WorldWideScience

Sample records for mesozoic geological evolution

  1. The mesozoic palaeogeographic evolution of Anatolides.

    Science.gov (United States)

    Vrielynck, Bruno; Robertson, Alastair; Barrier, Eric; Poisson, André; Oberhaensli, Roland; Pourteau, Amaury

    2014-05-01

    Turkish orogenic belt is compound of several palaeogeographic units which amalgamated in late Mesozoic-Cenozoic time. Palaeogeographic reconstructions are still debateable owing to the complex, multistage geological development. A new scenario is proposed here based on recently published information and new data acquired in the frame of the DARIUS Programme. At the end of the Palaeozoic, all the continental domains south of the Izmir-Ankara-Erzincan suture were located within the eastern part of the north-Gondwana margin. The Late Permian-Triassic period was characterised by widespread rifting leading to the opening of various deep-sea basins: between the Tavşanlı and Afyon zones and the Menderes massif (Pindos basin), between the Central Anatolian Block and Anatolia (Intra-Tauride basin), and between the southeastern Taurus and the Bitlis block. In most of the Taurus, a carbonate platform started to develop although parts remained emerge. During the Jurassic, there was continued opening of the Mesogean Ocean (future East Mediterranean Sea). Anatolia and Taurus drifted northwards. The Taurus units remained as a carbonate platform. In its southeast part, a rift separated the Bitlis platform from the northern platform. Changes are most obvious in the Anatolian region. South of the Menderes platform, a trough developed and separated the Bey Daǧları from the Menderes units. The Kızılca pelagic series, similar to the Lycian series, accumulated within this trough. North of the Menderes platform, the Lycian pelagic series accumulated, extending westwards into the Pindos series. This pelagic area was connected to the Tethys Ocean by passages through a neritic archipelago, as represented by the eastern extremity of the Pelagonian units and the western extremity of the Afyon units. The northern part of this area could be where the "Bornova zone series" accumulated. During the Late Jurassic in the Hellenides, ophiolites that had formed between the northern Apulian

  2. Mesozoic basins and associated palaeogeographic evolution in North China

    Directory of Open Access Journals (Sweden)

    Yong-Qing Liu

    2015-04-01

    Besides, during the Late Mesozoic, a huge terrestrial biota, mainly dinosaur fauna, dominated in North China. The Yanliao biota of the Middle–Late Jurassic and the Jehol biota of the Early Cretaceous are characterized by feathered dinosaurs, primitive birds, mammals, pterosaur, insects and plants (angiosperms. In northeastern Asia, this Late Mesozoic tectonic background , palaeogeoraphy and palaeoecology were shared by East China, Korean Peninsula, Japan and the Far East of Russia.

  3. The Mesozoic-Cenozoic tectonic evolution of the Greater Caucasus

    NARCIS (Netherlands)

    Saintot, A.N.; Brunet, M.F.; Yakovlev, F.; Sébrier, M.; Stephenson, R.A.; Ershov, A.V.; Chalot-Prat, F.; McCann, T.

    2006-01-01

    The Greater Caucasus (GC) fold-and-thrust belt lies on the southern deformed edge of the Scythian Platform (SP) and results from the Cenoozoic structural inversion of a deep marine Mesozoic basin in response to the northward displacement of the Transcaucasus (lying south of the GC subsequent to the

  4. Mesozoic evolution of the Tisza Mega-unit

    Science.gov (United States)

    Haas, János; Péró, Csaba

    The south-eastern part of the basement of the Pannonian Basin is made up of Variscan crystalline complexes and early Mesozoic formations showing striking affinity with the corresponding formations in the southern margin of the European Plate. This large composite structural unit, which is actually an exotic terrane of European Plate origin, has been named the Tisza Mega-unit. Based upon relevant data of the pre-Tertiary basement of southern Hungary the reconstruction of the position of the Tisza Terrane in the early Alpine evolutionary stages, the process of its separation and break-off from the European Plate, and results of its Eo-Alpine deformations are summarised in the present paper. In the Variscan and early Alpine evolutionary stages the area of the later Tisza Mega-unit was located at the margin of the European Plate. During Variscan orogeny terrane accretion led to intensive deformation and metamorphism in this belt. This was followed by transpressional tectonics and the development of molasse basins in the late and post-Variscan stages, and passive margin evolution after the Neotethys opening in the Middle Triassic. The separation of the Tisza Mega-unit began with incipient continental rifting along the axis of the later Ligurian-Penninic-Vahic oceanic branch in the Late Triassic. The end of terrigenous material deposition in the most external zones, and a coeval change in fossil assemblage, point to the separation of the Tisza Block from the European Plate in the Early Bathonian. Significant rotation of the Tisza Mega-unit and coeval paroxysm of alkaline rift-type basalt volcanism took place in the Early Cretaceous. In the mid-Cretaceous, due to the northward motion of the Adria Block and the related closure of the westernmost Neotethys basin, the extensional regime changed to a compressional one, leading to onset of the nappe stacking and low-grade regional metamorphism within the Tisza microplate. In the foreland of the nappe systems flexural basins

  5. Paleozoic and mesozoic evolution of East-Central California

    Science.gov (United States)

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early

  6. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads.

    Science.gov (United States)

    Butler, Richard J; Barrett, Paul M; Kenrick, Paul; Penn, Malcolm G

    2009-02-01

    The significance of co-evolution over ecological timescales is well established, yet it remains unclear to what extent co-evolutionary processes contribute to driving large-scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long-term co-evolutionary hypotheses relate to proposed interactions between herbivorous non-avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co-occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright-coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur-cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified - GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co-evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co-evolutionary interactions between cycads and herbivorous dinosaurs

  7. Evolution of viviparous reproduction in Paleozoic and Mesozoic reptiles.

    Science.gov (United States)

    Blackburn, Daniel G; Sidor, Christian A

    2014-01-01

    Although viviparity (live-bearing reproduction) is widely distributed among lizards and snakes, it is entirely absent from other extant Reptilia and many extinct forms. However, paleontological evidence reveals that viviparity was present in at least nine nominal groups of pre-Cenozoic reptiles, representing a minimum of six separate evolutionary origins of this reproductive mode. Two viviparous clades (sauropterygians and ichthyopterygians) lasted more than 155 million years, a figure that rivals the duration of mammalian viviparity. Circumstantial evidence indicates that extinct viviparous reptiles had internal fertilization, amniotic fetal membranes, and placentas that sustained developing embryos via provision of respiratory gases, water, calcium, and possibly organic nutrients. Production of offspring via viviparity facilitated the invasion of marine habitats in at least five reptilian lineages. Thus, this pattern of embryonic development and reproduction was central to the ecology and evolution of these ancient animals, much as it is to numerous extant species of vertebrates.

  8. Mesozoic evolution of the Valencia trough: Implications for the understanding of the Western Mediterranean

    Science.gov (United States)

    Etheve, Nathalie; Frizon de Lamotte, Dominique; Mohn, Geoffroy; Roca, Eduard; Gorini, Christian; Blanpied, Christian

    2014-05-01

    The Western Mediterranean records a multi-stage tectonic evolution characterized by a complex succession of rifting to compressive episodes during the Cenozoic. The Valencia through was formed in this geodynamic framework and is classically interpreted as an aborted Tertiary rift related to back-arc extension. Notably, the Tertiary rifting is superimposed to the Jurassic opening of the Tethys basin, the early Cretaceous opening of the Bay of Biscay-Pyrenees basins and the late Cretaceous-early Tertiary inversion of these basins (e.g. Iberian range, Catalan Coastal range). Since the last twenty years, many studies contributed to the understanding of the Tertiary history of this area, whereas the pre-Tertiary evolution of the Valencia trough remains poorly investigated. Therefore, we initiated a research project in the Valencia trough benefiting from the acquisition of high quality seismic surveys allowing a better imaging of the Mesozoic sequences. This PhD project aims to understand the mechanisms and the role of structural inheritance that controlled the evolution of the Valencia trough and its impact on the sedimentary infilling since the Mesozoic. The relation between the sedimentary infilling, subsidence and crustal thinning mechanisms during the Cenozoic are investigated aiming to unravel critical information on rifting processes. This study will be based on correlations between onshore and offshore observations. Structural and stratigraphic evolution will be defined on land and compared with seismic sections and well data at sea. Eventually, these data will enable us to propose coherent land-sea interpretations of the area, providing a better understanding of the tectono-stratigraphic context. Our poster show preliminary results obtained from fieldwork on the western margin of the Valencia trough coupled with seismic interpretations. Eventually, results of this study may lead to better constrain the kinematic reconstruction of the western Mediterranean

  9. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds.

    Science.gov (United States)

    Benson, Roger B J; Choiniere, Jonah N

    2013-10-07

    Birds are the most diverse living tetrapod group and are a model of large-scale adaptive radiation. Neontological studies suggest a radiation within the avian crown group, long after the origin of flight. However, deep time patterns of bird evolution remain obscure because only limited fossil data have been considered. We analyse cladogenesis and limb evolution on the entire tree of Mesozoic theropods, documenting the dinosaur-bird transition and immediate origins of powered flight. Mesozoic birds inherited constraints on forelimb evolution from non-flying ancestors, and species diversification rates did not accelerate in the earliest flying taxa. However, Early Cretaceous short-tailed birds exhibit both phenotypic release of the hindlimb and increased diversification rates, unparalleled in magnitude at any other time in the first 155 Myr of theropod evolution. Thus, a Cretaceous adaptive radiation of stem-group birds was enabled by restructuring of the terrestrial locomotor module, which represents a key innovation. Our results suggest two phases of radiation in Avialae: with the Cretaceous diversification overwritten by extinctions of stem-group birds at the Cretaceous-Palaeogene boundary, and subsequent diversification of the crown group. Our findings illustrate the importance of fossil data for understanding the macroevolutionary processes generating modern biodiversity.

  10. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    Science.gov (United States)

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but

  11. The completeness of the fossil record of mesozoic birds: implications for early avian evolution.

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    Full Text Available Many palaeobiological analyses have concluded that modern birds (Neornithes radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian-Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a 'sampling corrected' residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this

  12. The completeness of the fossil record of mesozoic birds: implications for early avian evolution.

    Science.gov (United States)

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian-Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a 'sampling corrected' residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but have

  13. Mesozoic-Cenozoic tectonic evolution and its relation to sandstone-type uranium mineralization in northern Tarim area--Evidence from apatite fission track

    International Nuclear Information System (INIS)

    Liu Hongxu; Dong Wenming; Liu Zhangyue; Chen Xiaolin

    2009-01-01

    The apatite fission track dating and inversion result of geological thermal history of four rock specimens from Sawafuqi area and Talike area in northern Tarim Basin show that two areas uplifted at different ages. The apatite fission track ages of Sawafuqi range from 3.5 to 3.9 Ma, while the ages of Talike range from 53 to 59 Ma. The thermal history recorded by rock samples reveals that there are at least three prominent cooling phases since Late Cretaceous epoch. Detailed study was made on the division of uplifting stages during Mesozoic and Cenozoic tectonic evolution with the existing data in northern Tarim area. And new ideas on tectonic evolution and sandstone-type uranium mineralization have been put forward by combining with the sandstone-type uranium mineralization ages in this area.(authors)

  14. To prospect for mesozoic large and superlarge volcanic type uranium deposits by outlining the specific positions of geological structure

    International Nuclear Information System (INIS)

    Yang Zhenqian

    1994-01-01

    The author analyses the specific positions for Mesozoic large and superlarge volcanic type uranium deposits--geological environment of uranium-bearing volcanic collapse (down faulting) basin, which are characterized by being adjacent to the regional tectonic-magmatic belt, accompanied with sedimentary basin, formed in the early stage of volcanic depression, uplifted in the late stage of basin development, cut by crustal faults, under lain by acidic rock basement and accompanied by extensive argillation. On the basis of discussing the formation mechanism of this type of uranium deposit, nine location criteria for the specific positions are proposed, namely: mobile tectonic-magmatic zone at the intersection of the first and second order tectonic elements; large sized volcano-sedimentary basin at the margin of mobile tectonic-magmatic zone; small sized embayed volcanic collapse (down faulting) basin at the margin of volcano-sedimentary basin; well-developed volcanic rocks in volcanic collapse (down faulting) basin; uplifting of volcanic collapse (down faulting) basin in the later stage of basin development; volcanic collapse (down faulting) basin controlled by a crustal fault with long-term activities; multiple phases of granitic massif developed in the basement of volcanic collapse (down faulting) basin; cover of volcanic collapse (down faulting) basin underwent intense moderate-low temperature volume alteration (mainly as argillation); volume alteration is superimposed by silicification, low temperature albitization, ferrichloritization and anomalies of uranium and associated elements are encountered

  15. U-Pb zircon geochronology of the Paleogene - Neogene volcanism in the NW Anatolia: Its implications for the Late Mesozoic-Cenozoic geodynamic evolution of the Aegean

    Science.gov (United States)

    Ersoy, E. Yalçın; Akal, Cüneyt; Genç, Ş. Can; Candan, Osman; Palmer, Martin R.; Prelević, Dejan; Uysal, İbrahim; Mertz-Kraus, Regina

    2017-10-01

    The northern Aegean region was shaped by subduction, obduction, collision, and post-collisional extension processes. Two areas in this region, the Rhodope-Thrace-Biga Peninsula to the west and Armutlu-Almacık-Nallıhan (the Central Sakarya) to the east, are characterized by extensive Eocene to Miocene post-collisional magmatic associations. We suggest that comparison of the Cenozoic magmatic events of these two regions may provide insights into the Late Mesozoic to Cenozoic tectonic evolution of the Aegean. With this aim, we present an improved Cenozoic stratigraphy of the Biga Peninsula derived from a new comprehensive set of U-Pb zircon age data obtained from the Eocene to Miocene volcanic units in the region. The compiled radiometric age data show that calc-alkaline volcanic activity occurred at 43-15 Ma in the Biga Peninsula, 43-17 Ma in the Rhodope and Thrace regions, and 53-38 Ma in the Armutlu-Almacık-Nallıhan region, which are slightly overlapping. We discuss the possible cause for the distinct Cenozoic geodynamic evolution of the eastern and western parts of the region, and propose that the Rhodope, Thrace and Biga regions in the north Aegean share the same Late Mesozoic to Cenozoic geodynamic evolution, which is consistent with continuous subduction, crustal accretion, southwestward trench migration and accompanying extension; all preceded by the Late Cretaceous - Paleocene collision along the Vardar suture zone. In contrast, the Armutlu-Almacık-Nallıhan region was shaped by slab break-off and related processes following the Late Cretaceous - Paleocene collision along the İzmir-Ankara suture zone. The eastern and western parts of the region are presently separated by a northeast-southwest trending transfer zone that was likely originally present as a transform fault in the subducted Tethys oceanic crust, and demonstrates that the regional geodynamic evolution can be strongly influenced by the geographical distribution of geologic features on the

  16. Paleozoic and mesozoic GIS data from the Geologic Atlas of the Rocky Mountain Region: Volume 1

    Science.gov (United States)

    Graeber, Aimee; Gunther, Gregory

    2017-01-01

    The Rocky Mountain Association of Geologists (RMAG) is, once again, publishing portions of the 1972 Geologic Atlas of the Rocky Mountain Region (Mallory, ed., 1972) as a geospatial map and data package. Georeferenced tiff (Geo TIFF) images of map figures from this atlas has served as the basis for these data products. Shapefiles and file geodatabase features have been generated and cartographically represented for select pages from the following chapters:• Phanerozoic Rocks (page 56)• Cambrian System (page 63)• Ordovician System (pages 78 and 79)• Silurian System (pages 87 - 89)• Devonian System (pages 93, 94, and 96 - 98)• Mississippian System (pages 102 and 103)• Pennsylvanian System (pages 114 and 115)• Permian System (pages 146 and 149 - 154)• Triassic System (pages 168 and 169)• Jurassic System (pages 179 and 180)• Cretaceous System (pages 197 - 201, 207 - 210, 215, - 218, 221, 222, 224, 225, and 227).The primary purpose of this publication is to provide regional-scale, as well as local-scale, geospatial data of the Rocky Mountain Region for use in geoscience studies. An important aspect of this interactive map product is that it does not require extensive GIS experience or highly specialized software.

  17. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites

    Science.gov (United States)

    Moghadam, Hadi Shafaii; Stern, Robert J.

    2015-03-01

    Iran is a mosaic of continental terranes of Cadomian (520-600 Ma) age, stitched together along sutures decorated by Paleozoic and Mesozoic ophiolites. Here we present the current understanding of the Mesozoic (and rare Cenozoic) ophiolites of Iran for the international geoscientific audience. We summarize field, chemical and geochronological data from the literature and our own unpublished data. Mesozoic ophiolites of Iran are mostly Cretaceous in age and are related to the Neotethys and associated backarc basins on the S flank of Eurasia. These ophiolites can be subdivided into five belts: 1. Late Cretaceous Zagros outer belt ophiolites (ZOB) along the Main Zagros Thrust including Late Cretaceous-Early Paleocene Maku-Khoy-Salmas ophiolites in NW Iran as well as Kermanshah-Kurdistan, Neyriz and Esfandagheh (Haji Abad) ophiolites, also Late Cretaceous-Eocene ophiolites along the Iraq-Iran border; 2. Late Cretaceous Zagros inner belt ophiolites (ZIB) including Nain, Dehshir, Shahr-e-Babak and Balvard-Baft ophiolites along the southern periphery of the Central Iranian block and bending north into it; 3. Late Cretaceous-Early Paleocene Sabzevar-Torbat-e-Heydarieh ophiolites of NE Iran; 4. Early to Late Cretaceous Birjand-Nehbandan-Tchehel-Kureh ophiolites in eastern Iran between the Lut and Afghan blocks; and 5. Late Jurassic-Cretaceous Makran ophiolites of SE Iran including Kahnuj ophiolites. Most Mesozoic ophiolites of Iran show supra-subduction zone (SSZ) geochemical signatures, indicating that SW Asia was a site of plate convergence during Late Mesozoic time, but also include a significant proportion showing ocean-island basalt affinities, perhaps indicating the involvement of subcontinental lithospheric mantle.

  18. Geologic Evolution of Dao Vallis, Mars

    Science.gov (United States)

    Crown, D. A.; Bleamaster, L. F.; Mest, S. C.

    2003-12-01

    Three major outflow channel systems (Dao, Harmakhis, and Reull Vallis) extend through the cratered highlands and sedimentary plains of the eastern Hellas region of Mars. These valles represent a stage in regional geologic history intermediate to formation of channels and valleys within highland terrains in the Late Noachian and Early Hesperian Epochs and debris aprons and gullies in the Amazonian Period. Dao Vallis, along with its tributary Niger Vallis, extends for ~1200 km from the eastern margin of Hadriaca Patera into Hellas Planitia, where a depositional lobe is observed on the basin floor. The Dao Vallis system (~6-50 km wide) is characterized by two steep-walled source depressions, regions of subsided plains, and prominent central canyons whose walls display gullies with associated depositional aprons covering parts of canyon floors. The present study is designed to utilize MOC images, MOLA topographic data, and THEMIS daytime and nighttime images to evaluate and refine the geologic evolution of Dao Vallis as defined in earlier Viking-based studies. Dao Vallis has previously been interpreted to have formed by collapse of volcanic and sedimentary plains, potentially triggered by volcano-ice interactions in the Martian subsurface. Small channels and lineations parallel to canyon walls provide evidence for surface flow of fluids. Evidence for subsurface flow is present in zones of subsided plains that separate the central canyons of Dao and Niger Valles from their source depressions. Later stages of the geologic history were dominated by mass-wasting from canyon walls, which may have significantly increased canyon width in places. Comparison of MOC, THEMIS, and Viking images suggests a consistency of geologic processes across a range of spatial scales, as evidence for collapse, mass-wasting, and fluvial erosion and deposition is observed in all datasets. The higher spatial resolution of MOC and THEMIS permits a more detailed understanding of Dao Vallis

  19. Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, S. John [Univ. of Nevada, Reno, NV (United States)

    1991-08-01

    Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region.

  20. Mesozoic and Cenozoic structural geology of the CP Hills, Nevada Test Site, Nye County, Nevada; and regional implications

    International Nuclear Information System (INIS)

    Caskey, S.J.

    1991-08-01

    Detailed mapping and structural analysis of upper Proterozoic and Paleozoic rocks in the CP Hills of the Nevada Test Site, together with analysis of published maps and cross sections and a reconnaissance of regional structural relations indicate that the CP thrust of Barnes and Poole (1968) actually comprises two separate, oppositely verging Mesozoic thrust systems: (1) the west-vergent CP thrust which is well exposed in the CP Hills and at Mine Mountain, and (2) the east-vergent Belted Range thrust located northwest of Yucca Flat. West-vergence of the CP thrust is indicated by large scale west-vergent recumbent folds in both its hangingwall and footwall and by the fact that the CP thrust ramps up section through hangingwall strata toward the northwest. Regional structural relations indicate that the CP thrust forms part of a narrow sigmoidal belt of west-vergent folding and thrusting traceable for over 180 km along strike. The Belted Range thrust represents earlier Mesozoic deformation that was probably related to the Last Chance thrust system in southeastern California, as suggested by earlier workers. A pre-Tertiary reconstruction of the Cordilleran fold and thrust belt in the region between the NTS and the Las Vegas Range bears a close resemblance to other regions of the Cordillera and has important implications for the development of hinterland-vergent deformation as well as for the probable magnitude of Tertiary extension north of Las Vegas Valley. Subsequent to Mesozoic deformation, the CP Hills were disrupted by at least two episodes of Tertiary extensional deformation: (1) an earlier episode represented by pre-middle Miocene low-angle normal faults, and (2) a later, post-11 Ma episode of high-angle normal faulting. Both episodes of extension were related to regional deformation, the latter of which has resulted in the present basin and range topography of the NTS region

  1. Europe's last Mesozoic bird

    NARCIS (Netherlands)

    Dyke, Gareth J.; Dortangs, Rudi W.; Jagt, John W.; Mulder, Eric W. A.; Schulp, Anne S.; Chiappe, Luis M.

    2002-01-01

    Birds known from more than isolated skeletal elements are rare in the fossil record, especially from the European Mesozoic. This paucity has hindered interpretations of avian evolution immediately prior to, and in the aftermath of, the Cretaceous-Tertiary (K-T) extinction event. We report on a

  2. Avalonian crustal controls on basin evolution: implications for the Mesozoic basins of the southern North Sea

    Science.gov (United States)

    Smit, Jeroen; van Wees, Jan-Diederik; Cloetingh, Sierd

    2015-04-01

    Little is known of the Southern North Sea Basin's (SNSB) Pre-Permian basement due to a lack of outcrop and cores. The nature and structure of the East Avalonian crust and lithosphere remain even less constrained in the absence of deep seismic (refraction) lines. However, various studies have hinted at the importance of the Reactivation of the Early Carboniferous fault network during each consecutive Mesozoic and Cenozoic tectonic phase, demonstrating the key role of weak zones from the Early Carboniferous structural grain in partitioning of structural deformation and vertical basin motions at various scales. Although the older basin history and the basement attract increasing attention, the Pre-Permian tectonics of the SNSB remains little studied with most attention focused on the Permian and younger history. The strong dispersal of existing constraints requires a comprehensive study from Denmark to the UK, i.e. the East Avalonian microplate, bordered by the Variscan Rheïc suture, the Atlantic and Baltica. Based on an extensive literature study and the reinterpretation of publicly available data, linking constraints from the crust and mantle to stratigraphic-sedimentological information, we complement the map of Early Carboniferous rifting of East Avalonia and propose a new tectonic scenario. From the reinterpretation of the boundary between Avalonia and Baltica we propose a new outline for the Avalonian microplate with implications for the tectonics of the North German Basin. Furthermore, we highlight the nature and extent of the major crustal/lithospheric domains with contrasting structural behaviour and the major boundaries that separate them. Results shed light on the effects of long lived differences in crustal fabric that are responsible for spatial heterogeneity in stress and strain magnitudes and zonations of fracturing, burial history and temperature history. The geomechanical control of large crustal-scale fault structures will provide the constraints

  3. Mesozoic to Cenozoic U-Pb zircon ages from Graham Land, West Antarctica: the magmatic evolution of the Antarctic Peninsula batholith

    Science.gov (United States)

    Bastias, Joaquin; Spikings, Richard; Ulianov, Alex; Schaltegger, Urs; Grunow, Anne; Hervé, Francisco

    2017-04-01

    The plutonic rocks of the Antarctic Peninsula form one of the major intrusive bodies located along the circum-Pacific rim. Spanning ages of ˜240 to 9 Ma and emplaced over 1300 km long and 200 km wide along Graham and Palmer Land, these rocks represents a key unit to understand the magmatic and tectonic evolution of the Antarctic Peninsula. In the north, the plutons intrude Paleozoic- Mesozoic low-grade meta-sedimentary rocks, and intrudes schists and ortho- and paragneisses with Triassic to Carboniferous metamorphic ages, further south. The origin of the arc of Antarctic Peninsula has been in dispute since the interpretation of Vaughan and Storey (2000) who suggested that these plutonic rocks are part of an allochthonous arc, contradicting the traditional interpretation that these rocks are autochthonous and are part of the continental arc which formed along the southern margin of Gondwana (Suarez, 1976). We will address the magmatic and tectonic evolution of the Antarctic Peninsula by providing crystallization ages (zircon U-Pb and hornblende 40Ar/39Ar) of the main plutonic units, together with the characterization of the tectonic environment within which magmatism was occurring (geochemical studies and isotopic tracing). We present 45 LA-ICP-MS U-Pb (zircon) and 4 40Ar/39Ar (hornblende) dates of plutons and dikes from the west coast of the northern Antarctic Peninsula and the South Shetland Islands. Their geochemical composition shows affinities with calc-alkaline, supra-subduction zone rocks (Pearce et al., 1984). The U-Pb zircon ages range between ˜160 Ma (Stonington Island) to ˜9 Ma (Cornwallis Island), with a peak in the Early Cretaceous (Albian and Aptian). Upper Jurassic to Eocene intrusions were emplaced in a constant, approximately stationary position. Magmatism displaced ˜50km westwards during the Miocene, which is currently exposed on Watkin Island (˜22 Ma), Snodgrass Island (˜19 Ma), Litchfield Island (˜19 Ma) and Cornwallis Island (˜26 Ma

  4. 2005 dossier: clay. Tome: phenomenological evolution of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological processes taking place in an argilite-type geologic disposal facility for high-level and long-lived (HLLL) radioactive wastes. Content: 1 - introduction: goal, input data, time and space scales, long-time forecasting of the phenomenological evolution; 2 - the Meuse/Haute-Marne site, the HLLL wastes and the disposal concepts: impact of the repository architecture; 3 - initial state of the geologic environment prior to the building up of the repository: general framework, geologic formations, tectonics and fractures, surface environment, geologic synthesis; 4 - phenomenological processes: storage-related processes, geodynamics-related processes, time scales of processes and of radionuclides migration, independence and evolution similarities of the repository and of the geologic environment; 5 - heat loads: heat transfers between containers and geologic formations, spatial organization of the thermal load, for C-type wastes and spent fuels, for B-type wastes, synthesis of the repository thermal load; 6 - flows and liquid solution and gas transfers: hydraulic behaviour of surrounding Jurassic formations (Tithonian, Kimmeridgian, Callovian, Oxfordian); 7 - chemical phenomena: chemical evolution of ventilated facilities (alveoles, galleries, boreholes), chemical evolution of B-type waste alveoles and of gallery and borehole sealing after closure, far field chemical evolution of Callovo-Oxfordian argilites and of other surrounding formations; 8 - mechanical evolution of the disposal and of the surrounding geologic environment: creation of an initial excavated damaged zone (EDZ), mechanical evolution of ventilated galleries, alveoles and sealing before and after closure, large-scale mechanical evolution; 9 - geodynamical evolution of the Callovo-Oxfordian and other surrounding formations and of the surface environment: internal

  5. Tectono-stratigraphic evolution of the Canete Basin, Lima, Peru, a plate tectonic model for the Mesozoic evolution of the Central Andes

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, A.M. (Amoco Production Company, Houston, TX (United States))

    1993-02-01

    An arc-trench system has been active in the Central Andes since at least since Late Triassic. This Mesozoic margin was characterized by subduction-erosion processes, PreMesozoic metamorphic outer basement high, pervasive extension, tectonic inversion, sporadic igneous activity and segmentation of the arc. Episodic variations in the tectonic evolution of the associated basins were controlled by the variable angle of subduction, age of the subducted plate, rate and angle of convergence, and the relative motion of the Farallon and South America Plates. The Canete Basin is an elongate frontal arc basin, subparallel to the arc, which documents the early evolution of the Andean Orogeny. In the Canete Basin, the oldest arc volcanism is documented by the interbedded tuffs, lava flows and tuffaceous marine shales of the Late Jurassic Puente Piedra Group which was deposited along a series of isolated and elongated troughs that formed adjacent to the arc. During Late Berriasian the arc subsided and the lithofacies changed from arc to continental derived lithologies. The shallow marine, quartz rich Morro Solar Group was derived from the uplifted metamorphic basement high in the west, as the result of ensialic extension. Locally, volcanic quiescence was interrupted by deposition of the volcaniclastic rich Pucusana Formation. The Late Hauterivian to Aptian Lima Group consists of lime mudstones, shales and subordinated gypsum and bioclastic limestones with volcaniclastic and lava flow facies of the Chilca Group. Stratigraphic relationship rapid changes in thickness and facies of this unit document the development of an incipient arc and the persistence of ensialic extension prior to the maximum paroxysm of volcanic activity of the overlying Albian to Cenomanian Chillon Group. Interbedded volcaniclastic sandstones, lava flows, hyaloclastic breccias and the tuffaceous shales of the Chillon Group were coeval with the early phases of emplacement of the Coastal Batholith (CB).

  6. Evolution of the Atmosphere and Oceans: Evidence from Geological ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 12. Evolution of the Atmosphere and Oceans: Evidence from Geological Records Evolution of the Early Atmosphere. P V Sukumaran. Series Article Volume 4 Issue 12 December 1999 pp 4-10 ...

  7. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny

    Science.gov (United States)

    Dong, Xin; Zhang, Ze-ming; Klemd, Reiner; He, Zhen-yu; Tian, Zuo-lin

    2018-04-01

    The Lhasa terrane of the southern Tibetan Plateau participated in a Mesozoic Andean-type orogeny caused by the northward subduction of the Neo-Tethyan oceanic lithosphere. However, metamorphic rocks, which can unravel details of the geodynamic evolution, are rare and only exposed in the south-eastern part of the Lhasa terrane. Therefore, we conducted a detailed petrological, geochemical and U-Pb zircon geochronological study of the late Cretaceous metamorphic rocks and associated gabbros from the Nyemo inlier of the southern Lhasa terrane. The Nyemo metamorphic rocks including gneisses, schists, marbles and calc-silicate rocks, experienced peak amphibolite-facies contact metamorphism under P-T conditions of 3.5-4.0 kbar and 642-657 °C with a very high geothermal gradient of 45-50 °C/km, revealing a distinct deflection from the steady-state geotherm during low-pressure metamorphism. Inherited magmatic zircon cores from the metamorphic rocks yielded protolith ages of 197-194 Ma, while overgrowth zircon rims yielded metamorphic ages of ca. 86 Ma. Whole-rock chemistry and zircon Hf isotopes suggest that the protoliths of the gneisses and schists are andesites and tuffs of the early Jurassic Sangri Group, which were derived from a depleted mantle source of a continental arc affinity. The coeval intimately-associated gabbro (ca. 86 Ma) crystallized under P-T conditions of 3.5-5.3 kbar and 914-970 °C, supplying the heat flux high enough to cause the contact metamorphism of the Sangri Group rock types. We propose that the intrusion of the gabbro and a simultaneous pressure increase of up to 4.0 kbar, which is related to crustal thickening due to crustal overthrusting and the intrusion of mafic material, resulted in the late Cretaceous metamorphism of the early Jurassic Sangri Group during an Andean-type orogeny. Furthermore the Nyemo metamorphic rocks, which have previously been considered to represent slivers of the Precambrian metamorphic basement of the Lhasa terrane

  8. Middle-Late Mesozoic sedimentary provenances of the Luxi and Jiaolai areas: Implications for tectonic evolution of the North China Block

    Science.gov (United States)

    Xu, Jianqiang; Li, Zhong

    2015-11-01

    Provenances of sedimentary rocks may provide important constraints on the tectonic evolution of the North China Block (NCB). Previous studies have demonstrated that the northern NCB (NNCB) and the Xing-Meng orogenic belt (XMOB) supplied massive detritus southward into the hinterland of the NCB during the Jurassic. In order to study the evolution of sedimentary provenance during the Middle-Late Mesozoic, U-Pb geochronology and Hf isotopic geochemistry of detrital zircon grains and chemical compositions of detrital garnets from sandstones in the Luxi and Jiaolai areas, eastern NCB, were analyzed in combination with published data on the Jurassic sandstones. The Late Paleozoic-Mesozoic (367-139 Ma) zircons in the lowermost Cretaceous Mengyin Formation samples from the Luxi area show εHf(t) values of -15.3 to -3.2 and +1.3 to +10.0, which are very similar to the results of analyses of the Jurassic formations. Further, the increased amount of Mesozoic zircons and granulite-derived garnets in the Mengyin Formation samples, compared to those in the Jurassic samples, indicates there was more detritus supply from the NNCB than from the XMOB. In the overlying Qingshan Formation samples, zircon grains do not exhibit Paleozoic ages, but most of them have Early Cretaceous ages and negative εHf(t) values, which are similar to the zircon grains extracted from the widespread Early Cretaceous igneous rocks in the NCB. This suggests that the provenance might have changed to a locally derived source. In contrast, the zircon population of the Early Cretaceous sandstones from the Jiaolai basin is dominated by grains of mid-Neoproterozoic age (700-900 Ma) which signifies contribution from the Sulu orogen. Moreover, the detrital garnet assemblages of sandstones in the Luxi area are not consistent with those from representative metamorphic rocks in the Sulu orogen. The above results seem to confirm that the Mesozoic sedimentary provenance of the Luxi area had no evident connection with

  9. Thermochronological constraints on the Cambrian to recent geological evolution of the Argentina passive continental margin

    Science.gov (United States)

    Kollenz, Sebastian; Glasmacher, Ulrich A.; Rossello, Eduardo A.; Stockli, Daniel F.; Schad, Sabrina; Pereyra, Ricardo E.

    2017-10-01

    Passive continental margins are geo-archives that store information from the interplay of endogenous and exogenous forces related to continental rifting, post-breakup history, and climate changes. The recent South Atlantic passive continental margins (SAPCMs) in Brazil, Namibia, and South Africa are partly high-elevated margins ( 2000 m a.s.l.), and the recent N-S-trending SAPCM in Argentina and Uruguay is of low elevation. In Argentina, an exception in elevation is arising from the higher topography (> 1000 m a.s.l.) of the two NW-SE-trending mountain ranges Sierras Septentrionales and Sierras Australes. Precambrian metamorphic and intrusive rocks, and siliciclastic rocks of Ordovician to Permian age represent the geological evolution of both areas. The Sierras Australes have been deformed and metamorphosed (incipient - greenschist) during the Gondwanides Orogeny. The low-temperature thermochronological (LTT) data (history of the Gondwanides and the Mesozoic and Cenozoic South Atlantic geological evolution. Upper Carboniferous zircon (U-Th/He)-ages (ZHe) indicate the earliest cooling below 180 °C/1 Ma. Most of the ZHe-ages are of Upper Triassic to Jurassic age. The apatite fission-track ages (AFT) of Sierras Septentrionales and the eastern part of Sierras Australes indicate the South Atlantic rifting and, thereafter. AFT-ages of Middle to Upper Triassic on the western side of the Sierras Australes are in contrast, indicating a Triassic exhumation caused by the eastward thrusting along the Sauce Grande wrench. The corresponding t-T models report a complex subsidence and exhumation history with variable rates since the Ordovician. Based on the LTT-data and the numerical modelling we assume that the NW-SE-trending mountain ranges received their geographic NW-SE orientation during the syn- to post-orogenic history of the Gondwanides.

  10. Petrogenesis of late Paleozoic-to-early Mesozoic granitoids and metagabbroic rocks of the Tengchong Block, SW China: implications for the evolution of the eastern Paleo-Tethys

    Science.gov (United States)

    Zhu, Ren-Zhi; Lai, Shao-Cong; Qin, Jiang-Feng; Zhao, Shao-Wei

    2018-03-01

    This paper presents precise zircon U-Pb, bulk-rock geochemical, and Sr-Nd-Pb isotopic data for metagabbro, quartz diorite, and granite units within the Tengchong Block of SW China, which forms the southeastern extension of the Himalayan orogeny and the southwestern section of the Sanjiang orogenic belt, a key region for furthering our understanding of the evolution of the eastern Paleo-Tethys. These data reveal four groups of zircon U-Pb ages that range from the late Paleozoic to the early Mesozoic, including a 263.6 ± 3.6 Ma quartz diorite, a 218.5 ± 5.4 Ma two-mica granite, a 205.7 ± 3.1 Ma metagabbroic unit, and a 195.5 ± 2.2 Ma biotite granite. The quartz diorite in this area contains low concentrations of SiO2 (60.71-64.32 wt%), is sodium-rich, and is metaluminous, indicating formation from magmas generated by a mixed source of metamafic rocks with a significant metapelitic sedimentary material within lower arc crust. The two-mica granites contain high concentrations of SiO2 (73.2-74.3 wt%), are strongly peraluminous, and have evolved Sr-Nd-Pb isotopic compositions, all of which are indicative of a crustal source, most probably from the partial melting of felsic pelite and metagreywacke/psammite material. The metagabbros contain low concentrations of SiO2 (50.17-50.96 wt%), are sodium-rich, contain high concentrations of Fe2O3T (9.79-10.06 wt%) and CaO (6.88-7.12 wt%), and are significantly enriched in the Sr (869-894 ppm) and LREE (198.14-464.60 ppm), indicative of derivation from magmas generated by a metasomatized mantle wedge modified by the sedimentary-derived component. The biotite granites are weakly peraluminous and formed from magmas generated by melting of metasedimentary sources dominated by metagreywacke/psammite material. Combining the petrology and geochemistry of these units with the regional geology of the Indosinian orogenic belt provides evidence for two stages of magmatism: an initial stage that generated magmas during partial melting of

  11. Constraining the Late Mesozoic and Early Tertiary Tectonic Evolution of Southern Mexico: Structure and Deformation History of the Tierra Caliente Region.

    Science.gov (United States)

    Cabral-Cano; Draper; Lang; Harrison

    2000-07-01

    We analyze the structure and assess the deformation history of the Tierra Caliente Metamorphic Complex (TCMC) of southern Mexico, where Laramide accretion of exotic terranes is in debate. The TCMC consists of a south-plunging antiform fault that is bounded on both its eastern and western flanks. Tierra Caliente Metamorphic Complex rocks show at least two phases of compressional deformation. The first and most prominent records a mean tectonic transport direction of 068 degrees. This phase is responsible for east-verging asymmetrical folding and thrusting of both metamorphic and superjacent sedimentary rocks. The second phase has an average transport direction of 232 degrees and is restricted to the western portion of the TCMC. A third phase is responsible for normal faulting. Lack of discernible deformation before Late Cretaceous time indicates that the main deformation phase is coincident with Laramide orogenesis elsewhere in the North American Cordillera. The stratigraphy, structure, and deformational history of the TCMC do not require accretion of exotic terranes. We explain the Mesozoic tectonostratigraphic evolution of the TCMC in terms of deposition and deformation of Mesozoic volcanic and sedimentary strata over the attenuated continental crust of the North American plate.

  12. Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon

    Science.gov (United States)

    LaMaskin, Todd A.; Vervoort, J.D.; Dorsey, R.J.; Wright, J.E.

    2011-01-01

    This study assesses early Mesozoic provenance linkages and paleogeographic-tectonic models for the western United States based on new petrographic and detrital zircon data from Triassic and Jurassic sandstones of the "Izee" and Olds Ferry terranes of the Blue Mountains Province, northeastern Oregon. Triassic sediments were likely derived from the Baker terrane offshore accretionary subduction complex and are dominated by Late Archean (ca. 2.7-2.5 Ga), Late Paleoproterozoic (ca. 2.2-1.6 Ga), and Paleozoic (ca. 380-255 Ma) detrital zircon grains. These detrital ages suggest that portions of the Baker terrane have a genetic affinity with other Cordilleran accretionary subduction complexes of the western United States, including those in the Northern Sierra and Eastern Klamath terranes. The abundance of Precambrian grains in detritus derived from an offshore complex highlights the importance of sediment reworking. Jurassic sediments are dominated by Mesozoic detrital ages (ca. 230-160 Ma), contain significant amounts of Paleozoic (ca. 290, 380-350, 480-415 Ma), Neoproterozoic (ca. 675-575 Ma), and Mesoproterozoic grains (ca. 1.4-1.0 Ga), and have lesser quantities of Late Paleoproterozoic grains (ca. 2.1-1.7 Ga). Detrital zircon ages in Jurassic sediments closely resemble well-documented age distributions in transcontinental sands of Ouachita-Appalachian provenance that were transported across the southwestern United States and modified by input from cratonal, miogeoclinal, and Cordilleran-arc sources during Triassic and Jurassic time. Jurassic sediments likely were derived from the Cordilleran arc and an orogenic highland in Nevada that yielded recycled sand from uplifted Triassic backarc basin deposits. Our data suggest that numerous Jurassic Cordilleran basins formed close to the Cordilleran margin and support a model for moderate post-Jurassic translation (~400 km) of the Blue Mountains Province. ?? 2011 Geological Society of America.

  13. A Paleomagnetic study on the tectonic evolution of the Nigde-Kirsehir massif and the Taurides since the Mesozoic-Cenozoic

    Science.gov (United States)

    Cengiz Cinku, M.; Mumtaz Hisarli, Z.; Hirt, A. M.; Ulker, B.; Oksum, E.; Kaya, N.; Setzer, F.; Yilmaz, Y.-; Orbay, N.

    2013-12-01

    The main tectonic domains of Turkey consist of several different assemblages of microcontinents represented by the Istranca massif, Istanbul Zone, Sakarya Zone, Nigde-Kirsehir Massif, Anatolide-Tauride block, and the Arabian platform. It is widely reported that the borders between these fragments are represented by suture zones, which resulted from the closure of different branches of the Neotethian Ocean. The northern suture zone, the Izmir-Ankara-Erzincan suture zone, is well known, whereas the suture zone between the Nigde-Kirsehir massif and the Taurides has been a subject of debate. It has been proposed that the Nigde-Kirsehir massif rifted from the Taurides-Anatolides in the Mesozoic and that the Intra-Tauride Ocean lay between these blocks. Other researchers have alternatively proposed that the Intra-Tauride Ocean between the Taurides-Anatolides and the Nigde-Kirsehir massif never existed, and assume that the it is a promontory of the Taurides. Paleomagnetic rotations obtained from a previous study indicate oroclinal bending in the Late Cretaceous in the northern part of the Nigde-Kirsehir massif due to its northwards indentation onto the Sakarya zone. However the southern deformation history of the Nigde-Kirsehir massif during Mesozoic has not been investigated. We have carried out a paleomagnetic study on the southern part of the massif, using a total of 120 sites that are of Late Jurassic to Miocene in age, to constrain the paleotectonic evolution of the Nigde-Kirsehir massif and its surrounding area. A paleolatitude of 17°N is obtained for the Late Jurassic-Lower Cretaceous Tauride carbonate platform, whereas Late Cretaceous arc volcanics from the suture zone around the Nigde-Kirsehir massif (Mersin ophiolite, Pozanti ophiolite) indicate a ~20°N paleolatitude. Both the Late Jurassic to Middle Eocene paleomagnetic declinations from the southeastern part of the investigation area indicates counterclockwise rotation, whereas Late Cretaceous declinations

  14. A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles

    Science.gov (United States)

    2013-01-01

    Background Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. Conclusions The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls. PMID:24053145

  15. A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles.

    Science.gov (United States)

    Rabi, Márton; Zhou, Chang-Fu; Wings, Oliver; Ge, Sun; Joyce, Walter G

    2013-09-22

    Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls.

  16. Late Paleozoic to Mesozoic tectonic evolution of the Chinese western Tianshan Orogen: Integrating detrital zircon provenance analysis with regional magmatic, stratigraphic, and tectonothermal evidence

    Science.gov (United States)

    Han, Yigui; Zhao, Guochun

    2017-04-01

    The convergence between the Tarim Craton and the southwestern margin of the Central Asian Orogenic Belt in the late Paleozoic resulted in the closure of the South Tianshan (STS) Ocean and a continent-continent collision that formed the western Tianshan Orogen in NW China. Recent intensive studies in this region have produced a great deal of new data, and also many competing tectonic interpretations, especially regarding the subduction polarity and closure time of the STS Ocean and the initial uplift of the western Tianshan Orogen. To address the controversy, this study presents a systematic provenance analysis of detrital zircons from Carboniferous to Mesozoic sedimentary strata distributed in the northern Tarim and STS regions. In combination with recent data of regional magmatism, sedimentation, and tectonothermal activity, we propose a tectonic model that can reconcile most of important geological events during late Paleozoic to Mesozoic time in the western Tianshan region. U-Pb dating of detrital zircons from Carboniferous and Permian strata in the northern Tarim and STS regions yielded consistent age patterns, i.e. two prominent populations at 270-305 Ma and 400-500 Ma, and some peaks clustering at 600-1200 Ma, 1.9 Ga, and 2.5 Ga. The scarcity of 310-380 Ma zircons in the two regions and contemporaneous passive margin sedimentation support a northward subduction of the STS oceanic crust. The closure of the ocean and continental collision probably occurred in the late Carboniferous, as indicated by a significant decrease of zircon ɛHf(t) values at 310 Ma and coeval (ultra-)high pressure metamorphic events. Detrital zircon age data also indicate that the foreland region (i.e. the northern Tarim and STS) had not received sediments from the upper plate throughout the late Carboniferous to Middle Triassic, implying insignificant surface uplift and erosion during and after collision. To interpret this, a plume-modified orogenic model is introduced, partially

  17. Conference on Early Mars: Geologic and Hydrologic Evolution, Physical and Chemical Environments, and the Implications for Life

    Science.gov (United States)

    Clifford, S. M. (Editor); Treiman, A. H. (Editor); Newsom, H. E. (Editor); Farmer, J. D. (Editor)

    1997-01-01

    Topics considered include: Geology alteration and life in an extreme environment; developing a chemical code to identify magnetic biominerals; effect of impacts on early Martin geologic evolution; spectroscopic identification of minerals in Hematite-bearing soils and sediments; exopaleontology and the search for a Fossil record on Mars; geochemical evolution of the crust of Mars; geological evolution of the early earth;solar-wind-induced erosion of the Mars atmosphere. Also included geological evolution of the crust of Mars.

  18. Geology and Tectonic Evolution of the Kazdaǧ Massif (NW Anatolia)

    Science.gov (United States)

    Erdoğan, B.; Akay, E.; Hasözbek, A.; Satır, M.; Siebel, W.

    2009-04-01

    and paleogeographic evolution of the southern part of the northwestern Anatolia. Geologica Romana 27, 13-80 Bingöl, E. (1971) Classification of age determination methods and application of Rb/Sr and K/Ar methods in Kazdağ. Bulletin of the Mineral Research and Exploration Institute of Turkey 14, 1-16 (in Turkish) Duru, M., Pehlivan, Ş., Şentürk, Y., Yavaş, F. ve Kar, H. (2004) New results on the lithostratigraphy of the Kazdağ Massif in northwest Turkey. Turkish Journal of Earth Sciences 13, 177-186 Okay, A.I and Monie, P. (1997) Early Mesozoic subduction in the eastern Mediterranean: Evidence from Triassic eclogite in northwest Turkey. Geology 25, 595-598 Okay, A.I and Satır, M. (2000) Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwestern Turkey. Geological Magazine 137, 495-516 Okay, A.I, Siyako, M and Burkan, K.A. (1991) Geology and tectonic evolution of the Biga Peninsula, northwestern Turkey. Bulletin of the Technical University of İstanbul 44, 191-256 Okay, A.I, Monod, O and Monie, P. (2002) Triaasic blueschists and eclogites from northwestern Turkey: vestiges of the Paleo-Tethyan subduction. Lithos 64, 155-178 Okay, A.I, Satır, M., Maluski, H., Sıyako, M., Monie, P., Metzger, R., Akyüz, S., (1996) Paleo- and Neo-Tethyan events in northwestern Turkey: Geologic and geochronologic constrains. The Tectonic Evolution of Asia, 420-441 Topuz, G, Altıner, D, Satır, M, and Schwartz, W.H. (2004) Low-grade metamorphic rocks from the Pulur Complex, NE Turkey: implications for the pre-Liassic evolution of the Eastern Pontides. International Journal of Earth Science, 93, 72-91 Yaltırak C. and Okay A.İ (1994) Geology of the Paleo-Tethyan units in the north of Edremit Bay. Bulletin of the Technical University of İstanbul , 3/1, 67-79 (in Turkish)

  19. Preliminary Depositional and Provenance Records of Mesozoic Basin Evolution and Cenozoic Shortening in the High Andes, La Ramada Fold-Thrust Belt, Southern-Central Andes (32-33°S)

    Science.gov (United States)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.

    2015-12-01

    The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.

  20. Evolution of the Atmosphere and Oceans: Evidence from Geological ...

    Indian Academy of Sciences (India)

    P V Sukumaran took his. M Tech degree in. Applied Geology from the. University of Saugar and has been with the. Geological Survey of India since 1974. His interests include geochemistry, petrology and palaeo- oceanography. He is presently posted to the. Marine Wing ofthe. Department and has participated in many.

  1. Geology of the Río de la Plata and the surrounding areas of Argentina and Uruguay related to the evolution of the Atlantic margin

    Science.gov (United States)

    Rossello, Eduardo A.; Veroslavsky, Gerardo; de Santa Ana, Héctor; Rodríguez, Pablo

    2018-04-01

    An integrated study of geological and geophysical data of the Río de la Plata region and its relation to the evolution of the Atlantic passive margin is herein described. This characterization is based on the available geological and geophysical information and on the correlation of the southern end of the best-known Santa Lucía Basin in Uruguay to the Salado Basin in Argentina, and their connection through the Quilmes Trough. Furthermore, a new Meso-Cenozoic depocenter is characterized and identified as Recalada Trough, subparallely aligned to the Quilmes Trough and separated from it by the Magdalena-Montevideo High. Both sedimentary fillings present ENE-WSW trending main axes and reach an average thickness of almost 2000 m. This suggests an evolution from a triple junction where interconnected extensional arms developed, which have had common Mesozoic tectosedimentary histories related to the early opening of the Atlantic Ocean. Based on the geophysical and geological evidence, the previously accepted existence in the Río de la Plata of a first-order structural feature along the international border between Argentina and Uruguay, associated to an ENE-WSW trending tectonic high, identified as Martín García, is unjustified. The tectonic evolution of the Atlantic margin in front of the Río de la Plata estuary is the consequence of a long deformation history starting in the Precambrian up to recent times. Each Precambrian, Paleozoic, Mesozoic and Cenozoic tectonic scenario adds different weak trends on the continental crust, which control the evolution of the sedimentary depocenters. The presence of these tectosedimentary records influence the bathymetric control of the Río de la Plata and the dynamics of the recent estuarine deposits. The Meso-Cenozoic sedimentary infill is estimated to comprise considerable ranges of sandstones and conglomerates associated with faulted blocks of the crystalline basement, with expected petrophysical conditions oscillating in

  2. Geological evolution of the Antongil Craton, NE Madagascar

    Science.gov (United States)

    Schofield, D.I.; Thomas, Ronald J.; Goodenough, K.M.; De Waele, B.; Pitfield, P.E.J.; Key, R.M.; Bauer, W.; Walsh, G.J.; Lidke, D.J.; Ralison, A.V.; Rabarimanana, M.; Rafahatelo, J.-M.; Randriamananjara, T.

    2010-01-01

    The Antongil Craton, along with the Masora and Antananarivo cratons, make up the fundamental Archaean building blocks of the island of Madagascar. They were juxtaposed during the late-Neoproterozoic to early Palaeozoic assembly of Gondwana. In this paper we give a synthesis of the geology of the Antongil Craton and present previously published and new geochemical and U-Pb zircon analyses to provide an event history for its evolution.The oldest rocks in the Antongil Craton form a nucleus of tonalitic gneiss, characteristic of Palaeo-Mesoarchaean cratons globally, including phases dated between 3320 ?? 14. Ma to 3231 ?? 6. Ma and 3187 ?? 2. Ma to 3154 ?? 5. Ma. A series of mafic dykes was intruded into the Mesoarchaean tonalites and a sedimentary succession was deposited on the craton prior to pervasive deformation and migmatisation of the region. The age of deposition of the metasediments has been constrained from a volcanic horizon to around 3178 ?? 2. Ma and subject to migmatisation at around 2597 ?? 49. Ma. A subsequent magmatic episode generated voluminous, weakly foliated granitic rocks, that also included additions from both reworked older crustal material and younger source components. An earlier granodiorite-dominated assemblage, dated between 2570 ?? 18. Ma and 2542 ?? 5. Ma, is largely exposed in xenoliths and more continuously in the northern part of the craton, while a later monzogranite-dominated phase, dated between 2531 ?? 13. Ma and 2513 ?? 0.4. Ma is more widely developed. Together these record the stabilisation of the craton, attested to by the intrusion of a younger dyke swarm, the age of which is constrained by a sample of metagabbro dated at 2147 ?? 6. Ma, providing the first evidence for Palaeoproterozoic rocks from the Antongil Craton.The youngest events recorded in the isotopic record of the Antongil Craton are reflected in metamorphism, neocrystallisation and Pb-loss at 792 ?? 130. Ma to 763 ?? 13. Ma and 553 ?? 68. Ma. These events are

  3. Reexamining the late Cenozoic geologic evolution of the Amazon basin

    Science.gov (United States)

    Rigsby, C. A.; Latrubesse, E. M.; Baker, P. A.; Silva, C. G.

    2010-12-01

    The recent geologic evolution of the Amazon basin has been the focus of many recent studies. Our own research and our review of the literature suggest a need for reevaluation of many aspects of this history including several key questions: What was the timing of Andean uplift (especially, the Western Cordillera)? What is the relationship between the northernmost Solimões Formation and northern Andean tectonic activity? What is the precise age of the lowermost levels of the Solimões Formation? Were there marine incursions? Are tidal deposits recorded in Amazonia? Was there a very large, long-lived, Miocene "Pebas" megalake in the western Amazon? When did the trans-continental, eastern outlet, Amazon drainage become established? What is the antiquity of the Amazon fan? Correct answers to these questions are essential in order to gain a better understanding of the climatic and biogeographic history of the Amazon basin. Although several authors have suggested the existence of late Miocene tidal sediments deposited during a sea-level high stand and marine transgressions into the Amazon basin from the north (Caribbean Sea) or from the south (Paranáense Sea), both the existence of a late Miocene seaway through western Amazonia and the existence of thousands of square kilometers affected by tides are difficult to support. The faunal composition and pollen content of the upper Miocene Solimões Formation are inconsistent with tidal/marine environments. And, as we have demonstrated, deposits in Peruvian Amazonia that have been attributed to Miocene tidal environments are actually fluvial sediments that have been environmentally and chronologically misinterpreted. Further, the existence of a giant paleolake in western Amazonia during the middle to late Miocene is inconsistent with our paleoenvironmental reconstructions of shifting rivers in aggradational conditions - reconstructions that are consistent with the interpretations of the Solimões Formation in other parts of

  4. Near-Stasis in the Long-Term Diversification of Mesozoic Tetrapods.

    Science.gov (United States)

    Benson, Roger B J; Butler, Richard J; Alroy, John; Mannion, Philip D; Carrano, Matthew T; Lloyd, Graeme T

    2016-01-01

    How did evolution generate the extraordinary diversity of vertebrates on land? Zero species are known prior to ~380 million years ago, and more than 30,000 are present today. An expansionist model suggests this was achieved by large and unbounded increases, leading to substantially greater diversity in the present than at any time in the geological past. This model contrasts starkly with empirical support for constrained diversification in marine animals, suggesting different macroevolutionary processes on land and in the sea. We quantify patterns of vertebrate standing diversity on land during the Mesozoic-early Paleogene interval, applying sample-standardization to a global fossil dataset containing 27,260 occurrences of 4,898 non-marine tetrapod species. Our results show a highly stable pattern of Mesozoic tetrapod diversity at regional and local levels, underpinned by a weakly positive, but near-zero, long-term net diversification rate over 190 million years. Species diversity of non-flying terrestrial tetrapods less than doubled over this interval, despite the origins of exceptionally diverse extant groups within mammals, squamates, amphibians, and dinosaurs. Therefore, although speciose groups of modern tetrapods have Mesozoic origins, rates of Mesozoic diversification inferred from the fossil record are slow compared to those inferred from molecular phylogenies. If high speciation rates did occur in the Mesozoic, then they seem to have been balanced by extinctions among older clades. An apparent 4-fold expansion of species richness after the Cretaceous/Paleogene (K/Pg) boundary deserves further examination in light of potential taxonomic biases, but is consistent with the hypothesis that global environmental disturbances such as mass extinction events can rapidly adjust limits to diversity by restructuring ecosystems, and suggests that the gradualistic evolutionary diversification of tetrapods was punctuated by brief but dramatic episodes of radiation.

  5. Near-Stasis in the Long-Term Diversification of Mesozoic Tetrapods.

    Directory of Open Access Journals (Sweden)

    Roger B J Benson

    2016-01-01

    Full Text Available How did evolution generate the extraordinary diversity of vertebrates on land? Zero species are known prior to ~380 million years ago, and more than 30,000 are present today. An expansionist model suggests this was achieved by large and unbounded increases, leading to substantially greater diversity in the present than at any time in the geological past. This model contrasts starkly with empirical support for constrained diversification in marine animals, suggesting different macroevolutionary processes on land and in the sea. We quantify patterns of vertebrate standing diversity on land during the Mesozoic-early Paleogene interval, applying sample-standardization to a global fossil dataset containing 27,260 occurrences of 4,898 non-marine tetrapod species. Our results show a highly stable pattern of Mesozoic tetrapod diversity at regional and local levels, underpinned by a weakly positive, but near-zero, long-term net diversification rate over 190 million years. Species diversity of non-flying terrestrial tetrapods less than doubled over this interval, despite the origins of exceptionally diverse extant groups within mammals, squamates, amphibians, and dinosaurs. Therefore, although speciose groups of modern tetrapods have Mesozoic origins, rates of Mesozoic diversification inferred from the fossil record are slow compared to those inferred from molecular phylogenies. If high speciation rates did occur in the Mesozoic, then they seem to have been balanced by extinctions among older clades. An apparent 4-fold expansion of species richness after the Cretaceous/Paleogene (K/Pg boundary deserves further examination in light of potential taxonomic biases, but is consistent with the hypothesis that global environmental disturbances such as mass extinction events can rapidly adjust limits to diversity by restructuring ecosystems, and suggests that the gradualistic evolutionary diversification of tetrapods was punctuated by brief but dramatic episodes

  6. Fracture systems and mesoscale structural patterns in the siliciclastic mesozoic reservoir-caprock succession of the longyearbyen CO2 lab project: Implications for geological CO2 sequestration in central spitsbergen, svalbard

    NARCIS (Netherlands)

    Ogata, Kei; Senger, Kim; Braathen, Alvar; Tveranger, Jan; Olaussen, Snorre

    2014-01-01

    In unconventional, naturally fractured reservoirs, networks of structural discontinuities largely control fluid flow. In this study, we mapped and analysed systematic fracture patterns within the Mesozoic succession of Central Spitsbergen to characterise the reservoir-caprock system explored for

  7. Evolution of the Atmosphere and Oceans: Evidence from Geological ...

    Indian Academy of Sciences (India)

    warming. The early impact events are believed to have initi- ated mantle plumes on the primitive Earth, through which volatiles escaped, setting small-scale plate movements. Geologi- cal evidences of plate movement on the early Earth are, however, rare. The oldest vestiges of plate tectonics are represented by the 3.48 Ga ...

  8. Mineralization through geologic time: Evolution of continental crust

    Science.gov (United States)

    Veizer, Jan; Laznicka, Peter; Jansen, S. L.

    1988-01-01

    In analogy to living systems, geologic entities (e.g., rocks, mineral deposits, tectonic realms and domains) are involved in the process of perpetual generation and destruction (birth/death cycles). This results in time distribution patterns akin to age structures in living populations and the systematics is amenable to treatment by the concepts of population dynamics. Utilizing this theoretical approach, the survivorship patterns for major realms of the plate tectonic system, for consitutent rocks, and for the entombed mineral resources are predicted. The present inventory encompasses global economic accumulations of metals by geologic age. The deposits of these metals were assigned to nine broad genetic categories, with an attempt to relate each category to tectonic setting within the framework of global plate tectonics.

  9. How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity.

    Science.gov (United States)

    Butler, Richard J; Brusatte, Stephen L; Andres, Brian; Benson, Roger B J

    2012-01-01

    A fundamental contribution of paleobiology to macroevolutionary theory has been the illumination of deep time patterns of diversification. However, recent work has suggested that taxonomic diversity counts taken from the fossil record may be strongly biased by uneven spatiotemporal sampling. Although morphological diversity (disparity) is also frequently used to examine evolutionary radiations, no empirical work has yet addressed how disparity might be affected by uneven fossil record sampling. Here, we use pterosaurs (Mesozoic flying reptiles) as an exemplar group to address this problem. We calculate multiple disparity metrics based upon a comprehensive anatomical dataset including a novel phylogenetic correction for missing data, statistically compare these metrics to four geological sampling proxies, and use multiple regression modeling to assess the importance of uneven sampling and exceptional fossil deposits (Lagerstätten). We find that range-based disparity metrics are strongly affected by uneven fossil record sampling, and should therefore be interpreted cautiously. The robustness of variance-based metrics to sample size and geological sampling suggests that they can be more confidently interpreted as reflecting true biological signals. In addition, our results highlight the problem of high levels of missing data for disparity analyses, indicating a pressing need for more theoretical and empirical work. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  10. 2005 dossier: granite. Tome: phenomenological evolution of the geologic disposal; Dossier 2005: Granite. Tome evolution phenomenologique du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the phenomenological aspects of the geologic disposal of high-level and long-lived radioactive wastes (HLLL) in granite formations. Content: 1 - introduction: ANDRA's research program on disposal in granitic formation; 2 - the granitic environment: geologic history, French granites; 3 - HLLL wastes and disposal design concepts; 4 - identification, characterization and modeling of a granitic site: approach, geologic modeling, hydrologic and hydro-geochemical modeling, geomechanical and thermal modeling, long-term geologic evolution of a site; 5 - phenomenological evolution of a disposal: main aspects of the evolution of a repository with time, disposal infrastructures, B-type wastes disposal area, C-type wastes disposal area; spent fuels disposal area, radionuclides transfer and retention in the granitic environment; 6 - conclusions: available knowledge, methods and tools for the understanding and modeling of the phenomenological evolution of a granitic disposal site. (J.S.)

  11. Evolution of the Atmosphere and Oceans: Evidence from Geological ...

    Indian Academy of Sciences (India)

    tions. A soda ocean would be enriched in dissolved phosphate. (the low Ca2+ would inhibit precipitation of phosphate as apatite) which would have fostered the evolution of life. Predominance of alkalophyllic cyanobacteria in Precambrian biota is taken as an indication of early soda ocean. Besides, the biogenic calcifica-.

  12. The Heavy Links between Geological Events and Vascular Plants Evolution: A Brief Outline.

    Science.gov (United States)

    Piombino, Aldo

    2016-01-01

    Since the rise of photosynthesis, life has influenced terrestrial atmosphere, particularly the O2 and the CO2 content (the latter being originally more than 95%), changing the chemistry of waters, atmosphere, and soils. Billions of years after, a far offspring of these first unicellular forms conquered emerging lands, not only completely changing landscape, but also modifying geological cycles of deposition and erosion, many chemical and physical characteristics of soils and fresh waters, and, more, the cycle of various elements. So, there are no doubts that vascular plants modified geology; but it is true that also geology has affected (and, more, has driven) plant evolution. New software, PyRate, has determined vascular plant origin and diversification through a Bayesian analysis of fossil record from Silurian to today, particularly observing their origination and extinction rate. A comparison between PyRate data and geological history suggests that geological events massively influenced plant evolution and that also the rise of nonflowering seed plants and the fast diffusion of flowering plants can be explained, almost partly, with the environmental condition changes induced by geological phenomena.

  13. The Heavy Links between Geological Events and Vascular Plants Evolution: A Brief Outline

    Directory of Open Access Journals (Sweden)

    Aldo Piombino

    2016-01-01

    Full Text Available Since the rise of photosynthesis, life has influenced terrestrial atmosphere, particularly the O2 and the CO2 content (the latter being originally more than 95%, changing the chemistry of waters, atmosphere, and soils. Billions of years after, a far offspring of these first unicellular forms conquered emerging lands, not only completely changing landscape, but also modifying geological cycles of deposition and erosion, many chemical and physical characteristics of soils and fresh waters, and, more, the cycle of various elements. So, there are no doubts that vascular plants modified geology; but it is true that also geology has affected (and, more, has driven plant evolution. New software, PyRate, has determined vascular plant origin and diversification through a Bayesian analysis of fossil record from Silurian to today, particularly observing their origination and extinction rate. A comparison between PyRate data and geological history suggests that geological events massively influenced plant evolution and that also the rise of nonflowering seed plants and the fast diffusion of flowering plants can be explained, almost partly, with the environmental condition changes induced by geological phenomena.

  14. Geologic evolution of the SE.23 Sheet - Belo Horizonte, MG, Brazil

    International Nuclear Information System (INIS)

    Pereira, A.D.C.; Fonseca, E.G. da; Braz, E.R.C.

    1987-01-01

    The aim of this paper is to present a synthesis of the geologic evolution in the Belo Horizonte Sheet comprising an area about 281.210 Km 2 . Rb-Sr and K-Ar isotope dating methods are used for age estimation of geologic deposits. The geologic evolution of the cratonic area is reflected by a stable central nucleus surrounded by marginal orogenic belts. In the central area were recognized greenstone belts structures involved by granite terrains and bordered by a granulitic region. The framework of the Sao Francisco Craton involves events of metamorphism, granitogenesis, sedimentary, volcanism and plutonism developed in the Early to Late Proterozoic. The stratigraphic column is complemented by Late Jurassic-Early Cretaceous continental deposits belonging to Parana-Basin. (M.V.M.)

  15. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  16. Timing and Implications for the Late Mesozoic Geodynamic Settings ...

    Indian Academy of Sciences (India)

    30

    and geodynamic setting in the eastern North China Craton (Zhou et al., 2015; Li et al., 2015). ... process of the eastern North China Craton during the Late Mesozoic. 2. Geological Setting. 2.1 Tectonic Setting. The pear-shaped Lingshan Island, located in the Shandong Province ..... Multiple runs of geochemical standards.

  17. Geology and landscape evolution of the Hellas region of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Leonard, Gregory J.

    1995-01-01

    Hellas basin on Mars has been the site of volcanism, tectonism, and modification by fluvial, mass-wasting, and eolian processes over its more than 4-b.y. existence. Our detailed geologic mapping and related studies have resulted in the following new interpretations. The asymmetric distribution of highland massifs and other structures that define the uplifted basin rim suggest a formation of the basin by the impact of a low-angle bolide having a trajectory heading S 60 deg E. During the Late Noachian, the basin was infilled, perhaps by lava flows, that were sufficiently thick (>1 km) to produce wrinkle ridges on the fill material and extensional faulting along the west rim of the basin. At about the same time, deposits buried northern Malea Planum, which are interpreted to be pyroclastic flows from Amphitrites and Peneus Paterae on the basis of their degraded morphology, topography, and the application of a previous model for pyroclastic volcanism on Mars. Peneus forms a distinctive caldera structure that indicates eruption of massive volumes of magma, whereas Amphitrites is a less distinct circular feature surrounded by a broad, low, dissected shield that suggests generally smaller volume eruptions. During the Early Hesperian, an approx. 1- to 2-km-thick sequence of primarily fined-grained, eolian material was deposited on the floor of Hellas basin. Subsequently, the deposit was deeply eroded, except where armored by crater ejecta, and it retreated as much as 200-300 km along its western margin, leaving behind pedestal craters and knobby outliers of the deposit. Local debris flows within the deposit attest to concentrations of groundwater, perhaps in part brought in by outflow floods along the east rim of the basin. These floods may have deposited approx. 100-200 m of sediment, subduing wrinkle ridges in the eastern part of the basin floor. During the Late Hesperian and Amazonian, eolian mantles were emplaced on the basin rim and floor and surrounding highlands

  18. Were sauropod dinosaurs responsible for the warm Mesozoic climate?

    Directory of Open Access Journals (Sweden)

    A.J. (Tom van Loon

    2012-10-01

    Full Text Available It was recently postulated that methane production by the giant Mesozoic sauropod dinosaurs was larger than the present-day release of this greenhouse gas by nature and man-induced activities jointly, thus contributing to the warm Mesozoic climate. This conclusion was reached by correct calculations, but these calculations were based on unrealistic assumptions: the researchers who postulated this dinosaur-induced warm climate did take into account neither the biomass production required for the sauropods' food, nor the constraints for the habitats in which the dinosaurs lived, thus neglecting the palaeogeographic conditions. This underlines the importance of palaeogeography for a good understanding of the Earth's geological history.

  19. Overview of geology and tectonic evolution of the Baikal-Tuva area.

    Science.gov (United States)

    Gladkochub, Dmitry; Donskaya, Tatiana

    2009-01-01

    This chapter provides the results of geological investigations of the main tectonic units of the Baikal-Tuva region (southwestern part of Siberia) during the last decades: the ancient Siberian craton and adjacent areas of the Central Asian Orogenic belt. In the framework of these main units we describe small-scale blocks (terranes) with focus on details of their inner structure and evolution through time. As well as describing the geology and tectonics of the area studied, we give an overview of underwater sediments, neotectonics, and some phenomena of history and development of the Baikal, Khubsugul, Chargytai, and Tore-Chol Lakes basins of the Baikal-Tuva region. It is suggested that these lakes' evolution was controlled by neotectonic processes, modern seismic activity, and global climate changes.

  20. Geological evolution of the Iraqi Mesopotamia Foredeep, inner platform and near surroundings of the Arabian Plate

    Science.gov (United States)

    Sissakian, Varoujan K.

    2013-08-01

    The Iraqi territory could be divided into four main tectonic zones; each one has its own characteristics concerning type of the rocks, their age, thickness and structural evolution. These four zones are: (1) Inner Platform (stable shelf), (2) Outer Platform (unstable shelf), (3) Shalair Zone (Terrain), and (4) Zagros Suture Zone. The first two zones of the Arabian Plate lack any kind of metamorphism and volcanism. The Iraqi territory is located in the extreme northeastern part of the Arabian Plate, which is colliding with the Eurasian (Iranian) Plate. This collision has developed a foreland basin that includes: (1) Imbricate Zone, (2) High Folded Zone, (3) Low Folded Zone and (4) Mesopotamia Foredeep. The Mesopotamia Foredeep, in Iraq includes the Mesopotamia Plain and the Jazira Plain; it is less tectonically disturbed as compared to the Imbricate, High Folded and Low Folded Zones. Quaternary alluvial sediments of the Tigris and Euphrates Rivers and their tributaries as well as distributaries cover the central and southeastern parts of the Foredeep totally; it is called the Mesopotamian Flood Plain. The extension of the Mesopotamia Plain towards northwest however, is called the Jazira Plain, which is covered by Miocene rocks. The Mesopotamia Foredeep is represented by thick sedimentary sequence, which thickens northwestwards including synrift sediments; especially of Late Cretaceous age, whereas on surface the Quaternary sediments thicken southeastwards. The depth of the basement also changes from 8 km, in the west to 14 km, in the Iraqi-Iranian boarders towards southeast. The anticlinal structures have N-S trend, in the extreme southern part of the Mesopotamia Foredeep and extends northwards until the Latitude 32°N, within the Jazira Plain, there they change their trends to NW-SE, and then to E-W trend. The Mesozoic sequence is almost without any significant break, with increase in thickness from the west to the east, attaining 5 km. The sequence forms the main

  1. Mesozoic - Cenozoic tectonic evolution of southwestern Tian Shan: Evidence from detrital zircon U/Pb and apatite fission track ages of the Ulugqat area, Northwest China

    NARCIS (Netherlands)

    Yang, W.; Jolivet, M.; Dupont-Nivet, G.; Guo, Z.

    2013-01-01

    The Late Tertiary tectonic and topographic evolution of the Tian Shan Range has beenwidely studied as it represents a key example of active intra-continentalmountain belts. Recent studies have shown that both the general tectonic framework of Tian Shan and some of its actual topographic features

  2. Paleogeographic evolution of carbonate reservoirs: geological and geophysical analysis at the Albian Campos Basin, Brazil

    Science.gov (United States)

    Castillo Vincentelli, Maria Gabriela; Favoreto, Julia; Roemers-Oliveira, Eduardo

    2018-02-01

    An integrated geophysical and geological analysis of a carbonate reservoir can offer an effective method to better understand the paleogeographical evolution and distribution of a geological reservoir and non-reservoir facies. Therefore, we propose a better method for obtaining geological facies from geophysical facies, helping to characterize the permo-porous system of this kind of play. The goal is to determine the main geological phases from a specific hydrocarbon producer (Albian Campos Basin, Brazil). The applied method includes the use of a petrographic and qualitative description from the integrated reservoir with seismic interpretation of an attribute map (energy, root mean square, mean amplitude, maximum negative amplitude, etc), all calculated at the Albian level for each of the five identified phases. The studied carbonate reservoir is approximately 6 km long with a main direction of NE-SW, and it was sub-divided as follows (from bottom to top): (1) the first depositional sequence of the bank was composed mainly of packstone, indicating that the local structure adjacent to the main bank is protected from environmental conditions; (2) characterized by the presence of grainstone developed at the higher structure; (3) the main sequence of the peloidal packstone with mudstones oncoids; (4) corresponds to the oil production of carbonate reservoirs formed by oolitic grainstone deposited at the top of the carbonate bank; at this phase, rising sea levels formed channels that connected the open sea shelf with the restricted circulation shelf; and (5) mudstone and wackestone represent the system’s flooding phase.

  3. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection.

    Science.gov (United States)

    Stock, Alexandra; Edgcomb, Virginia; Orsi, William; Filker, Sabine; Breiner, Hans-Werner; Yakimov, Michail M; Stoeck, Thorsten

    2013-07-08

    Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines

  4. Evolution of waste-package design at the potential U.S. geologic repository

    International Nuclear Information System (INIS)

    Benton, H.; Harkins, B.

    2000-01-01

    This paper describes the evolution of the waste-package design at the potential geologic repository for spent nuclear fuel and high-level waste at Yucca Mountain in Nevada. Because the potential repository is the first of its kind, the design of its components must be flexible and capable of evolving in response to continuing scientific study, development efforts, and changes to performance criteria. The team of scientists and engineers at the Yucca Mountain Project has utilized a systematic, scientific approach to design the potential geologic nuclear-waste repository. As a result of continuing development efforts, the design has incorporated a growing base of scientific and engineering information to ensure that regulatory and performance requirements are met. (authors)

  5. The geological map of Uruguay

    International Nuclear Information System (INIS)

    Bossi, J.; Ferrando, L.; Fernandez, A.; Elizalde, G.; Morales, H.; Ledesma, J.; Carballo, E.; Medina, E.; Ford, I.; Montana, J.

    1975-01-01

    The geological map of Uruguay is about the morphological characteristics of the soil such as rocks, sediments and granites belong to different periods. These periods are the proterozoic, paleozoic, permian, mesozoic, jurassic, cretaceous, cenozoic and holocene.

  6. Spectra of Earth-like Planets through Geological Evolution around FGKM Stars

    Science.gov (United States)

    Rugheimer, S.; Kaltenegger, L.

    2018-02-01

    Future observations of terrestrial exoplanet atmospheres will occur for planets at different stages of geological evolution. We expect to observe a wide variety of atmospheres and planets with alternative evolutionary paths, with some planets resembling Earth at different epochs. For an Earth-like atmospheric time trajectory, we simulate planets from the prebiotic to the current atmosphere based on geological data. We use a stellar grid F0V to M8V ({T}{eff}=7000–2400 K) to model four geological epochs of Earth's history corresponding to a prebiotic world (3.9 Ga), the rise of oxygen at 2.0 Ga and at 0.8 Ga, and the modern Earth. We show the VIS–IR spectral features, with a focus on biosignatures through geological time for this grid of Sun-like host stars and the effect of clouds on their spectra. We find that the observability of biosignature gases reduces with increasing cloud cover and increases with planetary age. The observability of the visible O2 feature for lower concentrations will partly depend on clouds, which, while slightly reducing the feature, increase the overall reflectivity, and thus the detectable flux of a planet. The depth of the IR ozone feature contributes substantially to the opacity at lower oxygen concentrations, especially for the high near-UV stellar environments around F stars. Our results are a grid of model spectra for atmospheres representative of Earth's geological history to inform future observations and instrument design and are available online at http://carlsaganinstitute.org/data/.

  7. Regional evolution of geological structure in south China and U mineralization

    International Nuclear Information System (INIS)

    Chen Guoda; Kang Zili; Shen Jinrui; Jin Yushu

    1992-01-01

    This paper states the development laws of regional geological structure of South China and its controlling effect on uranium deposit evolution, and the characteristics of rich uranium formation in different periods of geo-history are analysed. It also discusses the relationship between the distribution of time and space and tectonic structure and environmental vicissitudes. The rock-magma activities-the strong formation of the Diwa Era is of great significance to the formation of uranium deposits within the region, especially to the formation of a series of multi-genesis polygene uranium deposits which are a potential direction in which to look for minerals within the region

  8. Sedimentary evolution of the Mesozoic continental redbeds using geochemical and mineralogical tools: the case of Upper Triassic to Lowermost Jurassic Monte di Gioiosa mudrocks (Sicily, southern Italy)

    Science.gov (United States)

    Perri, Francesco; Critelli, Salvatore; Mongelli, Giovanni; Cullers, Robert L.

    2011-10-01

    The continental redbeds from the Internal Domains of the central-western Mediterranean Chains have an important role in the palaeogeographic and palaeotectonic reconstructions of the Alpine circum-Mediterranean orogen evolution since these redbeds mark the Triassic-Jurassic rift-valley stage of Tethyan rifting. The composition and the sedimentary evolution of the Middle Triassic to Lowermost Jurassic continental redbeds of the San Marco d'Alunzio Unit (Peloritani Mountains, Southern Italy), based on mineralogical and chemical analyses, suggests that the studied mudrock sediments share common features with continental redbeds that constitute the Internal Domains of the Alpine Mediterranean Chains. Phyllosilicates are the main components in the mudrocks. The 10 Å-minerals (illite and micas), the I-S mixed layers, and kaolinite are the most abundant phyllosilicates. The amount of illitic layers in I-S mixed layers coupled with the illite crystallinity values (IC) are typical of high degree of diagenesis, corresponding to a lithostatic/tectonic loading of about 4-5 km. The mineralogical assemblage coupled with the A-CN-K plot suggest post-depositional K-enrichments. Palaeoweathering proxies (PIA and CIW) record intense weathering at the source area. Further, the studied sediments are affected by reworking and recycling processes and, as consequence, it is likely these proxies monitor cumulative effect of weathering. The climate in the early Jurassic favoured recycling and weathering occurred under hot, episodically humid climate with a prolonged dry season. The source-area is the low-grade Paleozoic metasedimentary basement. Mafic supply is minor but not negligible as suggested by provenance proxies.

  9. Pb, Sr and Nd isotope geological characteristics and its evolution of Jianchaling rock

    International Nuclear Information System (INIS)

    Pang Chunyong; Chen Minyang; Xu Wenxin

    2003-01-01

    It has been a long time debatable subject on the raw material source and its genesis of Jianchaling ultrabasic rock, because the original rock phases, the original mineral compositions, texture and structure, even part of the chemical components of the rocks had been changed completely after many periods and phases of metamorphism. According to the content of Pb, Rb, Sr, Nd elements and their Pb, Sr, Nd isotope compositions of the rocks, together with the isotope geological age of late magmatic activities, the authors analyze the evolution of Pb, Sr, Nd isotope compositions, The inferred initiate Nd isotope ratio of ultrabasic rocks is 0.510233, lower than that of meteorite unity at a corresponding period, its ε Nd(T)>O; The initiate Sr ratios inferred by the isotope geological age ranges from 0.702735 to 0.719028; Projecting the lead isotope compositions on the Pb tectonic evolution model, the result indicates that the raw material of Jianchaling ultrabasic rock coming from the deplete upper mantle. The ultrabasic magma which enrich of Mg, Ni and less S intruded the crust and formed the Jianchaling ultrabasic rock at late Proterozoic era (927 Ma±). The forming time of serpentinite is mostly equal to the granitoid intruding time, showing the intrusion o flate acidic magma caused a large scale alteration of the ultrabasic rocks and formed the meta-ultrabasic phase rock observed today. (authors)

  10. Field Geology for Environment Awareness

    Science.gov (United States)

    Andrez, Marilia

    2017-04-01

    The objective of this project is to show the scientific and educational potential of natural environment of Lisbon region through increase of excitement for plate tectonics subjects to high school students. It is expected the students be able to understand the main concepts of the plate tectonics, stratigraphy, paleontology and paleoenvironmental interpretations, explain in the field nearby Lisbon. The richness of Guincho beach geodiversity and "Sintra Syenite Complex" valuate the geological patrimony. Combining these entities and educational purposes will raise awareness to sustainable attitudes favoring the preservation of natural patrimony by the students. The subjects approached in the project are based on the inspection of several outcrops related to the evolution of the Iberian Plate at early Mesozoic period, at several places of geological interest. The landscape of Guincho is dominated by Mesozoic formations that show good conditions paleoenvironmental and geodynamic interpretations associated to the opening of the North Atlantic. Moreover it reveals the environment linked to the magmatic intrusion of the "Sintra Alcaline Complex" at the end of Cretaceous. It is believed the contact with field is crucial to the awareness of young people to subjects that are not daily matters, however important when presented in the light of an urgent society problem such as environment preservation, at all levels by all people.

  11. Early Cretaceous I-type granites in the Tengchong terrane: New constraints on the late Mesozoic tectonic evolution of southwestern China

    Directory of Open Access Journals (Sweden)

    Yi Fang

    2018-03-01

    Full Text Available The Early Cretaceous granitoids that are widespread in the Tengchong terrane of Southwest China play a critical role in understanding the tectonic framework associated with the Tethyan oceans. In this study, we present a detailed description of zircon U–Pb ages, whole-rock geochemistry and Hf isotopes for the Laoxiangkeng pluton in the eastern Tengchong terrane and elucidate their petrogenesis and geodynamic implications. Zircon U–Pb dating of the Laoxiangkeng pluton yields ages of 114 ± 1 Ma and 115 ± 1 Ma, which imply an Early Cretaceous magmatic event. The Laoxiangkeng pluton enriched in Si and Na, is calc-alkaline and metaluminous, and has the characteristics of highly fractionated I-type granites. Zircons from the pluton have calculated εHf(t values of −12.7 to −3.7 and two-stage model ages of 1327–1974 Ma, respectively, indicating a mixed source of partial melting of Paleo-Neoproterozoic crust-derived compositions with some inputs of mantle-derived magmas. By integrating all available data for the regional tectonic evolution of the eastern Tethys tectonic domain, we conclude that the Early Cretaceous magmatism in the Tengchong terrane was produced by the northeastward subduction of the Meso-Tethyan Bangong–Nujiang Ocean.

  12. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime

    Science.gov (United States)

    Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang

    2018-04-01

    This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.

  13. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area

    Science.gov (United States)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing

    2018-04-01

    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  14. The role of post-collisional strike-slip tectonics in the geological evolution of the late Neoproterozoic volcano-sedimentary Guaratubinha Basin, southern Brazil

    Science.gov (United States)

    Barão, Leonardo M.; Trzaskos, Barbara; Vesely, Fernando F.; de Castro, Luís Gustavo; Ferreira, Francisco J. F.; Vasconcellos, Eleonora M. G.; Barbosa, Tiago C.

    2017-12-01

    The Guaratubinha Basin is a late Neoproterozoic volcano-sedimentary basin included in the transitional-stage basins of the South American Platform. The aim of this study is to investigate its tectonic evolution through a detailed structural analysis based on remote sensing and field data. The structural and aerogeophysics data indicate that at least three major deformational events affected the basin. Event E1 caused the activation of the two main basin-bounding fault zones, the Guaratubinha Master Fault and the Guaricana Shear Zone. These structures, oriented N20-45E, are associated with well-defined right-lateral to oblique vertical faults, conjugate normal faults and vertical flow structures. Progressive transtensional deformation along the two main fault systems was the main mechanism for basin formation and the deposition of thick coarse-grained deposits close to basin-borders. The continuous opening of the basin provided intense intermediate and acid magmatism as well as deposition of volcaniclastic sediments. Event E2 characterizes generalized compression, recorded as minor thrust faults with tectonic transport toward the northwest and left-lateral activation of the NNE-SSW Palmital Shear Zone. Event E3 is related to the Mesozoic tectonism associated with the South Atlantic opening, which generated diabase dykes and predominantly right-lateral strike-slip faults oriented N10-50W. Its rhomboidal geometry with long axis parallel to major Precambrian shear zones, the main presence of high-angle, strike-slip or oblique faults, the asymmetric distribution of geological units and field evidence for concomitant Neoproterozoic magmatism and strike-slip movements are consistent with pull-apart basins reported in the literature.

  15. New insights on the geological evolution of the continental margin of Southeastern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data

    Science.gov (United States)

    Krob, Florian; Stippich, Christian; Glasmacher, Ulrich A.; Hackspacher, Peter

    2017-04-01

    thermochronological data. We used the geological model of the Paraná basin supersequences (Rio Ivaí, Paraná, Gondwana I-III and Bauru) to remodel the subsidence and exhumation history of our consisting thermochronological sample data. First indications include a fast exhumation during the early Paleozoic, a slow shallow (northern blocks) to fast and deep (Laguna block) subduction from middle Paleozoic to Mesozoic time and a extremely fast exhumation during the opening of the South Atlantic (Cretaceous time). This enables a possible interpretation of the southeastern Brazilian margin being an outer part of the Paraná basin and even the possible source area for the Ordovician to Carboniferous sediments. Further on, we try to research the newly gained exhumation history models for indications on the evolution and movement of the lithosphere of the southeastern Brazilian mantle.

  16. Fossil evidence of the avian vocal organ from the Mesozoic.

    Science.gov (United States)

    Clarke, Julia A; Chatterjee, Sankar; Li, Zhiheng; Riede, Tobias; Agnolin, Federico; Goller, Franz; Isasi, Marcelo P; Martinioni, Daniel R; Mussel, Francisco J; Novas, Fernando E

    2016-10-27

    From complex songs to simple honks, birds produce sounds using a unique vocal organ called the syrinx. Located close to the heart at the tracheobronchial junction, vocal folds or membranes attached to modified mineralized rings vibrate to produce sound. Syringeal components were not thought to commonly enter the fossil record, and the few reported fossilized parts of the syrinx are geologically young (from the Pleistocene and Holocene (approximately 2.5 million years ago to the present)). The only known older syrinx is an Eocene specimen that was not described or illustrated. Data on the relationship between soft tissue structures and syringeal three-dimensional geometry are also exceptionally limited. Here we describe the first remains, to our knowledge, of a fossil syrinx from the Mesozoic Era, which are preserved in three dimensions in a specimen from the Late Cretaceous (approximately 66 to 69 million years ago) of Antarctica. With both cranial and postcranial remains, the new Vegavis iaai specimen is the most complete to be recovered from a part of the radiation of living birds (Aves). Enhanced-contrast X-ray computed tomography (CT) of syrinx structure in twelve extant non-passerine birds, as well as CT imaging of the Vegavis and Eocene syrinxes, informs both the reconstruction of ancestral states in birds and properties of the vocal organ in the extinct species. Fused rings in Vegavis form a well-mineralized pessulus, a derived neognath bird feature, proposed to anchor enlarged vocal folds or labia. Left-right bronchial asymmetry, as seen in Vegavis, is only known in extant birds with two sets of vocal fold sound sources. The new data show the fossilization potential of the avian vocal organ and beg the question why these remains have not been found in other dinosaurs. The lack of other Mesozoic tracheobronchial remains, and the poorly mineralized condition in archosaurian taxa without a syrinx, may indicate that a complex syrinx was a late arising feature

  17. The need for New In Situ Measurements to Understand the Climate, Geology and Evolution of Venus.

    Science.gov (United States)

    Grinspoon, D. H.

    2017-12-01

    Many measurements needed to address outstanding questions about current processes and evolution of Venus can only be made from in situ platforms such as entry probes, balloons or landers. Among these are precise determination of the value and altitude dependence of the deuterium-to-hydrogen ratio, an important tracer of water history which, while clearly greatly elevated compared to the terrestrial ratio, is still unknown within a large range of uncertainty and appears, based on Venus Express results, to display an enigmatic altitude dependence. Rare gas abundances and isotopes provide clues to volatile sources and histories of outgassing and exospheric escape. Modern mass spectrometry at Venus would yield abundances of the eight stable xenon isotopes, bulk abundances of krypton, and isotopes of neon. Altitude profiles of sulfur-containing chemical species would illuminate global geochemical cycles, including cloud formation, outgassing rates and surface-atmosphere interactions. The altitude profile of wind speeds and radiation fluxes, interpreted in light of the Venus Express and Akatsuki data, would enrich understanding of the global circulation and climate dynamics of Venus. Descent and surface images of carefully chosen locations would lend ground truth to interpretations of the near-global Magellan data sets and provide context for global remote sensing data obtained by future orbiter missions. Landed instruments would provide refinement and calibration for chemical abundance measurements by historical missions as well as direct mineralogical measurements of Venusian surface and subsurface rocks. In concert with atmospheric measurements these would greatly constrain geologic history as well as the nature of surface-atmosphere interactions. Such a suite of measurements will deepen our understanding of the origin and evolution of Venus in the context of Solar System and extrasolar terrestrial planets, determine the level and style of current geological activity

  18. The role of E-W basement faults in the Mesozoic geodynamic evolution of the Gafsa and Chotts basins, south-central Tunisia

    Science.gov (United States)

    Amri, Dorra Tanfous; Dhahri, Ferid; Soussi, Mohamed; Gabtni, Hakim; Bédir, Mourad

    2017-10-01

    The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and gravity data. These data are used to highlight the tectonic control on the deposition of Jurassic and Lower Cretaceous series and to discuss the role of the main faults that controlled the basin architecture and Cretaceous-Tertiary inversion. The horizontal gravity gradient map of the study area highlights the pattern of discontinuities within the two basins and reveals the presence of deep E-W basement faults. Primary attention is given to the role played by the E-W faults system and that of the NW-SE Gafsa fault which was previously considered active since the Jurassic. Facies and thickness analyses based on new seismic interpretation and well data suggest that the E-W-oriented faults controlled the subsidence distribution especially during the Jurassic. The NW-SE faults seem to be key structures that controlled the basins paleogeography during Late Cretaceous-Cenozoic time. The upper Triassic evaporite bodies, which locally outline the main NW-SE Gafsa fault, are regarded as intrusive salt bodies rather than early diapiric extrusions as previously interpreted since they are rare and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are deep and do not exhibit true diapiric features.

  19. Mineral Grains, Dimples, and Hot Volcanic Organic Streams: Dynamic Geological Backstage of Macromolecular Evolution.

    Science.gov (United States)

    Skoblikow, Nikolai E; Zimin, Andrei A

    2018-03-28

    The hypothesis of hot volcanic organic stream as the most probable and geologically plausible environment for abiogenic polycondensation is proposed. The primary synthesis of organic compounds is considered as result of an explosive volcanic (perhaps, meteorite-induced) eruption. The eruption was accompanied by a shock wave propagating in the primeval atmosphere and resulting in the formation of hot cloud of simple organic compounds-aldehydes, alcohols, amines, amino alcohols, nitriles, and amino acids-products, which are usually obtained under the artificial conditions in the spark-discharge experiments. The subsequent cooling of the organic cloud resulted in a gradual condensation and a serial precipitation of organic compounds (in order of decreasing boiling point values) into the liquid phase forming a hot, viscous and muddy organic stream (named "lithorheos"). That stream-even if the time of its existence was short-is considered here as a geologically plausible environment for abiogenic polycondensation. The substances successively prevailing in such a stream were cyanamide, acetamide, formamide, glycolonitrile, acetonitrile. An important role was played by mineral (especially, phosphate-containing) grains (named "lithosomes"), whose surface was modified with heterocyclic nitrogen compounds synthesized in the course of eruption. When such grains got into hot organic streams, their surface catalytic centers (named "lithozymes") played a decisive role in the emergence, facilitation and maintenance of prebiotic reactions and key processes characteristic of living systems. Owing to its cascade structure, the stream was a factor underlying the formation of mineral-polymeric aggregates (named "lithocytes") in the small natural streambed cavities (dimples)-as well as a factor of their further spread within larger geological locations which played a role of chemo-ecological niches. All three main stages of prebiotic evolution (primary organic synthesis

  20. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.; Kuprat, Andrew P.; Um, Wooyong; Martin, Paul F.; Dahl, Michael E.; Kafentzis, Tyler A.; Varga, Tamas; Stephens, Sean A.; Arey, Bruce W.; Carroll, KC; Bonneville, Alain; Fernandez, Carlos A.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite, whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.

  1. Analysis of the geological structure and tectonic evolution of Xingning-Jinghai sag in deep water area, northern South China Sea

    Science.gov (United States)

    Han, Xiaoying; Ren, Jianye; Lin, Zi; Yang, Linlong

    2015-04-01

    Recent years, oil and gas exploration of the Pearl River Mouth Basin in the northern margin of South China Sea continuously achieved historic breakthroughs. The Xingning-Jinghai sag, which is located in southeast of the Pearl River Mouth Basin, is a deep-water sag with a great exploration potential. Its tectonic evolution is extremely complex. It experienced Mesozoic subduction to Cenozoic intra-continental rifting background, and finally evolved into a deep-water sag of the northern continental margin of South China Sea. The geological characteristics and the tectonic evolution of Xingning-Jinghai sag was closely related to the process of formation and evolution of the passive continental margin of the northern South China Sea. It is confirmed by many geophysical data that compared with adjacent Chaoshan depression, the crustal thickness of Xingning-Jinghai sag was rapidly thinning, and it developed detachment faults with later magmatic intrusion. The development of detachment faults have dynamic significance for the spreading of the South China Sea. Based on the seismic geological interpretation of 2D seismic data in the study area, the characteristics of detachment fault and supra-detachment basin have been proposed in this study. The characteristics of the detachment fault are low angle and high ratio between heave and throw. The geometry of the detachment fault is a typical lisric shape, with the dip of fault decreasing generally from the seismic profile. The detachment basin where sediments are not deposited over a tilting hanging-wall block but onto a tectonically exhumed footwall which is different from the typical half graben basin. Seismic profiles indicate two different structural styles in the east and west part of Xingning-Jinghai sag. In the west of the sag, there developed two large detachment faults, which control their detachment basin systems and the typical H block, and the two detachment faults are dipping landward and seaward, respectively. In

  2. Predictability of the evolution of hydrogeological and hydrogeochemical systems; geological disposal of nuclear waste in crystalline rocks

    International Nuclear Information System (INIS)

    Murphy, W.M.; Diodato, D.M.

    2009-01-01

    Confidence in long-term geologic isolation of high-level nuclear waste and spent nuclear fuel requires confidence in predictions of the evolution of hydrogeological and hydrogeochemical systems. Prediction of the evolution of hydrogeological and hydrogeochemical systems is based on scientific understanding of those systems in the present - an understanding that can be tested with data from the past. Crystalline rock settings that have been geologically stable for millions of years and longer offer the potential of predictable, long-term waste isolation. Confidence in predictions of geologic isolation of radioactive waste can measured by evaluating the extent to which those predictions and their underlying analyses are consistent with multiple independent lines of evidence identified in the geologic system being analysed, as well as with evidence identified in analogs to that geologic system. The proposed nuclear waste repository at Yucca Mountain, Nevada, United States, differs in significant ways from potential repository sites being considered by other nations. Nonetheless, observations of hydrogeological and hydrogeochemical systems of Yucca Mountain and Yucca Mountain analogs present multiple independent lines of evidence that can be used in evaluating long-term predictions of the evolution of hydrogeological and hydrogeochemical systems at Yucca Mountain. (authors)

  3. Petrology and Geochemistry of Unbrecciated Harzburgitic Diogenite MIL 07001: A Window Into Vestan Geological Evolution

    Science.gov (United States)

    Mittlefehldt, D. W.; Peng, Z. X.; Mertzman, S. A.; Mertzman, K. R.

    2014-01-01

    There is a strong case that asteroid 4 Vesta is the parent of the howardite, eucrite and diogenite (HED) meteorites. Models developed for the geological evolution of Vesta can satisfy the compositions of basaltic eucrites that dominate in the upper crust. The bulk compositional characteristics of diogenites - cumulate harzburgites and orthopyroxenites from the lower crust - do not fit into global magma ocean models that can describe the compositions of basaltic and cumulate eucrites. Recent more detailed formation models do make provision for a more complicated origin for diogenites, but this model has yet to be completely vetted. Compositional studies of bulk samples has led to the hypothesis that many diogenites were formed late by interaction of their parent melts with a eucritic crust, but those observations may alternatively be explained by subsolidus equilibration of trace elements between orthopyroxene and plagioclase and Ca-phosphate in the rocks. Differences in radiogenic Mg-26 content between diogenites and eucrites favors early formation of the former, not later formation. Understanding the origin of diogenites is crucial for understanding the petrologic evolution of Vesta. We have been doing coordinated studies of a suite of diogenites including petrologic investigations, bulk rock major and trace element studies, and in situ trace element analyses of orthopyroxene. Here we will focus on an especially unusual, and potentially key, diogenite, MIL 07001.

  4. The geological evolution of opalinus clay in the Zurcher Weinland Area (ne Switzerland): learning from the past to predict future evolution and stability

    International Nuclear Information System (INIS)

    Gautschi, A.; Mazurek, M.

    2004-01-01

    A number of safety-relevant issues need to be addressed when considering long-term evolution of a radioactive waste repository, out of which uplift/erosion, fault activity, and changes in the geochemical and hydrogeological environment are particularly important. Among the strongest arguments in the prediction of future evolution is the extrapolation of events and processes that occurred over a long period of time in the geological past (e.g. 10 Ma) to a shorter period in the future. The future long-term evolution of Opalinus Clay in a potential siting area for a high-level waste repository in the Zurcher Weinland (NE Switzerland) is considered over a time period of around l Ma. The geological evolution or geological stability, respectively, can be predicted plausibly within reasonable limits over such a time period based on a detailed analysis of geological history. Predictions extending beyond this time period are feasible but contain an increasing element of uncertainty. This paper summarises the project-related conclusions, which are presented in greater detail in Nagra (2002a). (author)

  5. Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau: Constraints from detrital zircon U-Pb ages and fission-track ages of the Triassic sedimentary sequence

    Science.gov (United States)

    Tang, Yan; Zhang, Yunpeng; Tong, Lili

    2018-01-01

    The Zoige depression is an important depocenter within the northeast Songpan-Ganzi flysch basin, which is bounded by the South China, North China and Qiangtang Blocks and forms the northeastern margin of the Tibetan Plateau. This paper discusses the sediment provenance and Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau, using the detrital zircon U-Pb ages and apatite fission-track data from the Middle to Late Triassic sedimentary rocks in the area. The U-Pb ages of the Middle to Late Triassic zircons range from 260-280 Ma, 429-480 Ma, 792-974 Ma and 1800-2500 Ma and represent distinct source region. Our new results demonstrate that the detritus deposited during the Middle Triassic (Ladinian, T2zg) primarily originated from the Eastern Kunlun and North Qinling Orogens, with lesser contributions from the North China Block. By the Late Triassic (early Carnian, T3z), the materials at the southern margin of the North China Block were generally transported westward to the basin along a river network that flowed through the Qinling region between the North China and South China Blocks: this interpretation is supported by the predominance of the bimodal distribution of 1.8 Ga and 2.5 Ga age peaks and a lack of significant Neoproterozoic zircon. Since the Late Triassic (middle Carnian, T3zh), considerable changes have occurred in the source terranes, such as the cessation of the Eastern Kunlun Orogen and North China Block sources and the rise of the northwestern margin of the Yangtze Block and South Qinling Orogen. These drastic changes are compatible with a model of a sustained westward collision between the South China and North China Blocks during the late Triassic and the clockwise rotation of the South China Block progressively closed the basin. Subsequently, orogeny-associated folds have formed in the basin since the Late Triassic (late Carnian), and the study area was generally subjected to uplifting and

  6. Geologic environmental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ({sup 1}8O, {sup 2}H, {sup 1}3C, {sup 3}4S, {sup 8}7Sr, {sup 1}5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  7. Geologic evolution of the Kastel trough and its implications on the Adiyaman oil fields, SE Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Coskun, Bu. (Univ. of Ankara (Turkey))

    1990-05-01

    Oil field developments of the Adiyaman area one of the main oil producing zones in southeast Turkey, have been highly influenced by geologic evolution of the Kastel trough which is situated in front of the suture zone between the Arabian and Anatolian plates. The Upper Cretaceous movements created many paleostructural trends in the Kastel trough where important dolomitic and porous reservoirs exist. The most important tectonic event, which appeared during the Upper Cretaceous movements, is the accumulation of the Kocali-Karadut ophiolitic complex, advancing from the north to the south in the Kastel trough, where heavy materials caused formation of a structural model favoring generation and migration and entrapment of oil in the reservoir rocks. Due to the presence of the Kocali-Karadut complex in the Kastel trough the following zones have been distinguished. (1) North Uplift Area. Situated under the allochthonous units, many thrust and reverse faults characterize this zone. The presence of paleohighs, where primary dolomites develop, allows the appearance of some oil fields in the region. This is the main future exploration zone in southeast Turkey. (2) Accumulation Area. Advancing from the north to the south, the allochthonous Kocali-Karadut complex filled the Kastel trough creating a deep graben whose flanks present generally normal faults. (3) Structural Belt. Important paleohighs constitute an exploration trend in this zone where dolomitic and porous carbonates contain actual oil fields. (4) South Accumulation Area. Distant from the Arabian-Anatolian suture zone, regional tectonics and sedimentology show this zone remained deeply buried during geologic time; good source rocks were deposited during the Cretaceous. (5) South Uplift Area. This area corresponds to the northern flank of the huge regional Mardin high in southeast Turkey where new oil fields have been discovered.

  8. A Passerine Bird's evolution corroborates the geologic history of the island of New Guinea.

    Directory of Open Access Journals (Sweden)

    Kristy Deiner

    2011-05-01

    Full Text Available New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha. Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal. To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5-11%, suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history.

  9. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

  10. Geological evolution history of petroliferous basins on continental shelf of China

    Energy Technology Data Exchange (ETDEWEB)

    Lidesheng

    1983-03-01

    Coastlines of China are about 18,000 km (11,118 mi) in length, and their aggregate continental shelf area within 200 m (656 ft) seawater depth is more than one million km/sup 2/ (386,102 mi/sup 2/). Recent geophysical exploration work and numerous petroleum drilling records are available and give a general understanding of the geological evolution history of these petroliferous basins. There are two tectonic types of basins distributed on the continental shelf areas: the tectonic types of Bohai Gulf, South Yellow Sea, and Beibu Gulf basins are the intraplate polyphase rifting-depression basins; the East China Sea, Pearl River mouth, and Yingge Sea basin are the epicontinental rifting-depression basins. They are believed to be extensional in origin. Because of the severe convergence of Indian plate with Eurasia plate, there has been produced NNE-spreading movement of the South China Sea basin, which permits two triple junctions on its northern margins. The extension mechanism could be derived from the rising of an upper mantle plume to produce two NNE weak fracturing zones, resulting in a series of intraplate and epicontinental rifting-depression basins. The depositional models and sea-level variations of these basins are interpreted from the drilling records and seismic profiles. They can be explained by the tectono-eustatic changes in sea level and Cenozoic climate changes of China.

  11. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    Science.gov (United States)

    Zheng, Y.; Yang, Y.; Rogowska, M.; Gundlach, C.

    2017-09-01

    To achieve the 2°C target made in the 2016 Paris Agreement, it is essential to reduce the emission of CO2 into the atmosphere. Carbon Capture and Storage (CCS) has been given increasing importance over the last decade. One of the suggested methods for CCS is to inject CO2 into geologic settings such as the carbonate reservoirs in the North Sea. The final aim of our project is to find out how to control the evolution of petrophysical parameters during CO2 injection using an optimal combination of flow rate, injection pressure and chemical composition of the influent. The first step to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection. The advance in lab source based micro-CT has made it capable of in situ experiments. We used a commercial bench top micro-CT (Zeiss Versa XRM410) to study the microstructure changes of chalk during liquid injection. Flexible temporal CT resolution is essential in this study because that the time scales of coupled physical and chemical processes can be very different. The results validated the feasibility of using a bench top CT system with a pressure cell to monitor the mesoscale multiphase interactions in chalk.

  12. Geologic evolution of the Jemez Mountains and their potential for future volcanic activity

    International Nuclear Information System (INIS)

    Burton, B.W.

    1982-01-01

    Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10 -9 /km 2 /y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10 -7 /y

  13. Mesozoic long-term eustatic cycles and their uncertain hierarchy

    Directory of Open Access Journals (Sweden)

    Dmitry A. Ruban

    2015-07-01

    Full Text Available Global sea-level has changed in a cyclic manner through geologic history, but the regularities of these changes are yet to be fully understood. Despite certain (and sometimes significant differences, the available Mesozoic eustatic curves permit the outlining of long-term eustatic cycles, which are provisionally defined as cycles recognizable at the stage level and higher. Interpretation of the Triassic eustatic curves indicates two orders of long-term cycles and a 1st-order sea-level rise throughout the entire period. The Jurassic eustatic curves imply cyclicity of one or two orders, and a 1st-order eustatic rise during the entire period is also evident. Most challenges are interpretations for the Cretaceous; two to four orders of long-term eustatic cycles can be established for this period. Generally, the hierarchy of the long-term eustatic cycles might have changed through the Mesozoic. If so, and if one considers differences of cycles of the same order between the periods of this era, it is difficult to apply “standard” hierarchical classifications to the documented cycles. The hypothetical uncertainty of the hierarchy of the Mesozoic long-term eustatic cycles is an important challenge for modern researchers.

  14. Constraints on the topographic evolution of Corsica and Sardinia from geological and geomorphic analyses

    Science.gov (United States)

    Quye-Sawyer, Jennifer; Whittaker, Alexander; Roberts, Gareth; Rood, Dylan

    2017-04-01

    The western Mediterranean Sea and its surroundings form part of a well-studied region whose geodynamic history is broadly known. However, how the topography of this area has responded to its tectonic and geodynamic influences is not fully understood. In particular, the relative importance of convergent, extensional and dynamic process is not known. Here we focus on the islands of Corsica, France, and Sardinia, Italy, which have played an important role in Alpine-Apennine system. They experienced a similar kinematic history during the Cenozoic, however their different positions on the Tethyan margin allow the relative effects of Alpine collision and rates of back-arc stretching to be compared. In particular, the two stages of back-arc extension (Liguro-Provençal basin to the west and Tyrrhenian Sea on the east) can provide information about how rollback-induced extension developed with time from the late Oligocene to the present. The two islands are historically tectonically quiescent, however they still preserve evidence of collision and subsequent extension from slab roll-back. In this study we have used a combination of geological and geomorphic techniques to provide new constraints into the vertical motions of Corsica and Sardinia. To quantify the spatial and temporal landscape evolution we have integrated stratigraphic, structural and thermochronological data and re-evaluated these alongside present-day geomorphic and geophysical observations. In addition, we have used digital elevation models to acquire 2030 fluvial longitudinal profiles for both islands. Knickpoints identified on these longitudinal profiles have been compared to geological maps to test the influence of rock strength on erosion. Our analysis reveals the presence of non-lithologically controlled knickpoints which we interpret to have been created by Miocene to Recent changes in uplift rate of the landscape. The longitudinal profiles were subsequently used in drainage inversion modelling, whose

  15. THE GEOLOGICAL EVOLUTION OF SORGUN (YOZGAT)-YILDIZELİ (SİVAS) FORELAND BASIN, PETROGRAPHIC, GEOCHEMICAL ASPECTS AND GEOCHRONOLOGY OF VOLCANISM AFFECTING THE BASIN

    OpenAIRE

    Akçay, Ali Ekber; BEYAZPİRİNÇ, Metin

    2017-01-01

    Sorgun-Yıldızeli basin is an east-west trending asymmetric marginal foreland (peripheral forelandbasin) formed as a result of the consumption of oceanic crust of the northern branch of Neotethys dueto the collision of Sakarya continent in the north and Kırşehir Block in the south. It provides muchinformation about the geodynamic evolution of the region. The basement of the study area consists ofLate Palaeozoic-Mesozoic Akdağmadeni Massif. Akdağmadeni Massif was intruded by CenomanianMaastrich...

  16. New aragonite 87Sr/86Sr records of Mesozoic ammonoids and approach to the problem of N, O, C and Sr isotope cycles in the evolution of the Earth

    Science.gov (United States)

    Zakharov, Yuri D.; Dril, Sergei I.; Shigeta, Yasunari; Popov, Alexander M.; Baraboshkin, Eugenij Y.; Michailova, Irina A.; Safronov, Peter P.

    2018-02-01

    New Sr isotope data from well-preserved aragonite ammonoid shell material from the Mesozoic are compared with that from a living Nautilus shell. The prominent negative Sr isotope excursions known from the Middle Permian, Jurassic and Cretaceous probably have their origins in intensive plate tectonic activity, followed by enhanced hydrothermal activity at the mid-ocean ridges (mantle volcanism) which supplied low radiogenic Sr to seawater. The maximum positive (radiogenic) shift in the lower Mesozoic Sr isotope curve (Lower Triassic peak) was likely caused by a significant expansion of dry land surfaces (Dabie-Sulu Triassic orogeny) and their intensive silicate weathering in conditions of extreme warming and aridity in the very end of the Smithian, followed by warm and humid conditions in the late Spathian, which apparently resulted in a significant oceanic input of radiogenic Sr through riverine flux. The comparatively high 87Sr/86Sr ratio obtained from the living Nautilus shell is probably a function of both the Alpine orogeny, which was accompanied by significant continental weathering and input of radiogenic Sr to the oceans, and the weakening of mantle volcanism.

  17. New geological framework for Western Amazonia (Brazil) and implications for biogeography and evolution

    Science.gov (United States)

    de Fátima Rossetti, Dilce; Mann de Toledo, Peter; Góes, Ana Maria

    2005-01-01

    Although many of the current hypotheses to explain the origin and distribution of the Amazon biodiversity has been based directly or indirectly on geological data, the reconstruction of the geological history of the Amazon region is still inadequate to analyze its relationship with the biodiversity. This work has the main goal to characterize the sedimentary successions formed in the Brazilian Amazon in the Neogene-Quaternary discussing the evolution of the depositional systems through time and analyzing their main controlling mechanisms in order to fill up this gap. Radar image interpretation, sedimentological studies, and radiocarbon dating allowed the mapping of Plio-Pleistocene to Holocene units along the Solimões-Amazonas River, Brazil. This integrated work led to the characterization of five sedimentary successions overlying Miocene deposits of the Solimões/Pebas Formation, which include the following: Içá Formation (Plio-Pleistocene), deposits Q1 (37,400-43,700 14C yr B.P.), deposits Q2 (27,200 14C yr B.P.), deposits Q3 (6730-2480 14C yr B.P.), and deposits Q4 (280-130 14C yr B.P.). These deposits occur mostly to the west of Manaus, forming NW-SE elongated belts that are progressively younger from SW to NE, indicating a subsiding basin with a depocenter that migrated to the NE. The reconstruction of the depositional history is consistent with significant changes in the landscapes. Hence, the closure of a large lake system at the end of the Miocene gave rise to the development of a Plio-Pleistocene fluvial system. This was yet very distinct from the modern drainage, with shallow, energetic, highly migrating, braided to anastomosed channels having an overall northeast outlet. This fluvial system formed probably under climatic conditions relatively drier than today's. During the early Pleistocene, there was pronounced erosion, followed by a renewed depositional phase ca. 40,000 14C yr B.P., with the development of prograding lobes and/or crevasse splays

  18. Mesozoic anomalies in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Nair, R.R.; Sarma, K.V.L.N.S.; Ramprasad, T.; Krishna, K.S.; Subrahmanyam, V.; D'Cruz, M.; Subrahmanyam, C.; Paul, J.; Subrahmanyam, A.S.; Sekhar, D.V.C.

    The analysis of 8200 line km of total magnetic intensity data in the Bay of Bengal, northeastern Indian Ocean, revealed the presence of approximately N30~'E-trending seafloor spreading type magnetic anomalies. These anomalies resemble the Mesozoic...

  19. Geology XXI century: the key of the natural resources development

    International Nuclear Information System (INIS)

    2010-05-01

    The 6th Uruguayan geological congress - Geology X XI century natural resources development key it was organized by the Uruguayan Society of geology and took place in Lavalleja - Uruguay in May - 2010. The lectures were given by national and foreign professionals including the following topics : Watershed analysis as a tool for the elucidation of the mineral resources surface cycle; Isotope methods for studies of precambian land crustal evolution; Hydrogeology in traditional and new hydrocarbons mining; The environmental protection at the Verdun mine site at open sky; Tectonic map of Uruguay; Petroleum Exploitation in intracratonic basins or marine platforms; Geo economical deposits; Drilling and catheterisation techniques of wells; Sequential stratigraphy; Transport behavior of pollutants in clay barriers; Urban Geology, basaltic rocks, mineral resources; Geomagnetic field and their impact in the River Plate region; Gravimetric Studies in the western edge of the Rio de la Plata craton; Implications of the geological and geo morphological evolution of the Uruguayan continental margin; Paleontology, Fossil remains of vertebrates in Tricamba and Mercedes formation; Textural and mineralogical study of Mesozoic basic dikes in San Gregorio de Polanco; Caolin clay deposit Zone in Patagonia Argentina; Cretaceous volcanics and geochemical distribution of trace elements in Cordoba and San Jose in Argentina; Environmental Geology; Geomorphology; Sedimentology and stratigraphy; Energetic resources; Exploitation of uranium and aquifer system in Uruguay; Tracer test and camera inspection; Treatment of groundwater; petrology; Oligocene, Miocene, Neo proterozoic in different formations

  20. Geologic Mapping in Southern Margaritifer Terra on Mars and the Evolution of Nirgal Vallis

    Science.gov (United States)

    Wilson, S. A.; Grant, J. A.; Buczkowski, D. L.

    2017-06-01

    The Margaritifer Terra region on Mars preserves a long and fascinating record of aqueous activity. Geologic mapping in four quadrangles helps constrain the timing, source, duration, and relative importance of aqueous versus other geomorphic processes.

  1. Evolution of Rosaceae Fruit Types Based on Nuclear Phylogeny in the Context of Geological Times and Genome Duplication.

    Science.gov (United States)

    Xiang, Yezi; Huang, Chien-Hsun; Hu, Yi; Wen, Jun; Li, Shisheng; Yi, Tingshuang; Chen, Hongyi; Xiang, Jun; Ma, Hong

    2017-02-01

    Fruits are the defining feature of angiosperms, likely have contributed to angiosperm successes by protecting and dispersing seeds, and provide foods to humans and other animals, with many morphological types and important ecological and agricultural implications. Rosaceae is a family with ∼3000 species and an extraordinary spectrum of distinct fruits, including fleshy peach, apple, and strawberry prized by their consumers, as well as dry achenetum and follicetum with features facilitating seed dispersal, excellent for studying fruit evolution. To address Rosaceae fruit evolution and other questions, we generated 125 new transcriptomic and genomic datasets and identified hundreds of nuclear genes to reconstruct a well-resolved Rosaceae phylogeny with highly supported monophyly of all subfamilies and tribes. Molecular clock analysis revealed an estimated age of ∼101.6 Ma for crown Rosaceae and divergence times of tribes and genera, providing a geological and climate context for fruit evolution. Phylogenomic analysis yielded strong evidence for numerous whole genome duplications (WGDs), supporting the hypothesis that the apple tribe had a WGD and revealing another one shared by fleshy fruit-bearing members of this tribe, with moderate support for WGDs in the peach tribe and other groups. Ancestral character reconstruction for fruit types supports independent origins of fleshy fruits from dry-fruit ancestors, including the evolution of drupes (e.g., peach) and pomes (e.g., apple) from follicetum, and drupetum (raspberry and blackberry) from achenetum. We propose that WGDs and environmental factors, including animals, contributed to the evolution of the many fruits in Rosaceae, which provide a foundation for understanding fruit evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Evolution of Pleistocene to Holocene eruptions in the Lesser Caucasus Mts:Insights from geology, petrology, geochemistry and geochronology

    Science.gov (United States)

    Savov, Ivan; Meliksetian, Khachatur; Connor, Charles; Karakhanian, Arkadi; Sugden, Patrick; Navasardyan, Gevorg; Halama, Ralf; Ishizuka, Osamu; Connor, Laura; Karapetian, Sergei

    2016-04-01

    Both effusive and highly explosive (VEI>5) and often voluminous caldera volcanism has developed atop the collision zone between the Arabian and the Eurasian plates. Currently what is exposed on the Anatolian-Armenian-Iranian active orogenic plateau is post-Mesozoic felsic to intermediate collision-related plutons, and mostly collision or post-collision related Quaternary volcanic structures. We have studied in detail the volcanism, tectonics and geophysics on the territory of E.Turkey and Armenia, where several large stratovolcanoes (Ararat, Lesser Ararat, Aragats, Tsghuk, Ishkhanasar) are surrounded by distinct monogenetic volcanic fields (distributed volcanism). These large in volume stratovolcanoes and the associated low volume monogenetic cones range from normal calk-alkaline to high-K shoshonitic in affinity, with their products ranging from basanites to high K trachytes and rhyolites. Several volcanic provinces, namely Kechut/Javakheti, Aragats, Gegham, Vardenis and Syunik are recognized in Armenia and each of them has > 100 mapped volcanoes. These have distinct geochemical (mineral chemistry, trace element and Sr-Nd-B isotope systematics) and petrological (melt eruption temperatures and volatile contents) fingerprints that may or may not vary over time. Age determinations and volcano-stratigraphy sections for each of the case studies we aim to present shows that the volcanism includes a continuous record from Pleistocene to Holocene, or even historical eruptions. The excellent volcano exposures and the now complete high resolution database (GIS), geological mapping, and new and improved K-Ar and Ar-Ar geochronology, uniquely allows us to evaluate the driving forces behind the volcanism in this continent-continent collision setting that is uniquely associated with long lasting eruption episodes. We shall compare the now well studied historical/Holocene eruptions with those pre-dating them, with the aim to identify possible geochemical or petrological

  3. Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs.

    Science.gov (United States)

    Charles Deeming, D; Mayr, Gerald

    2018-02-27

    Numerous new fossils have driven an interest in reproduction of early birds, but direct evidence remains elusive. No Mesozoic avian eggs can be unambiguously assigned to a species, which hampers our understanding of the evolution of contact incubation, which is a defining feature of extant birds. Compared to living species, eggs of Mesozoic birds are relatively small, but whether the eggs of Mesozoic birds could actually have borne the weight of a breeding adult has not yet been investigated. We estimated maximal egg breadth for a range of Mesozoic avian taxa from the width of the pelvic canal defined by the pubic symphysis. Known elongation ratios of Mesozoic bird eggs allowed us to predict egg mass and hence the load mass an egg could endure before cracking. These values were compared to the predicted body masses of the adult birds based on skeletal remains. Based on 21 fossil species, we show that for nonornithothoracine birds body mass was 187% of the load mass of the eggs. For Enantiornithes, body mass was 127% greater than the egg load mass, but some early Cretaceous ornithuromorphs were 179% heavier than their eggs could support. Our indirect approach provides the best evidence yet that early birds could not have sat on their eggs without running the risk of causing damage. We suggest that contact incubation evolved comparatively late in birds. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  4. Plant Water Use Efficiency over Geological Time ? Evolution of Leaf Stomata Configurations Affecting Plant Gas Exchange

    OpenAIRE

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductan...

  5. Evolution of the global water cycle on Mars: The geological evidence

    Science.gov (United States)

    Baker, V. R.; Gulick, V. C.

    1993-01-01

    The geological evidence for active water cycling early in the history of Mars (Noachian geological system or heavy bombardment) consists almost exclusively of fluvial valley networks in the heavily cratered uplands of the planet. It is commonly assumed that these landforms required explanation by atmospheric processes operating above the freezing point of water and at high pressure to allow rainfall and liquid surface runoff. However, it has also been documented that nearly all valley networks probably formed by subsurface outflow and sapping erosion involving groundwater outflow prior to surface-water flow. The prolonged ground-water flow also requires extensive water cycling to maintain hydraulic gradients, but is this done via rainfall recharge, as in terrestrial environments?

  6. Sedimentary Basins of the Republic of Yemen : Their Structural Evolution and Geological Characteristics Evolution structurelle et caractéristiques géologiques des bassins sédimentaires de la république du Yemen

    Directory of Open Access Journals (Sweden)

    Beydoun Z. R.

    2006-11-01

    Full Text Available The distribution and evolution of the sedimentary basins of Yemen was, until recently, poorly understood as this was based entirely on surface geology and correlations of the older stratigraphic units which were exposed only in the deeply dissected bordering uplifts of the Gulf of Aden and Red Sea or the high plateau of the north west. Elsewhere cover by the tabular Tertiary sedimentary blanket and the Tertiary Volcanic Group lavas masked the major underlying pre-Cenozoic structural elements and sedimentary successions. Earlier attempts at the delineation of the country's structural framework were, thus, sketchy and/or only partially correct. The discovery of commercial oil and gas in several interior Mesozoic rift basins of Yemen in the late 1980s and in the early 1990s after unification of the former two Yemens, spured many oil companies to enter the exploration race and carry out detailed seismic surveys and intensive exploration drilling in many areas. This resulted in a rapid rise in overall new subsurface geological data acquisition and an increasingly clearer perception of the distribution, orientation and inception times of the main basins. No overall synthesis of results was, however, undertaken since each individual company was primarily concerned with its own concession area and its immediate surroundings. Recent studies involving the review, correlation and synthesis of the mass of new subsurface stratigraphic data in connection with standardisation of lithostratigraphic nomenclature in use in Yemen and its further formalisation in accordance with internationally accepted rules, have, perforce, required the establishment of an overall structural framework within which inter and intra-basinal stratigraphic correlation could be carried out. It is this new framework of depositional basins and interbasinal uplifts that is discussed here. The main Mesozoic basins are related to late Jurassic extension and rifting, principally involving

  7. Plant water use efficiency shapes co-evolution of stomata size and density over geologic time

    Science.gov (United States)

    Assouline, S.; Or, D.

    2010-12-01

    The appearance of stomata and formation of impervious leaf cuticle are key elements in terrestrial plant evolution allowing plants to control gaseous diffusion and regulate water loss during simultaneous carbon dioxide uptake. An important plant gaseous diffusion adaptation was achieved by co-evolution of stomata density (D) and maximum aperture size (S), whose product α=S.D defines the evaporating fraction of the leaf surface and determines gaseous conductance. The plant leaf fossil record reveals significant variations in D and S over the 400 Myrs of the Phanerozoic eon, whose impact on gas-exchange capacity and on plant evolution are not fully understood. Characteristics of evaporation suppression from perforated diffusion barriers deduced from plant fossil record delineate the evolution of α as atmospheric CO2 declined from 4000 ppm to present day values. Surprisingly, despite non monotonous variations in α during plant evolution, plant water use efficiency (WUE) has improved systematically during the decrease in atmospheric CO2 over the Phanerozoic, at variance with conventional predictions. The new WUE trend is based on physical relations between α and evaporation suppression by perforated diffusion barriers, providing new insights on the dominance of water related regulatory function and on consequences of future CO2 enriched atmosphere on plant function and hydrologic cycle such as continental runoff scenarios.

  8. Assessing the geologic and climatic forcing of biodiversity and evolution surrounding the Gulf of California

    Science.gov (United States)

    Dolby, Greer; Bennett, Scott E. K.; Lira-Noriega, Andres; Wilder, Benjamin T.; Munguia-Vega, Adrian

    2015-01-01

    For almost a century the Baja California peninsula (Peninsula), Gulf of California (Gulf), and broader Sonoran Desert region (figure 1) have drawn geologists and biologists alike to study its unique physical and evolutionary processes (e.g., Wittich 1920; Darton 1921; Nelson 1921; Johnston 1924; Beal 1948; Durham and Allison 1960). The challenge remains to untangle the long, intricate, and at times enigmatic geological and climatological histories that have shaped the high levels of endemism and biodiversity observed in the region today (Van Devender 1990; Grismer 2000; Riddle et al. 2000).

  9. The first iguanian lizard from the Mesozoic of Africa

    Science.gov (United States)

    Daza, Juan D.; Simões, Tiago R.; Rage, Jean Claude

    2016-01-01

    The fossil record shows that iguanian lizards were widely distributed during the Late Cretaceous. However, the biogeographic history and early evolution of one of its most diverse and peculiar clades (acrodontans) remain poorly known. Here, we present the first Mesozoic acrodontan from Africa, which also represents the oldest iguanian lizard from that continent. The new taxon comes from the Kem Kem Beds in Morocco (Cenomanian, Late Cretaceous) and is based on a partial lower jaw. The new taxon presents a number of features that are found only among acrodontan lizards and shares greatest similarities with uromastycines, specifically. In a combined evidence phylogenetic dataset comprehensive of all major acrodontan lineages using multiple tree inference methods (traditional and implied weighting maximum-parsimony, and Bayesian inference), we found support for the placement of the new species within uromastycines, along with Gueragama sulamericana (Late Cretaceous of Brazil). The new fossil supports the previously hypothesized widespread geographical distribution of acrodontans in Gondwana during the Mesozoic. Additionally, it provides the first fossil evidence of uromastycines in the Cretaceous, and the ancestry of acrodontan iguanians in Africa. PMID:27703708

  10. Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping

    Science.gov (United States)

    Ivanov, M. A.; Head, James W.

    2008-01-01

    Lakshmi Planum is a high-standing plateau (3.5-4.5 km above MPR) surrounded by the highest mountain ranges on Venus. Lakshmi represents a unique type of elevated region different from dome-shaped and rifted rises and tessera-bearing crustal plateaus. The unique characteristics of Lakshmi suggest that it formed by an unusual combination of processes and played an important role in Venus geologic history. Lakshmi was studied with Venera-15/16 and Magellan data, resulting in two classes of models, divergent and convergent, to explain its unusual topographic and morphologic characteristics. Divergent models explain Lakshmi as a site of mantle upwelling due to rising and subsequent collapse of a mantle diapir; such models explain emplacement of a lava plateau inside Lakshmi and, in some circumstances, formation of the mountain ranges. The convergent models consider Lakshmi as a locus of mantle downwelling, convergence, underthrusting, and possible subduction. Key features in these models are the mountain ranges, high topography of Lakshmi interior, and the large volcanic centers in the plateau center. These divergent and convergent models entail principally different mechanisms of formation and suggest different geodynamic regimes on Venus. Almost all models make either explicit or implicit predictions about the type and sequence of major events during formation and evolution of Lakshmi and thus detailed geological mapping can be used to test them. Here we present the results of such geological mapping (the V-7 quadrangle, 50-75degN, 300-360degE; scale 1:5M) that allows testing the proposed models for Lakshmi.

  11. Fire feedbacks over geological time and the evolution of atmospheric oxygen concentration

    Science.gov (United States)

    Mills, B.; Belcher, C.; Lenton, T. M.

    2017-12-01

    During the 4.5 billion year history of the Earth, the concentration of oxygen in the atmosphere has risen from trace levels to today's 21%. Yet over the last 400 million years, O2 concentration appears to have remained within a relatively narrow range (around 15% - 30%), despite dramatic changes in the nature of global biogeochemical cycling. This stability has been crucial for continued animal evolution, and is thought to have arisen through feedbacks between oxygen, wildfire and plant productivity: the strong oxygen- dependence of fire initiation and spread means that global photosynthetic primary productivity is suppressed when oxygen levels are high, and enhanced when levels are low. We present biogeochemical modelling of the long term carbon and oxygen cycles, which aims to capture the operation of the wildfire feedback alongside other key processes. We find that wildfire can effectively stabilize long term oxygen concentrations, but that the nature of this feedback has changed as plant evolution has provided different fuels. Specifically, the evolution of early angiosperms during the Cretaceous period provided new understory fuels that more easily facilitated crown and canopy fires. Adding these dynamics to our model produces a more stable system over long timescales, and the model predicts that oxygen concentration has declined towards the present day - a prediction that is supported by other independent estimates.

  12. Using Fossil Shark Teeth to Illustrate Evolution and Introduce Basic Geologic Concepts in a High School Biology Classroom

    Science.gov (United States)

    Agnew, J. G.; Nunn, J. A.

    2007-12-01

    Shell Foundation sponsors a program at Louisiana State University called Shell Undergraduate Recruitment and Geoscience Education (SURGE). The purpose of SURGE is to help local high school science teachers incorporate geology into their classrooms by providing resources and training. As part of this program, a workshop for high school biology teachers was held at Louisiana State University in Baton Rouge on June 3-5, 2007. We had the teachers do a series of activities on fossil shark teeth to illustrate evolution and introduce basic earth science concepts such as geologic time, superposition, and faunal succession and provided the teachers with lesson plans and materials. As an example, one of our exercises explores the evolution of the megatoothed shark lineage leading to Carcharocles megalodon, the largest predatory shark in history with teeth up to 17 cm long. Megatoothed shark teeth make excellent evolutionary subjects because they have a good fossil record and show continuous transitions in morphology from the Eocene to Pliocene. Our activity follows the learning cycle model. We take advantage of the curiosity of sharks shared by most people, and allow students to explore the variations among different shark teeth and explain the causes of those variations. The objectives of this exercise are to have the students: 1) sort fossil shark teeth into biologically reasonable species; 2) form hypotheses about evolutionary relationships among fossil shark teeth; and 3) describe and interpret evolutionary trends in the fossil Megatoothed lineage. To do the activity, students are divided into groups of 2-3 and given a shuffled set of 72 shark tooth cards with different images of megatoothed shark teeth. They are instructed to group the shark tooth cards into separate species of sharks. After sorting the cards, students are asked to consider the evolutionary relationships among their species and arrange their species chronologically according to the species first

  13. Onshore/ Offshore Geologic Assessment for Carbon Storage in the Southeastern United States

    Science.gov (United States)

    Knapp, C. C.; Knapp, J. H.; Brantley, D.; Lakshmi, V.; Almutairi, K.; Almayahi, D.; Akintunde, O. M.; Ollmann, J.

    2017-12-01

    Eighty percent of the world's energy relies on fossil fuels and under increasingly stricter national and international regulations on greenhouse gas emissions storage of CO2 in geologic repositories seems to be not only a feasible, but also and vital solution for near/ mid-term reduction of carbon emissions. We have evaluated the feasibility of CO2 storage in saline formations of the Eastern North American Margin (ENAM) including (1) the Jurassic/Triassic (J/TR) sandstones of the buried South Georgia Rift (SGR) basin, and (2) the Mesozoic and Cenozoic geologic formations along the Mid- and South Atlantic seaboard. These analyses have included integration of subsurface geophysical data (2- and 3-D seismic surveys) with core samples, well logs as well as uses of geological databases and geospatial analysis leading to CO2 injection simulation models. ENAM is a complex and regionally extensive mature Mesozoic passive margin rift system encompassing: (1) a large volume and regional extent of related magmatism known as the Central Atlantic Magmatic Province (CAMP), (2) a complete stratigraphic column that records the post-rift evolution in several basins, (3) preserved lithospheric-scale pre-rift structures including Paleozoic sutures, and (4) a wide range of geological, geochemical, and geophysical studies both onshore and offshore. While the target reservoirs onshore show heterogeneity and a highly complex geologic evolution they also show promising conditions for significant safe CO2 storage away from the underground acquifers. Our offshore study (the Southeast Offshore Storage Resource Assessment - SOSRA) is focused on the outer continental shelf from North Carolina to the southern tip of Florida. Three old exploration wells are available to provide additional constraints on the seismic reflection profiles. Two of these wells (TRANSCO 1005-1 and COST GE-1) penetrate the pre-rift Paleozoic sedimentary formations while the EXXON 564-1 well penetrates the post

  14. Geology of Uruguay review

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2011-01-01

    This work is about the Uruguay geology review.This country has been a devoted to breeding cattle and agriculture.The evolution of geological knowledge begun with Dr. Karl Walther who published 53 papers between 1909 and 1948.

  15. Coalfields obscured by Mesozoic - Tertiary cover in Asturias. Cuencas carboniferas ocultas por la cobertera mesozoica - terciaria en Asturias

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Fernandez, L.

    1988-01-01

    The fundamental objective is to discover whether there are productive carboniferous deposits concealed by the Mesozoic-Tertiary cover and thus to assess the likelihood of the existence of coal deposits in potentially interesting areas where, at present, there are insufficient geological data. It should be pointed out that the structures hidden below the Mesozoic-Tertiary cover which form the subject of this study, contain highly productive carboniferous strata in the areas situated immediately to the south and which produce 4.9 mt of saleable coal per year.

  16. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    Directory of Open Access Journals (Sweden)

    Shmuel Assouline

    Full Text Available Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss. Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d and size (s, and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d, exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  17. Plant Water Use Efficiency over Geological Time – Evolution of Leaf Stomata Configurations Affecting Plant Gas Exchange

    Science.gov (United States)

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax. We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws, A and E and maximal relative transpiring leaf area, (amax⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle. PMID:23844085

  18. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    Science.gov (United States)

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  19. Structure and geological evolution of the bedrock at southern Satakunta, SW Finland

    International Nuclear Information System (INIS)

    Paulamaeki, S.; Paananen, M.; Elo, S.

    2002-02-01

    The southern Satakunta area lies on the west coast of Finland, mainly covering the mainland (with main towns Pori and Rauma), but also including the coastal archipelago and part of the Bothnian Sea. Near the centre of the area lies the island of Olkiluoto, on which Finland's site for a deep repository for spent nuclear fuel is located. The purpose of the present report is to compile and interpret all available geological and geophysical data relevant to understanding the regional geological setting of the Olkiluoto site. The area described is covered by four 1:100 000 scale geological map sheets, published by the Geological Survey of Finland, which, together with low-altitude aeromagnetic maps, provide the basis for a new 1:250 000 geological map compilation. This shows that the bedrock of southern Satakunta can be subdivided into three main zones: a pelitic migmatite belt in the southwest, a central, NW-SE trending area of sandstone, and a psammitic migmatite belt in the northeast. The migmatite belts formed during the Svecofennian orogeny, 1900-1800 Ma ago (Palaeoproterozoic). The sandstone area is the remnant of an alluvial basin, preserved now in a NW-SE trending graben, bounded on both sides by normal fault zones. The sandstones are thought to be at least 1400-1300 Ma old (Mesoproterozoic), and they are cut by Postjotnian olivine diabase dykes, 1270-1250 Ma in age. The Svecofennian migmatite belts show a complex history of formation, with various phases of anatexis/metamorphism, deformation and intrusion. In the pelitic migmatite belt, in which the Olkiluoto site is situated, four phases of ductile deformation (D-D4) and two phases of regional highT/lowP metamorphism and migmatite formation can be recognised, together with synorogenic (tonalite, granodiotite) and late orogenic ( potassium granite) intrusions. Subsequently, this very heterogeneous complex was intruded by anorogenic rapakivi granites, with ages 1580-1550 Ma. One pluton, the Eurajoki stock

  20. Structure and geological evolution of the bedrock at southern Satakunta, SW Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paulamaeki, S.; Paananen, M.; Elo, S. [Geological Survey of Finland (Finland)

    2002-02-01

    The southern Satakunta area lies on the west coast of Finland, mainly covering the mainland (with main towns Pori and Rauma), but also including the coastal archipelago and part of the Bothnian Sea. Near the centre of the area lies the island of Olkiluoto, on which Finland's site for a deep repository for spent nuclear fuel is located. The purpose of the present report is to compile and interpret all available geological and geophysical data relevant to understanding the regional geological setting of the Olkiluoto site. The area described is covered by four 1:100 000 scale geological map sheets, published by the Geological Survey of Finland, which, together with low-altitude aeromagnetic maps, provide the basis for a new 1:250 000 geological map compilation. This shows that the bedrock of southern Satakunta can be subdivided into three main zones: a pelitic migmatite belt in the southwest, a central, NW-SE trending area of sandstone, and a psammitic migmatite belt in the northeast. The migmatite belts formed during the Svecofennian orogeny, 1900-1800 Ma ago (Palaeoproterozoic). The sandstone area is the remnant of an alluvial basin, preserved now in a NW-SE trending graben, bounded on both sides by normal fault zones. The sandstones are thought to be at least 1400-1300 Ma old (Mesoproterozoic), and they are cut by Postjotnian olivine diabase dykes, 1270-1250 Ma in age. The Svecofennian migmatite belts show a complex history of formation, with various phases of anatexis/metamorphism, deformation and intrusion. In the pelitic migmatite belt, in which the Olkiluoto site is situated, four phases of ductile deformation (D-D4) and two phases of regional highT/lowP metamorphism and migmatite formation can be recognised, together with synorogenic (tonalite, granodiotite) and late orogenic ( potassium granite) intrusions. Subsequently, this very heterogeneous complex was intruded by anorogenic rapakivi granites, with ages 1580-1550 Ma. One pluton, the Eurajoki stock

  1. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    settings such as the carbonate reservoirs in the North Sea. The final aim of our project is to find out how to control the evolution of petrophysical parameters during CO2 injection using an optimal combination of flow rate, injection pressure and chemical composition of the influent. The first step...... to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection...

  2. Charles Darwin in Australia; or How To Introduce Some Local Colour to the Teaching of Evolution, Geology, Meteorology, and the Determination of Longitude.

    Science.gov (United States)

    Nicholas, Frank W.

    The background to Charles Darwin's little-known visit to Australia, and the account of his experiences while here, provide some invaluable historical material for teaching evolution, geology, meteorology, and the determination of longitude. Indeed, by using his Australian experiences as a foundation, it is possible to explain the theory of…

  3. Geology of the Thaumasia region, Mars: Plateau development, valley origins, and magmatic evolution

    Science.gov (United States)

    Dohm, J.M.; Tanaka, K.L.

    1999-01-01

    We have constructed the complex geologic history of the Thaumasia region of Mars on the basis of detailed geologic mapping and relative-age dating of rock units and structure. The Thaumasia plateau dominates the region and consists of high lava plains partly surrounded by rugged highlands, mostly of Noachian and Hesperian age. Long-lived faulting centered near Syria Planum and at lesser sites produced radiating narrow grabens during the Noachian through Early Amazonian and concentric wrinkle ridges during the Late Noachian and Early Hesperian. Fault activity peaked during the Noachian and waned substantially during Late Hesperian and Amazonian time. Volcanism on the Thaumasia plateau was particularly active in comparison with other martian cratered highlands, resulting in fourteen volcanoes and numerous outcrops of smooth, ridged, and lobate plains materials. A particularly extensive set of overlapping lava-flow units was emplaced sequentially from Thaumasia Planum to Syria Planum, spanning from the Late Noachian to the Late Hesperian; lobate flows succeeded smooth flow at the beginning of the Late Hesperian. Deep crustal intrusion and a thickened, buoyant crust may have caused the uplift of the plateau during the Noachian and Early Hesperian, resulting in outward-verging fold-and-thrust plateau margins. This structural style appears similar to that of the young ranges of the Rocky Mountains in the western U.S. Within the plateau, several sites of volcanotectonic activity and valley erosion may be underlain by large and perhaps long-lived magmatic intrusions. One such site occurs at the headland of Warrego Valles. Here, at least two episodes of valley dissection from the Noachian to Early Hesperian occurred during the formation of two nearby rift systems. The site also is a locus of intersection for regional narrow grabens during the Late Noachian and Early Hesperian. However, at the site, such faults diverge or terminate, which suggests that a resistant body of

  4. The MESSENGER mission to Mercury: new insights into geological processes and evolution

    Science.gov (United States)

    Head, James W., III; Solomon, Sean C.; McNutt, Ralph L., Jr.; Blewett, David T.; Chapman, Clark R.; Domingue, Deborah L.; Evans, Larry G.; Gillis-Davis, Jeffrey J.; Hawkins, S. Edward, III; Helbert, Jörn; Holsclaw, Gregory M.; Izenberg, Noam R.; McClintock, William E.; McCoy, Timothy J.; Merline, William J.; Murchie, Scott L.; Nittler, Larrz R.; Phillips, Roger J.; Prockter, Louise M.; Robinson, Mark S.; Sprague, Ann L.; Strom, Robert G.; Vilas, Faith; Watters, Thomas R.; Zuber, Maria T.

    2008-09-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, a part of NASA's Discovery Program, was designed to answer six questions [1]: (1) What planetary formational processes led to Mercury's high ratio of metal to silicate? (2) What is the geological history of Mercury? (3) What are the nature and origin of Mercury's magnetic field? (4) What are the structure and state of Mercury's core? (5) What are the radar-reflective materials at Mercury's poles? (6) What are the important volatile species and their sources and sinks near Mercury? MESSENGER is currently midway through a complex interplanetary cruise phase that involves three flybys of Mercury. The first of these, on 14 January 2008, provided important new information relating to several of the questions above [2-13]. Here we summarize observations made during the flyby that are most relevant to new insights about geological processes that have operated on Mercury and implications for the planet's history [3, 8-13]. The instruments that provided the most direct information on the geological history of Mercury during this first encounter were the Mercury Dual Imaging System (MDIS) [14], the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) [15], and the Mercury Laser Altimeter (MLA) [16]. Among the many specific questions remaining following the Mariner 10 mission to Mercury (1974- 1975) were (1) the level of mineralogical and compositional diversity of the crust, which appeared relatively bland in Mariner 10 data, (2) the nature of the rest of the huge Caloris impact basin seen only partially in Mariner 10 images, (3) the origin of the extensive plains observed on the surface (ponded impact ejecta or extrusive lava flows?), (4) the diversity and global distribution of tectonic features that have deformed the crust and their implications for strain as a function of time, and (5) the bombardment chronology and geological history of Mercury [1, 17-19]. The viewing

  5. Regulation of body temperature by some Mesozoic marine reptiles.

    Science.gov (United States)

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  6. The evolution, approval and implementation of the U.S. Geological Survey Science Data Lifecycle Model

    Science.gov (United States)

    Faundeen, John L.; Hutchison, Vivian

    2017-01-01

    This paper details how the United States Geological Survey (USGS) Community for Data Integration (CDI) Data Management Working Group developed a Science Data Lifecycle Model, and the role the Model plays in shaping agency-wide policies. Starting with an extensive literature review of existing data Lifecycle models, representatives from various backgrounds in USGS attended a two-day meeting where the basic elements for the Science Data Lifecycle Model were determined. Refinements and reviews spanned two years, leading to finalization of the model and documentation in a formal agency publication . The Model serves as a critical framework for data management policy, instructional resources, and tools. The Model helps the USGS address both the Office of Science and Technology Policy (OSTP) for increased public access to federally funded research, and the Office of Management and Budget (OMB) 2013 Open Data directives, as the foundation for a series of agency policies related to data management planning, metadata development, data release procedures, and the long-term preservation of data. Additionally, the agency website devoted to data management instruction and best practices (www2.usgs.gov/datamanagement) is designed around the Model’s structure and concepts. This paper also illustrates how the Model is being used to develop tools for supporting USGS research and data management processes.

  7. Geological evolution of Eocene Aǧrı Basin (Eastern Anatolia-Turkey): Preliminary results

    Science.gov (United States)

    Fırat Demirkaya, Demirkan; Aksoy, Necmettin; Üner, Serkan

    2017-04-01

    Continental collision zones are sites of intense crustal deformation resulting in different geological processes such as crustal thickening, regional contraction, and volcanic activity. The East Anatolian Plateau emerges from the compression and following collision between the Eurasian and Arabian plates. Numerous basins were formed by this compressional tectonism, including the Pasinler, Muş, and Lake Van basins. The E-W trending Aǧrı Basin is located at north of the collision zone formed by compressional tectonism in Eocene and shaped by the volcanism that was active since Miocene. The basins fill initiates with Middle Eocene to Lower Miocene shallow marine deposits composing of reefal limestones, mudstones, and sandstones. Ongoing compressional regime and related regional uplift caused regression and latter transition from shallow marine to terrestrial environments in Middle Miocene took place. Marine units are unconformably overlain by Upper Miocene to Pliocene lacustrine and fluvial deposits. The Quaternary sedimentation is represented by alluvial fan deposits derived from the northern margin of the basin and young fluvial sediments. Volcanic and volcanoclastic products are frequently observed in Miocene to Recent basin deposits. Currently, E-W trending thrust faults, forming the Aǧrı Basin, continue to control the shape and depositional processes of the basin. Deformation of alluvial fans and channel shifting of the Murat and Seryan rivers which longitudinally passing the basin are the prominent geomorphological indicators of this tectonic activity.

  8. Long term evolution of spent nuclear fuel in long term storage or geological disposal. Status of the French research program PRECCI

    International Nuclear Information System (INIS)

    Poinssot, Ch.; Toulhoat, P.; Gras, J.M.

    2001-01-01

    This paper aims to give a brief overview of the wide research undertaken in France in order to elucidate the potential long term evolution of spent nuclear fuels in long term storage or geological disposal. A particular emphasis is put on the last scientific results obtained and on the major scientific issue on which R and D is currently focused: the fate of helium, the RN migration within the rod (irradiation-induced diffusion) and the cladding long term creep for the closed system evolution, the kinetics of oxidation and the RN source term for the evolution in gaseous atmosphere, and the radiolytic dissolution and RN source term in presence of water. (author)

  9. Modelling the long-term evolution of geological radwaste disposal facilities

    International Nuclear Information System (INIS)

    Dames and Moore International Twickenham

    1990-01-01

    The report aims to answer questions such as How much do we know about environmental change, How does it apply to the performance assessment of radioactive waste disposal sites and What methods are available for incorporating considerations of environmental change into performance assessment. The document comprises two parts: Part 1 presents a review of the status of research into the effects of long-term environmental changes on deep land disposal facilities for radioactive waste, and then outlines a general specification for modelling these efforts; Part 2 presents background research on permafrost evolution and its potential effects on groundwater systems. Although much work exists on the growth of ice in soils, at shallow levels, relatively little is known about the growth of deep permafrost. A large appendix is devoted to the theoretical work on permafrost growth and its conclusions

  10. [Proceedings of the symposium 'Molluscan Palaeontology' : 11th International Malacological Congress, Siena (Italy) 30th August - 5th September 1992 / A.W. Janssen and R. Janssen (editors)]: The Mesozoic Marine Revolution and epifaunal bivalves

    NARCIS (Netherlands)

    Harper, E.M.; Skelton, P.W.

    1992-01-01

    The well documented dramatic increase in predation pressure which started during the early Mesozoic, termed the Mesozoic Marine Revolution (MMR), had an important impact on the evolution of prey organisms (Vermeij, 1983). Epifaunal bivalves in particular are at considerable risk to predation. In

  11. Geologic Map of the southern Inyo Mountains and vicinity, Inyo County, California

    Science.gov (United States)

    Stone, Paul; Swanson, Brian J.; Stevens, Calvin H.; Dunne, George C.; Priest, Susan S.

    2009-01-01

    The Inyo Mountains are located in east-central California between Owens Valley on the west and Saline Valley on the east. This map encompasses the southernmost part of the Inyo Mountains and vicinity, which is centered on the high plateau of Conglomerate Mesa and extends from Owens Valley on the west to the Santa Rosa Hills, Lee Flat, and the Nelson Range on the east. The area includes parts of the Cerro Gordo Peak, Nelson Range, Keeler, and Santa Rosa Flat 7.5' quadrangles. Sedimentary and volcanic rocks, unconformities, and structural features exposed in the southern Inyo Mountains region provide information critical for reconstructing the complex Paleozoic and Mesozoic tectonic evolution of the southwestern United States. Ordovician to Cretaceous rocks in the map area record a long geologic history during which the continental margin of the western United States gradually changed from a passive tectonic setting in the early and middle Paleozoic to an active tectonic setting in the Jurassic and Cretaceous. A major highlight of the map area is the unusually complete record of late Paleozoic to earliest Mesozoic (Pennsylvanian to Triassic) deformation and sedimentation that marked the transition between the passive and active margin settings. The area also provides an excellent record of Jurassic to Cretaceous deformation and igneous activity that characterized the middle to late Mesozoic active margin. This map provides a detailed depiction of all the Paleozoic and Mesozoic rocks and structural features known in the area. The area also contains important exposures of upper Cenozoic rocks related to the evolution of the Basin and Range province, although detailed mapping of these rocks was beyond the scope of this study.

  12. Angiosperm n-alkane distribution patterns and the geologic record of C4 grassland evolution

    Science.gov (United States)

    Henderson, A.; Graham, H. V.; Patzkowsky, M.; Fox, D. L.; Freeman, K. H.

    2012-12-01

    n-Alkane average chain-length (ACL) patterns vary regionally with community composition and climate. To clarify the influence of phylogenetic and community patterns, we compiled and analyzed a global database of published n-alkane abundance for n-C27 to C35 homologs in modern plant specimens (n=205). ACL for waxes in C4 non-woody plants are longer than for woody plants, suggesting ACL can serve as an indicator of the three-dimensional structure of local vegetation. Further, these findings suggest compound-specific isotopic data for longer alkane homologs (C31, C33, C35) will proportionately represent non-woody vegetation and isotope measurements of C29 are more representative of woody vegetation. Thus, the combination of ACL and carbon isotope compositions should allow us to disentangle C3 woody, C3 non-woody, and C4 non-woody signals in terrestrial paleorecords. Application of this approach to the geologic record of Miocene C4 grassland expansion in the US Great Plains and the Siwaliks in Pakistan illustrate two very different transition scenarios. Alkane-specific isotopic data indicate C4 grasslands appeared 2.5 Ma in the Great Plains and 6.5 Ma in the Siwaliks, and ACL analysis indicates that this transition involved the replacement of woody vegetation in the US and the replacement of C3 grasses in Pakistan. Our analysis illustrates that, consistent with differences in the timing of C4 grassland, the drivers of change were likely not the same in these regions. Oxygen isotope records suggest that the more recent transition in the Great Plains was associated with climate cooling and possibly changes in disturbance regimes and that the transition in the Siwaliks was likely associated with warming and drying.

  13. Geologic control on the evolution of the inner shelf morphology offshore of the Mississippi barrier islands, northern Gulf of Mexico, USA

    Science.gov (United States)

    Flocks, James G.; Kindinger, Jack G.; Kelso, Kyle W.

    2015-01-01

    Between 2008 and 2013, high-resolution geophysical surveys were conducted around the Mississippi barrier islands and offshore. The sonar surveys included swath and single-beam bathymetry, sidescan, and chirp subbottom data collection. The geophysical data were groundtruthed using vibracore sediment collection. The results provide insight into the evolution of the inner shelf and the relationship between the near surface geologic framework and the morphology of the coastal zone. This study focuses on the buried Pleistocene fluvial deposits and late Holocene shore-oblique sand ridges offshore of Petit Bois Island and Petit Bois Pass. Prior to this study, the physical characteristics, evolution, and interrelationship of the ridges between both the shelf geology and the adjacent barrier island platform had not been evaluated. Numerous studies elsewhere along the coastal margin attribute shoal origin and sand-ridge evolution to hydrodynamic processes in shallow water (inventoried to effectively manage the coastal zone.

  14. Geological evolution, palaeoclimate and historical development of the Forsmark and Laxemar-Simpevarp areas. Site descriptive modelling SDM-Site

    International Nuclear Information System (INIS)

    Soederbaeck, Bjoern

    2008-06-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The site investigations started in 2002 and were completed in 2007. The analysis and modelling of data from the site investigations, which have taken place during and after these investigations, provide a foundation for the development of an integrated, multidisciplinary site descriptive model (SDM) for each of the two sites. A site descriptive model constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere, as well as those natural processes that affect or have affected their long-term development. Hitherto, a number of reports presenting preliminary site descriptive models for Forsmark and Laxemar-Simpevarp have been published. In these reports, the evolutionary and historical aspects of the site were included in a separate chapter. The present report comprises a further elaboration of the evolutionary and historical information included in the preliminary SDM reports, but presented here in a separate, supplementary report to the final site description, SDM-Site. The report is common to the two investigated areas, and the overall objective is to describe the long-term geological evolution, the palaeoclimate, and the post-glacial development of ecosystems and of the human population at the two sites. The report largely consists of a synthesis of information derived from the scientific literature and other sources not related to the site investigations. However, considerable information from the site investigations that has contributed to our understanding of the past development at each site is also included. This unique synthesis of both published information in a regional perspective and new site-specific information breaks new ground in our understanding

  15. Geological evolution, palaeoclimate and historical development of the Forsmark and Laxemar-Simpevarp areas. Site descriptive modelling SDM-Site

    Energy Technology Data Exchange (ETDEWEB)

    Soederbaeck, Bjoern (ed.)

    2008-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is undertaking site characterization at two different locations, the Forsmark and Laxemar-Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The site investigations started in 2002 and were completed in 2007. The analysis and modelling of data from the site investigations, which have taken place during and after these investigations, provide a foundation for the development of an integrated, multidisciplinary site descriptive model (SDM) for each of the two sites. A site descriptive model constitutes a description of the site and its regional setting, covering the current state of the geosphere and the biosphere, as well as those natural processes that affect or have affected their long-term development. Hitherto, a number of reports presenting preliminary site descriptive models for Forsmark and Laxemar-Simpevarp have been published. In these reports, the evolutionary and historical aspects of the site were included in a separate chapter. The present report comprises a further elaboration of the evolutionary and historical information included in the preliminary SDM reports, but presented here in a separate, supplementary report to the final site description, SDM-Site. The report is common to the two investigated areas, and the overall objective is to describe the long-term geological evolution, the palaeoclimate, and the post-glacial development of ecosystems and of the human population at the two sites. The report largely consists of a synthesis of information derived from the scientific literature and other sources not related to the site investigations. However, considerable information from the site investigations that has contributed to our understanding of the past development at each site is also included. This unique synthesis of both published information in a regional perspective and new site-specific information breaks new ground in our understanding

  16. MESOZOIC MAGMATISM IN EAST URUGUAY: PETROLOGICAL CONSTRAINTS RELATED TO THE SIERRA SAN MIGUEL REGION

    Directory of Open Access Journals (Sweden)

    Conti Bruno

    2009-07-01

    Full Text Available This work presents new results of a detailed geological and structural investigation focusing the easternmost Uruguayan Mesozoic magmatic occurrences related to the south Atlantic opening. Lithological descriptions, their stratigraphic relationships and complimentary lithochemical characterizations carried out in the San Miguel region (East Uruguay are presented. Three volcanic/sub-volcanic units have been recognized. The felsic volcanic association is composed by rhyolitic - dacitic flows, mainly with porphyritic textures and sub-alkalinenature and related pyroclastic rocks. The felsic sub-volcanic association is characterized by granophyres of about 25 km2 of exposed area, cross- cut by mafic and felsic dykes. Finally, a mafic association has been identified characterized by dykes and a small intrusion of gabbroic composition.All these units are Mesozoic in age (130 - 127 Ma and according to their chemical nature they correspond tosub-alkaline to weak peralkaline magmas.

  17. Updated exploration trend and mesozoic deposit hydrocarbon potential in the Middle Kur basin

    International Nuclear Information System (INIS)

    Kerimov, K.M.; Valiyev, H.O.; Musayev, E.M.

    2002-01-01

    Full text : Extensive geophysical exploration and drilling operation within Middle Kur basin onset started in the mid of 20th century and since then diversity of related data had been related and different scale structure maps on the key stratigraphic units had been designed. As a result of these enormous exploration and research endeavors, Mesozoic hydrocarbon potential assessment still remains a challenge. With objective to tackle the problem available geologic and geophysical data derived int he region along with exploration well data have been analyzed thoroughly. Diversity of geophysical (seismic, electrical and gravi-magnetic) data was used to understand Mesozoic geologic setting. All these data made it possible to design a structure maps on the top of basement, Jurassic and Cretaceous deposits. At the same time, geodynamic activity variation (earthquake-related variation) should be taken into account while geologic modeling of the study region geologic setting that seems to emerge like a new problem. Seismic-geodynamic condition present within Azerbaijan petroleum provinces is evident that similar prospects are likely to exist in the study region.

  18. Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution?

    Science.gov (United States)

    Kay, Richard F

    2015-01-01

    Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South

  19. Historical Storminess and Hydro-Geological Hazard Temporal Evolution in the Solofrana River Basin—Southern Italy

    Directory of Open Access Journals (Sweden)

    Antonia Longobardi

    2016-09-01

    Full Text Available Precipitation extremes have always been part of the Earth’s climate system and associated multiple damaging hydrological events (MDHEs, the simultaneous triggering of different types of phenomena (landslides and floods, affect an always-increasing portion of human settlement areas. This paper aims to investigate the relationship between the temporal evolution of severe geomorphological events and combined precipitation indices as a tool to improve understanding the hydro-geological hazard at the catchment scale. The case study is the Solofrana river basin, Southern Italy, and the focus is on four of main municipalities severely affected by natural disasters. Data for about 45 MDH events, spanning 1951–2014, have been collected and analyzed for this purpose. A preliminary monthly scale analysis of event occurrences highlights a pronounced seasonal characterization of the phenomenon, as about 60% of the total number of reported events take place during the period from September to November. Following, a statistical analysis clearly indicates a significant increase in the frequency of occurrences of MDHEs during the last decades. Such an increase appears to be related to non-stationary features of an average catchment scale rainfall-runoff erosivity index, which combines maximum monthly, maximum daily, and a proxy of maximum hourly precipitation data.

  20. A methodology for scenario development based on understanding of long-term evolution of geological disposal systems

    International Nuclear Information System (INIS)

    Wakasugi, Keiichiro; Ishiguro, Katsuhiko; Ebashi, Takeshi; Ueda, Hiroyoshi; Koyama, Toshihiro; Shiratsuchi, Hiroshi; Yashio, Shoko; Kawamura, Hideki

    2012-01-01

    We have developed a 'hybrid' scenario development method by combining bottom-up and top-down approaches and applied for the case of geological disposal of high-level waste. This approach provides a top-down perspective, by introducing a concept of safety functions for different periods and 'storyboards', which depict repository evolution with time on a range of spatial scales, and a bottom-up perspective, by identifying relationship between processes related to radionuclide migration and safety functions based on feature, event and process (FEP) management. Based on a trial study, we have specified work descriptions for each step of the hybrid scenario development methodology and confirmed that the storyboard provides a baseline and holistic overview for the FEP management and a common platform to involve close interaction with experts in various disciplines to understand the crossover phenomenological processes. We also confirmed that there is no conflict between the top-down approach and the bottom-up approach and the hybrid scenario development work frame fulfils the specified requirements for traceability, comprehensiveness, ease of understanding, integration of multidisciplinary knowledge and applicability to a staged approach to siting. (author)

  1. Mesozoic intracontinental underthrust in the SE margin of the North China Block: Insights from the Xu-Huai thrust-and-fold belt

    Science.gov (United States)

    Shu, Liangshu; Yin, Hongwei; Faure, Michel; Chen, Yan

    2017-06-01

    The Xu-Huai thrust-and-fold belt, located in the southeastern margin of the North China Block, consists mainly of thrust and folded pre-Mesozoic strata. Its geodynamic evolution and tectonic setting are topics of long debate. This paper provides new evidence from geological mapping, structural analysis, and making balance cross-sections, with restoration of cross-sections. Results suggest that this belt was subjected to two-phase deformation, including an early-phase regional-scale NW-ward thrust and fold, and a late-phase extension followed by the emplacement of dioritic, monzodioritic porphyrites dated at 131-135 Ma and locally strike-slip shearing. According to the mapping, field observations and drill-hole data, three structural units were distinguished, namely, (1) the pre-Neoproterozoic crystalline basement in the eastern segment, (2) the nappe unit or the thrust-and-fold zone in the central segment, which is composed of Neoproterozoic to Ordovician carbonate rocks and Carboniferous-Permian coal-bearing rocks, about 2600 m thick, and (3) the western frontal zone. A major decollement fault has also been identified in the base of the nappe unit, on which dozen-meter to km-scale thrust-and-fold bodies were commonly developed. All pre-Mesozoic depositional sequences were involved into a widespread thrust and fold event. Six uncompetent-rock layers with biostratigraphic ages (Nanjing University, 1996) have been recognized, and each uncompetent-rock layer occurred mainly in the top of the footwall, playing an important role in the development of the Xu-Huai thrust-and-fold belt. Geometry of the major decollement fault suggests that the nappe unit of this belt was rooted in its eastern side, near the Tan-Lu Fault Zone. Two geological cross-sections were chosen for structural balancing and restoration. From the balanced cross-sections, ramp-flat and imbricated faults as well as fault-related folds were identified. A shortening of 20.6-29.6 km was obtained from

  2. Provenance evolution of the Jurassic northern Qaidam Basin (West China) and its geological implications: evidence from detrital zircon geochronology

    Science.gov (United States)

    Yu, Long; Xiao, Ancheng; Wu, Lei; Tian, Yuntao; Rittner, Martin; Lou, Qianqian; Pan, Xiaotian

    2017-03-01

    The Jurassic system is the major hydrocarbon source rock and of crucial importance for understanding the Mesozoic intra-continental tectonics in West China. This paper presents systematic detrital zircon geochronology of the Jurassic outcropping at the Dameigou locality in the northern Qaidam Basin, and reports 1000 single-grain U-Pb zircon ages that have implications for the provenance, the corresponding basin property as well as the tectonic setting of West China during Jurassic. Zircon ages exhibit two major clusters at 250 and 2400 Ma whereas two minor clusters at 450 and 850 Ma, suggesting primary sources from the East Kunlun Shan and Oulongbuluke Block, secondary sources from the North Qaidam UHP belt and South Qilian Shan. Combined with observation of lithology and sedimentary facies, two rifting periods were inferred in the earliest Jurassic and the early stage of the Middle Jurassic, respectively, accompanied by further extension throughout the Jurassic. Our results do not support a foreland basin related to the Jurassic southward thrusting of the South Qilian Shan, but favor that the Mesozoic intra-continental tectonics in West China were characterised by pulsed responses to specific collisions rather than a persisting contractional setting during Jurassic period.

  3. Hydro-Geological Hazard Temporal Evolution during the last seven decades in the Solofrana River Basin—Southern Italy

    Science.gov (United States)

    Longobardi, Antonia; Diodato, Nazzareno; Mobilia, Mirka

    2017-04-01

    Extremes precipitation events are frequently associated to natural disasters falling within the broad spectrum of multiple damaging hydrological events (MDHEs), defined as the simultaneously triggering of different types of phenomena, such as landslides and floods. The power of the rainfall (duration, magnitude, intensity), named storm erosivity, is an important environmental indicator of multiple damaging hydrological phenomena. At the global scale, research interest is actually devoted to the investigation of non-stationary features of extreme events, and consequently of MDHEs, which appear to be increasing in frequency and severity. The Mediterranean basin appears among the most vulnerable regions with an expected increase in occurring damages of about 100% by the end of the century. A high concentration of high magnitude and short duration rainfall events are, in fact, responsible for the largest rainfall erosivity and erosivity density values within Europe. The aim of the reported work is to investigate the relationship between the temporal evolution of severe geomorphological events and combined precipitation indices as a tool to improve understanding the hydro-geological hazard at the catchment scale. The case study is the Solofrana river basin, Southern Italy, which has been seriously and consistently in time affected by natural disasters. Data for about 45 MDH events, spanning on a decadal scale 1951-2014, have been collected and analyzed for this purpose. A preliminary monthly scale analysis of event occurrences highlights a pronounced seasonal characterization of the phenomenon, as about 60% of the total number of reported events take place during the period from September to November. Following, a statistical analysis clearly indicates a significant increase in the frequency of occurrences of MDHEs during the last decades. Such an increase appears to be related to non-stationary features of an average catchment scale rainfall-runoff erosivity index

  4. Geologic framework of the northern North Carolina, USA inner continental shelf and its influence on coastal evolution

    Science.gov (United States)

    Thieler, E. Robert; Foster, David S.; Himmelstoss, Emily A.; Mallinson, David J.

    2013-01-01

    The inner continental shelf off the northern Outer Banks of North Carolina was mapped using sidescan sonar, interferometric swath bathymetry, and high-resolution chirp and boomer subbottom profiling systems. We use this information to describe the shallow stratigraphy, reinterpret formation mechanisms of some shoal features, evaluate local relative sea-levels during the Late Pleistocene, and provide new constraints, via recent bedform evolution, on regional sediment transport patterns. The study area is approximately 290 km long by 11 km wide, extending from False Cape, Virginia to Cape Lookout, North Carolina, in water depths ranging from 6 to 34 m. Late Pleistocene sedimentary units comprise the shallow geologic framework of this region and determine both the morphology of the inner shelf and the distribution of sediment sources and sinks. We identify Pleistocene sedimentary units beneath Diamond Shoals that may have provided a geologic template for the location of modern Cape Hatteras and earlier paleo-capes during the Late Pleistocene. These units indicate shallow marine deposition 15–25 m below present sea-level. The uppermost Pleistocene unit may have been deposited as recently as Marine Isotope Stage 3, although some apparent ages for this timing may be suspect. Paleofluvial valleys incised during the Last Glacial Maximum traverse the inner shelf throughout the study area and dissect the Late Pleistocene units. Sediments deposited in the valleys record the Holocene transgression and provide insight into the evolutionary history of the barrier-estuary system in this region. The relationship between these valleys and adjacent shoal complexes suggests that the paleo-Roanoke River did not form the Albemarle Shelf Valley complex as previously proposed; a major fluvial system is absent and thus makes the formation of this feature enigmatic. Major shoal features in the study area show mobility at decadal to centennial timescales, including nearly a kilometer of

  5. Geological results of the Carstensz Expedition 1936

    NARCIS (Netherlands)

    Dozy, J.J.; Erdman, D.A.; Jong, W.J.; Krol, G.L.; Schouten, C.

    1939-01-01

    The observations made during the Carstensz Expedition give the following impression of the geological structure of the Nassau mountains: 1. Possibly Lower Palaeozoic, Upper Palaeozoic, Mesozoic and Tertiary (Tertiary c, d, e and f) rocks were found. 2. A granodioritic intrusion occurs with a contact

  6. Structural Geology

    Science.gov (United States)

    Weber, John; Frankel, Kurt L.

    2011-05-01

    Structural geology and continental tectonics were ushered in to the modern quantitative age of geosciences with the arrival of the global plate tectonics paradigm (circa 1968), derived using new data from the oceans' depths, and John Ramsay's 1967 seminal work, Folding and Fracturing of Rocks. Fossen is to be applauded for crafting a unique, high-caliber, and accessible undergraduate textbook on structural geology that faithfully reflects this advance and the subsequent evolution of the discipline. This well-written text draws on Fossen's wealth of professional experience, including his broad and diverse academic research and experience in the petroleum industry. This book is beautifully illustrated, with excellent original color diagrams and with impressive color field photographs that are all keyed to locations and placed into geologic context.

  7. The geological map of Montevideo Department scale 1:50.000

    International Nuclear Information System (INIS)

    Spoturno, J.; Oyhantcabal, P.; Goso, C.; Aubet, N.; Cazaux; S; Huelmo, S.; Morales, E.; Loureiro, J.

    2004-01-01

    The geological map of Montevideo Department (Uruguay), scale 1:50.000 is presented. This map shows the distribution of the proterozoic, mesozoic and cenozoic lithological units. A stratigraphic division of this region is included [es

  8. The geological map of Canelones Department scale 1:1000.000

    International Nuclear Information System (INIS)

    Spoturno, J.; Oyhantcabal, P.; Goso, C.; Aubet, N.; Cazaux; S; Huelmo, S.; Morales, E.; Loureiro, J.

    2004-01-01

    The geological map of Canelones Department (Uruguay), scale 1:100.000 is presented. This map shows the distribution of the proterozoic, mesozoic and cenozoic lithological units. A stratigraphic division of this region is included [es

  9. The Rb/Sr ages for granitoids of the Middle Chukotka: a new approach to the geological history of the region

    International Nuclear Information System (INIS)

    Efremov, S.V.; Kozlov, V.D.; Sandimirova, G.P.

    2000-01-01

    For studying the history of geological evolution of the Middle Chukotka in the Mesozoic by the method of Rb-Sr dating the age of granitoids in the region was determined. It was ascertained that the granitoids have different genetic nature, their formation involving the most intensive tectonic restructuring. Magmatism was manifested in two stages. Formation of the first stage granitoids (126-144 mln. years) relates to orogenesis, while that of the second stage granitoids (∼ 80 mln. years) - to the process of the Chukotka folded region activation [ru

  10. Chirp subbottom profiler data collected in Pamlico Sound on cruise SndPt_05_21_22_2012 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  11. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_07_31_2013 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  12. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_05_23_24_2012 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  13. Chirp subbottom profiler data collected in Pamlico Sound on cruise EPamSh-2016 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  14. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_07_30_2013 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  15. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_09_29_30_2011 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  16. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_07_29_2013 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  17. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_06_12_2013 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  18. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_10_12_2012 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers...

  19. Chirp subbottom profiler data collected in Pamlico Sound on cruise RVRiggs_05_20_22_2014 of RV Riggs for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Edgetech 216 chirp data (SEG-Y format) collected for the Coastal Hydrodynamics and Natural Geologic Evolution (CHaNGE) project, OCE-1130843. Survey area covers the...

  20. Characterization of shale gas enrichment in the Wufeng Formation–Longmaxi Formation in the Sichuan Basin of China and evaluation of its geological construction–transformation evolution sequence

    Directory of Open Access Journals (Sweden)

    Zhiliang He

    2017-02-01

    Full Text Available Shale gas in Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation in the Sichuan Basin is one of the key strata being explored and developed in China, where shale gas reservoirs have been found in Fuling, Weiyuan, Changning and Zhaotong. Characteristics of shale gas enrichment in the formation shown by detailed profiling and analysis are summarized as “high, handsome and rich”. “High” mainly refers to the high quality of original materials for the formation of shale with excellent key parameters, including the good type and high abundance of organic matters, high content of brittle minerals and moderate thermal evolution. “Handsome” means late and weak deformation, favorable deformation mode and structure, and appropriate uplift and current burial depth. “Rich” includes high gas content, high formation pressure coefficient, good reservoir property, favorable reservoir scale transformation and high initial and final output, with relative ease of development and obvious economic benefit. For shale gas enrichment and high yield, it is important that the combination of shale was deposited and formed in excellent conditions (geological construction, and then underwent appropriate tectonic deformation, uplift, and erosion (geological transformation. Evaluation based on geological construction (evolution sequence from formation to the reservoir includes sequence stratigraphy and sediment, hydrocarbon generation and formation of reservoir pores. Based on geological transformation (evolution sequence from the reservoir to preservation, the strata should be evaluated for structural deformation, the formation of reservoir fracture and preservation of shale gas. The evaluation of the “construction - transformation” sequence is to cover the whole process of shale gas formation and preservation. This way, both positive and negative effects of the formation-transformation sequence on shale gas are assessed. The evaluation

  1. Porphyry copper assessment of the Mesozoic of East Asia: China, Vietnam, North Korea, Mongolia, and Russia: Chapter G in Global mineral resource assessment

    Science.gov (United States)

    Ludington, Steve; Mihalasky, Mark J.; Hammarstrom, Jane M.; Robinson, Giplin R.; Frost, Thomas P.; Gans, Kathleen D.; Light, Thomas D.; Miller, Robert J.; Alexeiev, Dmitriy V.

    2012-01-01

    The U.S. Geological Survey (USGS) collaborated with the China Geological Survey (CGS) to conduct a mineral resource assessment of Mesozoic porphyry copper deposits in East Asia. This area hosts several very large porphyry deposits, exemplified by the Dexing deposit in eastern China that contains more than 8,000,000 metric tons of copper. In addition, large parts of the area are undergoing active exploration and are likely to contain undiscovered porphyry copper deposits.

  2. Recent discoveries of Uruguayan Mesozoic vertebrates

    International Nuclear Information System (INIS)

    Soto, M.; Perea, D.; Rinderknetch, A.; Ubilla, M.; Da Silva, J.

    2007-01-01

    Recently, new discoveries of Uruguayan Mesozoic vertebrates have been made, as well as the reinterpretation of already known remains. Its taxonomical and biostratigraphical significance justifies this communication. Concerning the Tacuarembo Formation, on one hand a dipnoan prearticular tooth plate has been reinterpreted as belonging to Ceratodus africanus Haug 1905, a species typical of Late Jurassic-Late Cretaceous deposits of Saharan Africa. This is the second dipnoan taxon recorded in the Tacuarembo Formation, uncovering a previously unrecognized dipnoan diversity in the mid-Mesozoic of South America. On the other hand, a few theropod tooth were confidently identified at the familial level for the first time in our country. The remains include two striated premaxillary tooth crowns, the characters of which, close to Ceratosaurus Marsh 1884, allow to refer them to the family Ceratosauridae, this being the oldest South American record of the family. The striated teeth show strong affinities with those of Late Jurassic ceratosaurids from North America, Iberian Peninsula and Tanzania, which is in accordance with recent proposals about the age of the Lower Member of the Tacuarembo Formation. Concerning the Guichon Formation, we comunicate here in the most important discovery of dinosaur remains in Uruguay. It consist in spatially associated remains from several individuals, including fifty caudal vertebra and several epiphysis, metatarsals and astragali. These materials belong to a titanosaurid sauropod, the characters of which are similar to those of certain Campanian-Maastrichtian titanosaurids. Close to the bones, several eggshell fragments referable to Sphaerovum Mones 1980 - a typical Campanian-Maastrichtian oogenus- were found. This finding represents the first record of sauropod dinosaurs from the Guichon Formation, and suggests a younger age for this unit than early proposed

  3. Geological setting, emplacement mechanism and igneous evolution of the Atchiza mafic-ultramafic layered suite in north-west Mozambique

    Science.gov (United States)

    Ibraimo, Daniel Luis; Larsen, Rune B.

    2015-11-01

    The Atchiza mafic and ultramafic-layered suite (hereafter, "Atchiza Suite) crops out in an area 330 km2 west of the Mozambican Tete province. In an early account of the geology of this intrusion, it was considered the continuation of the Great Dyke of Zimbabwe, an idea that was aborted after detailed studies. Nevertheless, the Ni concentrations in the Atchiza outcrop rocks are considerable. Our investigation used field evidence, hand specimens and petrography descriptions, mineral chemistry studies using electron microprobe analysis and tectonic analysis to arrive at a plausible mineralogical composition and understanding of the tectonic setting for the igneous evolution. The mineral composition from the Atchiza Suite indicates that these are cumulates. The magmatic segregation from the petrographic and mineral composition reasoning indicates that dunite-lherzolitic peridotite-olivine gabbro-gabbronorite-gabbro-pegmatitic gabbro is the rock formation sequence. Olivine and chromite were the first phases formed, followed by pyroxene and plagioclase. In addition, it is shown that these minerals are near-liquidus crystallization products of basaltic magma with olivine Fo: 87.06 in dunite, mean values of clinopyroxene are (Wo: 36.4, En: 48.0, Fs: 15.2), orthopyroxene (Wo: 2.95, En: 73.0, Fs: 24.2) and plagioclase An: 71.3, respectively. Opaque minerals comprise Fe-Ti oxides and (Fe, Cr) spinel up to 4.8 vol.%, but chromitite layers are not present. Most of the opaque minerals are interstitial to pyroxene. Sulphides are common in gabbros, with pyrrhotite, pentlandite, chalcopyrite, pyrite and covellite together comprising 0.4-2.0 vol.%. The whole rock Rare Earth Element (REE) concentrations are mainly a result of differentiation, but slight crustal contamination/assimilation contributed to the REE contents. In addition, they also show Eu enrichment, suggesting that plagioclase fractionation was important in the rock. The Atchiza Suite preserves a deep-seated plumbing

  4. Late Mesozoic basin and range tectonics and related magmatism in Southeast China

    Directory of Open Access Journals (Sweden)

    Dezi Wang

    2012-03-01

    Full Text Available During the Late Mesozoic Middle Jurassic–Late Cretaceous, basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a result of Pacific Plate subduction. Basin tectonics consists of post-orogenic (Type I and intra-continental extensional basins (Type II. Type I basins developed in the piedmont and intraland during the Late Triassic to Early Jurassic, in which coarse-grained terrestrial clastic sediments were deposited. Type II basins formed during intra-continental crustal thinning and were characterized by the development of grabens and half-grabens. Graben basins were mainly generated during the Middle Jurassic and were associated with bimodal volcanism. Sediments in half-grabens are intercalated with rhyolitic tuffs and lavas and are Early Cretaceous in age with a dominance of Late Cretaceous–Paleogene red beds. Ranges are composed of granitoids and bimodal volcanic rocks, A-type granites and dome-type metamorphic core complexes. The authors analyzed lithological, geochemical and geochronological features of the Late Mesozoic igneous rock assemblages and proposed some geodynamical constraints on forming the basin and range tectonics of South China. A comparison of the similarities and differences of basin and range tectonics between the eastern and western shores of the Pacific is made, and the geodynamical evolution model of the Southeast China Block during Late Mesozoic is discussed. Studied results suggest that the basin and range terrane within South China developed on a pre-Mesozoic folded belt was derived from a polyphase tectonic evolution mainly constrained by subduction of the western Pacific Plate since the Late Mesozoic, leading to formation of various magmatism in a back-arc extensional setting. Its geodynamic mechanism can compare with that of basin and range tectonics in the eastern shore of the Pacific. Differences of basin and range

  5. Geology of central Northern Switzerland: Overview and some key topics regarding Nagra’s seismic exploration of the region

    Energy Technology Data Exchange (ETDEWEB)

    Madritsch, H. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland)

    2015-07-01

    The article provides a brief overview of the geological evolution of central Northern Switzerland as outlined in an oral presentation given at the 82{sup nd} SASEG annual convention 2015 in Baden. It focuses on an introduction to the Permo-Carboniferous Trough of Northern Switzerland, a brief description of the Mesozoic sedimentary sequences to be found in the region, including the potential host rocks for radioactive waste disposal proposed by Nagra, and the Late Cenozoic tectonics of central Northern Switzerland, in particular the formation of the Jura Fold-and-Thrust Belt. These aspects represent some of the key topics regarding Nagra's ongoing seismic exploration of the region that has, and still is, contributing significantly to a better understanding of the region's fascinating geology. (author)

  6. Geologic evolution of the Paraiba do Sul complex, in the central part of the Ribeira belt, based on the geochemistry and U-Pb geochronology studies

    International Nuclear Information System (INIS)

    Valladares, Claudia Sayao

    1996-01-01

    Aiming the definition of the Complexo Paraiba do Sul evolution, the work presents a geochronological approach by the U-Pb method, considered appropriate to study polideformed terrains. The minerals used to the U-Pb dating (zircon, titanite and monazite) provides information about the ages of rock generation and the successive geological events the rocks were submitted. The U-Pb geochronological approach is pioneer in the investigated area and two questions referent to the Complexo Paraiba do Sul evolution in the central part of the Ribeira belt, were the aim of this approach. The first of them refers to the crystallization epoch and the gneisses metamorphism, interpreted here like orthogneisses, called Unidade Quirino of the Complexo Paraiba do Sul. The second refers to the metamorphism ages and meta sedimentary unit deformation. Looking for the contribution to the Complexo Paraiba do Sul evolution understanding, this work presents the data based on the geologic map of this area, comprising part of the Folha Volta Redonda (1:50.000), including petrographic, structural and microtectonic studies. It also presents and discusses the results of: 17 U-Pb analysis in zircon and titanite of the Complexo Paraiba do Sul orthogneisses collection; 24 geochemical analysis of major, minor, trace elements and ETR of the same collection; an U-Pb analysis in titanite of the Unidade Sao Joao, 5 U-Pb analysis in titanites and/or monazites of granites and granitoids; 12 geochemical analysis including major, minor and trace elements and ETR, in granites and sills of leucogranites. Finally, the data achieved were integrated with the objective to elaborate an evolutive view of the Complexo Paraiba do Sul

  7. Tectono-sedimentary evolution of an extensional basin revealed by a combined photo-geological and field-mapping approach. The Montefalco Basin (Northern Apennines, Italy)

    Science.gov (United States)

    Bucci, Francesco; Mirabella, Francesco; Santangelo, Michele; Cardinali, Mauro; Guzzetti, Fausto

    2016-04-01

    the evolution of the basin. Furthermore, results demonstrate that integration of accurate photo-geological maps produced through API and geological field mapping, can contribute to: (i) characterize the tectono-stratigraphic architecture and the geomorphological evolution of continental basins, (ii) help mineral reserves investigation, (iii) provide new input for active tectonic studies, (iv) produce new geological maps in other continental and marine basins, where field data are hard to collect.

  8. Research on the evolution model and deformation mechanisms of Baishuihe landslide based on analyzing geologic process of slope

    Science.gov (United States)

    Zhang, S.; Tang, H.; Cai, Y.; Tan, Q.

    2016-12-01

    The landslide is a result of both inner and exterior geologic agents, and inner ones always have significant influences on the susceptibility of geologic bodies to the exterior ones. However, current researches focus more on impacts of exterior factors, such as precipitation and reservoir water, than that of geologic process. Baishuihe landslide, located on the south bank of Yangtze River and 56km upstream from the Three Gorges Project, was taken as the study subject with the in-situ investigation and exploration carried out for the first step. After the spatial analysis using the 3D model of topography built by ArcGIS (Fig.1), geologic characteristics of the slope that lies in a certain range near the Baishuihe landslide on the same bank were investigated for further insights into geologic process of the slope, with help of the geological map and structure outline map. Baishuihe landslide developed on the north limb of Baifuping anticline, a dip slope on the southwest margin of Zigui basin. The eastern and western boundaries are both ridges and in the middle a distinct slide depression is in process of deforming. Evolutionary process of Baishuihe landslide includes three steps below. 1) Emergence of Baifuping anticline leaded to interbedded dislocation, tension cracks and joint fractures in bedrocks. 2) Weathering continuously weakened strength of soft interlayers in the Shazhenxi Formation (T3s). 3) Rock slide caused by neotectonics happened on a large scale along the weak layers and joint planes, forming initial Baishuihe landslide. Although the landslide has undergone reconstruction for a long time, it could still be divided clearly into two parts, namely a) the rock landslide at the back half (south) and b) the debris landslide at the front half (north). a) The deformation mechanism for the rock landslide is believed to be deterioration in strength of weak bedding planes due to precipitation and free face caused by human activities or river incision. b

  9. Fundamental Study on the Dynamics of Heterogeneity-Enhanced CO2 Gas Evolution in the Shallow Subsurface During Possible Leakage from Deep Geologic Storage Sites

    Science.gov (United States)

    Plampin, M. R.; Lassen, R. N.; Sakaki, T.; Pawar, R.; Jensen, K.; Illangasekare, T. H.

    2013-12-01

    A concern for geologic carbon sequestration is the potential for CO2 stored in deep geologic formations to leak upward into shallow freshwater aquifers where it can have potentially detrimental impacts to the environment and human health. Understanding the mechanisms of CO2 exsolution, migration and accumulation (collectively referred to as 'gas evolution') in the shallow subsurface is critical to predict and mitigate the environmental impacts. During leakage, CO2 can move either as free-phase or as a dissolved component of formation brine. CO2 dissolved in brine may travel upward into shallow freshwater systems, and the gas may be released from solution. In the shallow aquifer, the exsolved gas may accumulate near interfaces between soil types, and/or create flow paths that allow the gas to escape through the vadose zone to the atmosphere. The process of gas evolution in the shallow subsurface is controlled by various factors, including temperature, dissolved CO2 concentration, water pressure, background water flow rate, and geologic heterogeneity. However, the conditions under which heterogeneity controls gas phase evolution have not yet been precisely defined and can therefore not yet be incorporated into models used for environmental risk assessment. The primary goal of this study is to conduct controlled laboratory experiments to help fill this knowledge gap. With this as a goal, a series of intermediate-scale laboratory experiments were conducted to observe CO2 gas evolution in porous media at multiple scales. Deionized water was saturated with dissolved CO2 gas under a specified pressure (the saturation pressure) before being injected at a constant volumetric flow rate into the bottom of a 1.7 meter-tall by 5.7 centimeter-diameter column or a 2.4 meter-tall by 40 centimeter-wide column that were both filled with sand in various heterogeneous packing configurations. Both test systems were initially saturated with fresh water and instrumented with soil

  10. Geological and Structural evolution of the Eurasia Africa plate boundary in the Gulf of Cadiz Central Eastern Atlantic Sea.

    OpenAIRE

    D’Oriano, Filippo

    2010-01-01

    Iberia Africa plate boundary, cross, roughly W-E, connecting the eastern Atlantic Ocean from Azores triple junction to the Continental margin of Morocco. Relative movement between the two plate change along the boundary, from transtensive near the Azores archipelago, through trascurrent movement in the middle at the Gloria Fracture Zone, to transpressive in the Gulf of Cadiz area. This study presents the results of geophysical and geological analysis on the plate boundary area offshore Gibral...

  11. Refining the link between the Holocene development of the Mississippi River Delta and the geologic evolution of Cat Island, MS: implications for delta-associated barrier islands

    Science.gov (United States)

    Miselis, Jennifer L.; Buster, Noreen A.; Kindinger, Jack G.

    2014-01-01

    The geologic evolution of barrier islands is profoundly influenced by the nature of the deposits underlying them. Many researchers have speculated on the origin and evolution of Cat Island in Mississippi, but uncertainty remains about whether or not the island is underlain completely or in part by deposits associated with the past growth of the Mississippi River delta. In part, this is due to a lack of comprehensive geological information offshore of the island that could augment previous stratigraphic interpretations based on terrestrial borings. An extensive survey of Cat Island and its surrounding waters was conducted, including shallow-water geophysics (e.g., high-resolution chirp seismic, side-scan sonar, and swath and single-beam bathymetry) and both terrestrial and marine vibracoring. High-resolution seismic data and vibracores from south and east of the island show two horizontally laminated silt units; marine radiocarbon dates indicate that they are St. Bernard delta complex (SBDC) deposits. Furthermore, seismic data reveal that the SBDC deposits taper off toward the southern shoreline of Cat Island and to the west, morphology consistent with the distal edge of a delta complex. The sedimentology and extent of each unit suggest that the lower unit may have been deposited during an earlier period of continuous river flow while the upper unit may represent reduced or sporadic river flow. OSL dates from the island platform (beneath beach ridge complexes) indicate three stages of terrestrial evolution: island emergence resulting from relative sea-level rise (~ 5400 ybp) island aggradation via littoral transport (~ 2500–4000 ybp) and island degradation due to delta-mediated changes in wave direction (present– ~ 3600 ybp). Finally, the combination of terrestrial and marine data shows that portions of Cat Island that are lower in elevation than the central part of the island are younger and are likely underlain by a thin layer of deltaic sediments. This

  12. Geological significance of ^{40}Ar/^{39}Ar mica dates across a mid-crustal continental plate margin and implications for the evolution of lithospheric collisions

    Science.gov (United States)

    Friedrich, Anke; Hodges, Kip

    2017-04-01

    The Connemara region of the Irish Caledonides is a world-class example of a regional-scale high-temperature metamorphic terrain. Its formation relates to calkalkaline magmatism in a double-vergent island arc-continent collisional setting, for which a protracted evolution was inferred based on a > 75 Ma spread in U-Pb, Rb-Sr, and K-Ar mineral ages. Such a history is inconsistent with geological field observations, which imply a simple relationship between syntectonic magmatism, deformation and Barrovian-type metamorphism. Here, we explore the significance of the large spread in apparent cooling ages using 40Ar/39Ar mica thermochronometers of varying grain sizes and composition, which we collected across all metamorphic grades. We integrated geological and previously published geochronological evidence to identify a 32 Ma range (ca. 475 to 443 Ma) of permissible cooling ages and distinguished them from those dates not related to cooling after high-temperature metamorphism. Variations in 40Ar/39Ar dates at a single locality are ≤ 10 Ma, implying rapid cooling (≥ 6 to 26˚ C/Ma) following metamorphism and deformation. A distinct cooling age variation (≥ 15 Ma) occurs on the regional-scale, consistent with spatial differences in the metamorphic, magmatic, and deformational evolution across the Connemara region. This cooling record relates to a lateral thermal and strain-rate gradient in an evolving arc-continent collision, rather than to differential unroofing of the orogen. Our results imply that the large (≥ 50 Ma) spread in thermochronometers commonly observed in orogens does not automatically translate into a protracted cooling history, but that only a small number of thermochronometers supply permissible cooling ages in context. The thermal evolution of the Connemara region proposed here may be explained in context with current models of arc-continent collision, but also involves deep-seated driving processes.

  13. Evolution of the South-East Monsoon System - An Investigation of the Dynamical Controls on the Monsoon System Over Geologic Time Scales.

    Science.gov (United States)

    Farnsworth, A.; Lunt, D. J.

    2014-12-01

    The South-East Asian monsoon is a fundamental feature in the global climate system cycling energy, moisture and momentum from tropical to extra-tropical latitudes. Societies rely extensively on precipitation during the monsoon season to sustain population centres and economic activity such as agriculture. However the current monsoon system has not always been in its current configuration varying extensively throughout geological time. However little is known about the driving factors behind its creation and evolution. A series of numerical model simulation (HadCM3L) using state of the art reconstructed paleogeographies have been employed to investigate the evolution of the S.E. Asian monsoon system for each geological stage (32 simulations in total) since the beginning of the Cretaceous. Two methodologies, i) a fixed regional precipitation signal based on the current monsoon regions modern areal extent and ii) a migrating regional construct based on the modern day monsoon regions back rotated through time are investigated. These two methodologies allow an examination of the evolution of tropical precipitation over time in the region. The large-scale processes (paleogeography, CO2) of the monsoon system and the regional dynamics (e.g. sea surface temperatures, regional atmospheric circulation, oceanic heat transport, land-sea temperature differential) that control them are also examined with numerical results compared against available proxy data. Preliminary results indicate a downward trend in global precipitation since the late Eocene with significant change at the E/O boundary. In addition, tropical precipitation (40°N - 40°S) has seen a downward trend in rainfall since the mid-Cretaceous. S.E. Asia is shown to be influenced by changes in topographical features/ location, CO2 concentrations, and the regional atmospheric circulation playing a key role in modification of the monsoon system which drive variability on tectonic time scales.

  14. Planetary geology

    CERN Document Server

    Gasselt, Stephan

    2018-01-01

    This book provides an up-to-date interdisciplinary geoscience-focused overview of solid solar system bodies and their evolution, based on the comparative description of processes acting on them. Planetary research today is a strongly multidisciplinary endeavor with efforts coming from engineering and natural sciences. Key focal areas of study are the solid surfaces found in our Solar System. Some have a direct interaction with the interplanetary medium and others have dynamic atmospheres. In any of those cases, the geological records of those surfaces (and sub-surfaces) are key to understanding the Solar System as a whole: its evolution and the planetary perspective of our own planet. This book has a modular structure and is divided into 4 sections comprising 15 chapters in total. Each section builds upon the previous one but is also self-standing. The sections are:  Methods and tools Processes and Sources  Integration and Geological Syntheses Frontiers The latter covers the far-reaching broad topics of exo...

  15. Safety case development in the Japanese programme for geological disposal of HLW: Evolution in the generic stage

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Ishiguro, Katsuhiko; Takeuchi, Mitsuo; Fujihara, Hiroshi; Takeda, Seietsu

    2014-01-01

    In the Japanese programme for nuclear power generation, the safe management of the resulting radioactive waste, particularly vitrified high-level waste (HLW) from fuel reprocessing, has been a major concern and a focus of R and D since the late 70's. According to the specifications in a report issued by an advisory committee of the Japan Atomic Energy Commission (JAEC, 1997), the Second Progress Report on R and D for the Geological Disposal of HLW (H12 report) (JNC, 2000) was published after two decades of R and D activities and showed that disposal of HLW in Japan is feasible and can be practically implemented at sites which meet certain geological stability requirements. The H12 report supported government decisions that formed the basis of the 'Act on Final Disposal of Specified Radioactive Waste' (Final Disposal Act), which came into force in 2000. The Act specifies deep geological disposal of HLW at depths greater than 300 metres, together with a stepwise site selection process in three stages. Following the Final Disposal Act, the supporting 'Basic Policy for Final Disposal' and the 'Final Disposal Plan' were authorised in the same year. (authors)

  16. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution.

    Science.gov (United States)

    Tanner, Alastair R; Fuchs, Dirk; Winkelmann, Inger E; Gilbert, M Thomas P; Pankey, M Sabrina; Ribeiro, Ângela M; Kocot, Kevin M; Halanych, Kenneth M; Oakley, Todd H; da Fonseca, Rute R; Pisani, Davide; Vinther, Jakob

    2017-03-15

    Coleoid cephalopod molluscs comprise squid, cuttlefish and octopuses, and represent nearly the entire diversity of modern cephalopods. Sophisticated adaptations such as the use of colour for camouflage and communication, jet propulsion and the ink sac highlight the unique nature of the group. Despite these striking adaptations, there are clear parallels in ecology between coleoids and bony fishes. The coleoid fossil record is limited, however, hindering confident analysis of the tempo and pattern of their evolution. Here we use a molecular dataset (180 genes, approx. 36 000 amino acids) of 26 cephalopod species to explore the phylogeny and timing of cephalopod evolution. We show that crown cephalopods diverged in the Silurian-Devonian, while crown coleoids had origins in the latest Palaeozoic. While the deep-sea vampire squid and dumbo octopuses have ancient origins extending to the Early Mesozoic Era, 242 ± 38 Ma, incirrate octopuses and the decabrachian coleoids (10-armed squid) diversified in the Jurassic Period. These divergence estimates highlight the modern diversity of coleoid cephalopods emerging in the Mesozoic Marine Revolution, a period that also witnessed the radiation of most ray-finned fish groups in addition to several other marine vertebrates. This suggests that that the origin of modern cephalopod biodiversity was contingent on ecological competition with marine vertebrates. © 2017 The Authors.

  17. Geology of Joshua Tree National Park geodatabase

    Science.gov (United States)

    Powell, Robert E.; Matti, Jonathan C.; Cossette, Pamela M.

    2015-09-16

    The database in this Open-File Report describes the geology of Joshua Tree National Park and was completed in support of the National Cooperative Geologic Mapping Program of the U.S. Geological Survey (USGS) and in cooperation with the National Park Service (NPS). The geologic observations and interpretations represented in the database are relevant to both the ongoing scientific interests of the USGS in southern California and the management requirements of NPS, specifically of Joshua Tree National Park (JOTR).Joshua Tree National Park is situated within the eastern part of California’s Transverse Ranges province and straddles the transition between the Mojave and Sonoran deserts. The geologically diverse terrain that underlies JOTR reveals a rich and varied geologic evolution, one that spans nearly two billion years of Earth history. The Park’s landscape is the current expression of this evolution, its varied landforms reflecting the differing origins of underlying rock types and their differing responses to subsequent geologic events. Crystalline basement in the Park consists of Proterozoic plutonic and metamorphic rocks intruded by a composite Mesozoic batholith of Triassic through Late Cretaceous plutons arrayed in northwest-trending lithodemic belts. The basement was exhumed during the Cenozoic and underwent differential deep weathering beneath a low-relief erosion surface, with the deepest weathering profiles forming on quartz-rich, biotite-bearing granitoid rocks. Disruption of the basement terrain by faults of the San Andreas system began ca. 20 Ma and the JOTR sinistral domain, preceded by basalt eruptions, began perhaps as early as ca. 7 Ma, but no later than 5 Ma. Uplift of the mountain blocks during this interval led to erosional stripping of the thick zones of weathered quartz-rich granitoid rocks to form etchplains dotted by bouldery tors—the iconic landscape of the Park. The stripped debris filled basins along the fault zones.Mountain ranges

  18. Geological evolution of the southwestern part of the Veporic Unit (Western Carpathians) : Based on fission track and morphotectonic data

    NARCIS (Netherlands)

    Vojtko, Rastislav; Králiková, Silvia; Andriessen, Paul; Prokešová, Roberta; Minár, Jozef; Jeřábek, Petr

    2017-01-01

    Zircon and apatite fission track (FT) and morphotectonic analyses were applied in order to infer quantitative constraints on the Alpine morphotectonic evolution of the western part of the Southern Veporic Unit which is related to: (1) Eo-Alpine Cretaceous nappe stacking and metamorphism of the

  19. Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life.

    Science.gov (United States)

    Beaty, David W; Clifford, Stephen M; Borg, Lars E; Catling, David C; Craddock, Robert A; Des Marais, David J; Farmer, Jack D; Frey, Herbert V; Haberle, Robert M; McKay, Christopher P; Newsom, Horton E; Parker, Timothy J; Segura, Teresa; Tanaka, Kenneth L

    2005-12-01

    In October 2004, more than 130 terrestrial and planetary scientists met in Jackson Hole, WY, to discuss early Mars. The first billion years of martian geologic history is of particular interest because it is a period during which the planet was most active, after which a less dynamic period ensued that extends to the present day. The early activity left a fascinating geological record, which we are only beginning to unravel through direct observation and modeling. In considering this time period, questions outnumber answers, and one of the purposes of the meeting was to gather some of the best experts in the field to consider the current state of knowledge, ascertain which questions remain to be addressed, and identify the most promising approaches to addressing those questions. The purpose of this report is to document that discussion. Throughout the planet's first billion years, planetary-scale processes-including differentiation, hydrodynamic escape, volcanism, large impacts, erosion, and sedimentation-rapidly modified the atmosphere and crust. How did these processes operate, and what were their rates and interdependencies? The early environment was also characterized by both abundant liquid water and plentiful sources of energy, two of the most important conditions considered necessary for the origin of life. Where and when did the most habitable environments occur? Did life actually occupy them, and if so, has life persisted on Mars to the present? Our understanding of early Mars is critical to understanding how the planet we see today came to be.

  20. Long-term evolution of radio-active waste storage in geological formations: analogy with the weathering of mineral deposits

    International Nuclear Information System (INIS)

    Cantinolle, P.; Griffault, L.; Jebrak, M.

    1986-01-01

    The aim of this study was to select examples of mineral deposits and their weathering environment, showing the long-term behaviour, in geological time, measuring (area, volume) some constituent elements of radio-active waste storage subject to the hazards of hydrogeochemical weathering. Initially, a feasibility study was made to collate data available within the BRGM (mining group and public service) and from literature dealing with weathering of deposits. It was thus discovered that the analogy between radio-active waste storage and mineral deposits could be approached in two different yet complementary ways: - one approach is to observe the behaviour of a mineral deposit in relation to the country rocks. For this a bibliographic metallogenic study was made. The other approach is to observe the behaviour of chemical elements during deposition of a mineral deposit whose genesis is similar to the spatial and thermal environment of a deposit of radio-active waste in a geological formation. For this two sites were selected corresponding to hydrothermal systems showing strong analogies to those expected in the neighbourhood of the storage sites. These two sites, Langenberg in the Vosges and La Telhaie in Brittany, were the subject of complementary analytical work [fr

  1. The evolution of the Porcupine and Rockall basins, offshore Ireland: the geological template for carbonate mound development

    Science.gov (United States)

    Shannon, P. M.; McDonnell, A.; Bailey, W. R.

    2007-02-01

    The margins of the deep-water sedimentary basins west of Ireland contain a number of large clusters (provinces) of spectacular carbonate mounds and build-ups. These basins have a complex development history involving the interplay of rift tectonics, thermal subsidence, igneous activity and oceanographic variations. The Porcupine and Rockall basins both rest upon thin continental crust, the consequence of major rift episodes in Permo-Triassic, Late Jurassic and Early Cretaceous times. Phases of volcanism occurred in the Early Cretaceous and especially in the Early Cenozoic. Fluid flow within the basins is likely to have been controlled by the overall basin geometry and by the distribution and linkage of permeable strata with fault systems, stratal surfaces and unconformities. A number of regional unconformities, controlled by both basin tectonic and regional oceanographic effects, can be mapped and correlated throughout the Porcupine and Rockall basins. The youngest of these unconformities (C10: Early Pliocene) can be traced throughout much of the NW European Atlantic margin. It forms the horizon on which virtually all the carbonate mounds in the basins develop, suggesting a geologically instantaneous mound nucleation and growth event. Although the control on their development is uncertain, the mound clusters show a spatial association with lithified strata, buried contourite and deltaic deposits, slope failure features and with the basin margins. Analysis of these relationships points to a combination of geological and oceanographic processes controlling mound initiation and growth.

  2. Hydraulic-gas transient processes within the overall phenomenological evolution of the French HLW deep geological disposal: current knowledge in PA perspective

    Science.gov (United States)

    Wendling, J.; Plas, F.

    2009-04-01

    Because of the creation of the disposal underground facilities, then of the ventilation of whole or part of these facilities during operating period, and finally of hydrogen production, mainly by anoxic corrosion of metallic components, in post-closure period, the phenomenological evolution of a radwaste deep geological repository and its surrounding host rock will be characterized by an hydraulic and gas transient phase until the overall system reach an equilibrium state. This paper presents the analysis of this transient phase carried out in France within the framework of the feasibility study of a HLW and ILLW deep geological disposal in the Callovo-Oxfordian clay layer (Meuse/Haute Marne site) (Dossier 2005 Argile) according to the current state of knowledge: the broad outlines of the expected evolution are described in time and space from operating period to post closure period, taking into consideration the studied design concept (overall architecture, disposal zones, disposal modules, disposal cells, various types of waste, operating conditions…). More particularly for hydrogen, emphasis is focused on space and time organization of production and migration, in particular the various sources of production, the various pathways of migrations and interactions with hydraulics. Although the description is supported by a sound data base on hydraulic and gas production and migration (clay media, engineered materials, corrosion, radiolysis…) and numerical calculations at different scales of time and space, uncertainties exist both in phenomenology (Hydrogen production mechanisms, Hydrogen migration mechanisms in clay media, modeling of mechanisms, values of parameters…) and in simulation (in particular limitations to achieve the various time and space scales and some couplings). So deviations of the expected evolution are discussed. Results of this analysis show that the hydraulic and gas transient phase may present a complex organization in time and space

  3. Geology of Sierra de San Miguel area Rocha department (Uruguay)

    International Nuclear Information System (INIS)

    Muzio, R.; Veroslavsky, G.; Morales, E. . E mail: rossana@fcien.edu.uy

    2004-01-01

    This paper is part of a regional study about Mesozoic magmatism, tectonics and sedimentation in Uruguay. As a result of the geological studies carried out in Sierra de San Miguel area (Rocha department), lithological descriptions, their stratigraphic relationships and their petrographic characterization are presented [es

  4. Mesozoic Compressional Folds of the Nansha Waters, Southern South China Sea

    Science.gov (United States)

    Zhu, R.; Liu, H.; Yao, Y.; Wang, Y.

    2017-12-01

    As an important part of the South China Sea, the southern margin of the South China Sea is fundamental to understand the interaction of the Eurasian, Pacific and Indian-Australian plates and the evolution of the South China Sea. Some multi-channel seismic profiles of the Nansha waters together with published drillings and dredge data were correlated for interpretation. The strata of the study region can be divided into the upper, middle and lower structural layers. The upper and middle structural layers with extensional tectonics are Cenozoic; the lower structural layer suffered compression is Mesozoic. Further structural restoration was done to remove the Cenozoic tectonic influence and to calculate the Mesozoic tectonic compression ratios. The results indicate that two diametrically opposite orientations of compressive stress, S(S)E towards N(N)W orientation and N(N)W towards S(S)E orientation respectively, once existed in the lower structural layer of the study area and shared the same variation trend. The compression ratio values gradually decrease both from the north to the south and from the west to the east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate of the Nansha block drifted northward in Late Jurassic to Late Cretaceous, which had pushed the Nansha block drifted northward until it collided and sutured with the Southern China Margin. Thus the opening of the present-day South China Sea may be related to this suture zone, which was tectonically weakness zone.Key words: Mesozoic compression; structural restoration; proto-South China Sea; Nansha waters; Southern South China Sea; Acknowledgements: The work was granted by the National Natural Science Foundation of China (Grant Nos. 41476039, 91328205, 41576068 and 41606080).

  5. Active faulting, 3-D geological architecture and Plio-Quaternary structural evolution of extensional basins in the central Apennine chain, Italy

    Science.gov (United States)

    Gori, Stefano; Falcucci, Emanuela; Ladina, Chiara; Marzorati, Simone; Galadini, Fabrizio

    2017-03-01

    The general basin and range Apennine topographic characteristic is generally attributed to the presently active normal fault systems, whose long-term activity (throughout the Quaternary) is supposed to have been responsible for the creation of morphological/structural highs and lows. By coupling field geological survey and geophysical investigations, we reconstructed the 3-D geological model of an inner tectonic basin of the central Apennines, the Subequana Valley, bounded to the northeast by the southern segment of one of the major active and seismogenic normal faults of the Apennines, known as the Middle Aterno Valley-Subequana Valley fault system. Our analyses revealed that, since the late Pliocene, the basin evolved in a double half-graben configuration through a polyphase tectonic development. An early phase, Late Pliocene-Early Pleistocene in age, was controlled by the ENE-WSW-striking and SSE-dipping Avezzano-Bussi fault, that determined the formation of an early depocentre towards the N-NW. Subsequently, the main fault became the NW-SE-striking faults, which drove the formation during the Quaternary of a new fault-related depocentre towards the NE. By considering the available geological information, a similar structural evolution has likely involved three close tectonic basins aligned along the Avezzano-Bussi fault, namely the Fucino Basin, the Subequana Valley, and the Sulmona Basin, and it has been probably experienced by other tectonic basins of the chain. The present work therefore points out the role of pre-existing transverse tectonic structures, inherited by previous tectonic phases, in accommodating the ongoing tectonic deformation and, consequently, in influencing the structural characteristics of the major active normal faults. This has implications in terms of earthquake fault rupture propagation and segmentation. Lastly, the morpho-tectonic setting of the Apennine chain results from the superposition of deformation events whose geological

  6. Timing and Implications for the Late Mesozoic Geodynamic Settings ...

    Indian Academy of Sciences (India)

    30

    The Lingshan Island in Shandong Province in the eastern North China Craton which is well known for the Late Mesozoic multi-scale slide-slump structures are related to paleo-earthquake. Terrigenous clastic rocks, volcanic clastic rocks and volcanic lavas are extensively exposed in the Lingshan Island and its adjacent ...

  7. Timing and implications for the late Mesozoic geodynamic settings ...

    Indian Academy of Sciences (India)

    The Lingshan Island in Shandong Province in the eastern North China Craton, well known for the Late Mesozoic multi-scale slide-slump structures is related to paleo-earthquake. Terrigenous clastic rocks, volcanic clastic rocks and volcanic lavas are extensively exposed in the Lingshan Island and its adjacent regions of the ...

  8. Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls.

    Science.gov (United States)

    Danise, Silvia; Higgs, Nicholas D

    2015-04-01

    We report fossil traces of Osedax, a genus of siboglinid annelids that consume the skeletons of sunken vertebrates on the ocean floor, from early-Late Cretaceous (approx. 100 Myr) plesiosaur and sea turtle bones. Although plesiosaurs went extinct at the end-Cretaceous mass extinction (66 Myr), chelonioids survived the event and diversified, and thus provided sustenance for Osedax in the 20 Myr gap preceding the radiation of cetaceans, their main modern food source. This finding shows that marine reptile carcasses, before whales, played a key role in the evolution and dispersal of Osedax and confirms that its generalist ability of colonizing different vertebrate substrates, like fishes and marine birds, besides whale bones, is an ancestral trait. A Cretaceous age for unequivocal Osedax trace fossils also dates back to the Mesozoic the origin of the entire siboglinid family, which includes chemosynthetic tubeworms living at hydrothermal vents and seeps, contrary to phylogenetic estimations of a Late Mesozoic-Cenozoic origin (approx. 50-100 Myr). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, J.; Backstrom, A.; Chijimatsu, M.; Feng, X.-T.; Pan, P.-Z.; Hudson, J.; Jing, L.; Kobayashi, A.; Koyama, T.; Lee, H.-S.; Huang, X.-H.; Rinne, M.; Shen, B.

    2008-10-23

    This simulation study shows how widely different model approaches can be adapted to model the evolution of the excavation disturbed zone (EDZ) around a heated nuclear waste emplacement drift in fractured rock. The study includes modeling of coupled thermal-hydrological-mechanical (THM) processes, with simplified consideration of chemical coupling in terms of time-dependent strength degradation or subcritical crack growth. The different model approaches applied in this study include boundary element, finite element, finite difference, particle mechanics, and elastoplastic cellular automata methods. The simulation results indicate that thermally induced differential stresses near the top of the emplacement drift may cause progressive failure and permeability changes during the first 100 years (i.e., after emplacement and drift closure). Moreover, the results indicate that time-dependent mechanical changes may play only a small role during the first 100 years of increasing temperature and thermal stress, whereas such time-dependency is insignificant after peak temperature, because decreasing thermal stress.

  10. A Fresh Look at the Geologic Evolution of Kingman Reef and Palmyra Atoll, U.S. Line Islands

    Science.gov (United States)

    Barth, G. A.; Eakins, B.; Scheirer, D. S.; Wong, F. L.; Jones, M. R.

    2013-12-01

    Extended continental shelf (ECS) interest has provided a vehicle for renewed scientific study of the geologic framework of the U.S. Line Islands. In support of ECS studies, GLORIA sidescan sonar imagery has been refreshed and re-released. New multibeam bathymetry and backscatter data and a compilation of bathymetric tracks of opportunity enhance the credibility of new backscatter interpretations. Two-channel seismic reflection data collected during the GLORIA program in 1991 have been reprocessed and compiled into a digital database and have yielded a new understanding of sediment distribution and basement morphology within the 200 nautical mile exclusive economic zone (EEZ) surrounding Kingman Reef and Palmyra Atoll. Kingman Reef and Palmyra Atoll are small islands today. We infer that they are the last subaerial remnants of what was once a complex volcanic island, made up of no fewer than 8 different volcanic centers and spanning roughly 200 km in total diameter. Edifice heights above the immediately surrounding volcanic basement exceed 3000 m, and in several cases exceed 4000 m. Voluminous sediment accumulations flanking these now-submerged and significantly buried edifices point to their past existence as shallow-water or emergent volcanic systems capable of producing large quantities of volcaniclastic as well as carbonate sediment quite different from the thinner layer of pelagic sediment blanketing the adjacent central Pacific deep sea floor. The sediment pond east of Palmyra Atoll, in a perched basin near the center of this ancient complex, exceeds 1200 m in thickness. The Kingman-Palmyra region today is a showcase of mass transport features, with rugged erosional topography on steep volcanic flanks, a collapsed or eroding carbonate platform covering part of the central complex, and wide, sinuous leveed channels sweeping predominantly toward the north, carrying sediment away from the remnant high and out onto the deep sea floor to the east of the Line

  11. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    Science.gov (United States)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  12. Geological evolution of the southwestern part of the Veporic Unit (Western Carpathians: based on fission track and morphotectonic data

    Directory of Open Access Journals (Sweden)

    Vojtko Rastislav

    2017-08-01

    Full Text Available Zircon and apatite fission track (FT and morphotectonic analyses were applied in order to infer quantitative constraints on the Alpine morphotectonic evolution of the western part of the Southern Veporic Unit which is related to: (1 Eo-Alpine Cretaceous nappe stacking and metamorphism of the crystalline basement in the greenschist facies. (2 Exhumation phase due to underthrusting of the northerly located Tatric-Fatric basement (~ 90–80 Ma, followed by a passive en-block exhumation with cooling through ~ 320–200 °C during the Palaeocene (ZFT ages of ~ 61–55 Ma. (3 Slow Eocene cooling through ~ 245–90 °C, which most likely reflected erosion of the overlying cover nappes and the Gosau Group sediments. Cooling reached up to 60 °C till the Oligocene (AFT ages of ~ 37–22 Ma in association with erosion of cover nappes. The efficient Eocene erosion led to the formation of the first Cenozoic planation surface with supergene kaolinization in many places. (4 The early Miocene erosion coincided with surface lowering and resulted in the second planation surface favourable for kaolinization. (5 In the middle Miocene, the study area was covered by the Poľana, Javorie, and Vepor stratovolcanoes. (6 The late Miocene stage was related to the erosion and formation of the third Cenozoic planation surface and the final shaping of the mountains was linked to a new accelerated uplift from the Pliocene.

  13. Shallow Geology and Permafrost Characterization using Ground-Penetrating Radar to infer Hydrological Controls and Landscape Evolution of Interior Alaska

    Science.gov (United States)

    Campbell, S. W.; Saari, S. P.; Douglas, T. A.; Day-Lewis, F. D.; Walvoord, M. A.; Nolan, J. T.

    2012-12-01

    This investigation is part of a larger ongoing study, in which geophysical results are incorporated into numerical models and GIS tools to support simulation of current and future permafrost extent and changing hydrology throughout interior Alaska. The objective of this work was to identify depth and extent of the active layer, permafrost, and shallow geology. We collected 100-400 MHz ground-penetrating radar (GPR) profiles in the summer and spring of 2011-2012 across three vegetation regimes, bordering two small lakes, and near inactive flow channels of the Yukon River, Alaska. From these data we seek to infer controls on groundwater/surface water interaction and utilize the baseline information as means of assessing future change with projected warming. The elevation range of the study region is < 20 meters. Vegetation is characterized by black spruce transitioning into aspen, low growth shrubs, and grasses with increasing proximity to current or recent water bodies. Shallow sediment cores (1-3 m deep) revealed mixtures of silt, gravel, and sandy lenses, with each unit ranging from 10-50 cm in thickness. Shallow (≤ 2 m) ground truth pits exposed these units to be sub-horizontal to steeply dipping, laterally intermittent, yet commonly in sequence throughout the study region. Frost probing and coring in the summer suggested a water table between 1-2 m depth at lower elevation sites whereas cores extracted from the higher elevation sites did not reach the water table. A discontinuous frozen layer mostly confined within a 20-50 cm thick organic silt-rich layer was also extracted from sediment cores in the low grassland/shrub brush at ~1 m depth. Thawed material below this frozen unit varied from saturated clay to gravel. Maximum depth of penetration for the 400 MHz GPR antenna ranged between 1-3 m whereas the 100 MHz antenna reached ≤ 30 m depth. Regions with shallower penetration depths are interpreted as thaw zones exhibiting high silt of free water content

  14. Fission track dating of mesozoic sandstones and its tectonic significance in the Eastern Sichuan Basin, China

    International Nuclear Information System (INIS)

    Shen Chuanbo; Mei Lianfu; Xu Sihuang

    2009-01-01

    To establish the tectonic evolution of the eastern Sichuan basin, apatite fission track dating and time-temperature thermal history modeling were carried to analyze on 11 samples collected from Jurassic sandstones. The results indicate that the cooling and exhumation process of the eastern Sichuan basin can be divided into three stages since Cretaceous, (1) a rapid cooling phase between ∼100 and ∼70 Ma, (2) following by a period of relative thermal stability phase between ∼70 and ∼15 Ma, (3) and then a new rapid cooling stage after ∼15 Ma. Two rapid cooling events imply that the eastern Sichuan basin once underwent two tectonic movements since Cretaceous. The first rapid cooling is associated with Mesozoic tectonic reactivation beginning at 100 Ma, which result in folds and faults of the eastern Sichuan basin. The second tectonic movement occurred at 15 Ma, which is related to denudation by compression resulting from the eastward growth of Tibetan plateau uplift.

  15. Geologic framework of the Aleutian arc, Alaska

    Science.gov (United States)

    Vallier, Tracy L.; Scholl, David W.; Fisher, Michael A.; Bruns, Terry R.; Wilson, Frederic H.; von Huene, Roland E.; Stevenson, Andrew J.

    1994-01-01

    lessens to the west (Minster and Jordan, 1978). Along the central Aleutian Ridge, underthrusting is about 30° from normal to the volcanic axis. Motion between plates is approximately parallel along the western Aleutian Ridge.In this paper we briefly describe and interpret the Cenozoic evolution of the Aleutian arc by focusing on the onshore and offshore geologic frameworks in four of its sectors, two sectors each from the Aleutian Ridge and Alaska Peninsula-Kodiak Island segments (Fig. 1). We compare the geologic evolution of the segments and comment on the implications of some new, previously unpublished data.

  16. Postseismic afterslip 30 years after the 1978 Tabas-e-Golshan (Iran) earthquake: observations and implications for the geological evolution of thrust belts

    Science.gov (United States)

    Copley, Alex

    2014-05-01

    This paper presents InSAR observations of postseismic afterslip occurring up to 30 yr after the Mw7.3 1978 Tabas-e-Golshan thrust-faulting earthquake in eastern Iran. Comparison of the surface motion from 1996 to 1999 with that from 2003 to 2010, along with information provided by the Quaternary-averaged slip rates of faults in the region, suggests that the imaged slip is transient and decaying through time. Models of the surface deformation field imply slip on faults dipping at 55 ± 10°, reaching from the surface to depths of 4-5 km, and slipping at 5 ± 1 mm yr-1. These faults outcrop on the margins of low anticlinal hills composed of actively uplifting Neogene deposits. When compared with the previously studied main shock focal parameters (slip on a plane dipping at 16 ± 5° with a centroid depth of ˜9 km), and the aftershock distribution (a band at ˜6-14 km), the InSAR results imply postseismic slip on a high-angle thrust ramp connecting the surface anticlines to the coseismic low-angle fault plane at depth. In one location, both a thrust ramp and also a backthrust are postseismically active. The InSAR observations demonstrate the role of postseismic afterslip in the growth of these commonly observed thrust belt geometries, and highlight that deformation throughout the seismic cycle can contribute to the geological evolution of regions of active faulting.

  17. Mineralogical and Geochemical Analysis of Howardite DaG 779: understanding geological evolution of asteroid (4) Vesta

    Science.gov (United States)

    Marcel Müller, Christian; Mengel, Kurt; Singh Thangjam, Guneshwar; Weckwerth, Gerd

    2016-04-01

    The HED meteorites, a clan of stony achondrites, are believed to originate from asteroid (4) Vesta (e.g. Mittlefehldt et al. (2015)). Recent evolution models (e.g. Toplis et al. (2013)) and observations from Dawn spacecraft data (e.g., Prettyman et al. (2013)) indicate that diogenites form the lower crust and uppermost mantle of (4) Vesta. Deep seated material excavated by large impacts such as the Rheasilvia- and Veneneiaforming event should be present in howardites. We analysed a slice of howardite DaG 779 which had been recovered from the Libyan Desert in 1999 and was briefly described by Grossmann (2000). The data presented here include electron microprobe, bulk-rock XRD and XRF as well as trace element analysis by ICP-MS and INA. The petrographic results confirm earlier observations that DaG 779 is polymict and mainly contains diogenite and eucrite clasts. Mass balance calculations using bulk-rock and microprobe major element data reveal a modal mineralogy of 77% orthopyroxene, 8% plagioclase, 7% clinopyroxene and 2% spinels, the rest being olivine, SiO2-phases, sulphides, and native Fe(Ni). When compared with the element compilation recently reported by Mittlefehldt (2015) the 39 trace element analysed here (including REE and PGE) confirm that this howardite is clearly dominated by diogenite. Beside the modal petrographic information, a number of more detailed observations obtained from microprobe investigations reveal fresh and recrystallized glasses, troilite-orthopyroxene symplectites from a mixed silicate-sulphide melt giving rise to graphic intergrowths as well as vermicular and reticular FeS in highly disrupted clasts. While the origin of the FeS in these clasts is not clear yet, its particular shape and distribution indicates that this mineral has been (partially) molten and recrystallized from a sulphide melt. The silicate minerals around these FeS occurrences are recrystallized but there is no indication for a partial silicate melt. Further

  18. Mesozoic black shales, source mixing and carbon isotopes

    Science.gov (United States)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  19. 3. South American symposium on isotope geology. Extended abstracts

    International Nuclear Information System (INIS)

    2001-10-01

    This publication include papers in the fields on Methodology, thermochronology, and geochronology; Evolution of cratonic South America; Magmatic processes; Environmental geology, hydrogeology, isotopic stratigraphy and paleoclimatology; Economic Geology and Evolution of the Andean margin of South America

  20. Mesozoic Granitic Magmatism in Macao, Southeast China

    Science.gov (United States)

    Quelhas, P. M.; Mata, J.; Lou, U. T.; Ribeiro, M. L.; Dias, Á. A.

    2016-12-01

    Macao ( 30 Km2) is a territory characterized by small granitic intrusions, located along the coastal region of Southeast China (Cathaysia Block). Granitoids occur as different facies, including microgranite dykes, with distinct textural, mineralogical and geochemical features, for which a middle-upper Jurassic age ( 164 Ma) has been proposed. New data suggest that these granitoids are mostly high-K calc-alkaline metaluminous (A/CNK = 0.8 - 1.1) biotite granites, consistent with total absence of primary muscovite. They show variable amounts of SiO2 (67-77%), reflecting different degrees of magmatic evolution. There is also variability in terms of trace elements, particularly Rare Earth Elements (REEs), evidenced by decreasing (La/Sm)N, (Gd/Lu)N, (Ce/Yb)N and (Eu/Eu*)N towards the more evolved samples, which can be partly attributed to fractional crystallization processes. Most of the granitoids are characterized by (La/Yb)N = 3 - 10.8, showing negative Ba, Nb, Sr, Zr, P, Ti and Eu anomalies. On the other hand, microgranite dykes, along with a few more evolved granites, show an opposite tendency, being usually enriched in HREEs relatively to LREEs with (La/Yb)N = 0.4 - 1.1. Our data suggests intermediate genetic affinities between I-type and A-type granites. Although these granitoids are mostly metaluminous (characteristic of I-types), Ga/Al ratios, usually used to identify A-types, are close to the accepted boundary between A-type and other granite types. The affinities with A-type granites are more marked for the more evolved facies, which depict higher values of FeOt/MgO (14 - 60) and K2O/MgO (60 - 250). Their trace element characteristics are also transitional between WPG (Within-plate granites) and Syn-COLG (Collision Granites). We interpret those transitional characteristics (A/I and WPG/Syn-COLG) of Macao granitoids as reflecting an origin by melting of infracrustal sources over a period of high heat transfer from mantle to crust during an extensional tectonic

  1. Early Mesozoic cooling from low temperature thermochronology in N Spain and N Africa

    Science.gov (United States)

    Grobe, R.; Alvarez-Marrón, J.; Glasmacher, U. A.; Menéndez-Duarte, R.

    2009-04-01

    In the western prolongation of the Pyrenees, the substratum of the Cantabrian Mountains consists of an E-W crustal section of the Gondwana continental margin involved in the Variscan collision. In Mesozoic times, the region was modified by rifting and the opening of the Atlantic and the Bay of Biscay, while in Paleogene-Neogene times it was affected by the convergence of the Iberian Plate with the Eurasian Plate resulting in the present mountains. Our thermochronological data and modelled time-temperature histories suggest an earlier, relative fast cooling period during Early Triassic to Early Jurassic. This cooling event coincides temporally with the process of rifting that caused Pangaea continental break-up and the opening of the North Atlantic. Other authors report similar cooling histories from Early Triassic to Middle Jurassic from other parts of the Iberian Peninsula (Juez-Larré, 2003; Barbero et al., 2005) as well as from the Moroccan Meseta, in N Africa (Ghorbal et al., 2008). Furthermore, the time span of this cooling event includes the period of main activity of the Central Atlantic Magmatic Province (CAMP) magmatism at around 200 Ma (Marzoli et al., 1999). Wilson (1997) postulates a relationship between this magmatic activity and upwelling of a large-scale mantle plume (super-plume) beneath the West African craton. Correlatives of this province have been identified as far as the southern Iberian Peninsula, Newfoundland, and possibly in Brittany, among other European areas (Pe-Piper et al., 1992; Jourdan et al., 2003). The current presentation aims to discuss possible African far-field effects on thermochronological data in the Cantabrian Mountains of NW Spain. References: Barbero, L.; Glasmacher, U. A.; Villaseca, C.; López García, J. A.; Martín-Romera, C. (2005). Long-term thermo-tectonic evolution of the Montes de Toledo area (Central Hercynian Belt, Spain): constraints from apatite fission-track analysis. International Journal of Earth Sciences

  2. Evolution of Ore Deposits and Technology Transfer Project: Isotope and Chemical Methods in Support of the U.S. Geological Survey Science Strategy, 2003-2008

    Science.gov (United States)

    Rye, Robert O.; Johnson, Craig A.; Landis, Gary P.; Hofstra, Albert H.; Emsbo, Poul; Stricker, Craig A.; Hunt, Andrew G.; Rusk, Brian G.

    2010-01-01

    Principal functions of the U.S. Geological Survey (USGS) Mineral Resources Program are providing assessments of the location, quantity, and quality of undiscovered mineral deposits, and predicting the environmental impacts of exploration and mine development. The mineral and environmental assessments of domestic deposits are used by planners and decisionmakers to improve the stewardship of public lands and public resources. Assessments of undiscovered mineral deposits on a global scale reveal the potential availability of minerals to the United States and other countries that manufacture goods imported to the United States. These resources are of fundamental relevance to national and international economic and security policy in our globalized world economy. Performing mineral and environmental assessments requires that predictions be made of the likelihood of undiscovered deposits. The predictions are based on geologic and geoenvironmental models that are constructed for the diverse types of mineral deposits from detailed descriptions of actual deposits and detailed understanding of the processes that formed them. Over the past three decades the understanding of ore-forming processes has benefited greatly from the integration of laboratory-based geochemical tools with field observations and other data sources. Under the aegis of the Evolution of Ore Deposits and Technology Transfer Project (referred to hereinafter as the Project), a 5-year effort that terminated in 2008, the Mineral Resources Program provided state-of-the-art analytical capabilities to support applications of several related geochemical tools to ore-deposit-related studies. The analytical capabilities and scientific approaches developed within the Project have wide applicability within Earth-system science. For this reason the Project Laboratories represent a valuable catalyst for interdisciplinary collaborations of the type that should be formed in the coming years for the United States to meet

  3. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic map analyses: Correlation of geologic and cratering histories. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    Geologic map analyses are expanded, beginning with a discussion of particular regions which may illustrate volcanic and ballistic plains emplacement on Mercury. Major attention is focused on the surface history of Mercury through discussion of the areal distribution of plains and craters and the paleogeologic maps of the first quadrant. A summary of the lunar intercrater plains formation similarly interrelates the information from the Moon's geologic and cratering histories.

  4. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  5. Effects of Rock Type and Geologic Process on the Structure and Evolution of Nano, Meso and Micro-Scale Porosity: A (U)SANS, SEM/BSE Analysis

    Science.gov (United States)

    Anovitz, L.; Wang, H.; Cole, D. R.; Rother, G.

    2012-12-01

    The microstructure and evolution of porosity in time and space play a critical role in many geologic processes, including the migration and retention of water, gas and hydrocarbons, the evolution of hydrothermal systems, weathering, diagenesis and metamorphism, as well as technological processes such as CO2 sequestration, shale gas and secondary oil recovery. The size, distribution and connectivity of these confined geometries collectively dictate how fluids migrate into and through these micro- and nanoenvironments, wet and react with mineral surfaces. (Ultra)small-angle neutron scattering and autocorrelations derived from SEM/BSE imaging provide a method of quantifying pore structures in a statistically significant manner from the nanometer to the centimeter scale. Data from this approach suggests that there are significant primary and evolutionary differences between the multiscale pore structures of carbonate and clastic rocks. Our work on the St. Peter sandstone shows total porosity correlates with changes in pores structure including pore size ratios, surface fractal dimensions, and lacunarity. There is no evidence of mass-fractal scattering and while previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, our data show both fractal and pseudo-fractals. Larger pores fill at a faster rate than small pores as overgrowths form, leading to an increase in the small/large pore ratio. Overall, therefore, the relative importance of fluid reactions in confined geometries is likely to increase with increased silcrete formation. The changes observed with overgrowth formation in sandstones contrast with available data for metamorphism of chemical sediments (limestones) in both the Marble Canyon contact aureole, TX (Anovitz et al., 2009), and the Hatrurim Fm. (the Mottled Zone), Israel. The unmetamorphosed limestones both show distinct multifractal scattering patterns at larger scales, and true

  6. Stratigraphy, geochronology, geochemistry and tectonic setting of the Mesozoic Nazas Formation, north-central Mexico

    Science.gov (United States)

    Bartolini, Claudio

    Late Triassic to Middle Jurassic volcanic-sedimentary sequences that were part of the Mesozoic continental-margin of western North America are exposed in northern and central Mexico. These sequences have been grouped into the Nazas Formation and crop out in the states of Durango, Coahuila, Zacatecas, and San Luis Potosi. The Nazas Formation consists of 2,500 m or more of volcanic and pyroclastic rocks and interbedded clastic sedimentary rocks that were deposited in alluvial fan and fluvial depositional systems that developed in intra-arc basins, mainly fault-bound grabens and topographic depressions within an extending Mesozoic volcanic arc. Major and trace element geochemistry of volcanic rocks suggests that the volcanic suite is calc-alkaline and includes rhyolite, dacite, rhyodacite, andesite, trachyandesite and rare basalt. Pyroclastic rocks are basically air-fall tuffs and volcanic breccias. The sedimentary strata include conglomerate, sandstone, shale, and siltstone, locally red in color. Geochronology (Ar-Ar, K-Ar and Rb-Sr) and field evidence indicate that the age of the Nazas Formation ranges from Late Triassic to Middle Jurassic, but the peak of arc volcanism appears to be Early and Middle Jurassic. The Mesozoic magmatic arc in Mexico has a northwest trend and extends from Sonora to Chiapas. The arc structure is more than 2,000 km long, and possibly up to 150 km wide. The width of the arc is uncertain due to the limited number of surface outcrops, however, it did not extend east into the Gulf of Mexico. Arc-related magmatism began in latest Triassic time, but the peak of arc evolution occurred during the Early and Middle Jurassic. By Oxfordian time, the arc was deeply dissected and eroded, and magmatic activity had ceased. A marine transgression from the Gulf of Mexico covered most of the Nazas arc, depositing the initial sediments of the Oxfordian Zuloaga Limestone in the Mexican Geosyncline. Jurassic crustal extension in the Gulf of Mexico was

  7. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    OpenAIRE

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exc...

  8. Geological evolution of the center-southern portion of the Guyana shield based on the geochemical, geochronological and isotopic studies of paleoproterozoic granitoids from southeastern Roraima, Brazil

    International Nuclear Information System (INIS)

    Almeida, Marcelo Esteves

    2006-01-01

    This study focuses the granitoids of center-southern portion of Guyana Shield, southeastern Roraima, Brazil. The region is characterized by two tectonic-stratigraphic domains, named as Central Guyana (GCD) and Uatuma-Anaua (UAD) and located probably in the limits of geochronological provinces (e.g. Ventuari-Tapajos or Tapajos-Parima, Central Amazonian and Maroni-Itacaiunas or Transamazon). The aim this doctoral thesis is to provide new petrological and lithostratigraphic constraints on the granitoid rocks and contribute to a better understanding of the origin and geo dynamic evolution of Guyana Shield. The GCD is only locally studied near to the UAD boundary, and new geological data and two single zircon Pb-evaporation ages in mylonitic biotite granodiorite (1.89 Ga) and foliated hastingsite-biotite granite (1.72 Ga) are presented. These ages of the protholiths contrast with the lithostratigraphic picture in the other areas of Cd (1.96-1.93 Ga). Regional mapping, petrography, geochemistry and zircon geochronology carried out in the Urad have showed widespread Paleoproterozoic calc-alkaline granitic magmatism. These granitoid rocks are distributed into several magmatic associations with different Paleoproterozoic (1.97-1.89 Ga) ages, structural and geochemical affinities. Detailed mapping, petrographic and geochronological studies have distinguished two main sub domains in the UAD. In the northern UAD, the high-K calc-alkaline Martins Pereira (1.97 Ga) and Serra Dourada S-type granites (1.96 Ga) are affected by NE-SW and E-W ductile dextral shear-zones, showing coexistence of magmatic and deformational fabrics related to heterogeneous deformation. Inliers of basement (2.03 Ga) crop out northeast of this area, and are formed by meta volcano-sedimentary sequence (Cauarane Group) and TTG-like calc-alkaline association (Anaua Complex). Xenoliths of meta diorites (Anaua Complex) and para gneisses (Cauarane Group) reinforce the intrusive character of Martins Pereira

  9. A petrological study of Paleoarchean rocks of the Onverwacht Group: New insights into the geologic evolution of the Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Grosch, E. G.; Mcloughlin, N.; Abu-Alam, T. S.; Vidal, O.

    2012-12-01

    This study presents a multi-disciplinary petrological approach applied to surface samples and a total of 800 m of scientific drill core that furthers our understanding of the geologic evolution of the ca. 3.5 to 3.2 Ga Onverwacht Group of the Barberton greenstone belt (BGB), South Africa. Detrital zircon grains in coarse (diamictite) to fine-grained clastic sedimentary rocks of the Noisy formation (drill core KD2a) that unconformably overlies the volcanic ca. 3472 Ma Hooggenoeg Formation, are investigated by laser ablation LA-ICP-MS to constrain their 207Pb/206Pb ages for depositional age and provenance. A wide range in 207Pb/206Pb ages between ca. 3600 and 3430 Ma is reported, corresponding to surrounding TTG plutons and the ca.3667-3223 Ma Ancient Gneiss Complex. The youngest detrital zircon grain identified has an age of 3432 ± 10 Ma. Given the short time interval for a major change in geologic environment between ca. 3472 Ma and ca. 3432 Ma, it is argued here, that the Noisy formation is the earliest tectonic basin in the BGB, which developed during major tectonic uplift at ca. 3432 Ma. In the overlying ca. 3334 Ma Kromberg type-section, application of a chlorite thermodynamic multi-equilibrium calculation, dioctahedral mica hydration-temperature curve and pseudosection modelling, indicates a wide range in metamorphic conditions from sub-greenschist to the uppermost greenschist facies across the Kromberg type-section. A central mylonitic fuchsite-bearing zone, referred to as the Kromberg Section Mylonites, records at least two metamorphic events: a high-T, low-P (420 ± 30oC, BGB and is used to test current models of mid-Archean biogeochemical sulfur cycling. In-situ δ34SCDT and Δ33S values of volcanic, detrital, diagenetic and hydrothermal pyrite of the Kromberg and Noisy Formations are presented. The Kromberg cherts and mafic-ultramafic hydrothermal vein pyrites exhibit Δ33S of -0.20 to +2.50‰, and δ34SCDT from -6.00 to +1.50‰ recording mixing

  10. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  11. Functional morphometric analysis of the furcula in mesozoic birds.

    Directory of Open Access Journals (Sweden)

    Roger A Close

    Full Text Available The furcula displays enormous morphological and structural diversity. Acting as an important origin for flight muscles involved in the downstroke, the form of this element has been shown to vary with flight mode. This study seeks to clarify the strength of this form-function relationship through the use of eigenshape morphometric analysis coupled with recently developed phylogenetic comparative methods (PCMs, including phylogenetic Flexible Discriminant Analysis (pFDA. Additionally, the morphospace derived from the furculae of extant birds is used to shed light on possible flight adaptations of Mesozoic fossil taxa. While broad conclusions of earlier work are supported (U-shaped furculae are associated with soaring, strong anteroposterior curvature with wing-propelled diving, correlations between form and function do not appear to be so clear-cut, likely due to the significantly larger dataset and wider spectrum of flight modes sampled here. Interclavicular angle is an even more powerful discriminator of flight mode than curvature, and is positively correlated with body size. With the exception of the close relatives of modern birds, the ornithuromorphs, Mesozoic taxa tend to occupy unique regions of morphospace, and thus may have either evolved unfamiliar flight styles or have arrived at similar styles through divergent musculoskeletal configurations.

  12. Geological evolution of the Boset-Bericha Volcanic Complex, Main Ethiopian Rift: 40Ar/39Ar evidence for episodic Pleistocene to Holocene volcanism

    Science.gov (United States)

    Siegburg, Melanie; Gernon, Thomas M.; Bull, Jonathan M.; Keir, Derek; Barfod, Dan N.; Taylor, Rex N.; Abebe, Bekele; Ayele, Atalay

    2018-02-01

    The Boset-Bericha Volcanic Complex (BBVC) is one of the largest stratovolcanoes of the northern Main Ethiopian Rift (MER). However, very little is known about its eruptive history, despite the fact that approximately 4 million people live within 100 km of the complex. Here, we combine field observations, morphometric analysis using high-resolution LiDAR data, geochemistry and 40Ar/39Ar geochronology to report the first detailed account of the geological evolution of the BBVC, with a focus on extensive young lava flows covering the two edifices, Gudda and Bericha. These lavas exhibit a bimodal composition ranging dominantly from basaltic rift floor lavas and scoria cones, to pantelleritic trachytes and rhyolite flows at Gudda, and comenditic rhyolites at Bericha. Further, several intermediate compositions are associated with fissure vents along the Boset-Kone segment that also appear to link the silicic centres. We divide the BBVC broadly into four main eruptive stages, comprising: (1) early rift floor emplacement, (2) formation of Gudda Volcano within two main cycles, separated by caldera formation, (3) formation of the Bericha Volcano, and (4) sporadic fissure eruptions. Our new 40Ar/39Ar geochronology, targeting a representative array of these flows, provides evidence for episodic activity at the BBVC from 120 ka to the present-day. We find that low-volume mafic episodes are more frequent ( 10 ka cyclicity) than felsic episodes ( 100 ka cyclicity), but the latter are more voluminous. Over the last 30 ka, mafic to intermediate fissure activity might have reinvigorated felsic activity (over the last 16 ka), manifested as peralkaline lava flows and pyroclastic deposits at Gudda and Bericha. Felsic episodes have on average a higher eruption rate (2-5/1000 years) and productivity at Gudda compared to Bericha (1-2/1000 years). The young age of lavas and current fumarolic activity along the fault system, suggest that the BBVC is still potentially active. Coincident

  13. Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution.

    Science.gov (United States)

    Baumiller, Tomasz K; Salamon, Mariusz A; Gorzelak, Przemyslaw; Mooi, Rich; Messing, Charles G; Gahn, Forest J

    2010-03-30

    It has been argued that increases in predation over geological time should result in increases in defensive adaptations in prey taxa. Recent in situ and laboratory observations indicate that cidaroid sea urchins feed on live stalked crinoids, leaving distinct bite marks on their skeletal elements. Similar bite marks on fossil crinoids from Poland strongly suggest that these animals have been subject to echinoid predation since the Triassic. Following their near-demise during the end-Permian extinction, crinoids underwent a major evolutionary radiation during the Middle-Late Triassic that produced distinct morphological and behavioral novelties, particularly motile taxa that contrasted strongly with the predominantly sessile Paleozoic crinoid faunas. We suggest that the appearance and subsequent evolutionary success of motile crinoids were related to benthic predation by post-Paleozoic echinoids with their stronger and more active feeding apparatus and that, in the case of crinoids, the predation-driven Mesozoic marine revolution started earlier than in other groups, perhaps soon after the end-Permian extinction.

  14. Geological fakes and frauds

    Science.gov (United States)

    Ruffell, Alastair; Majury, Niall; Brooks, William E.

    2012-02-01

    Some geological fakes and frauds are carried out solely for financial gain (mining fraud), whereas others maybe have increasing aesthetic appeal (faked fossils) or academic advancement (fabricated data) as their motive. All types of geological fake or fraud can be ingenious and sophisticated, as demonstrated in this article. Fake gems, faked fossils and mining fraud are common examples where monetary profit is to blame: nonetheless these may impact both scientific theory and the reputation of geologists and Earth scientists. The substitution or fabrication of both physical and intellectual data also occurs for no direct financial gain, such as career advancement or establishment of belief (e.g. evolution vs. creationism). Knowledge of such fakes and frauds may assist in spotting undetected geological crimes: application of geoforensic techniques helps the scientific community to detect such activity, which ultimately undermines scientific integrity.

  15. Nova Scotia offshore to Grand Banks connection : Mesozoic basins on a transform margin

    Energy Technology Data Exchange (ETDEWEB)

    Conway, L.E.; Martin, M.R.; Enachescu, M.E.; Atkinson, I.; Stead, J.E. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). Dept. of Earth Sciences and Pan-Atlantic Petroleum Systems Consortium

    2005-07-01

    The renewed interest in the southern Grand Banks has resulted in new active exploration licenses, seismic acquisition programs and planned drilling in the South Whale and Laurentian basins. The basins are located northeast of the Scotian margin, about 200 km south of the east coast of Newfoundland, in shallow to intermediate waters in an area free of icebergs. The Scotian and Newfoundland offshore areas are separated by the St. Lawrence Tertiary channel. A provincial boundary divides the jurisdiction over sea resources. The long political moratorium which had been imposed on the Laurentian Basin was resolved during the summer of 2003 with the establishment of the provincial boundary. Some regional geological maps of the East Coast Mesozoic sedimentary area indicate continuity between the Orpheus Graben and northern Scotian Shelf and Slope basins (Nova Scotia) and Laurentian and South Whale basins (Newfoundland). In contrast, other maps represents them as being separated by faults or ridges that affect the basin development and complicate the tectono-structural framework initiated in Late Triassic-Early Jurassic periods. Argo salt features found in seismic sections on both sides of the provincial boundary indicate that Atlantic Canada basins were interconnected during the marine phase of the Thethys rifting stage, most likely up to the time of Scotian Shelf break-up. During the Late Jurassic, marine, oil prone source rocks were deposited in the Grand Banks basins and terrestrial to marine, gas prone source rocks were deposited offshore Nova Scotia. Modern industry 2D data donated by GSI and WesternGeco were used to examine the structural and stratigraphic framework of the basins. Common geological and geomorphologic features were emphasized along with the disparity between the structural element, stratigraphy and quality of petroleum systems of the two basins.

  16. Stratigraphy and geologic history of Mercury

    International Nuclear Information System (INIS)

    Spudis, P.D.; Guest, J.E.

    1988-01-01

    The geologic evolution of Mercury based on the Mariner-10 mission data is discussed. As reconstructed through photogeological analysis of global geologic relations of rock-stratigraphic units, Mercury's geologic history is shown to involve intensive early impact bombardment and widespread resurfacing by volcanic lavas. Evidence is presented to indicate that this volcanic activity essentially ended as much as 3 Gyr ago, with most of the major geologic events being completed within the first 1 to 1.5 Gyr of Mercurian history

  17. Global silica cycle paced by astronomical cycles recorded in the Mesozoic bedded chert: Implications for early Mesozoic extinctions

    Science.gov (United States)

    Ikeda, M.; Ozaki, K.; Tada, R.

    2016-12-01

    The early Mesozoic was a period of severe crisis for the world's biota and biogeochemical cycles with Permian-Triassic, Triassic-Jurassic, and Pliensbachian-Toarcian (Early Jurassic) extinctions. Here, we present an 70-Myr-long record of high-resolution biogenic silica (BSi) burial flux in the early Mesozoic deep-sea bedded chert in Japan, which record astronomical cycles of tens of thousands- to multimillion-year periodicity as the rhythmical bedding. The estimated global Bio-Si burial flux is 140% (40-500%) of that in the modern global ocean, assuming the records are representative of low-middle latitude superocean Panthalassa. This suggests that bedded chert was a major sink for dissolved silica (DSi) in the ocean, and that the BSi burial flux was proportional to the DSi input from chemical weathering over timescales longer than the oceanic residence time of DSi (periods would be explained by the increased volcanic degassing flux and enhanced organic carbon burial due to increased nutrient supply by enhanced silicate weathering, which would result in coupling of the silicate weathering and organic carbon burial. We propose the BSi burial flux reconstructed from bedded chert can be used as a semi-quantitative measure of the global chemical weathering intensity to understand the impact of volcanism on biogeochemical cycle dynamics during the mass extinction events.

  18. Problems of Tectonics and Tectonic Evolution of the Arctic

    Science.gov (United States)

    Vernikovskiy, V. A.; Metelkin, D. V.; Matushkin, N. Y.; Vernikovskaya, A. E.; Chernova, A. I.; Mikhaltsov, N. E.

    2017-12-01

    The Arctic Ocean within Russia remains poorly investigated area, in particular to geological structures and the Arctic Ocean floor. Many researchers believe that the basements of the terranes, composing the Arctic shelf and continental slopes, are of the Precambrian age. It was assumed that the Arctic terranes formed the ancient paleocontinent of Arctida that broke up during rifting, whereas the separated plates and terranes accreted to the periphery of the Arctic Ocean at a later stage. However, geological, geochronological and paleomagnetic evidence to test this assumption has been insufficient. Recently, geological and geophysical studies have significantly increased, in particular to the structures of Eastern Arctic. For example, the New Siberian Islands Archipelago is one of key structures for understanding geology and evolution of the Arctic region. Additionally, several submerged structures containing fragments of continental crust, including the Lomonosov Ridge and the Mendeleev Rise, are identified within the Arctic Ocean and adjacent to the New Siberian Islands Archipelago. Here we present new geochronological and paleomagnetic data to refine the evolution of the Arctida paleocontinent. Our model implies existence of the two Arctidas during Late Precambrian - Late Paleozoic. The earlier Arctida-I was located near equator and connected with the continental margins of Laurentia, Baltica and Siberia within the supercontinent of Rodinia. The initiation of Arctida-I rifting is associated with breakup of Rodinia. As a result, small plates, including Svalbard, Kara, New Siberia Island and other terranes, were formed. We have reconstructed the main stages of further remobilization and global drift of these plates before Pangea assemblage. We assume that the later Arctida-II was located at the Pangean periphery in the temperate latitudes, and was also connected to the Laurentia, Baltica, and Siberia cratons. The breakup of the Arctida-II is suggested to have

  19. Rivers through geological time : the fluvial contribution to understanding of our planet.

    OpenAIRE

    Bridgland, D.R.; Bennett, J.A.; McVicar-Wright, S.E.; Scrivener, R.C.

    2014-01-01

    Fluvial rocks and sediments form an important part of the geological record from the terrestrial environment, from the Archaean to the recent. Precambrian fluvial archives record the change in Earth's atmosphere from anoxic to oxygen-rich, while the absence of land plants led to significant differences between Precambrian and Palaeozoic fluvial regimes and those from later in the geological record. In the Mesozoic and Cenozoic river valleys were populated by land animals and their deposits ar...

  20. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles.

    Science.gov (United States)

    Benson, Roger B J; Frigot, Rachel A; Goswami, Anjali; Andres, Brian; Butler, Richard J

    2014-04-02

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope's rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope's rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird-pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales.

  1. Mesozoic fossils (>145 Mya) suggest the antiquity of the subgenera of Daphnia and their coevolution with chaoborid predators.

    Science.gov (United States)

    Kotov, Alexey A; Taylor, Derek J

    2011-05-19

    The timescale of the origins of Daphnia O. F. Mueller (Crustacea: Cladocera) remains controversial. The origin of the two main subgenera has been associated with the breakup of the supercontinent Pangaea. This vicariance hypothesis is supported by reciprocal monophyly, present day associations with the former Gondwanaland and Laurasia regions, and mitochondrial DNA divergence estimates. However, previous multilocus nuclear DNA sequence divergence estimates at fossils from a Mesozoic Mongolian site, in hopes of gaining insights into the timescale of the evolution of Daphnia. We describe new fossils of ephippia from the Khotont site in Mongolia associated with the Jurassic-Cretaceous boundary (about 145 MYA) that are morphologically similar to several modern genera of the family Daphniidae, including the two major subgenera of Daphnia, i.e., Daphnia s. str. and Ctenodaphnia. The daphniid fossils co-occurred with fossils of the predaceous phantom midge (Chaoboridae). Our findings indicate that the main subgenera of Daphnia are likely much older than previously known from fossils (at least 100 MY older) or from nuclear DNA estimates of divergence. The results showing co-occurrence of the main subgenera far from the presumed Laurasia/Gondwanaland dispersal barrier shortly after formation suggests that vicariance from the breakup of Pangaea is an unlikely explanation for the origin of the main subgenera. The fossil impressions also reveal that the coevolution of a dipteran predator (Chaoboridae) with the subgenus Daphnia is much older than previously known -- since the Mesozoic.

  2. Studying the Body Sizes of Echinoidea during the Mesozoic Era

    Science.gov (United States)

    Tenorio, E.; Gupta, A.; Panneerselvam, S.; Heim, N. A.; Payne, J.

    2013-12-01

    Body size is an important trait that is affected by many factors such as temperature and space, more specifically the distance from the equator. We are studying whether Bergmann's rule or Cope's rule is dominant in the class Echinoidea during the Mesozoic Era. Bergmann's rule states that temperature and body size have an inverse correlation: as temperature decreases, body size increases. Bergmann's rule also states that as the distance from the equator increases, body size increases. The other principle we are studying, Cope's rule, dictates that the overall body size of an organism increases over time. Because CO2 is a greenhouse gas, we used rCO2 as a proxy for paleotemperature. The result from plotting body size against time was that as time progressed, body size tended to increase, supporting Cope's rule. By conducting correlation tests, we found that rCO2 and maximum area had a small, but significant, negative correlation, proving Bergmann's rule, but showing that there are other significant factors affecting the body sizes of Echinoids during this time period. After plotting the sizes against space, we found that these two factors had an inverse correlation during the Jurassic and Cretaceous periods, indicating that as distance from equator increases, size decreases. Cope's rule was supported since the overall trend is an increase in Echinoidea body size; in terms of space, however, Bergmann's rule did not apply to the class Echinoidea because the overall body size of the echinoderm decreased as the distance from equator increased. With this unexpected result, we concluded that there must have been another driving force other than temperature that influenced echinoids during the Mesozoic Era.

  3. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic mapping of Mercury and the Moon. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The geologic framework of the intercrater plains on Mercury and the Moon as determined through geologic mapping is presented. The strategies used in such mapping are discussed first. Then, because the degree of crater degradation is applied to both mapping and crater statistics, the correlation of degradation classification of lunar and Mercurian craters is thoroughly addressed. Different imaging systems can potentially affect this classification, and are therefore also discussed. The techniques used in mapping Mercury are discussed in Section 2, followed by presentation of the Geologic Map of Mercury in Section 3. Material units, structures, and relevant albedo and color data are discussed therein. Preliminary conclusions regarding plains' origins are given there. The last section presents the mapping analyses of the lunar intercrater plains, including tentative conclusions of their origin.

  4. Destination: Geology?

    Science.gov (United States)

    Price, Louise

    2016-04-01

    "While we teach, we learn" (Roman philosopher Seneca) One of the most beneficial ways to remember a theory or concept is to explain it to someone else. The offer of fieldwork and visits to exciting destinations is arguably the easiest way to spark a students' interest in any subject. Geology at A-Level (age 16-18) in the United Kingdom incorporates significant elements of field studies into the curriculum with many students choosing the subject on this basis and it being a key factor in consolidating student knowledge and understanding. Geology maintains a healthy annual enrollment with interest in the subject increasing in recent years. However, it is important for educators not to loose sight of the importance of recruitment and retention of students. Recent flexibility in the subject content of the UK curriculum in secondary schools has provided an opportunity to teach the basic principles of the subject to our younger students and fieldwork provides a valuable opportunity to engage with these students in the promotion of the subject. Promotion of the subject is typically devolved to senior students at Hessle High School and Sixth Form College, drawing on their personal experiences to engage younger students. Prospective students are excited to learn from a guest speaker, so why not use our most senior students to engage and promote the subject rather than their normal subject teacher? A-Level geology students embarking on fieldwork abroad, understand their additional responsibility to promote the subject and share their understanding of the field visit. They will typically produce a series of lessons and activities for younger students using their newly acquired knowledge. Senior students also present to whole year groups in seminars, sharing knowledge of the location's geology and raising awareness of the exciting destinations offered by geology. Geology fieldwork is always planned, organised and led by the member of staff to keep costs low, with recent visits

  5. The Formation and Evolution of Tessera and Insights into the Beginning of Recorded History on Venus: Geology of the Fortuna Tessera Quadrangle (V-2)

    Science.gov (United States)

    Head, J. W.; Ivanov, M. A.

    2010-01-01

    Today, and throughout its recorded history, Venus can be classified as a "one-plate planet." The observable geological record of the planet comprises only the last 1/4 or less of its overall geologic history. As shown by many authors, it started with intensive deformation in broad regions to form tessera [1-6] during the Fortunian period of history [7]. The period of tessera formation quickly changed to numerous zonal deformational belts of ridges and grooves that were followed by emplacement of vast volcanic plains (shield plains, regional plains) [7,8]. During the final epoch of the geologic history of Venus, large but isolated centers of volcanism formed extensive fields of lavas, with tectonics concentrated within fewer very prominent rift zones [8,9]. The observable changes in intensity and character of volcanism and tectonics suggest progressive changes from thin lithosphere early in the geologic history to thick lithosphere during later epochs [6,10]. We have little idea of the character of the first 3/4 of Venus' history. So, what does the earliest period of recorded history tell us about the transition from the Pre-Fortunian to the Fortunian period and what insight does this give us into this earlier period?

  6. Multiple Mesozoic mineralization events in South China—an introduction to the thematic issue

    Science.gov (United States)

    Hu, Rui-Zhong; Zhou, Mei-Fu

    2012-08-01

    Mesozoic mineral deposits in South China include world-class deposits of W, Sn and Sb and those that provide the major sources of Ta, Cu, Hg, As, Tl, Pb, Zn, Au and Ag for the entire country. These deposits can be classified into polymetallic hydrothermal systems closely related to felsic intrusive rocks (Sn-W -Mo granites, Cu porphyries, polymetallic and Fe skarns, and polymetallic vein deposits) and low-temperature hydrothermal systems with no direct connection to igneous activities (MVT deposits, epithermal Au and Sb deposits). Recent studies have shown that they formed in the Triassic (Indosinian), Jurassic-Cretaceous (Early Yanshanian), and Cretaceous (Late Yanshanian) stages. Indosinian deposits include major MVT (Pb-Zn-Ag) deposits and granite-related W-Sn deposits. Early Yanshanian deposits are low-temperature Sb-Au and high-temperature W-Sn and Cu porphyry types. Many Late Yanshanian deposits are low-temperature Au-As-Sb-Hg and U deposits, and also include high-temperature W-Sn polymetallic deposits. The formation of these deposits is linked with a specific tectonothermal evolution and igneous activities. This special issue brings together some of the latest information in eight papers that deal with the origins and tectonic environments of mineral deposits formed in these stages. We anticipate that this issue will stimulate more interests in these ore deposits in South China.

  7. A state geological survey commitment to environmental geology - the Texas Bureau of Economic Geology

    International Nuclear Information System (INIS)

    Wermund, E.G.

    1990-01-01

    In several Texas environmental laws, the Bureau of Economic Geology is designated as a planning participant and review agency in the process of fulfilling environmental laws. Two examples are legislation on reclamation of surface mines and regulation of processing low level radioactive wastes. Also, the Bureau is the principal geological reviewer of all Environmental Assessments and Environmental Impact Statements which the Office of the Governor circulates for state review on all major developmental activities in Texas. The BEG continues its strong interest in environmental geology. In February 1988, it recommitted its Land Resources Laboratory, initiated in 1974, toward fulfilling needs of state, county, and city governments for consultation and research on environmental geologic problems. An editorial from another state geological survey would resemble the about description of texas work in environmental geology. State geological surveys have led federal agencies into many developments of environmental geology, complemented federal efforts in their evolution, and continued a strong commitment to the maintenance of a quality environment through innovative geologic studies

  8. Assessment of undiscovered oil and gas resources of the East Coast Mesozoic basins of the Piedmont, Blue Ridge Thrust Belt, Atlantic Coastal Plain, and New England Provinces, 2011

    Science.gov (United States)

    Milici, Robert C.; Coleman, James L.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2012-01-01

    During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.

  9. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    Science.gov (United States)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  10. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  11. Timing of Exhumation of the Mesozoic Blue Nile Rift, Ethiopia: A New Study from Apatite Fission Track Thermochronology

    Science.gov (United States)

    Gani, N. D.; Bowden, S. M.

    2017-12-01

    At present, tectonic features of Ethiopia are dominated by the 2.5 km high Ethiopian Plateau, and the NE-SW striking continental rift, the East African Rift System (EARS) that dissected the plateau into the northwest and southeast plateaus. The stress direction of the EARS is nearly perpendicular to the stress direction of the Mesozoic rifts of the Central African Rift System (CARS), located mostly in Sudan, Ethiopia and Kenya. During the Gondwana splitting in Mesozoic, active lithospheric extension within the CARS resulted in several NW-SE striking continental rifts including the Blue Nile, Muglad, Melut and Anza that are well documented in Sudan and Kenya, from a combination of geophysical and drill core analysis and field investigations. However, the timing and evolution of the poorly documented Blue Nile Rift in Ethiopia, now hidden in the subsurface of the Ethiopian Plateau and the EARS, is largely unknown. This study investigates, for the first time, the timing of tectono-thermal evolution of the Blue Nile Rift from cooling ages deduced from apatite fission track (AFT) thermochronology to understand the rift flank exhumation. Here, we report the AFT results from basement samples collected in a vertical transect from the Ethiopian Plateau. The fission track ages of the samples show a general trend of increasing cooling ages with elevations. The time-temperature simulations of the fission track ages illustrate that the cooling started at least 80 Ma ago with a significant amount of rapid cooling between 80 and 70 Ma, followed by a slow cooling after 70 Ma and then another accelerated cooling starting around 10 Ma. The Cretaceous rapid cooling event likely related to the flank uplift of the Blue Nile Rift and associated faulting, during which much of the exhumation occurred. Today, the Blue Nile Rift is buried under the thick cover of Mesozoic sedimentary rocks and Cenozoic volcanics. The late Neogene rapid cooling agrees well with our previous thermal model

  12. Current perspectives on the evolution of birds

    NARCIS (Netherlands)

    Ericson, P.G.P.

    2008-01-01

    The paper summarizes the current understanding of the evolution and diversification of birds. New insights into this field have mainly come from two fundamentally different, but complementary sources of information: the many newly discovered Mesozoic bird fossils and the wealth of genetic analyses

  13. Latitudinal diversity gradients in Mesozoic non-marine turtles

    Science.gov (United States)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  14. The Mesozoic Tectonic Dynamics and Chronology in the Eastern North China Block

    Directory of Open Access Journals (Sweden)

    Quanlin Hou

    2012-01-01

    Full Text Available Mesozoic tectonic events in different areas of the eastern North China Block (NCB show consistency in tectonic time and genesis. The Triassic collision between NCB and Yangtze results in the nearly S-N strong compression in the Dabie, Jiaodong, and west Shandong areas in Middle Triassic-Middle Jurassic. Compression in the Yanshan area in the north part of NCB was mainly affected by the collision between Mongolia Block and NCB, as well as Siberia Block and North China-Mongolia Block in Late Triassic-Late Jurassic. However, in the eastern NCB, compressive tectonic system in Early Mesozoic was inversed into extensional tectonic system in Late Mesozoic. The extension in Late Mesozoic at upper crust mainly exhibits as extensional detachment faults and metamorphic core complex (MCC. The deformation age of extensional detachment faults is peaking at 120–110 Ma in Yanshan area and at 130–110 Ma in the Dabie area. In the Jiaodong area eastern to the Tan-Lu faults, the compression thrust had been continuing to Late Mesozoic at least in upper crust related to the sinistral strike slipping of the Tan-Lu fault zone.The extensional detachments in the eastern NCB would be caused by strong crust-mantle action with upwelling mantle in Late Mesozoic.

  15. Geology Fulbrights

    Science.gov (United States)

    Fulbright grants in geology for 1988-89 remain open. Specific opportunities are available in Egypt, German Democratic Republic, Hungary, Iceland, Iraq, Kuwait, Morocco, Mozambique, Oman, Poland, Sudan, Syria, Tanzania, Turkey, U.S.S.R., West Bank, Yemen, and Zimbabwe. Other countries are also open to applications in any discipline, and geology is among their preferred fields.The grants are available until awarded and are open only to U.S. citizens. In Central and South America and French-speaking Africa, knowledge of host-country language is required. For more information, contact the Council for International Exchange of Scholars (CIES), 11 Dupont Circle N.W., Suite 300, Washington, DC 20036; tel. 202-939-5401.

  16. Advances in planetary geology, volume 2

    International Nuclear Information System (INIS)

    1986-07-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons

  17. Mesozoic dinosaurs from Brazil and their biogeographic implications

    Directory of Open Access Journals (Sweden)

    Jonathas S. Bittencourt

    2011-03-01

    Full Text Available The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.O registro osteológico de dinossauros no Mesozóico brasileiro está restrito a rochas triássicas do Rio Grande do Sul e estratos cretáceos de várias partes do país. Isto inclui 21 espécies nominais, sendo duas referidas como nomina dubia, e 19 consensualmente classificadas como dinossauros. Oito táxons supraespecíficos adicionais baseados em material fragmentado e diversas pegadas são conhecidos no Brasil. De fato, a maior parte dos espécimes é composta de dentes isolados e vértebras. Apesar do aumento em trabalhos de campo na última

  18. High-heat geodynamic setting during the Palaeozoic evolution of the Mount Painter Province, SA, Australia: evidence from combined field structural geology and potential-field inversions

    Science.gov (United States)

    Armit, R. J.; Ailleres, L.; Betts, P. G.; Schaefer, B. F.; Blaikie, T. N.

    2014-10-01

    A method for subsurface recognition of blind geological bodies is presented using combined surface constraints and 3-D structural modelling that incorporates constraints from detailed mapping, and potential-field inversion modelling. This method is applied to the Mount Painter Province and demonstrates that addition of low density material is required to reconcile the gravity signature of the region. This method may be an effective way to construct 3-D models in regions of excellent structural control, and can be used to assess the validity of surface structures with 3-D architecture. Combined geological and potential-field constrained inversion modelling of the Mount Painter Province was conducted to assess the validity of the geological models of the region. Magnetic susceptibility constrained stochastic property inversions indicates that the northeast to southwest structural trend of the relatively magnetic meta-sedimentary rocks of the Radium Creek Group in the Mount Painter Inlier is reconcilable with the similar, northeast to southwest trending positive magnetic anomalies in the region. Radium Creek Group packages are the major contributor of the total magnetic response of the region. However field mapping and the results of initial density constrained stochastic property inversion modelling do not correlate with a large residual negative gravity anomaly central to the region. Further density constrained inversion modelling indicates that an additional large body of relatively low density material is needed within the model space to account for this negative density anomaly. Through sensitivity analysis of multiple geometrical and varied potential-field property inversions, the best-fitting model records a reduction in gravity rms misfit from 21.9 to 1.69 mGal, representing a reduction from 56 to 4.5 per cent in respect to the total dynamic range of 37.5 mGal of the residual anomaly. This best-fitting model incorporates a volumetrically significant source

  19. The Geology of Callisto

    Science.gov (United States)

    Schenk, Paul M.

    1995-01-01

    The geology of Callisto is not boring. Although cratered terrain dominates Callisto (a key end-member of the Jovian satellite system), a number of more interesting features are apparent. Cratered terrain is broken into irregular map-able bright and dark subunits that vary in albedo by a factor of 2, and several relatively smooth units are depleted of small craters. Some of these areas may have been volcanically resurfaced. Lineaments, including parallel and radial sets, may be evidence for early global tectonism. Frost deposition occurs in cold traps, and impact scars have formed from tidally disrupted comets. Geologic evidence suggests that Callisto does have a chemically differentiated crust. Central pit and central dome craters and palimpsests are common. The preferred interpretation is that a relatively ice-rich material, at depths of 5 km or more, has been mobilized during impact and exposed as domes or palimpsests. The close similarity in crater morphologies and dimensions indicates that the outermost 10 km or so of Callisto may be as differentiated as on Ganymede. The geology of cratered terrain on Callisto is simpler than that of cratered terrain on Ganymede, however. Orbital evolution and tidal heating may provide the answer to the riddle of why Callisto and Ganymede are so different (Malhotra, 1991). We should expect a few surprises and begins to answer some fundamental questions when Callisto is observed by Galileo in late 1996.

  20. Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China

    Science.gov (United States)

    Zhao, Wen Winston; Zhou, Mei-Fu; Li, Yan Hei Martin; Zhao, Zheng; Gao, Jian-Feng

    2017-04-01

    South China hosts the most abundant and largest tungsten (W) deposits in the world, being a famous W metallogenic region. Located at the eastern part of the South China Block, which was formed by amalgamation of the Yangtze and Cathaysia Blocks during the Neoproterozoic, these W deposits were mainly formed during the Mesozoic. The W mineralization is dominanted by greisen, quartz-vein, skarn, and porphyry types, all of which are genetically related to the evolution of highly fractionated granitoids. Four episodes of W mineralization are recognized: (1) Late Triassic (230-210 Ma) in the central and western parts of South China; (2) Middle Jurassic (ca. 170 Ma) to Early Cretaceous (ca. 140 Ma) in the interior of South China, with the mineralization being concentrated in southern Jiangxi Province between 165 and 150 Ma; (3) Early Cretaceous (136-120 Ma) with deposits across South China; and (4) Late Cretaceous (100-80 Ma) mainly in the southwestern parts of South China. These four periods of mineralization are closely related to the closure of paleo-Tethys and subduction of the paleo-Pacific plate. In the Late Triassic, these two events caused local extensional environments, facilitating emplacement of the peraluminous granitoids, and formation of the W deposits. In the Middle Jurassic, break-off of the subducting oceanic plate resulted in emplacement of highly fractionated granites in the Nanling region. Later anticlockwise rotation of the paleo-Pacific plate created widespread S-type granitoids and associated Middle Jurassic to Early Cretaceous W mineralization in the interior of South China. Since 136 Ma, rollback of the subducting Pacific plate resulted in weak W mineralization across South China. Finally, a change of direction in the retreating plate from SE to ESE resulted in intensive mineralization of the southwestern part of South China.

  1. Evolution of the Petrophysical and Mineralogical Properties of Two Reservoir Rocks Under Thermodynamic Conditions Relevant for CO2 Geological Storage at 3 km Depth

    International Nuclear Information System (INIS)

    Rimmel, G.; Barlet-Gouedard, V.; Renard, F.

    2010-01-01

    Injection of carbon dioxide (CO 2 ) underground, for long-term geological storage purposes, is considered as an economically viable option to reduce greenhouse gas emissions in the atmosphere. The chemical interactions between supercritical CO 2 and the potential reservoir rock need to be thoroughly investigated under thermodynamic conditions relevant for geological storage. In the present study, 40 samples of Lavoux limestone and Adamswiller sandstone, both collected from reservoir rocks in the Paris basin, were experimentally exposed to CO 2 in laboratory autoclaves specially built to simulate CO 2 -storage-reservoir conditions. The two types of rock were exposed to wet supercritical CO 2 and CO 2 -saturated water for one month, at 28 MPa and 90 C, corresponding to conditions for a burial depth approximating 3 km. The changes in mineralogy and micro-texture of the samples were measured using X-ray diffraction analyses, Raman spectroscopy, scanning-electron microscopy, and energy-dispersion spectroscopy microanalysis. The petrophysical properties were monitored by measuring the weight, density, mechanical properties, permeability, global porosity, and local porosity gradients through the samples. Both rocks maintained their mechanical and mineralogical properties after CO 2 exposure despite an increase of porosity and permeability. Microscopic zones of calcite dissolution observed in the limestone are more likely to be responsible for such increase. In the sandstone, an alteration of the petro-fabric is assumed to have occurred due to clay minerals reacting with CO 2 . All samples of Lavoux limestone and Adamswiller sandstone showed a measurable alteration when immersed either in wet supercritical CO 2 or in CO 2 -saturated water. These batch experiments were performed using distilled water and thus simulate more severe conditions than using formation water (brine). (authors)

  2. Timing and implications for the late Mesozoic geodynamic settings ...

    Indian Academy of Sciences (India)

    Jie Li

    2017-11-23

    sedimentary evolution were established in the Lingshan ... stress field and geodynamic setting in the eastern. North China Craton (Li et al. 2015 ...... deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern ...

  3. Vesta: A Geological Overview

    Science.gov (United States)

    Jaumann, R.

    2012-04-01

    Observations from the Dawn spacecraft [1] enable the derivation of the asteroid 4Vesta's shape, facilitate mapping of the surface geology, and provide the first evidence for interpreting Vesta's geological evolution. Science data were acquired during the approach to Vesta, a circular polar (Survey) orbit at an altitude of 2700 km providing ~ 230 m/pix camera scale, and during a circular high-altitude mapping orbit (HAMO) at 700 km altitude with a camera scale of ~ 65 m/pixel. Currently Dawn is orbiting Vesta in a low-altitude mapping orbit (LAMO) at 210 km altitude, yielding a global image coverage of ~20 m/pixel at the time of EGU [2,3,4,5]. Geomorphology and distribution of surface features provide evidence for impact cratering, tectonic activity, and regolith and probable volcanic processes. Craters with dark rays, bright rays, and dark rim streaks have been observed, suggesting buried stratigraphy. The largest fresh craters retain a simple bowl-shaped morphology, with depth/diameter ratios roughly comparable to lunar values. The largest crater Rheasilvia, an ~500 km diameter depression at the south pole, includes an incomplete inward facing cuspate scarp and a large central mound surrounded by unusual complex arcuate ridge and groove patterns, and overlies an older ~400 km wide basin. A set of large equatorial troughs is related to these south polar structures. Vesta exhibits rugged topography ranging from -22 km to +19 km relative to a best fit ellipsoidal shape. Vesta's topography has a much greater range in elevation relative to its radius (15%) than do the Moon and Mars (1%) or the Earth (0.3%), but less than highly battered smaller asteroids like Lutetia (40%). This also identifies Vesta as a transitional body between asteroids and planets. The surface of Vesta exhibits very steep topographic slopes that are near the angle of repose. Impacts onto these steep surfaces, followed by slope failure, make resurfacing - due to impacts and their associated

  4. Geologic Seafloor Mapping Defines Extensive Paleochannel Network Offshore of the Delmarva Peninsula, U.S.A: Implications for Mid-Atlantic Bight Evolution since the Pliocene

    Science.gov (United States)

    Brothers, L. L.; Foster, D. S.; Pendleton, E. A.; Thieler, E. R.; Baldwin, W. E.; Sweeney, E. M.

    2017-12-01

    Nearly 10,000 km of geophysical data and seafloor grab samples along with photo and video data from more than 200 seafloor stations are used to interpret seafloor and shallow subsurface geology on the Delmarva Peninsula's inner continental shelf. These USGS data are supplemented with existing National Oceanic Atmospheric Administration hydrographic survey data and Bureau of Ocean Energy Management Wind Energy Area seismic reflection profile data to support one of the most data-rich and extensive inner continental shelf studies on the U.S. Atlantic coast. Using chirp, multi-channel boomer and sparker seismic reflection profile data, we map an extensive paleochannel network from 500 meters to 30 kilometers offshore of the modern Delmarva coastline. Fluvial erosional surfaces relating to six sea-level lowstands are identified at two-way travel times between 0.01 and 0.12 ms. Paleochannels exhibit up to 30 meters of relief and the discrete complexes can be >25 kilometers wide. Based on areal distribution, stratigraphic relationships and amino acid dating results from earlier borehole studies, we interpret the infilled channels as Late Tertiary and Quaternary courses of the Delaware, Susquehanna, Potomac and York Rivers. Our study generates a detailed illustration of major river systems' paleochannel frequency, distribution and geometry and provides new insight into how coastal river systems evolve in low-gradient passive margins.

  5. Proceedings of the 7. Symposium on geology from southeastern Brazil

    International Nuclear Information System (INIS)

    2001-01-01

    This document presents papers on the following subjects: regional geology of the proterozoic and fanerozoic, metallic and non metallic resources, tectoni-sedimentary evolution of the eastern margin Brazil basins and petroleum geology applied to the Santos, Campos and Espirito Santo basins, engineering and environmental geologies, ornamental rocks/building materials/mineral waters/industrial ores

  6. Mesozoic lithofacies palaeogeography and petroleum prospectivity in North Carnarvon Basin, Australia

    Directory of Open Access Journals (Sweden)

    Tao Chongzhi

    2013-01-01

    Full Text Available The North Carnarvon Basin, which lies in the North West Shelf of Australia, is highly rich in gas resources. As a typical passive marginal basin, it experienced the pre-rifting, early rifting, main rifting, late rifting, post-rifting sagging and passive margin stages. The basin was mainly filled with thick Mesozoic-Cenozoic sediments, of which the Mesozoic hosts the principal source, reservoir and seal intervals. Mesozoic palaeogeography has an important control on the oil and gas distribution. Triassic gas-prone source rocks of deltaic origin determine the high endowment of natural gases in the North Carnarvon Basin. The more restricted distribution of oil accumulations is controlled by oil source rocks in the Upper Jurassic Dingo Claystone. The Muderong Shale deposited in the Early Cretaceous marine transgression provides the effective regional seal for the underlying oil and gas reservoirs.

  7. Pre- versus post-mass extinction divergence of Mesozoic marine reptiles dictated by time-scale dependence of evolutionary rates.

    Science.gov (United States)

    Motani, Ryosuke; Jiang, Da-Yong; Tintori, Andrea; Ji, Cheng; Huang, Jian-Dong

    2017-05-17

    The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates. © 2017 The Author(s).

  8. Cenozoic Evolution of the Central Part of the Mexican Subduction Zone From Geologic and Geophysical Data - In the Eve of the Result From the "Mase" Experiment

    Science.gov (United States)

    Ferrari, L.

    2006-12-01

    The Meso America Subduction Experiments (MASE), carried out jointly by Caltech, UCLA and UNAM (Institute of Geophysics and Center for Geoscience) is about to provide a detailed image of the crust and upper mantle in the central part of the Mexican subduction zone (Acapulco, Gro. Huejutla, Hgo.). Preliminary results show that the Cocos plate between the coast and the volcanic front is horizontal and placed just beneath the upper plate Moho. Further north, beneath the Trans-Mexican Volcanic Belt (TMVB), seismicity is scarce or absent and the geometry of the subducted plate is poorly defined. This part of the TMVB also displays a large geochemical variability, including lavas with scarce to none evidence of fluids from the subducting plate (OIB in Sierra Chichinautzin) and lavas with slab melting signature (adakites of Nevado de Toluca and Apan area) that coexist with the more abundant products showing clear evidence of fluids from the subduting plate. These peculiarities led several workers to formulate models that depart from a classic subduction scenario for the genesis of the TMVB. These include the presence of a rootless mantle plume, the development of a continental rift, a more or less abrupt increase of the subduction angle and a detached slab. While waiting from the final results of the MASE project the data available from potential methods, thermal modeling and the geologic record of the TMVB provide some constraints to evaluate these models. Gravimetric and magnetotelluric data consistently indicate that beneath the TMVB the upper mantle has a relatively low density and high temperatures/conductivity. Thermal modeling also indicates a low viscosity and high temperature mantle beneath the arc. All the above seems to indicate that the slab must increase rapidly its dip beneath the volcanic front leaving space for a hot asthenospheric mantle. The fate of the slab further to the north is unclear from geophysical data alone. Global and regional tomographic

  9. Selective extinction of marine plankton at the end of the Mesozoic era: The fossil and stable isotope record

    Science.gov (United States)

    Herman, Y.; Bhattacharya, S. K.

    1988-01-01

    Floral, faunal and stable isotope evidence in a continuous sequence of latest Cretaceous and earliest Tertiary shallow water marine deposits in the Mangyshlak Peninsula, USSR suggest severe environmental changes at the Cretaceous/Tertiary (K/T) boundary. Time frame is provided by nanno, micro and macrofossils as well as by magnetic stratigraphy and an iridium spike. Oxygen isotopic analyses of the bulk sediments, composed of nanno and microplankton skeletal remains, show a sharp positive spike at the K/T boundary. This shift is primarily attributed to severe cooling possibly accompanied by increased salinities of the surface mixed layer. Floral and faunal extinctions were selective, affecting approximately 90 percent of the warm water calcareous phyto and zooplankton genera in the Tethyan-Paratethyan regions. These highly diverse taxa with many endemic representatives were at the peak of their evolutionary development. Geologic evidence indicates that the terminal Cretaceous temperature decline was coeval with widespread and intense volcanic activity which reached a peak at the close of the Mesozoic Era. Increased acidity temporarily prohibited calcite nucleation of the surface dwelling warm-water plankton. Superimposed upon decreased alkalinity, severe and rapid climatic changes caused the extinction of calcareous phyto and zooplankton.

  10. Old Geology and New Geology

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Mesozoic tectonomagmatic activity and uranium metallogenetic sequence in mid-Nanling tectonic belt

    International Nuclear Information System (INIS)

    Deng Ping; Shu Liangshu

    2002-01-01

    Based on the synthesis and analysis of the relationship of various Mesozoic intrusive massifs, the tectonic activity, and the hydrothermal veins, as well as data of isotopic geochronology, the author makes a time sequence of the tectonomagmatic activities, the hydrothermal activities and uranium mineralization, and summarizes characteristics of tectonomagmatic and hydrothermal activities of different stages, and discusses the time sequence of various ore-controlling factors for granite-type uranium metallogeny. Finally, authors conclude that uranium metallogeny shows a very close spatial and temporal relationship to Mesozoic tectonomagmatic and hydrothermal activities

  12. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  13. The potential impact of geological environment on health status of residents of the Slovak Republic.

    Science.gov (United States)

    Rapant, S; Cvečková, V; Dietzová, Z; Fajčíková, K; Hiller, E; Finkelman, R B; Škultétyová, S

    2014-06-01

    In order to assess the potential impact of the geological environment on the health of the population of the Slovak Republic, the geological environment was divided into eight major units: Paleozoic, Crystalline, Carbonatic Mesozoic and basal Paleogene, Carbonatic-silicate Mesozoic and Paleogene, Paleogene Flysch, Neovolcanics, Neogene and Quaternary sediments. Based on these geological units, the databases of environmental indicators (chemical elements/parameters in groundwater and soils) and health indicators (concerning health status and demographic development of the population) were compiled. The geological environment of the Neogene volcanics (andesites and basalts) has been clearly documented as having the least favourable impact on the health of Slovak population, while Paleogene Flysch geological environment (sandstones, shales, claystones) has the most favourable impact. The most significant differences between these two geological environments were observed, especially for the following health indicators: SMRI6364 (cerebral infarction and strokes) more than 70 %, SMRK (digestive system) 55 %, REI (circulatory system) and REE (endocrine and metabolic system) almost 40 % and REC (malignant neoplasms) more than 30 %. These results can likely be associated with deficit contents of Ca and Mg in groundwater from the Neogene volcanics that are only about half the level of Ca and Mg in groundwater of the Paleogene sediments.

  14. Geothermal Conditions and Mesozoic-Cainozoic Evolution of the Carpatho-Pannonian Region

    OpenAIRE

    Kutas, R. I.

    2017-01-01

    This paper presents new two-dimensional (2D) numerical geothermal models of the lithosphere and the results of their geodynamic analysis together with the crustal structure models along three deep seismic sounding profiles crossing the Western and Eastern Carpathians from the Pannonian basin to the Paleozoic West European and the Precambrian East European Platforms. The construction and interpretation of the geothermal 2D models are based on the numerical solution of both the steady state and...

  15. Geological Constraints on the Evolution of the Angolan Margin Based on Reflection and Refraction Seismic Data (ZaïAngo project)

    Science.gov (United States)

    Moulin, M.; Aslanian, D.; Olivet, J.; Contrucci, I.; Matias, L.; Geli, L.; Klingelhoefer, F.; Nouze, H.; Rabineau, M.; Labails, C.; Rehault, J.; Unternehr, P.

    2005-05-01

    Deep penetration multi-channel reflection and OBS wide-angle seismic data from the Congo-Angola margin were collected in 2000 during the ZaiAngo cruise (Ifremer and Total). These data help constrain the deep structure of the non-volcanic continental margin, the geometry of the pre-salt sediment layers and the geometry of the Aptian salt layer. Dating the deposition of the salt relative to the chronology of the margin formation is an issue of fundamental importance for reconstructing the evolution of the margin and for the understanding of the crustal thinning processes. The data show that the crust thins abruptly, from a 30 - 40km thickness to less than 10km, over a lateral distance of less than 50km. The transitional domain is a 180km wide basin with a thickness lower than 7 km. The pre-salt sediment layering within this basin is parallel to the base of the salt and hardly affected by tectonic deformation. In addition, the presence of a continuous salt cover, from the continental platform down to the presumed oceanic boundary, provides indications on the conditions of salt deposition that constrain the geometry of the margin at that time. These crucial observations imply shallow deposition environments during the rifting and suggest that vertical motions prevailed - compared to horizontal motions - during the formation of the basin.

  16. Geological constraints on the evolution of the Angolan margin based on reflection and refraction seismic data (ZaïAngo project)

    Science.gov (United States)

    Moulin, Maryline; Aslanian, Daniel; Olivet, Jean-Louis; Contrucci, Isabelle; Matias, Luis; Géli, Louis; Klingelhoefer, Frauke; Nouzé, Hervé; Réhault, Jean-Pierre; Unternehr, Patrick

    2005-09-01

    Deep penetration multichannel reflection and Ocean Bottom Seismometer wide-angle seismic data from the Congo-Angola margin were collected in 2000 during the ZaïAngo cruise. These data help constrain the deep structure of the continental margin, the geometry of the pre-salt sediment layers and the geometry of the Aptian salt layer. Dating the deposition of the salt relative to the chronology of the margin formation is an issue of fundamental importance for reconstructing the evolution of the margin and for the understanding of the crustal thinning processes. The data show that the crust thins abruptly, from a 30-40 km thickness to less than 10 km, over a lateral distance of less than 50 km. The transitional domain is a 180-km-wide basin. The pre-salt sediment layering within this basin is parallel to the base of the salt and hardly affected by tectonic deformation. In addition, the presence of a continuous salt cover, from the continental platform down to the presumed oceanic boundary, provides indications on the conditions of salt deposition that constrain the geometry of the margin at that time. These crucial observations imply shallow deposition environments during the rifting and suggest that vertical motions prevailed-compared to horizontal motions-during the formation of the basin.

  17. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Natural Resource Agency — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  18. California Geological Survey Geologic Map Index

    Data.gov (United States)

    California Department of Resources — All the individual maps from the Geologic Atlas of California and the Regional Geologic map series have been georeferenced for display in a GIS (and viewable online...

  19. Textural and mineralogical study of the San Gregorio de Polanco mesozoic basic dams

    International Nuclear Information System (INIS)

    Scaglia, S.; Muzio, R.; Masquelin, H.

    2010-01-01

    This work is about the preliminary results of petrographic study in Mesozoic basic dikes located around San Gregorio de Polanco (Tacuarembo department. Uruguay). The textural mineralogical study conducted by scanning electron microscopy confirms the presence of significant late hydrothermal activity which are represented by the conspicuous presence of interstitial barite mineralization level

  20. From mantle roots to surface eruptions: Cenozoic and Mesozoic continental basaltic magmatism

    Czech Academy of Sciences Publication Activity Database

    Kämpf, H.; Németh, K.; Puziewicz, J.; Mrlina, Jan; Geissler, W.H.

    2015-01-01

    Roč. 104, č. 8 (2015), s. 1909-1912 ISSN 1437-3254 Institutional support: RVO:67985530 Keywords : continental basaltic volcanism * BASALT 2013 conference * Cenozoic * Mesozoic Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.133, year: 2015

  1. Palaeozoic and Mesozoic igneous activity in the Netherlands: a tectonomagmatic review

    NARCIS (Netherlands)

    Sissingh, W.

    To date, igneous rocks, either intrusive or extrusive, have been encountered in the Palaeozoic-Mesozoic sedimentary series of the Netherlands in some 65 exploration and production wells. Following 17 new isotopic K/Ar age determinations of the recovered rock material (amounting to a total of 28

  2. Planetary Geologic Mapping Handbook - 2009

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A.; Hare, T. M.

    2009-01-01

    . Terrestrial geologic maps published by the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of project-specific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well (e.g., Hare and others, 2009). Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically (e.g., Wilhelms, 1972, 1990; Tanaka and others, 1994). As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program s Planetary Cartography and Geologic Mapping Working Group s (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  3. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    Science.gov (United States)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  4. Fission-track evidence of tectonic evolution in the northwestern ...

    Indian Academy of Sciences (India)

    8

    right Y-axis, which indicates the age of that grain. The right panels are the age component and. Gaussian curve histograms. Figure 4. Evolution of the Altyn Tagh strike-slip fault (modified after Liu et al. 2001) a.At the end of the Mesozoic era, the Tibetan plateau started to uplift alone with the collision between the Indian and ...

  5. Geological Structure and Radon Hazards in Lublin Region

    Directory of Open Access Journals (Sweden)

    Lucjan Gazda

    2018-03-01

    Full Text Available The purpose of the study was to show the relationship between the geological structure of the Lublin region (eastern Poland and radon concentrations in the ground air, and therefore, in the indoor environment of buildings located in that area. The study was based on the information pertaining to the geological structure of Lublin region available in the literature. The radon concentrations in buildings, caves, wells, as well as coal, phosphate and chalk mines were measured with both passive and active methods. Elemental analyses and uranium and lead isotope analyses of ground rocks were also performed. The conducted studies indicated that the sources of radon in Lublin region constitute Paleogene and Mesozoic sedimentary rocks rich in radionuclides. Application of radon remediation methods is recommended in the existing buildings located in the vicinity of these rocks, which are characterized by relatively high radon exhalations. On the other hand, the designed buildings should employ the measures protecting against harmful effects of radon presence.

  6. A new, exceptionally preserved juvenile specimen of Eusaurosphargis dalsassoi (Diapsida) and implications for Mesozoic marine diapsid phylogeny.

    Science.gov (United States)

    Scheyer, Torsten M; Neenan, James M; Bodogan, Timea; Furrer, Heinz; Obrist, Christian; Plamondon, Mathieu

    2017-06-30

    Recently it was suggested that the phylogenetic clustering of Mesozoic marine reptile lineages, such as thalattosaurs, the very successful fish-shaped ichthyosaurs and sauropterygians (including plesiosaurs), among others, in a so-called 'superclade' is an artefact linked to convergent evolution of morphological characters associated with a shared marine lifestyle. Accordingly, partial 'un-scoring' of the problematic phylogenetic characters was proposed. Here we report a new, exceptionally preserved and mostly articulated juvenile skeleton of the diapsid reptile, Eusaurosphargis dalsassoi, a species previously recovered within the marine reptile 'superclade', for which we now provide a revised diagnosis. Using micro-computed tomography, we show that besides having a deep skull with a short and broad rostrum, the most outstanding feature of the new specimen is extensive, complex body armour, mostly preserved in situ, along its vertebrae, ribs, and forelimbs, as well as a row of flat, keeled ventrolateral osteoderms associated with the gastralia. As a whole, the anatomical features support an essentially terrestrial lifestyle of the animal. A review of the proposed partial character 'un-scoring' using three published data matrices indicate that this approach is flawed and should be avoided, and that within the marine reptile 'superclade' E. dalsassoi potentially is the sister taxon of Sauropterygia.

  7. The Evolution and Extinction of the Dinosaurs

    Science.gov (United States)

    Fastovsky, David E.; Weishampel, David B.

    2005-02-01

    Written for non-specialists, this detailed survey of dinosaur origins, diversity, and extinction is designed as a series of successive essays covering important and timely topics in dinosaur paleobiology, such as "warm-bloodedness," birds as living dinosaurs, the new, non-flying feathered dinosaurs, dinosaur functional morphology, and cladistic methods in systematics. Its explicitly phylogenetic approach to the group is that taken by dinosaur specialists. The book is not an edited compilation of the works of many individuals, but a unique, cohesive perspective on Dinosauria. Lavishly illustrated with hundreds of new, specially commissioned illustrations by John Sibbick, world-famous illustrator of dinosaurs, the volume includes multi-page drawings as well as sketches and diagrams. First edition Hb (1996): 0-521-44496-9 David E. Fastovsky is Professor of Geosciences at the University of Rhode Island. Fastovsky, the author of numerous scientific publications dealing with Mesozoic vertebrate faunas and their ancient environments, is also scientific co-Editor of Geology. He has undertaken extensive fieldwork studying dinosaurs and their environments in Montana, North Dakota, Arizona, Mexico, and Mongolia. David B. Weishampel is a professor at the Center for Functional Anatomy and Evolution at Johns Hopkins University, School of Medicine. Weishampel is best known for discovering, researching, and naming several rare European dinosaur species. During the 1980s Weishampel gained fame for his work with American paleontologist Jack Horner and later named the famous plant-eating, egg-laying Orodromeus, Horner. Now, a decade after his pioneering studies with Horner, Weishampel is most widely known for his current work on the Romanian dinosaur fauna. He is the author and co-author of many titles, including The Dinosaur Papers, 1676-1906 (Norton, 2003); The Dinosauria, (University of California, 1990); and Dinosaurs of the East Coast, (Johns Hopkins University Press, 1996).

  8. Stratigraphic nomenclature and geologic sections of the Gulf Coastal Plain of Texas

    Science.gov (United States)

    Baker, E.T.

    1995-01-01

    Geologic sections showing the subsurface delineation of approximately 100 Stratigraphic units composing the Mesozoic and Cenozoic Eras illustrate the interrelation of these units across most of the Gulf Coastal Plain of Texas. The geologic names that constitute the nomenclature have been published, and the vast majority are approved for use by the U.S. Geological Survey. Four dip sections and four strike sections, extending from the land surface to a maximum of about 18,000 feet below sea level, provide continuity of correlation from the outcrop to the deep subsurface. Stratigraphic units containing water with less than 3,000 milligrams per liter concentration of dissolved solids are shown on the geologic sections and serve as an indicator of water quality in the Gulf Coastal Plain of Texas.

  9. Geodynamics of the Barents-Kara margin in the Mesozoic inferred from paleomagnetic data on rocks from the Franz Josef Land Archipelago

    Science.gov (United States)

    Mikhaltsov, N. E.; Karyakin, Yu. V.; Abashev, V. V.; Bragin, V. Yu.; Vernikovsky, V. A.; Travin, A. V.

    2016-12-01

    New data on paleomagnetism and isotope geochronology of Jurassic and Early Cretaceous basic igneous rocks on Franz Josef Land Archipelago (FJL) represented by flows and dikes are discussed. The first paleomagnetic data obtained for these rocks offer the opportunity to suggest a model of spatial changes in the FJL block position during the Jurassic‒Cretaceous. In the Early Jurassic, the block occupied a different position relative to Europe from the modern one. It was displaced in the northeasterly direction by a distance of approximately 500 km and rotated clockwise by about 40° relative to its modern position. By the Early Cretaceous, the FJL block occupied a position close to the present-day one avoiding subsequent substantial relative displacements. The data obtained are of principal significance for reconstructing the geodynamic evolution of Arctic structures in the Mesozoic and contribute greatly to the base of paleomagnetic data for the Arctic region, development of which is now in progress.

  10. Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory)

    Science.gov (United States)

    Mauclaire, L.; McKenzie, J. A.; Schwyn, B.; Bossart, P.

    Although microorganisms have been isolated from various deep-subsurface environments, the persistence of microbial activity in claystones buried to great depths and on geological time scales has been poorly studied. The presence of in-situ microbial life in the Opalinus Clay Formation (Mesozoic claystone, 170 million years old) at the Mont Terri Rock Laboratory, Canton Jura, Switzerland was investigated. Opalinus Clay is a host rock candidate for a radioactive waste repository. Particle tracer tests demonstrated the uncontaminated nature of the cored samples, showing their suitability for microbiological investigations. To determine whether microorganisms are a consistent and characteristic component of the Opalinus Clay Formation, two approaches were used: (i) the cultivation of indigenous micoorganisms focusing mainly on the cultivation of sulfate-reducing bacteria, and (ii) the direct detection of molecular biomarkers of bacteria. The goal of the first set of experiments was to assess the presence of cultivable microorganisms within the Opalinus Clay Formation. After few months of incubation, the number of cell ranged from 0.1 to 2 × 10 3 cells ml -1 media. The microorganisms were actively growing as confirmed by the observation of dividing cells, and detection of traces of sulfide. To avoid cultivation bias, quantification of molecular biomarkers (phospholipid fatty acids) was used to assess the presence of autochthonous microorganisms. These molecules are good indicators of the presence of living cells. The Opalinus Clay contained on average 64 ng of PLFA g -1 dry claystone. The detected microbial community comprises mainly Gram-negative anaerobic bacteria as indicated by the ratio of iso/anteiso phospholipids (about 2) and the detection of large amount of β-hydroxy substituted fatty acids. The PLFA composition reveals the presence of specific functional groups of microorganisms in particular sulfate-reducing bacteria ( Desulfovibrio, Desulfobulbus, and

  11. Tectonic Evolution of the Cretaceous Sava-Klepa Massif, Former Yugoslav Republic of Macedonia, based on field observations and microstructural analysis - Towards a new geodynamic Model

    Science.gov (United States)

    Altmeyer, Tobias; Peternell, Mark; Prelević, Dejan; Köpping, Jonas

    2016-04-01

    The Balkan Peninsula was formed during the Mesozoic collision of Gondwana and Eurasia, associated with the closure of the Neo-Tethyan Ocean. As a result, two ophiolitic belts were formed: Dinaride-Hellenide ophiolitic belt in the southwest and the Vardar ophiolitic belt in the northeast. The bulk of Balkan ophiolites originated in the Jurassic (Robertson & Karamata, 1994), and only recently the Late Cretaceous Sava-zone ophiolites are discovered. Ophiolit-like outcrops of Mount Klepa in the Central Macedonia represents a part of Late Cretaceous oceanic lithosphere within the Sava Zone, comprising of pillow lavas, sheet flows, columns, hyaloclastites, dikes as well as cumulates. In this study we investigate the geodynamic setting and evolution of the Late Cretaceous Klepa Massif. Our working hypotheses we want to test is that Klepa Massif represents a new ocean opened through rifting after the closure of Tethyan ocean(s) and collision of Europe and Gondwana already in the Late Jurassic to Early Cretaceous. This hypothesis contradicts the accepted model suggesting that Sava ophiolites represent a relic of the Neo-Tethyan Ocean that closed in the Late Cretaceous. During detailed structural geology field studies, the ophiolitic rock sequence of Klepa Mountain area was mapped in several profiles and about 60 rock samples were taken. These field data in addition to the north-south trending outcrops of the Klepa ophiolite and the north-south trending shear zones which bound the Klepa basalt, lead to the assumption of the existence of a pull apart basin. With the help of microstructural analyses we will determine the deformation history and temperatures which also will be confirmed by the analyses of calcite twins (Ferril et al., 2004). Quartz grain size analysis of quartz bearing rocks, were used for stress piezometry. Furthermore, quartz crystal geometry and crystallographic orientations, which were measured with the Fabric Analyser G60 (Peternell et al., 2010), reveal

  12. Comment on "Assessing Discrepancies Between Previous Plate Kinematic Models of Mesozoic Iberia and Their Constraints" by Barnett-Moore Et Al.

    Science.gov (United States)

    van Hinsbergen, Douwe J. J.; Spakman, Wim; Vissers, Reinoud L. M.; van der Meer, Douwe G.

    2017-12-01

    In their recent paper, Barnett-Moore et al. (2016) reflect on current models of Iberian plate motion in the Jurassic and Cretaceous as well as ongoing debates on the reliability of the various types of kinematic data that form independent constraints on Iberia's motion relative to Eurasia. They question the validity of various marine geophysical, seismic, tomographic, geological, and paleomagnetic data sets from the Bay of Biscay, Central Atlantic Ocean, and Iberia for kinematic reconstruction of Iberia and conclude that neither models invoking Aptian-Albian transtension, nor compression, are consistent with currently available data. An important element in their analysis is that they discard the large paleomagnetic data set from the Jurassic and Cretaceous from Iberia based on perceived limitations of that data set. In addition, they argue that seismic tomographic images exclude a scenario of subduction in the Aptian-Albian in the Pyrenees, and based on this "question the validity of current plate reconstructions, their constraints, and geodynamic scenarios, which are in support of this scenario [e.g., Vissers et al., 2016]." We welcome the discussion raised by Barnett-Moore et al. (2016) on the reliability and usefulness of paleomagnetic data as independent constraint for Iberia's plate motion in the Mesozoic. Taking these paleomagnetic data at face value, Vissers et al. (2016) recently showed that these are consistent with an 40° counterclockwise rotation of Iberia in the Aptian, requiring up to 500 km of Aptian convergence across the Pyrenees, that is, through subduction. In this comment, we aim to critically assess whether and how the concerns on the quality of paleomagnetic data raised by Barnett-Moore et al. (2016) may allow for an alternative explanation, particularly one with a Mesozoic rotation of Iberia that is small enough so as to not requiring subduction. We also reassess whether seismic tomographic images indeed refute subduction scenarios, using 8

  13. Digital surfaces and hydrogeologic data for the Mesozoic through early Tertiary rocks in the Southeastern Coastal Plain in parts of Mississippi, Alabama, Georgia, South Carolina, and Florida

    Science.gov (United States)

    Cannon, Debra M.; Bellino, Jason C.; Williams, Lester J.

    2012-01-01

    A digital dataset of hydrogeologic data for Mesozoic through early Tertiary rocks in the Southeastern Coastal Plain was developed using data from five U.S. Geological Survey (USGS) reports published between 1951 and 1996. These reports contain maps and data depicting the extent and elevation of the Southeast Coastal Plain stratigraphic and hydrogeologic units in Florida and parts of Mississippi, Alabama, Georgia, and South Carolina. The reports are: Professional Paper 1410-B (Renken, 1996), Professional Paper 1088 (Brown and others, 1979), Professional Paper 524-G (Applin and Applin, 1967), Professional Paper 447 (Applin and Applin, 1965), and Circular 91 (Applin, 1951). The digital dataset provides hydrogeologic data for the USGS Energy Resources Program assessment of potential reservoirs for carbon sequestration and for the USGS Groundwater Resource Program assessment of saline aquifers in the southeastern United States. A Geographic Information System (ArcGIS 9.3.1) was used to construct 33 digital (raster) surfaces representing the top or base of key stratigraphic and hydrogeologic units. In addition, the Geographic Information System was used to generate 102 geo-referenced scanned maps from the five reports and a geo-database containing structural and thickness contours, faults, extent polygons, and common features. The dataset also includes point data of well construction and stratigraphic elevations and scanned images of two geologic cross sections and a nomenclature chart.

  14. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the

  15. The Geologic Nitrogen Cycle

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2013-12-01

    N2 is the dominant gas in Earth's atmosphere, and has been so through the majority of the planet's history. Originally thought to only be cycled in significant amounts through the biosphere, it is becoming increasingly clear that a large degree of geologic cycling can occur as well. N is present in crustal rocks at 10s to 100s of ppm and in the mantle at 1s to perhaps 10s of ppm. In light of new data, we present an Earth-system perspective of the modern N cycle, an updated N budget for the silicate Earth, and venture to explain the evolution of the N cycle over time. In an fashion similar to C, N has a fast, biologically mediated cycle and a slower cycle driven by plate tectonics. Bacteria fix N2 from the atmosphere into bioavailable forms. N is then cycled through the food chain, either by direct consumption of N-fixing bacteria, as NH4+ (the primary waste form), or NO3- (the most common inorganic species in the modern ocean). Some organic material settles as sediment on the ocean floor. In anoxic sediments, NH4+ dominates; due to similar ionic radii, it can readily substitute for K+ in mineral lattices, both in sedimentary rocks and in oceanic lithosphere. Once it enters a subduction zone, N may either be volatilized and returned to the atmosphere at arc volcanoes as N2 or N2O, sequestered into intrusive igneous rocks (as NH4+?), or subducted deep into the mantle, likely as NH4+. Mounting evidence indicates that a significant amount of N may be sequestered into the solid Earth, where it may remain for long periods (100s m.y.) before being returned to the atmosphere/biosphere by volcanism or weathering. The magnitude fluxes into the solid Earth and size of geologic N reservoirs are poorly constrained. The size of the N reservoirs contained in the solid Earth directly affects the evolution of Earth's atmosphere. It is possible that N now sequestered in the solid Earth was once in the atmosphere, which would have resulted in a higher atmospheric pressure, and

  16. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies

    OpenAIRE

    Labandeira, Conrad C.; Yang, Qiang; Santiago-Blay, Jorge A.; Hotton, Carol L.; Monteiro, Ant?nia; Wang, Yong-Jie; Goreva, Yulia; Shih, ChungKun; Siljestr?m, Sandra; Rose, Tim R.; Dilcher, David L.; Ren, Dong

    2016-01-01

    Mid-Mesozoic kalligrammatid lacewings (Neuroptera) entered the fossil record 165 million years ago (Ma) and disappeared 45 Ma later. Extant papilionoid butterflies (Lepidoptera) probably originated 80?70 Ma, long after kalligrammatids became extinct. Although poor preservation of kalligrammatid fossils previously prevented their detailed morphological and ecological characterization, we examine new, well-preserved, kalligrammatid fossils from Middle Jurassic and Early Cretaceous sites in nort...

  17. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts

    Science.gov (United States)

    Ikeda, Masayuki; Tada, Ryuji; Ozaki, Kazumi

    2017-06-01

    The global silica cycle is an important component of the long-term climate system, yet its controlling factors are largely uncertain due to poorly constrained proxy records. Here we present a ~70 Myr-long record of early Mesozoic biogenic silica (BSi) flux from radiolarian chert in Japan. Average low-mid-latitude BSi burial flux in the superocean Panthalassa is ~90% of that of the modern global ocean and relative amplitude varied by ~20-50% over the 100 kyr to 30 Myr orbital cycles during the early Mesozoic. We hypothesize that BSi in chert was a major sink for oceanic dissolved silica (DSi), with fluctuations proportional to DSi input from chemical weathering on timescales longer than the residence time of DSi (<~100 Kyr). Chemical weathering rates estimated by the GEOCARBSULFvolc model support these hypotheses, excluding the volcanism-driven oceanic anoxic events of the Early-Middle Triassic and Toarcian that exceed model limits. We propose that the Mega monsoon of the supercontinent Pangea nonlinearly amplified the orbitally paced chemical weathering that drove BSi burial during the early Mesozoic greenhouse world.

  18. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    Science.gov (United States)

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  19. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    Directory of Open Access Journals (Sweden)

    Ryosuke Motani

    Full Text Available Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia, which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic. This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  20. Geological Services Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Researchers use computed tomography (CT) scanners at NETL’s Geological Services Laboratory in Morgantown, WV, to peer into geologic core samples to determine how...

  1. Geophysics & Geology Inspected.

    Science.gov (United States)

    Neale, E. R. W.

    1981-01-01

    Summarizes findings of a recently published report of the Canadian Geoscience Council, which includes the following topics regarding college geology: facilities; teaching; undergraduate enrollments; postgraduate enrollments; geologic research; and integration of Canadian geoscience with other countries. (CS)

  2. Geological disposal system development

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected

  3. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.

  4. Geological development of amazon and orinoco basins

    NARCIS (Netherlands)

    Wesselingh, F.P.; Hoorn, C.; Albert, J.S.; Reis, R.E.

    2011-01-01

    This chapter examines the geological development of the Orinoco and Amazon River basins. It analyzes the evolution of aquatic Amazonian ecosystems from the Late Cretaceous to the Quaternary period and provides and considers the potential impacts on the development of modern Amazonian fish faunas. It

  5. Significant achievements in the Planetary Geology Program, 1981

    International Nuclear Information System (INIS)

    Holt, H.E.

    1981-09-01

    Recent developments in planetology research as reported at the 1981 NASA Planetary Geology Principal Investigators meeting are summarized. The evolution of the solar system, comparative planetology, and geologic processes active on other planets are considered. Galilean satellites and small bodies, Venus, geochemistry and regoliths, volcanic and aeolian processes and landforms, fluvial and periglacial processes, and planetary impact cratering, remote sensing, and cartography are discussed

  6. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on new SHRIMP U-Pb data, part 1: central-eastern border of Sao Francisco Craton in Bahia state, Brazil

    International Nuclear Information System (INIS)

    Silva, Luiz Carlos da; Pimentel, Marcio; Jost, Hardy; Armstrong, Richard

    2002-01-01

    This paper discusses new U-Pb SHRIMP zircon data for 12 key-exposures of several geological units exposed at the eastern border of the Sao Francisco Craton. The samples represent mostly Archean basement units within the Paleoproterozoic Eastern Bahia Belt (Orogen). Samples were collected along several E-W tran sects trying to more accurately assess the areal distribution of the Archean polycyclic basement of the Sao Francisco Craton and to identify the limits of Paleoproterozoic metamorphic overprint resulting from the development of the Eastern Bahia Orogen. Owing to the polycyclic evolution and/or high grade metamorphic conditions which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. Except for one unit (sample LH 44), which present crystallization age of ca 3000 Ma - interpreted, therefore, as the eastern extension of the Serrinha Craton - the others are ascribed to two major age groups at ca. 2870-2500 Ma and ca. 2200?-2030 Ma. The former group includes ortho gneisses with crystallization ages between ca. 2870-2500 Ma, which have been mapped and interpreted, in its major extension, as juvenile Paleoproterozoic arc (Itabuna and Salvador-Curaca belts/domains). The new data presented in this study, however, indicate that these ortho gneisses represent a multi-episodic collage of primitive Archean orogenic arcs, which gave rise to the Archean basement of that part of the Sao Francisco Craton. All the investigated zircon populations were extensively recrystallized at ca. 2080-2050 Ma as a result of

  7. Structural evolution and tectonic style of the Tunisian central Atlas; role of inherited faults in compressive tectonics (Ghoualguia anticline)

    Science.gov (United States)

    Briki, Haithem; Ahmadi, Riadh; Smida, Rabiaa; Rekhiss, Farhat

    2018-04-01

    Geological mapping, field cross sections, structural analyses and new subsurface data were used to characterize the geometry and tectonic setting of the Ghoualguia structure, which is an E-W-trending anticline located between the Kalaa Khasba and Rouhia troughs of the central Tunisian Atlas. The results show an important NE-SW extensional phase during the Mesozoic, as demonstrated by synsedimentary normal faults (NW-SE and E-W) and thickness variations. In the Aouled Mdoua area, the absence of Paleocene-Eocene rocks indicates that the eastern and western parts of the Ghoualguia structure were separated by high topography. In addition, the angular unconformity observed between the Upper Cretaceous unit (Abiod Fm.) and the upper Eocene series (Souar Fm.) provide evidence of a tilted-block structure delineated by North-South faults. A major compressional phase during the middle to late Miocene created various detachment levels that originated mainly in the Triassic and Cretaceous deposits. Faults were reactivated as thrust and strike-slip faults, creating fault-related fold structures. In the core of the Ghoualguia fold, an original S-dipping normal fault underwent reverse movement as a back thrust. Fault-slip data indicate that the area records a major NE-SW extensional phase that took place during the late Miocene and Pliocene. A balanced cross section provides insight into the existence of two main detachment levels rooted in the Triassic (depth ± 6 km) and the lower Cretaceous (depth ± 2.5 km). The balanced cross section highlights a shortening of about 2.5 km along cross section and 1.5 km in the central part of the Ghoualguia anticline. This work underlines the predominant role of the inherited Mesozoic structures during the evolution of the Atlassic range and their influence on the geometry of the central Tunisian atlas.

  8. The geological attitude

    International Nuclear Information System (INIS)

    Fuller, J.G.C.M.

    1992-01-01

    This paper discusses geological activity which takes place mainly in response to industrial and social pressures. Past geological reaction to these pressures profoundly altered popular conceptions of time, the Church, man, and the balance of nature. The present-day circumstances of geology are not essentially different from those of the past. Petroleum geology in North American illustrates the role of technology in determining the style and scope of geological work. Peaks of activity cluster obviously on the introduction from time to time of new instrumental capabilities (geophysical apparatus, for example), although not infrequently such activity is testing concepts or relationships perceived long before. Organic metamorphism and continental drift provide two examples. The petroleum industry now faces the dilemma of satisfying predicted demands for fuel, without doing irreparable injury to its environment of operation. Awareness of man's place in nature, which is a fundamental perception of geology, governs the geological attitude

  9. Architecture of ductile-type passive margins: Geological constraints from the inverted Cretaceous basin of the North-Pyrenean Zone (`Chaînons Béarnais', Western Pyrenees)

    Science.gov (United States)

    Corre, B.; Lagabrielle, Y.; Labaume, P.; Lahfid, A.; Boulvais, P.; Bergamini, G.; Fourcade, S.; Clerc, C. N.; Asti, R.

    2017-12-01

    Subcontinental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust. The North-Pyrenean Zone (NPZ) exposes remnants of such extremely stretched paleo-passive margin that represent field analogues to study the processes of continental crust thinning and mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. The Chaînons Béarnais belt displays a fold-and-thrust structure involving the Mesozoic sedimentary cover associated with peridotite bodies in tectonic contact with Paleozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of this paleo-margin. Field work confirms that the Mesozoic cover is intimately associated with mantle rocks and thin tectonic lenses of middle crust. Micro-structural studies show that the greenschist facies ductile deformation in the crust produced a mylonitic foliation which is always parallel to the crust/mantle contact. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the margin. We show that: (i) the boudinaged pre-rift sediments have undergone drastic syn-metamorphic thinning with the genesis of a S0/S1 foliation and, (ii) the Paleozoic basement has been ductilely deformed, into thin tectonic lenses that remained welded to the exhumed mantle rocks. The ductile behavior is related to the presence of a thick pre- and syn-rift cover acting as an efficient thermal blanket

  10. Mesozoic cooling history of the “Bachu Uplift” in the Tarim Basin, China: Constraints from zircon fission-track thermochronology

    International Nuclear Information System (INIS)

    Chang, Jian; Brown, Roderick W.; Yuan, Wanming; Li, Wenzheng; Que, Yongquan; Qiu, Nansheng

    2014-01-01

    We applied zircon fission-track analysis to outcrop and borehole samples to study the Mesozoic cooling history of the Bachu Uplift, the Central Uplift of the Tarim Basin. Zircon fission-track (ZFT) ages of 182 Ma – 249 Ma are younger than the sample depositional ages indicating substantial post burial thermal annealing and can effectively reveal cooling events in the Bachu Uplift. The strong correlation between single grain ZFT age and U content indicates that most of the zircon grains represent ages that have been partially annealed and so the age is not directly indicative of the time of cooling. The youngest ZFT age populations with modal peak ages of 151 ± 8 Ma (Well HT1 samples), 126 ± 6 Ma (Well T1 samples) and 192 ± 10 Ma (Xiaohaizi Reservoir profile samples) from the decomposition of the ZFT single-grain ages represent the onset of cooling events in the Bachu Uplift, which were related to the collisions of the Qiangtang Terrane and Lhasa Block with the southern margin of the Eurasia continent, respectively. This study provides new insights into the tectonic and sedimentary evolution of the Tarim Basin and even Central Asia by constraining the higher temperature (c. 250–180 °C) part of the basin thermal history. - Highlights: • ZFT were firstly used to study Mesozoic cooling events of the Tarim Basin, China. • ZFT data revealed cooling events of 192 Ma, 151 Ma and 126 Ma. • Cooling events were related to the collisions in the Eurasia southern margin

  11. Abundances of chemical elements in granitoids of different geological ages and their characteristics in China

    Directory of Open Access Journals (Sweden)

    Changyi Shi

    2011-04-01

    Full Text Available Actual granitoid analytical data of 767 composited samples are presented here. The data source is 6080 samples collected mainly from 750 large- to middle-sized granitoid bodies across China. Data from the composited samples, which includes that of 70 elements, is analyzed according to geological age — Archeozoic (Ar, Proterozoic (Pt, Eopaleozoic (Pz1, Neopaleozoic (Pz2, Mesozoic (Mz, and Cenozoic (Cz — and three major compositional varieties, e.g. alkali-feldspar granite, syenogranite and adamellite. Petrochemical parameters, trace-element content and rare-earth element (REE distributions of the different rock types and geological ages are characterized, and change tendencies through Archean to Cenozoic time are recorded. The comprehensive analytical data presented here has not been previously published. This significant data set can be used as fundamental information in studies of basic China geology, magma petrogenesis, ore exploration and geochemistry.

  12. Geological fieldwork in the Libyan Sahara: A multidisciplinary approach

    Science.gov (United States)

    Meinhold, Guido; Whitham, Andrew; Howard, James P.; Morton, Andrew; Abutarruma, Yousef; Bergig, Khaled; Elgadry, Mohamed; Le Heron, Daniel P.; Paris, Florentin; Thusu, Bindra

    2010-05-01

    Libya is one of the most hydrocarbon-rich countries in the world. Its large oil and gas reserves make it attractive to international oil and gas companies, which provide the impetus for field-based research in the Libyan Sahara. North Africa is made up of several enormous intracratonic basins, two of which are found in southern Libya: the Murzuq Basin, in the southwest, and the Kufra Basin, in the southeast, separated by the Tibesti Massif. Both basins are filled with Palaeozoic and Mesozoic clastic sedimentary rocks reaching up to 5 km in thickness. These basins developed from the Cambrian onwards following an earlier period of orogenesis (the Panafrican Orogeny) in the Neoproterozoic. Precambrian metasediments and granitoids are unconformably overlain by Cambrian and Ordovician conglomerates and sandstones. They show a transitional environment from continental to shallow marine. Skolithos-bearing sandstone is common in Ordovician strata. By the Late Ordovician, ice masses had developed across West Gondwana. Upon melting of the ice sheets in the latest Hirnantian, large volumes of melt water and sediment were released that were transported to the periphery of Gondwana. In Libya, these sediments are predominantly highly mature sandstones, which, in many places, are excellent hydrocarbon reservoirs. Polished and striated surfaces in these sandstones clearly point to their glaciogenic origin. Following Late Ordovician deglaciation, black shale deposition occurred in the Silurian. Some of the shales are characterised by high values of total organic carbon (TOC). These shales are commonly referred to as ‘hot shales' due to their associated high uranium content, and are the major source rock for Early Palaeozoic-sourced hydrocarbons in North Africa. Late Ordovician glaciogenic sediments and the Early Silurian ‘hot shales' are therefore the main focus of geological research in the Libyan Sahara. Fluvial conglomerates and sandstones of Devonian age unconformably

  13. Large Sanjiang basin groups outside of the Songliao Basin Meso-Senozoic Tectonic-sediment evolution and hydrocarbon accumulation

    Science.gov (United States)

    Zheng, M.; Wu, X.

    2015-12-01

    The basis geological problem is still the bottleneck of the exploration work of the lager Sanjiang basin groups. In general terms, the problems are including the prototype basins and basin forming mechanism of two aspects. In this paper, using the field geological survey and investigation, logging data analysis, seismic data interpretation technical means large Sanjiang basin groups and basin forming mechanism of the prototype are discussed. Main draw the following conclusions: 1. Sanjiang region group-level formation can be completely contrasted. 2. Tension faults, compressive faults, shear structure composition and structure combination of four kinds of compound fracture are mainly developed In the study area. The direction of their distribution can be divided into SN, EW, NNE, NEE, NNW, NWW to other groups of fracture. 3. Large Sanjiang basin has the SN and the EW two main directions of tectonic evolution. Cenozoic basins in Sanjiang region in group formation located the two tectonic domains of ancient Paleo-Asian Ocean and the Pacific Interchange. 4. Large Sanjiang basin has experienced in the late Mesozoic tectonic evolution of two-stage and nine times. The first stage, developmental stage basement, they are ① Since the Mesozoic era and before the Jurassic; ② Early Jurassic period; The second stage, cap stage of development, they are ③ Late Jurassic depression developmental stages of compression; ④ Early Cretaceous rifting stage; ⑤ depression in mid-Early Cretaceous period; ⑥ tensile Early Cretaceous rifting stage; ⑦ inversion of Late Cretaceous tectonic compression stage; ⑧ Paleogene - Neogene; ⑨ After recently Ji Baoquan Sedimentary Ridge. 5. Large Sanjiang basin group is actually a residual basin structure, and Can be divided into left - superimposed (Founder, Tangyuan depression, Hulin Basin), residual - inherited type (Sanjiang basin), residual - reformed (Jixi, Boli, Hegang basin). there are two developed depression and the mechanism

  14. Cordillera Zealandia: A Mesozoic arc flare-up on the palaeo-Pacific Gondwana Margin

    OpenAIRE

    Milan, L. A.; Daczko, N. R.; Clarke, G. L.

    2017-01-01

    Two geochemically and temporally distinct components of the Mesozoic Zealandia Cordilleran arc indicate a shift from low to high Sr/Y whole rock ratios at c. 130?Ma. Recent mapping and a reappraisal of published Sr-Nd data combined with new in-situ zircon Hf isotope analyses supports a genetic relationship between the two arc components. A reappraisal of geophysical, geochemical and P-T estimates demonstrates a doubling in thickness of the arc to at least 80?km at c. 130?Ma. Contemporaneously...

  15. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  16. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  17. Geology and geochemistry of the Atacama Desert.

    Science.gov (United States)

    Tapia, J; González, R; Townley, B; Oliveros, V; Álvarez, F; Aguilar, G; Menzies, A; Calderón, M

    2018-02-14

    The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO 3 - , are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.

  18. Naturally occurring contaminants in the Piedmont and Blue Ridge crystalline-rock aquifers and Piedmont Early Mesozoic basin siliciclastic-rock aquifers, eastern United States, 1994–2008

    Science.gov (United States)

    Chapman, Melinda J.; Cravotta,, Charles A.; Szabo, Zoltan; Lindsay, Bruce D.

    2013-01-01

    Groundwater quality and aquifer lithologies in the Piedmont and Blue Ridge Physiographic Provinces in the eastern United States vary widely as a result of complex geologic history. Bedrock composition (mineralogy) and geochemical conditions in the aquifer directly affect the occurrence (presence in rock and groundwater) and distribution (concentration and mobility) of potential naturally occurring contaminants, such as arsenic and radionuclides, in drinking water. To evaluate potential relations between aquifer lithology and the spatial distribution of naturally occurring contaminants, the crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aquifers of the Early Mesozoic basin of the Piedmont Physiographic Province were divided into 14 lithologic groups, each having from 1 to 16 lithochemical subgroups, based on primary rock type, mineralogy, and weathering potential. Groundwater-quality data collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this study. Analyses for most constituents were for filtered samples, and, thus, the compiled data consist largely of dissolved concentrations. Concentrations were compared to criteria for protection of human health, such as U.S. Environmental Protection Agency (USEPA) drinking water maximum contaminant levels and secondary maximum contaminant levels or health-based screening levels developed by the USGS NAWQA Program in cooperation with the USEPA, the New Jersey Department of Environmental Protection, and Oregon Health & Science University. Correlations among constituent concentrations, pH, and oxidation-reduction (redox) conditions were used to infer geochemical controls on constituent mobility within the aquifers. Of the 23 trace-element constituents evaluated

  19. Integrated elemental and Sr-Nd-Pb-Hf isotopic studies of Mesozoic mafic dykes from the eastern North China Craton: implications for the dramatic transformation of lithospheric mantle

    Science.gov (United States)

    Liu, Shen; Feng, Caixia; Santosh, M.; Feng, Guangying; Coulson, Ian M.; Xu, Mengjing; Guo, Zhuang; Guo, Xiaolei; Peng, Hao; Feng, Qiang

    2018-02-01

    Evolution of the lithospheric mantle beneath the North China Craton (NCC) from its Precambrian cratonic architecture until Paleozoic, and the transformation to an oceanic realm during Mesozoic, with implications on the destruction of cratonic root have attracted global attention. Here we present geochemical and isotopic data on a suite of newly identified Mesozoic mafic dyke swarms from the Longwangmiao, Weijiazhuang, Mengjiazhuang, Jiayou, Huangmi, and Xiahonghe areas (Qianhuai Block) along the eastern NCC with an attempt to gain further insights on the lithospheric evolution of the region. The Longwangmiao dykes are alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 4.3) and EM1-like Sr-Nd-Pb-Hf isotopic signature ((87Sr/86Sr) i > 0.706; ε Nd (t) 16.6, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.8, ε Hf (t) 3.7), and display similar EM1-like isotopic features ((87Sr/86Sr) i > 0.706; ε Nd (t) 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) 2.4) and EM1-like isotopic features((87Sr/86Sr) i > 0.706; ε Nd (t) 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) 3.7) and EM1-like Sr-Nd-Pb-Hf isotopic features ((87Sr/86Sr) i > 0.706; ε Nd(t) 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) 9.3) and EM1-like isotopic composition ((87Sr/86Sr) i > 0.705; ε Nd (t) 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36.9, ε Hf (t) 0.705; ε Nd (t) 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36.9, ε Hf (t) < -8.6). Our data from the various mafic dyke suites suggest that the magmas were derived from EM1-like lithospheric mantle, corresponding to lithospheric mantle modified by the previously foundered lower crust beneath the eastern NCC. Our results suggest contrasting lithospheric evolution from Triassic (212 Ma) to Cretaceous (123 Ma) beneath the NCC. These mafic dykes mark an important phase of lithospheric thinning in the eastern North China Craton.

  20. Competition and constraint drove Cope's rule in the evolution of giant flying reptiles

    Science.gov (United States)

    Benson, Roger B. J.; Frigot, Rachel A.; Goswami, Anjali; Andres, Brian; Butler, Richard J.

    2014-01-01

    The pterosaurs, Mesozoic flying reptiles, attained wingspans of more than 10 m that greatly exceed the largest birds and challenge our understanding of size limits in flying animals. Pterosaurs have been used to illustrate Cope’s rule, the influential generalization that evolutionary lineages trend to increasingly large body sizes. However, unambiguous examples of Cope’s rule operating on extended timescales in large clades remain elusive, and the phylogenetic pattern and possible drivers of pterosaur gigantism are uncertain. Here we show 70 million years of highly constrained early evolution, followed by almost 80 million years of sustained, multi-lineage body size increases in pterosaurs. These results are supported by maximum-likelihood modelling of a comprehensive new pterosaur data set. The transition between these macroevolutionary regimes is coincident with the Early Cretaceous adaptive radiation of birds, supporting controversial hypotheses of bird–pterosaur competition, and suggesting that evolutionary competition can act as a macroevolutionary driver on extended geological timescales. PMID:24694584

  1. Geology's Impact on Culture

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Most people consider geology boring, static and difficult. The fields of astronomy and physics have "rebranded" themselves with exciting programs formatted so as to be readily understandable to the general public. The same thing can be done for geology. My research on geology's influence on other disciplines has resulted in a book, Tweeting da Vinci, in which I was able to show how geology affected Italy's art, architecture, medicine, religion, literature, engineering and just about everything else. The reaction to the book and my lectures by both students and the general public has been very positive, including four gold medals, with reviews and comments indicating that they never knew geology could be so exciting. The book is very user friendly, packed with facts, full-color photos, paintings, sketches and illustrations. Complex aspects of geology are presented in an easily understandable style. Widely diverse topics—such as gemology, folk remedies, grottoes, painting, literature, physics and religion—are stitched together using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. The book can be used in classes such as physics, chemistry, literature, art history, medicine, Classical Studies, Latin, Greek and Italian. By incorporating a "geologic perspective" in these courses, it can be perceived as a more "all encompassing" discipline and encourage more students to study it. The lectures I have given on college campuses have resulted in students seeing their own majors from a different perspective and some have even signed up for introductory geology courses. One college organized summer course to the Bay of Naples based on the book. We followed the geology as well as the culture of the area and the students were profoundly moved. To encourage dialog, the book is linked to Facebook, Twitter and Instagram. This has enabled followers from

  2. Uranium potential in outcropping Permian basins in France and their extensions beneath mesozoic and tertiary cover

    International Nuclear Information System (INIS)

    Hery, B.

    1990-01-01

    About a third of metropolitan France's uranium production is from Permian deposits located in the Lodeve and, to a lesser extent, Bourbon-l'Archambault basins. Of the Autun, west Vanoise, St-Affrique, Rodez, Brive and Var basins investigated in this study, only those of Rodez and Var have been shown to contain significant deposits. Some of the basins contain potentially interesting targets, often removed from the areas of known mineral occurrences, that have never been investigated. Geophysical exploration and drilling have shown that the Permian extends over a vast area beneath the cover of the large Mesozoic and Tertiary basins. However zones within reach of mineral exploration, ie. those less than 500 m deep, are only found in a few areas. To reach the distant targets down-dip in the outcropping basins or beneath the Mesozoic and Tertiary cover, a detailed study of the basin must be undertaken beforehand. To define and locate targets that are obviously more costly to investigate, direct methods of investigation need to be used such as drilling and geochemistry, and indirect methods such as remote sensing, geophysics and well-logging [fr

  3. Geologic evolution of the Paraiba do Sul complex, in the central part of the Ribeira belt, based on the geochemistry and U-Pb geochronology studies; Evolucao geologica do complexo Paraiba do Sul, no segmento central da faixa Ribeira, com base em estudos de geoquimica e geocronologia U-Pb

    Energy Technology Data Exchange (ETDEWEB)

    Valladares, Claudia Sayao

    1996-12-31

    Aiming the definition of the Complexo Paraiba do Sul evolution, the work presents a geochronological approach by the U-Pb method, considered appropriate to study polideformed terrains. The minerals used to the U-Pb dating (zircon, titanite and monazite) provides information about the ages of rock generation and the successive geological events the rocks were submitted. The U-Pb geochronological approach is pioneer in the investigated area and two questions referent to the Complexo Paraiba do Sul evolution in the central part of the Ribeira belt, were the aim of this approach. The first of them refers to the crystallization epoch and the gneisses metamorphism, interpreted here like orthogneisses, called Unidade Quirino of the Complexo Paraiba do Sul. The second refers to the metamorphism ages and meta sedimentary unit deformation. Looking for the contribution to the Complexo Paraiba do Sul evolution understanding, this work presents the data based on the geologic map of this area, comprising part of the Folha Volta Redonda (1:50.000), including petrographic, structural and microtectonic studies. It also presents and discusses the results of: 17 U-Pb analysis in zircon and titanite of the Complexo Paraiba do Sul orthogneisses collection; 24 geochemical analysis of major, minor, trace elements and ETR of the same collection; an U-Pb analysis in titanite of the Unidade Sao Joao, 5 U-Pb analysis in titanites and/or monazites of granites and granitoids; 12 geochemical analysis including major, minor and trace elements and ETR, in granites and sills of leucogranites. Finally, the data achieved were integrated with the objective to elaborate an evolutive view of the Complexo Paraiba do Sul 157 refs., 54 figs., 17 tabs.

  4. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  5. Geology of the seashore

    OpenAIRE

    Institute, Marine

    2013-01-01

    There are many different types of beaches around Ireland. By looking at the geology of the seashore, students can study its rocks, soil, and minerals and learn about its origins. The geology of the seashore also offers a natural environment for many species and plants to live.

  6. Cementitious Materials in Safety Cases for Geological Repositories for Radioactive Waste: Role, Evolution and Interactions. A Workshop organised by the OECD/NEA Integration Group for the Safety Case and hosted by ONDRAF/NIRAS. Cementitious materials in safety cases for radioactive waste: role, evolution and interactions

    International Nuclear Information System (INIS)

    2012-01-01

    The OECD Nuclear Energy Agency (NEA) Integration Group for the Safety Case (IGSC) organised a workshop to assess current understanding on the use of cementitious materials in radioactive waste disposal. The workshop was hosted by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (Ondraf/Niras), in Brussels, Belgium on 17-19 November 2009. The workshop brought together a wide range of people involved in supporting safety case development and having an interest in cementitious materials: namely, cement and concrete experts, repository designers, scientists, safety assessors, disposal programme managers and regulators. The workshop was designed primarily to consider issues relevant to the post-closure safety of radioactive waste disposal, but also addressed some related operational issues, such as cementitious barrier emplacement. Where relevant, information on cementitious materials from analogous natural and anthropogenic systems was also considered. This report provides a synthesis of the workshop, and summarises its main results and findings. The structure of this report follows the workshop agenda: - Section 2 summarises plenary and working group discussions on the uses, functions and evolution of cementitious materials in geological disposal, and highlights key aspects and discussions points. - Section 3 summarises plenary and working group discussions on interactions of cementitious materials with other disposal system components, and highlights key aspects and discussions points. - Section 4 summarises the workshop session on the integration of issues related to cementitious materials using the safety case. - Section 5 presents the main conclusions from the workshop. - Section 6 contains a list of references. - Appendix A presents the workshop agenda. - Appendix B contains the abstracts and, where provided, technical papers supporting oral presentations at the workshop. - Appendix C contains the abstracts and, where provided, technical

  7. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  8. Evolution, museums and society.

    Science.gov (United States)

    MacFadden, Bruce J

    2008-11-01

    Visitors to natural history museums have an incomplete understanding of evolution. Although they are relatively knowledgeable about fossils and geological time, they have a poor understanding of natural selection. Museums in the 21st century can effectively increase public understanding of evolution through interactive displays, novel content (e.g. genomics), engaging videos and cyberexhibits that communicate to a broad spectrum of society, both within the exhibit halls as well as outside the museum.

  9. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  10. The geologic history of Margaritifer basin, Mars

    Science.gov (United States)

    Salvatore, M. R.; Kraft, M. D.; Edwards, Christopher; Christensen, P.R.

    2016-01-01

    In this study, we investigate the fluvial, sedimentary, and volcanic history of Margaritifer basin and the Uzboi-Ladon-Morava (ULM) outflow channel system. This network of valleys and basins spans more than 8000 km in length, linking the fluvially dissected southern highlands and Argyre Basin with the northern lowlands via Ares Vallis. Compositionally, thermophysically, and morphologically distinct geologic units are identified and are used to place critical relative stratigraphic constraints on the timing of geologic processes in Margaritifer basin. Our analyses show that fluvial activity was separated in time by significant episodes of geologic activity, including the widespread volcanic resurfacing of Margaritifer basin and the formation of chaos terrain. The most recent fluvial activity within Margaritifer basin appears to terminate at a region of chaos terrain, suggesting possible communication between surface and subsurface water reservoirs. We conclude with a discussion of the implications of these observations on our current knowledge of Martian hydrologic evolution in this important region.

  11. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  12. Geologic map of the Vail West quadrangle, Eagle County, Colorado

    Science.gov (United States)

    Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.

    2002-01-01

    This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the

  13. Towards a Convention on Geological Heritage (CGH) for the protection of Geological Heritage

    Science.gov (United States)

    Brocx, Margaret; Semeniuk, Vic

    2017-04-01

    , geomorphology, and pedology) and, as such, Geoheritage must encompass the full diversity of Geology in scope and scale. Focusing on palaeontology to illustrate the principle: if extant biodiversity is afforded global conservation status through the Convention on Biological Diversity, and this generally involves species that have been in existence only for 10,000 to 1,000,000 years, then Phanerozoic palaeontology spanning the diversity and history of life over 500,000,000 years is far more (bio)diverse; additionally, palaeontology in combination with stratigraphy carries the story of evolution and the history of life and is the nature field library of Earth Heritage. We suggest therefore that the abiotic realm also requires a similar procedure of protection to the Convention on Biological Diversity, and we suggest a Convention on Geological Heritage.

  14. Geological heritage of Morocco

    International Nuclear Information System (INIS)

    Elhadi, H.; Tahiri, A.

    2012-01-01

    Full text: The soil and subsoil of Morocco are rich in geological phenomena that bear the imprint of a history that goes back in time more than 2000 million years. Very many sites geologically remarkable exposed in accessible outcrops, with good quality remain unknown to the general public and therefore deserve to be vulgarized. It is a memory to acquaint to the present generations but also to preserve for future generations. In total, a rich geological heritage in many ways: Varied landscapes, international stratotypes, various geological structures, varied rocks, mineral associations, a huge procession of fossiles, remnants of oceanic crust (ophiolites) among oldests ones in the world (800my), etc... For this geological heritage, an approach of an overall inventory is needed, both regionally and nationally, taking into account all the skills of the earth sciences. This will put the item on the natural (geological) potentialities as a lever for sustainable regional development. For this, it is necessary to implement a strategy of ''geoconservation'' for the preservation and assessment of the geological heritage.

  15. A bibliography of planetary geology principal investigators and their associates, 1976--1978

    International Nuclear Information System (INIS)

    1978-05-01

    This bibliography cites publications submitted by 484 principal investigators and their associates who were supported through NASA's Office of Space Sciences Planetary Geology Program. Subject classifications include solar system formation, comets, and asteroids; planetary satellites, planetary interiors, geological and geochemical constraints on planetary evolution; impact crater studies, volcanism, eolian studies, fluvian studies, Mars geological mapping; Mercury geological mapping; planetary cartography; and instrument development and techniques. An author/editor index is provided

  16. Glossary of Geology

    Science.gov (United States)

    Jackson, Julia A.

    The Glossary has expanded coverage particularly in such active fields as carbonate sedimentology, environmental geology and geophysics, GIS, GPS, hydrology and hydraulics, marine and coastal geology, organic geochemistry, paleoecology, seismology, stratigraphic nomenclature, speleology and karst, and structural geology and tectonics. Many definitions provide a syllabification guide and background information. Thus a reader will learn the difference between look-alike pairs, such as sylvanite (a mineral) and sylvinite (a rock); the origin of terms; the meaning of abbreviations and acronyms common in the geosciences vocabulary; the dates many terms were first used; the meaning of certain prefixes; and the preferred term of two or more synonyms.

  17. Asteroids astronomical and geological bodies

    CERN Document Server

    Burbine, Thomas H

    2016-01-01

    Asteroid science is a fundamental topic in planetary science and is key to furthering our understanding of planetary formation and the evolution of the Solar System. Ground-based observations and missions have provided a wealth of new data in recent years, and forthcoming missions promise further exciting results. This accessible book presents a comprehensive introduction to asteroid science, summarising the astronomical and geological characteristics of asteroids. The interdisciplinary nature of asteroid science is reflected in the broad range of topics covered, including asteroid and meteorite classification, chemical and physical properties of asteroids, observational techniques, cratering, and the discovery of asteroids and how they are named. Other chapters discuss past, present and future space missions and the threat that these bodies pose for Earth. Based on an upper-level course on asteroids and meteorites taught by the author, this book is ideal for students, researchers and professional scientists ...

  18. Geological workshop for primary schools

    Directory of Open Access Journals (Sweden)

    Nina Rman

    2010-06-01

    Full Text Available Systematical teaching of geology is (yet not established in primary and secondary school in Slovenia. In primaryschool, geological topics are divided among numerous subjects and levels therefore they receive more attention onlyif alternative courses or geological circles are realized. With help of the Geological Survey of Slovenia we have beensuccessfully performing a geological workshop for primary school pupils aiming to popularize geology. With it pupilsare acquainted with methodologies for identification of rocks, minerals, fossils and properties of water.

  19. Catalogue of the Mesozoic and Cenozoic holotypes in the collection of plant fossils in the Nationaal Natuurhistorisch Museum, Leiden

    NARCIS (Netherlands)

    Konijnenburg-van Cittert, van J.H.A.; Waveren, van I.M.; Jonckers, J.B.

    2004-01-01

    This is an inventory of the Mesozoic and Cenozoic type material in the original palaeobotanical collections of the Nationaal Natuurhistorisch Museum, Leiden, The Netherlands. In total 60 holotypes are documented and one is noted as missing from the collections. One new combination is made

  20. Early Tertiary magmatism and probable Mesozoic fabrics in the Black Mountains, Death Valley, California

    Science.gov (United States)

    Miller, Martin G.; Friedman, Richard M.

    1999-01-01

    We report two early Tertiary U-Pb zircon ages for pegmatite from the Black Mountains of Death Valley, California. These ages, 54.7 ± 0.6 Ma and 56 ± 3 Ma, are unique for much of southeastern California. The samples belong to a pegmatite suite that occupies part of the footwall of the Badwater turtleback, a late Tertiary extensional feature; similar but undated pegmatite intrudes the footwalls of the Copper Canyon and Mormon Point turtlebacks farther south. The pegmatite suite demonstrates that fabric development on the turtlebacks was at least a two-stage process. Fabrics cut by these pegmatites likely formed during the Mesozoic, whereas those that involve them formed during late Tertiary extension.

  1. Viviparity and K-selected life history in a Mesozoic marine plesiosaur (Reptilia, Sauropterygia).

    Science.gov (United States)

    O'Keefe, F R; Chiappe, L M

    2011-08-12

    Viviparity is known in several clades of Mesozoic aquatic reptiles, but evidence for it is lacking in the Plesiosauria. Here, we report a Late Cretaceous plesiosaur fossil consisting of a fetus preserved within an adult of the same taxon. We interpret this occurrence as a gravid female and unborn young and hence as definitive evidence for plesiosaur viviparity. Quantitative analysis indicates that plesiosaurs gave birth to large, probably single progeny. The combination of viviparity, large offspring size, and small brood number differs markedly from the pattern seen in other marine reptiles but does resemble the K-selected strategy of all extant marine mammals and a few extant lizards. Plesiosaurs may have shared other life history traits with these clades, such as sociality and maternal care.

  2. Diets of giants: the nutritional value of herbivorous dinosaur diet during the Mesozoic

    Science.gov (United States)

    Gill, Fiona; Hummel, Juergen; Sharifi, Reza; Lee, Alexandra; Lomax, Barry

    2017-04-01

    A major uncertainty in estimating energy budgets and population densities of extinct animals is the carrying capacity of their ecosystems, constrained by net primary productivity (NPP) and digestible energy content of that NPP. The hypothesis that increases in NPP of land plants due to elevated atmospheric CO2 contributed to the unparalleled size of the sauropods, the largest ever land animals, has recently been rejected, based on modern studies on herbivorous insects. However, the nutritional value of plants grown under elevated CO2 levels might be very different for vertebrate megaherbivores with more complex digestive systems and different protein:energy requirements than insects. Here we show that the metabolisable energy (ME) value of five species of potential dinosaur food plants does not decline consistently with increasing CO2 growth concentrations, with maxima observed at 1200 ppm CO2. Our data potentially rebut the hypothesis of constraints on herbivore diet quality in the Mesozoic due to CO2 levels.

  3. Diversity of Mesozoic semionotiform fishes and the origin of gars (Lepisosteidae)

    Science.gov (United States)

    Cavin, Lionel

    2010-12-01

    Gars (Lepisosteidae) are ray-finned fishes with controversial relationships to other actinopterygian lineages. When fossil taxa are considered, gars are grouped with Mesozoic macrosemiids and `semionotids' in the Semionotiformes, but the intra-relationships within this order are still elusive. Here, the evolutionary history of gars is reinvestigated using a set of well-preserved extinct semionotiform taxa in a phylogenetic analysis. Results indicate that the gar lineage roots in a clade of Late Jurassic-Cretaceous semionotiform fishes. The closest relatives to gars were plant-eating and detritivorous freshwater fishes. The occurrence of semionotiform remains in Early and early Late Cretaceous continental deposits worldwide possibly reflects an important radiation of this group, comparable to the present-day diversification of cypriniforms. Other Late Triassic to Early Cretaceous semionotiform taxa are gathered in a single clade with weakly supported internal nodes, pointing out the necessity to better understand the osteology of these fishes.

  4. Iowa Bedrock Geology

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The bedrock geologic map portrays the current interpretation of the distribution of various bedrock stratigraphic units present at the bedrock surface. The bedrock...

  5. Mesozoic (Upper Jurassic-Lower Cretaceous) deep gas reservoir play, central and eastern Gulf coastal plain

    Science.gov (United States)

    Mancini, E.A.; Li, P.; Goddard, D.A.; Ramirez, V.O.; Talukdar, S.C.

    2008-01-01

    The Mesozoic (Upper Jurassic-Lower Cretaceous) deeply buried gas reservoir play in the central and eastern Gulf coastal plain of the United States has high potential for significant gas resources. Sequence-stratigraphic study, petroleum system analysis, and resource assessment were used to characterize this developing play and to identify areas in the North Louisiana and Mississippi Interior salt basins with potential for deeply buried gas reservoirs. These reservoir facies accumulated in Upper Jurassic to Lower Cretaceous Norphlet, Haynesville, Cotton Valley, and Hosston continental, coastal, and marine siliciclastic environments and Smackover and Sligo nearshore marine shelf, ramp, and reef carbonate environments. These Mesozoic strata are associated with transgressive and regressive systems tracts. In the North Louisiana salt basin, the estimate of secondary, nonassociated thermogenic gas generated from thermal cracking of oil to gas in the Upper Jurassic Smackover source rocks from depths below 3658 m (12,000 ft) is 4800 tcf of gas as determined using software applications. Assuming a gas expulsion, migration, and trapping efficiency of 2-3%, 96-144 tcf of gas is potentially available in this basin. With some 29 tcf of gas being produced from the North Louisiana salt basin, 67-115 tcf of in-place gas remains. Assuming a gas recovery factor of 65%, 44-75 tcf of gas is potentially recoverable. The expelled thermogenic gas migrated laterally and vertically from the southern part of this basin to the updip northern part into shallower reservoirs to depths of up to 610 m (2000 ft). Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  6. Mesozoic sea level fluctuations documented on Exmouth Plateau off northwestern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Haq, B.U.; Blome, C.D.; Bralower, T.J.; Brenner, W.; Oda, M.; Siesser, W.; Wonders, A.A.H.

    1989-03-01

    The Exmouth Plateau is uniquely suited to the study of sea level changes because of the existence of an extensive seismic grid and industry well sites, an extended Mesozoic stratigraphic record punctuated with several major unconformities, and the relatively protected position of this high plateau. Thus, documenting sea level fluctuations was one of the major objectives of drilling on the Exmouth Plateau. This documentation depends on their ability to (1) isolate the tectonic overprint from the eustatic signal by retracing the subsidence histories of the drill sites and (2) accurately date the unconformities. Two transects of sites were drilled, one with four sites on the Wombat Plateau and the other with two sites on the central Exmouth Plateau, with one site located relatively proximally and another distally to the source of sediment supply. Preliminary shipboard work indicates that the age of Mesozoic unconformities can be accurately constrained and the subsidence-related tectonic events can be effectively isolated from sea level fluctuations. Sequence stratigraphic analysis of seismic, lithofacies, biofacies, and well-log data document important Upper Triassic sequence boundaries on the Wombat Plateau between the middle and upper Carnian (Norian-Rhaetian boundary) and in the upper most Rhaetian, whose timing and relative magnitude conform well with the eustatic cycle chart. The sequence boundary and systems tracts recognized in the central Exmouth Plateau Barrow Group equivalent strata (Berriasian-Valanginian) also correspond well with the global cycle chart. These preliminary results are of considerable importance in providing a test of the validity of the eustatic model.

  7. Geologic and Seismologic Investigation

    Science.gov (United States)

    1988-12-01

    Utah, Embankment Criteria and Performance Report, August 1994 2. Caliente Creek Stream Group Investigation California, Draft Feasibility Report. June...trenching and soil-stratigraphic investigations east of Sacramento, north of the study area ( Tierra Engineering Consultants, 1983) at Folsom Dam showed...Geologic Map of California, Olaf P. Jenkins edition, Mariposa Sheet: California Division qf Mines and Geology, Scale 1:250,000. Tierra Entgineering

  8. Thermoluminescence studies in geology

    International Nuclear Information System (INIS)

    Sankaran, A.V.; Sunta, C.M.; Nambi, K.S.V.; Bapat, V.N.

    1980-01-01

    Even though the phenomenon of thermoluminescence is well studied, particularly over last 3 decades, its potentialities in the field of geology have not been adequately evaluated. In this report several useful applications of TL in mineralogy, petrogenesis, stratigraphy, tectonics, ore-prospecting and other branches have been identified with particular emphasis to the Indian scene. Important areas in the country that may provide the basic material for such studies are indicated at the end along with brief geological or mineralogical accounts. (auth.)

  9. The Terrestrial Fossil Organic Matter Record of Global Carbon Cycling: A Late Paleozoic through Early Mesozoic Perspective

    Science.gov (United States)

    Montanez, I. P.

    2006-12-01

    The carbon isotope composition of terrestrial fossil organic matter (δ13Corg) has been widely used as a proxy of global carbon cycling and to reconstruct perturbations to the ocean-atmosphere carbon budget. The degree to which terrestrial δ13Corg records local to regional environmental conditions versus the evolution of the global carbon cycle has been highly debated. The high-resolution (104 to 106 m.y.) terrestrial δ13Corg record presented here defines a long-term trend through the latest Devonian to Late Triassic that reveals significant and systematic variations that track independently inferred changes in climate, paleo-atmospheric pCO2, and major restructuring in paleotropical flora. This newly derived record is based on 350 carbon isotope analyses of compressed and permineralized plants, cuticle, charcoal and coal (including vitrinite and fusinite) collected from paleo-wetland mudstones and claystones, claystone-filled abandoned fluvial channels, floodplain mudstones, and ephemeral lacustrine deposits at paleo-tropical to paleo-temperate latitudes. Morphologic and geochemical analysis of contemporaneous paleosols and fluvial-alluvial deposits allow for correlation of terrestrial δ13Corg values to reconstructed paleo-environmental conditions. Terrestrial δ13Corg values of contemporaneous fossil organic matter exhibit systematic inter- and intra-basinal variation of up to 2‰ associated with differences in paleo-precipitation and burial history, and geomorphic position within depositional basins and paleo-fluvial systems. Variation in δ13Corg by organic matter type is minimal to less than 1.5‰; specifically, charcoal δ13Corg values overlap to are slightly less negative than those of thermally less mature organic components analyzed. Overall, variation within contemporaneous populations is significantly less than defined by the long-term terrestrial δ13Corg record. Moreover, paleo-floral pi/pa ratios, an established proxy of water-use efficiency of

  10. Planetary Geologic Mapping Handbook - 2010. Appendix

    Science.gov (United States)

    Tanaka, K. L.; Skinner, J. A., Jr.; Hare, T. M.

    2010-01-01

    the USGS now are primarily digital products using geographic information system (GIS) software and file formats. GIS mapping tools permit easy spatial comparison, generation, importation, manipulation, and analysis of multiple raster image, gridded, and vector data sets. GIS software has also permitted the development of projectspecific tools and the sharing of geospatial products among researchers. GIS approaches are now being used in planetary geologic mapping as well. Guidelines or handbooks on techniques in planetary geologic mapping have been developed periodically. As records of the heritage of mapping methods and data, these remain extremely useful guides. However, many of the fundamental aspects of earlier mapping handbooks have evolved significantly, and a comprehensive review of currently accepted mapping methodologies is now warranted. As documented in this handbook, such a review incorporates additional guidelines developed in recent years for planetary geologic mapping by the NASA Planetary Geology and Geophysics (PGG) Program's Planetary Cartography and Geologic Mapping Working Group's (PCGMWG) Geologic Mapping Subcommittee (GEMS) on the selection and use of map bases as well as map preparation, review, publication, and distribution. In light of the current boom in planetary exploration and the ongoing rapid evolution of available data for planetary mapping, this handbook is especially timely.

  11. U-Pb age and Hf-O isotopes of detrital zircons from Hainan Island: Implications for Mesozoic subduction models

    Science.gov (United States)

    Jiang, Xiao-Yan; Li, Xian-Hua; Collins, W. J.; Huang, Hui-Qing

    2015-12-01

    A compilation of magmatic ages from the Mesozoic South China Block suggests a number of "magmatic quiescence" periods at ca. 205-195 Ma, ca. 150-140 Ma and ca. 125-115 Ma, casting doubt on tectonic models that suggest ongoing Andean-type subduction along the South China continental margin. However, SIMS U-Pb analyses on two detrital zircon samples from the Cretaceous Lumuwan Formation on Hainan Island, southeast China, reveal three major age peaks at ca. 120 Ma, ca. 155 Ma and ca. 235 Ma. Zircons of these ages are mostly euhedral and show typical magmatic oscillatory zoning, suggesting short-distance transport from nearby magmatic sources. The extremely rare occurrence of ca. 120 Ma magmatic records onshore suggests that detrital zircons of this age population may be derived from a source proximal to Hainan Island but presently missing. Therefore, our data provide new evidence for ongoing magmatic activity in late Mesozoic South China. In situ Hf and O isotope analyses of the Mesozoic detrital zircons reveal large variations in both εHf(t) (- 21.2 to 10.5) and δ18O (4.4‰ to 13.6‰) values. A general negative correlation between them suggests the reworking of old supracrustal materials (average crustal residence age of ca. 2.0 Ga) by juvenile mantle-derived magmas. The progression of increasing εHf(t) and decreasing δ18O values of zircons from the Triassic to the Cretaceous suggests progressive crustal growth during the Mesozoic. The results are consistent with hybridization at an active continental margin. We briefly review tectonic models for the Indosinian orogeny and suggest that the petrologic evidence indicates that Mesozoic magmatism was part of the circum-Pacific accretionary orogens that formed along the continental margin of East Asia no later than ca. 250 Ma and continued at least to the late Cretaceous.

  12. Research of mining and geological conditions for geological exploration in Pre-Caucasian region

    Directory of Open Access Journals (Sweden)

    Р. А. Гасумов

    2017-12-01

    Full Text Available Taking into consideration natural depletion of reserves of hydrocarbons in Mesozoic deposits of the majority of operated deposits of North Caucasus and for the purpose of further development of oil and gas producing industry in the region it is necessary to involve a carbonaceous complex of Jura of West Pre-Caucasus with the burial depth of more than 5300 m in the development. When drafting engineering design for a construction of exploratory wells in complex mining and geological conditions driven by anomalously high overburden pressure and temperature, use of thoroughly studied field geological information and taking into consideration the experience of boring similar wells is important. The paper provides analysis of geophysical data, the results of complex studies of reservoir porosity and permeability features of rocks picked out of core-samples of the first exploratory well on Krupskaya zone (porosity, permeability, electrical, acoustic, lithological characteristics, pressure-and-temperature conditions. The information obtained allowed to specify technological parameters of boring and tailing-in and to give recommendations regarding the way of exploratory wells boring and use of borehole equipment. In order to avoid the development of significant hydrodynamic pressure in the borehole which provokes gas showings it is necessary to keep on a certain level of minimal values of mud rheology parameters (dynamic shear stress τ = 70¸135 dPa; plastic viscosity η = 25¸35 mPa·s. For the purpose of real-time keeping of overbalance with anomalously high overburden pressure, control and regulation of calculated head pressure a stripper head should be included into the equipment configuration. Furthermore well head equipment and blowout preventer equipment must be designed for expected gradient of overburden pressure.

  13. Nagra technical report 14-02, geological basics - Dossier II - Sediments and tectonic considerations

    International Nuclear Information System (INIS)

    Madritsch, H.; Deplazes, G.

    2014-01-01

    This dossier is the second of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. It considers the sediments that can be used and discusses tectonic considerations. As an introduction, the geological framework is discussed with the various sediments from the Paleozoic, Mesozoic and Cenozoic periods. The various methods used to investigate the rock, such as drilling and reflection-seismic methods along with the investigation of surface formations are discussed. A detailed discussion of the stratigraphic and sedimentological characteristics of the various formations follows. Geological structures and the tectonics in the proposed areas are discussed, as are the depth and thickness of the structures

  14. The Mesozoic-Cenozoic igneous intrusions and related sediment-dominated hydrothermal activities in the South Yellow Sea Basin, the Western Pacific continental margin

    Science.gov (United States)

    Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen

    2018-04-01

    Various igneous complexes were identified in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and hydrothermal activities. Some intrusion-related hydrothermal vent complexes have been identified and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of hydrothermal vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. Hydrothermal vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related hydrothermal vent complexes, which will have implications for the future study of this area.

  15. Geological structure and mineral resources of Algeria

    Directory of Open Access Journals (Sweden)

    Eduard Dobra

    2007-12-01

    Full Text Available The hydrocarbon System Ourd Mya is located in the Sahara Basin. It is one of the producing basins in Algeria. The stratigraphic section consists of Paleozoic and Mesosoic, it is about 5000 m thick. In the eastern part, the basin is limited by the Hassi-Messaoud high zone which is a giant oil field produced from the Cambrian sands. The western part is limited by Hassi R`mel which is one of the biggest gas field in the world, it is produced from the triassic sands. The Mesozoic section lays on the lower Devonian and in the eastern part, on the Cambrian. The main source rock is Silurian shale with an average thickness of 50 m and a total organic matter of 6 % (14 % in some cases. Results of maturation modeling indicate that the lower Silurian source is in the oil window. The Ordovician shales are also a source rock but in a second order. Clastic reservoirs are in the Triassic sequence which is mainly fluvial deposit with complex alluvial channels, it is the main target in the basin. Clastic reservoirs within the lower Devonian section have a good hydrocarbon potential in the east of the basin through a southwest-northeast orientation. The late Triassic-Early Jurassic evaporites overlie the Triassic clastic interval and extend over the entire Oued Mya Basin. This is considered as a super-seal evaporate package, which consists predominantly of anhydrite and halite. For Paleozoic targets, a large number of potential seals exist within the stratigraphic column.This paper describe the main geological structure and mineral resources of Algeria.

  16. Architecture of ductile-type, hyper-extended passive margins: Geological constraints from the inverted Cretaceous basin of the North-Pyrenean Zone ('Chaînons Béarnais', Western Pyrenees)

    Science.gov (United States)

    Corre, Benjamin; Lagabrielle, Yves; Labaume, Pierre; Lahfid, Abdeltif; Boulvais, Philippe; Bergamini, Geraldine; Fourcade, Serge; Clerc, Camille

    2017-04-01

    Sub-continental lithospheric mantle rocks are exhumed at the foot of magma-poor distal passive margins as a response to extreme stretching of the continental crust during plate separation. Remnants of the Northern Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and represent field analogues to study the processes of continental crust thinning and subcontinental mantle exhumation. The NPZ results from the inversion of basins opened between the Iberia and Europa plates during Albo-Cenomanian times. In the western NPZ, the 'Chaînons Béarnais' ranges display a fold-and-thrust structure involving the Mesozoic sedimentary cover, decoupled from its continental basement and associated with peridotite bodies in tectonic contact with Palaeozoic basement lenses of small size. Continental extension developed under hot thermal conditions, as demonstrated by the syn-metamorphic Cretaceous ductile deformation affecting both the crustal basement and the allochthonous Mesozoic cover. In this study, we present structural and geochemical data providing constraints to reconstruct the evolution of the northern Iberia paleo-margin. Field work confirms that the pre-rift Mesozoic cover is intimately associated to mantle rocks and to thin tectonic lenses of crustal basement. It also shows that the pre-rift cover was detached from its bedrock at the Keuper evaporites level and was welded to mantle rocks during their exhumation at the foot of the hyper-extended margin. The crust/mantle detachment fault is a major shear zone characterized by anastomosed shear bands defining a plurimetric phacoidal fabric at the top of the serpentinized mantle. The detachment is marked by a layer of metasomatic rocks, locally 20 meters thick, made of talc-chlorite-pyrite-rich rocks that developped under greenschist facies conditions. Raman Spectroscopy on Carbonaceous Materials (RSCM), performed on the Mesozoic cover reveal that the entire sedimentary pile underwent temperatures

  17. Comparative geology of the satellites of the giant planets

    Science.gov (United States)

    Masson, P.

    1984-08-01

    The geologic evolution of the Jovian and Saturnian satellites is reviewed with regard to the major discoveries of the Voyager 1 and 2 encounters with Jupiter and Saturn. Nearly 40 satellites are now identified in the Jovian and Saturnian systems. Three of these satellites (Ganymede, Titan, and Callisto) are larger than Mercury, two (Io and Europa) have sizes similar to the moon, and four others (Rhea, Iapetus, Dione, and Tethys) are larger than the largest asteroids. They all have experienced different geologic evolutions related to their composition and to their location in the two systems. The present emphasis is upon the cratering record of their surfaces, and on their thermal evolution, with regard to the tidal effects produced by the giant planets. The small satellites are presented with no attempt to review their geologic record, since they are only known from their orbital properties.

  18. Theory of chaotic orbital variations confirmed by Cretaceous geological evidence

    Science.gov (United States)

    Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.

    2017-02-01

    Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.

  19. A preliminary study on the long-term geologic stability for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byoung Yoon; Koh, Young Kown [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    Geology of the Korean peninsula could be grouped by 7 rock types such as plutonic rocks, crystalline gneisses, metasedimentary rocks, Paleozoic and Mesozoic sedimentary rocks, porous and massive volcanic rocks. The plutonic rock type is the largest rock groups occupying about 35.2% over the peninsula. Tectonic movement could be classified as four great stages as Precambrian, Songnim, Daebo and Bulkuksa even though the ambiguous of prior Songnim. It would be supposed to deep relationship between tectonic movement, orogeny and magmatism. And also, the magmatism within the peninsula could be divided into 5 stages such as 1st stage of Precambrian(>570Ma), 2nd stage of late Paleozoic(>250Ma), 3rd stage of early to mid Mesozoic(200-300Ma), 4th stage of late Mesozoic(135-60Ma) and 5th stage of post early Tertiary(50Ma>). In the seismicities, the peninsula has some characteristics that of the intra-plate seismic characteristics located at south eastern part of the Eurasian plate apart from the boundary of the Pacific and Philippine plate. Eurasian plate is under the two stress direction acting eastward stresses induced the collision of Indo- Australlian plate and westward stresses due to the subduction of due the Pacific and Philippine plate. For the purpose of the quantitative analysis for the safety assessment of HLW disposal, it would be desired to have the long range approach concept for the characterization of FEPs such as upper stated including climate, sae level change, uplift and subsidence, erosion and sedimentation. 38 refs., 18 figs., 25 tabs. (Author)

  20. Geologic map of Mars

    Science.gov (United States)

    Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.

    2014-01-01

    This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.

  1. Geology at Yucca Mountain

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Both advocates and critics disagree on the significance and interpretation of critical geological features which bear on the safety and suitability of Yucca Mountain as a site for the construction of a high-level radioactive waste repository. Critics believe that there is sufficient geological evidence to rule the site unsuitable for further investigation. Some advocates claim that there is insufficient data and that investigations are incomplete, while others claim that the site is free of major obstacles. We have expanded our efforts to include both the critical evaluations of existing geological and geochemical data and the collection of field data and samples for the purpose of preparing scientific papers for submittal to journals. Summaries of the critical reviews are presented in this paper

  2. Geology of Io

    Science.gov (United States)

    Greeley, R.; Craddock, R. A.; Crown, D. A.; Leshin, L. A.; Schaber, G. G.

    1987-01-01

    Geologic mapping of the Jovian satellite Io has been completed at 1:15,000,000 scale for an area lying between +40 and -90 deg latitude and 230 and 45 deg longitude, which includes portions of the Ruwa Patera quadrangle (Ji2) and the Lerna Region (Ji4) and the westernmost section of the Colchis Region (Ji3). Image resolution in the mapped area is commonly 0.5 to 2 km/pxl. High resolution areas (less than .5 km/pxl) are located near the south pole (Lerna Region) and in eastern Ruwa Patera quadrangle. Geologic maps for the Ruwa Patera quadrangle (Ji2) and the Lerna Region (Ji4) have been produced at 1:5,000,000 scale. The present effort reexamines the previously mapped areas and synthesizes the geology of Io on a global scale.

  3. The geology of Ganymede

    Science.gov (United States)

    Shoemaker, E. M.; Lucchitta, B. K.; Wilhelms, D. E.; Plescia, J. B.; Squyres, S. W.

    A broad outline of the geologic history of Ganymede is presented, obtained from a first attempt to map the geology on a global scale and to interpret the characteristics of the observed geologic units. Features of the ancient cratered terrain such as craters and palimpsests, furrows and troughs, are discussed. The grooved terrain is described, including its sulci and cells, and the age relation of these units is considered along with the structure and origin of this terrain. The Gilgamesh Basin and Western Equatorial Basin in the post grooved terrain are treated, as are the bright and dark ray craters and the regolith. The development of all these regions and features is discussed in context. For the regolith, this includes the effect of water migration, sputtering, and thermal annealing. The histories of the ancient cratered terrain, the grooved terrain, and the post grooved terrain are presented.

  4. Geological Corrections in Gravimetry

    Science.gov (United States)

    Mikuška, J.; Marušiak, I.

    2015-12-01

    Applying corrections for the known geology to gravity data can be traced back into the first quarter of the 20th century. Later on, mostly in areas with sedimentary cover, at local and regional scales, the correction known as gravity stripping has been in use since the mid 1960s, provided that there was enough geological information. Stripping at regional to global scales became possible after releasing the CRUST 2.0 and later CRUST 1.0 models in the years 2000 and 2013, respectively. Especially the later model provides quite a new view on the relevant geometries and on the topographic and crustal densities as well as on the crust/mantle density contrast. Thus, the isostatic corrections, which have been often used in the past, can now be replaced by procedures working with an independent information interpreted primarily from seismic studies. We have developed software for performing geological corrections in space domain, based on a-priori geometry and density grids which can be of either rectangular or spherical/ellipsoidal types with cells of the shapes of rectangles, tesseroids or triangles. It enables us to calculate the required gravitational effects not only in the form of surface maps or profiles but, for instance, also along vertical lines, which can shed some additional light on the nature of the geological correction. The software can work at a variety of scales and considers the input information to an optional distance from the calculation point up to the antipodes. Our main objective is to treat geological correction as an alternative to accounting for the topography with varying densities since the bottoms of the topographic masses, namely the geoid or ellipsoid, generally do not represent geological boundaries. As well we would like to call attention to the possible distortions of the corrected gravity anomalies. This work was supported by the Slovak Research and Development Agency under the contract APVV-0827-12.

  5. Controls of late Palaeozoic and Mesozoic extension in the British Isles: evidence from seismic reflection data in the Central North Sea

    Science.gov (United States)

    Smith, K.; Cameron, T. D. J.

    2009-04-01

    Controls of late Palaeozoic and Mesozoic extension in the British Isles: evidence from seismic reflection data in the Central North Sea. Kevin Smith (1) and Don Cameron (2) (1) British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA. (ksm@bgs.ac.uk). (2) British Geological Survey, 376 Gilmerton Road, Edinburgh, EH17 7QS. In the area of the British Isles during the late Devonian and early Carboniferous, the oblique convergence of Laurentia and Gondwana imposed a torque on the adjoining terranes of Baltica and Avalonia. Their resulting clockwise rotation was accommodated by widely distributed N-S extension in the intervening zones previously formed by Caledonian and Acadian convergence. South of Laurentia and Baltica, late Palaeozoic extension was focused (1) at terrane margins, (2) in areas of limited Caledonian-Acadian plutonism, and (3) in places where the western (Iapetus) and eastern (Tornquist) convergence zones intersect at a high angle. One of these latter areas lies in Central England immediately north of the Midland Microcraton (part of Eastern Avalonia), where thermal subsidence associated with early Carboniferous extension gave rise to the late Carboniferous Pennine Basin. Interpretation of an extensive set of 3D and 2D long-offset seismic reflection data suggests that a similar area of enhanced extension at a fold belt intersection lies to north of the Mid North Sea High in the middle of the Central North Sea. Variscan uplift and inversion of the late Palaeozoic basins began to predominate in mid-Carboniferous times as final amalgamation of all the different terranes to form Pangaea curtailed the initial episode of extension and thermal subsidence. This change in the tectonic regime was associated with the onset of tholeiitic volcanism within the convergence zones, and was followed by localised extension during the earliest Permian. Evidence obtained from seismic interpretation of the deep structure of the UK sector of the Central

  6. Study on Sr-Nd isotopes of mesozoic-cenozoic granites in Qinghai-Tibetan plateau

    International Nuclear Information System (INIS)

    Qiu Ruizhao; Deng Jinfu; Zhou Su; Xiao Qinghui; Cai Zhiyong

    2003-01-01

    Mesozoic-Cenozoic magmatic activities were intensive in Qinghai-Tibetan plateau. Nd-Sr isotopic compositions of representative granitic plutons in western Qinghai-Tibetan plateau are reported in this paper. Combining with past isotopic data, which has reported in eastern Qinghai-Tibetan plateau, Sr-Nd isotopic compositions and material source and genesis of Mesozoic and Cenozoic granites in Qinghai-Tibetan plateau have been studied. The research result indicates there are three types of granite existing in Qinghai-Tibetan plateau, the granites of Late stage of Yanshan Period which distributing on north and south boundary of Gandes block (namely in north and south granitic belts of Dangdes) and cause of oceanic crust subduction, have ( 87 Sr/ 86 Sr)i of 0.7041-0.7064, ε (Nd) t of +2.5 - +5.7 and TDM age of 312-562 Ma, positive ε Nd, low ( 87 Sr/ 86 Sr)i ratio and young Nd model ages suggest relatively high contents of mantle-derived components in their sources, and this type granite might melt from subduction oceanic crust. The granites occurred intra-Gangdes block which were caused by collision of continent and post-collision, have ( 87 Sr/ 86 Sr)i of 0.706-0.719, ε (Nd) t of -5.3 - -8.3 and TDM age of 1323-1496 Ma, negative ε Nd, relative high ( 87 Sr/ 86 Sr)i ratio with an mid-Proterozoic Nd model ages, suggest granite has the mixing genesis of mantle-derived components and old crustal components in their sources. With relatively small variation range in ε (Nd) t and TDM age, it might imply granitic isotopic source in Gandes block to keep relative homogenization in long period. The granites in Himalayan block which there is not oceanic material to join in melting and to cause of intra-continental subduction, has most ( 87 Sr/ 86 Sr)i ratio more than 0.720, ε (Nd) t of -10.3 - -16.3 and TDM age of 1792-2206 Ma, high ( 87 Sr/ 86 Sr)i ratio, low negative ε (Nd)t with old Nd isotopic model ages and consistent with the Sr, Nd isotopic compositions of basement

  7. The lithosphere structure and deep processes of the Mesozoic metallogenic belt in eastern China: constraints from passive and active seismic methods

    Science.gov (United States)

    Lu, Q.; Shi, D.; Jiang, G.; Yan, J.

    2013-12-01

    The lithosphere structure and deep processes are keys to understanding mineral system and ore-forming processes. Lithosphere-scale process could create big footprints or signatures which can be observed by geophysics methods. SinoProbe-03 has conducted a Transect exploration across middle and lower Yangtze Metallogenic Belt (YMT) in Eastern China. Broadband seismic, reflection seismic, wide-angle reflection and magnetotellurics survey were carried out along the Transect. Seismic reflection profiles and MT survey were also performed in Luzong, Tongling and Ningwu ore districts to construct 3D geological model. The resulting geophysical data provides new information which help to better understanding the lithosphere structure, deep processes and deformation history of the Metallogenic Belt. The major results are: (1) Lower velocity body at the top of upper mantle and a SE dipping high velocity body were imaged by teleseismic tomography beneath YMB; (2) Shear wave splitting results show NE parallel fast-wave polarization direction which parallel with tectonic lineament; (3) The reflection seismic data support the crustal-detachment model, the lower and upper crust was detached during contraction deformation near Tanlu fault and Ningwu volcanic basin; (4) Broadband and reflection seismic confirm the shallow Moho beneath YMB; (5) Strong correlation of lower crust reflectivity with magmatism; (6) The lower crust below Luzong Volcanics shows obvious reflective anisotropy both at the crust-mantle transition and the brittle-ductile transition in the crust. All these features suggest that introcontinental subduction, lithosphere delamination, mantle sources magmatic underplating, and MASH process are responsible for the formation of this Mesozoic metallogenic belt. Acknowledgment: We acknowledge the financial support of SinoProbe by the Ministry of Finance and Ministry of Land and Resources, P. R. China, under Grant sinoprobe-03, and financial support by National Natural

  8. Geologic Map of Lassen Volcanic National Park and Vicinity, California

    Science.gov (United States)

    Clynne, Michael A.; Muffler, L.J. Patrick

    2010-01-01

    The geologic map of Lassen Volcanic National Park (LVNP) and vicinity encompasses 1,905 km2 at the south end of the Cascade Range in Shasta, Lassen, Tehama, and Plumas Counties, northeastern California (fig. 1, sheet 3). The park includes 430 km2 of scenic volcanic features, glacially sculpted terrain, and the most spectacular array of thermal features in the Cascade Range. Interest in preserving the scenic wonders of the Lassen area as a national park arose in the early 1900s to protect it from commercial development and led to the establishment in 1907 of two small national monuments centered on Lassen Peak and Cinder Cone. The eruptions of Lassen Peak in 1914-15 were the first in the Cascade Range since widespread settling of the West in the late 1800s. Through the printed media, the eruptions aroused considerable public interest and inspired renewed efforts, which had languished since 1907, to establish a national park. In 1916, Lassen Volcanic National Park was established by combining the areas of the previously established national monuments and adjacent lands. The southernmost Cascade Range is bounded on the west by the Sacramento Valley and the Klamath Mountains, on the south by the Sierra Nevada, and on the east by the Basin and Range geologic provinces. Most of the map area is underlain by middle to late Pleistocene volcanic rocks; Holocene, early Pleistocene, and late Pliocene volcanic rocks (Paleozoic and Mesozoic rocks are inferred to underlie the volcanic deposits (Jachens and Saltus, 1983), but the nearest exposures of pre-Tertiary rocks are 15 km to the south, 9 km to the southwest, and 12 km to the west. Diller (1895) recognized the young volcanic geology and produced the first geologic map of the Lassen area. The map (sheet 1) builds on and extends geologic mapping by Williams (1932), Macdonald (1963, 1964, 1965), and Wilson (1961). The Lassen Peak area mapped by Christiansen and others (2002) and published in greater detail (1:24,000) was

  9. Homo Sapiens as Geological Agents

    Science.gov (United States)

    Holloway, T.; Bedsworth, L. W.; Caldeira, K.; Rosenzweig, C.; Kelley, G.; Rosenzweig, C.; Caldeira, K.; Bedsworth, L. W.; Holloway, T.; Purdy, J. S.; Vince, G.; Syvitski, J. A.; Bondre, N. R.; Kelly, J.; Vince, G.; Seto, K. C.; Steffen, W.; Oreskes, N.

    2015-12-01

    In the 18th and 19th centuries, earth scientists came to understand the magnitude and power of geological and geophysical processes. In comparison, the activities of humans seemed paltry if not insignificant. With the development of radiometric dating in the 20th century, scientists realized that human history was but a miniscule part of Earth history. Metaphors to this effect abounded, and filled textbooks: If Earth history were a 24-hour day, human history would not occupy even the final second. If Earth history were a yardstick, the human portion would not even be visible to the naked eye. Generations of scientists were taught that one of the principal contributions of geology, qua science, was the demonstration of our insignificance. The Anthropocene concept disrupts this. To affirms its existence is to insist that human activities compete in scale and significance with other Earth processes, and may threaten to overwhelm them. It also inverts our relation to normative claims. For more than a century earth scientists and evolutionary biologists insisted that their theories were descriptive and not normative—that there was no moral conclusion to be drawn from either planetary or human evolution. Now, we confront the suggestion that there is a moral component to our new paradigm: we can scarcely claim that humans are disrupting the climate, destroying biodiversity, and acidifying the oceans without implying that there is something troubling about these developments. Thus, the Anthropocene concept suggests both a radical redefinition of the scope of Earth science, and a radical reconsideration of the place of normative judgments in scientific work.

  10. Geological impacts on nutrition

    Science.gov (United States)

    This chapter reviews the nutritional roles of mineral elements, as part of a volume on health implications of geology. The chapter addresses the absorption and post-absorptive utilization of the nutritionally essential minerals, including their physiological functions and quantitative requirements....

  11. Geology of Venus

    International Nuclear Information System (INIS)

    Basilevsky, A.T.; Head, J.W. III.

    1988-01-01

    This paper summarizes the emerging picture of the surface of Venus provided by high-resolution earth-based radar telescopes and orbital radar altimetry and imaging systems. The nature and significance of the geological processes operating there are considered. The types of information needed to complete the picture are addressed. 71 references

  12. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  13. Palynology and environmental geology

    NARCIS (Netherlands)

    Manten, A.A.

    1967-01-01

    A brief survey of the possibilities and problems of palynology as a contributor to the progress of palaeogeography, palaeoclimatology and palaeoecology is presented. Also shown is how these fields and other branches of the earth sciences which contribute to environmental geology may, in their turn,

  14. Deconstructing geologic slip rates

    Science.gov (United States)

    Gold, R. D.

    2017-12-01

    Discrepancies between geologic and geodetic slip rates are recognized globally. However, understanding the significance of those discrepancies requires a complete inventory of the sources of uncertainty often deeply hidden or ignored in slip-rate estimates. In this presentation, I will examine underappreciated complexities associated with geologic estimates of fault slip rates along strike-slip faults. Slip-rate measurements are made from geomorphic features displaced by faulting and age constraints derived from chronologic or stratigraphic data. Sources of uncertainty associated with offset measurements include measurement errors, ambiguities in feature reconstructions, and distributed faulting and bulk off-fault deformation. Sources of uncertainty associated with age constraints include analytical uncertainties, inheritance in the sample material, post-depositional contamination, and often most critically, ambiguity in how to associate sample ages with the landforms or deposits from which they were collected. Additional sources of uncertainty associated with slip-rate measurements include the time interval over which geologic slip rates are determined (e.g., number of earthquake cycles) and the impact of secular variation in slip. I will use case studies from the San Andreas fault system, the Walker Lane, and Tibet to explore sources of uncertainty in geologic slip rates and highlight practices that can mitigate those uncertainties. I will emphasize the need for bracketing the age of faulted landforms using numerous geochronometers, documenting numerous offset landforms, and sampling a range of magnitudes of slip in a probabilistic framework.

  15. Deterministic geologic processes and stochastic modeling

    International Nuclear Information System (INIS)

    Rautman, C.A.; Flint, A.L.

    1991-01-01

    Recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. Consideration of the spatial distribution of measured values and geostatistical measures of spatial variability indicates that there are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. These deterministic features have their origin in the complex, yet logical, interplay of a number of deterministic geologic processes, including magmatic evolution; volcanic eruption, transport, and emplacement; post-emplacement cooling and alteration; and late-stage (diagenetic) alteration. Because of geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly, using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling. It is unlikely that any single representation of physical properties at the site will be suitable for all modeling purposes. Instead, the same underlying physical reality will need to be described many times, each in a manner conducive to assessing specific performance issues

  16. Geological data integration techniques

    International Nuclear Information System (INIS)

    1988-09-01

    The objectives of this Technical Committee are to bring together current knowledge on geological data handling and analysis technologies as developed in the mineral and petroleum industries for geological, geophysical, geochemical and remote sensing data that can be applied to uranium exploration and resource appraisal. The recommendation for work on this topic was first made at the meeting of the NEA-IAEA Joint Group of Experts on R and D in Uranium Exploration Techniques (Paris, May 1984). In their report, processing of integrated data sets was considered to be extremely important in view of the very extensive data sets built up over the recent years by large uranium reconnaissance programmes. With the development of large, multidisciplinary data sets which includes geochemical, geophysical, geological and remote sensing data, the ability of the geologist to easily interpret large volumes of information has been largely the result of developments in the field of computer science in the past decade. Advances in data management systems, image processing software, the size and speed of computer systems and significantly reduced processing costs have made large data set integration and analysis practical and affordable. The combined signatures which can be obtained from the different types of data significantly enhance the geologists ability to interpret fundamental geological properties thereby improving the chances of finding a significant ore body. This volume is the product of one of a number of activities related to uranium geology and exploration during the past few years with the intent of bringing new technologies and exploration techniques to the IAEA Member States

  17. From Tethyan Oceans to the Western Mediterranean I - Plate reconstructions from the Present back to the Early Mesozoic

    Science.gov (United States)

    Schmid, Stefan; Handy, Mark; Bousquet, Romain; Kissling, Eduard; Bernoulli, Daniel

    2010-05-01

    A new reconstruction of the branches of Alpine Tethys combines available plate kinematic models of Africa-Europe motion with a wealth of new geological and geophysical data (seismic tomography and paleomagnetics) to shed light the evolution of the Western Mediterranean-Alps system, from sea-floor spreading through subduction to collision. Unlike previous models which relate the fate of Alpine Tethys solely to relative motions of the African plate with respect to Europe during opening of the Atlantic, our reconstruction invokes motions and rotations of four additional and temporarily independent microplates: Adria, Iberia, Alcapia and Alkapecia. Translations and rotations of these microplates with respect to Europe are constrained in the following way: (1) The retro-translations of Adria back to 94 Ma are obtained from shortening estimates in the Alps along geological-geophysical transects of the Alpine orogen and from geobarometric estimates of subduction depth in tectonic units that underwent high-pressure and ultrahigh-pressure metamorphism. Rotations are based on paleomagnetic data of Márton et al. (in press); (2) Iberia follows the motion paths of Savostin et al. (1986), based on magnetic anomalies in the Central and Northern Atlantic; the Corsica-Sardinia block later rifted from Iberia leading to Burdigalian opening of the Liguria-Provençal basin (Serranne 1999). (3) The Alcapia microplate, whose name is derived from the acronym ALCAPA (Alps-Carpathians-Pannonian Basin), separated from Adria in Cretaceous times. Its movement with respect to Adria was absorbed by Cretaceous orogeny in the Eastern Alps, constrained by the Adria-Europe displacement and rotation path; later, during Cenozoic orogeny in the Alps, associated with the closing of the Alpine Tethys, it became part of the Adria microplate again. (4) The introduction of an independent Alkapekia continental fragment and independent microplate during the Late Cenozoic only (Alboran

  18. Mesozoic mafic dikes from the Shandong Peninsula, North China Craton: Petrogenesis and tectonic implications

    International Nuclear Information System (INIS)

    Liu Shen; Hu Ruizhong; Zhao Junhong; Feng Caixia; Zou, Haibo

    2006-01-01

    Mesozoic mafic dikes are widely distributed in Luxi (Mengyin and Zichuan) and Jiaodong regions of the Shandong Peninsula, China, providing an opportunity of investigating the nature of the lost lithospheric mantle beneath the North China Craton (NCC). The mafic dikes are characterized by strong depletion in high field strength elements (HFSE), enrichment in light rare earth elements (LREE), highly variable Th/U ratios, high initial ( 87 Sr/ 86 Sr) i (0.7050-0.7099) and negative ε Nd (T) (-6.0 to -17.6). They were derived from melting of metasomatized portions of the subcontinental lithospheric mantle, followed by fractionation of clinopyroxenes. The similarity in Nd isotopic compositions between the Mengyin gabbro dikes and the Paleozoic peridotite xenoliths suggests that ancient lithospheric mantle was still retained at 120 Ma below Mengyin, although the ancient lithospheric mantle in many other places beneath NCC had been severely modified. There might be multiple enrichment events in the lithospheric mantle. An early-stage (before or during Paleozoic) rutile-rich metasomatism affected the lithospheric mantle below Mengyin, Jiaodong and Zichuan. Since then, the lithospheric mantle beneath Mengyin was isolated. A late-stage metasomatism by silicate melts modified the lithospheric mantle beneath Jiaodong and Zichuan but not Mengyin. The removal of the enriched lithospheric mantle and the generation of the mafic dikes may be mainly related to the convective overturn accompanying Jurassic-Cretaceous subduction of the paleo-Pacific plate. (author)

  19. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils

    Science.gov (United States)

    Cadena, Edwin A.; Mejia-Molina, Alejandra; Brito, Carla M.; Peñafiel, Sofia; Sanmartin, Kleber J.; Sarmiento, Luis B.

    2018-04-01

    Ecuador is well known for its extensive extant biodiversity, however, its paleobiodiversity is still poorly explored. Here we report seven new Mesozoic and Cenozoic fossil localities from the Pacific coast, inter-Andean depression and Napo basin of Ecuador, including vertebrates, invertebrates, plants, and microfossils. The first of these localities is called El Refugio, located near the small town of Chota, Imbabura Province, from where we report several morphotypes of fossil leaves and a mycetopodid freshwater mussel of the Upper Miocene Chota Formation. A second site is also located near the town of Chota, corresponding to potentially Pleistocene to Holocene lake deposits from which we report the occurrence of leaves and fossil diatoms. A third locality is at the Pacific coast of the country, near Rocafuerte, a town in Esmeraldas Province, from which we report a late Miocene palm leaf. We also report the first partially articulated skull with teeth from a Miocene scombridid (Mackerels) fish from El Cruce locality, and completely preserved seeds from La Pila locality, both sites from Manabí Province. Two late Cretaceous fossil sites from the Napo Province, one near Puerto Napo showing a good record of fossil shrimps and a second near the town of Loreto shows the occurrence of granular amber and small gymnosperms seeds and cuticles. All these new sites and fossils show the high potential of the sedimentary sequences and basins of Ecuador for paleontological studies and for a better understanding of the fossil record of the country and northern South America.

  20. Tritaenia Maegdefrau et Rudolf, Mesozoic 'Sciadopitys-like' leaves in mass accumulations.

    Science.gov (United States)

    Manum; Van Konijnenburg-Van Cittert JH; Wilde

    2000-05-01

    The Late Jurassic to Early Cretaceous genus Tritaenia Maegdefrau et Rudolf 1969 is problematic because of: (1) missing authentic material of its type species, T. linkii (Roemer 1839) Maegdefrau et Rudolf; and (2) Watson and Harrison's (1998) synonymization of T. linkii with Pseudotorellia heterophylla Watson. This paper: (1) rectifies the status of T. linkii on the basis of newly recovered specimens carrying the original author's authentication; and (2) gives the basis for rejecting Watson and Harrison's claim that T. linkii and T. crassa (Seward) Bose et Manum 1991 represent linear leaves of the heterophyllous taxon Pseudotorellia heterophylla. The three species of Tritaenia known to date (T. crassa, T. linkii, T. scotica) are reviewed, and the genus is compared with other Mesozoic so-called 'Sciadopitys-like' hypostomatic leaves with a median stomatal zone, many of which occur in mass accumulations such as T. linkii. Deciduousness is indicated for T. linkii and T. crassa by their occurrence in mass accumulations and the possession of well-developed abscission scars. Known mass accumulations of fossil foliage are reviewed and their implications for palaeoenvironmental interpretations discussed.

  1. A comparative study of diversification events: the early Paleozoic versus the Mesozoic

    Science.gov (United States)

    Erwin, D. H.; Valentine, J. W.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1987-01-01

    We compare two major long-term diversifications of marine animal families that began during periods of low diversity but produced strikingly different numbers of phyla, classes, and orders. The first is the early-Paleozoic diversification (late Vendian-Ordovician; 182 MY duration) and the other the Mesozoic phase of the post-Paleozoic diversification (183 MY duration). The earlier diversification was associated with a great burst of morphological invention producing many phyla, classes, and orders and displaying high per taxon rates of family origination. The later diversification lacked novel morphologies recognized as phyla and classes, produced fewer orders, and displayed lower per taxon rates of family appearances. The chief difference between the diversifications appears to be that the earlier one proceeded from relatively narrow portions of adaptive space, whereas the latter proceeded from species widely scattered among adaptive zones and representing a variety of body plans. This difference is believed to explain the major differences in the products of these great radiations. Our data support those models that hold that evolutionary opportunity is a major factor in the outcome of evolutionary processes.

  2. Seed ferns from the late Paleozoic and Mesozoic: Any angiosperm ancestors lurking there?

    Science.gov (United States)

    Taylor, Edith L; Taylor, Thomas N

    2009-01-01

    Five orders of late Paleozoic-Mesozoic seed ferns have, at one time or another, figured in discussions on the origin of angiosperms, even before the application of phylogenetic systematics. These are the Glossopteridales, Peltaspermales, Corystospermales, Caytoniales, and Petriellales. Although vegetative features have been used to suggest homologies, most discussion has focused on ovulate structures, which are generally interpreted as megasporophylls bearing seeds, with the seeds partially to almost completely enclosed by the megasporophyll (or cupule). Here we discuss current information about the reproductive parts of these plants. Since most specimens are impression-compression remains, homologizing the ovulate organs, deriving angiospermous homologues, and defining synapomorphies remain somewhat speculative. Although new specimens have increased the known diversity in these groups, a reconstruction of an entire plant is available only for the corystosperms, and thus hypotheses about phylogenetic position are of limited value. We conclude that, in the case of these seed plants, phylogenetic analysis techniques have surpassed the hard data needed to formulate meaningful phylogenetic hypotheses. Speculation on angiosperm origins and transitional stages in these fossils provides for interesting discussion, but currently it is still speculation, as the role of these groups in the origin of angiospermy continues to be cloaked in Darwin's mystery.

  3. Cordillera Zealandia: A Mesozoic arc flare-up on the palaeo-Pacific Gondwana Margin.

    Science.gov (United States)

    Milan, L A; Daczko, N R; Clarke, G L

    2017-03-21

    Two geochemically and temporally distinct components of the Mesozoic Zealandia Cordilleran arc indicate a shift from low to high Sr/Y whole rock ratios at c. 130 Ma. Recent mapping and a reappraisal of published Sr-Nd data combined with new in-situ zircon Hf isotope analyses supports a genetic relationship between the two arc components. A reappraisal of geophysical, geochemical and P-T estimates demonstrates a doubling in thickness of the arc to at least 80 km at c. 130 Ma. Contemporaneously, magmatic addition rates shifted from ~14 km 3 /my per km of arc to a flare-up involving ~100 km 3 /my per km of arc. Excursions in Sr-Nd-Hf isotopic ratios of flare-up rocks highlight the importance of crust-dominated sources. This pattern mimics Cordilleran arcs of the Americas and highlights the importance of processes occurring in the upper continental plates of subduction systems that are incompletely reconciled with secular models for continental crustal growth.

  4. Post-mesozoic rapid increase of seawater Mg/Ca due to enhanced mantle-seawater interaction.

    Science.gov (United States)

    Ligi, Marco; Bonatti, Enrico; Cuffaro, Marco; Brunelli, Daniele

    2013-09-25

    The seawater Mg/Ca ratio increased significantly from ~ 80 Ma to present, as suggested by studies of carbonate veins in oceanic basalts and of fluid inclusions in halite. We show here that reactions of mantle-derived peridotites with seawater along slow spreading mid-ocean ridges contributed to the post-Cretaceous Mg/Ca increase. These reactions can release to modern seawater up to 20% of the yearly Mg river input. However, no significant peridotite-seawater interaction and Mg-release to the ocean occur in fast spreading, East Pacific Rise-type ridges. The Mesozoic Pangean superocean implies a hot fast spreading ridge system. This prevented peridotite-seawater interaction and Mg release to the Mesozoic ocean, but favored hydrothermal Mg capture and Ca release by the basaltic crust, resulting in a low seawater Mg/Ca ratio. Continent dispersal and development of slow spreading ridges allowed Mg release to the ocean by peridotite-seawater reactions, contributing to the increase of the Mg/Ca ratio of post-Mesozoic seawater.

  5. Post-Mesozoic Rapid Increase of Seawater Mg/Ca due to Enhanced Mantle-Seawater Interaction

    Science.gov (United States)

    Ligi, Marco; Bonatti, Enrico; Cuffaro, Marco; Brunelli, Daniele

    2013-01-01

    The seawater Mg/Ca ratio increased significantly from ~ 80 Ma to present, as suggested by studies of carbonate veins in oceanic basalts and of fluid inclusions in halite. We show here that reactions of mantle-derived peridotites with seawater along slow spreading mid-ocean ridges contributed to the post-Cretaceous Mg/Ca increase. These reactions can release to modern seawater up to 20% of the yearly Mg river input. However, no significant peridotite-seawater interaction and Mg-release to the ocean occur in fast spreading, East Pacific Rise-type ridges. The Mesozoic Pangean superocean implies a hot fast spreading ridge system. This prevented peridotite-seawater interaction and Mg release to the Mesozoic ocean, but favored hydrothermal Mg capture and Ca release by the basaltic crust, resulting in a low seawater Mg/Ca ratio. Continent dispersal and development of slow spreading ridges allowed Mg release to the ocean by peridotite-seawater reactions, contributing to the increase of the Mg/Ca ratio of post-Mesozoic seawater. PMID:24067442

  6. Geological-genetic classification for uranium deposits

    International Nuclear Information System (INIS)

    Terentiev, V.M.; Naumov, S.S.

    1997-01-01

    The paper describes a system for classification uranium deposits based on geological and genetic characteristics. The system is based on the interrelation and interdependence of uranium ore formation processes and other geological phenomena including sedimentation, magmatism and tectonics, as well as the evolution of geotectonic structures. Using these aspects, deposits are classified in three categories: endogenic - predominately hydrothermal and hydrothermal-metasomatic; exogenic - sedimentary diagenetic, biogenic sorption, and infiltrational; and polygenetic or composite types. The latter complex types includes: sedimentary/metamorphic and metamorphic and sedimentary/hydrothermal, where different ore generating processes have prevailed over a rock unit at different times. The 3 page classification is given in both the English and Russian languages. (author). 3 tabs

  7. Natural climate variations in a geological perspective

    International Nuclear Information System (INIS)

    Mikkelsen, N.; Kuijpers, A.

    2001-01-01

    The climate is constantly changing, and it has been changing throughout the geological history of the Earth. These natural changes have shown a variability with frequencies from millions of years to just a few hundreds or tens of years. Some of the variations have been rather dramatic - shifting from globally uniform and hot climates to regular ice ages - whereas other changes have been less spectacular. All natural climate variations have an impact on the physical and biological systems of the Earth - and on mankind and culture during the last hundred thousand years. In this chapter we shall discuss the natural climate changes that has taken place during the geological history of the Earth and comment on the impact of these changes on the cultural evolution of mankind with special emphasis on Greenland. (LN)

  8. Geoethics and Forensic Geology

    Science.gov (United States)

    Donnelly, Laurance

    2017-04-01

    The International Union of Geological Sciences (IUGS), Initiative on Forensic Geology (IFG) was set up in 2011 to promote and develop the applications of geology to policing and law enforcement throughout the world. This includes the provision of crime scene examinations, searches to locate graves or items of interest that have been buried beneath the ground surface as part of a criminal act and geological trace analysis and evidence. Forensic geologists may assist the police and law enforcement in a range of ways including for example; homicide, sexual assaults, counter terrorism, kidnapping, humanitarian incidents, environmental crimes, precious minerals theft, fakes and fraudulent crimes. The objective of this paper is to consider the geoethical aspects of forensic geology. This includes both delivery to research and teaching, and contribution to the practical applications of forensic geology in case work. The case examples cited are based on the personal experiences of the authors. Often, the technical and scientific aspect of forensic geology investigation may be the most straightforward, after all, this is what the forensic geologist has been trained to do. The associated geoethical issues can be the most challenging and complex to manage. Generally, forensic geologists are driven to carry-out their research or case work with integrity, honesty and in a manner that is law abiding, professional, socially acceptable and highly responsible. This is necessary in advising law enforcement organisations, society and the scientific community that they represent. As the science of forensic geology begins to advance around the world it is desirable to establish a standard set of principles, values and to provide an agreed ethical a framework. But what are these core values? Who is responsible for producing these? How may these become enforced? What happens when geoethical standards are breached? This paper does not attempt to provide all of the answers, as further work

  9. Sicily in its Mediterranean geological frame

    Energy Technology Data Exchange (ETDEWEB)

    Broquet, P.

    2016-10-01

    The Island of Sicily is generally considered to be the geological link between the North African Fold Belt and the Appennines, in Italy. This comes from a cylindristic meaning and is only partly exact. As a matter of fact, Sicily is essentially Greek; Ionian. Up to Middle Cretaceous time, the Sicilian area was a submerged shoal in the sea or the Panormide area, bordering the Ionian Ocean. This shoal lay between the future North African Fold Belt and the Appennines, forming an intermediate link between the Appenninic, Apulian, Panormian and Tunisian platforms. It was only during the Middle to Upper Cretaceous that the Atlantic and Ligure Oceans merged, making a continuous relationship between the Appenninic, Sicilian and North African sedimentary series. The key time periods are the Permian, Cretaceous and Oligo-Miocene periods leading to the formation of the actual Calabro-Sicilian arc. From the Permian to the present, the Sicilian geological history pertains to three oceanic domains: Ionian, Ligurian and Atlantic, of which the Ionian and Ligurian were under the influence of Tethys (Neo and Paleo-Tethys). The Tethysian identity of Sicily constitutes the major aspect of its geological history. However, the European and African plate tectonic movements complicated its structure. During the Middle Miocene subduction, southern Sicily became African, meanwhile its north-eastern part became, in Pliocene time, Maghrebian by accretion. Sicily is thus a truly geological patchwork, but its main section remains Ionian and now constitutes a link between North Africa and the Appennines. With older data, but also by means of recent results, we will replace Sicily in its Mediterranean frame, giving the mean stages of its paleogeographical and then its tectonic evolution. We will review the calabro-sicilian arc evolution from the Oligocene, developing the actual context and recalling the main fundamental play of the Numidian flysch. (Author)

  10. Recommendations and Guidelines, The Incorporation of Results of Current Crustal Evolution Studies into K-12 Curricula. A Report of the National Association of Geology Teachers Conference on K-12 Crustal Evolution Education (Western Hills State Lodge, Oklahoma, September 16-18, 1974).

    Science.gov (United States)

    Stoever, Edward C., Jr.

    The National Association of Geology Teachers (NAGT) conducted an assessment of the implications of current studies encompassing the theories of continental drift, polar wandering, sea-floor spreading, and plate tectonics to K-12 education, and presented in this document recommendations for the incorporation of these concepts into school curricula.…

  11. Geochemistry, geochronology and structural geology of the Birimian formations of the Katiola-Marabadiassa region (north-center of Ivory Coast). Magmatic evolution and geodynamical context of palaeo-Proterozoic

    International Nuclear Information System (INIS)

    Doumbia, S.

    1997-01-01

    Birimian (palaeo-Proterozoic) formations from western Africa are known from being of juvenile origin and dated of 2.1 Ga. However, few studies have been carried out so far on the nature, petrogenesis, and tectonic-metamorphic evolution of these formations, and the geodynamical evolution of the Birimian crust remains an open question. The Katiola-Marabadiassa region offers a clear litho-stratigraphy where the main units and their structural relationships can be recognized (green rocks, andesites, granitoids, sediments). Two generations of granitoids separated by the opening of a sedimentary basin are identified thanks to the petrographic, geochemical, geochronological and structural data. The first, of Archean type, is dated at 2123-2108 Ma and cuts the green rock belts in a diapiric way. The second, dated at about 2097 Ma comprises leucogranite batholites which cut the discordant overlying sedimentary formations. Thus, 3 volcanism phases can be recognized: a T-MORB type tholeiitic volcanism (the green rock belts), a rhyodacitic calc-alkaline volcanism with granitoid plutons, and an andesitic volcanism interstratified with the basin sediments. The general metamorphism is of green-schist facies. An intermediate model between the archaic Archean processes and the modern collision processes is proposed for the formation of the Birimian crust. (J.S.)

  12. Geologic Field Database

    Directory of Open Access Journals (Sweden)

    Katarina Hribernik

    2002-12-01

    Full Text Available The purpose of the paper is to present the field data relational database, which was compiled from data, gathered during thirty years of fieldwork on the Basic Geologic Map of Slovenia in scale1:100.000. The database was created using MS Access software. The MS Access environment ensures its stability and effective operation despite changing, searching, and updating the data. It also enables faster and easier user-friendly access to the field data. Last but not least, in the long-term, with the data transferred into the GISenvironment, it will provide the basis for the sound geologic information system that will satisfy a broad spectrum of geologists’ needs.

  13. Geology of the Lawrence Livermore National Laboratory site and adjacent areas

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D W; Sweeney, J J; Kasameyer, P W; Burkhard, N R; Knauss, K G; Shlemon, R J

    1984-08-01

    LLNL is underlain by a thick sequence of late Tertiary and Quaternary alluvial deposits overlying a complex basement of Mesozoic metamorphic rocks of the Franciscan Assemblage and late Mesozoic and Tertiary marine sedimentary rocks. The ancestral Greenville Fault separates the Franciscan basement terrain from the late Mesozoic and Tertiary basement. The late Tertiary and Quaternary alluvial deposits include lacustrine, alluvial fan, and stream channel deposits. Soil profiles and relative and absolute age data demonstrate that most of the near-surface materials beneath LLNL range in age from latest Pleistocene to 100,000 y or greater. A low net sedimentation rate is indicated by the data. Depths to groundwater beneath LLNL vary from about 13 m beneath the northeast corner of the laboratory to about 49 m beneath the southeast corner. Depths to water beneath portions of the laboratory where major buildings are located range from 18 to 30 m. LLNL is located in a seismically active region. Deformation of Quaternary materials and periodic seismicity support this conclusion. Historic seismicity has been experienced along the Calaveras and Greenville Faults that bound the Livermore Valley on the west and east, respectively, and also appears associated with the Las Positas Fault Zone. The Calaveras Fault is located approximately 17 km west of LLNL, and recently active strands of the Greenville Fault Zone are located approximately 1.1 km northeast of the laboratory. Geologic evidence demonstrates Holocene activity along strands of the Las Positas Fault Zone that lie about 90 m southeast of LLNL at their point of closest approach. Pavement fracturing at the intersection of Greenville Road and East Avenue suggests that a strand of the Las Positas Fault may be located about 15 m southeast of the southeast corner of the laboratory. Other potential sources of seismicity could affect LLNL. 126 references, 71 figures, 18 tables.

  14. An overview of IPSN research on the evolution of the natural systems in support of the French methodology for the safety evaluation of radwaste disposal in deep geological formations

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Granier, T.; Mohammadioun, B.

    1992-01-01

    A regulatory guidance has been recently set up in France for the safety assessment of radwaste deep geological disposal: the present paper concerns the requirements related to bedrock stability issues and their technical background. This regulation relies in particular on a long term effort of the Protection and Nuclear Safety Institute (IPSN) of the French Atomic Energy Commission (CEA), which ensures two main duties: it carries out research programs in the area of protection and nuclear safety and provides expertise to the safety authorities. It should be noted that ANDRA (the French National Radioactive Waste Management Agency) is responsible for the safety of radioactive waste management and relies, for safety demonstration purposes, on its research programs. IPSN, in support of the safety authorities, is in charge of the verification of the applicant's safety demonstration and develops its own research programs in order to achieve an independent capability in safety analysis expertise. We present here the major axes of the Institute research program devoted to the assessment of seismic events consequences on the groundwater system. 19 refs., 8 figs

  15. An overview of IPSN research on the evolution of the natural systems in support of the French methodology for the safety evaluation of radwaste disposal in deep geological formations

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Granier, T.; Mohammadioun, B.

    1992-01-01

    A regulatory guidance has been recently set up in France for the safety assessment of radwaste deep in geological disposal: the present paper concerns the requirements related to bedrock stability issues and their technical background. This regulation relies in particular on a long term effort of the Protection and Nuclear Safety Institute (IPSN) of the French Atomic Energy Commission (CEA), which ensures two main duties: it carries out research programs in the area of protection and nuclear safety and provides expertise to the safety authorities. It should be noted that ANDRA (the French National Radioactive Waste Management Agency) is responsible for the safety of radioactive waste management and relies, for safety demonstration purposes, on its research programs. IPSN, in support of the safety authorities, is in charge of the verification of the applicant's safety demonstration and develops its own research programs in order to achieve an independent capability in safety analysis expertise. We present here the major axes of the Institute research program devoted to the assessment of seismic events consequences on the groundwater system. 19 refs., 8 figs

  16. 77 FR 19032 - Geological Survey

    Science.gov (United States)

    2012-03-29

    ... No: 2012-7479] DEPARTMENT OF THE INTERIOR Geological Survey Announcement of National Geospatial Advisory Committee Meeting AGENCY: U.S. Geological Survey, Interior. ACTION: Notice of meeting. SUMMARY... Arista Maher at the U.S. Geological Survey (703-648-6283, [email protected] ). Registrations are due by...

  17. Geological, geochemical, and geophysical studies by the U.S. Geological Survey in Big Bend National Park, Texas

    Science.gov (United States)

    Page, W.R.; Turner, K.J.; Bohannon, R.G.; Berry, M.E.; Williams, V.S.; Miggins, D.P.; Ren, M.; Anthony, E.Y.; Morgan, L.A.; Shanks, P.W.C.; Gray, J. E.; Theodorakos, P.M.; Krabbenhoft, D. P.; Manning, A.H.; Gemery-Hill, P. A.; Hellgren, E.C.; Stricker, C.A.; Onorato, D.P.; Finn, C.A.; Anderson, E.; Gray, J. E.; Page, W.R.

    2008-01-01

    Big Bend National Park (BBNP), Tex., covers 801,163 acres (3,242 km2) and was established in 1944 through a transfer of land from the State of Texas to the United States. The park is located along a 118-mile (190-km) stretch of the Rio Grande at the United States-Mexico border. The park is in the Chihuahuan Desert, an ecosystem with high mountain ranges and basin environments containing a wide variety of native plants and animals, including more than 1,200 species of plants, more than 450 species of birds, 56 species of reptiles, and 75 species of mammals. In addition, the geology of BBNP, which varies widely from high mountains to broad open lowland basins, also enhances the beauty of the park. For example, the park contains the Chisos Mountains, which are dominantly composed of thick outcrops of Tertiary extrusive and intrusive igneous rocks that reach an altitude of 7,832 ft (2,387 m) and are considered the southernmost mountain range in the United States. Geologic features in BBNP provide opportunities to study the formation of mineral deposits and their environmental effects; the origin and formation of sedimentary and igneous rocks; Paleozoic, Mesozoic, and Cenozoic fossils; and surface and ground water resources. Mineral deposits in and around BBNP contain commodities such as mercury (Hg), uranium (U), and fluorine (F), but of these, the only significant mining has been for Hg. Because of the biological and geological diversity of BBNP, more than 350,000 tourists visit the park each year. The U.S. Geological Survey (USGS) has been investigating a number of broad and diverse geologic, geochemical, and geophysical topics in BBNP to provide fundamental information needed by the National Park Service (NPS) to address resource management goals in this park. Scientists from the USGS Mineral Resources and National Cooperative Geologic Mapping Programs have been working cooperatively with the NPS and several universities on several research studies within BBNP

  18. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  19. Uranium geochemistry, mineralogy, geology, exploration and resources

    International Nuclear Information System (INIS)

    De Vivo, B.

    1984-01-01

    This book comprises papers on the following topics: history of radioactivity; uranium in mantle processes; transport and deposition of uranium in hydrothermal systems at temperatures up to 300 0 C: Geological implications; geochemical behaviour of uranium in the supergene environment; uranium exploration techniques; uranium mineralogy; time, crustal evolution and generation of uranium deposits; uranium exploration; geochemistry of uranium in the hydrographic network; uranium deposits of the world, excluding Europe; uranium deposits in Europe; uranium in the economics of energy; role of high heat production granites in uranium province formation; and uranium deposits

  20. geology and tectonic implications of tourmaline bearing leuco ...

    Indian Academy of Sciences (India)

    52

    Pezzotta F and Laurs B M 2011 Tourmaline: The kaleidoscopic gemstone; Elements 7(5) 333-. 338. Philibert J 1963 X-ray optics and X-ray microanalysis; Academic Press, New York, 329. Pichamuthu C S 1962 Some observations on the structure, metamorphism, and geological evolution of Peninsular India; J. Geol. Soc.

  1. Tsunami geology in paleoseismology

    Science.gov (United States)

    Yuichi Nishimura,; Jaffe, Bruce E.

    2015-01-01

    The 2004 Indian Ocean and 2011 Tohoku-oki disasters dramatically demonstrated the destructiveness and deadliness of tsunamis. For the assessment of future risk posed by tsunamis it is necessary to understand past tsunami events. Recent work on tsunami deposits has provided new information on paleotsunami events, including their recurrence interval and the size of the tsunamis (e.g. [187–189]). Tsunamis are observed not only on the margin of oceans but also in lakes. The majority of tsunamis are generated by earthquakes, but other events that displace water such as landslides and volcanic eruptions can also generate tsunamis. These non-earthquake tsunamis occur less frequently than earthquake tsunamis; it is, therefore, very important to find and study geologic evidence for past eruption and submarine landslide triggered tsunami events, as their rare occurrence may lead to risks being underestimated. Geologic investigations of tsunamis have historically relied on earthquake geology. Geophysicists estimate the parameters of vertical coseismic displacement that tsunami modelers use as a tsunami's initial condition. The modelers then let the simulated tsunami run ashore. This approach suffers from the relationship between the earthquake and seafloor displacement, the pertinent parameter in tsunami generation, being equivocal. In recent years, geologic investigations of tsunamis have added sedimentology and micropaleontology, which focus on identifying and interpreting depositional and erosional features of tsunamis. For example, coastal sediment may contain deposits that provide important information on past tsunami events [190, 191]. In some cases, a tsunami is recorded by a single sand layer. Elsewhere, tsunami deposits can consist of complex layers of mud, sand, and boulders, containing abundant stratigraphic evidence for sediment reworking and redeposition. These onshore sediments are geologic evidence for tsunamis and are called ‘tsunami deposits’ (Figs. 26

  2. Safeguards for geological repositories

    International Nuclear Information System (INIS)

    Fattah, A.

    2000-01-01

    Direct disposal of spent nuclear fuel in geological repositories is a recognised option for closing nuclear fuel cycles. Geological repositories are at present in stages of development in a number of countries and are expected to be built and operated early next century. A State usually has an obligation to safely store any nuclear material, which is considered unsuitable to re-enter the nuclear fuel cycle, isolated from the biosphere. In conjunction with this, physical protection has to be accounted for to prevent inadvertent access to such material. In addition to these two criteria - which are fully under the State's jurisdiction - a third criterion reflecting international non-proliferation commitments needs to be addressed. Under comprehensive safeguards agreements a State concedes verification of nuclear material for safeguards purposes to the IAEA. The Agency can thus provide assurance to the international community that such nuclear material has been used for peaceful purposes only as declared by the State. It must be emphasised that all three criteria mentioned constitute a 'unit'. None can be sacrificed for the sake of the other, but compromises may have to be sought in order to make their combination as effective as possible. Based on comprehensive safeguards agreements signed and ratified by the State, safeguards can be terminated only when the material has been consumed or diluted in such a way that it can no longer be utilised for any nuclear activities or has become practicably irrecoverable. As such safeguards for nuclear material in geological repositories have to be continued even after the repository has been back-filled and sealed. The effective application of safeguards must assure continuity-of-knowledge that the nuclear material in the repository has not been diverted for an unknown purpose. The nuclear material disposed in a geological repository may eventually have a higher and long term proliferation risk because the inventory is

  3. Origin of natural gases in the Paleozoic-Mesozoic basement of the Polish Carpathian Foredeep

    Science.gov (United States)

    Kotarba, Maciej

    2012-08-01

    Hydrocarbon gases from Upper Devonian and Lower Carboniferous reservoirs in the Paleozoic basement of the Polish Carpathian Foredeep were generated mainly during low-temperature thermogenic processes ("oil window"). They contain only insignificant amounts of microbial methane and ethane. These gaseous hydrocarbons were generated from Lower Carboniferous and/or Middle Jurassic mixed Type III/II kerogen and from Ordovician-Silurian Type II kerogen, respectively. Methane, ethane and carbon dioxide of natural gas from the Middle Devonian reservoir contain a significant microbial component whereas their small thermogenic component is most probably genetically related to Ordovician-Silurian Type II kerogen. The gaseous hydrocarbons from the Upper Jurassic and the Upper Cretaceous reservoirs of the Mesozoic basement were generated both by microbial carbon dioxide reduction and thermogenic processes. The presence of microbial methane generated by carbon dioxide reduction suggests that in some deposits the traps had already been formed and sealed during the migration of microbial methane, presumably in the immature source rock environment. The traps were successively supplied with thermogenic methane and higher hydrocarbons generated at successively higher maturation stages of kerogen. The higher hydrocarbons of the majority of deposits were generated from mixed Type III/II kerogen deposited in the Middle Jurassic, Lower Carboniferous and/or Devonian strata. Type II or mixed Type II/III kerogen could be the source for hydrocarbons in both the Tarnów and Brzezówka deposits. In the Cenomanian sandstone reservoir of the Brzezowiec deposit and one Upper Jurassic carbonate block of the Lubaczów deposit microbial methane prevails. It migrated from the autochthonous Miocene strata.

  4. Crosscutting Development- EVA Tools and Geology Sample Acquisition

    Science.gov (United States)

    2011-01-01

    Exploration to all destinations has at one time or another involved the acquisition and return of samples and context data. Gathered at the summit of the highest mountain, the floor of the deepest sea, or the ice of a polar surface, samples and their value (both scientific and symbolic) have been a mainstay of Earthly exploration. In manned spaceflight exploration, the gathering of samples and their contextual information has continued. With the extension of collecting activities to spaceflight destinations comes the need for geology tools and equipment uniquely designed for use by suited crew members in radically different environments from conventional field geology. Beginning with the first Apollo Lunar Surface Extravehicular Activity (EVA), EVA Geology Tools were successfully used to enable the exploration and scientific sample gathering objectives of the lunar crew members. These early designs were a step in the evolution of Field Geology equipment, and the evolution continues today. Contemporary efforts seek to build upon and extend the knowledge gained in not only the Apollo program but a wealth of terrestrial field geology methods and hardware that have continued to evolve since the last lunar surface EVA. This paper is presented with intentional focus on documenting the continuing evolution and growing body of knowledge for both engineering and science team members seeking to further the development of EVA Geology. Recent engineering development and field testing efforts of EVA Geology equipment for surface EVA applications are presented, including the 2010 Desert Research and Technology Studies (Desert RATs) field trial. An executive summary of findings will also be presented, detailing efforts recommended for exotic sample acquisition and pre-return curation development regardless of planetary or microgravity destination.

  5. Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 10, Basin analysis, formation and stability of gas hydrates of the Aleutian Trench and the Bering Sea

    Energy Technology Data Exchange (ETDEWEB)

    Krason, J.; Ciesnik, M.

    1987-01-01

    Four major areas with inferred gas hydrates are the subject of this study. Two of these areas, the Navarin and the Norton Basins, are located within the Bering Sea shelf, whereas the remaining areas of the Atka Basin in the central Aleutian Trench system and the eastern Aleutian Trench represent a huge region of the Aleutian Trench-Arc system. All four areas are geologically diverse and complex. Particularly the structural features of the accretionary wedge north of the Aleutian Trench still remain the subjects of scientific debates. Prior to this study, suggested presence of the gas hydrates in the four areas was based on seismic evidence, i.e., presence of bottom simulating reflectors (BSRs). Although the disclosure of the BSRs is often difficult, particularly under the structural conditions of the Navarin and Norton basins, it can be concluded that the identified BSRs are mostly represented by relatively weak and discontinuous reflectors. Under thermal and pressure conditions favorable for gas hydrate formation, the relative scarcity of the BSRs can be attributed to insufficient gas supply to the potential gas hydrate zone. Hydrocarbon gas in sediment may have biogenic, thermogenic or mixed origin. In the four studied areas, basin analysis revealed limited biogenic hydrocarbon generation. The migration of the thermogenically derived gases is probably diminished considerably due to the widespread diagenetic processes in diatomaceous strata. The latter processes resulted in the formation of the diagenetic horizons. The identified gas hydrate-related BSRs seem to be located in the areas of increased biogenic methanogenesis and faults acting as the pathways for thermogenic hydrocarbons.

  6. Geological and thermal exploration for an evaluation of the geothermal potential of Luxembourg

    Science.gov (United States)

    Schintgen, Tom; Förster, Andrea

    2013-04-01

    In 2010, work has commenced on the evaluation of the geothermal potential of Luxembourg. The concept of this evaluation comprises several steps. Given the limited amount of geological data and the lack of petrothermal data as well as on crustal heat flow, in-depth studies are needed that allow a comprehensive insight into the shallow as well as deep thermal subsurface structure and thus to make temperature prognoses for the use of geothermal energy. Here we report the geological structure of the Mesozoic Trier-Luxembourg Basin (TLB) with its various lithological units as well as the geology of the underlying basement units. The thickness of the Mesozoic section increases from 400-500 m in the northeastern part of the basin to a maximum of 1100 m in the southern part of Luxembourg. New data on thermal parameters, such as the thermal conductivity (TC), radiogenic heat production (RHP) and porosity are presented for the major lithotypes of the TLB as well as of the underlying Paleozoic basement. These data originated from core samples (Mesozoic formations) and from sampling of outcrops of Luxembourg's surroundings (Paleozoic formations). Thus data are now available for an up to 13-km-thick succession of the upper crust, comprising the Lower Cambrian to the Middle Ordovician, the relatively thick Lower Devonian and the Triassic to Liassic of the TLB. For the remainder of the crust down to the Moho thermal properties are determined by translating seismic velocities into rock types and using average values for TC and RHP for these metamorphic and igneous rocks. Based on the new values of TC and a temperature log measured under thermal equilibrium in a 300-m deep borehole, surface heat flow was determined. These data form the basis for modeling the subsurface temperatures along two regional crustal cross sections, which cover most of the Rhenohercynian Zone of the Variscan orogenic belt. They extend from the Lower Paleozoic Stavelot Massif in the Belgian Ardennes in the

  7. Goethe's Italian Journey and the geological landscape

    Science.gov (United States)

    Coratza, Paola; Panizza, Mario

    2015-04-01

    "integrated", meaning integration between natural components, including geological, biological and anthropogenic elements, climate, history, architecture, literature etc. Secondly, Goethe's scientific intuitions (in this case the geological ones) were compared with the evolution of scientific knowledge up to most recent times, which at times confirm what Goethe had already realised. This project is based on the description of the stages of his journey, in the light of modern results of investigations carried out in geology, geomorphology, mineralogy etc. This research is grateful for the contributions of many geologists from various universities and Italian research institutions from the Alps to Sicily. Goethe's Italian journey as revisited in this paper aims to stimulate the interest of the reader in the "geological" component of the environment in which we live by means of an "integrated" approach.

  8. A lithofacies terrain model for the Blantyre Region: Implications for the interpretation of palaeosavanna depositional systems and for environmental geology and economic geology in southern Malawi

    Science.gov (United States)

    Dill, H. G.; Ludwig, R.-R.; Kathewera, A.; Mwenelupembe, J.

    2005-06-01

    The Blantyre City Area is part of the African savanna in southern Malawi. Sedimentological, geomorphological, chemical and mineralogical studies were conducted to create a lithofacies terrain model. The project involves mapping, cross-sectioning, grain size, heavy mineral analysis, XRD and the study of sedimentary textures under the petrographic microscope. These classical techniques were combined with GIS-based field and office works. The combined efforts led to 2-D maps and 3-D block diagrams that illustrate the geomorphological and sedimentological evolution of the landscape in southern Malawi during the late Mesozoic and Cenozoic. The results obtained through integrated geomorphological-sedimentological studies form the basis for land management (planning of residential areas, waste disposal sites, assessment of bearing capacity of rocks), geohazard prediction (delineation of high risk zones in terms of mass flow and inundation) and the evaluation of high-place (ceramic raw materials) and high-unit value (placers of precious metals and gemstones) mineral commodities in the study area. The study addresses regional and general aspects alike. In regional terms, the study aimed at unraveling the evolution of landforms at the southern end of the East African Rift System during the most recent parts of the geological past. Four stages of peneplanation were established in the working area. Planation was active from the Cretaceous to the Quaternary (stage I: early to mid-Cretaceous, stage II: early Tertiary, stage III: early to mid-Tertiary, stage IV: mid- to late Tertiary). During the most recent parts of the Quaternary, strong fluvial incision was triggered by the base-level lowering of the Shire River. Geomorphological alteration of the landscape goes along with a phyllosilicate-sesquioxide transformation from minerals indicative of more acidic meteoric fluids (e.g., gibbsite, kaolinite) to those typical of more alkaline conditions (e.g. smectite, vermiculite

  9. Apatite fission track thermochronology and south east Australian landscape evolution: can exaggerated denudation rates be reconciled?

    International Nuclear Information System (INIS)

    Roach, I.C.

    1999-01-01

    Full text: Apatite fission track thermo chronology (AFTT) is a double-edged sword that can be used to both identify the absolute timing of major landscape-forming events and to estimate the amount of denudation that has occurred in a landscape. This powerful tool has added much to the debate of eastern Australian landscape evolution, particularly the origin and evolution of the Eastern Highlands. However, many authors can not reconcile estimates of the amount of denudation derived from AFTT with their own knowledge of the apparent stability of eastern Australian landscapes. Thus they regard the calculated denudation rates as being exaggerated. This difference in opinion comes about principally from the insistence of applying an upper crustal palaeogeotherm of 25-30 deg C km blanket-wise to all AFTT results. Recent thematic papers in the Australian Journal of Earth Sciences (Volume 46/2) related to eastern Australian landscape evolution highlight the differences of opinion. Kohn et al. (1999), in a paper relating to an AFTT study of the Kosciuszko massif, concluded that the landscape was controlled by two periods of accelerated denudation, one in the Late Permian-Early Triassic and the other in the mid-Cretaceous. They calculated that 2-2.5 km of material had been denuded from the massif since the mid-Cretaceous. Hill (1999) expressed an opposite viewpoint, describing residual landscapes of Mesozoic age existing in the same massif, indicating a much reduced denudation rate. van der Beek et al. (1999) discussed the need for more realistic models that compensate for the 'extreme temporal and spatial variability in denudation rates' possible within their own model. Particularly, they concluded that Late Mesozoic-Early Tertiary palaeogeotherms must have been higher than present. This knowledge is crucial to understanding Eastern Australian landscape evolution. A suite of mantle and lower crustal xenoliths has yielded a new palaeogeotherm for the Eocene-Oligocene Monaro

  10. Sedimentary history and economic geology of San Juan Basin, New Mexico and Colorado

    International Nuclear Information System (INIS)

    Peterson, J.A.; LeLeit, A.J.; Spencer, C.W.; Ullrich, R.A.

    1981-01-01

    The San Juan Basin contains up to 15,000 ft of sedimentary rocks ranging in age from Cambrian to Recent. The earliest development of the area as a sedimentary basin or trough apparently took place in Pennsylvanian time, and the basin was maintained, with changing rates of subsidence and filling, through the remainder of geologic time. During the Early Paleozoic, sedimentation was dominated by marine transgressions across the northwestern flank of the regional Transcontinental Arch. The Late Paleozoic history was strongly influenced by tectonism related to development of the Ancestral Rocky Mountains Uplifts and associated downwarping. The Early Mesozoic is characterized by fluvial and eolian environments, interrupted periodically by thin marine transgressive deposits of nearshore redbeds. The final Mesozoic event was the widespread Late Cretaceous marine transgression which deposited a thick cyclic sequence of marine gray shale and sandstone, with interbedded coal. Late Tertiary regional uplift and resulting volcanism were accompanied by a regional dissection of the area by stream systems that evolved into the present drainage pattern of superposed streams. The sedimentary history is directly related to the occurrence of economic deposits in the basin. Major reserves of petroleum and gas are in Cretaceous and Pennsylvanian rocks, coal in Cretaceous, and uranium in Jurassic and Cretaceous. Abstract only

  11. Evolution of Lower Brachyceran Flies (Diptera and Their Adaptive Radiation with Angiosperms

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2017-04-01

    Full Text Available The Diptera (true flies is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies.

  12. Late Pan-African and early Mesozoic brittle compressions in East and Central Africa: lithospheric deformation within the Congo-Tanzania Cratonic area

    Science.gov (United States)

    Delvaux, D.; Kipata, M. L.; Macheyeki, A. S.

    2012-04-01

    Tectonic reconstructions leading to the formation of the Central-African part of Gondwana have so far not much taken into account constraints provided by the evolution of brittle structures and related stress field. This is largely because little is known on continental brittle deformation in Equatorial Africa before the onset of the Mesozoic Central-African and Late Cenozoic East-African rifts. We present a synthesis of fault-kinematic data and paleostress inversion results from field surveys covering parts of Tanzania, Zambia and the Democratic Republic of Congo. It is based on investigations along the eastern margin of the Tanzanian craton, in the Ubendian belt between the Tanzanian craton and Bangweulu block, in the Lufilian Arc between the Kalahari and Congo cratons and along the Congo intracratonic basin. Paleostress tensors were computed for a substantial database by interactive stress tensor inversion and data subset separation, and the relative succession of major brittle events established. Two of them appear to be of regional importance and could be traced from one region to the other. The oldest one is the first brittle event recorded after the paroxysm of the Terminal Pan-African event that led to the amalgamation Gondwana at the Precambrian-Cambrian transition. It is related to compressional deformation with horizontal stress trajectories fluctuating from an E-W compression in Central Tanzania to NE-SW in the Ubende belt and Lufilian Arc. The second event is a transpressional inversion with a consistent NW-SE compression that we relate to the far-field effects of the active margin south of Gondwana during the late Triassic - early Jurassic.

  13. The Atlas of the Underworld - a global compilation of slab remnants imaged by tomography and dated through geology

    Science.gov (United States)

    Van Hinsbergen, D. J. J.; van der Meer, D.; Spakman, W.

    2016-12-01

    Since the advent of seismic tomography some three decades ago, positive seismic velocity anomalies in the upper and lower mantle have been associated with active subduction or remnants of past subduction. Particularly for lower mantle slab anomalies it was for long unclear, and in many cases still is, what the specific geographic relation is with zones of paleo-subduction. Here, we present an extensive global compilation of upper and lower mantle positive seismic velocity anomalies, building on our earlier work that we associate with geological evidence of past subduction, compiled in the `Atlas of the Underworld' (available at www.atlas-of-the-underworld.org once accepted for publication, with a forum for post-publication peer review). We have identified 100 positive velocity anomalies in P-wave and S-wave tomographic models that we interpreted as slabs or slab remnants and that we systematically associated with the geological records of past subduction. We show that Mesozoic and younger subduction zones can be associated with positive velocity anomalies. Furthermore, slab remnants of subduction systems confined to the Mesozoic are exclusively found in the lower mantle. Our results show sinking of slab material across the entire mantle with a strong decrease in average sinking rate (mantle depth/subduction age) between 660 km and 1500 km from speed from 15 to 40 mm/yr, consistent with strong viscosity reduction in the bottom few hundred kilometers of the mantle.

  14. Mesozoic magmatism and timing of epigenetic Pb-Zn-Ag mineralization in the western Fortymile mining district, east-central Alaska: Zircon U-Pb geochronology, whole-rock geochemistry, and Pb isotopes

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Aleinkoff, J.N.; Day, W.C.; Mortensen, J.K.

    2015-01-01

    The Mesozoic magmatic history of the North American margin records the evolution from a more segmented assemblage of parautochthonous and allochthonous terranes to the more cohesive northern Cordilleran orogenic belt. We characterize the setting of magmatism, tectonism, and epigenetic mineralization in the western Fortymile mining district, east-central Alaska, where parautochthonous and allochthonous Paleozoic tectonic assemblages are juxtaposed, using sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon geochronology, whole-rock geochemistry, and feldspar Pb isotopes of Mesozoic intrusions and spatially associated mineral prospects. New SHRIMP U-Pb zircon ages and published U-Pb and 40Ar/39Ar ages indicate four episodes of plutonism in the western Fortymile district: Late Triassic (216-208 Ma), Early Jurassic (199-181 Ma), mid-Cretaceous (112-94 Ma), and Late Cretaceous (70-66 Ma). All age groups have calc-alkalic arc compositions that became more evolved through time. Pb isotope compositions of feldspars from Late Triassic, Early Jurassic, and Late Cretaceous igneous rocks similarly became more radiogenic with time and are consistent with the magmas being mantle derived but extensively contaminated by upper crustal components with evolving Pb isotopic compositions. Feldspar Pb isotopes from mid-Cretaceous rocks have isotopic ratios that indicate magma derivation from upper crustal sources, probably thickened mid-Paleozoic basement. The origin of the mantle component in Late Cretaceous granitoids suggested by Pb isotopic ratios is uncertain, but we propose that it reflects asthenospheric upwelling following slab breakoff and sinking of an inactive inner subduction zone that delivered the previously accreted Wrangellia composite terrane to the North American continental margin, after the outer Farallon subduction zone was established.

  15. The geology of Mars

    Science.gov (United States)

    Mutch, T. A.; Arvidson, R. E.; Head, J. W., III; Jones, K. L.; Saunders, R. S.

    1976-01-01

    The book constitutes a topographic/geologic atlas of Mars compiled on the basis of data from the various Mariner missions. A large number of maps has been included which systematically describe the character and distribution of the principal landforms: craters, channels, volcanoes, and faults; also related properties such as albedo, elevation, and wind streaks. Pictures of all the important topographic features have been included. The discussion of the material is carried out with a minimum of technical detail, and Mars is examined within a context of interplanetary comparisons.

  16. Geologic mapping of Vesta

    Science.gov (United States)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; Le Corre, L.; Preusker, F.; Raymond, C. A.; Reddy, V.; Russell, C. T.; Roatsch, T.; Schenk, P. M.

    2014-11-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High-Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were

  17. Geologic Mapping of Vesta

    Science.gov (United States)

    Yingst, R. A.; Mest, S. C.; Berman, D. C.; Garry, W. B.; Williams, D. A.; Buczkowski, D.; Jaumann, R.; Pieters, C. M.; De Sanctis, M. C.; Frigeri, A.; hide

    2014-01-01

    We report on a preliminary global geologic map of Vesta, based on data from the Dawn spacecraft's High- Altitude Mapping Orbit (HAMO) and informed by Low-Altitude Mapping Orbit (LAMO) data. This map is part of an iterative mapping effort; the geologic map has been refined with each improvement in resolution. Vesta has a heavily-cratered surface, with large craters evident in numerous locations. The south pole is dominated by an impact structure identified before Dawn's arrival. Two large impact structures have been resolved: the younger, larger Rheasilvia structure, and the older, more degraded Veneneia structure. The surface is also characterized by a system of deep, globe-girdling equatorial troughs and ridges, as well as an older system of troughs and ridges to the north. Troughs and ridges are also evident cutting across, and spiraling arcuately from, the Rheasilvia central mound. However, no volcanic features have been unequivocally identified. Vesta can be divided very broadly into three terrains: heavily-cratered terrain; ridge-and-trough terrain (equatorial and northern); and terrain associated with the Rheasilvia crater. Localized features include bright and dark material and ejecta (some defined specifically by color); lobate deposits; and mass-wasting materials. No obvious volcanic features are evident. Stratigraphy of Vesta's geologic units suggests a history in which formation of a primary crust was followed by the formation of impact craters, including Veneneia and the associated Saturnalia Fossae unit. Formation of Rheasilvia followed, along with associated structural deformation that shaped the Divalia Fossae ridge-and-trough unit at the equator. Subsequent impacts and mass wasting events subdued impact craters, rims and portions of ridge-and-trough sets, and formed slumps and landslides, especially within crater floors and along crater rims and scarps. Subsequent to the formation of Rheasilvia, discontinuous low-albedo deposits formed or were

  18. Volcanism on Io: Insights from Global Geologic Mapping

    Science.gov (United States)

    Williams, D. A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.

    2009-01-01

    We are preparing a new global geo-logic map of Jupiter s volcanic moon, Io. Here we report the type of data that are now available from our global mapping efforts, and how these data can be used to investigate questions regarding the volcano-tectonic evolution of Io. We are using the new map to investigate several specific questions about the geologic evolution of Io that previously could not be well addressed, including (for example) a comparison of the areas vs. the heights of Ionian mountains to assess their stability and evolution (Fig. 1). The area-height relationships of Io s visible mountains show the low abundance and low relief of volcanic mountains (tholi) relative to tectonic mountains, consistent with formation from low-viscosity lavas less likely to build steep edifices. Mottled mountains are generally less high than lineated mountains, consistent with a degradational formation.

  19. Multivariate study of trace element distribution in the geological record of Roñanzas Peat Bog (Asturias, N. Spain). Paleoenvironmental evolution and human activities over the last 8000 calyr BP.

    Science.gov (United States)

    Gallego, José Luis R; Ortiz, José E; Sierra, Carlos; Torres, Trinidad; Llamas, J F

    2013-06-01

    Trace element concentrations in the Roñanzas peat bog record reveal a contribution of natural processes but the influence of anthropogenic factors predominates in the last two millenniums, particularly aerosol deposition linked to mining and industrial activities in northern Spain. We observed that the Roñanzas record can be considered a preserved environment, suitable to search for local (major elements. Our study design represents a novel approach to assign natural vs. human contributions in peatlands. Therefore, synergies obtained by the simultaneous study of multivariate statistics and enrichment factors allow robust conclusions about paleoenvironmental evolution and human activities. Anthropogenic influence has also been reported in similar records in other parts of Europe, thereby suggesting large-scale sources for atmospheric pollution. However, here we revealed remarkable particularities, such as the association of Cd, Zn and Pb, mainly linked to regional and local factors (mining and more recently the metallurgical industry), whereas we propose that the occurrence of Hg is associated with a combination of regional factors and global atmospheric pollution. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Tectonic evolution of the La González pull-apart basin in the Mérida Andes: combination of geological data and satellite radar interferometry (InSAR)

    Science.gov (United States)

    Javadi, Hamid Reza; Dehghani, Maryam; Foroutan, Mohammad; Naeimi, Amir; Roustaei, Mahasa; Saidi, Abdollah; Urbina, Josef Angel

    2016-07-01

    The 500-km-long Boconó strike-slip fault runs as a major active fault along the backbone of the Mérida Andes fold-and-thrust belt. The recent right-lateral motion on the fault led to formation of numerous structures such as pull-apart basins which have formed in releasing bends and/or right-step offsets along the fault strands. The La González pull-apart is the biggest basin generated as an extensional strike-slip duplex in the central part of the fault. This duplex is made up of two strands of the Boconó fault as master/first-order faults, while normal right-lateral faults which formed during evolution of the basin are second-order faults. The extension of the basin is associated with seismic activities and surface offsets along the Boconó fault. InSAR investigations over a 31-month period also support active deformation within the basin. These data indicate that the La González basin is continuously being extended as a result of motion along the Boconó fault and formation of subsequent normal faults. In addition, the basin is being transversely shortened in NW-SE direction due to regional shortening across the Mérida Andes range followed by convergence between the Maracaibo microplate and the Guyana shield.

  1. Alleghenian Reconstruction and Subsequent Evolution of the Gulf of Mexico, Bahamas, and Proto-Caribbean

    Science.gov (United States)

    Pindell, James L.

    1985-01-01

    A detailed model for the evolution of the Gulf of Mexico, the Bahamas and the Proto-Caribbean is built within the framework provided by a detailed initial Alleghenian (western Pangean) reconstruction and an accurate subsequent relative-motion history between North America and Gondwana (northern Africa and South America). The Alleghenian reconstruction closes all pre-Jurassic oceans; accounts for Jurassic attenuation of continental crust by restoring that attenuation to original prerift continental thicknesses; incorporates an improved Equatorial Atlantic fit between northern Brazil and the Guinea margin of Africa; quantitatively removes changes in shape of northern South America due to Late Cretaceous and Cenozoic accretion and internal deformation; includes pre-Mesozoic continental crust presently underlying the western Bahamas and southern Florida; and correlates Late Paleozoic geology of Yucatan with its neighboring continental masses. Extension occurred within the Gulf of Mexico from Late Triassic to earliest Cretaceous time, but seafloor spreading was delayed until the Late Callovian. This divided a single Gulf-wide salt basin into the Louann and Campeche salt provinces. The Yucatan block progressively rotated about 43 degrees counterclockwise away from the Texas-Louisiana margin around a pole in northern Florida. The Tamaulipas-Golden Lane-Chiapas fault zone of eastern Mexico is interpreted as the remains of an initially intracontinental transform system along which Yucatan migrated. Attenuated continental crust beneath southern Florida and the western Bahamas, termed here the Florida Straits block, migrated approximately 300 km out of the eastern Gulf, approximately along Central Atlantic flow lines. These rotations are consistent with recently suggested magnetic anomaly trends in the Gulf of Mexico (Shepherd et al., 1982; S. Hall, personal communication, 1984). The Proto-Caribbean formed synchronously by a fan-like rotation of Yucatan away from Venezuela.

  2. The comparison of species longevity and size evolution in fossilized dinosaurs vs. fossilized mammals

    Science.gov (United States)

    Baeza, E.; Srinath, A.; Hernandez, A.; Heim, N.; Payne, J.

    2016-12-01

    For over 200 million years, two animal groups have been competing for dominance over Earth: the reptiles, (in this case, dinosaurs), and the mammals. At the beginning of the Triassic, mammals were small, rat-like creatures that were dwarfed by the dinosaurs. Dinosaurs progressively continued to grow larger throughout the Jurassic and Cretaceous periods, thus outweighing and outliving the current mammals. But at the end of the Cretaceous, the K-T mass extinction occurred, and that wiped out the dinosaurs from the face of the Earth. After the disappearance of dinosaurs, mammals started to grow larger to fill the niches that the dinosaurs left open. With this evolution in mammals, would they be able to match or even beat the dinosaur's previous records? To judge that, we need to utilize two significant factors to help judge our answer. The two factors that set them apart were body mass and longevity. Documenting the body mass shows us how much the animal weighed compared to other species. The heaviest animal in our data set weighed 77 tons. The other factor is longevity, which indicates how long a certain species has existed on a geologic time scale. The longest living animal species in our data set lived for over 20 million years. With all the data we have analyzed, we have conducted research on this subject to find out how terrestrial mammals contrasted dinosaurs in the terms of body mass and species longevity. Our research brought us to the conclusion that mammals could not overtake the body mass and longevity of dinosaurs. Although mammals came pretty close to overlapping the dinosaurs' body masses, they were just below them marginally. We had a similar pattern in longevity, where we found out that heavier animals tended to have longer longevity, therefore the dinosaurs came out on top. Additionally, we did another contrast between Mesozoic and Cenozoic mammals, where Cenozoic mammals were larger, but both had similar longevities.

  3. A temnospondyl trackway from the early Mesozoic of western Gondwana and its implications for basal tetrapod locomotion.

    Directory of Open Access Journals (Sweden)

    Claudia A Marsicano

    Full Text Available BACKGROUND: Temnospondyls are one of the earliest radiations of limbed vertebrates. Skeletal remains of more than 190 genera have been identified from late Paleozoic and early Mesozoic rocks. Paleozoic temnospondyls comprise mainly small to medium sized forms of diverse habits ranging from fully aquatic to fully terrestrial. Accordingly, their ichnological record includes tracks described from many Laurasian localities. Mesozoic temnospondyls, in contrast, include mostly medium to large aquatic or semi-aquatic forms. Exceedingly few fossil tracks or trackways have been attributed to Mesozoic temnospondyls, and as a consequence very little is known of their locomotor capabilities on land. METHODOLOGY/PRINCIPAL FINDINGS: We report a ca. 200 Ma trackway, Episcopopus ventrosus, from Lesotho, southern Africa that was made by a 3.5 m-long animal. This relatively long trackway records the trackmaker dragging its body along a wet substrate using only the tips of its digits, which in the manus left characteristic drag marks. Based on detailed mapping, casting, and laser scanning of the best-preserved part of the trackway, we identified synapomorphies (e.g., tetradactyl manus, pentadactyl pes and symplesiomorphies (e.g., absence of claws in the Episcopopus trackway that indicate a temnospondyl trackmaker. CONCLUSIONS/SIGNIFICANCE: Our analysis shows that the Episcopopus trackmaker progressed with a sprawling posture, using a lateral-sequence walk. Its forelimbs were the major propulsive elements and there was little lateral bending of the trunk. We suggest this locomotor style, which differs dramatically from the hindlimb-driven locomotion of salamanders and other extant terrestrial tetrapods can be explained by the forwardly shifted center of mass resulting from the relatively large heads and heavily pectoral girdles of temnospondyls.

  4. Global plate boundary evolution and kinematics since the late Paleozoic

    Science.gov (United States)

    Matthews, Kara J.; Maloney, Kayla T.; Zahirovic, Sabin; Williams, Simon E.; Seton, Maria; Müller, R. Dietmar

    2016-11-01

    Many aspects of deep-time Earth System models, including mantle convection, paleoclimatology, paleobiogeography and the deep Earth carbon cycle, require high-resolution plate motion models that include the evolution of the mosaic of plate boundaries through time. We present the first continuous late Paleozoic to present-day global plate model with evolving plate boundaries, building on and extending two previously published models for the late Paleozoic (410-250 Ma) and Mesozoic-Cenozoic (230-0 Ma). We ensure continuity during the 250-230 Ma transition period between the two models, update the absolute reference frame of the Mesozoic-Cenozoic model and add a new Paleozoic reconstruction for the Baltica-derived Alexander Terrane, now accreted to western North America. This 410-0 Ma open access model provides a framework for deep-time whole Earth modelling and acts as a base for future extensions and refinement. We analyse the model in terms of the number of plates, predicted plate size distribution, plate and continental root mean square (RMS) speeds, plate velocities and trench migration through time. Overall model trends share many similarities to those for recent times, which we use as a first order benchmark against which to compare the model and identify targets for future model refinement. Except for during the period 260-160 Ma, the number of plates (16-46) and ratio of "large" plates (≥ 107.5 km2) to smaller plates ( 2.7-6.6) are fairly similar to present-day values (46 and 6.6, respectively), with lower values occurring during late Paleozoic assembly and growth of Pangea. This temporal pattern may also reflect difficulties in reconstructing small, now subducted oceanic plates further back in time, as well as whether a supercontinent is assembling or breaking up. During the 260-160 Ma timeframe the model reaches a minima in the number of plates, in contrast to what we would expect during initial Pangea breakup and thus highlighting the need for refinement

  5. Terrestrial analogs, planetary geology, and the nature of geological reasoning

    Science.gov (United States)

    Baker, Victor R.

    2014-05-01

    Analogical reasoning is critical to planetary geology, but its role can be misconstrued by those unfamiliar with the practice of that science. The methodological importance of analogy to geology lies in the formulation of genetic hypotheses, an absolutely essential component of geological reasoning that was either ignored or denigrated by most 20th century philosophers of science, who took the theoretical/ experimental methodology of physics to be the sole model for all of scientific inquiry. Following the seminal 19th century work of Grove Karl Gilbert, an early pioneer of planetary geology, it has long been recognized that broad experience with and understanding of terrestrial geological phenomena provide geologists with their most effective resource for the invention of potentially fruitful, working hypotheses. The actions of (1) forming such hypotheses, (2) following their consequences, and (3) testing those consequences comprise integral parts of effective geological practice in regard to the understanding of planetary surfaces. Nevertheless, the logical terminology and philosophical bases for such practice will be unfamiliar to most planetary scientists, both geologists and nongeologists. The invention of geological hypotheses involves both inductive inferences of the type Gilbert termed “empiric classification” and abductive inferences of a logical form made famous by the 19th century American logician Charles Sanders Peirce. The testing and corroboration of geological hypotheses relies less on the correspondence logic of theoretical/ experimental sciences, like physics, and more on the logic of consistency, coherence, and consilience that characterizes the investigative and historical sciences of interpretation exemplified by geology.

  6. Engineering geology of the Great Bear River area, Northwest Territories

    Energy Technology Data Exchange (ETDEWEB)

    Savigny, K.W. (Univ. of British Columbia, Vancouver, BC (Canada))

    1989-01-01

    This report represents the results of an engineering geology study of the Great Bear River valley in the Northwest Territories. For most of its length, the river has a steep gradient and is deeply incised in a narrow valley. These topographic characteristics combined with the enormous reservoir capacity of Great Bear Lake make the valley attractive for hydroelectric development. Topographic characteristics and geographic location also make it an obstacle to linear facilities following the Mackenzie Transportation Corridor, such as pipelines, railroads and roads. The valley is incised up to 50 m below the levels of Mackenzie and Great Bear plains. Quaternary sediments are exposed intermittently along the valley slopes. Rocks of Tertiary age are exposed more or less continuously along the lower reach of Great Bear River, and Mesozoic and Paleozoic rocks are exposed where the river crosses McConnell Range at St. Charles Rapids. A single Laurentide till is present and is assumed to represent the Late Wisconsin ice advance. The till generally rests on bedrock, but locally it overlies older alluvial and deltaic sediments. This advance was followed by a lacustrine phase over Mackenzie Plain. The lacustrine phase appears to have ended abruptly with progradation of a deltaic facies. Permafrost is widespread except beneath large lakes, streams and rivers. Postglacial entrenchment by Great Bear River appears to have begun on Mackenzie Plain about 10,000 years ago and approached its present level by approximately 2670 years ago. 38 refs., 18 figs., 3 tabs.

  7. Contribution to the geologic evolution from the Eastern part of Central Amazonia Province by Rb-Sr geochronology from the Carajas Mineral Province and the Sao Felix do Xingu region, Para State

    International Nuclear Information System (INIS)

    Pereira, Edilea Dutra.

    1992-01-01

    This work deals with a Rb/Sr geochronological study carried on granitoids and granulites of the Carajas Mineral Province (Rio Maria, Serra dos Gradaus and Serra do Pium regions) and Sao Felix do Xingu regions. The Manelao and Ourilandia granitoids of the Sao Felix do Xingu region are associated with the greenstone terrains of the Tucuma Group, and yield an age of 2749 ± 24 Ma with an initial ratio of 0.07028 ± 19, and 2677 ± 50 Ma with an initial ratio of 0.07016 ± 22, respectively. In the Rio Maria region, an age of 2541 ± 74 Ma with an initial ratio of 0.7104 ± 343 was obtained on the Mata Surrao Granite located near the Marajoara Village. This age confirms an archaean monzogranitic magmatism in this region. In the Gradaus area, the Cumaru Granodiorite give an mineral age of 2577 ± 27 Ma similar to the age obtained by whole rock method. Finally, Rb/Sr ages were obtained from granulitic rocks of the Pium Complex located at the Serra do Pium and near the Catete River. Samples of the Serra do Pium yielded ages of 2325 ± 71 Ma (whole rock) and 1857 ± 48 (minerals). Samples from the Catete River area give a whole rock age of 2018 ± 25 Ma with an initial ratio of 0.7039 ± 25. These data show that the Rb/Sr system in these granulitic rocks suffered changes during the Early Proterozoic times. The geochronological data here obtained confirm promptly an Archaean evolution in the studied regions, besides give rise the discussion about the problem related to the Transamazonian Event inside them. (author). 92 refs., 32 figs., 10 tabs

  8. Paleomagnetism of Late Paleozoic and Mesozoic volcanic rocks of Southern Siberia

    Science.gov (United States)

    Fedyukin, I.; Shatsillo, A.

    2016-12-01

    The main objects of the present study are late Permian and Mesozoic volcanic rocks from Selengin-Vitim volcano-plutonic belt (South Siberia). The belt was formed in the back area of Siberian continent active margin. Volcanic rocks are presented by contrastive volcanites more than 5 km thick. The deposits are subdivided into three suits: Ungurkuy (basalts and andesites), Chernoyar (basalts, andesites and tuffs) and Hilok (basalts, pyroclastic flows and tuffs). The age of Ungurkuy suite is deemed to be between Late Carboniferous and Late Permian. The age of Chernoyar suite is Middle-late Triassic. The age og Hilok suite is Late Jurassic. Volcanic deposits of the three suits were studied to create APWP for the Siberian craton. 250 oriented samples from 40 sites were collected from the Chikoy river valley within South Siberia. All samples were characterized by interpretable paleomagnetic signal. The Ungurkuy suite has different dip and strike: from subhorizontal to 40 degrees inclination and NE course. Chernoyar rocks were collected from monoclinal structure with the dip and strike around NW declination and 5-10 degrees inclination. Hilok suite represents large subhorizontal eruptive bodies. Volcanic rocks of Ungurkuy suite show mostly monopolar (normal polarity) magnetization direction between Early Permian and Permian-Triassic Siberian poles, which indicates its Late Permian age. The normal polarity of the deposits indicates its formation in the period between Kiama superchron, characterized by reversal polarity, and Illavara hyperchron with mixed polarity - 265 Ma. Direction from Chernoyar suite is well-correlated with Late Triassic APWP of Europe, directions of magnetization are bipolar. From Hilok suite several sites show direction of magnetization similar to directions revealed from Early Cretaceous volcanites from nearby area. The magnetization is metachronous. In the other sites the directions of magnetization well-correlated with Late Jurassic APWP of Europe

  9. Mesozoic to Recent, regional tectonic controls on subsidence patterns in the Gulf of Mexico basin

    Science.gov (United States)

    Almatrood, M.; Mann, P.; Bugti, M. N.

    2016-12-01

    We have produced subsidence plots for 26 deep wells into the deeper-water areas of the Gulf of Mexico (GOM) in order to identify regional tectonic controls and propose tectonic phases. Our results show three sub-regions of the GOM basin that have distinctive and correlative subsidence patterns: 1) Northern GOM from offshore Texas to central Florida (9 wells) - this area is characterized by a deeply buried, Triassic-early Jurassic rift event that is not represented by our wells that penetrate only the post-rift Cretaceous to recent passive margin phase. The sole complexity in the passive margin phase of this sub-region is the acceleration of prograding clastic margins including the Mississippi fan in Miocene time; 2) Southeastern GOM in the Straits of Florida and Cuba area (5 wells) - this area shows that the Cretaceous passive margin overlying the rift phase is abruptly drowned in late Cretaceous as this part of the passive margin of North America that is flexed and partially subducted beneath the Caribbean arc as it encroaches from the southwest to eventually collide with the North American passive margin in the Paleogene; 3) Western GOM along the length of the eastern continental margin of Mexico (12 wells) - this is the most complex of the three areas in that shares the Mesozic rifting and passive margin phase but is unique with a slightly younger collisional event and foreland basin phase associated with the Laramide orogeny in Mexico extending from the KT boundary to the Oligocene. Following this orogenic event there is a re-emergence of the passive margin phase during the Neogene along locally affected by extensional and convergent deformation associated with passive margin fold belts. In summary, the GOM basin exhibits evidence for widespread rifting and passive margin formation associated with the breakup of Pangea in Mesozoic times that was locally superimposed and deformed during the late Cretaceous-Paleogene period by: 1) Caribbean subduction and

  10. Crystal chemistry of pyrochlore from the Mesozoic Panda Hill carbonatite deposit, western Tanzania

    Science.gov (United States)

    Boniface, Nelson

    2017-02-01

    The Mesozoic Panda Hill carbonatite deposit in western Tanzania hosts pyrochlore, an ore and source of niobium. This study was conducted to establish the contents of radioactive elements (uranium and thorium) in pyrochlore along with the concentration of niobium in the ore. The pyrochlore is mainly hosted in sövite and is structurally controlled by NW-SE (SW dipping) or NE-SW (NW dipping) magmatic flow bands with dip angles of between 60° and 90°. Higher concentrations of pyrochlore are associated with magnetite, apatite and/or phlogopite rich flow bands. Electron microprobe analyses on single crystals of pyrochlore yield very low UO2 concentrations that range between 0 and 0.09 wt% (equivalent to 0 atoms per formula unit: a.p.f.u.) and ThO2 between 0.55 and 1.05 wt% (equivalent to 0.1 a.p.f.u.). The analyses reveal high concentrations of Nb2O5 (ranging between 57.13 and 65.50 wt%, equivalent to a.p.f.u. ranging between 1.33 and 1.43) and therefore the Panda Hill Nb-oxide is classified as pyrochlore sensu stricto. These data point to a non radioactive pyrochlore and a deposit rich in Nb at Panda Hill. The Panda Hill pyrochlore has low concentrations of REEs as displayed by La2O3 that range between 0.10 and 0.49 wt% (equivalent to a.p.f.u. ranging between 0 and 0.01) and Ce2O3 ranging between 0.86 and 1.80 wt% (equivalent to a.p.f.u. ranging between 0.02 and 0.03), Pr2O3 concentrations range between 0 and 0.23 wt% (equivalent to 0 a.p.f.u.), and Y2O3 is 0 wt% (equivalent to 0 a.p.f.u.). The abundance of the REEs in pyroclore at the Panda Hill Carbonatite deposit is of no economic significance.

  11. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model

    Science.gov (United States)

    Hu, Ruizhong; Fu, Shanling; Huang, Yong; Zhou, Mei-Fu; Fu, Shaohong; Zhao, Chenghai; Wang, Yuejun; Bi, Xianwu; Xiao, Jiafei

    2017-04-01

    The South China Craton was formed by amalgamation of the Yangtze and Cathaysia Blocks during the Neoproterozoic. During the Mesozoic, voluminous granitic plutons and associated W-Sn polymetallic deposits were formed in the Cathaysia Block. The giant South China low-temperature metallogenic domain (LTMD) includes an area of ∼500,000 km2 in the Yangtze Block and is composed of the Chuan-Dian-Qian Pb-Zn, Youjiang Au-As-Sb-Hg and Xiangzhong Sb-Au metallogenic provinces. The Chuan-Dian-Qian Pb-Zn province contains numerous MVT Pb-Zn deposits, whereas the other two provinces are characterized by Carlin-type Au deposits and vein-type Sb, Hg and As deposits. These epigenetic deposits, which formed under low temperature conditions (∼100-250 °C), are typically hosted in sedimentary rocks and are locally controlled by faults and fractures. The deposits formed dominantly at 200-230 Ma and 130-160 Ma, corresponding to Indosinian (Triassic) and Yanshanian (Jurassic to Cretaceous) orogenies, respectively. Indosinian mineralization is recognized in all three provinces, but Yanshanian mineralization occurred only in the Youjiang and Xiangzhong provinces. The Indosinian orogeny, which involved collision of the Indochina Block with the South China Craton, resulted in circulation of basinal brines that leached ore-forming elements from adjacent sedimentary strata to form the Chuan-Dian-Qian Pb-Zn province. Deep-seated granitic magmas generated during this orogeny caused extensive circulation of meteoric water that mobilized ore-forming elements from the sedimentary strata to form the Carlin-type Au deposits in the Youjiang province, and the Sb-Au deposits in the Xiangzhong province. The Indosinian orogeny was the key factor in establishing the metallogenic framework of the LTMD. It produced widespread mineralization in the three metallogenic provinces, each of which has unique features reflecting differences in the nature and composition of the basement rocks. The Yanshanian

  12. Global Geologic Mapping of Io: Preliminary Results

    Science.gov (United States)

    Williams, David A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.; Rathbun, J. A.

    2008-01-01

    A new global geologic map of Jupiter's volcanic moon, Io is being prepared, with the focus being on completion of a draft map by July 2008. Here initial results of the mapping are reported: a preliminary distribution of material units in terms of areas and a visual representation. Additionally, the mapping hopes to address some of the problems in Io geology. Thus far it has been discovered that Io's surface is dominated by plains material, thought to consist of Io's silicate crust covered by pyroclastic deposits and lava flows of silicate and sulfur-bearing composition. Many plains areas contain flow fields that cannot be mapped separately due to a lack of resolution or modification by alteration processes. Discrete lava flows and flow fields are the next most abundant unit, with bright (sulfur?) flows in greater abundance than dark (silicate?) flows. The source of most of Io's heat flow, the paterae, are the least abundant unit in terms of areal extent.Upon completion of the draft map for peer review, it will be used to investigate several specific questions about the geological evolution of Io that previously could not be well addressed, including: comparison of the areas versus the heights of Ionian mountains to assess their stability and evolution; correlation and comparison of Galileo Near-Infrared Mapping Spectrometer and Photopolarimeter-Radiometer hot spot locations with the mapped location of dark versus bright lava flows and patera floors to assess any variations in the types of sources for Io's active volcanism; and the creation of a global inventory of the areal coverage of dark and bright laval flows to assess the relative importance of sulfur versus silicate volcanism in resurfacing Io, and to assess whether there are regional concentrations of either style of volcanism that may have implications on interior processes.

  13. New insights into the distribution and evolution of the Cenozoic Tan-Lu Fault Zone in the Liaohe sub-basin of the Bohai Bay Basin, eastern China

    Science.gov (United States)

    Huang, Lei; Liu, Chi-yang; Xu, Chang-gui; Wu, Kui; Wang, Guang-yuan; Jia, Nan

    2018-01-01

    As the largest strike-slip fault system in eastern China, the northeast-trending Tan-Lu Fault Zone (TLFZ) is a significant tectonic element contributing to the Mesozoic-Cenozoic regional geologic evolution of eastern Asia, as well as to the formation of ore deposits and oilfields. Because of the paucity of data, its distribution and evolutionary history in the offshore Liaohe sub-basin of the northern Bohai Bay Basin (BBB) are still poorly understood. Investigations of the strike-slip fault system in the western portion of the offshore Liaohe sub-basin via new seismic data provide us with new insights into the characteristics of the Cenozoic TLFZ. Results of this study show that Cenozoic dextral strike-slip faults occurred near the center of the Liaoxi graben in the offshore Liaohe sub-basin; these strike-slip faults connect with their counterparts to the north, the western part of the onshore Liaohe sub-basin, and have similar characteristics to those in other areas of the BBB in terms of kinematics, evolutionary history, and distribution; consequently, these faults are considered as the western branch of the TLFZ. All strike-slip faults within the Liaoxi graben merge at depth with a central subvertical basement fault induced by the reactivation of a pre-existing strike-slip basement fault, the pre-Cenozoic TLFZ. Data suggest that the TLFZ across the whole Liaohe sub-basin comprises two branches and that the Cenozoic distribution of this system was inherited from the pre-Cenozoic TLFZ. This characteristic distribution might be possessed by the whole TLFZ, thus the new understandings about the distribution and evolutionary model of the TLFZ in this study can be inferred in many research fields along the whole fault zone, such as regional geology, ore deposits, petroleum exploration and earthquake hazard.

  14. Structural Geology and Map Interpretation

    Science.gov (United States)

    Helper, Mark A.

    1998-06-01

    Geological maps lay flat the three-dimensional architecture of a region's rock record. In doing so, they reveal and document geometrical relationships and geological histories that would otherwise be difficult, if not impossible, to visualize. They are a primary data source for a wide range of practical applications, from civil engineering, mining, and energy resource exploration to urban planning and geologic hazard mitigation, and are literally the "ground truth" for understanding environments and processes of the Earth's past. Their utility resides not only in a plan-view portrayal of surface geology, but in the geometrical information they contain that allows projection of surface geology to the subsurface, or into regions where surface control is lacking. Understanding this predictive capacity and being able to read and truly appreciate a geological map's three-dimensional character are among the most unique and important skills a geologist masters. These same skills are unfortunately among the most difficult for students to learn.

  15. Mathematical Statistics in the Geology

    Directory of Open Access Journals (Sweden)

    Blišťan Peter

    1999-06-01

    Full Text Available During the last period is modern geology oriented toward intensive utilisation of mathematical methods. Utilisation of these methods was conditioned by complicated structure of geological bodies, which resulted from interaction of a couple of factors. In the period of projection, realisation and evaluation of geological works one meet many problems of description of a character of geological data. These problems – very often trivial – arise from the poor knowledge of the principles of statistical methods. Transformation of real geological object into the form of abstract mathematical model is the basic and usually also the most complicated step of mathematical solution. There is also to be mentioned that there is no unitary approach to the modelling or uniform direction for a method of data processing selection. Complicacy of geological objects needs rational simplification of the model, otherwise the solution would be too complicated or even impossible.

  16. Digital Technology for Geological Field Mapping

    Science.gov (United States)

    Rourke, Peter; Smith, Stuart; Vaughan, Alan; Ellis, Jenny

    2014-05-01

    The amount of time that students and professionals spend in the field has reduced over the past 25 years (Gibbs, 2012). Recent advances in technology are changing the way students and professionals are able to conduct geological field study. Applications such as Midland Valley Exploration's FieldMove Clino now allow the geologist to use their smartphone as a fast, georeferenced measuring device compared with a traditional compass-clinometer. Although we support the view that an understanding of field mapping and model building, taught at university level, is essential to give the geologist the ability to think in three and four dimensions, new technologies that automate the ability to digitise and visualise data in the field lead to a better appreciation of the geometry, scale, and evolution of geological structures and trapping mechanisms that will be encountered during a career in industry. The majority of future industry professionals own a smartphone or tablet device: A recent study found that four-fifths of new students own a smartphone and one-fifth own a tablet device (UCAS Media, 2013). This figure is increasing with each new intake of geoscience students. With the increased availability and affordability of smartphone and tablet devices, new techniques are being examined for digital data collection in the field. If the trend continues that geoscience students are likely to spend less time in the field than their predecessors, then the time available must be spent as effectively as possible. Digital devices allow students and professionals alike to optimise the time spent in the field, allowing more time to think about geological relationships, and highlighting areas of uncertainty that can be studied further. This poster will examine the use of new digital smartphone and tablet devices for the collection of geological field data.

  17. Geologic map of Io

    Science.gov (United States)

    Williams, David A.; Keszthelyi, Laszlo P.; Crown, David A.; Yff, Jessica A.; Jaeger, Windy L.; Schenk, Paul M.; Geissler, Paul E.; Becker, Tammy L.

    2011-01-01

    Io, discovered by Galileo Galilei on January 7–13, 1610, is the innermost of the four Galilean satellites of the planet Jupiter (Galilei, 1610). It is the most volcanically active object in the Solar System, as recognized by observations from six National Aeronautics and Space Administration (NASA) spacecraft: Voyager 1 (March 1979), Voyager 2 (July 1979), Hubble Space Telescope (1990–present), Galileo (1996–2001), Cassini (December 2000), and New Horizons (February 2007). The lack of impact craters on Io in any spacecraft images at any resolution attests to the high resurfacing rate (1 cm/yr) and the dominant role of active volcanism in shaping its surface. High-temperature hot spots detected by the Galileo Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR) usually correlate with darkest materials on the surface, suggesting active volcanism. The Voyager flybys obtained complete coverage of Io's subjovian hemisphere at 500 m/pixel to 2 km/pixel, and most of the rest of the satellite at 5–20 km/pixel. Repeated Galileo flybys obtained complementary coverage of Io's antijovian hemisphere at 5 m/pixel to 1.4 km/pixel. Thus, the Voyager and Galileo data sets were merged to enable the characterization of the whole surface of the satellite at a consistent resolution. The United States Geological Survey (USGS) produced a set of four global mosaics of Io in visible wavelengths at a spatial resolution of 1 km/pixel, released in February 2006, which we have used as base maps for this new global geologic map. Much has been learned about Io's volcanism, tectonics, degradation, and interior since the Voyager flybys, primarily during and following the Galileo Mission at Jupiter (December 1995–September 2003), and the results have been summarized in books published after the end of the Galileo Mission. Our mapping incorporates this new understanding to assist in map unit definition and to provide a global synthesis

  18. Southern Tunisia as an example of international partnership in cultural and geological heritage conservation

    Science.gov (United States)

    Contessi, M.; Cantelli, L.; Fanti, F.; Gabbianelli, G.; Mohsen, H.

    2012-04-01

    National Geoparks initiatives are essential strategies to enhance the value of Earth's heritage and to promote a regional sustainable socio-economic and cultural development. As an example for geological heritage development, an ongoing partnership between the Department of Geological and Environmental Sciences of the University of Bologna (Italy) and the Office Nationales des Mines (Tunisia) attempt to ensure divulgation and preservation of the geological, geomorphological and archeological values of the Tataouine region in South Tunisia, with the final goal to create a Geopark. In this region, different environmental and cultural heritages that comprehend paleontology, geomorphology, stratigraphy and archeology coexist. Mesozoic beds that crop out extensively in the Tataouine region known since the beginning of the 20th century as Continental Intercalaire, yield numerous dinosaur and other vertebrate remains as well as tracksites. Moreover these Mesozoic deposits have been intensively modified for centuries by the local populations who created complex systems of artificial terraces, called jessour, in order to retain rainwater in the arid Tunisian climate and to exploit the scarce farm soil. These human artifacts deeply modified the morphological and hydrogeological landscape and created a unique cultural value that need to be preserved. From the perspective of science and conservation, a well-documented geological inventory of the fossiliferous sites has been produced and will be available as an electronic database. In particular, the Beni Ghedir valley, near the Goumrassene village, has been chosen has the main Geopark location as it includes, in a restricted area, a perfect example of jessour artifacts together with some well-preserved Ksour (ancient storage structures) and nicely preserved fossil sites. An interactive map of the artificial terrances has been produced using the ArcGis technology, in order to highlight the connection between the valley

  19. Practical aspects of geological prediction

    International Nuclear Information System (INIS)

    Mallio, W.J.; Peck, J.H.

    1981-01-01

    Nuclear waste disposal requires that geology be a predictive science. The prediction of future events rests on (1) recognizing the periodicity of geologic events; (2) defining a critical dimension of effect, such as the area of a drainage basin, the length of a fault trace, etc; and (3) using our understanding of active processes the project the frequency and magnitude of future events in the light of geological principles. Of importance to nuclear waste disposal are longer term processes such as continental denudation and removal of materials by glacial erosion. Constant testing of projections will allow the practical limits of predicting geological events to be defined. 11 refs

  20. A bibliography of planetary geology principal investigators and their associates, 1981 - 1982

    Science.gov (United States)

    Plescia, J. B. (Compiler)

    1982-01-01

    Over 800 publications submitted by researchers supported through NASA's Planetary Geology Program are cited and an author/editor index is provided. Entries are listed under the following subjects: (1) general interest topics; (2) solar system, comets, asteroids, and small bodies; (3) geologic mapping, geomorphology, and stratigraphy; (4) structure, tectonics, geologic and geophysical evolution; (5) impact craters: morphology, density, and geologic studies; (6) volcanism; (7) fluvial, mass wasting, and periglacial processes; (8) Eolian studies; (9) regolith, volatile, atmosphere, and climate; (10) remote sensing, radar, and photometry; and (11) cartography, photogrammetry, geodesy, and altimetry.

  1. Geology of Europa

    Science.gov (United States)

    Greeley, R.; Chyba, C.; Head, J. W.; McCord, T.; McKinnon, W. B.; Pappalardo, R. T.

    2004-01-01

    Europa is a rocky object of radius 1565 km (slightly smaller than Earth s moon) and has an outer shell of water composition estimated to be of order 100 km thick, the surface of which is frozen. The total volume of water is about 3 x 10(exp 9) cubic kilometers, or twice the amount of water on Earth. Moreover, like its neighbor Io, Europa experiences internal heating generated from tidal flexing during its eccentric orbit around Jupiter. This raises the possibility that some of the water beneath the icy crust is liquid. The proportion of rock to ice, the generation of internal heat, and the possibility of liquid water make Europa unique in the Solar System. In this chapter, we outline the sources of data available for Europa (with a focus on the Galileo mission), review previous and on-going research on its surface geology, discuss the astrobiological potential of Europa, and consider plans for future exploration.

  2. Geology of National Parks

    Science.gov (United States)

    Stoffer, Philip W.

    2008-01-01

    This is a set of two sheets of 3D images showing geologic features of many National Parks. Red-and-cyan viewing glasses are need to see the three-dimensional effect. A search on the World Wide Web will yield many sites about anaglyphs and where to get 3D glasses. Red-blue glasses will do but red-cyan glasses are a little better. This publication features a photo quiz game: Name that park! where you can explore, interpret, and identify selected park landscapes. Can you identify landscape features in the images? Can you explain processes that may have helped form the landscape features? You can get the answers online.

  3. Directions of the US Geological Survey Landslide Hazards Reduction Program

    Science.gov (United States)

    Wieczorek, G.F.

    1993-01-01

    The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author

  4. Volcanism on Io: Results from Global Geologic Mapping

    Science.gov (United States)

    Williams, David A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.

    2010-01-01

    We have completed a new 1:15,000,000 global geologic map of Jupiter's volcanic moon, Io, based on a set of 1 km/pixel combined Galileo- Voyager mosaics produced by the U.S. Geological Survey. The map was produced over the last three years using ArcGIS(TM) software, and has undergone peer-review. Here we report some of the key results from our global mapping efforts, and how these results relate to questions regarding the volcano-tectonic evolution of Io.

  5. Geologic hazards in the region of the Hurricane fault

    Science.gov (United States)

    Lund, W.R.

    1997-01-01

    common in southwestern Utah where it has damaged roads, canal embankments, and water-retention structures. Several unexplained sinkholes near the town of Hurricane possibly are the result of collapse of subsurface volcanic features. Geologic formations associated with slope failures along or near the Hurricane fault include rocks of both Mesozoic and Tertiary age. Numerous landslides are present in these materials along the Hurricane Cliffs, and the Petrified Forest Member of the Chinle Formation is commonly associated with slope failures where it crops out in the St. George Basin. Steep slopes and numerous areas of exposed bedrock make rock fall a hazard in the St. George Basin. Debris flows and debris floods in narrow canyons and on alluvial fans often accompany intense summer cloudburst thunderstorms. Flooded basements and foundation problems associated with shallow ground water are common on benches north of the Santa Clara River in the city of Santa Clara. Stream flooding is the most frequently occurring and destructive geologic hazard in southwestern Utah. Since the 1850s, there have been three major riverine (regional) floods and more than 300 damaging flash floods. Although a variety of flood control measures have been implemented, continued rapid growth in the region is again increasing vulnerability to flood hazards. Site-specific studies to evaluate geologic hazards and identify hazard-reduction measures are recommended prior to construction to reduce the need for costly repair, maintenance, or replacement of improperly placed or protected facilities.

  6. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Paleomagnetism of mesozoic red chert from Cedros Island and the San Benito Islands, Baja California, Mexico revisited

    Science.gov (United States)

    Hagstrum, Jonathan T.; Sedlock, Richard L.

    1992-02-01

    Previous paleomagnetic study of Mesozoic subduction-complex rocks on Cedros Island and the San Benito Islands, Mexico, shows that these rocks have been remagnetized; a single-polarity magnetization was found in chert sections and underlying pillow basalt deposited during a mixed-polarity interval of the geomagnetic field. Reanalysis of the Cedros and San Benito chert samples (101 total) shows that 13 samples also retain a high blocking-temperature component of magnetization (600° to 680°C) indicating a polarity stratigraphy and deposition of the bedded chert near 2° ± 3° paleolatitude. These data are similar to those for red chert in California and Japan implying that many of the Mesozoic ophiolitic chert sequences now exposed around the Pacific rim were initially deposited within the equatorial zone of high biologic productivity. These new data also support accretion of the Cedros and San Benito chert to the American margin at tropical paleolatitudes requiring significant northward translation (and clockwise rotation) to bring them to their present position with respect to the continental interior.

  8. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  9. Geologic Framework Model (GFM2000)

    Energy Technology Data Exchange (ETDEWEB)

    T. Vogt

    2004-08-26

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the

  10. Geologic Framework Model (GFM2000)

    International Nuclear Information System (INIS)

    T. Vogt

    2004-01-01

    The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M and O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in

  11. Mapping the sub-trappean Mesozoic sediments in the western part of Narmada-Tapti region of Deccan Volcanic Province, India

    Science.gov (United States)

    Murty, A. S. N.; Sarkar, Dipankar; Sen, Mrinal K.; Sridher, V.; Prasad, A. S. S. S. R. S.

    2014-10-01

    Deccan Traps spread over large parts of south, west and central India, possibly hiding underneath sediments with hydrocarbon potential. Here, we present the results of seismic refraction and wide-angle reflection experiments along three profiles, and analyze them together the results from all other refraction profiles executed earlier in the western part of Narmada-Tapti region of the Deccan Volcanic Province (DVP). We employ travel time modelling to derive the granitic basement configuration, including the overlying Trap and sub-trappean sediment thickness, if any. Travel time skips and amplitude decay in the first arrival refraction data are indicative of the presence of low velocity sediments (Mesozoic), which are the low velocity zones (LVZ) underneath the Traps. Reflection data from the top of LVZ and basement along with the basement refraction data have been used to derive the Mesozoic sediment thickness. In the middle and eastern parts of the study region between Narmada and Tapti, the Mesozoic sediment thickness varies between 0.5 and 2.0 km and reaches more than 2.5 km south of Sendhwa between Narmada and Tapti Rivers. Thick Mesozoic sediments in the eastern parts are also accompanied by thick Traps. The Mesozoic sediments along the present three profiles may not be much prospective in terms of its thickness, except inside the Cambay basin, where the subtrappean sediment thickness is about 1000-1500 m. In the eastern part of the study area, the deepest section (>4 km) has thick (∼2 km) Mesozoic sediments, but with almost equally thick Deccan Trap cover. Results of the present study provide important inputs for future planning for hydrocarbon exploration in this region.

  12. Geology of hydrothermal uranium deposits

    International Nuclear Information System (INIS)

    Korolev, K.G.; Belov, V.K.; Putilov, G.S.

    1983-01-01

    Geological characteristics of hydrothermal phosphorus-uranium deposits placed in sedimentary, igneous-sedimentary, metamorphic and intrusion formations are presented. Attention is paid to mineral composition, texture and structure of ores, their genesis, tectonics. Geochemical peculiarities of ores and age of molybdenum-uranium and uranium deposits are described. Geological criteria and prospecting features of uranium and uranium-molybdenum deposits are given

  13. The role of E–W basement faults in the Mesozoic geodynamic ...

    Indian Academy of Sciences (India)

    The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and ...

  14. Petroleum Migration, Filling and Biological Degradation in Mesozoic Reservoirs in the Northern North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Horstad, I.

    1995-12-31

    This thesis comprises five papers the first of which discusses the distribution of petroleum within the Gullfaks Field and applies conventional geochemical techniques to characterize the petroleum distribution within a single field. The paper also shows how understanding geochemical heterogeneities in the petroleum fluids helped to build a better geological model of the development of the Gullfaks Field. Based on this work an improved filling model was proposed for the Gullfaks Field. The second paper discusses the biological degradation of the hydrocarbons within the Gullfaks Field, and shows how several samples from neighbouring fields were analyzed to confirm the filling model of the field. It also demonstrates how the quantification of biological degradation of hydrocarbons in the reservoir places constraints on acceptable models of the geological development of the Tampen Spur Area. The third paper discusses the source vs. sink problems of petroleum migration in the North Sea. The fourth paper is a regional study of the petroleum migration within the Tampen Spur area and proposes a regional migration model. The fifth paper is a detailed reservoir geochemical study of the giant Troll Field on the Horda Platform and proposes a revised filling model for the field. 224 refs., 86 figs., 5 tabs.

  15. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    Energy Technology Data Exchange (ETDEWEB)

    J.S. Stuckless; D. O' Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  16. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    International Nuclear Information System (INIS)

    J.S. Stuckless; D. O'Leary

    2006-01-01

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain

  17. Uranium geology of Bulgaria

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Three major uranium districts containing several deposits, plus 32 additional deposits, have been identified in Bulgaria, all of which are detailed geologically in this article. Most of the deposits are located in the West Balkan mountains, the western Rhodope mountains, and the Thracian Basin. A few deposits occur in the East Balkan, eastern Rhodope and Sredna Gora mountains. The types of deposits are sandstone, vein, volcanic, and surficial. Sandstone deposits are hosted in Permian and Tertiary sediments. In early 1992, fifteen deposits were being exploited, of which roughly 70 percent of the uranium produced was being recovered using in-situ leaching (ISL) methods. The remainder was being recovered by conventional underground mining, except for one small deposit that utilized open-pit methods. Fifteen other Bulgarian deposits had been exhausted, while five deposits were still in the exploration stage. Uranium production began in Bulgaria in 1946, and cumulative production through 1991 exceeded 100 million pounds equivalent U3O8. Current annual production is on the order of one million pounds equivalent U3O8, about 750 thousand pounds of which are recovered by ISL operations

  18. Radon in geological medium

    International Nuclear Information System (INIS)

    Hricko, J.

    1995-01-01

    The paper presented deals with behavior of the radon in geological medium and with some results of the radon survey in Bratislava and Kosice regions. 1) The a v has been detected in the holes 0.80 m deep. The density of observations - 3 reference areas (one represents 20 stations) per 1 km 2 . The radon risk maps in 1:25000 and 1:50000 scales have been compiled. The 56.8% of the project area lies in low radon risk, 37.6% in medium radon risk and 5.6% in high radon risk. Follow-up monitoring of the equivalent volume radon activity (EVRA) at the flats, located in the areas with high radon risk of the surface layer, has showed values several times higher than Slovak limits (Marianka, Raca, Vajnory). The evidence that neotectonic is excellent medium for rising up emanation to the subsurface layer, is shown on the map. The tectonic zone of Liscie udolie in Bratislava-Karlova Ves area has been clearly detected by profile radon survey (a v > 50 kBq/m 3 ). 2) At present, northern half of the area of Kosice in question was covered by radon survey. The low and medium radon risks have been observed here, while localities with high radon risk are small in extent. The part of radon risk and soil permeability map from northern Kosice area is shown. (J.K.) 3 figs., 2 refs

  19. The Geology of Titan

    Science.gov (United States)

    Jaumann, Ralf

    Titan, the largest and most complex satellite in the solar system exhibits an organic dominated surface chemistry and shares surface features with other large icy satellites as well as the terrestrial planets. It is subject to tidal stresses, and its surface appears to have been modified tectonically. Cassini's global observations at infrared and radar wavelengths as well as local investigations by the instruments on the Huygens probe has revealed that Titan has the largest known abundance of organic material in the solar system apart from Earth, and that its active hydrological cycle is analogous to that of Earth, but with methane replacing water. The surface of Titan exhibits morphological features of different sizes and origins created by geological processes that span the entire dynamic range of aeolian, fluvial and tectonic activities, with likely evidence that cryovolcanism might exists where liquid water, perhaps in concert with ammonia, methane and carbon dioxide, makes its way to the surface from the interior [e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Extended dune fields, lakes, mountainous terrain, dendritic erosion patterns and erosional remnants indicate dynamic surface processes. Valleys, small-scale gullies and rounded cobbles require erosion by extended energetic flow of liquids. There is strong evidence that liquid hydrocarbons are ponded on the surface in lakes, predominantly, but not exclusively, at high northern latitudes. A variety of features including extensive flows and caldera-like constructs are interpreted to be cryovolcanic in origin. Chains and isolated blocks of rugged terrain rising from smoother areas are best described as mountains and might be related to tectonic processes. Impact craters form on all solid bodies in the solar system, and have been detected on Titan. But very few have been observed so they must be rapidly destroyed or buried by other geologic processes The morphologies of the impact

  20. Viruses as new agents of organomineralization in the geological record.

    Science.gov (United States)

    Pacton, Muriel; Wacey, David; Corinaldesi, Cinzia; Tangherlini, Michael; Kilburn, Matt R; Gorin, Georges E; Danovaro, Roberto; Vasconcelos, Crisogono

    2014-07-03

    Viruses are the most abundant biological entities throughout marine and terrestrial ecosystems, but little is known about virus-mineral interactions or the potential for virus preservation in the geological record. Here we use contextual metagenomic data and microscopic analyses to show that viruses occur in high diversity within a modern lacustrine microbial mat, and vastly outnumber prokaryotes and other components of the microbial mat. Experimental data reveal that mineral precipitation takes place directly on free viruses and, as a result of viral infections, on cell debris resulting from cell lysis. Viruses are initially permineralized by amorphous magnesium silicates, which then alter to magnesium carbonate nanospheres of ~80-200 nm in diameter during diagenesis. Our findings open up the possibility to investigate the evolution and geological history of viruses and their role in organomineralization, as well as providing an alternative explanation for enigmatic carbonate nanospheres previously observed in the geological record.

  1. Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus

    Science.gov (United States)

    Kumar, P. Senthil; Head, James W., III

    2009-01-01

    Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.

  2. Anatexis, hybridization and the modification of ancient crust: Mesozoic plutonism in the Old Woman Mountains area, California

    Science.gov (United States)

    Miller, C.F.; Wooden, J.L.

    1994-01-01

    A compositionally expanded array of granitic (s.l.) magmas intruded the > 2 Ga crust of the Old Woman Mountains area between 160 and 70 Ma. These magmas were emplaced near the eastern (inland) edge of the Jurassic/Cretaceous arcs of western North America, in an area where magma flux, especially during the Jurassic, was considerably lower than to the west. The Jurassic intrusives and over half of the Cretaceous intrusives are predominantly metaluminous and variable in composition; a major Cretaceous suite comprises only peraluminous monzogranite. Only the Jurassic intrusions show clear evidence for the presence of mafic liquids. All units, including the most mafic rocks, reveal isotopic evidence for a significant crustal component. However, none of the Mesozoic intrusives matches in isotopic composition either average pre-intrusion crust or any major unit of the exposed crust. Elemental inconsistencies also preclude closed system derivation from exposed crust. Emplacement of these magmas, which doubled the volume of the mid- to upper crust, did not dramatically change its elemental composition. It did, however, affect its Nd and especially Sr isotopic composition and modify some of the distinctive aspects of the elemental chemistry. We propose that Jurassic magmatism was open-system, with a major influx of mantle-derived mafic magma interacting strongly with the ancient crust. Mesozoic crustal thickening may have led to closed-system crustal melting by the Late Cretaceous, but the deep crust had been profoundly modified by earlier Mesozoic hybridization so that crustal melts did not simply reflect the original crustal composition. The clear evidence for a crustal component in magmas of the Old Woman Mountains area may not indicate any fundamental differences from the processes at work elsewhere in this or other magmatic arcs where the role of pre-existing crust is less certain. Rather, a compositionally distinctive, very old crust may simply have yielded a more

  3. Geologic mapping procedure: Final draft

    International Nuclear Information System (INIS)

    1987-09-01

    Geologic mapping will provide a baseline record of the subsurface geology in the shafts and drifts of the Exploratory Shaft Facility (ESF). This information will be essential in confirming the specific repository horizon, selecting representative locations for the in situ tests, providing information for construction and decommissioning seal designs, documenting the excavation effects, and in providing information for performance assessment, which relates to the ultimate suitability of the site as a nuclear waste repository. Geologic mapping will be undertaken on the walls and roof, and locally on the floor within the completed At-Depth Facility (ADF) and on the walls of the two access shafts. Periodic mapping of the exposed face may be conducted during construction of the ADF. The mapping will be oriented toward the collection and presentation of geologic information in an engineering format and the portrayal of detailed stratigraphic information which may be useful in confirmation of drillhole data collected as part of the surface-based testing program. Geologic mapping can be considered as a predictive tool as well as a means of checking design assumptions. This document provides a description of the required procedures for geologic mapping for the ESF. Included in this procedure is information that qualified technical personnel can use to collect the required types of geologic descriptions, at the appropriate level of detail. 5 refs., 3 figs., 1 tab

  4. On the Geological History of Venus

    Science.gov (United States)

    Basilevsky, A. T.; Head, J. W.

    2008-09-01

    of which is crucial for working out reliable geodynamic models of the evolution of this planet, we need to have isotopic dating for absolute ages of major geologic units. The most promising in this respect is a sample return mission to Venus aiming to return to Earth material of unit pwr [25]. References: [1] Saunders R.S. et al. (1992) JGR, 97, 13067- 13091. [2] JGR (1992) 97, E8, E10. [3] Venus II (1997) Univ. Arizona Press. 1362 p. [4] Tanaka K.L. (1994) USGS Open-File Report 94-438. [5] Basilevsky A.T. & McGill G.E. (2007) In: Exploring Venus as a Terrestrial Planet, Geophysical Monograph 176. American Geophysical Union, Washington, DC. 23-44. [6] Wilhelms D. (1990) in Planetary Mapping, NY, 208-260. [7] Basilevsky A.T. & Head J.W. (1998) JGR, 103, 8531-8544. [8] Basilevsky A.T. & Head J.W. (2000) PSS, 48, 75-111. [9] Ivanov & Head J.W. (2001) JGR, 106, 17515-17566. [10] Guest J.E. & Stofan E.E. [1999] Icarus, 139, 55-66. [11] Basilevsky A.T. & Head J.W. (2002a) Geology, 30, 1015-1018. [12] Ivanov M.A. (2008) LPSC XXXIX, abs. # 1017. [13] Ivanov M. A. & Basilevsky A.T. (1993) GRL, 20, 2579-2582. [14] Namiki, N. & Solomon S.C. (1994) Science, 265, 929-933. [15] Price, M. & Suppe J. (1994) Nature, 372, 756-759. [16] McKinnon W. et al. (1997) Venus II, Univ. Arizona Press, 969-1014. [17] Gilmore M.S. et al. (1997) JGR, 102, 13,357-13,368. [18] Collins G.C. (1999) JGR, 104, 24,121-24,139. [19] Basilevsky A.T. et al. (1999) GRL, 26, 2593-2596. [20] Pivchenkova E.V. & Kryuchkov V.P. (2001) Vernadsky- Brown Microsymposium 34, abs. MS057. [21] Basilevsky A.T. & Head J.W. (2002b) JGR, 107, doi: 10.1029/2000JE001471. [22] Basilevsky A.T. & Head J.W. (2002c) JGR, 107, 10.1029/2001JE001584, 2002. [23] McGill G.E. (2004) Icarus, 172, 603-612. [24] Basilevsky A.T. & Head J.W. (2006) JGR, 111, CiteID E03006. [25] Basilevsky A.T. et al. (2006) PSS, 55, 2097-2112.

  5. Triassic-Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs.

    Science.gov (United States)

    Toljagic, Olja; Butler, Richard J

    2013-06-23

    Pseudosuchia, one of the two main clades of Archosauria (Reptilia: Diapsida), suffered a major decline in lineage diversity during the Triassic-Jurassic (TJ) mass extinction (approx. 201 Ma). Crocodylomorpha, including living crocodilians and their extinct relatives, is the only group of pseudosuchians that survived into the Jurassic. We reassess changes in pseudosuchian morphological diversity (disparity) across this time interval, using considerably larger sample sizes than in previous analyses. Our results show that metrics of pseudosuchian disparity did not change significantly across the TJ boundary, contrasting with previous work suggesting low pseudosuchian disparity in the Early Jurassic following the TJ mass extinction. However, a significant shift in morphospace occupation between Late Triassic and Early Jurassic taxa is recognized, suggesting that the TJ extinction of many pseudosuchian lineages was followed by a major and geologically rapid adaptive radiation of crocodylomorphs. This marks the onset of the spectacularly successful evolutionary history of crocodylomorphs in Jurassic and Cretaceous ecosystems.

  6. Triassic–Jurassic mass extinction as trigger for the Mesozoic radiation of crocodylomorphs

    Science.gov (United States)

    Toljagić, Olja; Butler, Richard J.

    2013-01-01

    Pseudosuchia, one of the two main clades of Archosauria (Reptilia: Diapsida), suffered a major decline in lineage diversity during the Triassic–Jurassic (TJ) mass extinction (approx. 201 Ma). Crocodylomorpha, including living crocodilians and their extinct relatives, is the only group of pseudosuchians that survived into the Jurassic. We reassess changes in pseudosuchian morphological diversity (disparity) across this time interval, using considerably larger sample sizes than in previous analyses. Our results show that metrics of pseudosuchian disparity did not change significantly across the TJ boundary, contrasting with previous work suggesting low pseudosuchian disparity in the Early Jurassic following the TJ mass extinction. However, a significant shift in morphospace occupation between Late Triassic and Early Jurassic taxa is recognized, suggesting that the TJ extinction of many pseudosuchian lineages was followed by a major and geologically rapid adaptive radiation of crocodylomorphs. This marks the onset of the spectacularly successful evolutionary history of crocodylomorphs in Jurassic and Cretaceous ecosystems. PMID:23536443

  7. Geology and engineering geology of roads in South Africa

    CSIR Research Space (South Africa)

    Paige-Green, P

    2004-07-01

    Full Text Available This paper briefly summarises the geological and geomorphological history of South Africa. This history is then related to various problems affecting the construction of roads in South Africa. These problems need to be identified early...

  8. Age determination and geological studies

    International Nuclear Information System (INIS)

    Stevens, R.D.; Delabio, R.N.; Lachance, G.R.

    1982-01-01

    Two hundred and eight potassium-argon age determinations carried out on Canadian rocks and minerals are reported. Each age determination is accompanied by a description of the rock and mineral concentrate used; brief interpretative comments regarding the geological significance of each age are also provided where possible. The experimental procedures employed are described in brief outline and the constants used in the calculation of ages are listed. Two geological time-scales are reproduced in tabular form for ready reference and an index of all Geological Survey of Canada K-Ar age determinations published in this format has been prepared using NTS quadrangles as the primary reference

  9. The primary feather lengths of early birds with respect to avian wing shape evolution.

    Science.gov (United States)

    Wang, X; Nudds, R L; Dyke, G J

    2011-06-01

    We examine the relationships between primary feather length (f(prim)) and total arm length (ta) (sum of humerus, ulna and manus lengths) in Mesozoic fossil birds to address one aspect of avian wing shape evolution. Analyses show that there are significant differences in the composition of the wing between the known lineages of basal birds and that mean f(prim) (relative to ta length) is significantly shorter in Archaeopteryx and enantiornithines than it is in Confuciusornithidae and in living birds. Based on outgroup comparisons with nonavian theropods that preserve forelimb primary feathers, we show that the possession of a relatively shorter f(prim) (relative to ta length) must be the primitive condition for Aves. There is also a clear phylogenetic trend in relative primary feather length throughout bird evolution: our analyses demonstrate that the f(prim)/ta ratio increases among successive lineages of Mesozoic birds towards the crown of the tree ('modern birds'; Neornithes). Variance in this ratio also coincides with the enormous evolutionary radiation at the base of Neornithes. Because the f(prim)/ta ratio is linked to flight mode and performance in living birds, further comparisons of wing proportions among Mesozoic avians will prove informative and certainly imply that the aerial locomotion of the Early Cretaceous Confuciusornis was very different to other extinct and living birds. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  10. Geologic studies in Alaska by the U.S. Geological Survey, 1992

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Till, Alison B.

    1993-01-01

    This collection of 19 papers continues the annual series of U.S. Geological Survey reports on the geology of Alaska. The contributions, which include full-length Articles and shorter Geologic Notes, cover a broad range of topics including dune formation, stratigraphy, paleontology, isotopic dating, mineral resources, and tectonics. Articles, grouped under four regional headings, span nearly the entire State from the North Slope to southwestern, south-central, and southeastern Alaska (fig. 1).In the section on northern Alaska, Galloway and Carter use new data on dune morphology and radiocarbon ages from the western Arctic Coastal Plain to develop a late Holocene chronology of multiple episodes of dune stabilization and reactivation for the region. Their study has important implications for climatic changes in northern Alaska during the past 4,000 years. In two papers, Dumoulin and her coauthors describe lithofacies and conodont faunas of Carboniferous strata in the western Brooks Range, discuss depositional environments, and propose possible correlations and source areas for some of the strata. Schenk and Bird propose a preliminary division of the Lower Cretaceous stratigraphic section in the central part of the North Slope into depositional sequences. Aleinikoff and others present new U-Pb data for zircons from metaigneous rocks from the central Brooks Range. Karl and Mull, reacting to a proposal regarding terrane nomenclature for northern Alaska that was published in last year's Alaskan Studies Bulletin, provide a historical perspective of the evolution of terminology for tectonic units in the Brooks Range and present their own recommendations.

  11. Groundwater drought in different geological conditions

    International Nuclear Information System (INIS)

    Machlica, A; Stojkovova, M

    2008-01-01

    The identification of hydrological extremes (drought) is very actual at present. The knowledge of the mechanism of hydrological extremes evolution could be useful at many levels of human society, such as scientific, agricultural, local governmental, political and others. The research was performed in the Upper part of the Nitra River catchment (central part of Slovakia) and in the Topla and Ondava River catchments (eastern part of Slovakia). Lumped hydrological model BILAN was used to identify relationships among compounds of the water balance. Presented results are focused on drought in groundwater storage, soil moisture, base flow and discharges. BFI model for baseflow estimation was used and results were compared with those gained by BILAN model. Another item of the research was to compare results of hydrological balance model application on catchments with different geological conditions.

  12. Geological heritage: Identifying, valuing and managing geological sites

    Directory of Open Access Journals (Sweden)

    Omar R. Martínez

    2008-01-01

    Full Text Available Little development has research in Geological Sciences, in our country and particularly in the province of Buenos Aires, had in connection with the sites which require special preservation and protection. However, there are many sites named by geological bibliography which should be valued and ,preserved as Geological Heritage. The Geological Heritage is just one more element of the natural heritage, and is a big part of our natural inheritance. At the 1972 UNESCO Conference in Paris on the protection of the world cultural and natural heritage, some countries began doing research to get to know, protect and value geological sites, which is undoubtedly a significant resource as well as a key tool for the tourist development of a territory. Making inventories, filing all the information necessary for description, and collecting data of interest so as to keep the inventories updated, all become indispensable to have a thorough knowledge of the geological wealth of an area. The files' designs bear some problems, in some cases, in connection with being too subjective and synthetic, and, in others, too detailed and rigorous.

  13. Composition and conditions of the late Mesozoic volcanism occurrence of the northern part of the Borschovochny ridge (Eastern Transbaikalia)

    Science.gov (United States)

    Kremer, Ivan; Tishin, Platon

    2017-12-01

    On the basis of geochemical study results composition heterogeneity and formation conditions of late Mesozoic subvolcanic rocks from northern part of Borschovochny ridge by an example of shadoronsky and abgatuysky complexes are discussed. Obtained results show that volcanic rocks of both complexes have heterogeneous composition and differ from each other in level and other features of alkalinity. Rare and trace elements geochemistry study results show that there is a significant enrichment with LILE (Cs, Rb, Ba) and some depletion with HFSE (Nb, Ta), meanwhile the correlation between Th and Yb indicates conditions of active continental margin. Gd/Yb and La/Sm ratios allow to conclude that shadoronsky complex rocks originated from garnet-stable mantle source (partial melting of 5% of garnet peridotite), while abagatuysky complex rocks originated from transitional garnet-spinel mantle.

  14. Global Geological Map of Venus

    Science.gov (United States)

    Ivanov, M. A.

    2008-09-01

    Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and

  15. Resetting the evolution of marine reptiles at the Triassic-Jurassic boundary.

    Science.gov (United States)

    Thorne, Philippa M; Ruta, Marcello; Benton, Michael J

    2011-05-17

    Ichthyosaurs were important marine predators in the Early Jurassic, and an abundant and diverse component of Mesozoic marine ecosystems. Despite their ecological importance, however, the Early Jurassic species represent a reduced remnant of their former significance in the Triassic. Ichthyosaurs passed through an evolutionary bottleneck at, or close to, the Triassic-Jurassic boundary, which reduced their diversity to as few as three or four lineages. Diversity bounced back to some extent in the aftermath of the end-Triassic mass extinction, but disparity remained at less than one-tenth of pre-extinction levels, and never recovered. The group remained at low diversity and disparity for its final 100 Myr. The end-Triassic mass extinction had a previously unsuspected profound effect in resetting the evolution of apex marine predators of the Mesozoic.

  16. NCEI Marine Geology Data Archive

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Marine Geologic data compilations and reports in the NCEI archive are from academic and government sources around the world. Over ten terabytes of analyses,...

  17. Geology behind nuclear fission technology

    International Nuclear Information System (INIS)

    Dhana Raju, R.

    2005-01-01

    Geology appears to have played an important role of a precursor to Nuclear Fission Technology (NFT), in the latter's both birth from the nucleus of an atom of and most important application as nuclear power extracted from Uranium (U), present in its minerals. NFT critically depends upon the availability of its basic raw material, viz., nuclear fuel as U and/ or Th, extracted from U-Th minerals of specific rock types in the earth's crust. Research and Development of the Nuclear Fuel Cycle (NFC) depends heavily on 'Geology'. In this paper, a brief review of the major branches of geology and their contributions during different stages of NFC, in the Indian scenario, is presented so as to demonstrate the important role played by 'Geology' behind the development of NFT, in general, and NFC, in particular. (author)

  18. Terrestrial and Lunar Geological Terminology

    Science.gov (United States)

    Schrader, Christian

    2009-01-01

    This section is largely a compilation of defining geological terms concepts. Broader topics, such as the ramifications for simulant design and in situ resource utilization, are included as necessary for context.

  19. The laboratories of geological studies

    International Nuclear Information System (INIS)

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA's activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  20. UT-CT: A National Resource for Applications of High-Resolution X-ray Computed Tomography in the Geological Sciences

    Science.gov (United States)

    Carlson, W. D.; Ketcham, R. A.; Rowe, T. B.

    2002-12-01

    modeling of melt extraction during anatexis, and visualizing and quantifying the deformation of continuous 3-D plagioclase-chain networks in slowly cooled basalt flows to evaluate differentiation by compaction of a crystal mush. Meteoritical research includes measuring sizes of chondrules and metal-troilite particles in chondritic meteorites to test hypotheses of sorting during condensation of the solar nebula; visualizing paths of migration for molten metal in rare lodranite meteorites to gain insight into processes of core segregation in terrestrial planets; measurement of vesicles and voids in basaltic meteorites to examine flow rates and mechanisms; and imaging of metal/clast relationships in a brecciated chondrite to demonstrate impact-induced metamorphism, metal fusion, and brecciation on the meteorite's parent body. Paleontological studies include analysis of fossil jaws of Mesozoic marsupials to establish the antiquity of distinctive patterns of tooth replacement and reproductive strategies seen in modern marsupials; comparisons of the internal cranial anatomy of mammals and their closest extinct relatives to pinpoint the evolutionary origin of the mammalian neocortex, the locus of advanced sensory perception and integration; and description of the evolution of the avian brain and braincase from those of non-avian dinosaurs, from CT data on skulls of the oldest known dinosaurs and complete skeletal analysis of the world's second oldest bird.

  1. Titan's geoid and hydrology: implications for Titan's geological evolution

    Science.gov (United States)

    Sotin, Christophe; Seignovert, Benoit; Lawrence, Kenneth; MacKenzie, Shannon; Barnes, Jason; Brown, Robert

    2014-05-01

    A 1x1 degree altitude map of Titan is constructed from the degree 4 gravity potential [1] and Titan's shape [2] determined by the Radio Science measurements and RADAR observations of the Cassini mission. The amplitude of the latitudinal altitude variations is equal to 300 m compared to 600 m for the amplitude of the latitudinal shape variations. The two polar caps form marked depressions with an abrupt change in topography at exactly 60 degrees at both caps. Three models are envisaged to explain the low altitude of the polar caps: (i) thinner ice crust due to higher heat flux at the poles, (ii) fossil shape acquired if Titan had higher spin rate in the past, and (iii) subsidence of the crust following the formation of a denser layer of clathrates as ethane rain reacts with the H2O ice crust [3]. The later model is favored because of the strong correlation between the location of the cloud system during the winter season and the latitude of the abrupt change in altitude. Low altitude polar caps would be the place where liquids would run to and eventually form large seas. Indeed, the large seas of Titan are found at the deepest locations at the North Pole. However, the lakes and terrains considered to be evaporite candidates due to their spectral characteristics in the infrared [4,5] seem to be perched. Lakes may have been filled during Titan's winter and then slowly evaporated leaving material on the surface. Interestingly, the largest evaporite deposits are located at the equator in a deep depression 150 m below the altitude of the northern seas. This observation seems to rule out the presence of a global subsurface hydrocarbon reservoir unless the evaporation rate at the equator is faster than the transport of fluids from the North Pole to the equator. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess L. et al. (2012) Science, doi 10.1126/science.1219631. [2] Lorenz R.D. (2013) Icarus, 225, 367-377. [3] Choukroun M. and C. Sotin (2012) Geophys. Res. Lett., 39, L0420. [4] Barnes J.W. et al. (2011) Icarus, 216, 136-140. [5] MacKenzie S.M. et al. (2014) submitted to JGR.

  2. Geologic and Isotopic Models for the Carpathian Crystalline Evolution

    Directory of Open Access Journals (Sweden)

    Ioan Coriolan Balintoni

    2015-03-01

    Full Text Available The majority of Carpathian metamorphics protoliths have TDM model Sm/Nd ages between 1.6 and 2.0 Ga. This suggests an important episode of continental crust formation after the 2.0 Ga. The Biharia lithogroup (Apuseni Mountains and the Tulghes lithogroup (East Carpathians furnished Zircon U/Pb ages from metagranitoids and acid metavolcanics, respective, around 500 Ma; this is a sign of existence of some Lower Proterozoic protoliths among Carpathian metamorphics. The bimodal intrusions which are piercing the volcano-sedimentary sequence of Paiuseni lithogroup in Highiş Massif (Apuseni Mountains have given Permian ages on Zircon U/Pb data. The Paiuseni lithogroup probably represents the fill of a rift basin of the same age. The Arieseni, Muntele Mare and Vinta granitoid intrusions from Apuseni Mountains, with U/Pb ages between Lower Devonian and Permian, indicates some contractional and extensional processes, in connection with Variscan Orogeny.

  3. Evolution of the Atmosphere and Oceans: Evidence from Geological ...

    Indian Academy of Sciences (India)

    of Archaean atmosphere was suggested to be 100-1000 times those of the present to ... concentration. From the above data pertaining to evaporites, Walker arrived at the composition of. Archaean seawater. High pC02 on the early Earth would have yielded higher ... weathering in the presence of CO2. , produce alkaline ...

  4. Geological evolution of the Neoproterozoic Bemarivo Belt, northern Madagascar

    Science.gov (United States)

    Thomas, Ronald J.; De Waele, B.; Schofield, D.I.; Goodenough, K.M.; Horstwood, M.; Tucker, R.; Bauer, W.; Annells, R.; Howard, K. J.; Walsh, G.; Rabarimanana, M.; Rafahatelo, J.-M.; Ralison, A.V.; Randriamananjara, T.

    2009-01-01

    The broadly east-west trending, Late Neoproterozoic Bemarivo Belt in northern Madagascar has been re-surveyed at 1:100 000 scale as part of a large multi-disciplinary World Bank-sponsored project. The work included acquisition of 14 U-Pb zircon dates and whole-rock major and trace element geochemical data of representative rocks. The belt has previously been modelled as a juvenile Neoproterozoic arc and our findings broadly support that model. The integrated datasets indicate that the Bemarivo Belt is separated by a major ductile shear zone into northern and southern "terranes", each with different lithostratigraphy and ages. However, both formed as Neoproterozoic arc/marginal basin assemblages that were translated southwards over the north-south trending domains of "cratonic" Madagascar, during the main collisional phase of the East African Orogeny at ca. 540 Ma. The older, southern terrane consists of a sequence of high-grade paragneisses (Sahantaha Group), which were derived from a Palaeoproterozoic source and formed a marginal sequence to the Archaean cratons to the south. These rocks are intruded by an extensive suite of arc-generated metamorphosed plutonic rocks, known as the Antsirabe Nord Suite. Four samples from this suite yielded U-Pb SHRIMP ages at ca. 750 Ma. The northern terrane consists of three groups of metamorphosed supracrustal rocks, including a possible Archaean sequence (Betsiaka Group: maximum depositional age approximately 2477 Ma) and two volcano-sedimentary sequences (high-grade Milanoa Group: maximum depositional age approximately 750 Ma; low grade Daraina Group: extrusive age = 720-740 Ma). These supracrustal rocks are intruded by another suite of arc-generated metamorphosed plutonic rocks, known as the Manambato Suite, 4 samples of which gave U-Pb SHRIMP ages between 705 and 718 Ma. Whole-rock geochemical data confirm the calc-alkaline, arc-related nature of the plutonic rocks. The volcanic rocks of the Daraina and Milanoa groups also show characteristics of arc-related magmatism, but include both calc-alkaline and tholeiitic compositions. It is not certain when the two Bemarivo terranes were juxtaposed, but ages from metamorphic rims on zircon suggest that both the northern and southern terranes were accreted to the northern cratonic margin of Madagascar at about 540-530 Ma. Terrane accretion included the assembly of the Archaean Antongil and Antananarivo cratons and the high-grade Neoproterozoic Anaboriana Belt. Late- to post-tectonic granitoids of the Maevarano Suite, the youngest plutons of which gave ca. 520 Ma ages, intrude all terranes in northern Madagascar showing that terrane accretion was completed by this time. ?? 2009 Natural Environment Research Council (NERC).

  5. Evolution of the Atmosphere and Oceans: Evidence from Geological ...

    Indian Academy of Sciences (India)

    transfer of gases and water takes place between them in order to maintain this .... components in modern volcanic eruptions, although these volatiles today ... the decay of tritium (3H) and interaction of cosmic rays with atmospheric gases. These sources account for only 10% of He lost annually from the atmosphere. Helium ...

  6. Evolution of the Atmosphere and Oceans: Evidence from Geological ...

    Indian Academy of Sciences (India)

    00. CI-. SO/-. HC0. 3. -. Br. 18.980. 2.649. 0.140. 0.065 Anions total = 21.861 °/00. H. 2 ... metals. The metal-laden hydrothermal solutions that escape into the sea floor shed their metals as sulphides on contacting'the seawater. Some times set-.

  7. Protistan Skeletons: A Geologic History of Evolution and Constraint

    OpenAIRE

    Knoll, Andrew Herbert; Kotrc, Benjamin

    2015-01-01

    The tests and scales formed by protists may be the epitome of lightweight bioconstructions in nature. Skeletal biomineralization is widespread among eukaryotes, but both predominant mineralogy and stratigraphic history differ between macroscopic and microscopic organisms. Among animals and macroscopic algae, calcium minerals, especially carbonates, predominate in skeleton formation, with most innovations in skeletal biomineralization concentrated in and around the Cambrian Period. In contrast...

  8. Evolution of the Atmosphere and Oceans: Evidence from Geological ...

    Indian Academy of Sciences (India)

    ... (Cyanobacteria) from a 3.46 Ga old Apex chert in NW Australia. This is the oldest known fossil record of oxygenic photosynthesis. Besides, there are many bacteria that follow nob-oxygenic photosynthesis. Certain sulphate bacteria, for instance, use H2S instead o[water, and CO2 to produce carbohydrates in the presence.

  9. Bedrock geologic map of Vermont

    Science.gov (United States)

    Ratcliffe, Nicholas M.; Stanley, Rolfe S.; Gale, Marjorie H.; Thompson, Peter J.; Walsh, Gregory J.; With contributions by Hatch, Norman L.; Rankin, Douglas W.; Doolan, Barry L.; Kim, Jonathan; Mehrtens, Charlotte J.; Aleinikoff, John N.; McHone, J. Gregory; Cartography by Masonic, Linda M.

    2011-01-01

    The Bedrock Geologic Map of Vermont is the result of a cooperative agreement between the U.S. Geological Survey (USGS) and the State of Vermont. The State's complex geology spans 1.4 billion years of Earth's history. The new map comes 50 years after the most recent map of the State by Charles G. Doll and others in 1961 and a full 150 years since the publication of the first geologic map of Vermont by Edward Hitchcock and others in 1861. At a scale of 1:100,000, the map shows an uncommon level of detail for State geologic maps. Mapped rock units are primarily based on lithology, or rock type, to facilitate derivative studies in multiple disciplines. The 1961 map was compiled from 1:62,500-scale or smaller maps. The current map was created to integrate more detailed (1:12,000- to 1:24,000-scale) modern and older (1:62,500-scale) mapping with the theory of plate tectonics to provide a framework for geologic, tectonic, economic, hydrogeologic, and environmental characterization of the bedrock of Vermont. The printed map consists of three oversize sheets (52 x 76 inches). Sheets 1 and 2 show the southern and northern halves of Vermont, respectively, and can be trimmed and joined so that the entire State can be displayed as a single entity. These sheets also include 10 cross sections and a geologic structure map. Sheet 3 on the front consists of descriptions of 486 map units, a correlation of map units, and references cited. Sheet 3 on the back features a list of the 195 sources of geologic map data keyed to an index map of 7.5-minute quadrangles in Vermont, as well as a table identifying ages of rocks dated by uranium-lead zircon geochronology.

  10. Age, distribution, and stratigraphic relationship of rock units in the San Joaquin Basin Province, California: Chapter 5 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    Science.gov (United States)

    Hosford Scheirer, Allegra; Magoon, Leslie B.

    2008-01-01

    The San Joaquin Basin is a major petroleum province that forms the southern half of California’s Great Valley, a 700-km-long, asymmetrical basin that originated between a subduction zone to the west and the Sierra Nevada to the east. Sedimentary fill and tectonic structures of the San Joaquin Basin record the Mesozoic through Cenozoic geologic history of North America’s western margin. More than 25,000 feet (>7,500 meters) of sedimentary rocks overlie the basement surface and provide a nearly continuous record of sedimentation over the past ~100 m.y. Further, depositional geometries and fault structures document the tectonic evolution of the region from forearc setting to strike-slip basin to transpressional margin. Sedimentary architecture in the San Joaquin Basin is complicated because of these tectonic regimes and because of lateral changes in depositional environment and temporal changes in relative sea level. Few formations are widespread across the basin. Consequently, a careful analysis of sedimentary facies is required to unravel the basin’s depositional history on a regional scale. At least three high-quality organic source rocks formed in the San Joaquin Basin during periods of sea level transgression and anoxia. Generated on the basin’s west side, hydrocarbons migrated into nearly every facies type in the basin, from shelf and submarine fan sands to diatomite and shale to nonmarine coarse-grained rocks to schist. In 2003, the U.S. Geological Survey (USGS) completed a geologic assessment of undiscovered oil and gas resources and future additions to reserves in the San Joaquin Valley of California (USGS San Joaquin Basin Province Assessment Team, this volume, chapter 1). Several research aims supported this assessment: identifying and mapping the petroleum systems, modeling the generation, migration, and accumulation of hydrocarbons, and defining the volumes of rock to be analyzed for additional resources. To better understand the three dimensional

  11. Geodiversity: Exploration of 3D geological model space

    Science.gov (United States)

    Lindsay, M. D.; Jessell, M. W.; Ailleres, L.; Perrouty, S.; de Kemp, E.; Betts, P. G.

    2013-05-01

    The process of building a 3D model necessitates the reconciliation of field observations, geophysical interpretation, geological data uncertainty and the prevailing tectonic evolution hypotheses and interpretations. Uncertainty is compounded when clustered data points collected at local scales are statistically upscaled to one or two points for use in regional models. Interpretation is required to interpolate between sparse field data points using ambiguous geophysical data in covered terranes. It becomes clear that multiple interpretations are possible during model construction. The various interpretations are considered as potential natural representatives, but pragmatism typically dictates that just a single interpretation is offered by the modelling process. Uncertainties are introduced into the 3D model during construction from a variety of sources and through data set optimisation that produces a single model. Practices such as these are likely to result in a model that does not adequately represent the target geology. A set of geometrical ‘geodiversity’ metrics are used to analyse a 3D model of the Gippsland Basin, southeastern Australia after perturbing geological input data via uncertainty simulation. The resulting sets of perturbed geological observations are used to calculate a suite of geological 3D models that display a range of geological architectures. The concept of biodiversity has been adapted for the geosciences to quantify geometric variability, or geodiversity, between models in order to understand the effect uncertainty has models geometry. Various geometrical relationships (depth, volume, contact surface area, curvature and geological complexity) are used to describe the range of possibilities exhibited throughout the model suite. End-member models geodiversity metrics are classified in a similar manner to taxonomic descriptions. Further analysis of the model suite is performed using principal component analysis (PCA) to determine

  12. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  13. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  14. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  15. Health Benefits of Geologic Materials and Geologic Processes

    Directory of Open Access Journals (Sweden)

    Robert B. Finkelman

    2006-12-01

    Full Text Available The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. “Terra sigillata,” still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets. Metals and trace elements are being used in some of today’s most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc. that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease.

  16. Tectonic subsidence analyses of miogeoclinal strata from mesozoic marginal basin of Peru

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, W.J.

    1988-01-01

    The Western Peruvian trough is composed of an eastern miogeoclinical facies of carbonate and clastic strata, and a western eugeoclinal facies consisting of a succession of volcanic and sedimentary rocks. In norther and central Peru, the miogeocline is located between a tectonic hinge adjacent to platformal facies of the Maranon geanticline on the east, and an outer marginal high bounded by the Cordillera Blanca fault and Tapacocha axis on the west. Miogeoclinal and platformal strata in southern Peru occur in a broad belt between Arequipa and Lago Titicaca. A marginal basin setting has been proposed for the Western Peruvian trough and the several kilometers of subsidence in the basin has been attributed to back-arc extension and crustal thinning. As a test of this model, quantitative tectonic subsidence curves were constructed from representative sections within miogeoclinar strata from four localities. Preliminary results indicate that the calculated curves have the same overall form as the age-depth curve for ocean floor, suggesting that subsidence was controlled by cooling and thermal contraction of heated lithosphere. The slopes of the curves are less than those for subsidence of oceanic lithosphere. However, they are in agreement with geologic evidence that the miogeocline accumulated on continental crust. Significant variations in the timing of onset, duration, and magnitude of subsidence are observed between sections from northern and southern Peru.

  17. Geologic database for digital geology of California, Nevada, and Utah: an application of the North American Data Model

    Science.gov (United States)

    Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.

    2003-01-01

    The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.

  18. Thermal Maturity Data Used by the U.S. Geological Survey for the U.S. Gulf Coast Region Oil and Gas Assessment

    Science.gov (United States)

    Dennen, Kristin O.; Warwick, Peter D.; McDade, Elizabeth Chinn

    2010-01-01

    The U.S. Geological Survey is currently assessing the oil and natural gas resources of the U.S. Gulf of Mexico region using a total petroleum system approach. An essential part of this geologically based method is evaluating the effectiveness of potential source rocks in the petroleum system. The purpose of this report is to make available to the public RockEval and vitrinite reflectance data from more than 1,900 samples of Mesozoic and Tertiary rock core and coal samples in the Gulf of Mexico area in a format that facilitates inclusion into a geographic information system. These data provide parameters by which the thermal maturity, type, and richness of potential sources of oil and gas in this region can be evaluated.

  19. Geological evolution of the center-southern portion of the Guyana shield based on the geochemical, geochronological and isotopic studies of paleoproterozoic granitoids from southeastern Roraima, Brazil; Evolucao geologica da porcao centro-sul do escudo das Guianas com base no estudo geoquimico, geocronologico e isotopico dos granitoides paleoproterozoicos do sudeste de Roraima, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Marcelo Esteves

    2006-07-01

    This study focuses the granitoids of center-southern portion of Guyana Shield, southeastern Roraima, Brazil. The region is characterized by two tectonic-stratigraphic domains, named as Central Guyana (GCD) and Uatuma-Anaua (UAD) and located probably in the limits of geochronological provinces (e.g. Ventuari-Tapajos or Tapajos-Parima, Central Amazonian and Maroni-Itacaiunas or Transamazon). The aim this doctoral