E.; Strom, Robert G.; Trombka, Jacob I.; Zuber, Maria T.

    2001-12-01

    Mercury holds answers to several critical questions regarding the formation and evolution of the terrestrial planets. These questions include the origin of Mercury's anomalously high ratio of metal to silicate and its implications for planetary accretion processes, the nature of Mercury's geological evolution and interior cooling history, the mechanism of global magnetic field generation, the state of Mercury's core, and the processes controlling volatile species in Mercury's polar deposits, exosphere, and magnetosphere. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission has been designed to fly by and orbit Mercury to address all of these key questions. After launch by a Delta 2925H-9.5, two flybys of Venus, and two flybys of Mercury, orbit insertion is accomplished at the third Mercury encounter. The instrument payload includes a dual imaging system for wide and narrow fields-of-view, monochrome and color imaging, and stereo; X-ray and combined gamma-ray and neutron spectrometers for surface chemical mapping; a magnetometer; a laser altimeter; a combined ultraviolet-visible and visible-near-infrared spectrometer to survey both exospheric species and surface mineralogy; and an energetic particle and plasma spectrometer to sample charged species in the magnetosphere. During the flybys of Mercury, regions unexplored by Mariner 10 will be seen for the first time, and new data will be gathered on Mercury's exosphere, magnetosphere, and surface composition. During the orbital phase of the mission, one Earth year in duration, MESSENGER will complete global mapping and the detailed characterization of the exosphere, magnetosphere, surface, and interior.

  12. RNase MRP is required for entry of 35S precursor rRNA into the canonical processing pathway.

    Science.gov (United States)

    Lindahl, Lasse; Bommankanti, Ananth; Li, Xing; Hayden, Lauren; Jones, Adrienne; Khan, Miriam; Oni, Tolulope; Zengel, Janice M

    2009-07-01

    RNase MRP is a nucleolar RNA-protein enzyme that participates in the processing of rRNA during ribosome biogenesis. Previous experiments suggested that RNase MRP makes a nonessential cleavage in the first internal transcribed spacer. Here we report experiments with new temperature-sensitive RNase MRP mutants in Saccharomyces cerevisiae that show that the abundance of all early intermediates in the processing pathway is severely reduced upon inactivation of RNase MRP. Transcription of rRNA continues unabated as determined by RNA polymerase run-on transcription, but the precursor rRNA transcript does not accumulate, and appears to be unstable. Taken together, these observations suggest that inactivation of RNase MRP blocks cleavage at sites A0, A1, A2, and A3, which in turn, prevents precursor rRNA from entering the canonical processing pathway (35S > 20S + 27S > 18S + 25S + 5.8S rRNA). Nevertheless, at least some cleavage at the processing site in the second internal transcribed spacer takes place to form an unusual 24S intermediate, suggesting that cleavage at C2 is not blocked. Furthermore, the long form of 5.8S rRNA is made in the absence of RNase MRP activity, but only in the presence of Xrn1p (exonuclease 1), an enzyme not required for the canonical pathway. We conclude that RNase MRP is a key enzyme for initiating the canonical processing of precursor rRNA transcripts, but alternative pathway(s) might provide a backup for production of small amounts of rRNA.

  13. RNA Processing Factor 5 is required for efficient 5' cleavage at a processing site conserved in RNAs of three different mitochondrial genes in Arabidopsis thaliana.

    Science.gov (United States)

    Hauler, Aron; Jonietz, Christian; Stoll, Birgit; Stoll, Katrin; Braun, Hans-Peter; Binder, Stefan

    2013-05-01

    The 5' ends of many mitochondrial transcripts are generated post-transcriptionally. Recently, we identified three RNA PROCESSING FACTORs required for 5' end maturation of different mitochondrial mRNAs in Arabidopsis thaliana. All of these factors are pentatricopeptide repeat proteins (PPRPs), highly similar to RESTORERs OF FERTILTY (RF), that rescue male fertility in cytoplasmic male-sterile lines from different species. Therefore, we suggested a general role of these RF-like PPRPs in mitochondrial 5' processing. We now identified RNA PROCESSING FACTOR 5, a PPRP not classified as an RF-like protein, required for the efficient 5' maturation of the nad6 and atp9 mRNAs as well as 26S rRNA. The precursor molecules of these RNAs share conserved sequence elements, approximately ranging from positions -50 to +9 relative to mature 5' mRNA termini, suggesting these sequences to be at least part of the cis elements required for processing. The knockout of RPF5 has only a moderate influence on 5' processing of atp9 mRNA, whereas the generation of the mature nad6 mRNA and 26S rRNA is almost completely abolished in the mutant. The latter leads to a 50% decrease of total 26S rRNA species, resulting in an imbalance between the large rRNA and 18S rRNA. Despite these severe changes in RNA levels and in the proportion between the 26S and 18S rRNAs, mitochondrial protein levels appear to be unaltered in the mutant, whereas seed germination capacity is markedly reduced. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  14. In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system

    International Nuclear Information System (INIS)

    Allegra, Danilo; Mertens, Daniel

    2011-01-01

    Research highlights: → Posttranscriptional regulation of miRNA processing is difficult to quantify. → Our in-vivo processing assay can quantify Drosha cleavage in live cells. → It is based on luciferase reporters fused with pri-miRNAs. → The assay validates the processing defect caused by a mutation in pri-16-1. → It is a sensitive method to quantify pri-miRNA cleavage by Drosha in live cells. -- Abstract: The RNAse III Drosha is responsible for the first step of microRNA maturation, the cleavage of primary miRNA to produce the precursor miRNA. Processing by Drosha is finely regulated and influences the amount of mature microRNA in a cell. We describe in the present work a method to quantify Drosha processing activity in-vivo, which is applicable to any microRNA. With respect to other methods for measuring Drosha activity, our system is faster and scalable, can be used with any cellular system and does not require cell sorting or use of radioactive isotopes. This system is useful to study regulation of Drosha activity in physiological and pathological conditions.

  15. Processing of nuclear viroids in vivo: an interplay between RNA conformations.

    Directory of Open Access Journals (Sweden)

    María-Eugenia Gas

    2007-11-01

    Full Text Available Replication of viroids, small non-protein-coding plant pathogenic RNAs, entails reiterative transcription of their incoming single-stranded circular genomes, to which the (+ polarity is arbitrarily assigned, cleavage of the oligomeric strands of one or both polarities to unit-length, and ligation to circular RNAs. While cleavage in chloroplastic viroids (family Avsunviroidae is mediated by hammerhead ribozymes, where and how cleavage of oligomeric (+ RNAs of nuclear viroids (family Pospiviroidae occurs in vivo remains controversial. Previous in vitro data indicated that a hairpin capped by a GAAA tetraloop is the RNA motif directing cleavage and a loop E motif ligation. Here we have re-examined this question in vivo, taking advantage of earlier findings showing that dimeric viroid (+ RNAs of the family Pospiviroidae transgenically expressed in Arabidopsis thaliana are processed correctly. Using this methodology, we have mapped the processing site of three members of this family at equivalent positions of the hairpin I/double-stranded structure that the upper strand and flanking nucleotides of the central conserved region (CCR can form. More specifically, from the effects of 16 mutations on Citrus exocortis viroid expressed transgenically in A. thaliana, we conclude that the substrate for in vivo cleavage is the conserved double-stranded structure, with hairpin I potentially facilitating the adoption of this structure, whereas ligation is determined by loop E and flanking nucleotides of the two CCR strands. These results have deep implications on the underlying mechanism of both processing reactions, which are most likely catalyzed by enzymes different from those generally assumed: cleavage by a member of the RNase III family, and ligation by an RNA ligase distinct from the only one characterized so far in plants, thus predicting the existence of at least a second plant RNA ligase.

  16. Duration of the first steps of the human rRNA processing

    Czech Academy of Sciences Publication Activity Database

    Popov, A.; Smirnov, E.; Kováčik, L.; Raška, O.; Hagen, G.; Stixová, Lenka; Raška, I.

    2013-01-01

    Roč. 4, č. 2 (2013), s. 134-141 ISSN 1949-1034 R&D Projects: GA ČR(CZ) GBP302/12/G157; GA MŠk(CZ) EE2.3.30.0030 Grant - others:GA ČR(CZ) GAP302/12/1885 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : rRNA processing * cleavage * half-life time Subject RIV: BO - Biophysics Impact factor: 3.148, year: 2013

  17. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling.

    Science.gov (United States)

    Hayakawa-Yano, Yoshika; Suyama, Satoshi; Nogami, Masahiro; Yugami, Masato; Koya, Ikuko; Furukawa, Takako; Zhou, Li; Abe, Manabu; Sakimura, Kenji; Takebayashi, Hirohide; Nakanishi, Atsushi; Okano, Hideyuki; Yano, Masato

    2017-09-15

    Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states. © 2017 Hayakawa-Yano et al.; Published by Cold Spring Harbor Laboratory Press.

  18. RNA interference analyses suggest a transcript-specific regulatory role for mitochondrial RNA-binding proteins MRP1 and MRP2 in RNA editing and other RNA processing in Trypanosoma brucei

    NARCIS (Netherlands)

    Vondrusková, Eva; van den Burg, Janny; Zíková, Alena; Ernst, Nancy Lewis; Stuart, Kenneth; Benne, Rob; Lukes, Julius

    2005-01-01

    Mitochondrial RNA-binding proteins MRP1 and MRP2 occur in a heteromeric complex that appears to play a role in U-insertion/deletion editing in trypanosomes. Reduction in the levels of MRP1 (gBP21) and/or MRP2 (gBP25) mRNA by RNA interference in procyclic Trypanosoma brucei resulted in severe growth

  19. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.

    Directory of Open Access Journals (Sweden)

    Wenbin Zhou

    Full Text Available Transfer RNA (tRNA precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P. While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs. The plant organellar PRORP (PRORP1 has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi. PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA and tRNA-Arg(ACG suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.

  20. Dynamical modeling of microRNA action on the protein translation process.

    Science.gov (United States)

    Zinovyev, Andrei; Morozova, Nadya; Nonne, Nora; Barillot, Emmanuel; Harel-Bellan, Annick; Gorban, Alexander N

    2010-02-24

    Protein translation is a multistep process which can be represented as a cascade of biochemical reactions (initiation, ribosome assembly, elongation, etc.), the rate of which can be regulated by small non-coding microRNAs through multiple mechanisms. It remains unclear what mechanisms of microRNA action are the most dominant: moreover, many experimental reports deliver controversial messages on what is the concrete mechanism actually observed in the experiment. Nissan and Parker have recently demonstrated that it might be impossible to distinguish alternative biological hypotheses using the steady state data on the rate of protein synthesis. For their analysis they used two simple kinetic models of protein translation. In contrary to the study by Nissan and Parker, we show that dynamical data allow discriminating some of the mechanisms of microRNA action. We demonstrate this using the same models as developed by Nissan and Parker for the sake of comparison but the methods developed (asymptotology of biochemical networks) can be used for other models. We formulate a hypothesis that the effect of microRNA action is measurable and observable only if it affects the dominant system (generalization of the limiting step notion for complex networks) of the protein translation machinery. The dominant system can vary in different experimental conditions that can partially explain the existing controversy of some of the experimental data. Our analysis of the transient protein translation dynamics shows that it gives enough information to verify or reject a hypothesis about a particular molecular mechanism of microRNA action on protein translation. For multiscale systems only that action of microRNA is distinguishable which affects the parameters of dominant system (critical parameters), or changes the dominant system itself. Dominant systems generalize and further develop the old and very popular idea of limiting step. Algorithms for identifying dominant systems in multiscale

  1. Dynamical modeling of microRNA action on the protein translation process

    Directory of Open Access Journals (Sweden)

    Barillot Emmanuel

    2010-02-01

    Full Text Available Abstract Background Protein translation is a multistep process which can be represented as a cascade of biochemical reactions (initiation, ribosome assembly, elongation, etc., the rate of which can be regulated by small non-coding microRNAs through multiple mechanisms. It remains unclear what mechanisms of microRNA action are the most dominant: moreover, many experimental reports deliver controversial messages on what is the concrete mechanism actually observed in the experiment. Nissan and Parker have recently demonstrated that it might be impossible to distinguish alternative biological hypotheses using the steady state data on the rate of protein synthesis. For their analysis they used two simple kinetic models of protein translation. Results In contrary to the study by Nissan and Parker, we show that dynamical data allow discriminating some of the mechanisms of microRNA action. We demonstrate this using the same models as developed by Nissan and Parker for the sake of comparison but the methods developed (asymptotology of biochemical networks can be used for other models. We formulate a hypothesis that the effect of microRNA action is measurable and observable only if it affects the dominant system (generalization of the limiting step notion for complex networks of the protein translation machinery. The dominant system can vary in different experimental conditions that can partially explain the existing controversy of some of the experimental data. Conclusions Our analysis of the transient protein translation dynamics shows that it gives enough information to verify or reject a hypothesis about a particular molecular mechanism of microRNA action on protein translation. For multiscale systems only that action of microRNA is distinguishable which affects the parameters of dominant system (critical parameters, or changes the dominant system itself. Dominant systems generalize and further develop the old and very popular idea of limiting step

  2. MESSENGER MERCURY RSS/MLA LEVEL 5 DERIVED DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains archival results from radio science investigations conducted during the MESSENGER mission. Radio measurements were made using the MESSENGER...

  3. Crystal Structure of the HEAT Domain from the Pre-mRNA Processing Factor Symplekin

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Sarah A.; Frazier, Monica L.; Steiniger, Mindy; Mast, Ann M.; Marzluff, William F.; Redinbo, Matthew R.; (UNC)

    2010-09-30

    The majority of eukaryotic pre-mRNAs are processed by 3'-end cleavage and polyadenylation, although in metazoa the replication-dependent histone mRNAs are processed by 3'-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the {approx} 1160-residue protein Symplekin. Secondary-structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 {angstrom} resolution with single-wavelength anomalous dispersion phasing methods. The structure exhibits five canonical HEAT repeats along with an extended 31-amino-acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3'-end processing. Together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process.

  4. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Il Lae Jung

    Full Text Available MicroRNAs (miRNAs are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  5. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    Science.gov (United States)

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Ambient pollutants, polymorphisms associated with microRNA processing and adhesion molecules: the Normative Aging Study

    Directory of Open Access Journals (Sweden)

    Vokonas Pantel S

    2011-05-01

    Full Text Available Abstract Background Particulate air pollution has been associated with cardiovascular morbidity and mortality, but it remains unclear which time windows and pollutant sources are most critical. MicroRNA (miRNA is thought to be involved in cardiovascular regulation. However, little is known about whether polymorphisms in genes that process microRNAs influence response to pollutant exposure. We hypothesized that averaging times longer than routinely measured one or two day moving averages are associated with higher soluble intercellular adhesion molecule-1 (sICAM-1 and vascular cell adhesion molecule-1 (sVCAM-1 levels, and that stationary and mobile sources contribute differently to these effects. We also investigated whether single nucleotide polymorphisms (SNPs in miRNA-processing genes modify these associations. Methods sICAM-1 and sVCAM-1 were measured from 1999-2008 and matched to air pollution monitoring for fine particulate matter (PM2.5 black carbon, and sulfates (SO42-. We selected 17 SNPs in five miRNA-processing genes. Mixed-effects models were used to assess effects of pollutants, SNPs, and interactions under recessive inheritance models using repeated measures. Results 723 participants with 1652 observations and 1-5 visits were included in our analyses for black carbon and PM2.5. Sulfate data was available for 672 participants with 1390 observations. An interquartile range change in seven day moving average of PM2.5 (4.27 μg/m3 was associated with 3.1% (95%CI: 1.6, 4.6 and 2.5% (95%CI: 0.6, 4.5 higher sICAM-1 and sVCAM-1. Interquartile range changes in sulfates (1.39 μg/m3 were associated with 1.4% higher (95%CI: 0.04, 2.7 and 1.6% (95%CI: -0.4, 3.7 higher sICAM-1 and sVCAM-1 respectively. No significant associations were observed for black carbon. In interaction models with PM2.5, both sICAM-1 and sVCAM-1 levels were lower in rs1062923 homozygous carriers. These interactions remained significant after multiple comparisons

  7. Messenger Observations of Mercury's Bow Shock and Magnetopause

    Science.gov (United States)

    Slavin J. A.; Acuna, M. H.; Anderson, B. J.; Benna, M.; Gloeckler, G.; Krimigis, S. M.; Raines, M.; Schriver, D.; Travnicek, P.; Zurbuchen, T. H.

    2008-01-01

    The MESSENGER spacecraft made the first of three flybys of Mercury on January 14.2008 (1). New observations of solar wind interaction with Mercury were made with MESSENGER'S Magnetometer (MAG) (2.3) and Energetic Particle and Plasma Spectrometer (EPPS) - composed of the Energetic Particle Spectrometer (EPS) and Fast Imaging Plasma Spectrometer (FIPS) (3,4). These MESSENGER observations show that Mercury's magnetosphere has a large-scale structure that is distinctly Earth-like, but it is immersed in a comet-like cloud of planetary ions [5]. Fig. 1 provides a schematic view of the coupled solar wind - magnetosphere - neutral atmosphere - solid planet system at Mercury.

  8. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne

    2007-01-01

    connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database...... and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster......: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture...

  9. Noise processing by microRNA-mediated circuits: The Incoherent Feed-Forward Loop, revisited

    Directory of Open Access Journals (Sweden)

    Silvia Grigolon

    2016-04-01

    Full Text Available The intrinsic stochasticity of gene expression is usually mitigated in higher eukaryotes by post-transcriptional regulation channels that stabilise the output layer, most notably protein levels. The discovery of small non-coding RNAs (miRNAs in specific motifs of the genetic regulatory network has led to identifying noise buffering as the possible key function they exert in regulation. Recent in vitro and in silico studies have corroborated this hypothesis. It is however also known that miRNA-mediated noise reduction is hampered by transcriptional bursting in simple topologies. Here, using stochastic simulations validated by analytical calculations based on van Kampen's expansion, we revisit the noise-buffering capacity of the miRNA-mediated Incoherent Feed Forward Loop (IFFL, a small module that is widespread in the gene regulatory networks of higher eukaryotes, in order to account for the effects of intermittency in the transcriptional activity of the modulator gene. We show that bursting considerably alters the circuit's ability to control static protein noise. By comparing with other regulatory architectures, we find that direct transcriptional regulation significantly outperforms the IFFL in a broad range of kinetic parameters. This suggests that, under pulsatile inputs, static noise reduction may be less important than dynamical aspects of noise and information processing in characterising the performance of regulatory elements.

  10. Hypothesis: A Role for Fragile X Mental Retardation Protein in Mediating and Relieving MicroRNA-Guided Translational Repression?

    Directory of Open Access Journals (Sweden)

    Isabelle Plante

    2006-01-01

    Full Text Available MicroRNA (miRNA-guided messenger RNA (mRNA translational repression is believed to be mediated by effector miRNA-containing ribonucleoprotein (miRNP complexes harboring fragile X mental retardation protein (FMRP. Recent studies documented the nucleic acid chaperone properties of FMRP and characterized its role and importance in RNA silencing in mammalian cells. We propose a model in which FMRP could facilitate miRNA assembly on target mRNAs in a process involving recognition of G quartet structures. Functioning within a duplex miRNP, FMRP may also mediate mRNA targeting through a strand exchange mechanism, in which the miRNA* of the duplex is swapped for the mRNA. Furthermore, FMRP may contribute to the relief of miRNA-guided mRNA repression through a reverse strand exchange reaction, possibly initiated by a specific cellular signal, that would liberate the mRNA for translation. Suboptimal utilization of miRNAs may thus account for some of themolecular defects in patients with the fragile X syndrome.

  11. Nuclease-resistant c-di-AMP derivatives that differentially recognize RNA and protein receptors

    Science.gov (United States)

    Meehan, Robert E.; Torgerson, Chad D.; Gaffney, Barbara L.; Jones, Roger A.; Strobel, Scott A.

    2016-01-01

    The ability of bacteria to sense environmental cues and adapt is essential for their survival. The use of second-messenger signaling molecules to translate these cues into a physiological response is a common mechanism employed by bacteria. The second messenger 3’-5’-cyclic diadenosine monophosphate (c-di-AMP) has been linked to a diverse set of biological processes involved in maintaining cell viability and homeostasis, as well as pathogenicity. A complex network of both protein and RNA receptors inside the cell activate specific pathways and mediate phenotypic outputs in response to c-di-AMP. Structural analysis of these RNA and protein receptors has revealed the different recognition elements employed by these effectors to bind the same small molecule. Herein, using a series of c-di-AMP analogs, we probed the interactions made with a riboswitch and a phosphodiesterase protein to identify the features important for c-di-AMP binding and recognition. We found that the ydaO riboswitch binds c-di-AMP in two discrete sites with near identical affinity and a Hill coefficient of 1.6. The ydaO riboswitch distinguishes between c-di-AMP and structurally related second messengers by discriminating against an amine at the C2 position, more than a carbonyl at the C6 position. We also identified phosphate-modified analogs that bind both the ydaO RNA and GdpP protein with high affinity, while symmetrically-modified ribose analogs exhibited a substantial decrease in ydaO affinity, but retained high affinity for GdpP. These ligand modifications resulted in increased resistance to enzyme-catalyzed hydrolysis by the GdpP enzyme. Together, these data suggest that these c-di-AMP analogs could be useful as chemical tools to specifically target subsections of the second-messenger signaling pathways. PMID:26789423

  12. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    Science.gov (United States)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  13. The Crust of Mercury After the MESSENGER Gravity Investigation

    Science.gov (United States)

    Mazarico, E.; Genova, A.; Goossens, S.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2018-05-01

    We present the results of an improved analysis of the entire MESSENGER radio tracking dataset to derive key geophysical parameters of Mercury such as its gravity field. In particular, we derive and interpret a new crustal thickness model.

  14. Planetary Ions at Mercury: Unanswered Questions After MESSENGER

    Science.gov (United States)

    Raines, J. M.

    2018-05-01

    We will discuss the key open questions relating to planetary ions, including the behavior of recently created photoions, the near absence of Ca+ / K+ in MESSENGER ion measurements, and the role of ion sputtering in the system.

  15. Cosmic Microwave Background Mapmaking with a Messenger Field

    Science.gov (United States)

    Huffenberger, Kevin M.; Næss, Sigurd K.

    2018-01-01

    We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those from a conjugate gradient descent algorithm with a diagonal preconditioner, even though the computational cost per iteration is similar. The messenger method recovers large scales in the map better than conjugate gradient descent, and yields a lower overall χ2. In the single, pencil beam approximation, each iteration of the messenger mapmaking procedure produces an unbiased map, and the iterations become more optimal as they proceed. A variant of the method can handle differential data or perform deconvolution mapmaking. The messenger method requires no preconditioner, but a high-quality solution needs a cooling parameter to control the convergence. We study the convergence properties of this new method and discuss how the algorithm is feasible for the large data sets of current and future CMB experiments.

  16. Changes in insulin-like growth factor-binding protein-3 messenger ribonucleic acid in endothelial cells of the human corpus luteum: a possible role in luteal development and rescue.

    Science.gov (United States)

    Fraser, H M; Lunn, S F; Kim, H; Duncan, W C; Rodger, F E; Illingworth, P J; Erickson, G F

    2000-04-01

    In the human menstrual cycle, extensive angiogenesis accompanies luteinization; and the process is physiologically important for corpus luteum (CL) function. During luteolysis, the vasculature collapses, and the endothelial cells die. In a conceptual cycle, the CL persists both functionally and structurally beyond the luteoplacental shift. Although luteal rescue is not associated with increased angiogenesis, endothelial survival is extended. Despite the central role of the luteal vasculature in fertility, the mechanisms regulating its development and demise are poorly understood. There is increasing evidence that insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) may be important effectors of luteal function. Here, we have found that IGFBP-3 messenger RNA is expressed in the endothelium of the human CL and that the levels of message change during luteal development and rescue by human CG. The signal was strong during the early luteal phase, but it showed significant reduction during the mid- and late luteal phases. Interestingly, administration of human CG caused a marked increase in the levels of IGFBP-3 messenger RNA in luteal endothelial cells that was comparable to that observed during the early luteal phase. We conclude that endothelial cell IGFBP-3 expression is a physiological property of the CL of menstruation and pregnancy. These observations raise the intriguing possibility that the regulated expression of endothelial IGFBP-3 may play a role in controlling angiogenesis and cell responses in the human CL by autocrine/paracrine mechanisms.

  17. The TAL effector PthA4 interacts with nuclear factors involved in RNA-dependent processes including a HMG protein that selectively binds poly(U RNA.

    Directory of Open Access Journals (Sweden)

    Tiago Antonio de Souza

    Full Text Available Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC, a translin-associated factor X (CsTRAX, a VirE2-interacting protein (CsVIP2, a high mobility group (CsHMG and two poly(A-binding proteins (CsPABP1 and 2, interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control.

  18. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Science.gov (United States)

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  19. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Directory of Open Access Journals (Sweden)

    Sha Lu

    Full Text Available In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  20. Star Messenger: Galileo at the Millennium

    Science.gov (United States)

    White, R. E.

    1999-05-01

    Smith College has recently established the Louise B. and Edmund J. Kahn Liberal Arts Institute to foster interdisciplinary scholarship among the faculty. In the 1999-2000 academic year, the Kahn Institute is sponsoring a project entitled "Star Messenger: Galileo at the Millennium." The project will explore the impact of the astronomical discoveries of Galileo and his contemporaries on the Renaissance world-view and also use Galileo's experience as a lens for examining scientific and cultural developments at the symbolic juncture represented by the year 2000. Seven faculty fellows and 10-12 student fellows will participate in a year-long colloquium pursuing these themes, aided by the participation of some five Visiting Fellows. The inaugural public event will be a symposium on the historical Galileo, with presentation by three noted scholars, each of whom will return to campus for a second meeting with the Kahn colloquium. Additional events will include an exhibit of prints, artifacts, and rare books related to Galileo and his time, an early music concert featuring music composed by Galileo's father, and a series of other events sponsored by diverse departments and programs, all related to the broad themes of the Galileo project. The culminating events will be the premiere of a new music theater work, which will encapsulate the insights of the colloquium about human reactions to novel insights about the world, and a symposium presenting the research results of faculty and student fellows. The symposium will feature a capstone lecture by an visionary scholar projecting the implication of historical and contemporary trends into the future.

  1. HIGH-RESOLUTION TOPOGRAPHY OF MERCURY FROM MESSENGER ORBITAL STEREO IMAGING – THE SOUTHERN HEMISPHERE QUADRANGLES

    Directory of Open Access Journals (Sweden)

    F. Preusker

    2018-04-01

    Full Text Available We produce high-resolution (222 m/grid element Digital Terrain Models (DTMs for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.

  2. Structural insights into RNA processing by the human RISC-loading complex.

    Science.gov (United States)

    Wang, Hong-Wei; Noland, Cameron; Siridechadilok, Bunpote; Taylor, David W; Ma, Enbo; Felderer, Karin; Doudna, Jennifer A; Nogales, Eva

    2009-11-01

    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.

  3. The effect of radiation on processing of nuclear RNA and chromatin ribonuclease activity in rat liver and thymus

    International Nuclear Information System (INIS)

    Tokarskaya, V.I.; Skotnikova, O.I.; Umansky, S.R.

    1975-01-01

    The effect of radiation on the kinetics of nuclear RNA degradation was studied during actinomycin chase. The intranuclear breakdown of RNA in thymus was inhibited for the first 30 to 120 min after 800 R irradiation of rats. In liver the degradation of nuclear RNA was unchanged for 60 min after irradiation. By the second hour, the breakdown of the rRNA precursor accelerated and the processing of D-RNA slowed down. Rat thymus and liver chromatin showed RNAase activity with two optimal pH values - in the acidic (pH 5.0 to 5.5) and weakly alkaline (pH 7.5) regions. The activity of the acidic RNAase of thymus (but not the liver) chromatin fell after 5 to 20 kR irradiation in vitro. The activity of the alkaline RNAase did not change under these conditions. The data indicate that a fall in activity of the acidic RNAase in irradiated thymus chromatin may be related to disturbance in the enzyme-inhibitor interaction. A possible contribution of the chromatin acidic RNAase to the processing of nuclear RNA in control and after irradiation is discussed. (author)

  4. Inhibition of post-transcriptional RNA processing by CDK inhibitors and its implication in anti-viral therapy.

    Directory of Open Access Journals (Sweden)

    Jitka Holcakova

    processing of mRNA expressed from extrachromosomal DNA.

  5. Navigating the MESSENGER Spacecraft through End of Mission

    Science.gov (United States)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and

  6. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing.

    Science.gov (United States)

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-06-15

    Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5'-end processing and 3'-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA004502. yasu@bio.keio.ac.jp Supplementary data are available

  7. Global Distribution of Mercury's Neutrals from MESSENGER Measurements Combined with a Tomographic Method

    Science.gov (United States)

    Sarantos, Menelaos; McClintock, Bill; Vervack, Ron, Jr.; Killen, Rosemary; Merkel, Aimee; Slavin, James; Solomon, Sean C.

    2011-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UVVS) onboard this spacecraft has been observing Mercury's collisionless exosphere. We present measurements by MESSENGER UVVS of the sodium, calcium, and magnesium distributions that were obtained during multiple passes through the tail over a period of one month. Global maps of the exosphere were constructed daily from such measurements using a recently developed tomographic technique. During this period, Mercury moved towards the Sun from being about 0.44 astronomical units (AU) to approximately 0.32 AU from the Sun. Hence, our reconstructions provide information about the three-dimensional structure of the exosphere, the source processes for these species, and their dependence with orbital distance during the entire in-leg of Mercury's orbit.

  8. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    Science.gov (United States)

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  9. MESSENGER observations of Mercury's exosphere: detection of magnesium and distribution of constituents.

    Science.gov (United States)

    McClintock, William E; Vervack, Ronald J; Bradley, E Todd; Killen, Rosemary M; Mouawad, Nelly; Sprague, Ann L; Burger, Matthew H; Solomon, Sean C; Izenberg, Noam R

    2009-05-01

    Mercury is surrounded by a tenuous exosphere that is supplied primarily by the planet's surface materials and is known to contain sodium, potassium, and calcium. Observations by the Mercury Atmospheric and Surface Composition Spectrometer during MESSENGER's second Mercury flyby revealed the presence of neutral magnesium in the tail (anti-sunward) region of the exosphere, as well as differing spatial distributions of magnesium, calcium, and sodium atoms in both the tail and the nightside, near-planet exosphere. Analysis of these observations, supplemented by observations during the first Mercury flyby, as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  10. WhatsApp Messenger as an Adjunctive Tool for Telemedicine: An Overview.

    Science.gov (United States)

    Giordano, Vincenzo; Koch, Hilton; Godoy-Santos, Alexandre; Dias Belangero, William; Esteves Santos Pires, Robinson; Labronici, Pedro

    2017-07-21

    to professionals or to the general population. However, high-quality and properly evaluated research is needed, as are improvements in descriptions of the methodology and the study processes. These improvements will allow WhatsApp Messenger to be categorically defined as an effective telemedicine tool in many different fields of health care. ©Vincenzo Giordano, Hilton Koch, Alexandre Godoy-Santos, William Dias Belangero, Robinson Esteves Santos Pires, Pedro Labronici. Originally published in the Interactive Journal of Medical Research (http://www.i-jmr.org/), 21.07.2017.

  11. Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes

    KAUST Repository

    Zhu, Lizhe

    2016-10-05

    At the core of RNA interference, the Argonaute proteins (Ago) load and utilize small guide nucleic acids to silence mRNAs or cleave foreign nucleic acids in a sequence specific manner. In recent years, based on extensive structural studies of Ago and its interaction with the nucleic acids, considerable progress has been made to reveal the dynamic aspects of various Ago-mediated processes. Here we review these novel insights into the guide-strand loading, duplex unwinding, and effects of seed mismatch, with a focus on two representative Agos, the human Ago 2 (hAgo2) and the bacterial Thermus thermophilus Ago (TtAgo). In particular, comprehensive molecular simulation studies revealed that although sharing similar overall structures, the two Agos have vastly different conformational landscapes and guide-strand loading mechanisms because of the distinct rigidity of their L1-PAZ hinge. Given the central role of the PAZ motions in regulating the exposure of the nucleic acid binding channel, these findings exemplify the importance of protein motions in distinguishing the overlapping, yet distinct, mechanisms of Ago-mediated processes in different organisms.

  12. RNA search engines empower the bacterial intranet.

    Science.gov (United States)

    Dendooven, Tom; Luisi, Ben F

    2017-08-15

    RNA acts not only as an information bearer in the biogenesis of proteins from genes, but also as a regulator that participates in the control of gene expression. In bacteria, small RNA molecules (sRNAs) play controlling roles in numerous processes and help to orchestrate complex regulatory networks. Such processes include cell growth and development, response to stress and metabolic change, transcription termination, cell-to-cell communication, and the launching of programmes for host invasion. All these processes require recognition of target messenger RNAs by the sRNAs. This review summarizes recent results that have provided insights into how bacterial sRNAs are recruited into effector ribonucleoprotein complexes that can seek out and act upon target transcripts. The results hint at how sRNAs and their protein partners act as pattern-matching search engines that efficaciously regulate gene expression, by performing with specificity and speed while avoiding off-target effects. The requirements for efficient searches of RNA patterns appear to be common to all domains of life. © 2017 The Author(s).

  13. Alternative RNA splicing and cancer

    Science.gov (United States)

    Liu, Sali; Cheng, Chonghui

    2015-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells. PMID:23765697

  14. Internet messenger based smart virtual class learning using ubiquitous computing

    Science.gov (United States)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-06-01

    Internet messenger (IM) has become an important educational technology component in college education, IM makes it possible for students to engage in learning and collaborating at smart virtual class learning (SVCL) using ubiquitous computing. However, the model of IM-based smart virtual class learning using ubiquitous computing and empirical evidence that would favor a broad application to improve engagement and behavior are still limited. In addition, the expectation that IM based SVCL using ubiquitous computing could improve engagement and behavior on smart class cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present the model of IM-based SVCL using ubiquitous computing and showing learners’ experiences in improved engagement and behavior for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous computing and realize the impressions of learners and lecturers about engagement and behavior aspect and its contribution to learning

  15. Inactivation of a single copy of Crebbp selectively alters pre-mRNA processing in mouse hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Madeleine E Lemieux

    Full Text Available Global expression analysis of fetal liver hematopoietic stem cells (FL HSCs revealed the presence of unspliced pre-mRNA for a number of genes in normal FL HSCs. In a subset of these genes, Crebbp+/- FL HSCs had less unprocessed pre-mRNA without a corresponding reduction in total mRNA levels. Among the genes thus identified were the key regulators of HSC function Itga4, Msi2 and Tcf4. A similar but much weaker effect was apparent in Ep300+/- FL HSCs, indicating that, in this context as in others, the two paralogs are not interchangeable. As a group, the down-regulated intronic probe sets could discriminate adult HSCs from more mature cell types, suggesting that the underlying mechanism is regulated with differentiation stage and is active in both fetal and adult hematopoiesis. Consistent with increased myelopoiesis in Crebbp hemizygous mice, targeted reduction of CREBBP abundance by shRNA in the multipotent EML cell line triggered spontaneous myeloid differentiation in the absence of the normally required inductive signals. In addition, differences in protein levels between phenotypically distinct EML subpopulations were better predicted by taking into account not only the total mRNA signal but also the amount of unspliced message present. CREBBP thus appears to selectively influence the timing and degree of pre-mRNA processing of genes essential for HSC regulation and thereby has the potential to alter subsequent cell fate decisions in HSCs.

  16. Limits to Mercury's Magnesium Exosphere from MESSENGER Second Flyby Observations

    Science.gov (United States)

    Sarantos, Menelaos; Killen, Rosemary M.; McClintock, William E.; Bradley, E. Todd; Vervack, Ronald J., Jr.; Benna, Mehdi; Slavin, James A.

    2011-01-01

    The discovery measurements of Mercury's exospheric magnesium, obtained by the MErcury Surface. Space ENvironment, GEochemistry. and Ranging (MESSENGER) probe during its second Mercury flyby, are modeled to constrain the source and loss processes for this neutral species. Fits to a Chamberlain exosphere reveal that at least two source temperatures are required to reconcile the distribution of magnesium measured far from and near the planet: a hot ejection process at the equivalent temperature of several tens of thousands of degrees K, and a competing, cooler source at temperatures as low as 400 K. For the energetic component, our models indicate that the column abundance that can be attributed to sputtering under constant southward interplanetary magnetic field (IMF) conditions is at least a factor of five less than the rate dictated by the measurements, Although highly uncertain, this result suggests that another energetic process, such as the rapid dissociation of exospheric MgO, may be the main source of the distant neutral component. If meteoroid and micrometeoroid impacts eject mainly molecules, the total amount of magnesium at altitudes exceeding approximately 100 km is found to be consistent with predictions by impact vaporization models for molecule lifetimes of no more than two minutes. Though a sharp increase in emission observed near the dawn terminator region can be reproduced if a single meteoroid enhanced the impact vapor at equatorial dawn, it is much more likely that observations in this region, which probe heights increasingly near the surface, indicate a reservoir of volatile Mg being acted upon by lower-energy source processes.

  17. The human nucleolar protein FTSJ3 associates with NIP7 and functions in pre-rRNA processing.

    Directory of Open Access Journals (Sweden)

    Luis G Morello

    Full Text Available NIP7 is one of the many trans-acting factors required for eukaryotic ribosome biogenesis, which interacts with nascent pre-ribosomal particles and dissociates as they complete maturation and are exported to the cytoplasm. By using conditional knockdown, we have shown previously that yeast Nip7p is required primarily for 60S subunit synthesis while human NIP7 is involved in the biogenesis of 40S subunit. This raised the possibility that human NIP7 interacts with a different set of proteins as compared to the yeast protein. By using the yeast two-hybrid system we identified FTSJ3, a putative ortholog of yeast Spb1p, as a human NIP7-interacting protein. A functional association between NIP7 and FTSJ3 is further supported by colocalization and coimmunoprecipitation analyses. Conditional knockdown revealed that depletion of FTSJ3 affects cell proliferation and causes pre-rRNA processing defects. The major pre-rRNA processing defect involves accumulation of the 34S pre-rRNA encompassing from site A' to site 2b. Accumulation of this pre-rRNA indicates that processing of sites A0, 1 and 2 are slower in cells depleted of FTSJ3 and implicates FTSJ3 in the pathway leading to 18S rRNA maturation as observed previously for NIP7. The results presented in this work indicate a close functional interaction between NIP7 and FTSJ3 during pre-rRNA processing and show that FTSJ3 participates in ribosome synthesis in human cells.

  18. Shark IgW C region diversification through RNA processing and isotype switching.

    Science.gov (United States)

    Zhang, Cecilia; Du Pasquier, Louis; Hsu, Ellen

    2013-09-15

    Sharks and skates represent the earliest vertebrates with an adaptive immune system based on lymphocyte Ag receptors generated by V(D)J recombination. Shark B cells express two classical Igs, IgM and IgW, encoded by an early, alternative gene organization consisting of numerous autonomous miniloci, where the individual gene cluster carries a few rearranging gene segments and one C region, μ or ω. We have characterized eight distinct Ig miniloci encoding the nurse shark ω H chain. Each cluster consists of VH, D, and JH segments and six to eight C domain exons. Two interspersed secretory exons, in addition to the 3'-most C exon with tailpiece, provide the gene cluster with the ability to generate at least six secreted isoforms that differ as to polypeptide length and C domain combination. All clusters appear to be functional, as judged by the capability for rearrangement and absence of defects in the deduced amino acid sequence. We previously showed that IgW VDJ can perform isotype switching to μ C regions; in this study, we found that switching also occurs between ω clusters. Thus, C region diversification for any IgW VDJ can take place at the DNA level by switching to other ω or μ C regions, as well as by RNA processing to generate different C isoforms. The wide array of pathogens recognized by Abs requires different disposal pathways, and our findings demonstrate complex and unique pathways for C effector function diversity that evolved independently in cartilaginous fishes.

  19. Genome-wide mRNA processing in methanogenic archaea reveals post-transcriptional regulation of ribosomal protein synthesis.

    Science.gov (United States)

    Qi, Lei; Yue, Lei; Feng, Deqin; Qi, Fengxia; Li, Jie; Dong, Xiuzhu

    2017-07-07

    Unlike stable RNAs that require processing for maturation, prokaryotic cellular mRNAs generally follow an 'all-or-none' pattern. Herein, we used a 5΄ monophosphate transcript sequencing (5΄P-seq) that specifically captured the 5΄-end of processed transcripts and mapped the genome-wide RNA processing sites (PSSs) in a methanogenic archaeon. Following statistical analysis and stringent filtration, we identified 1429 PSSs, among which 23.5% and 5.4% were located in 5΄ untranslated region (uPSS) and intergenic region (iPSS), respectively. A predominant uridine downstream PSSs served as a processing signature. Remarkably, 5΄P-seq detected overrepresented uPSS and iPSS in the polycistronic operons encoding ribosomal proteins, and the majority upstream and proximal ribosome binding sites, suggesting a regulatory role of processing on translation initiation. The processed transcripts showed increased stability and translation efficiency. Particularly, processing within the tricistronic transcript of rplA-rplJ-rplL enhanced the translation of rplL, which can provide a driving force for the 1:4 stoichiometry of L10 to L12 in the ribosome. Growth-associated mRNA processing intensities were also correlated with the cellular ribosomal protein levels, thereby suggesting that mRNA processing is involved in tuning growth-dependent ribosome synthesis. In conclusion, our findings suggest that mRNA processing-mediated post-transcriptional regulation is a potential mechanism of ribosomal protein synthesis and stoichiometry. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Expression of genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Sharma, Haveesh; Estep, Michael; Birerdinc, Aybike; Afendy, Arian; Moazzez, Amir; Elariny, Hazem; Goodman, Zachary; Chandhoke, Vikas; Baranova, Ancha; Younossi, Zobair M

    2013-08-01

    Recently, microRNAs (miRNA) have been linked to the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and its progression to non-alcoholic steatohepatitis (NASH). First transcribed as pri-miRNA, these molecules are further processed by a complex of endonuclear and cytosolic RNA binding molecules to form mature miRNAs. The aim of this study is to investigate mechanisms of miRNA regulation in the visceral adipose of obese NAFLD patients via measuring expression of miRNA processing enzymes and pri-miRNA. Total RNAs were extracted from visceral adipose tissue (VAT) samples collected from patients undergoing bariatric surgery. All patients had biopsy-proven NAFLD (NASH patients [n = 12] and non-NASH NAFLD [n = 12]). For each patient, we profiled mRNA levels for three miRNA processing elements (Drosha, DGCR8, and Dicer1) and seven pri-miRNAs (pri-miR-125b-2, pri-miR-16-2, pri-miR-26a-1, pri-miR-26a-2, pri-miR-7-1, pri-miR-7-2, and pri-miR-7-3). Expression of Dicer1, Drosha and DGCR8 was significantly increased within the NASH cohort along with expression of pri-miR-7-1. The presence of focal necrosis on the liver biopsy correlated significantly with levels of Dicer1 and DGRC8. Both NASH and ballooning degeneration of hepatocytes correlated negatively with the expression levels of hsa-miR-125b. Histologic NASH correlated positively with the expression levels of pri-miR-16-2 and pri-miR-7-1. The presence of the hepatocyte's ballooning degeneration in the liver biopsy correlated positively with pri-miR-26a-1 and pri-miR-7-1. The expression profile of pri-miR-125b-2 also correlated positively with body mass index. Our findings support the hypothesis that VAT-derived miRNA may contribute to the pathogenesis of NASH in obese patients. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  1. Effects of the foliar-applied protein "Harpin(Ea)" (messenger) on tomatoes infected with Phytophthora infestans.

    Science.gov (United States)

    Fontanilla, M; Montes, M; De Prado, R

    2005-01-01

    The active ingredient in Messenger, is Harpin(Ea), a naturally occurring protein derived from Erwinia amylovora, a causal agent of fire blight. When Messenger is applied to a plant, the protein Harpin(Ea) binds foliar receptors to it. The receptors recognize the presence of Harpin(Ea), sending a signal that a pathogen is present, actually "tricking" the plant into thinking that it is under attack. This binding process triggers a cascade of responses affecting a global change of gene expressions, stimulating several distinct biochemical pathways within the plant responsible for growth and disease and insect resistance. The objective of this work is to characterize the development of an induced resistance against Phytophthora infestans. No effective treatment is currently available against this pathogenic agent, which causes the loss of complete harvests of different crops. Tomato plants with and without Messenger applications were inoculated with Phytophthora infestans in the same way. In addition, some plants with and without Messenger applications were not inoculated. Inoculated plants were symptomatologically checked for local and systemic symptoms. Evaluations of the number of tomatoes produced, with or without damage, and their growth, were also carried out. Based on the data obtained from the assays, significant changes were observed in the parameters measured due to Messenger treatment. The severe damage of this disease was reduced in the plants which received Messenger applications. These results open up new pathways in the control of diseases like Phytophthora infestans, in which effective means to combat them still do not exist, or these means are harmful to the environment.

  2. Production and processing of siRNA precursor transcripts from the highly repetitive maize genome.

    Directory of Open Access Journals (Sweden)

    Christopher J Hale

    2009-08-01

    Full Text Available Mutations affecting the maintenance of heritable epigenetic states in maize identify multiple RNA-directed DNA methylation (RdDM factors including RMR1, a novel member of a plant-specific clade of Snf2-related proteins. Here we show that RMR1 is necessary for the accumulation of a majority of 24 nt small RNAs, including those derived from Long-Terminal Repeat (LTR retrotransposons, the most common repetitive feature in the maize genome. A genetic analysis of DNA transposon repression indicates that RMR1 acts upstream of the RNA-dependent RNA polymerase, RDR2 (MOP1. Surprisingly, we show that non-polyadenylated transcripts from a sampling of LTR retrotransposons are lost in both rmr1 and rdr2 mutants. In contrast, plants deficient for RNA Polymerase IV (Pol IV function show an increase in polyadenylated LTR RNA transcripts. These findings support a model in which Pol IV functions independently of the small RNA accumulation facilitated by RMR1 and RDR2 and support that a loss of Pol IV leads to RNA Polymerase II-based transcription. Additionally, the lack of changes in general genome homeostasis in rmr1 mutants, despite the global loss of 24 nt small RNAs, challenges the perceived roles of siRNAs in maintaining functional heterochromatin in the genomes of outcrossing grass species.

  3. RNA-Based Vaccines in Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Megan A. McNamara

    2015-01-01

    Full Text Available RNA vaccines traditionally consist of messenger RNA synthesized by in vitro transcription using a bacteriophage RNA polymerase and template DNA that encodes the antigen(s of interest. Once administered and internalized by host cells, the mRNA transcripts are translated directly in the cytoplasm and then the resulting antigens are presented to antigen presenting cells to stimulate an immune response. Alternatively, dendritic cells can be loaded with either tumor associated antigen mRNA or total tumor RNA and delivered to the host to elicit a specific immune response. In this review, we will explain why RNA vaccines represent an attractive platform for cancer immunotherapy, discuss modifications to RNA structure that have been developed to optimize mRNA vaccine stability and translational efficiency, and describe strategies for nonviral delivery of mRNA vaccines, highlighting key preclinical and clinical data related to cancer immunotherapy.

  4. Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a

    NARCIS (Netherlands)

    Swarts, Daan C.; Oost, van der John; Jinek, Martin

    2017-01-01

    The CRISPR-associated protein Cas12a (Cpf1), which has been repurposed for genome editing, possesses two distinct nuclease activities: endoribonuclease activity for processing its own guide RNAs and RNA-guided DNase activity for target DNA cleavage. To elucidate the molecular basis of both

  5. Dissection of the couplings between cellular messengers and the circadian clock

    International Nuclear Information System (INIS)

    Tong Jian; Edmunds, L.N.

    1995-12-01

    It has been known in recent years that living cells can exhibit circadian rhythms in totally different physiological processes. Intracellular messengers were demonstrated to mediate the entrained pathways linking rhythmic components between circadian clock and its output signalling. Levels of cyclic AMP and cyclic GMP in synchronized cells, and activities of the two key enzymes (AC and PDE) responsible for the cyclic AMP metabolism were measured by applying the isotopic techniques. Bimodal circadian oscillations of the messenger levels and the enzyme activities were disclosed in LD: 12, 12 cycle and constant darkness, as well as in the dividing and non-dividing cultures of the Euglena ZC mutant. Interference experiments with the enzyme activator and inhibitor such as forskolin, 8-Br-cGMP and LY 83583, and analysis of the cell division cycle (CDC) and coupling messengers suggested that the peak pulse of cyclic AMP, circadian oscillation of the AC-cAMP-PDE system and phase-dependent regulation by cyclic GMP might be important coupling factors in downstream mediation between the circadian clock and the CDC. (7 figs.)

  6. Generalized messengers of supersymmetry breaking and the sparticle mass spectrum

    International Nuclear Information System (INIS)

    Martin, S.P.

    1997-01-01

    We investigate the sparticle spectrum in models of gauge-mediated supersymmetry breaking. In these models, supersymmetry is spontaneously broken at an energy scale only a few orders of magnitude above the electroweak scale. The breakdown of supersymmetry is communicated to the standard model particles and their superpartners by open-quotes messengerclose quotes fields through their ordinary gauge interactions. We study the effects of a messenger sector in which the supersymmetry-violating F-term contributions to messenger scalar masses are comparable to the supersymmetry-preserving ones. We also argue that it is not particularly natural to restrict attention to models in which the messenger fields lie in complete SU(5) ground unified theory multiplets, and we identify a much larger class of viable models. Remarkably, however, we find that the superpartner mass parameters in these models are still subject to many significant contraints. copyright 1997 The American Physical Society

  7. The SmpB C-terminal tail helps tmRNA to recognize and enter stalled ribosomes

    Directory of Open Access Journals (Sweden)

    Mickey R. Miller

    2014-09-01

    Full Text Available In bacteria, transfer-messenger RNA (tmRNA and SmpB comprise the most common and effective system for rescuing stalled ribosomes. Ribosomes stall on mRNA transcripts lacking stop codons and are rescued as the defective mRNA is swapped for the tmRNA template in a process known as trans-translation. The tmRNA–SmpB complex is recruited to the ribosome independent of a codon–anticodon interaction. Given that the ribosome uses robust discriminatory mechanisms to select against non-cognate tRNAs during canonical decoding, it has been hard to explain how this can happen. Recent structural and biochemical studies show that SmpB licenses tmRNA entry through its interactions with the decoding center and mRNA channel. In particular, the C-terminal tail of SmpB promotes both EFTu activation and accommodation of tmRNA, the former through interactions with 16S rRNA nucleotide G530 and the latter through interactions with the mRNA channel downstream of the A site. Here we present a detailed model of the earliest steps in trans-translation, and in light of these mechanistic considerations, revisit the question of how tmRNA preferentially reacts with stalled, non-translating ribosomes.

  8. Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing

    DEFF Research Database (Denmark)

    Lardelli, Rea M.; Schaffer, Ashleigh E.; Eggens, Veerle R C

    2017-01-01

    ) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration...... of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends....

  9. How MESSENGER Meshes Simulations and Games with Citizen Science

    Science.gov (United States)

    Hirshon, B.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach (Epo) Team

    2010-12-01

    How MESSENGER Meshes Simulations and Games with Citizen Science In the film The Last Starfighter, an alien civilization grooms their future champion—a kid on Earth—using a video game. As he gains proficiency in the game, he masters the skills he needs to pilot a starship and save their civilization. The NASA MESSENGER Education and Public Outreach (EPO) Team is using the same tactic to train citizen scientists to help the Science Team explore the planet Mercury. We are building a new series of games that appear to be designed primarily for fun, but that guide players through a knowledge and skill set that they will need for future science missions in support of MESSENGER mission scientists. As players score points, they gain expertise. Once they achieve a sufficiently high score, they will be invited to become participants in Mercury Zoo, a new program being designed by Zooniverse. Zooniverse created Galaxy Zoo and Moon Zoo, programs that allow interested citizens to participate in the exploration and interpretation of galaxy and lunar data. Scientists use the citizen interpretations to further refine their exploration of the same data, thereby narrowing their focus and saving precious time. Mercury Zoo will be designed with input from the MESSENGER Science Team. This project will not only support the MESSENGER mission, but it will also add to the growing cadre of informed members of the public available to help with other citizen science projects—building on the concept that engaged, informed citizens can help scientists make new discoveries. The MESSENGER EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science

  10. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361.

    Directory of Open Access Journals (Sweden)

    Kun Wang

    2014-07-01

    Full Text Available Long noncoding RNAs (lncRNAs are emerging as new players in gene regulation, but whether lncRNAs operate in the processing of miRNA primary transcript is unclear. Also, whether lncRNAs are involved in the regulation of the mitochondrial network remains to be elucidated. Here, we report that a long noncoding RNA, named mitochondrial dynamic related lncRNA (MDRL, affects the processing of miR-484 primary transcript in nucleus and regulates the mitochondrial network by targeting miR-361 and miR-484. The results showed that miR-361 that predominantly located in nucleus can directly bind to primary transcript of miR-484 (pri-miR-484 and prevent its processing by Drosha into pre-miR-484. miR-361 is able to regulate mitochondrial fission and apoptosis by regulating miR-484 levels. In exploring the underlying molecular mechanism by which miR-361 is regulated, we identified MDRL and demonstrated that it could directly bind to miR-361 and downregulate its expression levels, which promotes the processing of pri-miR-484. MDRL inhibits mitochondrial fission and apoptosis by downregulating miR-361, which in turn relieves inhibition of miR-484 processing by miR-361. Our present study reveals a novel regulating model of mitochondrial fission program which is composed of MDRL, miR-361 and miR-484. Our work not only expands the function of the lncRNA pathway in gene regulation but also establishes a new mechanism for controlling miRNA expression.

  11. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    Science.gov (United States)

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  12. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis.

    Science.gov (United States)

    Lim, Daniel A; Suárez-Fariñas, Mayte; Naef, Felix; Hacker, Coleen R; Menn, Benedicte; Takebayashi, Hirohide; Magnasco, Marcelo; Patil, Nila; Alvarez-Buylla, Arturo

    2006-01-01

    Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.

  13. siMacro: A Fast and Easy Data Processing Tool for Cell-Based Genomewide siRNA Screens

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Singh

    2013-03-01

    Full Text Available Growing numbers of studies employ cell line-based systematic short interfering RNA (siRNA screens to study gene functions and to identify drug targets. As multiple sources of variations that are unique to siRNA screens exist, there is a growing demand for a computational tool that generates normalized values and standardized scores. However, only a few tools have been available so far with limited usability. Here, we present siMacro, a fast and easy-to-use Microsoft Office Excel-based tool with a graphic user interface, designed to process single-condition or two-condition synthetic screen datasets. siMacro normalizes position and batch effects, censors outlier samples, and calculates Z-scores and robust Z-scores, with a spreadsheet output of >120,000 samples in under 1 minute.

  14. Attenuation in the rph-pyrE operon of Escherichia coli and processing of the dicistronic mRNA

    DEFF Research Database (Denmark)

    Poulsen, Peter; Jensen, Kaj Frank

    1992-01-01

    We have substituted on a plasmid the native promoter of the Escherichia coli rph-pyrE operon with an inducible transcription-initiation signal. The plasmid was used to study the mRNA chains derived from the operon at different intracellular concentrations of UTP and as a function of time following...... induction of transcription. The results showed that dicistronic rph-pyrE mRNA was formed when the UTP pool was low, and that a monocistronic rph mRNA was the major transcription product in high-UTP pools, thus supporting an UTP-controlled attenuation mechanism for regulation of pyrE gene expression. However......, the dicistronic rph-pyrE transcript was rapidly processed into two monocistronic mRNA units, and a cleavage site was mapped near the attenuator in the intercistronic region, close to the site where transcription was terminated in high-UTP pools. Furthermore, the major 3' end of the pyrE mRNA was mapped near...

  15. Interactions of a didomain fragment of the Drosophila Sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

    International Nuclear Information System (INIS)

    Kim, Insil; Muto, Yutaka; Watanabe, Satoru; Kitamura, Aya; Futamura, Yasuhiro; Yokoyama, Shigeyuki; Hosono, Kazumi; Kawai, Gota; Takaku, Hiroshi; Dohmae, Naoshi; Takio, Koji; Sakamoto, Hiroshi; Shimura, Yoshiro

    2000-01-01

    Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5- 2 H]uridine phosphoramidite, and synthesized a series of 2 H-labeled RNAs, in which all of the uridine residues except one were replaced by [5- 2 H]uridine in the target sequence, GU 8 C. By observing the H5-H6 TOCSY cross peaks of the series of 2 H-labeled RNAs complexed with the Sxl RBD1-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU 2 GU 8 , AU 8 , and UAU 8 , were assigned by comparison with those of GU 8 C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex

  16. Interactions of a didomain fragment of the Drosophila Sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Insil; Muto, Yutaka; Watanabe, Satoru; Kitamura, Aya; Futamura, Yasuhiro; Yokoyama, Shigeyuki [University of Tokyo, Department of Biophysics and Biochemistry, Graduate School of Science (Japan); Hosono, Kazumi; Kawai, Gota; Takaku, Hiroshi [Chiba Institute of Technology, Department of Industrial Chemistry (Japan); Dohmae, Naoshi; Takio, Koji [Institute of Physical and Chemical Research (RIKEN) (Japan); Sakamoto, Hiroshi [Kobe University, Department of Biology, Faculty of Science (Japan); Shimura, Yoshiro [Biomolecular Engineering Research Institute (Japan)

    2000-06-15

    Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sxl) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5-{sup 2}H]uridine phosphoramidite, and synthesized a series of {sup 2}H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-{sup 2}H]uridine in the target sequence, GU{sub 8}C. By observing the H5-H6 TOCSY cross peaks of the series of {sup 2}H-labeled RNAs complexed with the Sxl RBD1-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU{sub 2}GU{sub 8}, AU{sub 8}, and UAU{sub 8}, were assigned by comparison with those of GU{sub 8}C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex.

  17. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.

    Science.gov (United States)

    Pinder, Benjamin D; Smibert, Craig A

    2013-01-01

    Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.

  18. Noncoding Subgenomic Flavivirus RNA Is Processed by the Mosquito RNA Interference Machinery and Determines West Nile Virus Transmission by Culex pipiens Mosquitoes

    NARCIS (Netherlands)

    Goertz, G.P.; Fros, J.J.; Miesen, P.; Vogels, C.B.F.; Bent, M.L. van der; Geertsema, C.; Koenraadt, C.J.M.; Rij, R.P. van; Oers, M.M. van; Pijlman, G.P.

    2016-01-01

    Flaviviruses, such as Zika virus, yellow fever virus, dengue virus, and West Nile virus (WNV), are a serious concern for human health. Flaviviruses produce an abundant noncoding subgenomic flavivirus RNA (sfRNA) in infected cells. sfRNA results from stalling of the host 5'-3' exoribonuclease

  19. Martini Coarse-Grained Force Field : Extension to RNA

    NARCIS (Netherlands)

    Uusitalo, Jaakko J.; Ingolfsson, Helgi I.; Marrink, Siewert J.; Faustino, Ignacio

    2017-01-01

    RNA has an important role not only as the messenger of genetic information but also as a regulator of gene expression. Given its central role in cell biology, there is significant interest in studying the structural and dynamic behavior of RNA in relation to other biomolecules. Coarse-grain

  20. Detection of the argonaute protein Ago2 and microRNAs in the RNA induced silencing complex (RISC) using a monoclonal antibody.

    Science.gov (United States)

    Ikeda, Keigo; Satoh, Minoru; Pauley, Kaleb M; Fritzler, Marvin J; Reeves, Westley H; Chan, Edward K L

    2006-12-20

    MicroRNAs (miRNAs) are short RNA molecules responsible for post-transcriptional gene silencing by the degradation or translational inhibition of their target messenger RNAs (mRNAs). This process of gene silencing, known as RNA interference (RNAi), is mediated by highly conserved Argonaute (Ago) proteins which are the key components of the RNA induced silencing complex (RISC). In humans, Ago2 is responsible for the endonuclease cleavage of targeted mRNA and it interacts with the mRNA-binding protein GW182, which is a marker for cytoplasmic foci referred to as GW bodies (GWBs). We demonstrated that the anti-Ago2 monoclonal antibody 4F9 recognized GWBs in a cell cycle dependent manner and was capable of capturing miRNAs associated with Ago2. Since Ago2 protein is the effector protein of RNAi, anti-Ago2 monoclonal antibody may be useful in capturing functional miRNAs.

  1. HuD Regulates Coding and Noncoding RNA to Induce APP→Aβ Processing

    Directory of Open Access Journals (Sweden)

    Min-Ju Kang

    2014-06-01

    Full Text Available The primarily neuronal RNA-binding protein HuD is implicated in learning and memory. Here, we report the identification of several HuD target transcripts linked to Alzheimer’s disease (AD pathogenesis. HuD interacted with the 3′ UTRs of APP mRNA (encoding amyloid precursor protein and BACE1 mRNA (encoding β-site APP-cleaving enzyme 1 and increased the half-lives of these mRNAs. HuD also associated with and stabilized the long noncoding (lncRNA BACE1AS, which partly complements BACE1 mRNA and enhances BACE1 expression. Consistent with HuD promoting production of APP and APP-cleaving enzyme, the levels of APP, BACE1, BACE1AS, and Aβ were higher in the brain of HuD-overexpressing mice. Importantly, cortex (superior temporal gyrus from patients with AD displayed significantly higher levels of HuD and, accordingly, elevated APP, BACE1, BACE1AS, and Aβ than did cortical tissue from healthy age-matched individuals. We propose that HuD jointly promotes the production of APP and the cleavage of its amyloidogenic fragment, Aβ.

  2. RNA-Seq as an Emerging Tool for Marine Dinoflagellate Transcriptome Analysis: Process and Challenges

    Directory of Open Access Journals (Sweden)

    Muhamad Afiq Akbar

    2018-01-01

    Full Text Available Dinoflagellates are the large group of marine phytoplankton with primary studies interest regarding their symbiosis with coral reef and the abilities to form harmful algae blooms (HABs. Toxin produced by dinoflagellates during events of HABs cause severe negative impact both in the economy and health sector. However, attempts to understand the dinoflagellates genomic features are hindered by their complex genome organization. Transcriptomics have been employed to understand dinoflagellates genome structure, profile genes and gene expression. RNA-seq is one of the latest methods for transcriptomics study. This method is capable of profiling the dinoflagellates transcriptomes and has several advantages, including highly sensitive, cost effective and deeper sequence coverage. Thus, in this review paper, the current workflow of dinoflagellates RNA-seq starts with the extraction of high quality RNA and is followed by cDNA sequencing using the next-generation sequencing platform, dinoflagellates transcriptome assembly and computational analysis will be discussed. Certain consideration needs will be highlighted such as difficulty in dinoflagellates sequence annotation, post-transcriptional activity and the effect of RNA pooling when using RNA-seq.

  3. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation.

    Science.gov (United States)

    Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G; Fu, Xiang-Dong

    2009-07-10

    SR proteins have been studied extensively as a family of RNA-binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and colocalize with genes that are engaged in specific intra- and interchromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings, therefore, highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell-cycle progression in higher eukaryotic cells.

  4. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    NARCIS (Netherlands)

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS),

  5. Instant messenger-facilitated knowledge sharing and team performance

    NARCIS (Netherlands)

    Ou, C.X.J.; Davison, R.M.; Leung, D.

    2014-01-01

    The instant messenger (IM) is frequently encountered as a facilitator of communication in both social and working contexts. Nevertheless, there are concerns about the extent to which IMs bring organizational benefits, thereby overcoming interruptions to work. In this study, we focus on how IM tools

  6. Pathophysiological implications of the chemical messengers; Implicaciones fisiopatologicas de los mensajeros quimicos

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez Fernandez, E.

    2009-07-01

    To maintain a physical organization and a different composition of its surroundings environment, living beings use a great part of the energy that they produce. Vital processes require an elevated number of reactions which are regulated and integrated by chemical messengers. They use autocrine, paracrine, endocrine and synaptic signals through receptors of cell surface, nuclear or associated with ionic channels, enzymes, trim eric G proteins and to intracellular kinases. Through these mechanisms pheromones play an important role in the relationships between different individuals, and hormones are able to regulate the integrative functions of our organism. In the nervous system, neurotransmitters, neuromodulators, sensors and receptors between other messengers, play functions of great relevance, while growth factors stimulate cell proliferation and cytokines have many effects but the most important is the ones related with the control of the immflamatory process. Alterations of these messengers permit us a better understanding of the diseases and possibly of its treatments in a near future. Modifications of the expression of genes from the nuclear and mitochondrial genomes are responsible of monogenic, polygenic and mitochondrial diseases, while alterations in the activities of dopamine and serotonin neurotransmitters are related with schizophrenia, Parkinson disease and depression, respectively. Other example is the hyperthyroidism of the Graves-Bassedow disease due to the competitive interference of the LATS immunoglobulin with TSH at the level of the follicular cells producing thyroid hormones Twenty five years ago in the reviews on the mechanisms of insulin action, there was presentations in which the insulin receptor was located in the plasma membrane of the target cells while in the cytoplasm only a big interrogative was observed, that at present is replaced by chemical mediators cascades responsible of the multiple effects of insulin. This finding is similar

  7. Transfecting Human Monocytes with RNA.

    Science.gov (United States)

    Dannull, Jens; Nair, Smita K

    2016-01-01

    Targeting monocytes as a delivery system for drugs or nucleic acids, and thereby harnessing their natural tissue-infiltrating capacity, has become an area of intense investigation in both basic and clinical research. Herein we describe an efficient method to deliver mRNA (messenger RNA) or siRNA (small interfering RNA) into human monocytes by electroporation. This method can be applied in the laboratory to monocytes isolated via magnetic bead-based techniques, or in a clinical setting using monocytes that were collected via counterflow centrifugation elutriation using the Elutra(®) Cell Separation System. We further demonstrate that electroporation of monocytes with RNA represents a robust and highly relevant approach to modify monocytes for cell-based therapies. Last, the procedure described can readily be adapted to monocytes from different species, hence facilitating research in animal models.

  8. Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing

    Czech Academy of Sciences Publication Activity Database

    Buček, Aleš; Brabcová, Jana; Vogel, H.; Prchalová, Darina; Kindl, Jiří; Valterová, Irena; Pichová, Iva

    2016-01-01

    Roč. 25, č. 3 (2016), s. 295-314 ISSN 0962-1075 R&D Projects: GA MŠk LO1302; GA ČR GA15-06569S Institutional support: RVO:61388963 Keywords : RNA-seq * transcriptome * Bombus terrestris * labial gland * marking pheromone biosynthesis * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.844, year: 2016

  9. Modeling bias and variation in the stochastic processes of small RNA sequencing.

    Science.gov (United States)

    Argyropoulos, Christos; Etheridge, Alton; Sakhanenko, Nikita; Galas, David

    2017-06-20

    The use of RNA-seq as the preferred method for the discovery and validation of small RNA biomarkers has been hindered by high quantitative variability and biased sequence counts. In this paper we develop a statistical model for sequence counts that accounts for ligase bias and stochastic variation in sequence counts. This model implies a linear quadratic relation between the mean and variance of sequence counts. Using a large number of sequencing datasets, we demonstrate how one can use the generalized additive models for location, scale and shape (GAMLSS) distributional regression framework to calculate and apply empirical correction factors for ligase bias. Bias correction could remove more than 40% of the bias for miRNAs. Empirical bias correction factors appear to be nearly constant over at least one and up to four orders of magnitude of total RNA input and independent of sample composition. Using synthetic mixes of known composition, we show that the GAMLSS approach can analyze differential expression with greater accuracy, higher sensitivity and specificity than six existing algorithms (DESeq2, edgeR, EBSeq, limma, DSS, voom) for the analysis of small RNA-seq data. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma.

    Science.gov (United States)

    Tomaselli, Sara; Galeano, Federica; Alon, Shahar; Raho, Susanna; Galardi, Silvia; Polito, Vinicia Assunta; Presutti, Carlo; Vincenti, Sara; Eisenberg, Eli; Locatelli, Franco; Gallo, Angela

    2015-01-13

    ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known. By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration. Our findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

  11. Resveratrol, by modulating RNA processing factor levels, can influence the alternative splicing of pre-mRNAs.

    Directory of Open Access Journals (Sweden)

    M Andrea Markus

    Full Text Available Alternative pre-mRNA splicing defects can contribute to, or result from, various diseases, including cancer. Aberrant mRNAs, splicing factors and other RNA processing factors have therefore become targets for new therapeutic interventions. Here we report that the natural polyphenol resveratrol can modulate alternative splicing in a target-specific manner. We transfected minigenes of several alternatively spliceable primary mRNAs into HEK293 cells in the presence or absence of 1, 5, 20 and 50 µM resveratrol and measured exon levels by semi-quantitative PCR after separation by agarose gel electrophoresis. We found that 20 µg/ml and 50 µg/ml of resveratrol affected exon inclusion of SRp20 and SMN2 pre-mRNAs, but not CD44v5 or tau pre-mRNAs. By Western blotting and immunofluorescence we showed that this effect may be due to the ability of resveratrol to change the protein level but not the localization of several RNA processing factors. The processing factors that increased significantly were ASF/SF2, hnRNPA1 and HuR, but resveratrol did not change the levels of RBM4, PTBP1 and U2AF35. By means of siRNA-mediated knockdown we depleted cells of SIRT1, regarded as a major target of resveratrol, and showed that the effect on splicing was not dependent on SIRT1. Our results suggest that resveratrol might be an attractive small molecule to treat diseases in which aberrant splicing has been implicated, and justify more extensive research on the effects of resveratrol on the splicing machinery.

  12. Resveratrol, by modulating RNA processing factor levels, can influence the alternative splicing of pre-mRNAs.

    Science.gov (United States)

    Markus, M Andrea; Marques, Francine Z; Morris, Brian J

    2011-01-01

    Alternative pre-mRNA splicing defects can contribute to, or result from, various diseases, including cancer. Aberrant mRNAs, splicing factors and other RNA processing factors have therefore become targets for new therapeutic interventions. Here we report that the natural polyphenol resveratrol can modulate alternative splicing in a target-specific manner. We transfected minigenes of several alternatively spliceable primary mRNAs into HEK293 cells in the presence or absence of 1, 5, 20 and 50 µM resveratrol and measured exon levels by semi-quantitative PCR after separation by agarose gel electrophoresis. We found that 20 µg/ml and 50 µg/ml of resveratrol affected exon inclusion of SRp20 and SMN2 pre-mRNAs, but not CD44v5 or tau pre-mRNAs. By Western blotting and immunofluorescence we showed that this effect may be due to the ability of resveratrol to change the protein level but not the localization of several RNA processing factors. The processing factors that increased significantly were ASF/SF2, hnRNPA1 and HuR, but resveratrol did not change the levels of RBM4, PTBP1 and U2AF35. By means of siRNA-mediated knockdown we depleted cells of SIRT1, regarded as a major target of resveratrol, and showed that the effect on splicing was not dependent on SIRT1. Our results suggest that resveratrol might be an attractive small molecule to treat diseases in which aberrant splicing has been implicated, and justify more extensive research on the effects of resveratrol on the splicing machinery.

  13. Pre-mRNA Processing Is Partially Impaired in Satellite Cell Nuclei from Aged Muscles

    Directory of Open Access Journals (Sweden)

    Manuela Malatesta

    2010-01-01

    Full Text Available Satellite cells are responsible for the capacity of mature mammalian skeletal muscles to repair and maintain mass. During aging, skeletal muscle mass as well as the muscle strength and endurance progressively decrease, leading to a condition termed sarcopenia. The causes of sarcopenia are manifold and remain to be completely elucidated. One of them could be the remarkable decline in the efficiency of muscle regeneration; this has been associated with decreasing amounts of satellite cells, but also to alterations in their activation, proliferation, and/or differentiation. In this study, we investigated the satellite cell nuclei of biceps and quadriceps muscles from adult and old rats; morphometry and immunocytochemistry at light and electron microscopy have been combined to assess the organization of the nuclear RNP structural constituents involved in different steps of mRNA formation. We demonstrated that in satellite cells the RNA pathways undergo alterations during aging, possibly hampering their responsiveness to muscle damage.

  14. Dual core processing: MRB1 is an emerging kinetoplast RNA editing complex

    Czech Academy of Sciences Publication Activity Database

    Hashimi, Hassan; Zimmer, S.L.; Ammerman, M. L.; Read, L. K.; Lukeš, Julius

    2013-01-01

    Roč. 29, č. 2 (2013), s. 91-99 ISSN 1471-4922 R&D Projects: GA ČR GAP305/12/2261; GA ČR GA204/09/1667 Institutional support: RVO:60077344 Keywords : kinetoplastida * trypanosome * RNA editing * protein complexes * RECC * MRB1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.217, year: 2013 http://www.sciencedirect.com/science/article/pii/S1471492212001985

  15. Real-time dynamics of RNA Polymerase II clustering in live human cells

    Science.gov (United States)

    Cisse, Ibrahim

    2014-03-01

    Transcription is the first step in the central dogma of molecular biology, when genetic information encoded on DNA is made into messenger RNA. How this fundamental process occurs within living cells (in vivo) is poorly understood,[1] despite extensive biochemical characterizations with isolated biomolecules (in vitro). For high-order organisms, like humans, transcription is reported to be spatially compartmentalized in nuclear foci consisting of clusters of RNA Polymerase II, the enzyme responsible for synthesizing all messenger RNAs. However, little is known of when these foci assemble or their relative stability. We developed an approach based on photo-activation localization microscopy (PALM) combined with a temporal correlation analysis, which we refer to as tcPALM. The tcPALM method enables the real-time characterization of biomolecular spatiotemporal organization, with single-molecule sensitivity, directly in living cells.[2] Using tcPALM, we observed that RNA Polymerase II clusters form transiently, with an average lifetime of 5.1 (+/- 0.4) seconds. Stimuli affecting transcription regulation yielded orders of magnitude changes in the dynamics of the polymerase clusters, implying that clustering is regulated and plays a role in the cells ability to effect rapid response to external signals. Our results suggest that the transient crowding of enzymes may aid in rate-limiting steps of genome regulation.

  16. Identification of miRNA-mRNA regulatory modules by exploring collective group relationships.

    Science.gov (United States)

    Masud Karim, S M; Liu, Lin; Le, Thuc Duy; Li, Jiuyong

    2016-01-11

    microRNAs (miRNAs) play an essential role in the post-transcriptional gene regulation in plants and animals. They regulate a wide range of biological processes by targeting messenger RNAs (mRNAs). Evidence suggests that miRNAs and mRNAs interact collectively in gene regulatory networks. The collective relationships between groups of miRNAs and groups of mRNAs may be more readily interpreted than those between individual miRNAs and mRNAs, and thus are useful for gaining insight into gene regulation and cell functions. Several computational approaches have been developed to discover miRNA-mRNA regulatory modules (MMRMs) with a common aim to elucidate miRNA-mRNA regulatory relationships. However, most existing methods do not consider the collective relationships between a group of miRNAs and the group of targeted mRNAs in the process of discovering MMRMs. Our aim is to develop a framework to discover MMRMs and reveal miRNA-mRNA regulatory relationships from the heterogeneous expression data based on the collective relationships. We propose DIscovering COllective group RElationships (DICORE), an effective computational framework for revealing miRNA-mRNA regulatory relationships. We utilize the notation of collective group relationships to build the computational framework. The method computes the collaboration scores of the miRNAs and mRNAs on the basis of their interactions with mRNAs and miRNAs, respectively. Then it determines the groups of miRNAs and groups of mRNAs separately based on their respective collaboration scores. Next, it calculates the strength of the collective relationship between each pair of miRNA group and mRNA group using canonical correlation analysis, and the group pairs with significant canonical correlations are considered as the MMRMs. We applied this method to three gene expression datasets, and validated the computational discoveries. Analysis of the results demonstrates that a large portion of the regulatory relationships discovered by

  17. RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA.

    Science.gov (United States)

    Manfrini, Nicola; Trovesi, Camilla; Wery, Maxime; Martina, Marina; Cesena, Daniele; Descrimes, Marc; Morillon, Antonin; d'Adda di Fagagna, Fabrizio; Longhese, Maria Pia

    2015-02-01

    Eukaryotic cells respond to DNA double-strand breaks (DSBs) by activating a checkpoint that depends on the protein kinases Tel1/ATM and Mec1/ATR. Mec1/ATR is activated by RPA-coated single-stranded DNA (ssDNA), which arises upon nucleolytic degradation (resection) of the DSB. Emerging evidences indicate that RNA-processing factors play critical, yet poorly understood, roles in genomic stability. Here, we provide evidence that the Saccharomyces cerevisiae RNA decay factors Xrn1, Rrp6 and Trf4 regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. The lack of Xrn1 inhibits ssDNA generation at the DSB by preventing the loading of the MRX complex. By contrast, DSB resection is not affected in the absence of Rrp6 or Trf4, but their lack impairs the recruitment of RPA, and therefore of Mec1, to the DSB. Rrp6 and Trf4 inactivation affects neither Rad51/Rad52 association nor DSB repair by homologous recombination (HR), suggesting that full Mec1 activation requires higher amount of RPA-coated ssDNA than HR-mediated repair. Noteworthy, deep transcriptome analyses do not identify common misregulated gene expression that could explain the observed phenotypes. Our results provide a novel link between RNA processing and genome stability. © 2014 The Authors.

  18. Ribogenomics: the Science and Knowledge of RNA

    Directory of Open Access Journals (Sweden)

    Jiayan Wu

    2014-04-01

    Full Text Available Ribonucleic acid (RNA deserves not only a dedicated field of biological research — a discipline or branch of knowledge — but also explicit definitions of its roles in cellular processes and molecular mechanisms. Ribogenomics is to study the biology of cellular RNAs, including their origin, biogenesis, structure and function. On the informational track, messenger RNAs (mRNAs are the major component of ribogenomes, which encode proteins and serve as one of the four major components of the translation machinery and whose expression is regulated at multiple levels by other operational RNAs. On the operational track, there are several diverse types of RNAs — their length distribution is perhaps the most simplistic stratification — involving in major cellular activities, such as chromosomal structure and organization, DNA replication and repair, transcriptional/post-transcriptional regulation, RNA processing and routing, translation and cellular energy/metabolism regulation. An all-out effort exceeding the magnitude of the Human Genome Project is of essence to construct just mammalian transcriptomes in multiple contexts including embryonic development, circadian and seasonal rhythms, defined life-span stages, pathological conditions and anatomy-driven tissue/organ/cell types.

  19. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell

    Directory of Open Access Journals (Sweden)

    Hyouta eHimeno

    2014-04-01

    Full Text Available tmRNA (transfer messenger RNA; also known as 10Sa RNA or SsrA RNA is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon-anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of nonfunctional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.

  20. Transmissible gastroenteritis coronavirus genome packaging signal is located at the 5' end of the genome and promotes viral RNA incorporation into virions in a replication-independent process.

    Science.gov (United States)

    Morales, Lucia; Mateos-Gomez, Pedro A; Capiscol, Carmen; del Palacio, Lorena; Enjuanes, Luis; Sola, Isabel

    2013-11-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5' end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3' end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies.

  1. Intercepting the messengers of cosmic violence

    International Nuclear Information System (INIS)

    Gavaghan, Helen.

    1991-01-01

    The more violent events in the cosmos will be studied using the new Gamma Ray Observatory (GRO) due to be launched soon. This will work alongside existing facilities which offer x-ray, infrared and visible wavelength information to enable astronomers to study such exciting phenomena as quasars, pulsars and supernovae. Gamma ray information from cosmic sources requires long exposure time and multiplication to permit adequate image formation and GRO makes use of scintillation counters to facilitate this process. Two of the instruments incorporated in GRO are described. (author)

  2. Light third-generation squarks from flavour gauge messengers

    International Nuclear Information System (INIS)

    Brümmer, Felix; McGarrie, Moritz; Weiler, Andreas

    2014-01-01

    We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3) F symmetry acting on the quark superfields. If SU(3) F is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3) F breaking

  3. Light third-generation squarks from flavour gauge messengers

    International Nuclear Information System (INIS)

    Bruemmer, Felix; McGarrie, Moritz; Univ. of the Witwatersrand, Johannesburg; Weiler, Andreas; CERN - European Organization for Nuclear Research, Geneva

    2014-04-01

    We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3) F symmetry acting on the quark superfields. If SU(3) F is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3) F breaking.

  4. Mercury's Atmosphere and Magnetosphere: MESSENGER Third Flyby Observations

    Science.gov (United States)

    Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Johnson, Catherine L.; Gloeckler, George; Killen, Rosemary M.; Krimigis, Stamatios M.; McClintock, William; McNutt, Ralph L., Jr.; hide

    2009-01-01

    MESSENGER's third flyby of Mercury en route to orbit insertion about the innermost planet took place on 29 September 2009. The earlier 14 January and 6 October 2008 encounters revealed that Mercury's magnetic field is highly dipolar and stable over the 35 years since its discovery by Mariner 10; that a structured, temporally variable exosphere extends to great altitudes on the dayside and forms a long tail in the anti-sunward direction; a cloud of planetary ions encompasses the magnetosphere from the dayside bow shock to the downstream magnetosheath and magnetotail; and that the magnetosphere undergoes extremely intense magnetic reconnect ion in response to variations in the interplanetary magnetic field. Here we report on new results derived from observations from MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer (MASCS), Magnetometer (MAG), and Energetic Particle and Plasma Spectrometer (EPPS) taken during the third flyby.

  5. Sodium ion exosphere of Mercury during MESSENGER flybys

    Czech Academy of Sciences Publication Activity Database

    Paral, Jan; Trávníček, Pavel M.; Rankin, R.; Schriver, D.

    2010-01-01

    Roč. 37, č. 19 (2010), L19102/1-L19102/5 ISSN 0094-8276 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : MESSENGER flybys * solar wind sputtering * photo-stimulated desorption Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.505, year: 2010 http://onlinelibrary.wiley.com/doi/10.1029/2010GL044413/abstract

  6. 12th International Conference on Second Messengers and Phosphoproteins

    Czech Academy of Sciences Publication Activity Database

    Tuháčková, Zdena

    2004-01-01

    Roč. 32, č. 3 (2004), s. 89-91 ISSN 1211-2526. [International conference on second messengers and phosphoproteins /12./. Montreal, 03.08.2004-07.08.2004] R&D Projects: GA ČR GA301/04/0550; GA AV ČR KSK5020115 Institutional research plan: CEZ:AV0Z5052915 Keywords : MTOR -PI3-K signalling * p70 S 6 kinase * v-Src Subject RIV: CE - Biochemistry

  7. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1

    Science.gov (United States)

    Wang, Iren; Hennig, Janosch; Jagtap, Pravin Kumar Ankush; Sonntag, Miriam; Valcárcel, Juan; Sattler, Michael

    2014-01-01

    Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5′ splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2–RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs. PMID:24682828

  8. Mercury's Sodium Exosphere: Observations during the MESSENGER Orbital Phase

    Science.gov (United States)

    Killen, Rosemary M.; Cassidy, Timothy A.; Vervack, Ronald J., Jr.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos; Sprague, Ann L.; McClintock, William E.; Benna, Mehdi; Solomon, Sean C.

    2012-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered into orbit about Mercury on March 18,2011. We now have approximately five Mercury years of data from orbit. Prior to the MESSENGER mission, Mercury's surface-bounded exosphere was known to contain H, He, Na. K, and Ca. The Ultraviolet and Visible Spectrometer (UVVS) began routine orbital observations of both the dayside and nightside exosphere on March 29. 2011, measuring altitude profiles for all previously detected neutral species except for He and K. We focus here on what we have learned about the sodium exosphere: its spatial, seasonal, and sporadic variation. Observations to date permit delineation of the relative roles of photon-stimulated desorption (PSD) and impact vaporization (IV) from seasonal and spatial effects, as well as of the roles of ions both as sputtering agents and in their possible role to enhance the efficiency of PSD. Correlations of Mercury's neutral sodium exosphere with measurements from MESSENGER's Magnetometer (MAG) and Energetic Particle and Plasma Spectrometer (EPPS) provide insight into the roles of ions and electrons. Models incorporating MAG observations provide a basis for identifying the location and area of the surface exposed to solar wind plasma, and EPPS observations reveal episodic populations of energetic electrons in the magnetosphere and the presence of planetary He(+), 0(+), and Na(+),

  9. Dual RNA Processing Roles of Pat1b via Cytoplasmic Lsm1-7 and Nuclear Lsm2-8 Complexes

    Directory of Open Access Journals (Sweden)

    Caroline Vindry

    2017-08-01

    Full Text Available Pat1 RNA-binding proteins, enriched in processing bodies (P bodies, are key players in cytoplasmic 5′ to 3′ mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA. Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP components in Cajal bodies, the site of snRNP biogenesis. RNA sequencing following Pat1b depletion revealed the preferential upregulation of mRNAs normally found in P bodies and enriched in 3′ UTR AU-rich elements. Changes in >180 alternative splicing events were also observed, characterized by skipping of regulated exons with weak donor sites. Our data demonstrate the dual role of a decapping enhancer in pre-mRNA processing as well as in mRNA decay via distinct nuclear and cytoplasmic Lsm complexes.

  10. Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing

    International Nuclear Information System (INIS)

    Grzybowska, Ewa A.

    2012-01-01

    Highlights: ► Functional characteristics of intronless genes (IGs). ► Diseases associated with IGs. ► Origin and evolution of IGs. ► mRNA processing without splicing. -- Abstract: Intronless genes (IGs) constitute approximately 3% of the human genome. Human IGs are essentially different in evolution and functionality from the IGs of unicellular eukaryotes, which represent the majority in their genomes. Functional analysis of IGs has revealed a massive over-representation of signal transduction genes and genes encoding regulatory proteins important for growth, proliferation, and development. IGs also often display tissue-specific expression, usually in the nervous system and testis. These characteristics translate into IG-associated diseases, mainly neuropathies, developmental disorders, and cancer. IGs represent recent additions to the genome, created mostly by retroposition of processed mRNAs with retained functionality. Processing, nuclear export, and translation of these mRNAs should be hampered dramatically by the lack of splice factors, which normally tightly cover mature transcripts and govern their fate. However, natural IGs manage to maintain satisfactory expression levels. Different mechanisms by which IGs solve the problem of mRNA processing and nuclear export are discussed here, along with their possible impact on reporter studies.

  11. A new methodology of second messenger imaging for higher cortical functions by positron emission tomography

    International Nuclear Information System (INIS)

    Imahori, Yoshio; Ueda, Satoshi

    1992-01-01

    Neuronal manifestations are driven by second messenger systems in central nervous system through the neuronal transmission process. Receptor-mediated phosphatidylinositol (PI) response images may reflect neuronal activation in higher cortical function with a high sensitivity based on the common amplifying mechanism of the second messenger. Many bioactive compounds related to PI turnover have simple carbohydrate structures without amines and [ 11 C]ethylketene acylation has been found as the most effective labeling method of these compounds for positron emission tomography. [ 11 C]ethylketene was produced by the pyrolytic decomposition of [1- 11 C]butyric acid. This new method was made possible by the reaction under the no-carrier-added condition. To visualize the response in vivo, we synthesized sn-1,2-[ 11 C]diacylglycerols (DAGs) as a specific tracer for the PI response and [ 11 C]phorbol esters as a ligand for protein kinase C. In autoradiographic studies it was demonstrated that sn-1,2-[ 11 C]DAGs incorporation sites were discretely localized especially in the neocortex, which were concomitant with columnar structures. These results suggested that sn-1,2-[ 11 C]DAG can serve as an extrinsic substrate for the PI turnover by the phosphorylation mechanism and intensive neuronal processing, as a higher cortical function, occurs in these areas on the basis of receptor-mediated PI response. (author)

  12. 16S rRNA gene sequencing as a tool to study microbial populations in foods and process environments

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Hansen, Tina Beck; Bahl, Martin Iain

    2015-01-01

    communities in meat and the meat process environment with special focus on the Enterobacteriaceae family as a subpopulation comprising enteropathogens including Salmonella. Samples were analyzed by a nested PCR approach combined with MiSeq® Illumina®16S DNA sequencing and standardized culture methods as cross...... reference. Results: Taxonomic assignments and abundances of sequences in the total community and in the Enterobacteriaceae subpopulation were affected by the 16S rRNA gene variable region, DNA extraction methods, and polymerases chosen. However, community compositions were very reproducible when the same...

  13. The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma.

    Science.gov (United States)

    Tao, T; Sondalle, S B; Shi, H; Zhu, S; Perez-Atayde, A R; Peng, J; Baserga, S J; Look, A T

    2017-07-06

    The nucleolar factor, digestive organ expansion factor (DEF), has a key role in ribosome biogenesis, functioning in pre-ribosomal RNA (pre-rRNA) processing as a component of the small ribosomal subunit (SSU) processome. Here we show that the peripheral sympathetic nervous system (PSNS) is very underdeveloped in def-deficient zebrafish, and that def haploinsufficiency significantly decreases disease penetrance and tumor growth rate in a MYCN-driven transgenic zebrafish model of neuroblastoma that arises in the PSNS. Consistent with these findings, DEF is highly expressed in human neuroblastoma, and its depletion in human neuroblastoma cell lines induces apoptosis. Interestingly, overexpression of MYCN in zebrafish and in human neuroblastoma cells results in the appearance of intermediate pre-rRNAs species that reflect the processing of pre-rRNAs through Pathway 2, a pathway that processes pre-rRNAs in a different temporal order than the more often used Pathway 1. Our results indicate that DEF and possibly other components of the SSU processome provide a novel site of vulnerability in neuroblastoma cells that could be exploited for targeted therapy.

  14. A comparison of cell-free placental messenger ribonucleic acid and color Doppler ultrasound for the prediction of placental invasion in patients with placenta accreta

    OpenAIRE

    Naghshineh, Elham; Khorvash, Elahe; Kamali, Sara

    2015-01-01

    Background: The aim of the present study was to comparison between cell-free placental messenger ribonucleic acid (mRNA) and Doppler ultrasound for the prediction of placental invasion in women with placenta accreta. Materials and Methods: In this cross-sectional study, 50 pregnant women at risk for placenta accreta underwent color Doppler and assessment of cell-free placental mRNA. Real-time reverse-transcription polymerase chain reaction was used for measurement of cell-free placental m...

  15. CCS mRNA transcripts and serum CCS protein as copper marker in adults suffering inflammatory processes.

    Science.gov (United States)

    Araya, Magdalena; Gutiérrez, Ricardo; Arredondo, Miguel

    2014-08-01

    The chaperone to Zn-Cu superoxide dismutase (CCS) has been postulated as a candidate copper indicator, changing in a consistent manner in induced and recovered copper deficiency, in experimental cell and animal models. In real life people have various conditions that may modify molecules acting as acute phase proteins, such as serum ceruloplasmin and copper concentration and could alter CCS responses. With the hypothesis that CCS mRNA transcripts and protein would be different in individuals suffering inflammatory processes in comparison to healthy individuals, we assessed adult individuals who, although not ill had conditions known to induce variable degrees of inflammation. Screening of 600 adults resulted in two study groups, formed on the basis of their clinical history and levels of serum C reactive protein (CRP): Group 1 (n = 61, mean (range) CRP = 0.9 (0.3-2.0 mg/dL) and Group 2 (n = 150, mean (range) CRP = 6.1 (4.3-8.7 mg/dL). Results showed that mRNA transcripts relative abundance was not different for CCS, MTIIA, TNF-alpha and Cu-Zn-SOD by group (p > 0.05, one way Anova), nor between sexes (p > 0.05, one way Anova). Distribution of CCS mRNA transcripts and CCS protein in serum did not show any differences or trends. Results disproved our hypothesis that CCS abundance of transcripts and CCS protein would be different in individuals suffering inflammatory processes, adding further support to the idea that CCS may be a copper marker.

  16. Tipping the balance of RNA stability by 3' editing of the transcriptome.

    Science.gov (United States)

    Chung, Christina Z; Seidl, Lauren E; Mann, Mitchell R; Heinemann, Ilka U

    2017-11-01

    The regulation of active microRNAs (miRNAs) and maturation of messenger RNAs (mRNAs) that are competent for translation is a crucial point in the control of all cellular processes, with established roles in development and differentiation. Terminal nucleotidyltransferases (TNTases) are potent regulators of RNA metabolism. TNTases promote the addition of single or multiple nucleotides to an RNA transcript that can rapidly alter transcript stability. The well-known polyadenylation promotes transcript stability while the newly discovered but ubiquitious 3'-end polyuridylation marks RNA for degradation. Monoadenylation and uridylation are essential control mechanisms balancing mRNA and miRNA homeostasis. This review discusses the multiple functions of non-canonical TNTases, focusing on their substrate range, biological functions, and evolution. TNTases directly control mRNA and miRNA levels, with diverse roles in transcriptome stabilization, maturation, silencing, or degradation. We will summarize the current state of knowledge on non-canonical nucleotidyltransferases and their function in regulating miRNA and mRNA metabolism. We will review the discovery of uridylation as an RNA degradation pathway and discuss the evolution of nucleotidyltransferases along with their use in RNA labeling and future applications as therapeutic targets. The biochemically and evolutionarily highly related adenylyl- and uridylyltransferases play antagonizing roles in the cell. In general, RNA adenylation promotes stability, while uridylation marks RNA for degradation. Uridylyltransferases evolved from adenylyltransferases in multiple independent evolutionary events by the insertion of a histidine residue into the active site, altering nucleotide, but not RNA specificity. Understanding the mechanisms regulating RNA stability in the cell and controlling the transcriptome is essential for efforts aiming to influence cellular fate. Selectively enhancing or reducing RNA stability allows for

  17. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    Science.gov (United States)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  18. MESSENGER Observations of Magnetic Reconnection in Mercury's Magnetosphere

    Science.gov (United States)

    Slavin. James A.

    2009-01-01

    During MESSENGER'S second flyby of Mercury on October 6,2008, very intense reconnection was observed between the planet's magnetic field and a steady southward interplanetary magnetic field (IMF). The dawn magnetopause was threaded by a strong magnetic field normal to its surface, approx.14 nT, that implies a rate of reconnection approx.10 times the typical rate at Earth and a cross-magnetospheric electric potential drop of approx.30 kV. The highest magnetic field observed during this second flyby, approx.160 nT, was found at the core of a large dayside flux transfer event (FTE). This FTE is estimated to contain magnetic flux equal to approx.5% that of Mercury's magnetic tail or approximately one order of magnitude higher fraction of the tail flux than is typically found for FTEs at Earth. Plasmoid and traveling compression region (TCR) signatures were observed throughout MESSENGER'S traversal of Mercury's magnetotail with a repetition rate comparable to the Dungey cycle time of approx.2 min. The TCR signatures changed from south-north, indicating tailward motion, to north-south, indicating sunward motion, at a distance approx.2.6 RM (where RM is Mercury's radius) behind the terminator indicating that the near-Mercury magnetotail neutral line was crossed at that point. Overall, these new MESSENGER observations suggest that magnetic reconnection at the dayside magnetopause is very intense relative to what is found at Earth and other planets, while reconnection in Mercury's tail is similar to that in other planetary magnetospheres, but with a very short Dungey cycle time.

  19. A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice.

    Directory of Open Access Journals (Sweden)

    Géraldine M Mang

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+ and floxed Dicer (Dicerlox/lox mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO. Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a measure body composition, b follow food intake and body weight dynamics, c evaluate basal metabolism and effects of food deprivation, and d assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling, as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1. A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we

  20. Laser altimeter observations from MESSENGER's first Mercury flyby.

    Science.gov (United States)

    Zuber, Maria T; Smith, David E; Solomon, Sean C; Phillips, Roger J; Peale, Stanton J; Head, James W; Hauck, Steven A; McNutt, Ralph L; Oberst, Jürgen; Neumann, Gregory A; Lemoine, Frank G; Sun, Xiaoli; Barnouin-Jha, Olivier; Harmon, John K

    2008-07-04

    A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans approximately 20% of the near-equatorial region of the planet. Topography along the profile is characterized by a 5.2-kilometer dynamic range and 930-meter root-mean-square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees , implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales.

  1. New species of RNA formed during tobacco mosaic virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, A.; Hari, V.; Montgomery, I.; Kolacz, K.

    1976-01-01

    Previous investigations have demonstrated that extracts of TMV infected leaf tissue contain several unique virus related RNA species, including viral RNA, RF, RI and a low-molecular-weight component (LMC) of approximately 2.5 x 10/sup 5/ daltons. We have found that LMC becomes heavily labelled when infected tissue is incubated in the dark in the presence of actinomycin D and /sup 3/H-uridine. This component was isolated by sucrose-density gradient centrifugation and polyacrylamide gel electrophoresis and was used as a messenger in a wheat-germ derived cell-free protein synthesizing system. Analysis of the products produced by SDS-gel electrophoresis revealed a protein the same size as TMV coat protein. It was confirmed as coat protein by its reaction with specific antiserum in a gel-diffusion test. We conclude that LMC acts as a messenger for coat protein in the in vitro system and deduce that it probably does so in vivo. During the course of isolating LMC, we have observed several previously unreported new RNA species, probably unique to infected tissue. Among these are a component of approximately 1.1 x 10/sup 6/ daltons and another of a size similar to that of, but distinct from, viral RNA. There are indications that other unique RNA species may also be present and evidence for these will be presented. Our evidence to date points to the likelihood that TMV RNA may be processed into smaller pieces for translation rather than, as in the case of poliovirus, being translated into a polyprotein. It is possible that other groups of non-split genome plant viruses may behave in manner similar to that of TMV in this regard. We have observed that tobacco etch virus (a member of the Pot Y group) infected tissue also contains a component similar to that of LMC but larger (ca. 350,000 daltons). A peculiar feature of this system is that it appears to be sensitive to actinomycin D.

  2. Prediction of Fetal Growth Restriction by Analyzing the Messenger RNAs of Angiogenic Factor in the Plasma of Pregnant Women.

    Science.gov (United States)

    Takenaka, Shin; Ventura, Walter; Sterrantino, Anna Freni; Kawashima, Akihiro; Koide, Keiko; Hori, Kyoko; Farina, Antonio; Sekizawa, Akihiko

    2015-06-01

    To predict the occurrence of fetal growth restriction (FGR) by analyzing messenger RNA (mRNA) expression levels of vascular endothelial growth factor receptor 1 (fms-like tyrosine kinase 1 [Flt-1]) in maternal blood. Eleven women with FGR were matched with 88 controls. Plasma samples were obtained during each trimester. The Flt-1 mRNA expression levels were compared between groups. Predicted probabilities were calculated, and sensitivity-specificity (receiver-operating characteristic [ROC]) curves were assessed based on regression models for each trimester measurement and possible combinations of measurements. The mRNA levels of the FGR group during all trimesters were significantly higher than those of the control group. The ROC curve of combined first and second trimester data yielded a detection rate of 60% at a 10% false-positive rate, with an area under curve of 0.79. The Flt-1 mRNA expression in maternal blood can be used as a marker to predict the development of FGR, long before a clinical diagnosis is made. © The Author(s) 2014.

  3. Pathway-based analysis of genome-wide siRNA screens reveals the regulatory landscape of APP processing.

    Directory of Open Access Journals (Sweden)

    Luiz Miguel Camargo

    Full Text Available The progressive aggregation of Amyloid-β (Aβ in the brain is a major trait of Alzheimer's Disease (AD. Aβ is produced as a result of proteolytic processing of the β-amyloid precursor protein (APP. Processing of APP is mediated by multiple enzymes, resulting in the production of distinct peptide products: the non-amyloidogenic peptide sAPPα and the amyloidogenic peptides sAPPβ, Aβ40, and Aβ42. Using a pathway-based approach, we analyzed a large-scale siRNA screen that measured the production of different APP proteolytic products. Our analysis identified many of the biological processes/pathways that are known to regulate APP processing and have been implicated in AD pathogenesis, as well as revealing novel regulatory mechanisms. Furthermore, we also demonstrate that some of these processes differentially regulate APP processing, with some mechanisms favouring production of certain peptide species over others. For example, synaptic transmission having a bias towards regulating Aβ40 production over Aβ42 as well as processes involved in insulin and pancreatic biology having a bias for sAPPβ production over sAPPα. In addition, some of the pathways identified as regulators of APP processing contain genes (CLU, BIN1, CR1, PICALM, TREM2, SORL1, MEF2C, DSG2, EPH1A recently implicated with AD through genome wide association studies (GWAS and associated meta-analysis. In addition, we provide supporting evidence and a deeper mechanistic understanding of the role of diabetes in AD. The identification of these processes/pathways, their differential impact on APP processing, and their relationships to each other, provide a comprehensive systems biology view of the "regulatory landscape" of APP.

  4. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    OpenAIRE

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Enjuanes, Luis; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. Th...

  5. MESSENGER E/V/H GRNS 3 NEUTRON SPECTROMETER CDR V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Neutron Spectrometer (NS) calibrated data records (CDRs). The NS experiment is a neutron spectrometer...

  6. MESSENGER E/V/H/SW EPPS CALIBRATED FIPS DDR V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER Energetic Particle and Plasma Spectrometer (EPPS) calibrated observations, also known as DDRs. The system...

  7. Multi-Messenger Astronomy: White Dwarf Binaries, LISA and GAIA

    Science.gov (United States)

    Bueno, Michael; Breivik, Katelyn; Larson, Shane L.

    2017-01-01

    The discovery of gravitational waves has ushered in a new era in astronomy. The low-frequency band covered by the future LISA detector provides unprecedented opportunities for multi-messenger astronomy. With the Global Astrometric Interferometer for Astrophysics (GAIA) mission, we expect to discover about 1,000 eclipsing binary systems composed of a WD and a main sequence star - a sizeable increase from the approximately 34 currently known binaries of this type. In advance of the first GAIA data release and the launch of LISA within the next decade, we used the Binary Stellar Evolution (BSE) code simulate the evolution of White Dwarf Binaries (WDB) in a fixed galaxy population of about 196,000 sources. Our goal is to assess the detectability of a WDB by LISA and GAIA using the parameters from our population synthesis, we calculate GW strength h, and apparent GAIA magnitude G. We can then use a scale factor to make a prediction of how many multi- messenger sources we expect to be detectable by both LISA and GAIA in a galaxy the size of the Milky Way. We create binaries 10 times to ensure randomness in distance assignment and average our results. We then determined whether or not astronomical chirp is the difference between the total chirp and the GW chirp. With Astronomical chirp and simulations of mass transfer and tides, we can gather more information about the internal astrophysics of stars in ultra-compact binary systems.

  8. Peroxisome proliferator-activated receptors, estrogenic responses and biotransformation system in the liver of salmon exposed to tributyltin and second messenger activator

    International Nuclear Information System (INIS)

    Pavlikova, Nela; Kortner, Trond M.; Arukwe, Augustine

    2010-01-01

    The mechanisms by which organotin compounds produce modulations of the endocrine systems and other biological responses are not fully understood. In this study, juvenile salmon were force-fed diet containing TBT (0: solvent control, 0.1, 1 and 10 mg/kg fish) for 72 h. Subsequently, fish exposed to solvent control and 10 mg TBT were exposed to waterborne concentration (200 μg/l) of the adenylate cyclase (AC) stimulator, forskolin for 2 and 4 h. The overall aim of the study was to explore whether TBT endocrine disruptive effects involve second messenger activation. Liver was sampled from individual fish (n = 8) at the end of the exposures. The transcription patterns of peroxisome proliferator-activated receptor (PPAR) isotype and acyl-coenzyme A oxidase 1 (ACOX1), aromatase isoform, estrogen receptor-α (ERα), pregnane X receptor (PXR), CYP3A and glutathione S-transferase (GST) genes were measured by quantitative polymerase chain reaction (qPCR). Our data showed a consistent increase in PPARα, PPARβ and PPARγ mRNA and protein expression after TBT exposure that were inversely correlated with ACOX1 mRNA levels. Forskolin produced PPAR isotype-specific mRNA and protein effects that were modulated by TBT. ACOX1 expression was decreased (at 2 h) and increased (at 4 h) by forskolin and the presence of TBT potentiated these effects. TBT apparently increased mRNA and protein levels of cyp19a, compared to the solvent control, whereas cyp19b mRNA levels were unaffected by TBT treatment. Combined TBT and forskolin exposure produced respective decrease and increase of mRNA levels of cyp19a and cyp19b, compared with control. TBT decreased ERα mRNA at low dose (1 mg/kg) and forskolin exposure alone produced a consistent decrease of ERα mRNA levels that were not affected by the presence of TBT. Interestingly, PXR and CYP3A mRNA levels were differentially affected, either decreased or increased, after exposure to TBT and forskolin, singly and also in combination. GST mRNA was

  9. MESSENGER, MErcury: Surface, Space ENvironment, GEochemistry, and Ranging; A Mission to Orbit and Explore the Planet Mercury

    Science.gov (United States)

    1999-01-01

    MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.

  10. Understanding the core of RNA interference: The dynamic aspects of Argonaute-mediated processes

    KAUST Repository

    Zhu, Lizhe; Jiang, Hanlun; Sheong, Fu Kit; Cui, Xuefeng; Wang, Yanli; Gao, Xin; Huang, Xuhui

    2016-01-01

    and its interaction with the nucleic acids, considerable progress has been made to reveal the dynamic aspects of various Ago-mediated processes. Here we review these novel insights into the guide-strand loading, duplex unwinding, and effects of seed

  11. RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements

    NARCIS (Netherlands)

    Jore, M.M.; Brouns, S.J.J.; Oost, van der J.

    2010-01-01

    Once thought to be just a messenger that allows genetic information encoded in DNA to direct the formation of proteins, RNA (ribonucleic acid) is now known to be a highly versatile molecule that has multiple roles in cells. It can function as an enzyme, scaffold various subcellular structures, and

  12. Guide totheNomenclatureofKinetoplastidRNA Editing: AProposal

    Czech Academy of Sciences Publication Activity Database

    Simpson, L.; Aphasizhev, R.; Lukeš, Julius; Cruz-Reyes, J.

    2010-01-01

    Roč. 161, č. 1 (2010), s. 2-6 ISSN 1434-4610 Institutional research plan: CEZ:AV0Z60220518 Keywords : TRYPANOSOMA-BRUCEI MITOCHONDRIA * BINDING COMPLEX * EDITOSOME INTEGRITY * MESSENGER-RNA * U-DELETION * LEISHMANIA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.329, year: 2010

  13. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing.

    Directory of Open Access Journals (Sweden)

    Jana Sachsenröder

    Full Text Available BACKGROUND: Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2 with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. RESULTS: The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9% and mammalian viruses (23.9%; 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV, represents a novel pig virus. CONCLUSION: The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures

  14. Trypanosome RNA editing: the complexity of getting U in and taking U out

    Czech Academy of Sciences Publication Activity Database

    Read, L. K.; Lukeš, Julius; Hashimi, Hassan

    2016-01-01

    Roč. 7, č. 1 (2016), s. 33-51 ISSN 1757-7004 R&D Projects: GA ČR GA15-21974S EU Projects: European Commission(XE) 289007 Institutional support: RVO:60077344 Keywords : messenger RNA * guide RNA * mitochondria Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.838, year: 2016

  15. Translation of a nonpolyadenylated viral RNA is enhanced by binding of viral coat protein or polyadenylation of the RNA.

    Science.gov (United States)

    Neeleman, L; Olsthoorn, R C; Linthorst, H J; Bol, J F

    2001-12-04

    On entering a host cell, positive-strand RNA virus genomes have to serve as messenger for the translation of viral proteins. Efficient translation of cellular messengers requires interactions between initiation factors bound to the 5'-cap structure and the poly(A) binding protein bound to the 3'-poly(A) tail. Initiation of infection with the tripartite RNA genomes of alfalfa mosaic virus (AMV) and viruses from the genus Ilarvirus requires binding of a few molecules of coat protein (CP) to the 3' end of the nonpolyadenylated viral RNAs. Moreover, infection with the genomic RNAs can be initiated by addition of the subgenomic messenger for CP, RNA 4. We report here that extension of the AMV RNAs with a poly(A) tail of 40 to 80 A-residues permitted initiation of infection independently of CP or RNA 4 in the inoculum. Specifically, polyadenylation of RNA 1 relieved an apparent bottleneck in the translation of the viral RNAs. Translation of RNA 4 in plant protoplasts was autocatalytically stimulated by its encoded CP. Mutations that interfered with CP binding to the 3' end of viral RNAs reduced translation of RNA 4 to undetectable levels. Possibly, CP of AMV and ilarviruses stimulates translation of viral RNAs by acting as a functional analogue of poly(A) binding protein or other cellular proteins.

  16. Gravity, Topography, and Magnetic Field of Mercury from Messenger

    Science.gov (United States)

    Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.; hide

    2012-01-01

    On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe

  17. NEUTRINOS AS COSMIC MESSENGERS IN THE ERA OF ICECUBE, ANTARES AND KM3NET

    Directory of Open Access Journals (Sweden)

    Uli F. Katz

    2013-12-01

    Full Text Available Using neutrinos as cosmic messengers for observation of non-thermal processes in the Universe is a highly attractive and promising vision, which has been pursued in various neutrino telescope projects for more than two decades. Recent results from ground-based TeV gamma-ray observatories and refinements of model calculations of the expected neutrino fluxes indicate that Gigaton target volumes will be necessary to establish neutrino astronomy. A first neutrino telescope of that size, IceCube, is operational at the South Pole. Based on experience with the smaller first-generation ANTARES telescope in the Mediterranean Sea, the multi-Gigaton KM3NeT device is in preparation. These neutrino telescopes are presented, and some selected results and the expected KM3NeT performance are discussed.

  18. Melatonin, Noncoding RNAs, Messenger RNA Stability and Epigenetics—Evidence, Hints, Gaps and Perspectives

    Directory of Open Access Journals (Sweden)

    Rüdiger Hardeland

    2014-10-01

    Full Text Available Melatonin is a highly pleiotropic regulator molecule, which influences numerous functions in almost every organ and, thus, up- or down-regulates many genes, frequently in a circadian manner. Our understanding of the mechanisms controlling gene expression is actually now expanding to a previously unforeseen extent. In addition to classic actions of transcription factors, gene expression is induced, suppressed or modulated by a number of RNAs and proteins, such as miRNAs, lncRNAs, piRNAs, antisense transcripts, deadenylases, DNA methyltransferases, histone methylation complexes, histone demethylases, histone acetyltransferases and histone deacetylases. Direct or indirect evidence for involvement of melatonin in this network of players has originated in different fields, including studies on central and peripheral circadian oscillators, shift work, cancer, inflammation, oxidative stress, aging, energy expenditure/obesity, diabetes type 2, neuropsychiatric disorders, and neurogenesis. Some of the novel modulators have also been shown to participate in the control of melatonin biosynthesis and melatonin receptor expression. Future work will need to augment the body of evidence on direct epigenetic actions of melatonin and to systematically investigate its role within the network of oscillating epigenetic factors. Moreover, it will be necessary to discriminate between effects observed under conditions of well-operating and deregulated circadian clocks, and to explore the possibilities of correcting epigenetic malprogramming by melatonin.

  19. A premature stopcodon in thyroglobulin messenger RNA results in familial goiter and moderate hypothyroidism

    NARCIS (Netherlands)

    van de Graaf, S. A.; Ris-Stalpers, C.; Veenboer, G. J.; Cammenga, M.; Santos, C.; Targovnik, H. M.; de Vijlder, J. J.; Medeiros-Neto, G.

    1999-01-01

    Impaired thyroglobulin (Tg) synthesis is one of the putative causes for dyshormonogenesis of the thyroid gland. This type of hypothyroidism is characterized by intact iodide trapping, normal organification of iodide, and usually low serum Tg levels in relation to high TSH, and when untreated the

  20. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    DEFF Research Database (Denmark)

    Barnathan, E S; Kuo, A; Karikó, K

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...... an endothelial cell cDNA library using the polymerase chain reaction (PCR) and oligonucleotide primers corresponding to the DNA sequence of the receptor cloned from transformed human fibroblasts (Roldan et al, EMBO J 9:467, 1990). The size of the cDNA (approximately 1,054 base pairs, bp) and the presence...

  1. Melatonin, Noncoding RNAs, Messenger RNA Stability and Epigenetics—Evidence, Hints, Gaps and Perspectives

    Science.gov (United States)

    Hardeland, Rüdiger

    2014-01-01

    Melatonin is a highly pleiotropic regulator molecule, which influences numerous functions in almost every organ and, thus, up- or down-regulates many genes, frequently in a circadian manner. Our understanding of the mechanisms controlling gene expression is actually now expanding to a previously unforeseen extent. In addition to classic actions of transcription factors, gene expression is induced, suppressed or modulated by a number of RNAs and proteins, such as miRNAs, lncRNAs, piRNAs, antisense transcripts, deadenylases, DNA methyltransferases, histone methylation complexes, histone demethylases, histone acetyltransferases and histone deacetylases. Direct or indirect evidence for involvement of melatonin in this network of players has originated in different fields, including studies on central and peripheral circadian oscillators, shift work, cancer, inflammation, oxidative stress, aging, energy expenditure/obesity, diabetes type 2, neuropsychiatric disorders, and neurogenesis. Some of the novel modulators have also been shown to participate in the control of melatonin biosynthesis and melatonin receptor expression. Future work will need to augment the body of evidence on direct epigenetic actions of melatonin and to systematically investigate its role within the network of oscillating epigenetic factors. Moreover, it will be necessary to discriminate between effects observed under conditions of well-operating and deregulated circadian clocks, and to explore the possibilities of correcting epigenetic malprogramming by melatonin. PMID:25310649

  2. Messenger RNA Interferase RelE Controls relBE Transcription by Conditional Cooperativity

    DEFF Research Database (Denmark)

    Overgaard, Martin; Borch, Jonas; Jørgensen, Mikkel G

    2008-01-01

    Prokaryotic toxin-antitoxin (TA) loci consist of two genes in an operon that encodes a metabolically stable toxin and an unstable antitoxin. The antitoxin neutralises its cognate toxin by forming a tight complex with it. In all cases known, the antitoxin autoregulates TA operon transcription by b...... operator DNA. A mutational analysis of the operator-sites showed that RelE in excess counteracted cooperative binding of the RelB(2)*RelE complexes to the operator-sites. Thus, RelE controls relBE transcription by conditional cooperativity.......Prokaryotic toxin-antitoxin (TA) loci consist of two genes in an operon that encodes a metabolically stable toxin and an unstable antitoxin. The antitoxin neutralises its cognate toxin by forming a tight complex with it. In all cases known, the antitoxin autoregulates TA operon transcription...... by binding to one or more operators in the promoter region while the toxin functions as a co-repressor of transcription. Interestingly, the toxin can also stimulate TA operon transcription. Here we analyse mechanistic aspects of how RelE of Escherichia coli can function both as a co-repressor and derepressor...

  3. Expression of growth differentiation factor 9 messenger RNA in porcine growing and preovulatory ovarian follicles

    Czech Academy of Sciences Publication Activity Database

    Procházka, Radek; Němcová, Lucie; Nagyová, Eva; Kaňka, Jiří

    2004-01-01

    Roč. 71, - (2004), s. 1290-1295 ISSN 0006-3363 R&D Projects: GA ČR GA524/01/0903; GA AV ČR IAA5045102 Institutional research plan: CEZ:AV0Z5045916 Keywords : cumulus cells * follicle * granulosa cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.550, year: 2004

  4. PERIPHERAL LIPOPOLYSACCHARIDE STIMULATION INDUCES INTERLEUKIN-1-BETA MESSENGER-RNA IN RAT-BRAIN MICROGLIAL CELLS

    NARCIS (Netherlands)

    BUTTINI, M; BODDEKE, H

    The inflammatory cytokine interleukin-1 acts as an endogenous pyrogen in organisms affected by infectious diseases and has been shown to influence the activity of the central nervous system. Using in situ hybridization histochemistry, we have examined the cellular source of interleukin-1 beta in rat

  5. In vitro processing of the RNA-2-encoded polyprotein of two nepoviruses: tomato black ring virus and grapevine chrome mosaic virus.

    Science.gov (United States)

    Demangeat, G; Hemmer, O; Fritsch, C; Le Gall, O; Candresse, T

    1991-02-01

    In vitro translation of RNA-2 of each of two closely related nepoviruses, tomato black ring virus (TBRV) and grapevine chrome mosaic virus (GCMV), in a rabbit reticulocyte lysate resulted in the synthesis of single polypeptides of 150K and 146K respectively. Processing of these polyproteins occurred after the addition of translation products of homologous RNA-1. The positions of the cleavage products within the polyproteins were determined. From the N to the C terminus, Mr values for the proteins were 50K, 46K and 59K for TBRV and 44K, 46K and 56K for GCMV. TBRV RNA-1 translation products also cleaved the polyproteins encoded by GCMV RNA-2 which suggests that the cleavage sites in the two polyproteins are similar.

  6. NVL2, a nucleolar AAA-ATPase, is associated with the nuclear exosome and is involved in pre-rRNA processing.

    Science.gov (United States)

    Yoshikatsu, Yuki; Ishida, Yo-ichi; Sudo, Haruka; Yuasa, Keizo; Tsuji, Akihiko; Nagahama, Masami

    2015-08-28

    Nuclear VCP-like 2 (NVL2) is a member of the chaperone-like AAA-ATPase family and is involved in the biosynthesis of 60S ribosomal subunits in mammalian cells. We previously showed the interaction of NVL2 with a DExD/H-box RNA helicase MTR4/DOB1, which is a known cofactor for an exoribonuclease complex, the exosome. This finding implicated NVL2 in RNA metabolic processes during ribosome biogenesis. In the present study, we found that a series of mutations within the ATPase domain of NVL2 causes a defect in pre-rRNA processing into mature 28S and 5.8S rRNAs. Co-immunoprecipitation analysis showed that NVL2 was associated with the nuclear exosome complex, which includes RRP6 as a nucleus-specific catalytic subunit. This interaction was prevented by depleting either MTR4 or RRP6, indicating their essential role in mediating this interaction with NVL2. Additionally, knockdown of MPP6, another cofactor for the nuclear exosome, also prevented the interaction by causing MTR4 to dissociate from the nuclear exosome. These results suggest that NVL2 is involved in pre-rRNA processing by associating with the nuclear exosome complex and that MPP6 is required for maintaining the integrity of this rRNA processing complex. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. FMRP acts as a key messenger for dopamine modulation in the forebrain.

    Science.gov (United States)

    Wang, Hansen; Wu, Long-Jun; Kim, Susan S; Lee, Frank J S; Gong, Bo; Toyoda, Hiroki; Ren, Ming; Shang, Yu-Ze; Xu, Hui; Liu, Fang; Zhao, Ming-Gao; Zhuo, Min

    2008-08-28

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.

  8. Gravity field and internal structure of Mercury from MESSENGER.

    Science.gov (United States)

    Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H

    2012-04-13

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  9. New Understanding of Mercury's Magnetosphere from MESSENGER'S First Flyby

    Science.gov (United States)

    Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, M.; Korth, Haje; hide

    2008-01-01

    Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.

  10. The evolution of Mercury's crust: a global perspective from MESSENGER.

    Science.gov (United States)

    Denevi, Brett W; Robinson, Mark S; Solomon, Sean C; Murchie, Scott L; Blewett, David T; Domingue, Deborah L; McCoy, Timothy J; Ernst, Carolyn M; Head, James W; Watters, Thomas R; Chabot, Nancy L

    2009-05-01

    Mapping the distribution and extent of major terrain types on a planet's surface helps to constrain the origin and evolution of its crust. Together, MESSENGER and Mariner 10 observations of Mercury now provide a near-global look at the planet, revealing lateral and vertical heterogeneities in the color and thus composition of Mercury's crust. Smooth plains cover approximately 40% of the surface, and evidence for the volcanic origin of large expanses of plains suggests that a substantial portion of the crust originated volcanically. A low-reflectance, relatively blue component affects at least 15% of the surface and is concentrated in crater and basin ejecta. Its spectral characteristics and likely origin at depth are consistent with its apparent excavation from a lower crust or upper mantle enriched in iron- and titanium-bearing oxides.

  11. The Mercury Laser Altimeter Instrument for the MESSENGER Mission

    Science.gov (United States)

    Cavanaugh, John F.; Smith, James C.; Sun, Xiaoli; Bartels, Arlin E.; Ramos-Izquierdo, Luis; Krebs, Danny J.; Novo-Gradac, Anne marie; McGarry, Jan F.; Trunzo, Raymond; Britt, Jamie L.

    2006-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on 3 August 2004. The altimeter will measure the round trip time-of-flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury's center of mass. The altimeter measurements will be used to determine the planet's forced librations by tracking the motion of large-scale topographic features as a function of time. MLA's laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of post-launch testing.

  12. Centrifugation: an important pre-analytic procedure that influences plasma microRNA quantification during blood processing.

    Science.gov (United States)

    Zheng, Xiao-Hui; Cui, Cui; Zhou, Xin-Xi; Zeng, Yi-Xin; Jia, Wei-Hua

    2013-12-01

    Circulating microRNAs are robustly present in plasma or serum and have become a research focus as biomarkers for tumor diagnosis and prognosis. Centrifugation is a necessary procedure for obtaining high-quality blood supernatant. Herein, we investigated one-step and two-step centrifugations, two centrifugal methods routinely used in microRNA study, to explore their effects on plasma microRNA quantification. The microRNAs obtained from one-step and two-step centrifugations were quantified by microarray and TaqMan-based real-time quantitative polymerase chain reaction (Q-PCR). Dynamic light scattering was performed to explore the difference underlying the two centrifugal methods. The results from the microarray containing 1,347 microRNAs showed that the signal detection rate was greatly decreased in the plasma sample prepared by two-step centrifugation. More importantly, the microRNAs missing in this plasma sample could be recovered and detected in the precipitate generated from the second centrifugation. Consistent with the results from microarray, a marked decrease of three representative microRNAs in two-step centrifugal plasma was validated by Q-PCR. According to the size distribution of all nanoparticles in plasma, there were fewer nanoparticles with size >1,000 nm in two-step centrifugal plasma. Our experiments directly demonstrated that different centrifugation methods produced distinct quantities of plasma microRNAs. Thus, exosomes or protein complexes containing microRNAs may be involved in large nanoparticle formation and may be precipitated after two-step centrifugation. Our results remind us that sample processing methods should be first considered in conducting research.

  13. permGPU: Using graphics processing units in RNA microarray association studies

    Directory of Open Access Journals (Sweden)

    George Stephen L

    2010-06-01

    Full Text Available Abstract Background Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. Results We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. Conclusions permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

  14. Processing of the 17-S Escherichia coli precursor RNA in the 27-S pre-ribosomal particle

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, F; Vasseur, M [Institut de Biologie Physico-Chimique, 75 - Paris (France)

    1976-01-01

    An RNase activity probably involved in the maturation of 16-S pre-ribosomal RNA in Escherichia coli has been partially purified from crude cell extracts. When 27-S ribosome precursor particles are incubated with this enzyme preparation in vitro, their 17-S RNA is converted to a product with the same electrophoretic mobility as mature 16-S rRNA. FingerprS rRNA. Generation of the normal 5'-P terminus seems to require a factor present in cell extracts since incubation of the 27-S precursor particle in an extract obtained after centrifugation at 30,000 x g causes conversion of the 17-S RNA to a 16-S species containing both termini of mature 16-S rRNS. Preliminary experiments suggest that correct maturation of the 5' end of the 17-S precursor RNA requires a system in which protein synthesis can take place.

  15. Muscle-specific splicing factors ASD-2 and SUP-12 cooperatively switch alternative pre-mRNA processing patterns of the ADF/cofilin gene in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Genta Ohno

    Full Text Available Pre-mRNAs are often processed in complex patterns in tissue-specific manners to produce a variety of protein isoforms from single genes. However, mechanisms orchestrating the processing of the entire transcript are not well understood. Muscle-specific alternative pre-mRNA processing of the unc-60 gene in Caenorhabditis elegans, encoding two tissue-specific isoforms of ADF/cofilin with distinct biochemical properties in regulating actin organization, provides an excellent in vivo model of complex and tissue-specific pre-mRNA processing; it consists of a single first exon and two separate series of downstream exons. Here we visualize the complex muscle-specific processing pattern of the unc-60 pre-mRNA with asymmetric fluorescence reporter minigenes. By disrupting juxtaposed CUAAC repeats and UGUGUG stretch in intron 1A, we demonstrate that these elements are required for retaining intron 1A, as well as for switching the processing patterns of the entire pre-mRNA from non-muscle-type to muscle-type. Mutations in genes encoding muscle-specific RNA-binding proteins ASD-2 and SUP-12 turned the colour of the unc-60 reporter worms. ASD-2 and SUP-12 proteins specifically and cooperatively bind to CUAAC repeats and UGUGUG stretch in intron 1A, respectively, to form a ternary complex in vitro. Immunohistochemical staining and RT-PCR analyses demonstrate that ASD-2 and SUP-12 are also required for switching the processing patterns of the endogenous unc-60 pre-mRNA from UNC-60A to UNC-60B in muscles. Furthermore, systematic analyses of partially spliced RNAs reveal the actual orders of intron removal for distinct mRNA isoforms. Taken together, our results demonstrate that muscle-specific splicing factors ASD-2 and SUP-12 cooperatively promote muscle-specific processing of the unc-60 gene, and provide insight into the mechanisms of complex pre-mRNA processing; combinatorial regulation of a single splice site by two tissue-specific splicing regulators

  16. MESSENGER Observations of ULF Waves in Mercury's Foreshock Region

    Science.gov (United States)

    Le, Guan; Chi, Peter J.; Bardsen, Scott; Blanco-Cano, Xochitl; Slavin, James A.; Korth, Haje

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth s is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury s bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury s foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury s foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the 1-Hz waves in the Earth s foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth s foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  17. RNA SURVEILLANCE– AN EMERGING ROLE FOR RNA REGULATORY NETWORKS IN AGING

    OpenAIRE

    Montano, Monty; Long, Kimberly

    2010-01-01

    In this review, we describe recent advances in the field of RNA regulatory biology and relate these advances to aging science. We introduce a new term, RNA surveillance, an RNA regulatory process that is conserved in metazoans, and describe how RNA surveillance represents molecular cross-talk between two emerging RNA regulatory systems – RNA interference and RNA editing. We discuss how RNA surveillance mechanisms influence mRNA and microRNA expression and activity during lifespan. Additionall...

  18. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen.

    Science.gov (United States)

    Deng, Dawei; Li, Yang; Xue, Jianpeng; Wang, Jie; Ai, Guanhua; Li, Xin; Gu, Yueqing

    2015-01-01

    Messenger RNA (mRNA), a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP) beacon containing a bare gold nanoparticle (AuNP) as fluorescence quencher and thiol-terminated fluorescently labeled stem-loop-stem oligonucleotide sequences attached by Au-S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b) mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.

  19. Preparation of MS2 phage-like particles and their use as potential process control viruses for detection and quantification of enteric RNA viruses in different matrices

    Directory of Open Access Journals (Sweden)

    Pavel Mikel

    2016-12-01

    Full Text Available The detection and quantification of enteric RNA viruses is based on isolation of viral RNA from the sample followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR. To control the whole process of analysis and in order to guarantee the validity and reliability of results, process control viruses (PCV are used. The present article describes the process of preparation and use of such PCV– MS2 phage-like particles (MS2 PLP – in RT-qPCR detection and quantification of enteric RNA viruses. The MS2 PLP were derived from bacteriophage MS2 carrying a unique and specific de novo-constructed RNA target sequence originating from the DNA of two extinct species. The amount of prepared MS2 particles was quantified using four independent methods - UV spectrophotometry, fluorimetry, transmission electron microscopy (TEM and a specifically developed duplex RT-qPCR. To evaluate the usefulness of MS2 PLP in routine diagnostics different matrices known to harbor enteric RNA viruses (swab samples, liver tissue, serum, feces, and vegetables were artificially contaminated with specific amounts of MS2 PLP. The extraction efficiencies were calculated for each individual matrix. The prepared particles fulfill all requirements for PCV – they are very stable, non-infectious, and are genetically distinct from the target RNA viruses. Due to these properties they represent a good morphological and physiochemical model. The use of MS2 PLP as a PCV in detection and quantification of enteric RNA viruses was evaluated in different types of matrices.

  20. Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity.

    Science.gov (United States)

    Matoušková, Petra; Bártíková, Hana; Boušová, Iva; Hanušová, Veronika; Szotáková, Barbora; Skálová, Lenka

    2014-01-01

    Obesity and metabolic syndrome is increasing health problem worldwide. Among other ways, nutritional intervention using phytochemicals is important method for treatment and prevention of this disease. Recent studies have shown that certain phytochemicals could alter the expression of specific genes and microRNAs (miRNAs) that play a fundamental role in the pathogenesis of obesity. For study of the obesity and its treatment, monosodium glutamate (MSG)-injected mice with developed central obesity, insulin resistance and liver lipid accumulation are frequently used animal models. To understand the mechanism of phytochemicals action in obese animals, the study of selected genes expression together with miRNA quantification is extremely important. For this purpose, real-time quantitative PCR is a sensitive and reproducible method, but it depends on proper normalization entirely. The aim of present study was to identify the appropriate reference genes for mRNA and miRNA quantification in MSG mice treated with green tea catechins, potential anti-obesity phytochemicals. Two sets of reference genes were tested: first set contained seven commonly used genes for normalization of messenger RNA, the second set of candidate reference genes included ten small RNAs for normalization of miRNA. The expression stability of these reference genes were tested upon treatment of mice with catechins using geNorm, NormFinder and BestKeeper algorithms. Selected normalizers for mRNA quantification were tested and validated on expression of quinone oxidoreductase, biotransformation enzyme known to be modified by catechins. The effect of selected normalizers for miRNA quantification was tested on two obesity- and diabetes- related miRNAs, miR-221 and miR-29b, respectively. Finally, the combinations of B2M/18S/HPRT1 and miR-16/sno234 were validated as optimal reference genes for mRNA and miRNA quantification in liver and 18S/RPlP0/HPRT1 and sno234/miR-186 in small intestine of MSG mice. These

  1. NVL2, a nucleolar AAA-ATPase, is associated with the nuclear exosome and is involved in pre-rRNA processing

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikatsu, Yuki [Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima 770-8506 (Japan); Ishida, Yo-ichi; Sudo, Haruka [Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan); Yuasa, Keizo; Tsuji, Akihiko [Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School, Tokushima 770-8506 (Japan); Nagahama, Masami, E-mail: nagahama@my-pharm.ac.jp [Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588 (Japan)

    2015-08-28

    Nuclear VCP-like 2 (NVL2) is a member of the chaperone-like AAA-ATPase family and is involved in the biosynthesis of 60S ribosomal subunits in mammalian cells. We previously showed the interaction of NVL2 with a DExD/H-box RNA helicase MTR4/DOB1, which is a known cofactor for an exoribonuclease complex, the exosome. This finding implicated NVL2 in RNA metabolic processes during ribosome biogenesis. In the present study, we found that a series of mutations within the ATPase domain of NVL2 causes a defect in pre-rRNA processing into mature 28S and 5.8S rRNAs. Co-immunoprecipitation analysis showed that NVL2 was associated with the nuclear exosome complex, which includes RRP6 as a nucleus-specific catalytic subunit. This interaction was prevented by depleting either MTR4 or RRP6, indicating their essential role in mediating this interaction with NVL2. Additionally, knockdown of MPP6, another cofactor for the nuclear exosome, also prevented the interaction by causing MTR4 to dissociate from the nuclear exosome. These results suggest that NVL2 is involved in pre-rRNA processing by associating with the nuclear exosome complex and that MPP6 is required for maintaining the integrity of this rRNA processing complex. - Highlights: • ATPase-deficient mutants of NVL2 have decreased pre-rRNA processing. • NVL2 associates with the nuclear exosome through interactions with MTR4 and RRP6. • MPP6 stabilizes MTR4-RRP6 interaction and allows NVL2 to interact with the complex.

  2. The Velocity Distribution Of Pickup He+ Measured at 0.3 AU by MESSENGER

    Science.gov (United States)

    Gershman, Daniel J.; Fisk, Lennard A.; Gloeckler, George; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.

    2014-06-01

    During its interplanetary trajectory in 2007-2009, the MErcury Surface, Space ENvrionment, GEochemistry, and Ranging (MESSENGER) spacecraft passed through the gravitational focusing cone for interstellar helium multiple times at a heliocentric distance R ≈ 0.3 AU. Observations of He+ interstellar pickup ions made by the Fast Imaging Plasma Spectrometer sensor on MESSENGER during these transits provide a glimpse into the structure of newly formed inner heliospheric pickup-ion distributions. This close to the Sun, these ions are picked up in a nearly radial interplanetary magnetic field. Compared with the near-Earth environment, pickup ions observed near 0.3 AU will not have had sufficient time to be energized substantially. Such an environment results in a nearly pristine velocity distribution function that should depend only on pickup-ion injection velocities (related to the interstellar gas), pitch-angle scattering, and cooling processes. From measured energy-per-charge spectra obtained during multiple spacecraft observational geometries, we have deduced the phase-space density of He+ as a function of magnetic pitch angle. Our measurements are most consistent with a distribution that decreases nearly monotonically with increasing pitch angle, rather than the more commonly modeled isotropic or hemispherically symmetric forms. These results imply that pitch-angle scattering of He+ may not be instantaneous, as is often assumed, and instead may reflect the velocity distribution of initially injected particles. In a slow solar wind stream, we find a parallel-scattering mean free path of λ || ~ 0.1 AU and a He+ production rate of ~0.05 m-3 s-1 within 0.3 AU.

  3. tRNA--the golden standard in molecular biology.

    Science.gov (United States)

    Barciszewska, Mirosława Z; Perrigue, Patrick M; Barciszewski, Jan

    2016-01-01

    Transfer RNAs (tRNAs) represent a major class of RNA molecules. Their primary function is to help decode a messenger RNA (mRNA) sequence in order to synthesize protein and thus ensures the precise translation of genetic information that is imprinted in DNA. The discovery of tRNA in the late 1950's provided critical insight into a genetic machinery when little was known about the central dogma of molecular biology. In 1965, Robert Holley determined the first nucleotide sequence of alanine transfer RNA (tRNA(Ala)) which earned him the 1968 Nobel Prize in Physiology or Medicine. Today, tRNA is one of the best described and characterized biological molecules. Here we review some of the key historical events in tRNA research which led to breakthrough discoveries and new developments in molecular biology.

  4. Construction of permanently inducible miRNA-based expression vectors using site-specific recombinases

    Directory of Open Access Journals (Sweden)

    Garwick-Coppens Sara E

    2011-11-01

    Full Text Available Abstract Background RNA interference (RNAi is a conserved gene silencing mechanism mediated by small inhibitory microRNAs (miRNAs. Promoter-driven miRNA expression vectors have emerged as important tools for delivering natural or artificially designed miRNAs to eukaryotic cells and organisms. Such systems can be used to query the normal or pathogenic functions of natural miRNAs or messenger RNAs, or to therapeutically silence disease genes. Results As with any molecular cloning procedure, building miRNA-based expression constructs requires a time investment and some molecular biology skills. To improve efficiency and accelerate the construction process, we developed a method to rapidly generate miRNA expression vectors using recombinases instead of more traditional cut-and-paste molecular cloning techniques. In addition to streamlining the construction process, our cloning strategy provides vectors with added versatility. In our system, miRNAs can be constitutively expressed from the U6 promoter, or inducibly expressed by Cre recombinase. We also engineered a built-in mechanism to destroy the vector with Flp recombinase, if desired. Finally, to further simplify the construction process, we developed a software package that automates the prediction and design of optimal miRNA sequences using our system. Conclusions We designed and tested a modular system to rapidly clone miRNA expression cassettes. Our strategy reduces the hands-on time required to successfully generate effective constructs, and can be implemented in labs with minimal molecular cloning expertise. This versatile system provides options that permit constitutive or inducible miRNA expression, depending upon the needs of the end user. As such, it has utility for basic or translational applications.

  5. Combinatorics of RNA-RNA interaction

    DEFF Research Database (Denmark)

    Li, Thomas J X; Reidys, Christian

    2012-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure...... means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including...

  6. Cisplatin binds to pre-miR-200b and impairs its processing to mature microRNA.

    Science.gov (United States)

    Mezencev, R; Wartell, R M

    2018-01-01

    Cisplatin is an important anticancer drug with a complex mode of action, a variety of possible targets, and numerous resistance mechanisms. While genomic DNA has traditionally been considered to be its most critical anticancer target, several lines of evidence suggest that various RNAs and other biomolecules may play a role in its anticancer mode of action. In this report we demonstrate that cisplatin modifies pre-miR-200b, impairs its processing to mature miRNA, and decreases miR-200b expression in ovarian cancer cells. Considering the role of miR-200b in epithelial-to-mesenchymal transition and cancer chemosensitivity, cisplatin-induced modification of pre-miR-200b and subsequent deregulation of mature miR-200b may, depending on cell context, limit anticancer activity of this important anticancer drug. More gener- ally, precursor miRNAs may be important targets of cisplatin and play a role in this drug's anticancer activity or modulate cell responses to this drug.

  7. Antisense targeting of 3' end elements involved in DUX4 mRNA processing is an efficient therapeutic strategy for facioscapulohumeral dystrophy: a new gene-silencing approach.

    Science.gov (United States)

    Marsollier, Anne-Charlotte; Ciszewski, Lukasz; Mariot, Virginie; Popplewell, Linda; Voit, Thomas; Dickson, George; Dumonceaux, Julie

    2016-04-15

    Defects in mRNA 3'end formation have been described to alter transcription termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to gene silencing. Here, we choose facioscapulohumeral dystrophy (FSHD) as a model to determine whether or not targeting key 3' end elements involved in mRNA processing using antisense oligonucleotide drugs can be used as a strategy for gene silencing within a potentially therapeutic context. FSHD is a gain-of-function disease characterized by the aberrant expression of the Double homeobox 4 (DUX4) transcription factor leading to altered pathogenic deregulation of multiple genes in muscles. Here, we demonstrate that targeting either the mRNA polyadenylation signal and/or cleavage site is an efficient strategy to down-regulate DUX4 expression and to decrease the abnormally high-pathological expression of genes downstream of DUX4. We conclude that targeting key functional 3' end elements involved in pre-mRNA to mRNA maturation with antisense drugs can lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for at least FSHD. Moreover, polyadenylation is a crucial step in the maturation of almost all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-mediated knockdown strategy. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Cellular mRNA decay factors involved in the hepatitis C virus life cycle

    OpenAIRE

    Mina Ibarra, Leonardo Bruno

    2010-01-01

    The group of positive strand RNA ((+)RNA) viruses includes numerous plant, animal and human pathogens such as the hepatitis C virus (HCV). Their viral genomes mimic cellular mRNAs, however, besides acting as messengers for translation of viral proteins, they also act as templates for viral replication. Since these two functions are mutually exclusive, a key step in the replication of all (+) RNA viruses is the regulated exit of the genomic RNAs from the cellular translation machinery to the v...

  9. Factor C*, the specific initiation component of the mouse RNA polymerase I holoenzyme, is inactivated early in the transcription process.

    OpenAIRE

    Brun, R P; Ryan, K; Sollner-Webb, B

    1994-01-01

    Factor C* is the component of the RNA polymerase I holoenzyme (factor C) that allows specific transcriptional initiation on a factor D (SL1)- and UBF-activated rRNA gene promoter. The in vitro transcriptional capacity of a preincubated rDNA promoter complex becomes exhausted very rapidly upon initiation of transcription. This is due to the rapid depletion of C* activity. In contrast, C* activity is not unstable in the absence of transcription, even in the presence of nucleoside triphosphates ...

  10. Penggunaan Aplikasi Blackberry Messenger (BBM Sebagai Media Untuk Evaluasi Mahasiswa

    Directory of Open Access Journals (Sweden)

    Toni Kus Indratno

    2016-09-01

    Full Text Available Penggunaaan teknologi ke dalam setiap sendi kehidupan mutlak diperlukan untuk masa sekarang ini. Hampir setiap orang mempunyai smartphone untuk mendukung aktivitasnya sehari-hari. Akan tetapi penggunaan teknologi yang serba canggih apabila tidak diimbangi dengan kearifan, akan berdampak pada hal negatif saja, bahkan mengaburkan fungsi penting dari teknologi itu sendiri. Blackberry messenger atau yang lebih dikenal BBM merupakan satu dari sekian banyak aplikasi yang hampir pasti ada di setiap smartphone. Sisi kecepatan transfer data dan kemudahan berkirim berkas (file menjadi daya tarik tersendiri dari aplikasi ini. Pemanfaatan BBM untuk mendukung proses evaluasi mahasiswa telah dilakukan pada penelitian ini. Mahasiswa diberikan soal kuis untuk dikerjakan pada dini hari (mulai Pkl. 03.00 s.d. 05.00, hasil pekerjaan mahasiswa dikirim menggunakan aplikasi BBM dalam bentuk gambar. Penelitian ini menggunakan desain penelitian studi lapangan. Jenis penelitian ini adalah deskriptif kualitatif. Teknik pengumpulan data menggunakan dokumentasi. Hasil penelitian menunjukkan bahwa mahasiswa merasa lebih leluasa dalam mengerjakan kuis, mereka bisa mengerjakan sesuai gaya belajar masing-masing, tidak dibatasi oleh ruang dan suasana yang menegangkan. Waktu pengerjaan dini haripun membawa pengaruh positif, dengan pikiran yang masih segar, mahasiswa bisa lebih optimal dalam mengerjakan kuis.

  11. Massive Higher Dimensional Gauge Fields as Messengers of Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Chacko, Z.; Luty, Markus A.; Ponton, Eduardo

    2000-01-01

    We consider theories with one or more compact dimensions with size r > 1/M, where M is the fundamental Planck scale, with the visible and hidden sectors localized on spatially separated 3 -branes''. We show that a bulk U(1) gauge field spontaneously broken on the hidden-sector 3-brane is an attractive candidate for the messenger of supersymmetry breaking. In this scenario scalar mass-squared terms are proportional to U(1) charges, and therefore naturally conserve flavor. Arbitrary flavor violation at the Planck scale gives rise to exponentially suppressed flavor violation at low energies. Gaugino masses can be generated if the standard gauge fields propagate in the bulk; μ and Bμ terms can be generated by the Giudice-Masiero or by the VEV of a singlet in the visible sector. The latter case naturally solves the SUSY CP problem. Realistic phenomenology can be obtained either if all microscopic parameters are order one in units of M, or if the theory is strongly coupled at the scale M. (For the latter case, we estimate parameters by extending n aive dimensional analysis'' to higher-dimension theories with branes.) In either case, the only unexplained hierarchy is the l arge'' size of the extra dimensions in fundamental units, which need only be an order of magnitude. All soft masses are naturally within an order of magnitude of m 3/2 , and trilinear scalar couplings are negligible. Squark and slepton masses can naturally unify even in the absence of grand unification. (author)

  12. Topicality and impact in social media: diverse messages, focused messengers.

    Science.gov (United States)

    Weng, Lilian; Menczer, Filippo

    2015-01-01

    We have a limited understanding of the factors that make people influential and topics popular in social media. Are users who comment on a variety of matters more likely to achieve high influence than those who stay focused? Do general subjects tend to be more popular than specific ones? Questions like these demand a way to detect the topics hidden behind messages associated with an individual or a keyword, and a gauge of similarity among these topics. Here we develop such an approach to identify clusters of similar hashtags in Twitter by detecting communities in the hashtag co-occurrence network. Then the topical diversity of a user's interests is quantified by the entropy of her hashtags across different topic clusters. A similar measure is applied to hashtags, based on co-occurring tags. We find that high topical diversity of early adopters or co-occurring tags implies high future popularity of hashtags. In contrast, low diversity helps an individual accumulate social influence. In short, diverse messages and focused messengers are more likely to gain impact.

  13. Gravity Field and Internal Structure of Mercury from MESSENGER

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Phillips, Roger J.; Solomon, Sean C.; Hauck, Steven A., II; Lemoine, Frank G.; Mazarico, Erwan; Neumann, Gregory A.; Peale, Stanton J.; Margot, Jean-Luc; hide

    2012-01-01

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/M(R(exp 2) = 0.353 +/- 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(sub m)/C = 0.452 +/- 0.035. A model for Mercury s radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  14. Intragraft interleukin 2 mRNA expression during acute cellular rejection and left ventricular total wall thickness after heart transplantation

    NARCIS (Netherlands)

    de Groot-Kruseman, H A; Baan, C C; Hagman, E M; Mol, W M; Niesters, H G; Maat, A P; Zondervan, P E; Weimar, W; Balk, A H

    OBJECTIVE: To assess whether diastolic graft function is influenced by intragraft interleukin 2 (IL-2) messenger RNA (mRNA) expression in rejecting cardiac allografts. DESIGN: 16 recipients of cardiac allografts were monitored during the first three months after transplantation. The presence of IL-2

  15. Cas5d Protein Processes Pre-crRNA and Assembles into a Cascade-like Interference Complex in Subtype I-C/Dvulg CRISPR-Cas System

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Hyun; Haitjema, Charles; Liu, Xueqi; Ding, Fran; Wang, Hongwei; DeLisa, Matthew P.; Ke, Ailong (Yale); (Cornell); (Tsinghua)

    2012-10-10

    Clustered regularly interspaced short palindromic repeats (CRISPRs), together with an operon of CRISPR-associated (Cas) proteins, form an RNA-based prokaryotic immune system against exogenous genetic elements. Cas5 family proteins are found in several type I CRISPR-Cas systems. Here, we report the molecular function of subtype I-C/Dvulg Cas5d from Bacillus halodurans. We show that Cas5d cleaves pre-crRNA into unit length by recognizing both the hairpin structure and the 3 single stranded sequence in the CRISPR repeat region. Cas5d structure reveals a ferredoxin domain-based architecture and a catalytic triad formed by Y46, K116, and H117 residues. We further show that after pre-crRNA processing, Cas5d assembles with crRNA, Csd1, and Csd2 proteins to form a multi-sub-unit interference complex similar to Escherichia coli Cascade (CRISPR-associated complex for antiviral defense) in architecture. Our results suggest that formation of a crRNA-presenting Cascade-like complex is likely a common theme among type I CRISPR subtypes.

  16. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  17. MESSENGER H XRS 5 REDUCED DATA RECORD (RDR) FOOTPRINTS V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER XRS reduced data record (RDR) footprints which are derived from the navigational meta-data for each...

  18. MESSENGER E/V/H MASCS 5 VIRS DERIVED ANALYSIS DATA V2.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER MASCS VIRS derived analysis product, also known as the DAP. The DAP is a 500 meter per pixel mosaic map of...

  19. MESSENGER E/V/H MASCS 5 VIRS DERIVED ANALYSIS DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER MASCS VIRS derived analysis product, also known as the DAP. The DAP is a 500 meter per pixel mosaic map of...

  20. Evidence for a Messenger Function of Cyclic GMP During Phosphodiesterase Induction in Dictyostelium discoideum

    NARCIS (Netherlands)

    Haastert, Peter J.M. van; Pasveer, Frank J.; Meer, Rob C. van der; Heijden, Paul R. van der; Walsum, Hans van; Konijn, Theo M.

    1982-01-01

    Chemotactic stimulation of vegetative or aggregative Dictyostelium discoideum cells induced a transient elevation of cyclic GMP levels. The addition of chemoattractants to postvegetative cells by pulsing induced phosphodiesterase activity. The following lines of evidence suggest a messenger function

  1. MESSENGER E/V/H GRNS 2 GAMMA RAY SPECTROMETER RAW DATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER GRS uncalibrated observations, also known as EDRs. The GRS experiment is a gamma ray spectrometer designed...

  2. MESSENGER E/V/H GRNS 3 GAMMA RAY SPECTROMETER CALIBDATA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract ======== This data set consists of the MESSENGER GRS calibrated observations (CDRs) and the reduced data product (RDR). The GRS experiment is a gamma ray...

  3. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  4. Early MESSENGER Results for Less Abundant or Weakly Emitting Species in Mercury's Exosphere

    Science.gov (United States)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos

    2011-01-01

    Now that the Messenger spacecraft is in orbit about Mercury, the extended observing time enables searches for exospheric species that are less abundant or weakly emitting compared with those for which emission has previously been detected. Many of these species cannot be observed from the ground because of terrestrial atmospheric absorption. We report here on the status of MESSENGER orbital-phase searches for additional species in Mercury's exosphere.

  5. Structural basis of the non-coding RNA RsmZ acting as a protein sponge.

    Science.gov (United States)

    Duss, Olivier; Michel, Erich; Yulikov, Maxim; Schubert, Mario; Jeschke, Gunnar; Allain, Frédéric H-T

    2014-05-29

    MicroRNA and protein sequestration by non-coding RNAs (ncRNAs) has recently generated much interest. In the bacterial Csr/Rsm system, which is considered to be the most general global post-transcriptional regulatory system responsible for bacterial virulence, ncRNAs such as CsrB or RsmZ activate translation initiation by sequestering homodimeric CsrA-type proteins from the ribosome-binding site of a subset of messenger RNAs. However, the mechanism of ncRNA-mediated protein sequestration is not understood at the molecular level. Here we show for Pseudomonas fluorescens that RsmE protein dimers assemble sequentially, specifically and cooperatively onto the ncRNA RsmZ within a narrow affinity range. This assembly yields two different native ribonucleoprotein structures. Using a powerful combination of nuclear magnetic resonance and electron paramagnetic resonance spectroscopy we elucidate these 70-kilodalton solution structures, thereby revealing the molecular mechanism of the sequestration process and how RsmE binding protects the ncRNA from RNase E degradation. Overall, our findings suggest that RsmZ is well-tuned to sequester, store and release RsmE and therefore can be viewed as an ideal protein 'sponge'.

  6. Computational tools for genome-wide miRNA prediction and study

    KAUST Repository

    Malas, T.B.; Ravasi, Timothy

    2012-01-01

    MicroRNAs (miRNAs) are single-stranded non-coding RNA susually of 22 nucleotidesin length that play an important post-transcriptional regulation role in many organisms. MicroRNAs bind a seed sequence to the 3-untranslated region (UTR) region of the target messenger RNA (mRNA), inducing degradation or inhibition of translation and resulting in a reduction in the protein level. This regulatory mechanism is central to many biological processes and perturbation could lead to diseases such as cancer. Given the biological importance, of miRNAs, there is a great need to identify and study their targets and functions. However, miRNAs are very difficult to clone in the lab and this has hindered the identification of novel miRNAs. Next-generation sequencing coupled with new computational tools has recently evolved to help researchers efficiently identify large numbers of novel miRNAs. In this review, we describe recent miRNA prediction tools and discuss their priorities, advantages and disadvantages. Malas and Ravasi.

  7. Computational tools for genome-wide miRNA prediction and study

    KAUST Repository

    Malas, T.B.

    2012-11-02

    MicroRNAs (miRNAs) are single-stranded non-coding RNA susually of 22 nucleotidesin length that play an important post-transcriptional regulation role in many organisms. MicroRNAs bind a seed sequence to the 3-untranslated region (UTR) region of the target messenger RNA (mRNA), inducing degradation or inhibition of translation and resulting in a reduction in the protein level. This regulatory mechanism is central to many biological processes and perturbation could lead to diseases such as cancer. Given the biological importance, of miRNAs, there is a great need to identify and study their targets and functions. However, miRNAs are very difficult to clone in the lab and this has hindered the identification of novel miRNAs. Next-generation sequencing coupled with new computational tools has recently evolved to help researchers efficiently identify large numbers of novel miRNAs. In this review, we describe recent miRNA prediction tools and discuss their priorities, advantages and disadvantages. Malas and Ravasi.

  8. A dominant mutation in mediator of paramutation2, one of three second-largest subunits of a plant-specific RNA polymerase, disrupts multiple siRNA silencing processes.

    Science.gov (United States)

    Sidorenko, Lyudmila; Dorweiler, Jane E; Cigan, A Mark; Arteaga-Vazquez, Mario; Vyas, Meenal; Kermicle, Jerry; Jurcin, Diane; Brzeski, Jan; Cai, Yu; Chandler, Vicki L

    2009-11-01

    Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V-like complexes could provide maize with a greater diversification of RNA-mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state-a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV-like) and potentially processes downstream (Pol-V-like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2-1 dominance

  9. Orbital Normalization of MESSENGER Gamma-Ray Spectrometer Data

    Science.gov (United States)

    Rhodes, E. A.; Peplowski, P. N.; Evans, L. G.; Hamara, D. K.; Boynton, W. V.; Solomon, S. C.

    2011-12-01

    The MESSENGER Gamma-Ray Spectrometer (GRS) measures energy spectra of gamma rays emanating from the surface of Mercury. Analysis of these spectra provides elemental abundances of surface material. The MESSENGER mission necessarily provides some data normalization challenges for GRS analysis. So as to keep the spacecraft cool while orbiting the dayside of the planet, the orbits are highly eccentric, with altitudes varying from 200-500 km to ~ 15,000 km. A small fraction of time is spent at the low altitudes where gamma-ray signals are largest, requiring a large number of orbits to yield sufficient counting statistics for elemental analysis. Also, the sunshade must always shield the spacecraft from the Sun, which causes the orientation of the GRS often to be far from nadir-pointing, so the detector efficiency and attenuation of gamma rays from the planet must be known for a wide range of off-nadir orientations. An efficiency/attenuation map for the expected ranges of orientations and energies was constructed in a ground calibration experiment for a limited range of orientations using a nuclear reactor and radioisotope sources, and those results were extended to other orientations by radiation transport computations using as input a computer-aided design model of the spacecraft and its composition. This normalization has allowed abundance determinations of elements K, Th, and U from radioisotopes of these elements in the Mercury regolith during the first quarter of the year-long mission. These results provide constraints on models of Mercury's chemical and thermal evolution. The normalization of gamma-ray spectra for surface elements not having radioisotopes is considerably more complex; these gamma rays come from neutron inelastic-scatter and capture reactions in the regolith, where the neutrons are generated by cosmic ray impact onto the planet. A radiation transport computation was performed to generate the expected count rates in the neutron-generated gamma

  10. Opioid modulation of immunocompetence: Receptor characterization and second messenger involvement

    International Nuclear Information System (INIS)

    Hemmick, L.M.

    1989-01-01

    The purpose of this thesis was to examine the effects of opioids on several indices of immunocompetence, determined the receptor specificity of these effects, and ascertain whether the actions of opioids on lymphocytes could be correlated with activation of second messenger systems. By measuring 45 Ca 2+ uptake into lymphocytes, it was demonstrated that β-endorphin 1-31 (β-END 1-31) enhanced rat thymocyte Ca 2+ uptake in response to concanavalin A (Con A) but not phytohemagglutinin (PHA). Related opioid peptides and alkaloids were unable to mimic the effect, and naloxone did not block it, suggesting that β-END 1-31 acted by binding to specific, non-opioid receptors on the thymocytes. Rat splenocyte Con A-stimulated Ca 2+ uptake was not affected by β-END 1-31. β-END 1-31 did not affect basal Ca 2+ uptake by either cell type. Using [ 3 H]thymidine uptake as an index of lymphocyte proliferation, β-END 1-31 and several related opioid peptides reversed prostaglandin E 1 (PGE 1 ) suppression of rat lymph node cell Con A- and PHA-stimulated proliferation. Naloxone did not block the reversal. β-END 1-31 was unable to reverse forskolin and cholera toxin suppression of proliferation, indicating that the lowering of cyclic AMP levels was not the mechanism involved. Verapamil inhibition of proliferation was also not reversed by β-END 1-31, suggesting that promotion of Ca 2+ influx was not a major mechanism involved

  11. Opioid modulation of immunocompetence: Receptor characterization and second messenger involvement

    Energy Technology Data Exchange (ETDEWEB)

    Hemmick, L.M.

    1989-01-01

    The purpose of this thesis was to examine the effects of opioids on several indices of immunocompetence, determined the receptor specificity of these effects, and ascertain whether the actions of opioids on lymphocytes could be correlated with activation of second messenger systems. By measuring {sup 45}Ca{sup 2+} uptake into lymphocytes, it was demonstrated that {beta}-endorphin 1-31 ({beta}-END 1-31) enhanced rat thymocyte Ca{sup 2+} uptake in response to concanavalin A (Con A) but not phytohemagglutinin (PHA). Related opioid peptides and alkaloids were unable to mimic the effect, and naloxone did not block it, suggesting that {beta}-END 1-31 acted by binding to specific, non-opioid receptors on the thymocytes. Rat splenocyte Con A-stimulated Ca{sup 2+} uptake was not affected by {beta}-END 1-31. {beta}-END 1-31 did not affect basal Ca{sup 2+} uptake by either cell type. Using ({sup 3}H)thymidine uptake as an index of lymphocyte proliferation, {beta}-END 1-31 and several related opioid peptides reversed prostaglandin E{sub 1} (PGE{sub 1}) suppression of rat lymph node cell Con A- and PHA-stimulated proliferation. Naloxone did not block the reversal. {beta}-END 1-31 was unable to reverse forskolin and cholera toxin suppression of proliferation, indicating that the lowering of cyclic AMP levels was not the mechanism involved. Verapamil inhibition of proliferation was also not reversed by {beta}-END 1-31, suggesting that promotion of Ca{sup 2+} influx was not a major mechanism involved.

  12. In-Flight performance of MESSENGER's Mercury dual imaging system

    Science.gov (United States)

    Hawkins, S.E.; Murchie, S.L.; Becker, K.J.; Selby, C.M.; Turner, F.S.; Noble, M.W.; Chabot, N.L.; Choo, T.H.; Darlington, E.H.; Denevi, B.W.; Domingue, D.L.; Ernst, C.M.; Holsclaw, G.M.; Laslo, N.R.; Mcclintock, W.E.; Prockter, L.M.; Robinson, M.S.; Solomon, S.C.; Sterner, R.E.

    2009-01-01

    The Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 and planned for insertion into orbit around Mercury in 2011, has already completed two flybys of the innermost planet. The Mercury Dual Imaging System (MDIS) acquired nearly 2500 images from the first two flybys and viewed portions of Mercury's surface not viewed by Mariner 10 in 1974-1975. Mercury's proximity to the Sun and its slow rotation present challenges to the thermal design for a camera on an orbital mission around Mercury. In addition, strict limitations on spacecraft pointing and the highly elliptical orbit create challenges in attaining coverage at desired geometries and relatively uniform spatial resolution. The instrument designed to meet these challenges consists of dual imagers, a monochrome narrow-angle camera (NAC) with a 1.5?? field of view (FOV) and a multispectral wide-angle camera (WAC) with a 10.5?? FOV, co-aligned on a pivoting platform. The focal-plane electronics of each camera are identical and use a 1024??1024 charge-coupled device detector. The cameras are passively cooled but use diode heat pipes and phase-change-material thermal reservoirs to maintain the thermal configuration during the hot portions of the orbit. Here we present an overview of the instrument design and how the design meets its technical challenges. We also review results from the first two flybys, discuss the quality of MDIS data from the initial periods of data acquisition and how that compares with requirements, and summarize how in-flight tests are being used to improve the quality of the instrument calibration. ?? 2009 SPIE.

  13. LMKB/MARF1 localizes to mRNA processing bodies, interacts with Ge-1, and regulates IFI44L gene expression.

    Directory of Open Access Journals (Sweden)

    Donald B Bloch

    Full Text Available The mRNA processing body (P-body is a cellular structure that regulates the stability of cytoplasmic mRNA. MARF1 is a murine oocyte RNA-binding protein that is associated with maintenance of mRNA homeostasis and genomic stability. In this study, autoantibodies were used to identify Limkain B (LMKB, the human orthologue of MARF1, as a P-body component. Indirect immunofluorescence demonstrated that Ge-1 (a central component of the mammalian core-decapping complex co-localized with LMKB in P-bodies. Two-hybrid and co-immunoprecipitation assays were used to demonstrate interaction between Ge-1 and LMKB. The C-terminal 120 amino acids of LMKB mediated interaction with Ge-1 and the N-terminal 1094 amino acids of Ge-1 were required for interaction with LMKB. LMKB is the first protein identified to date that interacts with this portion of Ge-1. LMKB was expressed in human B and T lymphocyte cell lines; depletion of LMKB increased expression of IFI44L, a gene that has been implicated in the cellular response to Type I interferons. The interaction between LMKB/MARF1, a protein that contains RNA-binding domains, and Ge-1, which interacts with core-decapping proteins, suggests that LMKB has a role in the regulation of mRNA stability. LMKB appears to have different functions in different cell types: maintenance of genomic stability in developing oocytes and possible dampening of the inflammatory response in B and T cells.

  14. MicroRNA and Cancer: Tiny Molecules with Major Implications

    OpenAIRE

    VandenBoom II, Timothy G; Li, Yiwei; Philip, Philip A; Sarkar, Fazlul H

    2008-01-01

    Cancer is currently a major public health problem and, as such, emerging research is making significant progress in identifying major players in its biology. One recent topic of interest involves microRNAs (miRNAs) which are small, non-coding RNA molecules that inhibit gene expression post-transcriptionally. They accomplish this by binding to the 3? untranslated region (3?UTR) of target messengerRNA (mRNA), resulting in either their degradation or inhibition of translation, depending on the d...

  15. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.

    Science.gov (United States)

    Ding, Yiliang; Tang, Yin; Kwok, Chun Kit; Zhang, Yu; Bevilacqua, Philip C; Assmann, Sarah M

    2014-01-30

    RNA structure has critical roles in processes ranging from ligand sensing to the regulation of translation, polyadenylation and splicing. However, a lack of genome-wide in vivo RNA structural data has limited our understanding of how RNA structure regulates gene expression in living cells. Here we present a high-throughput, genome-wide in vivo RNA structure probing method, structure-seq, in which dimethyl sulphate methylation of unprotected adenines and cytosines is identified by next-generation sequencing. Application of this method to Arabidopsis thaliana seedlings yielded the first in vivo genome-wide RNA structure map at nucleotide resolution for any organism, with quantitative structural information across more than 10,000 transcripts. Our analysis reveals a three-nucleotide periodic repeat pattern in the structure of coding regions, as well as a less-structured region immediately upstream of the start codon, and shows that these features are strongly correlated with translation efficiency. We also find patterns of strong and weak secondary structure at sites of alternative polyadenylation, as well as strong secondary structure at 5' splice sites that correlates with unspliced events. Notably, in vivo structures of messenger RNAs annotated for stress responses are poorly predicted in silico, whereas mRNA structures of genes related to cell function maintenance are well predicted. Global comparison of several structural features between these two categories shows that the mRNAs associated with stress responses tend to have more single-strandedness, longer maximal loop length and higher free energy per nucleotide, features that may allow these RNAs to undergo conformational changes in response to environmental conditions. Structure-seq allows the RNA structurome and its biological roles to be interrogated on a genome-wide scale and should be applicable to any organism.

  16. Single Nucleotide Polymorphisms Can Create Alternative Polyadenylation Signals and Affect Gene Expression through Loss of MicroRNA-Regulation

    Science.gov (United States)

    Thomas, Laurent F.; Sætrom, Pål

    2012-01-01

    Alternative polyadenylation (APA) can for example occur when a protein-coding gene has several polyadenylation (polyA) signals in its last exon, resulting in messenger RNAs (mRNAs) with different 3′ untranslated region (UTR) lengths. Different 3′UTR lengths can give different microRNA (miRNA) regulation such that shortened transcripts have increased expression. The APA process is part of human cells' natural regulatory processes, but APA also seems to play an important role in many human diseases. Although altered APA in disease can have many causes, we reasoned that mutations in DNA elements that are important for the polyA process, such as the polyA signal and the downstream GU-rich region, can be one important mechanism. To test this hypothesis, we identified single nucleotide polymorphisms (SNPs) that can create or disrupt APA signals (APA-SNPs). By using a data-integrative approach, we show that APA-SNPs can affect 3′UTR length, miRNA regulation, and mRNA expression—both between homozygote individuals and within heterozygote individuals. Furthermore, we show that a significant fraction of the alleles that cause APA are strongly and positively linked with alleles found by genome-wide studies to be associated with disease. Our results confirm that APA-SNPs can give altered gene regulation and that APA alleles that give shortened transcripts and increased gene expression can be important hereditary causes for disease. PMID:22915998

  17. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence.

    Science.gov (United States)

    Galloway, Alison; Saveliev, Alexander; Łukasiak, Sebastian; Hodson, Daniel J; Bolland, Daniel; Balmanno, Kathryn; Ahlfors, Helena; Monzón-Casanova, Elisa; Mannurita, Sara Ciullini; Bell, Lewis S; Andrews, Simon; Díaz-Muñoz, Manuel D; Cook, Simon J; Corcoran, Anne; Turner, Martin

    2016-04-22

    Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-μ at the pre-BCR checkpoint. Copyright © 2016, American Association for the Advancement of Science.

  18. RNA Origami

    DEFF Research Database (Denmark)

    Sparvath, Steffen Lynge

    introducerede vores gruppe den enkeltstrengede RNA-origami metode, der giver mulighed for cotranscriptional foldning af veldefinerede nanostrukturer, og er en central del af arbejdet præsenteret heri. Denne ph.d.-afhandling udforsker potentielle anvendelser af RNA-origami nanostrukturer, som nanomedicin eller...... biosensorer. Afhandlingen består af en introduktion til RNA-nanoteknologi feltet, en introduktion af enkeltstrenget RNA-origami design, og fire studier, der beskriver design, produktion og karakterisering af både strukturelle og funktionelle RNA-origamier. Flere RNA-origami designs er blevet undersøgt, og...... projekterne, der indgår i denne afhandling, inkluderer de nyeste fremskridt indenfor strukturel RNA-nanoteknologi og udvikling af funktionelle RNA-baserede enheder. Det første studie beskriver konstruktion og karakterisering af en enkeltstrenget 6-helix RNA-origami stuktur, som er den første demonstration af...

  19. Large Impact Basins on Mercury: Global Distribution, Characteristics, and Modification History from MESSENGER Orbital Data

    Science.gov (United States)

    Fassett, Caleb I.; Head, James W.; Baker, David M. H.; Zuber, Maria T.; Neumann, Gregory A.; Solomon, Sean C.; Klimczak, Christian; Strom, Robert G.; Chapman, Clark R.; Prockter, Louise M.; hide

    2012-01-01

    The formation of large impact basins (diameter D greater than or equal to 300 km) was an important process in the early evolution of Mercury and influenced the planet's topography, stratigraphy, and crustal structure. We catalog and characterize this basin population on Mercury from global observations by the MESSENGER spacecraft, and we use the new data to evaluate basins suggested on the basis of the Mariner 10 flybys. Forty-two certain or probable impact basins are recognized a few additional basins that may have been degraded to the point of ambiguity are plausible on the basis of new data but are classified as uncertain. The spatial density of large basins (D greater than or equal to 500 km) on Mercury is lower than that on the Moon. Morphological characteristics of basins on Mercury suggest that on average they are more degraded than lunar basins. These observations are consistent with more efficient modification, degradation, and obliteration of the largest basins on Mercury than on the Moon. This distinction may be a result of differences in the basin formation process (producing fewer rings), greater relaxation of topography after basin formation (subduing relief), and/or higher rates of volcanism during the period of heavy bombardment on Mercury compared to the Moon (burying basin rings and interiors).

  20. Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex

    Science.gov (United States)

    The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showe...

  1. RNA Editing in Plant Mitochondria

    Science.gov (United States)

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel

    1989-12-01

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  2. Effect of Crc and Hfq proteins on the transcription, processing, and stability of the Pseudomonas putida CrcZ sRNA.

    Science.gov (United States)

    Hernández-Arranz, Sofía; Sánchez-Hevia, Dione; Rojo, Fernando; Moreno, Renata

    2016-12-01

    In Pseudomonas putida, the Hfq and Crc proteins regulate the expression of many genes in response to nutritional and environmental cues, by binding to mRNAs that bear specific target motifs and inhibiting their translation. The effect of these two proteins is antagonized by the CrcZ and CrcY small RNAs (sRNAs), the levels of which vary greatly according to growth conditions. The crcZ and crcY genes are transcribed from promoters PcrcZ and PcrcY, respectively, a process that relies on the CbrB transcriptional activator and the RpoN σ factor. Here we show that crcZ can also be transcribed from the promoter of the immediate upstream gene, cbrB, a weak constitutive promoter. The cbrB-crcZ transcript was processed to render a sRNA very similar in size to the CrcZ produced from promoter PcrcZ The processed sRNA, termed CrcZ*, was able to antagonize Hfq/Crc because, when provided in trans, it relieved the deregulated Hfq/Crc-dependent hyperrepressing phenotype of a ΔcrcZΔcrcY strain. CrcZ* may help in attaining basal levels of CrcZ/CrcZ* that are sufficient to protect the cell from an excessive Hfq/Crc-dependent repression. Since a functional sRNA can be produced from PcrcZ, an inducible strong promoter, or by cleavage of the cbrB-crcZ mRNA, crcZ can be considered a 3'-untranslated region of the cbrB-crcZ mRNA. In the absence of Hfq, the processed form of CrcZ was not observed. In addition, we show that Crc and Hfq increase CrcZ stability, which supports the idea that these proteins can form a complex with CrcZ and protect it from degradation by RNases. © 2016 Hernández-Arranz et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome.

    Science.gov (United States)

    Konevega, Andrey L; Fischer, Niels; Semenkov, Yuri P; Stark, Holger; Wintermeyer, Wolfgang; Rodnina, Marina V

    2007-04-01

    During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.

  4. Making the most of RNA-seq: Pre-processing sequencing data with Opossum for reliable SNP variant detection [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Laura Oikkonen

    2017-03-01

    Full Text Available Identifying variants from RNA-seq (transcriptome sequencing data is a cost-effective and versatile complement to whole-exome (WES and whole-genome sequencing (WGS analysis. RNA-seq (transcriptome sequencing is primarily considered a method of gene expression analysis but it can also be used to detect DNA variants in expressed regions of the genome. However, current variant callers do not generally behave well with RNA-seq data due to reads encompassing intronic regions. We have developed a software programme called Opossum to address this problem. Opossum pre-processes RNA-seq reads prior to variant calling, and although it has been designed to work specifically with Platypus, it can be used equally well with other variant callers such as GATK HaplotypeCaller. In this work, we show that using Opossum in conjunction with either Platypus or GATK HaplotypeCaller maintains precision and improves the sensitivity for SNP detection compared to the GATK Best Practices pipeline. In addition, using it in combination with Platypus offers a substantial reduction in run times compared to the GATK pipeline so it is ideal when there are only limited time or computational resources available.

  5. Ubiquitous learning model using interactive internet messenger group (IIMG) to improve engagement and behavior for smart campus

    Science.gov (United States)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-01-01

    The recent popularity of internet messenger based smartphone technologies has motivated some university lecturers to use them for educational activities. These technologies have enormous potential to enhance the teaching and ubiquitous learning experience for smart campus development. However, the design ubiquitous learning model using interactive internet messenger group (IIMG) and empirical evidence that would favor a broad application of mobile and ubiquitous learning in smart campus settings to improve engagement and behavior is still limited. In addition, the expectation that mobile learning could improve engagement and behavior on smart campus cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present ubiquitous learning model design and showing learners’ experiences in improved engagement and behavior using IIMG for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous learning and realize the impressions of learners and lecturers about engagement and behavior aspect, and its contribution to learning.

  6. The Clothes Make the mRNA: Past and Present Trends in mRNP Fashion.

    Science.gov (United States)

    Singh, Guramrit; Pratt, Gabriel; Yeo, Gene W; Moore, Melissa J

    2015-01-01

    Throughout their lifetimes, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Since the discovery of the first mRNP component more than 40 years ago, what is known as the mRNA interactome now comprises >1,000 proteins. These proteins bind mRNAs in myriad ways with varying affinities and stoichiometries, with many assembling onto nascent RNAs in a highly ordered process during transcription and precursor mRNA (pre-mRNA) processing. The nonrandom distribution of major mRNP proteins observed in transcriptome-wide studies leads us to propose that mRNPs are organized into three major domains loosely corresponding to 5' untranslated regions (UTRs), open reading frames, and 3' UTRs. Moving from the nucleus to the cytoplasm, mRNPs undergo extensive remodeling as they are first acted upon by the nuclear pore complex and then by the ribosome. When not being actively translated, cytoplasmic mRNPs can assemble into large multi-mRNP assemblies or be permanently disassembled and degraded. In this review, we aim to give the reader a thorough understanding of past and current eukaryotic mRNP research.

  7. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission

    Science.gov (United States)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2018-01-01

    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10-5. By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter β = 1 + (-1.6 ± 1.8) × 10-5 and the Sun's gravitational oblateness, J2⊙J2⊙ = (2.246 ± 0.022) × 10-7. Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, GM⊙°/GM⊙GM⊙°/GM⊙ = (-6.13 ± 1.47) × 10-14, which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain ∣∣G°∣∣/GG°/G to be <4 × 10-14 per year.

  8. Solar system expansion and strong equivalence principle as seen by the NASA MESSENGER mission.

    Science.gov (United States)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G; Neumann, Gregory A; Smith, David E; Zuber, Maria T

    2018-01-18

    The NASA MESSENGER mission explored the innermost planet of the solar system and obtained a rich data set of range measurements for the determination of Mercury's ephemeris. Here we use these precise data collected over 7 years to estimate parameters related to general relativity and the evolution of the Sun. These results confirm the validity of the strong equivalence principle with a significantly refined uncertainty of the Nordtvedt parameter η = (-6.6 ± 7.2) × 10 -5 . By assuming a metric theory of gravitation, we retrieved the post-Newtonian parameter β = 1 + (-1.6 ± 1.8) × 10 -5 and the Sun's gravitational oblateness, [Formula: see text] = (2.246 ± 0.022) × 10 -7 . Finally, we obtain an estimate of the time variation of the Sun gravitational parameter, [Formula: see text] = (-6.13 ± 1.47) × 10 -14 , which is consistent with the expected solar mass loss due to the solar wind and interior processes. This measurement allows us to constrain [Formula: see text] to be <4 × 10 -14 per year.

  9. Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens.

    Science.gov (United States)

    Clifford, Jennifer C; Buchanan, Alex; Vining, Oliver; Kidarsa, Teresa A; Chang, Jeff H; McPhail, Kerry L; Loper, Joyce E

    2016-10-01

    Bacteria can be both highly communicative and highly competitive in natural habitats and antibiotics are thought to play a role in both of these processes. The soil bacterium Pseudomonas protegens Pf-5 produces a spectrum of antibiotics, two of which, pyoluteorin and 2,4-diacetylphloroglucinol (DAPG), function in intracellular and intercellular communication, both as autoinducers of their own production. Here, we demonstrate that phloroglucinol, an intermediate in DAPG biosynthesis, can serve as an intercellular signal influencing the expression of pyoluteorin biosynthesis genes, the production of pyoluteorin, and inhibition of Pythium ultimum, a phytopathogenic oomycete sensitive to pyoluteorin. Through analysis of RNAseq data sets, we show that phloroglucinol had broad effects on the transcriptome of Pf-5, significantly altering the transcription of more than two hundred genes. The effects of nanomolar versus micromolar concentrations of phloroglucinol differed both quantitatively and qualitatively, influencing the expression of distinct sets of genes or having opposite effects on transcript abundance of certain genes. Therefore, our results support the concept of hormesis, a phenomenon associated with signalling molecules that elicit distinct responses at different concentrations. Phloroglucinol is the first example of an intermediate of antibiotic biosynthesis that functions as a chemical messenger influencing gene expression in P. protegens. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. 34A, miRNA-944, miRNA-101 and miRNA-218 in cervical cancer

    African Journals Online (AJOL)

    RNAs (21 - 24 nucleotides in length) that are critical for many important processes such as development, ... RNA extraction and reverse transcription. Total RNA was extracted from each of the experimental groups using ... used as an endogenous control to normalize the expression of miRNA-143, miRNA-34A, miRNA-.

  11. Dissociation of SERPINE1 mRNA from the translational repressor proteins Ago2 and TIA-1 upon platelet activation.

    Science.gov (United States)

    Corduan, Aurélie; Plé, Hélène; Laffont, Benoit; Wallon, Thérèse; Plante, Isabelle; Landry, Patricia; Provost, Patrick

    2015-05-01

    Platelets play an important role in haemostasis, as well as in thrombosis and coagulation processes. They harbour a wide variety of messenger RNAs (mRNAs), that can template de novo protein synthesis, and an abundant array of microRNAs, which are known to mediate mRNA translational repression through proteins of the Argonaute (Ago) family. The relationship between platelet microRNAs and proteins capable of mediating translational repression, however, remains unclear. Here, we report that half of platelet microRNAs is associated to mRNA-regulatory Ago2 protein complexes, in various proportions. Associated to these Ago2 complexes are platelet mRNAs known to support de novo protein synthesis. Reporter gene activity assays confirmed the capacity of the platelet microRNAs, found to be associated to Ago2 complexes, to regulate translation of these platelet mRNAs through their 3'UTR. Neither the microRNA repertoire nor the microRNA composition of Ago2 complexes of human platelets changed upon activation with thrombin. However, under conditions favoring de novo synthesis of Plasminogen Activator Inhibitor-1 (PAI-1) protein, we documented a rapid dissociation of the encoding platelet SERPINE1 mRNA from Ago2 protein complexes as well as from the translational repressor protein T-cell-restricted intracellular antigen-1 (TIA-1). These findings are consistent with a scenario by which lifting of the repressive effects of Ago2 and TIA-1 protein complexes, involving a rearrangement of proteinmRNA complexes rather than disassembly of Ago2microRNA complexes, would allow translation of SERPINE1 mRNA into PAI-1 in response to platelet activation.

  12. B Cell Receptor Activation Predominantly Regulates AKT-mTORC1/2 Substrates Functionally Related to RNA Processing.

    Directory of Open Access Journals (Sweden)

    Dara K Mohammad

    Full Text Available Protein kinase B (AKT phosphorylates numerous substrates on the consensus motif RXRXXpS/T, a docking site for 14-3-3 interactions. To identify novel AKT-induced phosphorylation events following B cell receptor (BCR activation, we performed proteomics, biochemical and bioinformatics analyses. Phosphorylated consensus motif-specific antibody enrichment, followed by tandem mass spectrometry, identified 446 proteins, containing 186 novel phosphorylation events. Moreover, we found 85 proteins with up regulated phosphorylation, while in 277 it was down regulated following stimulation. Up regulation was mainly in proteins involved in ribosomal and translational regulation, DNA binding and transcription regulation. Conversely, down regulation was preferentially in RNA binding, mRNA splicing and mRNP export proteins. Immunoblotting of two identified RNA regulatory proteins, RBM25 and MEF-2D, confirmed the proteomics data. Consistent with these findings, the AKT-inhibitor (MK-2206 dramatically reduced, while the mTORC-inhibitor PP242 totally blocked phosphorylation on the RXRXXpS/T motif. This demonstrates that this motif, previously suggested as an AKT target sequence, also is a substrate for mTORC1/2. Proteins with PDZ, PH and/or SH3 domains contained the consensus motif, whereas in those with an HMG-box, H15 domains and/or NF-X1-zinc-fingers, the motif was absent. Proteins carrying the consensus motif were found in all eukaryotic clades indicating that they regulate a phylogenetically conserved set of proteins.

  13. EBER2 RNA-induced transcriptome changes identify cellular processes likely targeted during Epstein Barr Virus infection

    Directory of Open Access Journals (Sweden)

    Benecke Bernd-Joachim

    2008-10-01

    Full Text Available Abstract Background Little is known about the physiological role of the EBER1 and 2 nuclear RNAs during Epstein Barr viral infection. The EBERs are transcribed by cellular RNA Polymerase III and their strong expression results in 106 to 107 copies per EBV infected cell, making them reliable diagnostic markers for the presence of EBV. Although the functions of most of the proteins targeted by EBER RNAs have been studied, the role of EBERs themselves still remains elusive. Findings The cellular transcription response to EBER2 expression using the wild-type and an internal deletion mutant was determined. Significant changes in gene expression patterns were observed. A functional meta-analysis of the regulated genes points to inhibition of stress and immune responses, as well as activation of cellular growth and cytoskeletal reorganization as potential targets for EBER2 RNA. Different functions can be assigned to different parts of the RNA. Conclusion These results provide new avenues to the understanding of EBER2 and EBV biology, and set the grounds for a more in depth functional analysis of EBER2 using transcriptome activity measurements.

  14. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay.

    Directory of Open Access Journals (Sweden)

    Jennifer L Anderson

    2017-11-01

    Full Text Available As model organism-based research shifts from forward to reverse genetics approaches, largely due to the ease of genome editing technology, a low frequency of abnormal phenotypes is being observed in lines with mutations predicted to lead to deleterious effects on the encoded protein. In zebrafish, this low frequency is in part explained by compensation by genes of redundant or similar function, often resulting from the additional round of teleost-specific whole genome duplication within vertebrates. Here we offer additional explanations for the low frequency of mutant phenotypes. We analyzed mRNA processing in seven zebrafish lines with mutations expected to disrupt gene function, generated by CRISPR/Cas9 or ENU mutagenesis methods. Five of the seven lines showed evidence of altered mRNA processing: one through a skipped exon that did not lead to a frame shift, one through nonsense-associated splicing that did not lead to a frame shift, and three through the use of cryptic splice sites. These results highlight the need for a methodical analysis of the mRNA produced in mutant lines before making conclusions or embarking on studies that assume loss of function as a result of a given genomic change. Furthermore, recognition of the types of adaptations that can occur may inform the strategies of mutant generation.

  15. Aggregation of Ribosomal Protein S6 at Nucleolus Is Cell Cycle-Controlled and Its Function in Pre-rRNA Processing Is Phosphorylation Dependent.

    Science.gov (United States)

    Zhang, Duo; Chen, Hui-Peng; Duan, Hai-Feng; Gao, Li-Hua; Shao, Yong; Chen, Ke-Yan; Wang, You-Liang; Lan, Feng-Hua; Hu, Xian-Wen

    2016-07-01

    Ribosomal protein S6 (rpS6) has long been regarded as one of the primary r-proteins that functions in the early stage of 40S subunit assembly, but its actual role is still obscure. The correct forming of 18S rRNA is a key step in the nuclear synthesis of 40S subunit. In this study, we demonstrate that rpS6 participates in the processing of 30S pre-rRNA to 18S rRNA only when its C-terminal five serines are phosphorylated, however, the process of entering the nucleus and then targeting the nucleolus does not dependent its phosphorylation. Remarkably, we also find that the aggregation of rpS6 at the nucleolus correlates to the phasing of cell cycle, beginning to concentrate in the nucleolus at later S phase and disaggregate at M phase. J. Cell. Biochem. 117: 1649-1657, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes

    OpenAIRE

    Pardi, Norbert; Tuyishime, Steven; Muramatsu, Hiromi; Kariko, Katalin; Mui, Barbara L; Tam, Ying K; Madden, Thomas D; Hope, Michael J; Weissman, Drew

    2015-01-01

    In recent years, in vitro transcribed messenger RNA (mRNA) has emerged as a potential therapeutic platform. To fulfill its promise, effective delivery of mRNA to specific cell types and tissues needs to be achieved. Lipid nanoparticles (LNPs) are efficient carriers for short-interfering RNAs and have entered clinical trials. However, little is known about the potential of LNPs to deliver mRNA. Here, we generated mRNA-LNPs by incorporating HPLC purified, 1-methylpseudouridine-containing mRNA c...

  17. The RNA gene information: retroelement-microRNA entangling as the RNA quantum code.

    Science.gov (United States)

    Fujii, Yoichi Robertus

    2013-01-01

    MicroRNA (miRNA) and retroelements may be a master of regulator in our life, which are evolutionally involved in the origin of species. To support the Darwinism from the aspect of molecular evolution process, it has tremendously been interested in the molecular information of naive RNA. The RNA wave model 2000 consists of four concepts that have altered from original idea of the miRNA genes for crosstalk among embryonic stem cells, their niche cells, and retroelements as a carrier vesicle of the RNA genes. (1) the miRNA gene as a mobile genetic element induces transcriptional and posttranscriptional silencing via networking-processes (no hierarchical architecture); (2) the RNA information supplied by the miRNA genes expands to intracellular, intercellular, intraorgan, interorgan, intraspecies, and interspecies under the cycle of life into the global environment; (3) the mobile miRNAs can self-proliferate; and (4) cells contain two types information as resident and genomic miRNAs. Based on RNA wave, we have developed an interest in investigation of the transformation from RNA information to quantum bits as physicochemical characters of RNA with the measurement of RNA electron spin. When it would have been given that the fundamental bases for the acquired characters in genetics can be controlled by RNA gene information, it may be available to apply for challenging against RNA gene diseases, such as stress-induced diseases.

  18. Dissecting mechanisms of nuclear mRNA surveillance in THO/sub2 complex mutants

    DEFF Research Database (Denmark)

    Rougemaille, Mathieu; Gudipati, Rajani Kanth; Olesen, Jens Raabjerg

    2007-01-01

    by appending oligo(A)-tails onto structured substrates. Another role of the nuclear exosome is that of mRNA surveillance. In strains harboring a mutated THO/Sub2p system, involved in messenger ribonucleoprotein particle biogenesis and nuclear export, the exosome-associated 3' 5' exonuclease Rrp6p is required...

  19. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    Science.gov (United States)

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3′ end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies. PMID:23966403

  20. Peroxisome proliferator-activated receptors, estrogenic responses and biotransformation system in the liver of salmon exposed to tributyltin and second messenger activator

    Energy Technology Data Exchange (ETDEWEB)

    Pavlikova, Nela [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway); RECETOX Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk University, Kamenice 3, CZ62500 Brno (Czech Republic); Kortner, Trond M. [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway); Arukwe, Augustine, E-mail: arukwe@bio.ntnu.no [Department of Biology, Norwegian University of Science and Technology (NTNU), Hogskoleringen 5, 7491 Trondheim (Norway)

    2010-08-15

    The mechanisms by which organotin compounds produce modulations of the endocrine systems and other biological responses are not fully understood. In this study, juvenile salmon were force-fed diet containing TBT (0: solvent control, 0.1, 1 and 10 mg/kg fish) for 72 h. Subsequently, fish exposed to solvent control and 10 mg TBT were exposed to waterborne concentration (200 {mu}g/l) of the adenylate cyclase (AC) stimulator, forskolin for 2 and 4 h. The overall aim of the study was to explore whether TBT endocrine disruptive effects involve second messenger activation. Liver was sampled from individual fish (n = 8) at the end of the exposures. The transcription patterns of peroxisome proliferator-activated receptor (PPAR) isotype and acyl-coenzyme A oxidase 1 (ACOX1), aromatase isoform, estrogen receptor-{alpha} (ER{alpha}), pregnane X receptor (PXR), CYP3A and glutathione S-transferase (GST) genes were measured by quantitative polymerase chain reaction (qPCR). Our data showed a consistent increase in PPAR{alpha}, PPAR{beta} and PPAR{gamma} mRNA and protein expression after TBT exposure that were inversely correlated with ACOX1 mRNA levels. Forskolin produced PPAR isotype-specific mRNA and protein effects that were modulated by TBT. ACOX1 expression was decreased (at 2 h) and increased (at 4 h) by forskolin and the presence of TBT potentiated these effects. TBT apparently increased mRNA and protein levels of cyp19a, compared to the solvent control, whereas cyp19b mRNA levels were unaffected by TBT treatment. Combined TBT and forskolin exposure produced respective decrease and increase of mRNA levels of cyp19a and cyp19b, compared with control. TBT decreased ER{alpha} mRNA at low dose (1 mg/kg) and forskolin exposure alone produced a consistent decrease of ER{alpha} mRNA levels that were not affected by the presence of TBT. Interestingly, PXR and CYP3A mRNA levels were differentially affected, either decreased or increased, after exposure to TBT and forskolin, singly

  1. Plant RNA Regulatory Network and RNA Granules in Virus Infection

    Directory of Open Access Journals (Sweden)

    Kristiina Mäkinen

    2017-12-01

    Full Text Available Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and

  2. Plant RNA Regulatory Network and RNA Granules in Virus Infection.

    Science.gov (United States)

    Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija

    2017-01-01

    Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual

  3. RNA/PNA Approach

    Indian Academy of Sciences (India)

    In this approach we want to develop structural analogue of the leader that might have higher affinity towards the Phosphoprotein, but would impair the dimerization process and viral leader RNA binding.

  4. Annotating RNA motifs in sequences and alignments.

    Science.gov (United States)

    Gardner, Paul P; Eldai, Hisham

    2015-01-01

    RNA performs a diverse array of important functions across all cellular life. These functions include important roles in translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic approach to characterize RNA motifs, which are critical components of many RNA structure-function relationships. These motifs can, in some instances, provide researchers with functional hypotheses for uncharacterized RNAs. Moreover, we introduce a new profile-based database of RNA motifs--RMfam--and illustrate some applications for investigating the evolution and functional characterization of RNA. All the data and scripts associated with this work are available from: https://github.com/ppgardne/RMfam. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple

    Directory of Open Access Journals (Sweden)

    Xinwei Guo

    2017-05-01

    Full Text Available Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs including microRNAs (miRNAs and small interfering RNAs (siRNAs are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL gene regulation, stress responses, and auxin and gibberellin (GA pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology.

  6. Strategies underlying RNA silencing suppression by negative strand RNA viruses

    NARCIS (Netherlands)

    Hemmes, J.C.

    2007-01-01

    The research described in this thesis focused on the strategies of negative strand RNA viruses to counteract antiviral RNA silencing. In plants and insects, RNA silencing has been shown to act as a sequence specific antiviral defence mechanism that is characterised by the processing of double

  7. The effect of addiction to mobile messenger software and mental health among physical education students

    Directory of Open Access Journals (Sweden)

    Mostafa Bagherianfar

    2017-08-01

    Full Text Available Introduction: The objective of the present study is to the effect of addiction to mobile messenger software on mental health among physical education university students of Torbat-e-Heydarieh city.  Materials and Methods: The statistical population of this descriptive-correlational study included all physical education university students of Torbat-e-Heydarieh city. 169 students out of 302 were chosen as the sample of study, for which stratified sampling method was applied. In order to collect data, Goldberg general health questionnaire and addiction to mobile messenger software inventory were used. Data were analyzed using descriptive and illative statistics.  Results: The research findings showed that there is a statistically significant relationship between addiction to mobile messenger software's and mental health among the students of physical education (P

  8. Coulomb interactions between cytoplasmic electric fields and phosphorylated messenger proteins optimize information flow in cells.

    Directory of Open Access Journals (Sweden)

    Robert A Gatenby

    2010-08-01

    Full Text Available Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM. While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl- and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length.Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions.This work demonstrates that previously unrecognized Coulomb interactions between phosphorylated messenger

  9. Simulating movement of tRNA through the ribosome during hybrid-state formation.

    Science.gov (United States)

    Whitford, Paul C; Sanbonmatsu, Karissa Y

    2013-09-28

    Biomolecular simulations provide a means for exploring the relationship between flexibility, energetics, structure, and function. With the availability of atomic models from X-ray crystallography and cryoelectron microscopy (cryo-EM), and rapid increases in computing capacity, it is now possible to apply molecular dynamics (MD) simulations to large biomolecular machines, and systematically partition the factors that contribute to function. A large biomolecular complex for which atomic models are available is the ribosome. In the cell, the ribosome reads messenger RNA (mRNA) in order to synthesize proteins. During this essential process, the ribosome undergoes a wide range of conformational rearrangements. One of the most poorly understood transitions is translocation: the process by which transfer RNA (tRNA) molecules move between binding sites inside of the ribosome. The first step of translocation is the adoption of a "hybrid" configuration by the tRNAs, which is accompanied by large-scale rotations in the ribosomal subunits. To illuminate the relationship between these rearrangements, we apply MD simulations using a multi-basin structure-based (SMOG) model, together with targeted molecular dynamics protocols. From 120 simulated transitions, we demonstrate the viability of a particular route during P/E hybrid-state formation, where there is asynchronous movement along rotation and tRNA coordinates. These simulations not only suggest an ordering of events, but they highlight atomic interactions that may influence the kinetics of hybrid-state formation. From these simulations, we also identify steric features (H74 and surrounding residues) encountered during the hybrid transition, and observe that flexibility of the single-stranded 3'-CCA tail is essential for it to reach the endpoint. Together, these simulations provide a set of structural and energetic signatures that suggest strategies for modulating the physical-chemical properties of protein synthesis by the

  10. Comparison of tissue sample processing methods for harvesting the viral metagenome and a snapshot of the RNA viral community in a turkey gut.

    Science.gov (United States)

    Shah, Jigna D; Baller, Joshua; Zhang, Ying; Silverstein, Kevin; Xing, Zheng; Cardona, Carol J

    2014-12-01

    RNA viruses have been associated with enteritis in poultry and have been isolated from diseased birds. The same viral agents have also been detected in healthy flocks bringing into question their role in health and disease. In order to understand better eukaryotic viruses in the gut, this project focused on evaluating alternative methods to purify and concentrate viral particles, which do not involve the use of density gradients, for generating viral metagenome data. In this study, the sequence outcomes of three tissue processing methods have been evaluated and a data analysis pipeline has been established for RNA viruses from the gastrointestinal tract. In addition, with the use of the best method and increased sequencing depth, a glimpse of the RNA viral community in the gastrointestinal tract of a clinically normal 5-week old turkey is presented. The viruses from the Reoviridae and Astroviridae families together accounted for 76.3% of total viruses identified. The rarefaction curve at the species level further indicated that majority of the species diversity was included with the increased sequencing depth, implying that viruses from other viral families were present in very low abundance. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Making the most of RNA-seq: Pre-processing sequencing data with Opossum for reliable SNP variant detection [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Laura Oikkonen

    2017-01-01

    Full Text Available Identifying variants from RNA-seq (transcriptome sequencing data is a cost-effective and versatile alternative to whole-genome sequencing. However, current variant callers do not generally behave well with RNA-seq data due to reads encompassing intronic regions. We have developed a software programme called Opossum to address this problem. Opossum pre-processes RNA-seq reads prior to variant calling, and although it has been designed to work specifically with Platypus, it can be used equally well with other variant callers such as GATK HaplotypeCaller. In this work, we show that using Opossum in conjunction with either Platypus or GATK HaplotypeCaller maintains precision and improves the sensitivity for SNP detection compared to the GATK Best Practices pipeline. In addition, using it in combination with Platypus offers a substantial reduction in run times compared to the GATK pipeline so it is ideal when there are only limited time or computational resources available.

  12. Generalized messenger sector for gauge mediation of supersymmetry breaking and the soft spectrum

    International Nuclear Information System (INIS)

    Marques, Diego

    2009-01-01

    We consider a generic renormalizable and gauge invariant messenger sector and derive the sparticle mass spectrum using the formalism introduced for General Gauge Mediation. Our results recover many expressions found in the literature in various limits. Constraining the messenger sector with a global symmetry under which the spurion field is charged, we analyze Extraordinary Gauge Mediation beyond the small SUSY breaking limit. Finally, we include D-term contributions and compute their corrections to the soft masses. This leads to a perturbative framework allowing to explore models capable of fully covering the parameter space of General Gauge Mediation to the Supersymmetric Standard Model.

  13. Astronomy's New Messengers: A traveling exhibit on gravitational-wave physics

    International Nuclear Information System (INIS)

    Cavaglia, Marco; Hendry, Martin; Marka, Szabolcs; Reitze, David H; Riles, Keith

    2010-01-01

    The Laser Interferometer Gravitational-wave Observatory exhibit Astronomy's New Messengers: Listening to the Universe with Gravitational Waves is traveling to colleges, universities, museums and other public institutions throughout the United States. Astronomy's New Messengers primarily communicates with an adolescent and young adult audience, potentially inspiring them into the field of science. Acknowledging that this audience is traditionally a difficult one to attract, the exhibit publicly announces itself in a charismatic fashion to reach its principal goals of broadening the community of people interested in science and encouraging interest in science among young people.

  14. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.

    Science.gov (United States)

    Seyhan, Attila A

    2016-01-01

    Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently

  15. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Donald B., E-mail: bloch@helix.mgh.harvard.edu; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-09-10

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: {yields} A two-hybrid assay was developed to study interactions in macromolecular complexes. {yields} The assay was applied to interactions between components of mRNA P-bodies. {yields} The assay effectively and efficiently identified protein interaction domains. {yields} P-body assembly in mammalian cells differs from that in other species.

  16. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay

    International Nuclear Information System (INIS)

    Bloch, Donald B.; Nobre, Rita A.; Bernstein, Gillian A.; Yang, Wei-Hong

    2011-01-01

    Components of the mRNA processing body (P-body) regulate critical steps in mRNA storage, transport, translation and degradation. At the core of the P-body is the decapping complex, which removes the 5' cap from de-adenylated mRNAs and mediates an irreversible step in mRNA degradation. The assembly of P-bodies in Saccharomyces cerevisiae, Arabidopsis thaliana and Drosophila melanogaster has been previously described. Less is known about the assembly of mammalian P-bodies. To investigate the interactions that occur between components of mammalian P-bodies, we developed a fluorescence-based, two-hybrid assay system. The assay depends on the ability of one P-body component, fused to an exogenous nuclear localization sequence (NLS), to recruit other P-body components to the nucleus. The assay was used to investigate interactions between P-body components Ge-1, DCP2, DCP1, EDC3, RAP55, and RCK. The results of this study show that the modified two-hybrid assay can be used to identify protein interactions that occur in a macromolecular complex. The assay can also be used to efficiently detect protein interaction domains. The results provide important insights into mammalian P-body assembly and demonstrate similarities, and critical differences, between P-body assembly in mammalian cells compared with that of other species. -- Research highlights: → A two-hybrid assay was developed to study interactions in macromolecular complexes. → The assay was applied to interactions between components of mRNA P-bodies. → The assay effectively and efficiently identified protein interaction domains. → P-body assembly in mammalian cells differs from that in other species.

  17. Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System

    Science.gov (United States)

    Denevi, Brett W.; Chabot, Nancy L.; Murchie, Scott L.; Becker, Kris J.; Blewett, David T.; Domingue, Deborah L.; Ernst, Carolyn M.; Hash, Christopher D.; Hawkins, S. Edward; Keller, Mary R.; Laslo, Nori R.; Nair, Hari; Robinson, Mark S.; Seelos, Frank P.; Stephens, Grant K.; Turner, F. Scott; Solomon, Sean C.

    2018-02-01

    We present an overview of the operations, calibration, geodetic control, photometric standardization, and processing of images from the Mercury Dual Imaging System (MDIS) acquired during the orbital phase of the MESSENGER spacecraft's mission at Mercury (18 March 2011-30 April 2015). We also provide a summary of all of the MDIS products that are available in NASA's Planetary Data System (PDS). Updates to the radiometric calibration included slight modification of the frame-transfer smear correction, updates to the flat fields of some wide-angle camera (WAC) filters, a new model for the temperature dependence of narrow-angle camera (NAC) and WAC sensitivity, and an empirical correction for temporal changes in WAC responsivity. Further, efforts to characterize scattered light in the WAC system are described, along with a mosaic-dependent correction for scattered light that was derived for two regional mosaics. Updates to the geometric calibration focused on the focal lengths and distortions of the NAC and all WAC filters, NAC-WAC alignment, and calibration of the MDIS pivot angle and base. Additionally, two control networks were derived so that the majority of MDIS images can be co-registered with sub-pixel accuracy; the larger of the two control networks was also used to create a global digital elevation model. Finally, we describe the image processing and photometric standardization parameters used in the creation of the MDIS advanced products in the PDS, which include seven large-scale mosaics, numerous targeted local mosaics, and a set of digital elevation models ranging in scale from local to global.

  18. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen

    Directory of Open Access Journals (Sweden)

    Deng D

    2015-04-01

    Full Text Available Dawei Deng,* Yang Li,* Jianpeng Xue, Jie Wang, Guanhua Ai, Xin Li, Yueqing GuDepartment of Biomedical Engineering, China Pharmaceutical University, Nanjing, People’s Republic of China*These authors contributed equally to this workAbstract: Messenger RNA (mRNA, a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP beacon containing a bare gold nanoparticle (AuNP as fluorescence quencher and thiol-terminated fluorescently labeled stem–loop–stem oligonucleotide sequences attached by Au–S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.Keywords: molecular beacon, bioinformatics, gold nanoparticle, STAT5b mRNA, visual detection

  19. Phosphatidic acid produced by phospholipase D promotes RNA replication of a plant RNA virus.

    Directory of Open Access Journals (Sweden)

    Kiwamu Hyodo

    2015-05-01

    Full Text Available Eukaryotic positive-strand RNA [(+RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA, a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids, but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+RNA virus, Red clover necrotic mosaic virus (RCNMV. We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate.

  20. Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach.

    Science.gov (United States)

    Cambronne, Xiaolu A; Shen, Rongkun; Auer, Paul L; Goodman, Richard H

    2012-12-11

    Identifying targets is critical for understanding the biological effects of microRNA (miRNA) expression. The challenge lies in characterizing the cohort of targets for a specific miRNA, especially when targets are being actively down-regulated in miRNA- RNA-induced silencing complex (RISC)-messengerRNA (mRNA) complexes. We have developed a robust and versatile strategy called RISCtrap to stabilize and purify targets from this transient interaction. Its utility was demonstrated by determining specific high-confidence target datasets for miR-124, miR-132, and miR-181 that contained known and previously unknown transcripts. Two previously unknown miR-132 targets identified with RISCtrap, adaptor protein CT10 regulator of kinase 1 (CRK1) and tight junction-associated protein 1 (TJAP1), were shown to be endogenously regulated by miR-132 in adult mouse forebrain. The datasets, moreover, differed in the number of targets and in the types and frequency of microRNA recognition element (MRE) motifs, thus revealing a previously underappreciated level of specificity in the target sets regulated by individual miRNAs.

  1. Biochemistry and Function of the RNA Exosomes

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon; Chlebowski, Aleksander; Dziembowski, Andrzej

    2012-01-01

    Discovery of the evolutionary conserved RNA exosome was a milestone in RNA biology. First identified as an activity essential for the processing of ribosomal RNA, the exosome has since proved to be central for RNA processing and degradation in both the nucleus and the cytoplasm of eukaryotic cell...

  2. Nuclear Imprisonment: Viral Strategies to Arrest Host mRNA Nuclear Export

    Science.gov (United States)

    Kuss, Sharon K.; Mata, Miguel A.; Zhang, Liang; Fontoura, Beatriz M. A.

    2013-01-01

    Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses. PMID:23872491

  3. Structure of Human cGAS Reveals a Conserved Family of Second-Messenger Enzymes in Innate Immunity

    Directory of Open Access Journals (Sweden)

    Philip J. Kranzusch

    2013-05-01

    Full Text Available Innate immune recognition of foreign nucleic acids induces protective interferon responses. Detection of cytosolic DNA triggers downstream immune signaling through activation of cyclic GMP-AMP synthase (cGAS. We report here the crystal structure of human cGAS, revealing an unanticipated zinc-ribbon DNA-binding domain appended to a core enzymatic nucleotidyltransferase scaffold. The catalytic core of cGAS is structurally homologous to the RNA-sensing enzyme, 2′-5′ oligo-adenylate synthase (OAS, and divergent C-terminal domains account for specific ligand-activation requirements of each enzyme. We show that the cGAS zinc ribbon is essential for STING-dependent induction of the interferon response and that conserved amino acids displayed within the intervening loops are required for efficient cytosolic DNA recognition. These results demonstrate that cGAS and OAS define a family of innate immunity sensors and that structural divergence from a core nucleotidyltransferase enables second-messenger responses to distinct foreign nucleic acids.

  4. Phosphorylation of the human respiratory syncytial virus P protein mediates M2-2 regulation of viral RNA synthesis, a process that involves two P proteins.

    Science.gov (United States)

    Asenjo, Ana; Villanueva, Nieves

    2016-01-04

    The M2-2 protein regulates the balance between human respiratory syncytial virus (HRSV) transcription and replication. Here it is shown that M2-2 mediated transcriptional inhibition is managed through P protein phosphorylation. Transcription inhibition by M2-2 of the HRSV based minigenome pRSVluc, required P protein phosphorylation at serines (S) in positions 116, 117, 119 and increased inhibition is observed if S232 or S237 is also phosphorylated. Phosphorylation of these residues is required for viral particle egression from infected cells. Viral RNA synthesis complementation assays between P protein variants, suggest that two types of P proteins participate in the process as components of RNA dependent RNA polymerase (RdRp). Type I is only functional when, as a homotetramer, it is bound to N and L proteins through residues 203-241. Type II is functionally independent of these interactions and binds to N protein at a region outside residues 232-241. P protein type I phosphorylation at S116, S117 and S119, did not affect the activity of RdRp but this phosphorylation in type II avoids its interaction with N protein and impairs RdRp functionality for transcription and replication. Structural changes in the RdRp, mediated by phosphorylation turnover at the indicated residues, in the two types of P proteins, may result in a fine adjustment, late in the infectious cycle, of transcription, replication and progression in the morphogenetic process that ends in egression of the viral particles from infected cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. RNA Export through the NPC in Eukaryotes.

    Science.gov (United States)

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  6. Sipi soup inhibits cancer‑associated fibroblast activation and the inflammatory process by downregulating long non‑coding RNA HIPK1‑AS.

    Science.gov (United States)

    Zhou, Bingxiu; Yu, Yuanyuan; Yu, Lixia; Que, Binfu; Qiu, Rui

    2018-06-06

    Sipi soup (SPS), the aqueous extract derived from the root bark of Sophora japonical L, Salix babylonica L., Morus alba L., as well as Amygdalus davidiana (Carr.) C. de Vos, is a traditional Chinese medicine frequently used to prevent and treat infection and inflammation. However, the role of SPS in cancer‑associated fibroblasts (CAFs) require further investigation. In the present study, the effects of SPS on fibroblast inactivation and the underlying mechanism were investigated. Reverse transcription‑quantitative polymerase chain reaction was used to analyze the mRNA expression levels of fibroblast activation protein (FAP), interleukin (IL)‑6, α‑smooth muscle actin (α‑SMA) and programmed cell death 4 (PDCD4). Flow cytometry was used to evaluate cell apoptosis. Immunofluorescence was used to determine the number of activated fibroblasts. The present study reported that SPS treatment did not affect the proliferative apoptotic potential of fibroblasts. Treatment with HeLa cell culture medium (CM) induced a significant increase in the expression levels of FAP, IL‑6 and α‑SMA, but reduced the expression of PDCD4. SPS reversed the effects of HeLa CM on the expression of these genes. Analysis with a long non‑coding (lnc)RNA array of numerous differentially expressed lncRNAs revealed that the expression levels of the lncRNA homeodomain‑interacting protein kinase 1 antisense RNA (HIPK1‑AS) were increased in cervicitis tissues and cervical squamous cell carcinoma tissues compared with in normal cervical tissues. HIPK1‑AS expression levels were upregulated in response to HeLa CM, but were decreased under SPS treatment. The downregulation of HIPK1‑AS expression via short hairpin RNA abolished the effects of HeLa CM on the expression of inflammation‑associated genes. The findings of the present study suggested that SPS may prevent the progression of cervical cancer by inhibiting the activation of CAF and the inflammatory process by reducing HIPK1

  7. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    International Nuclear Information System (INIS)

    Antusch, Stefan; Nolde, David

    2015-01-01

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale

  8. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    Science.gov (United States)

    Antusch, Stefan; Nolde, David

    2015-09-01

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.

  9. Realising effective theories of tribrid inflation: are there effects from messenger fields?

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 München (Germany); Nolde, David [Department of Physics, University of Basel,Klingelbergstr. 82, CH-4056 Basel (Switzerland)

    2015-09-22

    Tribrid inflation is a variant of supersymmetric hybrid inflation in which the inflaton is a matter field (which can be charged under gauge symmetries) and inflation ends by a GUT-scale phase transition of a waterfall field. These features make tribrid inflation a promising framework for realising inflation with particularly close connections to particle physics. Superpotentials of tribrid inflation involve effective operators suppressed by some cutoff scale, which is often taken as the Planck scale. However, these operators may also be generated by integrating out messenger superfields with masses below the Planck scale, which is in fact quite common in GUT and/or flavour models. The values of the inflaton field during inflation can then lie above this mass scale, which means that for reliably calculating the model predictions one has to go beyond the effective theory description. We therefore discuss realisations of effective theories of tribrid inflation and specify in which cases effects from the messenger fields are expected, and under which conditions they can safely be neglected. In particular, we point out how to construct realisations where, despite the fact that the inflaton field values are above the messenger mass scale, the predictions for the observables are (to a good approximation) identical to the ones calculated in the effective theory treatment where the messenger mass scale is identified with the (apparent) cutoff scale.

  10. The Gravity Field of Mercury After the Messenger Low-Altitude Campaign

    Science.gov (United States)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Smith, David E.; Zuber, Maria T.; Neumann, Gary A.; Solomon, Sean C.

    2015-01-01

    The final year of the MESSENGER mission was designed to take advantage of the remaining propellant onboard to provide a series of lowaltitude observation campaigns and acquire novel scientific data about the innermost planet. The lower periapsis altitude greatly enhances the sensitivity to the short-wavelength gravity field, but only when the spacecraft is in view of Earth. After more than 3 years in orbit around Mercury, the MESSENGER spacecraft was tracked for the first time below 200-km altitude on 5 May 2014 by the NASA Deep Space Network (DSN). Between August and October, periapsis passages down to 25-km altitude were routinely tracked. These periods considerably improved the quality of the data coverage. Before the end of its mission, MESSENGER will fly at very low altitudes for extended periods of time. Given the orbital geometry, however the periapses will not be visible from Earth and so no new tracking data will be available for altitudes lower than 75 km. Nevertheless, the continuous tracking of MESSENGER in the northern hemisphere will help improve the uniformity of the spatial coverage at altitudes lower than 150 km, which will further improve the overall quality of the Mercury gra