WorldWideScience

Sample records for mesospheric sounder sams

  1. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of...

  2. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of...

  3. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL V010 (UARIS3AL) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AL data product consists of daily, 4 degree increment latitude-ordered vertical profiles of...

  4. UARS Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT V010 (UARIS3AT) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Improved Stratospheric and Mesospheric Sounder (ISAMS) Level 3AT data product consists of daily, 65.536 second interval time-ordered vertical profiles of...

  5. Temperature minima in the average thermal structure of the middle mesosphere (70 - 80 km) from analysis of 40- to 92-km SME global temperature profiles

    Science.gov (United States)

    Clancy, R. Todd; Rusch, David W.; Callan, Michael T.

    1994-01-01

    Global temperatures have been derived for the upper stratosphere and mesosphere from analysis of Solar Mesosphere Explorer (SME) limb radiance profiles. The SME temperature represent fixed local time observations at 1400 - 1500 LT, with partial zonal coverage of 3 - 5 longitudes per day over the 1982-1986 period. These new SME temperatures are compared to the COSPAR International Ionosphere Reference Atmosphere 86 (CIRA 86) climatology (Fleming et al., 1990) as well as stratospheric and mesospheric sounder (SAMS); Barnett and Corney, 1984), National Meteorological Center (NMC); (Gelman et al., 1986), and individual lidar and rocket observations. Significant areas of disagreement between the SME and CIRA 86 mesospheric temperatures are 10 K warmer SME temperatures at altitudes above 80 km. The 1981-1982 SAMS temperatures are in much closer agreement with the SME temperatures between 40 and 75 km. Although much of the SME-CIRA 86 disagreement probably stems from the poor vertical resolution of the observations comprising the CIRA 86 modelm, some portion of the differences may reflect 5- to 10-year temporal variations in mesospheric temperatures. The CIRA 86 climatology is based on 1973-1978 measurements. Relatively large (1 K/yr) 5- to 10-year trends in temperatures as functions of longitude, latitude, and altitude have been observed for both the upper stratosphere (Clancy and Rusch, 1989a) and mesosphere (Clancy and Rusch, 1989b; Hauchecorne et al., 1991). The SME temperatures also exhibit enhanced amplitudes for the semiannual oscillation (SAO) of upper mesospheric temperatures at low latitudes, which are not evident in the CIRA 86 climatology. The so-called mesospheric `temperature inversions' at wintertime midlatitudes, which have been observed by ground-based lidar (Hauschecorne et al., 1987) and rocket in situ measurements (Schmidlin, 1976), are shown to be a climatological aspect of the mesosphere, based on the SME observations.

  6. Science Study For A Low Cost Upper Atmosphere Sounder (LOCUS)

    Science.gov (United States)

    Gerber, D.; Swinyard, B. M.; Ellison, B. N.; Siddans, R.; Kerridge, B. J.; Plane, J. M. C.; Feng, W.

    2013-12-01

    We present the findings of an initial science study to define the spectral bands for the proposed Mesosphere / Lower Thermosphere (MLT) sounder LOCUS. The LOCUS mission (Fig 1) uses disruptive technologies to make key MLT species detectable globally by satellite remote sensing for the first time. This presentation summarises the technological and scientific foundation on which the current 4-band Terahertz (THz) and sub- millimetre wave (SMW) instrument configuration was conceived.

  7. Observed Responses of Mesospheric Water Vapor to Solar Cycle and Dynamical Forcings

    Science.gov (United States)

    Remsberg, Ellis; Damadeo, Robert; Natarajan, Murali; Bhatt, Praful

    2018-04-01

    This study focuses on responses of mesospheric water vapor (H2O) to the solar cycle flux at Lyman-α wavelength and to dynamical forcings according to the multivariate El-Nino/Southern Oscillation (ENSO) index. The zonal-averaged responses are for latitudes from 60°S to 60°N and pressure-altitudes from 0.01 to 1.0 hPa, as obtained from multiple linear regression analyses of time series of H2O from the Halogen Occultation Experiment for July 1992 to November 2005. The results compare very well with those from a separate simultaneous temporal and spatial (STS) method that also confirms that there are no significant sampling biases affecting both sets of results. Distributions of the seasonal amplitudes for temperature and H2O are in accord with the seasonal net circulation. In general, the responses of H2O to ENSO are anticorrelated with those of temperature. H2O responses to multivariate ENSO index are negative in the upper mesosphere and largest in the Northern Hemisphere; responses in the lower mesosphere are more symmetric with latitude. H2O responses to the Lyman-α flux (Lya) vary from strong negative values in the uppermost mesosphere to very weak, positive values in the tropical lowermost mesosphere. However, the effects of those H2O responses to the solar activity extend to the rest of the mesosphere via dynamical processes. Profiles of the responses to ENSO and Lya also agree reasonably with published results for H2O at the low latitudes from the Microwave Limb Sounder.

  8. Mesospheric signatures observed during 2010 minor stratospheric warming at King Sejong Station (62°S, 59°W)

    Science.gov (United States)

    Eswaraiah, S.; Kim, Yong Ha; Hong, Junseok; Kim, Jeong-Han; Ratnam, M. Venkat; Chandran, A.; Rao, S. V. B.; Riggin, Dennis

    2016-03-01

    A minor stratospheric sudden warming (SSW) event was noticed in the southern hemisphere (SH) during September (day 259) 2010 along with two episodic warmings in early August (day 212) and late October (day 300) 2010. Among the three warming events, the signature of mesosphere response was detected only for the September event in the mesospheric wind dataset from both meteor radar and MF radar located at King Sejong Station (62°S, 59°W) and Rothera (68°S, 68°W), Antarctica, respectively. The zonal winds in the mesosphere reversed approximately a week before the September SSW event, as has been observed in the 2002 major SSW. Signatures of mesospheric cooling (MC) in association with stratospheric warmings are found in temperatures measured by the Microwave Limb Sounder (MLS). Simulations of specified dynamics version of Whole Atmosphere Community Climate Model (SD-WACCM) are able to reproduce these observed features. The mesospheric wind field was found to differ significantly from that of normal years probably due to enhanced planetary wave (PW) activity before the SSW. From the wavelet analysis of wind data of both stations, we find that strong 14-16 day PWs prevailed prior to the SSW and disappeared suddenly after the SSW in the mesosphere. Our study provides evidence that minor SSWs in SH can result in significant effects on the mesospheric dynamics as in the northern hemisphere.

  9. On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016

    Science.gov (United States)

    Matthias, Vivien; Ern, Manfred

    2018-04-01

    The midwinter 2015/2016 was characterized by an unusually strong polar night jet (PNJ) and extraordinarily large stationary planetary wave (SPW) amplitudes in the subtropical mesosphere. The aim of this study is, therefore, to find the origin of these mesospheric SPWs in the midwinter 2015/2016 study period. The study duration is split into two periods: the first period runs from late December 2015 until early January 2016 (Period I), and the second period from early January until mid-January 2016 (Period II). While the SPW 1 dominates in the subtropical mesosphere in Period I, it is the SPW 2 that dominates in Period II. There are three possibilities explaining how SPWs can occur in the mesosphere: (1) they propagate upward from the stratosphere, (2) they are generated in situ by longitudinally variable gravity wave (GW) drag, or (3) they are generated in situ by barotropic and/or baroclinic instabilities. Using global satellite observations from the Microwave Limb Sounder (MLS) and the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) the origin of the mesospheric SPWs is investigated for both time periods. We find that due to the strong PNJ the SPWs were not able to propagate upward into the mesosphere northward of 50° N but were deflected upward and equatorward into the subtropical mesosphere. We show that the SPWs observed in the subtropical mesosphere are the same SPWs as in the mid-latitudinal stratosphere. Simultaneously, we find evidence that the mesospheric SPWs in polar latitudes were generated in situ by longitudinally variable GW drag and that there is a mixture of in situ generation by longitudinally variable GW drag and by instabilities at mid-latitudes. Our results, based on observations, show that the abovementioned three mechanisms can act at the same time which confirms earlier model studies. Additionally, the possible contribution from, or impact of, unusually strong SPWs in the subtropical mesosphere to the disruption of

  10. Do minor sudden stratospheric warmings in the Southern Hemisphere (SH) impact coupling between stratosphere and mesosphere-lower thermosphere (MLT) like major warmings?

    Science.gov (United States)

    Eswaraiah, S.; Kim, Yong Ha; Liu, Huixin; Ratnam, M. Venkat; Lee, Jaewook

    2017-08-01

    We have investigated the coupling between the stratosphere and mesosphere-lower thermosphere (MLT) in the Southern Hemisphere (SH) during 2010 minor sudden stratospheric warmings (SSWs). Three episodic SSWs were noticed in 2010. Mesospheric zonal winds between 82 and 92 km obtained from King Sejong Station (62.22°S, 58.78°W) meteor radar showed the significant difference from usual trend. The zonal wind reversal in the mesosphere is noticed a week before the associated SSW similar to 2002 major SSW. The mesosphere wind reversal is also noticed in "Specified Dynamics" version of Whole Atmosphere Community Climate Model (SD-WACCM) and Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) simulations. The similar zonal wind weakening/reversal in the lower thermosphere between 100 and 140 km is simulated by GAIA. Further, we observed the mesospheric cooling in consistency with SSWs using Microwave Limb Sounder data. However, the GAIA simulations showed warming between 130 and 140 km after few days of SSW. Thus, the observation and model simulation indicate for the first time that the 2010 minor SSW also affects dynamics of the MLT region over SH in a manner similar to 2002 major SSW.[Figure not available: see fulltext.

  11. Validation of UARS Microwave Limb Sounder 183 GHz H2O Measurements

    Science.gov (United States)

    Lahoz, W. A.; Suttie, M. R.; Froidevaux, L.; Harwood, R. S.; Lau, C. L.; Lungu, T. A.; Peckham, G. E.; Pumphrey, H. C.; Read, W. G.; Shippony, Z.; hide

    1996-01-01

    The Upper Atmosphere Research Satellite (UARS) microwave limb sounder (MLS) makes measurements of thermal emission at 183.3 GHz which are used to infer the concentration of water vapor over a pressure range of 46-0.2hPa (approximately 20-60 km). We provide a validation of MLS H2O by analyzing the integrity of the measurements, by providing an error characterization, and by comparison with data from other instruments. It is estimated that version 3 MLS H2O retrievals are accurate to within 20-25% in the lower stratosphere and to within 8-13% in the upper stratosphere and lower mesosphere. The precision of a single profile is estimated to be approximately 0.15 parts per million by volume (ppmv) in the midstratosphere and 0.2 ppmv in the lower and upper stratosphere. In the lower mesosphere the estimate of a single profile precision is 0.25-0.45 ppmv. During polar winter conditions, H2O retrievals at 46 hPa can have a substantial contribution from climatology. The vertical resolution of MLS H2O retrievals is approximately 5 km.

  12. Simultaneous observations of Polar Mesosphere Summer Echoes at two different latitudes in Antarctica

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2008-11-01

    Full Text Available Simultaneous observations of Polar Mesosphere Summer Echoes (PMSE at Wasa and Davis in Antarctica have been compared. Data with simultaneous observations were obtained for 16 days between 18 January and 5 February 2007. Wasa is at a higher geographic latitude than Davis, but at lower geomagnetic latitude. PMSE strength and occurrence frequency were significantly higher at Wasa. The variation of daily PMSE occurrence over the measurement period was in agreement with temperature and frost-point estimates from the Microwave Limb Sounder on the Aura spacecraft for both Wasa and Davis. The diurnal variation of PMSE strength and occurrence frequency as well as the shape of the altitude profiles of average PMSE strength and occurrence frequency were similar for the two sites. The deepest part of the evening minimum in PMSE occurrence frequency occurred for the same magnetic local time at the two sites rather than for the same local solar time. The study indicates that PMSE strength and occurrence increase between 68.6° and 73° geographic latitude, consistent with observed differences in mesospheric temperatures and water vapor content. The average altitude distribution of PMSE varies relatively little with latitude in the same hemisphere.

  13. Statistical analysis of mesospheric gravity waves over King Sejong Station, Antarctica (62.2°S, 58.8°W)

    Science.gov (United States)

    Kam, Hosik; Jee, Geonhwa; Kim, Yong; Ham, Young-bae; Song, In-Sun

    2017-03-01

    We have investigated the characteristics of mesospheric short period (King Sejong Station (KSS) (62.22°S, 58.78°W) during a period of 2008-2015. By applying 2-dimensional FFT to time differenced images, we derived horizontal wavelengths, phase speeds, and propagating directions (188 and 173 quasi-monochromatic waves from OH and OI airglow images, respectively). The majority of the observed waves propagated predominantly westward, implying that eastward waves were filtered out by strong eastward stratospheric winds. In order to obtain the intrinsic properties of the observed waves, we utilized winds simultaneously measured by KSS Meteor Radar and temperatures from Aura Microwave Limb Sounder (MLS). More than half the waves propagated horizontally, as waves were in Doppler duct or evanescent in the vertical direction. This might be due to strong eastward background wind field in the mesosphere over KSS. For freely propagating waves, the vertical wavelengths were in the interquartile range of 9-33 km with a median value of 15 km. The vertical wavelengths are shorter than those observed at Halley station (76°S, 27°W) where the majority of the observed waves were freely propagating. The difference in the wave propagating characteristics between KSS and Halley station suggests that gravity waves may affect mesospheric dynamics in this part of the Antarctic Peninsula more strongly than over the Antarctic continent. Furthermore, strong wind shear over KSS played an important role in changing the vertical wavenumbers as the waves propagated upward between two airglow layers (87 and 96 km).

  14. The polar mesosphere

    International Nuclear Information System (INIS)

    Morris, Ray; Murphy, Damian

    2008-01-01

    The mesosphere region, which lies at the edge of space, contains the coldest layer of the Earth's atmosphere, with summer temperatures as low as minus 130 °C. In this extreme environment ice aerosol layers have appeared since the dawn of industrialization—whose existence may arguably be linked to human influence—on yet another layer of the Earth's fragile atmosphere. Ground-based and space-based experiments conducted in the Arctic and Antarctic during the International Polar Year (IPY) aim to address limitations in our knowledge and to advance our understanding of thermal and dynamical processes at play in the polar mesosphere

  15. Large-scale dynamics of the stratosphere and mesosphere during the MAP/WINE campaign winter 1983 to 1984 in comparison with other winters

    Science.gov (United States)

    Petzoldt, K.

    1989-04-01

    For the MAP/WINE winter temperature and wind measurements of rockets were combined with SSU radiances (Stratospheric Sounder Unit onboard the NOAA satellites) and stratopause heights from the Solar Mesosphere Explorer (SME) to get a retrieved data set including all available information. By means of this data set a hemispheric geopotential height, temperature and geostrophic wind fields eddy transports for wave mean flow interaction and potential vorticity for the interpretation of nonlinear wave breaking could be computed. Wave reflection at critical lines was investigated with respect of stratospheric warmings. The meridional gradient of the potential vorticity and focusing of wave activity is compared with derived data from satellite observations during other winters.

  16. Technical note: Evaluation of the simultaneous measurements of mesospheric OH, HO2, and O3 under a photochemical equilibrium assumption - a statistical approach

    Science.gov (United States)

    Kulikov, Mikhail Y.; Nechaev, Anton A.; Belikovich, Mikhail V.; Ermakova, Tatiana S.; Feigin, Alexander M.

    2018-05-01

    This Technical Note presents a statistical approach to evaluating simultaneous measurements of several atmospheric components under the assumption of photochemical equilibrium. We consider simultaneous measurements of OH, HO2, and O3 at the altitudes of the mesosphere as a specific example and their daytime photochemical equilibrium as an evaluating relationship. A simplified algebraic equation relating local concentrations of these components in the 50-100 km altitude range has been derived. The parameters of the equation are temperature, neutral density, local zenith angle, and the rates of eight reactions. We have performed a one-year simulation of the mesosphere and lower thermosphere using a 3-D chemical-transport model. The simulation shows that the discrepancy between the calculated evolution of the components and the equilibrium value given by the equation does not exceed 3-4 % in the full range of altitudes independent of season or latitude. We have developed a statistical Bayesian evaluation technique for simultaneous measurements of OH, HO2, and O3 based on the equilibrium equation taking into account the measurement error. The first results of the application of the technique to MLS/Aura data (Microwave Limb Sounder) are presented in this Technical Note. It has been found that the satellite data of the HO2 distribution regularly demonstrate lower altitudes of this component's mesospheric maximum. This has also been confirmed by model HO2 distributions and comparison with offline retrieval of HO2 from the daily zonal means MLS radiance.

  17. Remote sensing of mesospheric electric fields using MF radars

    Science.gov (United States)

    Meek, C. E.; Manson, A. H.; Martynenko, S. I.; Rozumenko, V. T.; Tyrnov, O. F.

    2004-07-01

    Large mesospheric electric fields can play an essential role in middle atmospheric electrodynamics (see, e.g., Goldberg, R. A., Middle Atmospheric Electrodynamics during MAP, Adv. Space Res. 10 (10) (1990) 209). The V/m electric fields of atmospheric origin can be the possible cause of large variations in the electron collision frequency at mesospheric altitudes, and this provides a unique opportunity to take measurements of electric fields in the lower ionosphere by using remote sensing instruments employing radiowave techniques. A technique has been proposed for making estimates of large mesospheric electric field intensities on the lower edge of the ionosphere by using MF radar data and the inherent effective electron collision frequency. To do this, data collected in Canada and Ukraine were utilized. The developed technique permits the changes in mesospheric electric field intensities to be derived from MF radar data in real time. The statistical analysis of data consistent with large mesospheric electric field intensities in the 60-67km region resulted in the following inferences. There are at least two mechanisms for the generation of large mesospheric electric fields in the mesosphere. The most likely mechanism, with a probability of 60-70%, is the summation of random fields from a large number of elementary small-scale mesospheric generators, which results in a one-parameter Rayleigh distribution of the total large mesospheric electric field intensity E with a mean value of approximately 0.7-0.9V/m in the 60-67km altitude region, or in the corresponding one-parameter exponential distribution of the intensity squared E2 of large mesospheric electric fields. The second mechanism of unknown nature, with 5-15% probability, gives rise to the sporadic appearance of large mesospheric electric field intensities E>2.5V/m with a mean of 4V/m. Statistically significant seasonal differences in the averaged large mesospheric electric field parameters have not been

  18. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2011-01-01

    Full Text Available A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS on the Aura satellite. Approximately 50%–65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  19. Satellite observations and modeling of transport in the upper troposphere through the lower mesosphere during the 2006 major stratospheric sudden warming

    Directory of Open Access Journals (Sweden)

    W. H. Daffer

    2009-07-01

    Full Text Available An unusually strong and prolonged stratospheric sudden warming (SSW in January 2006 was the first major SSW for which globally distributed long-lived trace gas data are available covering the upper troposphere through the lower mesosphere. We use Aura Microwave Limb Sounder (MLS, Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS data, the SLIMCAT Chemistry Transport Model (CTM, and assimilated meteorological analyses to provide a comprehensive picture of transport during this event. The upper tropospheric ridge that triggered the SSW was associated with an elevated tropopause and layering in trace gas profiles in conjunction with stratospheric and tropospheric intrusions. Anomalous poleward transport (with corresponding quasi-isentropic troposphere-to-stratosphere exchange at the lowest levels studied in the region over the ridge extended well into the lower stratosphere. In the middle and upper stratosphere, the breakdown of the polar vortex transport barrier was seen in a signature of rapid, widespread mixing in trace gases, including CO, H2O, CH4 and N2O. The vortex broke down slightly later and more slowly in the lower than in the middle stratosphere. In the middle and lower stratosphere, small remnants with trace gas values characteristic of the pre-SSW vortex lingered through the weak and slow recovery of the vortex. The upper stratospheric vortex quickly reformed, and, as enhanced diabatic descent set in, CO descended into this strong vortex, echoing the fall vortex development. Trace gas evolution in the SLIMCAT CTM agrees well with that in the satellite trace gas data from the upper troposphere through the middle stratosphere. In the upper stratosphere and lower mesosphere, the SLIMCAT simulation does not capture the strong descent of mesospheric CO and H2O values into the reformed vortex; this poor CTM performance in the upper stratosphere and lower mesosphere results

  20. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis.

    Science.gov (United States)

    Wenz, Lena-Sophie; Ellenrieder, Lars; Qiu, Jian; Bohnert, Maria; Zufall, Nicole; van der Laan, Martin; Pfanner, Nikolaus; Wiedemann, Nils; Becker, Thomas

    2015-09-28

    Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM-SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane. © 2015 Wenz et al.

  1. SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.

    Science.gov (United States)

    Mirihana Arachchilage, Gayan; Sherlock, Madeline E; Weinberg, Zasha; Breaker, Ronald R

    2018-03-04

    Five distinct riboswitch classes that regulate gene expression in response to the cofactor S-adenosylmethionine (SAM) or its metabolic breakdown product S-adenosylhomocysteine (SAH) have been reported previously. Collectively, these SAM- or SAH-sensing RNAs constitute the most abundant collection of riboswitches, and are found in nearly every major bacterial lineage. Here, we report a potential sixth member of this pervasive riboswitch family, called SAM-VI, which is predominantly found in Bifidobacterium species. SAM-VI aptamers selectively bind the cofactor SAM and strongly discriminate against SAH. The consensus sequence and structural model for SAM-VI share some features with the consensus model for the SAM-III riboswitch class, whose members are mainly found in lactic acid bacteria. However, there are sufficient differences between the two classes such that current bioinformatics methods separately cluster representatives of the two motifs. These findings highlight the abundance of RNA structures that can form to selectively recognize SAM, and showcase the ability of RNA to utilize diverse strategies to perform similar biological functions.

  2. SAM Photovoltaic Model Technical Reference

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-05-27

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM). The U.S. Department of Energy’s National Renewable Energy Laboratory maintains and distributes SAM, which is available as a free download from https://sam.nrel.gov. These descriptions are based on SAM 2015.1.30 (SSC 41).

  3. NOAA JPSS Advanced Technology Microwave Sounder (ATMS) Remapped to Cross-track Infrared Sounder (CrIS) Sensor Data Record (SDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Advanced Technology Microwave Sounder (ATMS) is a 22 channel microwave sounder on board the Suomi NPP satellite that provides continuous cross-track scanning in...

  4. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-09-01

    Full Text Available The coupling processes in the middle atmosphere have been a subject of intense research activity because of their effects on atmospheric circulation, structure, variability, and the distribution of chemical constituents. In this study, the day-to-day variability of Aura-MLS (Microwave Limb Sounder temperature data are used to reveal the vertical and interhemispheric coupling processes in the stratosphere-mesosphere during four Northern Hemisphere winters (2004/2005–2007/2008. The UKMO (United Kingdom Meteorological Office assimilated data and mesospheric winds from MF (medium frequency radars are also applied to help highlight the coupling processes.

    In this study, a clear vertical link can be seen between the stratosphere and mesosphere during winter months. The coolings and reversals of northward meridional winds in the polar winter mesosphere are often observed in relation to warming events (Sudden Stratospheric Warming, SSW for short and the associated changes in zonal winds in the polar winter stratosphere. An upper-mesospheric cooling usually precedes the beginning of the warming in the stratosphere by 1–2 days.

    Inter-hemispheric coupling has been identified initially by a correlation analysis using the year-to-year monthly zonal mean temperature. Then the correlation analyses are performed based upon the daily zonal mean temperature. From the original time sequences, significant positive (negative correlations are generally found between zonal mean temperatures at the Antarctic summer mesopause and in the Arctic winter stratosphere (mesosphere during northern mid-winters, although these correlations are dominated by the low frequency variability (i.e. the seasonal trend. Using the short-term oscillations (less than 15 days, the statistical result, by looking for the largest magnitude of correlation within a range of time-lags (0 to 10 days; positive lags mean that the Antarctic summer mesopause is lagging, indicates

  5. Vertical and interhemispheric links in the stratosphere-mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-09-01

    Full Text Available The coupling processes in the middle atmosphere have been a subject of intense research activity because of their effects on atmospheric circulation, structure, variability, and the distribution of chemical constituents. In this study, the day-to-day variability of Aura-MLS (Microwave Limb Sounder temperature data are used to reveal the vertical and interhemispheric coupling processes in the stratosphere-mesosphere during four Northern Hemisphere winters (2004/2005–2007/2008. The UKMO (United Kingdom Meteorological Office assimilated data and mesospheric winds from MF (medium frequency radars are also applied to help highlight the coupling processes. In this study, a clear vertical link can be seen between the stratosphere and mesosphere during winter months. The coolings and reversals of northward meridional winds in the polar winter mesosphere are often observed in relation to warming events (Sudden Stratospheric Warming, SSW for short and the associated changes in zonal winds in the polar winter stratosphere. An upper-mesospheric cooling usually precedes the beginning of the warming in the stratosphere by 1–2 days. Inter-hemispheric coupling has been identified initially by a correlation analysis using the year-to-year monthly zonal mean temperature. Then the correlation analyses are performed based upon the daily zonal mean temperature. From the original time sequences, significant positive (negative correlations are generally found between zonal mean temperatures at the Antarctic summer mesopause and in the Arctic winter stratosphere (mesosphere during northern mid-winters, although these correlations are dominated by the low frequency variability (i.e. the seasonal trend. Using the short-term oscillations (less than 15 days, the statistical result, by looking for the largest magnitude of correlation within a range of time-lags (0 to 10 days; positive lags mean that the Antarctic summer mesopause is lagging, indicates that the temporal

  6. Active Dust Experiment in the Mesosphere

    International Nuclear Information System (INIS)

    Norberg, Carol; Pellinen-Wannberg, Asta

    2008-01-01

    The mesosphere stretches from an altitude of about 50 to 90 km above the Earth's surface. Meteors entering the Earth's atmosphere are believed to ablate and hence give rise to a thin layer of dust particles in the upper part of the Earth's mesosphere. It seems that the dust is most dense in a layer that lies between 80 and 90 km. The dust particles are thought to have sizes of a few to tens of nanometers. Efforts have been made to measure these particles using rockets and radar techniques with limited success. We propose to release dust into the mesosphere over northern Sweden at a height of about 90 km and observe the released dust using the EISCAT radar system. The dust will be launched from the Swedish Space Corporation Esrange Space Centre on a single-stage Improved-Orion rocket that will be launched so that its flight path will be in the radar field of view.

  7. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    1998-12-01

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  8. The Sam-Sam interaction between Ship2 and the EphA2 receptor: design and analysis of peptide inhibitors.

    Science.gov (United States)

    Mercurio, Flavia Anna; Di Natale, Concetta; Pirone, Luciano; Iannitti, Roberta; Marasco, Daniela; Pedone, Emilia Maria; Palumbo, Rosanna; Leone, Marilisa

    2017-12-12

    The lipid phosphatase Ship2 represents a drug discovery target for the treatment of different diseases, including cancer. Its C-terminal sterile alpha motif domain (Ship2-Sam) associates with the Sam domain from the EphA2 receptor (EphA2-Sam). This interaction is expected to mainly induce pro-oncogenic effects in cells therefore, inhibition of the Ship2-Sam/EphA2-Sam complex may represent an innovative route to discover anti-cancer therapeutics. In the present work, we designed and analyzed several peptide sequences encompassing the interaction interface of EphA2-Sam for Ship2-Sam. Peptide conformational analyses and interaction assays with Ship2-Sam conducted through diverse techniques (CD, NMR, SPR and MST), identified a positively charged penta-amino acid native motif in EphA2-Sam, that once repeated three times in tandem, binds Ship2-Sam. NMR experiments show that the peptide targets the negatively charged binding site of Ship2-Sam for EphA2-Sam. Preliminary in vitro cell-based assays indicate that -at 50 µM concentration- it induces necrosis of PC-3 prostate cancer cells with more cytotoxic effect on cancer cells than on normal dermal fibroblasts. This work represents a pioneering study that opens further opportunities for the development of inhibitors of the Ship2-Sam/EphA2-Sam complex for therapeutic applications.

  9. SAM Theory Manual

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-03-01

    The System Analysis Module (SAM) is an advanced and modern system analysis tool being developed at Argonne National Laboratory under the U.S. DOE Office of Nuclear Energy’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. SAM development aims for advances in physical modeling, numerical methods, and software engineering to enhance its user experience and usability for reactor transient analyses. To facilitate the code development, SAM utilizes an object-oriented application framework (MOOSE), and its underlying meshing and finite-element library (libMesh) and linear and non-linear solvers (PETSc), to leverage modern advanced software environments and numerical methods. SAM focuses on modeling advanced reactor concepts such as SFRs (sodium fast reactors), LFRs (lead-cooled fast reactors), and FHRs (fluoride-salt-cooled high temperature reactors) or MSRs (molten salt reactors). These advanced concepts are distinguished from light-water reactors in their use of single-phase, low-pressure, high-temperature, and low Prandtl number (sodium and lead) coolants. As a new code development, the initial effort has been focused on modeling and simulation capabilities of heat transfer and single-phase fluid dynamics responses in Sodium-cooled Fast Reactor (SFR) systems. The system-level simulation capabilities of fluid flow and heat transfer in general engineering systems and typical SFRs have been verified and validated. This document provides the theoretical and technical basis of the code to help users understand the underlying physical models (such as governing equations, closure models, and component models), system modeling approaches, numerical discretization and solution methods, and the overall capabilities in SAM. As the code is still under ongoing development, this SAM Theory Manual will be updated periodically to keep it consistent with the state of the development.

  10. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  11. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  12. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    Directory of Open Access Journals (Sweden)

    M. J. Rieder

    2001-01-01

    Full Text Available An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50–100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf. This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS – Sun Monitor and Atmospheric Sounder and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD with 0.03% and silicon diodes (SD with 0.1% (unattenuated intensity measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50–100 km we find temperature to be retrieved to better than 0.3 K (DD / 1 K (SD accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with

  13. SAM Photovoltaic Model Technical Reference 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); DiOrio, Nicholas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Freeman, Janine M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dobos, Aron [No longer NREL employee; Ryberg, David [No longer NREL employee

    2018-03-19

    This manual describes the photovoltaic performance model in the System Advisor Model (SAM) software, Version 2016.3.14 Revision 4 (SSC Version 160). It is an update to the 2015 edition of the manual, which describes the photovoltaic model in SAM 2015.1.30 (SSC 41). This new edition includes corrections of errors in the 2015 edition and descriptions of new features introduced in SAM 2016.3.14, including: 3D shade calculator Battery storage model DC power optimizer loss inputs Snow loss model Plane-of-array irradiance input from weather file option Support for sub-hourly simulations Self-shading works with all four subarrays, and uses same algorithm for fixed arrays and one-axis tracking Linear self-shading algorithm for thin-film modules Loss percentages replace derate factors. The photovoltaic performance model is one of the modules in the SAM Simulation Core (SSC), which is part of both SAM and the SAM SDK. SAM is a user-friedly desktop application for analysis of renewable energy projects. The SAM SDK (Software Development Kit) is for developers writing their own renewable energy analysis software based on SSC. This manual is written for users of both SAM and the SAM SDK wanting to learn more about the details of SAM's photovoltaic model.

  14. Recent results from studies of electric discharges in the mesosphere

    DEFF Research Database (Denmark)

    Neubert, Torsten; Rycroft, M.; Farges, T.

    2008-01-01

    The paper reviews recent advances in studies of electric discharges in the stratosphere and mesosphere above thunderstorms, and their effects on the atmosphere. The primary focus is on the sprite discharge occurring in the mesosphere, which is the most commonly observed high altitude discharge...... to 1000 km distance, whereas elves and lightning have been shown significantly to affect ionization and heating of the lower ionosphere/mesosphere. Studies of the thunderstorm systems powering high altitude discharges show the important role of intracloud (IC) lightning in sprite generation as seen...

  15. Crystal structures of the SAM-III/S[subscript MK] riboswitch reveal the SAM-dependent translation inhibition mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lu, C.; Smith, A.M.; Fuchs, R.T.; Ding, F.; Rajashankar, K.; Henkin, T.M.; Ke, A. (Cornell); (OSU)

    2010-01-07

    Three distinct classes of S-adenosyl-L-methionine (SAM)-responsive riboswitches have been identified that regulate bacterial gene expression at the levels of transcription attenuation or translation inhibition. The SMK box (SAM-III) translational riboswitch has been identified in the SAM synthetase gene in members of the Lactobacillales. Here we report the 2.2-{angstrom} crystal structure of the Enterococcus faecalis SMK box riboswitch. The Y-shaped riboswitch organizes its conserved nucleotides around a three-way junction for SAM recognition. The Shine-Dalgarno sequence, which is sequestered by base-pairing with the anti-Shine-Dalgarno sequence in response to SAM binding, also directly participates in SAM recognition. The riboswitch makes extensive interactions with the adenosine and sulfonium moieties of SAM but does not appear to recognize the tail of the methionine moiety. We captured a structural snapshot of the SMK box riboswitch sampling the near-cognate ligand S-adenosyl-L-homocysteine (SAH) in which SAH was found to adopt an alternative conformation and fails to make several key interactions.

  16. Redox Behavior of the S-Adenosylmethionine (SAM)-Binding Fe-S Cluster in Methylthiotransferase RimO, toward Understanding Dual SAM Activity.

    Science.gov (United States)

    Molle, Thibaut; Moreau, Yohann; Clemancey, Martin; Forouhar, Farhad; Ravanat, Jean-Luc; Duraffourg, Nicolas; Fourmond, Vincent; Latour, Jean-Marc; Gambarelli, Serge; Mulliez, Etienne; Atta, Mohamed

    2016-10-18

    RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C 3 methylthiolation of the D89 residue in the ribosomal S 12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS - ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.

  17. Transport of mesospheric H2O during and after the stratospheric sudden warming of January 2010: observation and simulation

    Directory of Open Access Journals (Sweden)

    A. K. Smith

    2012-06-01

    Full Text Available The transportable ground based microwave radiometer MIAWARA-C monitored the upper stratospheric and lower mesospheric (USLM water vapor distribution over Sodankylä, Finland (67.4° N, 26.6° E from January to June 2010. At the end of January, approximately 2 weeks after MIAWARA-C's start of operation in Finland, a stratospheric sudden warming (SSW disturbed the circulation of the middle atmosphere. Shortly after the onset of the SSW water vapor rapidly increased at pressures between 1 and 0.01 hPa. Backward trajectory calculations show that this strong increase is due to the breakdown of the polar vortex and meridional advection of subtropical air to the Arctic USLM region. In addition, mesospheric upwelling in the course of the SSW led to an increase in observed water vapor between 0.1 and 0.03 hPa. After the SSW MIAWARA-C observed a decrease in mesospheric water vapor volume mixing ratio (VMR due to the subsidence of H2O poor air masses in the polar region. Backward trajectory analysis and the zonal mean water vapor distribution from the Microwave Limb Sounder on the Aura satellite (Aura/MLS indicate the occurrence of two regimes of circulation from 50° N to the North Pole: (1 regime of enhanced meridional mixing throughout February and (2 regime of an eastward circulation in the USLM region reestablished between early March and the equinox. The polar descent rate determined from MIAWARA-C's 5.2 parts per million volume (ppmv isopleth is 350 ± 40 m d−1 in the pressure range 0.6 to 0.06 hPa between early February and early March. For the same time interval the descent rate in the same pressure range was determined using Transformed Eulerian Mean (TEM wind fields simulated by means of the Whole Atmosphere Community Climate Model with Specified Dynamics (SD-WACCM. The average value of the SD-WACCM TEM vertical wind is 325 m d−1 while the along trajectory vertical displacement is 335 m d−1. The similar descent rates found indicate good

  18. SAM International Case Studies: DPV Analysis in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    McCall, James D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-03-28

    Presentation demonstrates the use of the System Advisor Model (SAM) in international analyses, specifically Mexico. Two analyses are discussed with relation to SAM modelling efforts: 1) Customer impacts from changes to net metering and billing agreements and 2) Potential benefits of PV for Mexican solar customers, the Mexican Treasury, and the environment. Along with the SAM analyses, integration of the International Utility Rate Database (I-URDB) with SAM and future international SAM work are discussed. Presentation was created for the International Solar Energy Society's (ISES) webinar titled 'International use of the NREL System Advisor Model (SAM) with case studies'.

  19. Investigation of Planets and Small Bodies Using Decameter Wavelength Radar Sounders

    Science.gov (United States)

    Safaeinili, A.

    2003-12-01

    Decameter wavelength radar sounders provide a unique capability for the exploration of subsurface of planets and internal structure of small bodies. Recently, a number of experimental radar sounding instruments have been proposed and/or are planned to become operational in the near future. The first of these radar sounders is MARSIS (Picardi et al.) that is about to arrive at Mars on ESA's Mars Express for a two-year mission. The second radar sounder, termed SHARAD (Seu et. al), will fly on NASA's Mars Reconnaissance orbiter in 2005. MARSIS and SHARAD have complementary science objectives in that MARSIS (0.1-5.5 MHz) is designed to explore the deep subsurface with a depth resolution of ˜100 m while SHARAD (15-25 MHz) focuses its investigation to near-surface (generation of radar sounders will benefit from high power and high data rate capability that is made available through the use of Nuclear Electric generators. An example of such high-capability mission is the Jovian Icy Moons Orbiter (JIMO) where, for example, the radar sounder can be used to explore beneath the icy surfaces of Europa in search of the ice/ocean interface. The decameter wave radar sounder is probably the only instrument that has the potential of providing an accurate estimate for the ocean depth. Another exciting and rewarding area of application for planetary radar sounding is the investigation of the deep interior of small bodies (asteroids and comets). The small size of asteroids and comets provides the opportunity to collect data in a manner that enables Radio Reflection Tomographic (RRT) reconstruction of the body in the same manner that a medical ultrasound probe can image the interior of our body. This paper provides an overview of current technical capabilities and challenges and the potential of radio sounders in the investigation of planets and small bodies.

  20. A high-resolution study of mesospheric fine structure with the Jicamarca MST radar

    Science.gov (United States)

    Sheth, R.; Kudeki, E.; Lehmacher, G.; Sarango, M.; Woodman, R.; Chau, J.; Guo, L.; Reyes, P.

    2006-07-01

    Correlation studies performed on data from recent mesospheric experiments conducted with the 50-MHz Jicamarca radar in May 2003 and July 2004 are reported. The study is based on signals detected from a combination of vertical and off-vertical beams. The nominal height resolution was 150 m and spectral estimates were obtained after ~1 min integration. Spectral widths and backscattered power generally show positive correlations at upper mesospheric heights in agreement with earlier findings (e.g., Fukao et al., 1980) that upper mesospheric echoes are dominated by isotropic Bragg scatter. In many instances in the upper mesosphere, a weakening of positive correlation away from layer centers (towards top and bottom boundaries) was observed with the aid of improved height resolution. This finding supports the idea that layer edges are dominated by anisotropic turbulence. The data also suggests that negative correlations observed at lower mesospheric heights are caused by scattering from anisotropic structures rather than reflections from sharp vertical gradients in electron density.

  1. A high-resolution study of mesospheric fine structure with the Jicamarca MST radar

    Directory of Open Access Journals (Sweden)

    R. Sheth

    2006-07-01

    Full Text Available Correlation studies performed on data from recent mesospheric experiments conducted with the 50-MHz Jicamarca radar in May 2003 and July 2004 are reported. The study is based on signals detected from a combination of vertical and off-vertical beams. The nominal height resolution was 150 m and spectral estimates were obtained after ~1 min integration. Spectral widths and backscattered power generally show positive correlations at upper mesospheric heights in agreement with earlier findings (e.g., Fukao et al., 1980 that upper mesospheric echoes are dominated by isotropic Bragg scatter. In many instances in the upper mesosphere, a weakening of positive correlation away from layer centers (towards top and bottom boundaries was observed with the aid of improved height resolution. This finding supports the idea that layer edges are dominated by anisotropic turbulence. The data also suggests that negative correlations observed at lower mesospheric heights are caused by scattering from anisotropic structures rather than reflections from sharp vertical gradients in electron density.

  2. Mesospheric dynamics and chemistry from SME data

    Science.gov (United States)

    Strobel, Darrell F.

    1987-01-01

    A fast Curtis matrix calculation of cooling rates due to the 15 micron band of CO2 is modified to parameterize the detailed calculations by Dickinson (1984) of infrared cooling by CO2 in the mesosphere and lower thermosphere. The calculations included separate NLTE treatment of the different 15 micron bands likely to be important for cooling. The goal was to compress the detailed properties of the different bands into a modified Curtis matrix, which represents one composite band with appropriate averaged radiative properties to allow for a simple and quick calculation of cooling rates given a temperature profile. Vertical constituent transport in the mesosphere was also studied.

  3. Influence of vertically and obliquely propagating gravity waves on the polar summer mesosphere

    Science.gov (United States)

    Thurairajah, B.; Siskind, D. E.; Bailey, S. M.

    2017-12-01

    Polar Mesospheric Clouds (PMCs) are sensitive to changes in temperature of the cold polar summer mesosphere, which in turn are modulated by gravity waves (GWs). In this study we investigate the link between PMCs and GWs that propagate both vertically (i.e. wave propagation is directly above the source region) and obliquely (lateral or non-vertical propagation upward but away from the source region). Several observational studies have analyzed the link between PMCs and vertically propagating GWs and have reported both positive and negative correlations. Moreover, while modelling studies have noted the possibility of oblique propagation of GWs from the low-latitude stratosphere to the high-latitude mesosphere, observational studies of the influence of these waves on the polar summer mesosphere are sparse. We present a comprehensive analysis of the influence of vertically and obliquely propagating GWs on the northern hemisphere (NH) polar summer mesosphere using data from 8 PMC seasons. Temperature data from the SOFIE experiment on the AIM satellite and SABER instrument on the TIMED satellite are used to derive GW parameters. SOFIE PMC data in terms of Ice Water Content (IWC) are used to quantify the changes in the polar summer mesosphere. At high latitudes, preliminary analysis of vertically propagating waves indicate a weak but positive correlation between GWs at 50 km and GWs at the PMC altitude of 84 km. Overall there is a negative correlation between GWs at 50 km and IWC and a positive correlation between GWs at 84 km and IWC. These results and the presence of a slanted structure (slanted from the low-latitude stratosphere to the high-latitude mesosphere) in GW momentum flux suggest the possibility of a significant influence of obliquely propagating GWs on the polar summer mesosphere

  4. Samsø Energy Vision 2030

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Hansen, Kenneth; Ridjan, Iva

    The purpose of this report is to investigate potential scenarios for converting Samsø into 100% renewable energy supply in 2030 with focus on local electricity and biomass resources. Firstly, a 2013 reference scenario is established to investigate whether Samsø is 100% renewable today. Next, scen...

  5. System for Award Management (SAM) API

    Data.gov (United States)

    General Services Administration — The SAM API is a RESTful method of retrieving public information about the businesses, organizations, or individuals (referred to as entities) within the SAM entity...

  6. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  7. HIRS-AMTS satellite sounding system test - Theoretical and empirical vertical resolving power. [High resolution Infrared Radiation Sounder - Advanced Moisture and Temperature Sounder

    Science.gov (United States)

    Thompson, O. E.

    1982-01-01

    The present investigation is concerned with the vertical resolving power of satellite-borne temperature sounding instruments. Information is presented on the capabilities of the High Resolution Infrared Radiation Sounder (HIRS) and a proposed sounding instrument called the Advanced Moisture and Temperature Sounder (AMTS). Two quite different methods for assessing the vertical resolving power of satellite sounders are discussed. The first is the theoretical method of Conrath (1972) which was patterned after the work of Backus and Gilbert (1968) The Backus-Gilbert-Conrath (BGC) approach includes a formalism for deriving a retrieval algorithm for optimizing the vertical resolving power. However, a retrieval algorithm constructed in the BGC optimal fashion is not necessarily optimal as far as actual temperature retrievals are concerned. Thus, an independent criterion for vertical resolving power is discussed. The criterion is based on actual retrievals of signal structure in the temperature field.

  8. 3D Reconfigurable NoC Multiprocessor Portable Sounder for Plasmaspheric Studies

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    The paper describes the development of a prototype imaging sounder for studying the irregularities of the ionospheric plasma. Cutting edge three-dimensional reconfigurable logic has been implemented allowing highly-intensive scientific calculations to be performed in hardware. The new parallel processing algorithms implemented offer a significant amount of performance improvement in the range of 80% compared to existing digital sounder implementations. The current system configuration is taking into consideration the modern scientific needs for portability during scientific campaigns. The prototype acts as a digital signal processing experimentation platform for future larger-scale digital sounder instrumentations for measuring complex planetary plasmaspheric environments.

  9. 78 FR 62627 - Sam Rayburn Dam Rate

    Science.gov (United States)

    2013-10-22

    ..., Wholesale Rates for Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative, Inc. (Contract No... Schedule SRD-08, Wholesale Rates for Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative... ADMINISTRATION RATE SCHEDULE SRD-13 \\1\\ WHOLESALE RATES FOR HYDRO POWER AND ENERGY SOLD TO SAM RAYBURN DAM...

  10. Signatures of mesospheric particles in ionospheric data

    Directory of Open Access Journals (Sweden)

    M. Friedrich

    2009-02-01

    Full Text Available The state of the ionosphere during the 2007 ECOMA/MASS campaign is described by in-situ observations by three sounding rockets launched from the Andøya Rocket Range and by ground based observations. The ground based measurements included the incoherent scatter radar EISCAT near Tromsø (both on UHF and VHF, as well as an MF radar, a meteor radar and an imaging riometer all located in the close vicinity of the rocket range. The pronounced electron density bite-outs seen by two of the rockets could not be detected from the ground, but the associated PMSE (Polar Mesospheric Summer Echoes provide indirect evidence of pronounced perturbations of mesospheric electron densities.

  11. System Advisor Model, SAM 2014.1.14: General Description

    Energy Technology Data Exchange (ETDEWEB)

    Blair, Nate [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Freeman, Janine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Neises, Ty [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wagner, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ferguson, Tom [Global Resources, Northbrook, IL (United States); Gilman, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [Janzou Consulting, Idaho Springs, CO (United States)

    2014-02-01

    This document describes the capabilities of the U.S. Department of Energy and National Renewable Energy Laboratory's System Advisor Model (SAM), Version 2013.9.20, released on September 9, 2013. SAM is a computer model that calculates performance and financial metrics of renewable energy systems. Project developers, policy makers, equipment manufacturers, and researchers use graphs and tables of SAM results in the process of evaluating financial, technology, and incentive options for renewable energy projects. SAM simulates the performance of photovoltaic, concentrating solar power, solar water heating, wind, geothermal, biomass, and conventional power systems. The financial model can represent financial structures for projects that either buy and sell electricity at retail rates (residential and commercial) or sell electricity at a price determined in a power purchase agreement (utility). SAM's advanced simulation options facilitate parametric and sensitivity analyses, and statistical analysis capabilities are available for Monte Carlo simulation and weather variability (P50/P90) studies. SAM can also read input variables from Microsoft Excel worksheets. For software developers, the SAM software development kit (SDK) makes it possible to use SAM simulation modules in their applications written in C/C++, C#, Java, Python, and MATLAB. NREL provides both SAM and the SDK as free downloads at http://sam.nrel.gov. Technical support and more information about the software are available on the website.

  12. Effects of Major Sudden Stratospheric Warmings Identified in Midlatitude Mesospheric Rayleigh-Scatter Lidar Temperatures

    Science.gov (United States)

    Sox, L.; Wickwar, V. B.; Fish, C. S.; Herron, J. P.

    2014-12-01

    Mesospheric temperature anomalies associated with Sudden Stratospheric Warmings (SSWs) have been observed extensively in the polar regions. However, observations of these anomalies at midlatitudes are sparse. The very dense 11-year data set, collected between 1993-2004, with the Rayleigh-scatter lidar at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) at the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), has been carefully examined for such anomalies. The temperatures derived from these data extend over the mesosphere, from 45 to 90 km. During this period extensive data were acquired during seven major SSW events. In this work we aim to determine the characteristics of the midlatitude mesospheric temperatures during these seven major SSWs. To do this, comparisons were made between the temperature profiles on individual nights before, during, and after the SSW events and the corresponding derived climatological temperature profiles (31-day by 11-year average) for those nights. A consistent disturbance pattern was observed in the mesospheric temperatures during these SSWs. A distinct shift from the nominal winter temperature pattern to a pattern more characteristic of summer temperatures was seen in the midlatitude mesosphere close to when the zonal winds in the polar stratosphere (at 10 hPa, 60° N) reversed from eastward to westward. This shift lasted for several days. This change in pattern included coolings in the upper mesosphere, comparable to those seen in the polar regions, and warmings in the lower mesosphere.

  13. Radar cross sections for mesospheric echoes at Jicamarca

    Directory of Open Access Journals (Sweden)

    G. A. Lehmacher

    2009-07-01

    Full Text Available Radar cross sections (RCS of mesospheric layers at 50 MHz observed at Jicamarca, Peru, range from 10−18 to 10−16 m−1, three orders of magnitudes smaller than cross sections reported for polar mesospheric winter echoes during solar proton events and six orders of magnitude smaller than polar mesospheric summer echoes. Large RCS are found in thick layers around 70 km that also show wide radar spectra, which is interpreted as turbulent broadening. For typical atmospheric and ionospheric conditions, volume scattering RCS for stationary, homogeneous, isotropic turbulence at 3 m are also in the range 10−18 to 10−16 m−1, in reasonable agreement with measurements. Moreover, theory predicts maximum cross sections around 70 km, also in agreement with observations. Theoretical values are still a matter of order-of-magnitude estimation, since the Bragg scale of 3 m is near or inside the viscous subrange, where the form of the turbulence spectrum is not well known. In addition, steep electron density gradients can increase cross-sections significantly. For thin layers with large RCS and narrow spectra, isotropic turbulence theory fails and scattering or reflection from anisotropic irregularities may gain relevance.

  14. Special Sensor Microwave Imager/Sounder (SSMIS) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  15. Special Sensor Microwave Imager/Sounder (SSMIS) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  16. PoSSUM: Polar Suborbital Science in the Upper Mesosphere

    Science.gov (United States)

    Reimuller, J. D.; Fritts, D. C.; Thomas, G. E.; Taylor, M. J.; Mitchell, S.; Lehmacher, G. A.; Watchorn, S. R.; Baumgarten, G.; Plane, J. M.

    2013-12-01

    Project PoSSUM (www.projectpossum.org) is a suborbital research project leveraging imaging and remote sensing techniques from Reusable Suborbital Launch Vehicles (rSLVs) to gather critical climate data through use of the PoSSUM Observatory and the PoSSUM Aeronomy Laboratory. An acronym for Polar Suborbital Science in the Upper Mesosphere, PoSSUM grew from the opportunity created by the Noctilucent Cloud Imagery and Tomography Experiment, selected by the NASA Flight Opportunities Program as Experiment 46-S in March 2012. This experiment will employ an rSLV (e.g. the XCOR Lynx Mark II) launched from a high-latitude spaceport (e.g. Eielson AFB, Alaska or Kiruna, Sweden) during a week-long deployment scheduled for July 2015 to address critical questions concerning noctilucent clouds (NLCs) through flights that transition the cloud layer where the clouds will be under direct illumination from the sun. The 2015 Project PoSSUM NLC campaign will use the unique capability of rSLVs to address key under-answered questions pertaining to NLCs. Specifically, PoSSUM will answer: 1) What are the small-scale dynamics of NLCs and what does this tell us about the energy and momentum deposition from the lower atmosphere? 2) What is the seasonal variability of NLCs, mesospheric dynamics, and temperatures? 3) Are structures observed in the OH layer coupled with NLC structures? 4) How do NLCs nucleate? and 5) What is the geometry of NLC particles and how do they stratify? Instrumentation will include video and still-frame visible cameras (PoSSUMCam), infrared cameras, a mesospheric temperatures experiment, a depolarization LiDAR, a mesospheric density and temperatures experiment (MCAT), a mesospheric winds experiment, and a meteoric smoke detector (MASS). The instrument suite used on PoSSUM will mature through subsequent campaigns to develop an integrated, modular laboratory (the ';PoSSUM Observatory') that will provide repeatable, low cost, in-situ NLC and aeronomy observations as well

  17. 核蛋白Sam68的原核表达及鉴定%Prokaryotic Expression and Identification of Nuclear Protein Sam68

    Institute of Scientific and Technical Information of China (English)

    张华; 陈宁; 丁筠; 邹德华; 潘子夜; 李鹏飞; 李丽阳; 肖丽杰; 曹宏伟

    2017-01-01

    为了构建pGEX-4T-1-Sam68原核表达载体,表达并鉴定GST-Sam68融合蛋白,采用PCR扩增Sam68基因,插入pGEX-4T-1的EcoR I和Sal I位点,并转化Rosetta(DE3)大肠杆菌,IPTG诱导表达,SDS-PAGE和Western Blot验证蛋白表达,GST pull-down技术验证Sam68的结合活性.酶切和测序结果证实Sam68基因正确插入pGEX-4T-1载体中,载体能够在Rosetta(DE3)细胞中正确表达,且纯化的GST-Sam68蛋白具有与PI3K p85特异结合的活性,说明成功构建了原核表达载体pGEX-4T-1-Sam68.

  18. Methanogenesis, Mesospheric Clouds, and Global Habitability

    Science.gov (United States)

    Pueschel, Rudolf F.; Condon, Estelle P. (Technical Monitor)

    2000-01-01

    Hyperthermophilic methanogens can exist in a deep hot biosphere up to 110 C, or 10 km deep. Methane (CH4) itself is thermodynamically stable to depths of 300 km. Geologic (microbial plus abiogenic thermal) methane is transported upward, attested to by its association with helium, to form petroleum pools. Near or at the surface, geologic CH4 mixes with other natural and with anthropogenic CH4 yielding annual emissions into the atmosphere of 500 Tg, of which 200 Tg are natural and 300 Tg are man-made. The atmospheric lifetime of CH4, a greenhouse gas 20 times more effective than CO2 in raising global temperatures, is approximately 10 years. It is removed from the atmosphere mainly by reactions with hydroxyl radical (OH) to form CO2, but also by dry soil and by conversion to H2O in the stratosphere and middle atmosphere. A sudden rise in atmospheric temperatures by 9-12 C some 55 million years ago has been explained by the release in a few thousand years of three trillion tons of CH4 out of 15 trillion tons that had formed beneath the sea floor. What prevented this CH4-induced greenhouse effect from running away? An analog to the CH4-burp of 55 million years ago is the CH4-doubling over the past century which resulted in a increase in upper level H2O from 4.3 ppmv to 6 ppmv. This 30% increase in H2O vapor yielded a tenfold increase in brightness of polar mesospheric clouds because of a strong dependence of the ice particle nucleation rate on the water saturation ratios. Models show that at a given temperature the optical depth of mesospheric clouds scales as [H2O]beta with beta varying between 4 and 8. Radiative transfer tools applied to mesospheric particles suggest that an optical depth of approximately one, or 1000 times the current mesospheric cloud optical depth, would result in tropospheric cooling of about 10 K. Assuming beta=6, a thousandfold increase in optical thickness would require a three-fold increase of H2O, or a 20-fold increase of CH4. At the current

  19. Storifying Samsøs Renewable Energy Transition

    DEFF Research Database (Denmark)

    Papazu, Irina

    2018-01-01

    Through a joint community effort Denmark’s Renewable Energy Island Samsø became self-sufficient with renewable energy over a period of 10 years from 1997 to 2007. Today, the story about Samsø’s successful energy transition has become a global export and a widely known model of community building...... the effects of such well-crafted transition narratives. This tendency toward the ‘storification’ of transition processes is not restricted to Samsø; it is employed as a tactics by environmental organizations operating globally....

  20. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Science.gov (United States)

    Meraner, Katharina; Schmidt, Hauke

    2018-01-01

    Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP) causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10-15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM). Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  1. Stratospheric effects on trends of mesospheric ice clouds (Invited)

    Science.gov (United States)

    Luebken, F.; Baumgarten, G.; Berger, U.

    2009-12-01

    Ice layers in the summer mesosphere at middle and polar latitudes appear as `noctilucent clouds' (NLC) and `polar mesosphere clouds'(PMC) when observed by optical methods from the ground or from satellites, respectively. A newly developed model of the atmosphere called LIMA (Leibniz Institute Middle Atmosphere Model) nicely reproduces the mean conditions of the summer mesopause region and is used to study the ice layer morphology (LIMA/ice). LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and ice cloud morphology. Since ice layer formation is very sensitive to the thermal structure of the mesopause region the morphology of NLC and PMC is frequently discussed in terms of long term variations. Model runs of LIMA/ice are now available for 1961 until 2008. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. We present results regarding inter-annual variability of upper mesosphere temperatures, water vapor, and ice clouds, and also long term variations. We compare our model results with satellite borne and lidar observations including some record high NLC parameters measured in the summer season of 2009. The latitudinal dependence of trends and ice layer parameters is discussed, including a NH/SH comparison. We will present an explanation of the trends in the background atmosphere and ice layer parameters.

  2. An FPGA-Based Adaptable 200 MHz Bandwidth Channel Sounder for Wireless Communication Channel Characterisation

    Directory of Open Access Journals (Sweden)

    David L. Ndzi

    2011-01-01

    Full Text Available This paper describes the development of a fast adaptable FPGA-based wideband channel sounder with signal bandwidths of up to 200 MHz and channel sampling rates up to 5.4 kHz. The application of FPGA allows the user to vary the number of real-time channel response averages, channel sampling interval, and duration of measurement. The waveform, bandwidth, and frequency resolution of the sounder can be adapted for any channel under investigation. The design approach and technology used has led to a reduction in size and weight by more than 60%. This makes the sounder ideal for mobile time-variant wireless communication channels studies. Averaging allows processing gains of up to 30 dB to be achieved for measurement in weak signal conditions. The technique applied also improves reliability, reduces power consumption, and has shifted sounder design complexity from hardware to software. Test results show that the sounder can detect very small-scale variations in channels.

  3. Temperature Trends in the Polar Mesosphere between 2002-2007 using TIMED/SABER Data

    Science.gov (United States)

    Goldberg, Richard A.; Kutepov, Alexander A.; Pesnell, William Dean; Latteck, Ralph; Russell, James M.

    2008-01-01

    The TIMED Satellite was launched on December 7, 2001 to study the dynamics and energy of the mesosphere and lower thermosphere. The TIMED/SABER instrument is a limb scanning infrared radiometer designed to measure a large number of minor constituents as well as the temperature of the region. In this study, we have concentrated on the polar mesosphere, to investigate the temperature characteristics as a function of spatial and temporal considerations. We used the recently revised SABER dataset (1.07) that contains improved temperature retrievals in the Earth polar summer regions. Weekly averages are used to make comparisons between the winter and summer, as well as to study the variability in different quadrants of each hemisphere. For each year studied, the duration of polar summer based on temperature measurements compares favorably with the PMSE (Polar Mesospheric Summer Echoes) season measured by radar at the ALOMAR Observatory in Norway (69 N). The PMSE period should also define the summer period suitable for the occurrence of polar mesospheric clouds. The unusual short and relatively warm polar summer in the northern hemisphere

  4. Solar cycle variations in mesospheric carbon monoxide

    Science.gov (United States)

    Lee, Jae N.; Wu, Dong L.; Ruzmaikin, Alexander; Fontenla, Juan

    2018-05-01

    As an extension of Lee et al. (2013), solar cycle variation of carbon monoxide (CO) is analyzed with MLS observation, which covers more than thirteen years (2004-2017) including maximum of solar cycle 24. Being produced primarily by the carbon dioxide (CO2) photolysis in the lower thermosphere, the variations of the mesospheric CO concentration are largely driven by the solar cycle modulated ultraviolet (UV) variation. This solar signal extends down to the lower altitudes by the dynamical descent in the winter polar vortex, showing a time lag that is consistent with the average descent velocity. To characterize a global distribution of the solar impact, MLS CO is correlated with the SORCE measured total solar irradiance (TSI) and UV. As high as 0.8 in most of the polar mesosphere, the linear correlation coefficients between CO and UV/TSI are more robust than those found in the previous work. The photochemical contribution explains most (68%) of the total variance of CO while the dynamical contribution accounts for 21% of the total variance at upper mesosphere. The photochemistry driven CO anomaly signal is extended in the tropics by vertical mixing. The solar cycle signal in CO is further examined with the Whole Atmosphere Community Climate Model (WACCM) 3.5 simulation by implementing two different modeled Spectral Solar Irradiances (SSIs): SRPM 2012 and NRLSSI. The model simulations underestimate the mean CO amount and solar cycle variations of CO, by a factor of 3, compared to those obtained from MLS observation. Different inputs of the solar spectrum have small impacts on CO variation.

  5. Climate impact of idealized winter polar mesospheric and stratospheric ozone losses as caused by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    K. Meraner

    2018-01-01

    Full Text Available Energetic particles enter the polar atmosphere and enhance the production of nitrogen oxides and hydrogen oxides in the winter stratosphere and mesosphere. Both components are powerful ozone destroyers. Recently, it has been inferred from observations that the direct effect of energetic particle precipitation (EPP causes significant long-term mesospheric ozone variability. Satellites observe a decrease in mesospheric ozone up to 34 % between EPP maximum and EPP minimum. Stratospheric ozone decreases due to the indirect effect of EPP by about 10–15 % observed by satellite instruments. Here, we analyze the climate impact of winter boreal idealized polar mesospheric and polar stratospheric ozone losses as caused by EPP in the coupled Max Planck Institute Earth System Model (MPI-ESM. Using radiative transfer modeling, we find that the radiative forcing of mesospheric ozone loss during polar night is small. Hence, climate effects of mesospheric ozone loss due to energetic particles seem unlikely. Stratospheric ozone loss due to energetic particles warms the winter polar stratosphere and subsequently weakens the polar vortex. However, those changes are small, and few statistically significant changes in surface climate are found.

  6. Samâ’ dalam Tradisi Tasawuf

    Directory of Open Access Journals (Sweden)

    Said Aqil Siradj

    2014-01-01

    Full Text Available Samâ‘ in Tasawuf has been a very important element in the dissemination of this spiritual dimension of Islam. Yet, it has received very little both from the practitioners of Tasawuf and its intellectuals. This paper tries to expose this simply in a hope to make it heard in the academic and popular circle. Here, samâ‘ is not only understood as a form of music, as many would do, but also as an art of listening of which music is certainly part. The paper will explore the meaning and definition of this term, putting emphasis on its many-faceted function in the formation and development of one’s soul and spirituality. It is argued that soul is musical and artistic. Using art and music to talk to soul is therefore the proper way and means. The paper will also try to show that samâ‘ is also an indispensable part of spiritual method to reach and know God. Knowledge of God in other words, can be gained through this practice. Hence, samâ‘ is treated not only as a form of entertainment, but also a kind of practical epistemology.

  7. Energy balance constraints on gravity wave induced eddy diffusion in the mesosphere and lower thermosphere

    Science.gov (United States)

    Strobel, D. F.; Apruzese, J. P.; Schoeberl, M. R.

    1985-01-01

    The constraints on turbulence improved by the mesospheric heat budget are reexamined, and the sufficiency of the theoretical evidence to support the hypothesis that the eddy Prandtl number is greater than one in the mesosphere is considered. The mesopause thermal structure is calculated with turbulent diffusion coefficients commonly used in chemical models and deduced from mean zonal wind deceleration. It is shown that extreme mesopause temperatures of less than 100 K are produced by the large net cooling. The results demonstrate the importance of the Prandtl number for mesospheric turbulence.

  8. Observations of atmospheric structure using an acoustic sounder

    International Nuclear Information System (INIS)

    Shaw, N.A.

    1974-11-01

    An acoustic sounder has been used to monitor the vertical temperature structure of the lowest 1.5 km of the atmosphere over the meteorological field site at Argonne National Laboratory since February 1972. Additional records were obtained near St. Louis, Mo., during the month of August. Sounder records obtained during cloudless days on which no major synoptic events occurred are separated into three characteristic phases. The first phase is the rise of the morning inversion associated with increasing solar heating of the surface after dawn. The second phase is the period of strong convective activity that usually exists between about 1100 and 1600 local time in summer and which typically destroys the inversion. The third phase includes the gradual regeneration of the low level inversion through radiation cooling of the lowest levels, followed by a period of persistence throughout the night until the first phase begins again after sunrise. Analysis of records obtained from a single acoustic sounder operating in the vertically-pointing, monostatic mode is subject to the usual ambiguity regarding the relative importance of advective effects and local changes with time. To provide a spatial sampling facility, a mobile acoustic sounding system was constructed during 1972. Details of the mobile antenna acoustic baffle or cuff are given in the Appendix. (19 figures, 1 table) (U.S.)

  9. Statistical parameters of nonisothermal lower ionospheric plasma in the electrically active mesosphere

    Science.gov (United States)

    Martynenko, S. I.; Rozumenko, V. T.; Tyrnov, O. F.; Manson, A. H.; Meek, C. E.

    The large V/m electric fields inherent in the lower mesosphere play an essential role in lower ionospheric electrodynamics. They must be the cause of large variations in the electron temperature and the electron collision frequency and consequently of the transition of the ionospheric plasma in the lower part of the D region into a nonisothermal state. This study is based on the datasets on large mesospheric electric fields collected with the 2.2-MHz radar of the Institute of Space and Atmospheric Studies, University of Saskatchewan, Canada (52°N geographic latitude, 60.4°N geomagnetic latitude), and with the 2.3-MHz radar of the Kharkiv V. Karazin National University, Ukraine (49.6°N geographic latitude, 45.6°N geomagnetic latitude). The statistical analysis of these data is presented by [Meek, C.E., Manson, A.H., Martynenko, S.I., Rozumenko, V.T., Tyrnov, O.F. Remote sensing of mesospheric electric fields using MF radars. J. Atmos. Solar-Terr. Phys. 66, 881-890, 2004. 10.1016/j.jastp.2004.02.002]. The large mesospheric electric fields in the 60-67-km altitude range are experimentally established to follow a Rayleigh distribution in the 0 < E < 2.5 V/m interval. These data have permitted the resulting differential distributions of relative disturbances in the electron temperature, θ, and the effective electron collision frequency, η, to be determined. The most probable θ and η values are found to be in the 1.4-2.2 interval, and hence the nonstationary state of the lower part of the D region needs to be accounted for in studying processes coupling the electrically active mesosphere and the lower ionospheric plasma.

  10. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    International Nuclear Information System (INIS)

    Lawrence, Paul; Schafer, Elizabeth A.; Rieder, Elizabeth

    2012-01-01

    Picornavirus infection can lead to disruption of nuclear pore traffic, shut-off of cell translation machinery, and cleavage of proteins involved in cellular signal transduction and the innate response to infection. Here, we demonstrated that the FMDV 3C pro induced the cleavage of nuclear RNA-binding protein Sam68 C-terminus containing the nuclear localization sequence (NLS). Consequently, it stimulated the redistribution of Sam68 to the cytoplasm. The siRNA knockdown of Sam68 resulted in a 1000-fold reduction in viral titers, which prompted us to study the effect of Sam68 on FMDV post-entry events. Interestingly, Sam68 interacts with the internal ribosomal entry site within the 5′ non-translated region of the FMDV genome, and Sam68 knockdown decreased FMDV IRES-driven activity in vitro suggesting that it could modulate translation of the viral genome. The results uncover a novel role for Sam68 in the context of picornaviruses and the proteolysis of a new cellular target of the FMDV 3C pro .

  11. Mesoscale Phenomenon Revealed by an Acoustic Sounder

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Jensen, Niels Otto

    1976-01-01

    A particular phenomenon observed on an acoustic sounder record is analyzed, and is interpreted as being associated with the passing of a land breeze front. A simple physical explanation of the frontal movements is suggested. The actual existence of the land breeze is demonstrated by examination...

  12. Technical Manual for the SAM Physical Trough Model

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Gilman, P.

    2011-06-01

    NREL, in conjunction with Sandia National Lab and the U.S Department of Energy, developed the System Advisor Model (SAM) analysis tool for renewable energy system performance and economic analysis. This paper documents the technical background and engineering formulation for one of SAM's two parabolic trough system models in SAM. The Physical Trough model calculates performance relationships based on physical first principles where possible, allowing the modeler to predict electricity production for a wider range of component geometries than is possible in the Empirical Trough model. This document describes the major parabolic trough plant subsystems in detail including the solar field, power block, thermal storage, piping, auxiliary heating, and control systems. This model makes use of both existing subsystem performance modeling approaches, and new approaches developed specifically for SAM.

  13. Information System through ANIS at CeSAM

    Science.gov (United States)

    Moreau, C.; Agneray, F.; Gimenez, S.

    2015-09-01

    ANIS (AstroNomical Information System) is a web generic tool developed at CeSAM to facilitate and standardize the implementation of astronomical data of various kinds through private and/or public dedicated Information Systems. The architecture of ANIS is composed of a database server which contains the project data, a web user interface template which provides high level services (search, extract and display imaging and spectroscopic data using a combination of criteria, an object list, a sql query module or a cone search interfaces), a framework composed of several packages, and a metadata database managed by a web administration entity. The process to implement a new ANIS instance at CeSAM is easy and fast : the scientific project has to submit data or a data secure access, the CeSAM team installs the new instance (web interface template and the metadata database), and the project administrator can configure the instance with the web ANIS-administration entity. Currently, the CeSAM offers through ANIS a web access to VO compliant Information Systems for different projects (HeDaM, HST-COSMOS, CFHTLS-ZPhots, ExoDAT,...).

  14. 78 FR 47695 - Sam Rayburn Dam Power Rate

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Sam Rayburn Dam Power Rate AGENCY: Southwestern Power Administration, DOE. ACTION: Notice of public review and comment. SUMMARY: The current Sam..., Southwestern Power Administration (Southwestern), has prepared Current and Revised 2013 Power Repayment Studies...

  15. Simultaneous mesosphere-thermosphere-ionosphere parameter measurements over Gadanki (13.5°N, 79.2°E): First results

    Science.gov (United States)

    Taori, A.; Dashora, N.; Raghunath, K.; Russell, J. M., III; Mlynczak, Martin G.

    2011-07-01

    We report first simultaneous airglow, lidar, and total electron content measurements in the mesosphere-thermosphere-ionosphere system behavior from Gadanki (13.5°N, 79.2°E). The observed variability in mesospheric temperatures and 630 nm thermospheric emission intensity shows large variations from one night to another with clear upward propagating waves at mesospheric altitudes. The deduced mesospheric temperatures compare well with Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER)-derived temperatures, while the variability agrees well with lidar temperatures (on the night of simultaneous observations). The 630.0 nm thermospheric emission intensity and GPS-total electron content data exhibit occurrence of plasma depletions on the nights of 22-23 October and 22-23 May 2009, while no depletions are noted on the nearby nights of 23-24 October and 21-22 May 2009. These first simultaneous data reveal strong gravity-wave growth at upper mesospheric altitudes on the nights when plasma depletions were noted.

  16. Statistics on the parameters of nonisothermal ionospheric plasma in large mesospheric electric fields

    Science.gov (United States)

    Martynenko, S.; Rozumenko, V.; Tyrnov, O.; Manson, A.; Meek, C.

    The large V/m electric fields inherent in the mesosphere play an essential role in lower ionospheric electrodynamics. They must be the cause of large variations in the electron temperature and the electron collision frequency at D region altitudes, and consequently the ionospheric plasma in the lower part of the D region undergoes a transition into a nonisothermal state. This study is based on the databases on large mesospheric electric fields collected with the 2.2-MHz radar of the Institute of Space and Atmospheric Studies, University of Saskatchewan, Canada (52°N geographic latitude, 60.4°N geomagnetic latitude) and with the 2.3-MHz radar of the Kharkiv V. Karazin National University (49.6°N geographic latitude, 45.6°N geomagnetic latitude). The statistical analysis of these data is presented in Meek, C. E., A. H. Manson, S. I. Martynenko, V. T. Rozumenko, O. F. Tyrnov, Remote sensing of mesospheric electric fields using MF radars, Journal of Atmospheric and Solar-Terrestrial Physics, in press. The large mesospheric electric fields is experimentally established to follow a Rayleigh distribution in the interval 0 mesosphere and the lower ionospheric plasma.

  17. Power spectra of mesospheric velocities in polar regions

    Science.gov (United States)

    Czechowsky, P.; Ruster, R.

    1985-01-01

    The mobile SOUSY radar was operated on Andoya in Northern Norway during the MAP/WINE campaign from November 1983 to February 1984 and for about two weeks in June 1984 to study the seasonal dependence of mesospheric structures and dynamics at polar latitudes. During the winter period, measurements were carried out on 57 days, primarily in coordination with the schedule of the rocket experiments. Echoes were detected in the troposphere and stratosphere up to 30 km and at mesospheric heights from about 50 to 90 km with a distinct maximum around noon. In summer, the radar system was operated continuously from 19th to the 28th of June 1984. Echoes occurred almost for 24 hours in the height range from 70 to 95 km showing no recognizable diurnal variation. Similar observations in polar latitudes were carried out for several years with the Poker Flat Radar in Alaska.

  18. Recent Updates to the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-14

    The System Advisor Model (SAM) is a mature suite of techno-economic models for many renewable energy technologies that can be downloaded for free as a desktop application or software development kit. SAM is used for system-level modeling, including generating performance pro the release of the code as an open source project on GitHub. Other additions that will be covered include the ability to download data directly into SAM from the National Solar Radiation Database (NSRDB) and up- dates to a user-interface macro that assists with PV system sizing. A brief update on SAM's battery model and its integration with the detailed photovoltaic model will also be discussed. Finally, an outline of planned work for the next year will be presented, including the addition of a bifacial model, support for multiple MPPT inputs for detailed inverter modeling, and the addition of a model for inverter thermal behavior.

  19. Simulation study for the Stratospheric Inferred Wind (SIW) sub-millimeter limb sounder

    Science.gov (United States)

    Baron, Philippe; Murtagh, Donal; Eriksson, Patrick; Ochiai, Satoshi

    2017-04-01

    ://www.ohb.de/press-releases-details/ohb-sweden-and-aac-microtec-to-develop-the-innosat-platform-and-implement-its-first-mission-named-mats.html [2] Wu D., et al.: Mesospheric Doppler wind measurements from Aura Microwave Limb Sounder (MLS), Advanced in Space Research, 42, 1246-1252, 2008 [3] Baron P., et al.: Observation of horizontal winds in the middle-atmosphere between 30S and 55N during the northern winter 2009-2010, Atmospheric Chemistry and Physics 13(13), 6049-6064, 2013, doi:10.5194/acp-13-6049-2013 [4] Baron P., et al.: Definition of an uncooled submillimeter/terahertz limb sounder for measuring middle atmospheric winds, Proceedings of ESA Living Planet Symposium, Edinburgh, UK, 9-13 September 2013, (ESA SP-722, December 2013)

  20. Recent progress in mesospheric gravity wave studies using nightglow imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Michael J.; Pendleton Junior, William R.; Pautet, Pierre-Dominique; Zhao, Yucheng; Olsen, Chris; Babu, Hema Karnam Surendra [Center for Atmospheric and Space Sciences, Utah State University, Logan, Utah (United States); Medeiros, Amauri F. [Universidade Federal de Campina Grande, Centro de Ciencias e Tecnologia, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Takahashi, Hisao, E-mail: mtaylor@cc.usu.edu, E-mail: wpen@cc.usu.edu, E-mail: dominiquepautet@gmail.com, E-mail: yucheng@cc.usu.edu, E-mail: cmellob@gmail.com, E-mail: hema_sb@rediffmail.com, E-mail: afragoso@df.ufcg.edu.br, E-mail: hisaotak@laser.inpe.br [INPE, Sao Jose dos Campos, SP (Brazil)

    2007-07-01

    A variety of optical remote sensing techniques have now revealed a rich spectrum of wave activity in the upper atmosphere. Many of these perturbations, with periodicities ranging from {approx} 5 min to many hours and horizontal scales of a few tens of km to several thousands km, are due to freely propagating atmospheric gravity waves and forced tidal oscillations. Passive optical observations of the spatial and temporal characteristics of these waves in the mesosphere and lower thermosphere (MLT) region ( {approx} 80-100 km) are facilitated by several naturally occurring, vertically distinct nightglow layers. This paper describes the use of state-of-the-art ground-based CCD imaging techniques to detect these waves in intensity and temperature. All-sky (180 deg ) image measurements are used to illustrate the characteristics of small-scale, short period ( < 1 hour) waves and to investigate their seasonal propagation and momentum impact on the MLT region. These results are then contrasted with measurements of mesospheric temperature made using a new temperature mapping imaging system capable of determining induced temperature amplitudes of a large range of wave motions and investigating night-to-night and seasonal variability in mesospheric temperature. (author)

  1. Equatorial enhancement of the nighttime OH mesospheric infrared airglow

    International Nuclear Information System (INIS)

    Baker, D J; Thurgood, B K; Harrison, W K; Mlynczak, M G; Russell, J M

    2007-01-01

    Global measurements of the hydroxyl mesospheric airglow over an extended period of time have been made possible by the NASA SABER infrared sensor aboard the TIMED satellite which has been functioning since December of 2001. The orbital mission has continued over a significant portion of a solar cycle. Experimental data from SABER for several years have exhibited equatorial enhancements of the nighttime mesospheric OH (Δv=2) airglow layer consistent with the high average diurnal solar flux. The brightening of the OH airglow typically means more H+O 3 is being reacted. At both the spring and autumn seasonal equinoxes when the equatorial solar UV irradiance mean is greatest, the peak volume emission rate (VER) of the nighttime Meinel infrared airglow typically appears to be both significantly brighter plus lower in altitude by several kilometres at low latitudes compared with midlatitude findings

  2. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder

    KAUST Repository

    Rø stad, Anders; Kaartvedt, Stein

    2013-01-01

    We used a moored upward-facing 200 kHz echo sounder to address sedimentation of fecal pellets (FPs) from dielly migrating Meganyctiphanes norvegica. The echo sounder was located on the bottom at 150 m depth in the Oslofjord, Norway, and was cabled

  3. Stratospheric warming influence on the mesosphere/lower thermosphere as seen by the extended CMAM

    Directory of Open Access Journals (Sweden)

    M. G. Shepherd

    2014-06-01

    Full Text Available The response of the upper mesosphere/lower thermosphere region to major sudden stratospheric warming (SSW is examined employing temperature, winds, NOX and CO constituents from the extended Canadian Middle Atmosphere Model (CMAM with continuous incremental nudging below 10 hPa (~ 30 km. The model results considered cover high latitudes (60–85° N from 10 to 150 km height for the December–March period of 2003/2004, 2005/2006 and 2008/2009, when some of the strongest SSWs in recent years were observed. NOX and CO are used as proxies for examining transport. Comparisons with ACE-FTS (Atmospheric Chemistry Experiment–Fourier Transform Spectrometer satellite observations show that the model represents well the dynamics of the upper mesosphere/lower thermosphere region, the coupling of the stratosphere–mesosphere, and the NOX and CO transport. New information is obtained on the upper mesosphere/lower thermosphere up to 150 km showing that the NOX volume mixing ratio in the 2003/2004 winter was very perturbed indicating transport from the lower atmosphere and intense mixing with large NOX influx from the thermosphere compared to 2006 and 2009. These results, together with those from other models and observations, clearly show the impact of stratospheric warmings on the thermosphere.

  4. The MaCWAVE program to study gravity wave influences on the polar mesosphere

    Directory of Open Access Journals (Sweden)

    R. A. Goldberg

    2006-07-01

    Full Text Available MaCWAVE (Mountain and Convective Waves Ascending VErtically was a highly coordinated rocket, ground-based, and satellite program designed to address gravity wave forcing of the mesosphere and lower thermosphere (MLT. The MaCWAVE program was conducted at the Norwegian Andøya Rocket Range (ARR, 69.3° N in July 2002, and continued at the Swedish Rocket Range (Esrange, 67.9° N during January 2003. Correlative instrumentation included the ALOMAR MF and MST radars and RMR and Na lidars, Esrange MST and meteor radars and RMR lidar, radiosondes, and TIMED (Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite measurements of thermal structures. The data have been used to define both the mean fields and the wave field structures and turbulence generation leading to forcing of the large-scale flow. In summer, launch sequences coupled with ground-based measurements at ARR addressed the forcing of the summer mesopause environment by anticipated convective and shear generated gravity waves. These motions were measured with two 12-h rocket sequences, each involving one Terrier-Orion payload accompanied by a mix of MET rockets, all at ARR in Norway. The MET rockets were used to define the temperature and wind structure of the stratosphere and mesosphere. The Terrier-Orions were designed to measure small-scale plasma fluctuations and turbulence that might be induced by wave breaking in the mesosphere. For the summer series, three European MIDAS (Middle Atmosphere Dynamics and Structure rockets were also launched from ARR in coordination with the MaCWAVE payloads. These were designed to measure plasma and neutral turbulence within the MLT. The summer program exhibited a number of indications of significant departures of the mean wind and temperature structures from ``normal" polar summer conditions, including an unusually warm mesopause and a slowing of the formation of polar mesospheric summer echoes (PMSE and noctilucent clouds (NLC. This

  5. Spirit Pluralisme dalam Klenteng Sam Po Kong Semarang

    Directory of Open Access Journals (Sweden)

    Edi Nurwahyu Julianto

    2015-07-01

    Full Text Available Klenteng Sam Po Kong has very deep meaning as a symbol of multi cultural; multi ethnic and multi religious. Klenteng Sam Po Kong has a different function, not only used by people with background religious Tri Dharma (Budha, Tao and Konghuchu, but also used by Javanese ethnic with different religious backgrounds. Between ethnic China and Java, mutual respect and tolerance run beliefs and rituals of each. More over, Klenteng Sam Po Kong is a form of pluralism which reflected the fact Sino Javanese Muslim Culture is preserved to date both of sightings physical culture and system cultural in the form of religious rites performed by ethnic China and Java.

  6. Formation of Mesospheric Clouds on Mars

    Science.gov (United States)

    Plane, J. M. C.; Audouard, J.; Listowski, C.; Mangan, T.; Maattanen, A. E.; Montmessin, F.; Forget, F.; Millour, E.; Spiga, A.; Crismani, M. M. J.; Schneider, N. M.

    2017-12-01

    Martian Mesospheric Clouds (MMCs) are observed intermittently in the Martian atmosphere between 60 and 100 km, occurring particularly at low latitudes. The clouds consist mainly of CO2-ice particles around 1 mm in radius. Explaining the nucleation and growth of these particles is challenging: it has been assumed that - by analogy with polar mesospheric clouds in the terrestrial atmosphere - nucleation occurs on meteoric smoke particles (very small metal-silicate particles resulting from the condensation of the vapor produced by cosmic dust ablation). Indeed, 1D modeling of CO2 microphysics suggests that an exogenous source of nuclei is necessary to model CO2 MMCs, in agreement with observations in cold pockets produced by the coupling of gravity waves and thermal tides. However, a recent laboratory study has shown that smoke particles, which would be around 1 nm in size - require extremely high CO2 supersaturations to nucleate CO2 ice. Here we present an alternative picture of the nucleation of CO2-ice particles. The major meteoric metals - Mg and Fe - should form MgCO3 and FeCO3 molecules in the Mars atmosphere below 90 km. These molecules have enormous electric dipole moments (11.6 and 9.3 Debye, respectively), and so will immediately form stable clusters with 3 CO2 molecules, which then slowly exchange with H2O to produce hexa-hydrated carbonate molecules. These primary particles polymerize readily to form a background population of "dirty" water-ice particles. Using MAVEN-IUVS measurements of the background Mg+ ion layer to constrain the injection rates of Mg and Fe from meteoric ablation, and a 1D model of metal chemistry coupled to an aerosol coagulation model, we show that the population of these water-ice particles with radii greater than 10 nm should be around 200 cm-3 at 80 km, thus providing a population of effective CO2-ice nuclei. When these nuclei are input in the Laboratoire de Météorologie Dynamique (LMD) Mars GCM, first results show that they can

  7. Solar cycle and long term variations of mesospheric ice layers

    Science.gov (United States)

    Lübken, Franz-Josef; Berger, Uwe; Kiliani, Johannes; Baumgarten, Gerd; Fiedler, Jens; Gerding, Michael

    2010-05-01

    Ice layers in the summer mesosphere at middle and polar latitudes, frequently called `noctilucent clouds' (NLC) or `polar mesosphere clouds'(PMC), are considered to be sensitive indicators of long term changes in the middle atmosphere. We present a summary of long term observations from the ground and from satellites and compare with results from the LIMA model (Leibniz Institute Middle Atmosphere Model). LIMA nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and thereby the morphology of ice clouds. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this give s negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. As will be shown, these trends originate in the stratosphere. Solar cycle effects are expected in ice layers due to variations in background temperatures and water paper. We will present results from LIMA regarding solar cycle variations and compare with NLC observations at our lidar stations in Kühlungsborn (54°N) and ALOMAR (69°N), and also with satellite measurements.

  8. The seasonal variation of water vapor and ozone in the upper mesosphere - Implications for vertical transport and ozone photochemistry

    Science.gov (United States)

    Bevilacqua, Richard M.; Summers, Michael E.; Strobel, Darrell F.; Olivero, John J.; Allen, Mark

    1990-01-01

    This paper reviews the data base supplied by ground-based microwave measurements of water vapor in the mesosphere obtained in three separate experiments over an eight-year period. These measurements indicate that the seasonal variation of water vapor in the mesosphere is dominated by an annual component with low values in winter and high values in summer, suggesting that the seasonal variation of water vapor in the mesosphere (below 80 km) is controlled by advective rather than diffusive processes. Both the seasonal variation and the absolute magnitude of the water vapor mixing ratios obtained in microwave measurements were corroborated by measurements obtained in the Spacelab GRILLE and ATMOS experiments, and were found to be consistent with several recent mesospheric dynamics studies.

  9. Space-borne observation of mesospheric bore by Visible and near Infrared Spectral Imager onboard the International Space Station

    Science.gov (United States)

    Hozumi, Y.; Saito, A.; Sakanoi, T.; Yamazaki, A.; Hosokawa, K.

    2017-12-01

    Mesospheric bores were observed by Visible and near Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in O2 airglow at 762 nm wavelength. The mesospheric bore is moving front of sharp jump followed by undulations or turbulence in the mesopause region. Since previous studies of mesospheric bore were mainly based on ground-based airglow imaging that is limited in field-of-view and observing site, little is known about its horizontal extent and global behavior. Space-borne imaging by ISS-IMAP/VISI provides an opportunity to study the mesospheric bore with a wide field-of-view and global coverage. A mesospheric bore was captured by VISI in two consecutive paths on 9 July 2015 over the south of African continent (48ºS - 54ºS and 15ºE). The wave front aligned with south-north direction and propagated to west. The phase velocity and wave length of the following undulation were estimated to 100 m/s and 30 km, respectively. Those parameters are similar to those reported by previous studies. 30º anti-clockwise rotation of the wave front was recognized in 100 min. Another mesospheric bore was captured on 9 May 2013 over the south Atlantic ocean (35ºS - 43ºS and 24ºW - 1ºE) with more than 2,200 km horizontal extent of wave front. The wave front aligned with southeast-northwest direction. Because the following undulation is recognized in the southwest side of the wave front, it is estimated to propagate to northeast direction. The wave front was modulated with 1,000 km wave length. This modulation implies inhomogeneity of the phase velocity.

  10. Mars’ seasonal mesospheric transport seen through nitric oxide nightglow

    Science.gov (United States)

    Milby, Zachariah; Stiepen, Arnaud; Jain, Sonal; Schneider, Nicholas M.; Deighan, Justin; Gonzalez-Galindo, Francisco; Gerard, Jean-Claude; Stevens, Michael H.; Bougher, Stephen W.; Evans, J. Scott; Stewart, A. Ian; Chaffin, Michael; Crismani, Matteo; McClintock, William E.; Clarke, John T.; Holsclaw, Greg; Montmessin, Franck; Lefevre, Franck; Forget, Francois; Lo, Daniel Y.; Hubert, Benoît; Jakosky, Bruce

    2017-10-01

    We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft when it is at apoapse and periapse.In the dayside thermosphere of Mars, solar extreme-ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried from the dayside to the nightside by the day-night hemispheric transport process, where they descend through the nightside mesosphere and can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting photons in the UV δ and γ bands. These emissions are indicators of the N and O atom fluxes from the dayside to Mars’ nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017).Observations of these emissions are gathered from a large dataset spanning different seasonal conditions.We present discussion on the variability in the brightness and altitude of the emission with season, geographical position (longitude), and local time, along with possible interpretation by local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves forcing longitudinal variability and data-to-model comparisons indicating a wave-3 structure in Mars’ nightside mesosphere. Quantitative comparison with calculations of the Laboratoire de Météorologie Dynamique-Mars Global Climate Model (LMD-MGCM) suggests the model reproduces both the global trend of NO nightglow emission and its seasonal variation. However, it also indicates large discrepancies, with the emission up to a factor 50 times fainter in the model, suggesting that the predicted transport is too efficient toward the night winter pole in the thermosphere by

  11. Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch.

    Science.gov (United States)

    Roy, Susmita; Onuchic, José N; Sanbonmatsu, Karissa Y

    2017-07-25

    The S-adenosylmethionine (SAM)-I riboswitch is a noncoding RNA that regulates the transcription termination process in response to metabolite (SAM) binding. The aptamer portion of the riboswitch may adopt an open or closed state depending on the presence of metabolite. Although the transition between the open and closed states is critical for the switching process, its atomistic details are not well understood. Using atomistic simulations, we calculate the effect of SAM and magnesium ions on the folding free energy landscape of the SAM-I riboswitch. These molecular simulation results are consistent with our previous wetlab experiments and aid in interpreting the SHAPE probing measurements. Here, molecular dynamics simulations explicitly identify target RNA motifs sensitive to magnesium ions and SAM. In the simulations, we observe that, whereas the metabolite mostly stabilizes the P1 and P3 helices, magnesium serves an important role in stabilizing a pseudoknot interaction between the P2 and P4 helices, even at high metabolite concentrations. The pseudoknot stabilization by magnesium, in combination with P1 stabilization by SAM, explains the requirement of both SAM and magnesium to form the fully collapsed metabolite-bound closed state of the SAM-I riboswitch. In the absence of SAM, frequent open-to-closed conformational transitions of the pseudoknot occur, akin to breathing. These pseudoknot fluctuations disrupt the binding site by facilitating fluctuations in the 5'-end of helix P1. Magnesium biases the landscape toward a collapsed state (preorganization) by coordinating pseudoknot and 5'-P1 fluctuations. The cooperation between SAM and magnesium in stabilizing important tertiary interactions elucidates their functional significance in transcription regulation. Published by Elsevier Inc.

  12. Water Vapor, Temperature, and Ice Particles in Polar Mesosphere as Measured by SABER/TIMED and OSIRIS/Odin Instruments

    Science.gov (United States)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Although many new details on the properties of mesospheric ice particles that farm Polar Mesospheric Clouds (PMCs) and also cause polar mesospheric summer echoes have been recently revealed, certain aspects of mesospheric ice microphysics and dynamics still remain open. The detailed relation between PMC parameters and properties of their environment, as well as interseasonal and interhemispheric differences and trends in PMC properties that are possibly related to global change, are among those open questions. In this work, mesospheric temperature and water vapor concentration measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite are used to study the properties of PMCs with respect to the surrounding atmosphere. The cloud parameters, namely location, brightness, and altitude, are obtained from the observations made by the Optical Spectrograph and Infrared Imager System (OSIRIS) on the Odin satellite. About a thousand of simultaneous common volume measurements made by SABER and OSIRIS in both hemispheres from 2002 until 2008 are used. The correlation between PMC brightness (and occurrence rate) and temperatures at PMC altitudes and at the mesopause is analysed. The relation between PMC parameters, frost point temperature, and gaseous water vapor content in and below the cloud is also discussed. Interseasonal and interhemispheric differences and trends in the above parameters, as well as in PMC peak altitudes and mesopause altitudes are evaluated.

  13. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    Science.gov (United States)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  14. Evidence for Dynamical Coupling of Stratosphere-MLT during recent minor Stratospheric Warmings in Southern Hemisphere

    Science.gov (United States)

    Kim, Yongha; Sunkara, Eswaraiah; Hong, Junseok; Ratnam, Venkat; Chandran, Amal; Rao, Svb; Riggin, Dennis

    2015-04-01

    The mesosphere-lower thermosphere (MLT) response to extremely rare minor sudden stratospheric warming (SSW) events was observed for the first time in the southern hemisphere (SH) during 2010 and is investigated using the meteor radar located at King Sejong Station (62.22°S, 58.78°W), Antarctica. Three episodic SSWs were noticed from early August to late October 2010. The mesospheric wind field was found to significantly differ from normal years due to enhanced planetary wave (PW) activity before the SSWs and secondary PWs in the MLT afterwards. The zonal winds in the mesosphere reversed approximately a week before the SSW occurrence in the stratosphere as has been observed 2002 major SSW, suggesting the downward propagation of disturbance during minor SSWs as well. Signatures of mesospheric cooling (MC) in association with SSWs are found in the Microwave Limb Sounder (MLS) measurements. SD-WACCM simulations are able to produce these observed features.

  15. Radar observations of high-latitude lower-thermospheric and upper-mesospheric winds and their response to geomagnetic activity

    International Nuclear Information System (INIS)

    Johnson, R.M.

    1987-01-01

    Observations made by the Chatanika, Alaska, incoherent scatter radar during the summer months of 1976 to 1081 are analyzed to obtain high resolution lower-thermospheric neutral winds. Average winds and their tidal components are presented and compared to previous observational and model results. Upper-mesospheric neutral-wind observations obtained by the Poke Flat, Alaska Mesosphere-Stratosphere-Troposphere (MST) radar during the summer months of 1980 to 1982 are investigated statistically for evidence of variations due to geomagnetic activity. Observation of upper-mesospheric neutral winds made during two energetic Solar Proton Events (SPEs) by the Poker Flat, MST radar are presented. These results allow the low-altitude limits of magnetospheric coupling to the neutral atmosphere to be determined. Lower-thermospheric neutral winds are coupled to the ion convection driven by typical magnetospheric forcing above about 100 km. Coupling to lower atmospheric levels does not occur except during intervals of extreme disturbance of the magnetosphere-ionosphere-thermosphere system which are also accompanied by dramatically increased ionization in the high-latitude mesosphere, such as SPEs

  16. The Expected Impacts of NPOESS Microwave and Infrared Sounder Radiances on Operational Numerical Weather Prediction and Data Assimilation Systems

    Science.gov (United States)

    Swadley, S. D.; Baker, N.; Derber, J.; Collard, A.; Hilton, F.; Ruston, B.; Bell, W.; Candy, B.; Kleespies, T. J.

    2009-12-01

    The NPOESS atmospheric sounding functionality will be accomplished using two separate sensor suites, the combined infrared (IR) and microwave (MW) sensor suite (CrIMSS), and the Microwave Imager/Sounder (MIS) instrument. CrIMSS consists of the Cross Track Infrared Sounder (CrIS) and the cross track Advanced Technology Microwave Sounder (ATMS), and is scheduled to fly on the NPOESS Preparatory Project (NPP), and NPOESS operational flight units C1 and C3. The MIS is a conical scanning polarimetric imager and sounder patterned after the heritage WindSat, and DMSP Special Sensor Microwave Imagers and Sounders (SSMI and SSMIS), and is scheduled for flight units C2, C3 and C4. ATMS combines the current operational Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), but with an additional channel in the 51.76 GHz oxygen absorption region and 3 additional channels in the 165.5 and 183 GHz water vapor absorption band. CrIS is a Fourier Transform Spectrometer and will provide 159 shortwave IR channels, 433 mid-range IR channels, and 713 longwave IR channels. The heritage sensors for CrIS are the NASA Advanced Infrared Sounder (AIRS) and the MetOp-A Infrared Atmospheric Sounding Interferometer (IASI). Both AIRS and IASI are high quality, high spectral resolution sounders which represent a significant improvement in the effective vertical resolution over previous IR sounders. This presentation will give an overview of preparations underway for day-1 monitoring of NPP/NPOESS radiances, and subsequent operational radiance assimilation. These preparations capitalize on experience gained during the pre-launch preparations, sensor calibration/validation and operational assimilation for the heritage sensors. One important step is to use pre-flight sensor channel specifications, noise estimates and knowledge of the antenna patterns, to generate and test proxy NPP/NPOESS sensor observations in existing assimilation systems. Other critical factors for

  17. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.

    Science.gov (United States)

    Lukong, Kiven E; Richard, Stéphane

    2008-06-03

    The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.

  18. Spherical solitons in Earth’S mesosphere plasma

    International Nuclear Information System (INIS)

    Annou, K.; Annou, R.

    2016-01-01

    Soliton formation in Earth’s mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev–Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry

  19. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder

    KAUST Repository

    Røstad, Anders

    2013-11-01

    We used a moored upward-facing 200 kHz echo sounder to address sedimentation of fecal pellets (FPs) from dielly migrating Meganyctiphanes norvegica. The echo sounder was located on the bottom at 150 m depth in the Oslofjord, Norway, and was cabled to shore for continuous measurements during winter and spring. Records of sinking pellets were for the first time observed with an echo sounder. Seasonal patterns of sedimentation of krill FPs were strongly correlated with data from continuous measurement of fluorescence, which illustrate the development of the spring bloom. Sedimenting particles were first observed as fluorescence values started to increase at the end of February and continued to increase until the bloom suddenly culminated at the end of March. This collapse of the bloom was detected on the echo sounder as a pulse of slowly sinking acoustic targets over a 2 d period. Prior to this event, there was a strong diel pattern in sedimentation, which correlated, with some time lag, with the diel migration of krill foraging at night near the surface. Pellet average sinking speeds ranged between 423 m d−1 and 804 m d−1, with a strong relation to pellet target strength, which is an acoustic proxy for size. This novel approach shows that echo sounders may be a valuable tool in studies of vertical pellet flux and, thereby, carbon flux, providing temporal resolution and direct observation of the sedimentation process, which are not obtained from standard methods.

  20. P-sounder: an airborne P-band ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Kusk, Anders

    2007-01-01

    is to test new ice sounding techniques, e.g. polarimetry, synthetic aperture processing, and coherent clutter suppression. A system analysis involving ice scattering models confirms that it is feasible to detect the bedrock through 4 km of ice and to detect deep ice layers. The ice sounder design features...

  1. Radiation streaming with SAM-CE

    International Nuclear Information System (INIS)

    De Gangi, N.; Cohen, M.O.; Waluschka, E.; Steinberg, H.A.

    1980-01-01

    The SAM-CE Monte Carlo code has been employed to calculate doses, due to neutron streaming, on the operating floor and other locations of the Millstone Unit II Nuclear Power Facility. Calculated results were compared against measured doses

  2. On the sizes and observable effects of dust particles in polar mesospheric winter echoes

    Science.gov (United States)

    Havnes, O.; Kassa, M.

    2009-05-01

    In the present paper, recent radar and heating experiments on the polar mesospheric winter echoes (PMWE) are analyzed with the radar overshoot model. The PMWE dust particles that influence the radar backscatter most likely have sizes around 3 nm. For dust to influence the electrons in the PMWE layers, it must be charged; therefore, we have discussed the charging of nanometer-sized particles and found that the photodetachment effect, where photons of energy less than the work function of the dust material can remove excess electrons, probably is dominant at sunlit conditions. For moderate and low electron densities, very few of the dust smaller than ˜3 nm will be charged. We suggest that the normal requirement that disturbed magnetospheric conditions with ionizing precipitation must be present to create observable PMWE is needed mainly to create sufficiently high electron densities to overcome the photodetachment effect and charge the PMWE dust particles. We have also suggested other possible effects of the photodetachment on the occurrence rate of the PMWE. We attribute the lack of PMWE-like radar scattering layers in the lower mesosphere during the summer not only to a lower level of turbulence than in winter but also to that dust particles are removed from these layers due to the upward wind draught in the summer mesospheric circulation system. It is likely that this last effect will completely shut off the PMWE-like radar layers in the lower parts of the mesosphere.

  3. Evidence of Convective Redistribution of Carbon Monoxide in Aura Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) Observations

    Science.gov (United States)

    Manyin, Michael; Douglass, Anne; Schoeberl, Mark

    2010-01-01

    Vertical convective transport is a key element of the tropospheric circulation. Convection lofts air from the boundary layer into the free troposphere, allowing surface emissions to travel much further, and altering the rate of chemical processes such as ozone production. This study uses satellite observations to focus on the convective transport of CO from the boundary layer to the mid and upper troposphere. Our hypothesis is that strong convection associated with high rain rate regions leads to a correlation between mid level and upper level CO amounts. We first test this hypothesis using the Global Modeling Initiative (GMI) chemistry and transport model. We find the correlation is robust and increases as the precipitation rate (the strength of convection) increases. We next examine three years of CO profiles from the Tropospheric Emission Sounder (TES) and Microwave Limb Sounder (MLS) instruments aboard EOS Aura. Rain rates are taken from the Tropical Rainfall Measuring Mission (TRMM) 3B-42 multi-satellite product. Again we find a correlation between mid-level and upper tropospheric CO, which increases with rain rate. Our result shows the critical importance of tropical convection in coupling vertical levels of the troposphere in the transport of trace gases. The effect is seen most clearly in strong convective regions such as the Inter-tropical Convergence Zone.

  4. On LAM's and SAM's for Halley's rotation

    Science.gov (United States)

    Peale, Stanton J.

    1992-01-01

    Non principal axis rotation for comet Halley is inferred from dual periodicities evident in the observations. The modes where the spin axis precesses around the axis of minimum moment of inertia (long axis mode or LAM) and where it precesses around the axis of maximum moment of inertia (short axis mode or SAM) are described from an inertial point of view. The currently favored LAM model for Halley's rotation state satisfies observational and dynamical constraints that apparently no SAM can satisfy. But it cannot reproduce the observed post perihelion brightening through seasonal illumination of localized sources on the nucleus, whereas a SAM can easily produce post or pre perihelion brightening by this mechanism. However, the likelihood of a LAM rotation for elongated nuclei of periodic comets such as Halley together with Halley's extreme post perihelion behavior far from the Sun suggest that Halley's post perihelion brightening may be due to effects other than seasonal illumination of localized sources, and therefore such brightening may not constrain its rotation state.

  5. Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

    Directory of Open Access Journals (Sweden)

    M. Khosravi

    2013-08-01

    Full Text Available The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR on board Odin, the Microwave Limb Sounder (MLS on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS and measurements from solar occultation instruments (ACE-FTS is challenging since the measurements correspond to different solar zenith angles (or local times. However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3 of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite

  6. The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes

    Directory of Open Access Journals (Sweden)

    F.-J. Lübken

    2006-01-01

    Full Text Available In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N into strong VHF radar echoes called 'Polar Mesosphere Winter Echoes' (PMWE. The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general, PMWE occur much more seldom compared to their summer counterparts PMSE (typical occurrence rates at 69° N are 1–3% vs. 80%, respectively. Our in-situ measurements by falling sphere, chaff, and instrumented payloads provide detailed information about the thermal and dynamical state of the atmosphere and therefore allow an unprecedented study of the background atmosphere during PMWE. There are a number of independent observations indicating that neutral air turbulence has caused PMWE. Ion density fluctuations show a turbulence spectrum within PMWE and no fluctuations outside. Temperature lapse rates close to the adiabatic gradient are observed in the vicinity of PMWE indicating persistent turbulent mixing. The spectral broadening of radar echoes is consistent with turbulent velocity fluctuations. Turbulence also explains the mean occurrence height of PMWE (~68–75 km: viscosity increases rapidly with altitude and destroys any small scale fluctuations in the upper mesosphere, whereas electron densities are usually too low in the lower mesosphere to cause significant backscatter. The seasonal variation of echoes in the lower mesosphere is in agreement with a turbulence climatology derived from earlier sounding rocket flights. We have performed model calculations to study the radar backscatter from plasma fluctuations caused by neutral air turbulence. We find that volume reflectivities observed during PMWE are in quantitative agreement with theory. Apart from turbulence the most crucial requirement for PMWE is a sufficiently large number of electrons, for example produced by solar proton events. We have studied the sensitivity of the radar echo strength on

  7. First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System

    Science.gov (United States)

    La Hoz, C.

    2015-12-01

    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a

  8. Surface adhesion and confinement variation of Staphylococcus aurius on SAM surfaces

    Science.gov (United States)

    Amroski, Alicia; Olsen, Morgan; Calabrese, Joseph; Senevirathne, Reshani; Senevirathne, Indrajith

    2012-02-01

    Controlled surface adhesion of non - pathogenic gram positive strain, Staphylococcus aureus is interesting as a model system due to possible development of respective biosensors for prevention and detection of the pathogenic strain methicillin resistant Staphylococcus aureus (MRSA) and further as a study for bio-machine interfacing. Self Assembled Monolayers (SAM) with engineered surfaces of linear thiols on Au(111) were used as the substrate. Sub cultured S. aureus were used for the analysis. The SAM layered surfaces were dipped in 2 -- 4 Log/ml S. aureus solution. Subsequent surface adhesion at different bacterial dilutions on surfaces will be discussed, and correlated with quantitative and qualitative adhesion properties of bacteria on the engineered SAM surfaces. The bacteria adhered SAM surfaces were investigated using intermittent contact, noncontact, lateral force and contact modes of Atomic Force Microscopy (AFM).

  9. Renewing Samsø

    DEFF Research Database (Denmark)

    Papazu, Irina

    2017-01-01

    and globally, I ask: if indeed such a process of renewal must be understood as a political process and the island’s energy transition as an inherently political event, what can Samsø teach us about the workings of politics and local democracy as enacted in practice? This is politics not as election result...... or ideological struggle over values, ideals and the distribution of goods, but as the down-to-earth but significant activity of creating something new together....

  10. Identification of trans-acting factors regulating SamDC expression in Oryza sativa

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Supratim, E-mail: supratim_genetics@yahoo.co.in [Department of Crop Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701 (United States); Division of Plant Biology, Bose Institute, Kolkata (India); Roychoudhury, Aryadeep [Post Graduate Department of Biotechnology, St. Xavier' s College (Autonomous), 30, Mother Teresa Sarani, Kolkata - 700016, West Bengal (India); Sengupta, Dibyendu N. [Division of Plant Biology, Bose Institute, Kolkata (India)

    2014-03-07

    Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In our present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.

  11. Unanticipated coordination of tris buffer to the Radical SAM cluster of the RimO methylthiotransferase.

    Science.gov (United States)

    Molle, Thibaut; Clémancey, Martin; Latour, Jean-Marc; Kathirvelu, Velavan; Sicoli, Giuseppe; Forouhar, Farhad; Mulliez, Etienne; Gambarelli, Serge; Atta, Mohamed

    2016-07-01

    Radical SAM enzymes generally contain a [4Fe-4S](2+/1+) (RS cluster) cluster bound to the protein via the three cysteines of a canonical motif CxxxCxxC. The non-cysteinyl iron is used to coordinate SAM via its amino-carboxylate moiety. The coordination-induced proximity between the cluster acting as an electron donor and the adenosyl-sulfonium bond of SAM allows for the homolytic cleavage of the latter leading to the formation of the reactive 5'-deoxyadenosyl radical used for substrate activation. Most of the structures of Radical SAM enzymes have been obtained in the presence of SAM, and therefore, little is known about the situation when SAM is not present. In this report, we show that RimO, a methylthiotransferase belonging to the radical SAM superfamily, binds a Tris molecule in the absence of SAM leading to specific spectroscopic signatures both in Mössbauer and pulsed EPR spectroscopies. These data provide a cautionary note for researchers who work with coordinative unsaturated iron sulfur clusters.

  12. Study of Geological Analogues for Understanding the Radar Sounder Response of the RIME Targets

    Science.gov (United States)

    Thakur, S.; Bruzzone, L.

    2017-12-01

    Radar for Icy Moon Exploration (RIME), the radar sounder onboard the Jupiter Icy Moons Explorer (JUICE), is aimed at characterizing the ice shells of the Jovian moons - Ganymede, Europa and Callisto. RIME is optimized to operate at 9 MHz central frequency with bandwidth of 1 MHz and 2.7 MHz to achieve a penetration depth up to 9 km through ice. We have developed an approach to the definition of a database of simulated RIME radargrams by leveraging the data available from airborne and orbital radar sounder acquisitions over geological analogues of the expected icy moon features. These simulated radargrams are obtained by merging real radar sounder data with models of the subsurface of the Jupiter icy moons. They will be useful for geological interpretation of the RIME radargrams and for better predicting the performance of RIME. The database will also be useful in developing pre-processing and automatic feature extraction algorithms to support data analysis during the mission phase of RIME. Prior to the JUICE mission exploring the Jovian satellites with RIME, there exist radar sounders such as SHARAD (onboard MRO) and MARSIS (onboard MEX) probing Mars, the LRS (onboard SELENE) probing the Moon, and many airborne sounders probing the polar regions of Earth. Analogues have been identified in these places based on similarity in geo-morphological expression. Moreover, other analogues have been identified on the Earth for possible dedicated acquisition campaigns before the RIME operations. By assuming that the subsurface structure of the RIME targets is approximately represented in the analogue radargrams, the difference in composition is accounted for by imposing different dielectric and subsurface attenuation models. The RIME radargrams are simulated from the analogue radargrams using the radar equation and the RIME processing chain and accounting for different possible scenarios in terms of subsurface structure, dielectric properties and instrument parameters. For

  13. Study of radiation effects on the senescence accelerated mouse (SAM), 1

    International Nuclear Information System (INIS)

    Kishikawa, Masao; Iseki, Masachika; Kondo, Hisayoshi

    1989-01-01

    The study of age-related changes in the central nervous system due to irradiation is being carried out in our laboratory. The senescence accelerated mouse (SAM P/1, male) was used for this investigation concerning the one-trial passive avoidance reaction. The experimental group of SAM P/1 was irradiated with 4 Gy at 8 weeks old, and passive avoidance reaction (PAR) was measured for 180 seconds as a learning task. At the age of 7 months, statistical analysis of PAR was conducted using the life time analysis method. The passive avoidance reaction of the irradiated group was more impaired than that of the control group. The results of this investigation suggested that the learning and/or memory disturbance of irradiated SAM P/1 is similar to the changes of more aged SAM P/1. (author)

  14. Turbulence characteristics in the tropical mesosphere as obtained by MST radar at Gadanki (13.5° N, 79.2° E

    Directory of Open Access Journals (Sweden)

    M. N. Sasi

    2001-08-01

    Full Text Available Turbulent kinetic energy dissipation rates (ε and eddy diffusion coefficients (Kz in the tropical mesosphere over Gadanki (13.5° N, 79.2° E, estimated from Doppler widths of MST radar echoes (vertical beam, observed over a 3-year period, show a seasonal variation with a dominant summer maximum. The observed seasonal variation of ε and Kz in the mesosphere is only partially consistent with that of gravity wave activity inferred from mesospheric winds and temperatures measured by rockets for a period of 9 years at Trivandrum (8.5° N, 77° E (which shows two equinox and one summer maxima lying close to Gadanki. The summer maximum of mesospheric ε and Kz values appears to be related to the enhanced gravity wave activity over the low-latitude Indian subcontinent during the southwest monsoon period (June – September. Both ε and Kz in the mesosphere over Gadanki show an increase with an increase in height during all seasons. The absolute values of observed ε and Kz in the mesosphere (above ~80 km does not show significant differences from those reported for high latitudes. Comparison of observed Kz values during the winter above Gadanki with those over Arecibo (18.5° N, 66° W shows that they are not significantly different from each other above the ~80 km altitude.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; tropical meteorology; wave and tides

  15. Stratospheric and solar cycle effects on long-term variability of mesospheric ice clouds

    Science.gov (United States)

    Lübken, F.-J.; Berger, U.; Baumgarten, G.

    2009-11-01

    Model results of mesospheric ice layers and background conditions at 69°N from 1961 to 2008 are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. At polar mesospheric cloud (PMC) altitudes (83 km) temperatures decrease until the mid 1990s by -0.08 K/yr resulting in trends of PMC brightness, occurrence rates, and, to a lesser extent, in PMC altitudes (-0.0166 km/yr). Ice layer trends are consistent with observations by ground-based and satellite instruments. Water vapor increases at PMC heights and decreases above due to increased freeze-drying caused by the temperature trend. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. A solar cycle modulation of H2O is observed in the model consistent with satellite observations. The effect on ice layers is reduced because of redistribution of H2O by freeze-drying. The accidental coincidence of low temperatures and solar cycle minimum in the mid 1990s leads to an overestimation of solar effects on ice layers. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this gives negligible temperature trends at PMC altitudes (˜0.01-0.02 K/yr). Strong correlations between PMC parameters and background conditions deduced from the model confirm the standard scenario of PMC formation. The PMC sensitivity on temperatures, water vapor, and Ly-α is investigated. PMC heights show little variation with background parameters whereas brightness and occurrence rates show large variations. None of the background parameters can be ignored regarding its influence on ice layers.

  16. CareSam

    DEFF Research Database (Denmark)

    Liveng, Anne; Christensen, Jonas

    2016-01-01

    negative cultural perceptions of help-needing elderly and the people who support them in everyday life? In answering these questions and thereby reflecting on our own work process we apply a caring, a learning and a political perspective. Hereby the article wishes to formulate a methodological point...... to maintain immediately conflicting dimensions in this kind of work.......This article presents findings and discussions generated on the basis of the Danish-Swedish development project CareSam. The article will on the one hand focus on how work in groups consisting of representatives from different levels in the elderly care sector at one time served as learning spaces...

  17. Amine terminated SAMs: Investigating why oxygen is present in these films

    International Nuclear Information System (INIS)

    Baio, J.E.; Weidner, T.; Brison, J.; Graham, D.J.; Gamble, Lara J.; Castner, David G.

    2009-01-01

    Self-assembled monolayers (SAMs) on gold prepared from amine-terminated alkanethiols have long been employed as model positively charged surfaces. Yet in previous studies significant amounts of unexpected oxygen containing species are always detected in amine terminated SAMs. Thus, the goal of this investigation was to determine the source of these oxygen species and minimize their presence in the SAM. The surface composition, structure, and order of amine-terminated SAMs on Au were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectroscopy (ToF-SIMS), sum frequency generation (SFG) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. XPS determined compositions of amine-terminated SAMs in the current study exhibited oxygen concentrations of 2.4 ± 0.4 atomic %, a substantially lower amount of oxygen than reported in previously published studies. High-resolution XPS results from the S 2p , C 1s and N 1s regions did not detect any oxidized species. Angle-resolved XPS indicated that the small amount of oxygen detected was located at or near the amine head group. Small amounts of oxidized nitrogen, carbon and sulfur secondary ions, as well as ions attributed to water, were detected in the ToF-SIMS data due to the higher sensitivity of ToF-SIMS. The lack of N-O, S-O, and C-O stretches in the SFG spectra are consistent with the XPS and ToF-SIMS results and together show that oxidation of the amine-terminated thiols alone can only account for, at most, a small fraction of the oxygen detected by XPS. Both the SFG and angle-dependent NEXAFS indicated the presence of gauche defects in the amine SAMs. However, the SFG spectral features near 2865 cm -1 , assigned to the stretch of the methylene group next to the terminal amine unit, demonstrate the SAM is reasonably ordered. The SFG results also show another broad feature near 3200 cm -1 related to hydrogen-bonded water. From this multi-technique investigation it is

  18. Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends

    Science.gov (United States)

    Lübken, F.-J.; Berger, U.

    2011-02-01

    Latitudinal and interhemispheric differences of model results on trends in mesospheric ice layers and background conditions are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. Water vapor increases at noctilucent cloud (NLC) heights and decreases above due to increased freeze drying caused by temperature trends. There is no tendency for ice clouds in the Northern Hemisphere for extending farther southward with time. Trends of NLC albedo are similar to satellite measurements, but only if a time period longer than observations is considered. Ice cloud trends get smaller if albedo thresholds relevant to satellite instruments are applied, in particular at high polar latitudes. This implies that weak and moderate NLC is favored when background conditions improve for NLC formation, whereas strong NLC benefits less. Trends of ice cloud parameters are generally smaller in the Southern Hemisphere (SH) compared to the Northern Hemisphere (NH), consistent with observations. Trends in background conditions have counteracting effects on NLC: temperature trends would suggest stronger ice increase in the SH, and water vapor trends would suggest a weaker increase. Larger trends in NLC brightness or occurrence rates are not necessarily associated with larger (more negative) temperature trends. They can also be caused by larger trends of water vapor caused by larger freeze drying, which in turn can be caused by generally lower temperatures and/or more background water. Trends of NLC brightness and occurrence rates decrease with decreasing latitude in both hemispheres. The latitudinal variation of these trends is primarily determined by induced water vapor trends. Trends in NLC altitudes are generally small. Stratospheric temperature trends vary

  19. Seasonal Transport in Mars' Mesosphere-Thermosphere revealed by Nitric Oxide nightglow

    Science.gov (United States)

    Royer, E. M.; Stiepen, A.; Schneider, N. M.; Jain, S.; Milby, Z.; Deighan, J.; Gonzalez-Galindo, F.; Bougher, S. W.; Gerard, J. C. M. C.; Stevens, M. H.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; McClintock, B.; Clarke, J. T.; Montmessin, F.; Holsclaw, G.; Lefèvre, F.; Forget, F.; Lo, D.; Hubert, B. A.; Jakosky, B. M.

    2017-12-01

    We analyze the ultraviolet nightglow in the atmosphere of Mars through the Nitric Oxide (NO) δ and γ band emissions observed by the Imaging Ultraviolet Spectrograph (IUVS, McClintock et al., 2015) when the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is at apoapsis and periapsis. On the dayside thermosphere of Mars, solar extreme ultraviolet radiation dissociates CO2 and N2 molecules. O(3P) and N(4S) atoms are carried by the day-to-night hemispheric transport. They descend in the nightside mesosphere, where they can radiatively recombine to form NO(C2Π). The excited molecules rapidly relax by emitting UV photons in the δ and γ bands. These emissions are thus indicators of the N and O atom fluxes transported from the dayside to Mars' nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017). A large dataset of nightside disk images and vertical limb scans during southern winter, fall equinox and southern summer conditions have been accumulated since the beginning of the mission. We will present a discussion regarding the variability of the brightness and altitude of the emission with season, geographical position (longitude) and local time and possible interpretation for local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves structuring the emission longitudinally and indicating a wave-3 structure in Mars' nightside mesosphere. Quantitative comparison with calculations from the LMD-MGCM (Laboratoire de Météorologie Dynamique-Mars Global Climate Model) show that the model globally reproduces the trends of the NO nightglow emission and its seasonal variation but also indicates large discrepancies (up to a factor 50 fainter in the model) suggesting that the predicted transport is too efficient toward the night winter pole

  20. Spatial and Seasonal Variability of Temperature in CO2 Emission from Mars' Mesosphere

    Science.gov (United States)

    Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade; Fast, Kelly Elizabeth; Sonnabend, Guido; Sornig, Manuela

    2017-10-01

    We have observed non-local thermodynamic equilibrium (non-LTE) emission of carbon dioxide that probes Mars’ mesosphere in 2001, 2003, 2007, 2012, 2014, and 2016. These measurements were conducted at 10.6 μm wavelength using the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds and Composition (HIPWAC) from the NASA Infrared Telescope Facility (IRTF) at resolving power (1-33)×106. The Maxwellian broadening of the emission line can be measured at this resolution, providing a direct determination of temperature in the mesosphere. The nonLTE line appears as a narrow emission core within a broad absorption formed by tropospheric CO2, which provides temperature information reaching down to the martian surface, while the mesospheric line probes temperature at about 60-80 km altitude. We will report on the spatial distribution of temperature and emission line strength with local solar time on Mars, with latitude, as well as long-term variability including seasonal effects that modify the overall thermal structure of the atmosphere. These remote measurements complement results from orbital spacecraft through access to a broad range of local solar time on each occasion.This work has been supported by the NASA Planetary Astronomy and Solar Systems Observations Programs

  1. Dominant winter-time mesospheric wave signatures over a low ...

    Indian Academy of Sciences (India)

    10.1016/j.jastp.2008.09.017. Taori A, Taylor M J and Franke S 2005 Terdiurnal wave signatures in the upper mesospheric tempera- ture and their association with the wind fields at low latitudes (20. °. N); J. Geophys. Res. 110 D09S06, doi: 10.1029/2004JD004564. Taori A and Taylor M J 2006 Characteristics of wave.

  2. Direction-of-Arrival Analysis of Airborne Ice Depth Sounder Data

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Yan, Jie-Bang; Gogineni, Sivaprasad

    2017-01-01

    In this paper, we analyze the direction-of arrival(DOA) of the ice-sheet data collected over Jakobshavn Glacier with the airborne Multichannel Radar Depth Sounder (MCRDS) during the 2006 field season. We extracted weak ice–bed echoes buried in signals scattered by the rough surface of the fast...

  3. The SAMS: Smartphone Addiction Management System and verification.

    Science.gov (United States)

    Lee, Heyoung; Ahn, Heejune; Choi, Samwook; Choi, Wanbok

    2014-01-01

    While the popularity of smartphones has given enormous convenience to our lives, their pathological use has created a new mental health concern among the community. Hence, intensive research is being conducted on the etiology and treatment of the condition. However, the traditional clinical approach based surveys and interviews has serious limitations: health professionals cannot perform continual assessment and intervention for the affected group and the subjectivity of assessment is questionable. To cope with these limitations, a comprehensive ICT (Information and Communications Technology) system called SAMS (Smartphone Addiction Management System) is developed for objective assessment and intervention. The SAMS system consists of an Android smartphone application and a web application server. The SAMS client monitors the user's application usage together with GPS location and Internet access location, and transmits the data to the SAMS server. The SAMS server stores the usage data and performs key statistical data analysis and usage intervention according to the clinicians' decision. To verify the reliability and efficacy of the developed system, a comparison study with survey-based screening with the K-SAS (Korean Smartphone Addiction Scale) as well as self-field trials is performed. The comparison study is done using usage data from 14 users who are 19 to 50 year old adults that left at least 1 week usage logs and completed the survey questionnaires. The field trial fully verified the accuracy of the time, location, and Internet access information in the usage measurement and the reliability of the system operation over more than 2 weeks. The comparison study showed that daily use count has a strong correlation with K-SAS scores, whereas daily use times do not strongly correlate for potentially addicted users. The correlation coefficients of count and times with total K-SAS score are CC = 0.62 and CC =0.07, respectively, and the t-test analysis for the

  4. Total column ozone retrieval using INSAT-3D sounder in the tropics ...

    Indian Academy of Sciences (India)

    important for ozone estimation and lower instrument noise results in better ozone ... the Indian Space Research Organisation (ISRO) ... tivity of the sounder ozone band corresponding to .... NOAA Climate Monitoring and Diagnostics Labo-.

  5. Automated one-loop calculations with GoSam

    International Nuclear Information System (INIS)

    Cullen, Gavin; Greiner, Nicolas; Heinrich, Gudrun; Reiter, Thomas; Luisoni, Gionata; Mastrolia, Pierpaolo; Ossola, Giovanni; Tramontano, Francesco

    2012-01-01

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)

  6. Automated One-Loop Calculations with GoSam

    CERN Document Server

    Cullen, Gavin; Heinrich, Gudrun; Luisoni, Gionata; Mastrolia, Pierpaolo; Ossola, Giovanni; Reiter, Thomas; Tramontano, Francesco

    2012-01-01

    We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop.

  7. Teleconnection stationarity, variability and trends of the Southern Annular Mode (SAM) during the last millennium

    Science.gov (United States)

    Dätwyler, Christoph; Neukom, Raphael; Abram, Nerilie J.; Gallant, Ailie J. E.; Grosjean, Martin; Jacques-Coper, Martín; Karoly, David J.; Villalba, Ricardo

    2017-11-01

    The Southern Annular Mode (SAM) is the leading mode of atmospheric interannual variability in the Southern Hemisphere (SH) extra-tropics. Here, we assess the stationarity of SAM spatial correlations with instrumental and paleoclimate proxy data for the past millennium. The instrumental period shows that temporal non-stationarities in SAM teleconnections are not consistent across the SH land areas. This suggests that the influence of the SAM index is modulated by regional effects. However, within key-regions with good proxy data coverage (South America, Tasmania, New Zealand), teleconnections are mostly stationary over the instrumental period. Using different stationarity criteria for proxy record selection, we provide new austral summer and annual mean SAM index reconstructions over the last millennium. Our summer SAM reconstructions are very robust to changes in proxy record selection and the selection of the calibration period, particularly on the multi-decadal timescale. In contrast, the weaker performance and lower agreement in the annual mean SAM reconstructions point towards changing teleconnection patterns that may be particularly important outside the summer months. Our results clearly portend that the temporal stationarity of the proxy-climate relationships should be taken into account in the design of comprehensive regional and hemispherical climate reconstructions. The summer SAM reconstructions show no significant relationship to solar, greenhouse gas and volcanic forcing, with the exception of an extremely strong negative anomaly following the AD 1257 Samalas eruption. Furthermore, reconstructed pre-industrial summer SAM trends are very similar to trends obtained by model control simulations. We find that recent trends in the summer SAM lie outside the 5-95% range of pre-industrial natural variability.

  8. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    2010-01-01

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  9. Development of the Advanced Technology Microwave Sounder (ATMS) for NPOESS C1

    Science.gov (United States)

    Brann, C.; Kunkee, D.

    2008-12-01

    The National Polar-orbiting Operational Environmental Satellite System's Advanced Technology Microwave Sounder (ATMS) is planned for flight on the first NPOESS mission (C1) in 2013. The C1 ATMS will be the second instrument of the ATMS series and will provide along with the companion Cross-track Infrared Sounder (CrIS), atmospheric temperature and moisture profiles for NPOESS. The first flight of the ATMS is scheduled in 2010 on the NPOESS Preparatory Project (NPP) satellite, which is an early instrument risk reduction component of the NPOESS mission. This poster will focus on the development of the ATMS for C1 including aspects of the sensor calibration, antenna beam and RF characteristics and scanning. New design aspects of the C1 ATMS, required primarily by parts obsolescence, will also be addressed in this poster.

  10. SAMS: The synchronization and monitoring system for ATF [Advanced Toroidal Facility] data acquisition

    International Nuclear Information System (INIS)

    Greenwood, D.E.

    1987-01-01

    SAMS performs much of the synchronization of the distributed data acquisition system for the Advanced Toroidal Facility (ATF). SAMS is responsible for propagating shot information and managing te data system directories and logical names. This paper describes how SAMS communicates with other processes, both within the VAX cluster that supports most of the ATF data acquisition and on VAXes that are connected to the cluster via DECnet. 3 refs

  11. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  12. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    Science.gov (United States)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Atreya, S. K.; Manning, H. L.; Cabane, M.; Webster, C. R.; Sam Team

    2010-12-01

    Introduction: An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers. SAM Instrument Suite: SAM’s instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). SAM can identify organic compounds in Mars rocks to sub-ppb sensitivity and secure precise isotope ratios for C, H, and O in carbon dioxide and water and measure trace levels of methane and its carbon 13 isotope. The SAM gas processing system consists of valves, heaters, pressure sensors, gas scrubbers and getters, traps, and gas tanks used for calibration or combustion experiments [2]. A variety of calibrant compounds interior and exterior to SAM will allow the science and engineering teams to assess SAM’s performance. SAM has been calibrated and tested in a Mars-like environment. Keeping Educators and the Public Informed: The Education and Public Outreach (EPO) goals of the SAM team are to make this complex chemical laboratory and its data widely available to educators, students, and the public. Formal education activities include developing templates for professional development workshops for educators to teach them about SAM and Curiosity, incorporating data into Mars Student Data Teams, and writing articles

  13. Alternative function for the mitochondrial SAM complex in biogenesis of alpha-helical TOM proteins.

    Science.gov (United States)

    Stojanovski, Diana; Guiard, Bernard; Kozjak-Pavlovic, Vera; Pfanner, Nikolaus; Meisinger, Chris

    2007-12-03

    The mitochondrial outer membrane contains two preprotein translocases: the general translocase of outer membrane (TOM) and the beta-barrel-specific sorting and assembly machinery (SAM). TOM functions as the central entry gate for nuclear-encoded proteins. The channel-forming Tom40 is a beta-barrel protein, whereas all Tom receptors and small Tom proteins are membrane anchored by a transmembrane alpha-helical segment in their N- or C-terminal portion. Synthesis of Tom precursors takes place in the cytosol, and their import occurs via preexisting TOM complexes. The precursor of Tom40 is then transferred to SAM for membrane insertion and assembly. Unexpectedly, we find that the biogenesis of alpha-helical Tom proteins with a membrane anchor in the C-terminal portion is SAM dependent. Each SAM protein is necessary for efficient membrane integration of the receptor Tom22, whereas assembly of the small Tom proteins depends on Sam37. Thus, the substrate specificity of SAM is not restricted to beta-barrel proteins but also includes the majority of alpha-helical Tom proteins.

  14. A classification model of Hyperion image base on SAM combined decision tree

    Science.gov (United States)

    Wang, Zhenghai; Hu, Guangdao; Zhou, YongZhang; Liu, Xin

    2009-10-01

    Monitoring the Earth using imaging spectrometers has necessitated more accurate analyses and new applications to remote sensing. A very high dimensional input space requires an exponentially large amount of data to adequately and reliably represent the classes in that space. On the other hand, with increase in the input dimensionality the hypothesis space grows exponentially, which makes the classification performance highly unreliable. Traditional classification algorithms Classification of hyperspectral images is challenging. New algorithms have to be developed for hyperspectral data classification. The Spectral Angle Mapper (SAM) is a physically-based spectral classification that uses an ndimensional angle to match pixels to reference spectra. The algorithm determines the spectral similarity between two spectra by calculating the angle between the spectra, treating them as vectors in a space with dimensionality equal to the number of bands. The key and difficulty is that we should artificial defining the threshold of SAM. The classification precision depends on the rationality of the threshold of SAM. In order to resolve this problem, this paper proposes a new automatic classification model of remote sensing image using SAM combined with decision tree. It can automatic choose the appropriate threshold of SAM and improve the classify precision of SAM base on the analyze of field spectrum. The test area located in Heqing Yunnan was imaged by EO_1 Hyperion imaging spectrometer using 224 bands in visual and near infrared. The area included limestone areas, rock fields, soil and forests. The area was classified into four different vegetation and soil types. The results show that this method choose the appropriate threshold of SAM and eliminates the disturbance and influence of unwanted objects effectively, so as to improve the classification precision. Compared with the likelihood classification by field survey data, the classification precision of this model

  15. Quality Control Guidelines for SAM Biotoxin Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the pathogen methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  16. Quality Control Guidelines for SAM Radiochemical Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the radiochemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  17. Quality Control Guidelines for SAM Pathogen Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the biotoxin methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  18. Quality Control Guidelines for SAM Chemical Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the chemistry methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  19. Non-Photolithographic Manufacturing Processes for Micro-Channels Functioned by Micro-Contact-Printed SAMs

    Science.gov (United States)

    Saigusa, Hiroki; Suga, Yasuo; Miki, Norihisa

    In this paper we propose non-photolithographic fabrication processes of micro-fluid channels with patterned SAMs (Self-Assembled-Monolayers). SAMs with a thiol group are micro-contact printed on a patterned Au/Ti layer, which is vapor-deposited through a shadow mask. Ti is an adhesion layer. Subsequently, the micro-channels are formed by bonding surface-activated PDMS onto the silicon substrate via a silanol group, producing a SAMs-functioned bottom wall of the micro-channel. No photolithographic processes are necessary and thus, the proposed processes are very simple, quick and low cost. The micro-reactors can have various functions associated with the micro-contact-printed SAMs. We demonstrate successful manufacturing of micro-reactors with two types of SAMs. The micro-reactor with patterned AUT (11-amino-1-undecanethiol) successfully trapped nano-particles with a carboxylic acid group, indicating that micro-contact-printed SAMs remain active after the manufacturing processes of the micro-reactor. AUT -functioned micro-channels are applicable to bioassay and to immobilize proteins for DNA arrays. ODT (1-octadecanethiol) makes surfaces hydrophobic with the methyl terminal group. When water was introduced into the micro-reactor with ODT-patterned surfaces, water droplets remained only in the hydrophilic areas where ODT was not patterned. ODT -functioned micro-channels are applicable to fluid handling.

  20. Turbulence characteristics in the tropical mesosphere as obtained by MST radar at Gadanki (13.5° N, 79.2° E

    Directory of Open Access Journals (Sweden)

    M. N. Sasi

    Full Text Available Turbulent kinetic energy dissipation rates (ε and eddy diffusion coefficients (Kz in the tropical mesosphere over Gadanki (13.5° N, 79.2° E, estimated from Doppler widths of MST radar echoes (vertical beam, observed over a 3-year period, show a seasonal variation with a dominant summer maximum. The observed seasonal variation of ε and Kz in the mesosphere is only partially consistent with that of gravity wave activity inferred from mesospheric winds and temperatures measured by rockets for a period of 9 years at Trivandrum (8.5° N, 77° E (which shows two equinox and one summer maxima lying close to Gadanki. The summer maximum of mesospheric ε and Kz values appears to be related to the enhanced gravity wave activity over the low-latitude Indian subcontinent during the southwest monsoon period (June – September. Both ε and Kz in the mesosphere over Gadanki show an increase with an increase in height during all seasons. The absolute values of observed ε and Kz in the mesosphere (above ~80 km does not show significant differences from those reported for high latitudes. Comparison of observed Kz values during the winter above Gadanki with those over Arecibo (18.5° N, 66° W shows that they are not significantly different from each other above the ~80 km altitude.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; tropical meteorology; wave and tides

  1. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    Science.gov (United States)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  2. Data handling with SAM and art at the NOνA experiment

    International Nuclear Information System (INIS)

    Aurisano, A; Backhouse, C; Davies, G S; Illingworth, R; Mengel, M; Norman, A; Mayer, N; Rocco, D; Zirnstein, J

    2015-01-01

    During operations, NOvA produces between 5,000 and 7,000 raw files per day with peaks in excess of 12,000. These files must be processed in several stages to produce fully calibrated and reconstructed analysis files. In addition, many simulated neutrino interactions must be produced and processed through the same stages as data. To accommodate the large volume of data and Monte Carlo, production must be possible both on the Fermilab grid and on off-site farms, such as the ones accessible through the Open Science Grid. To handle the challenge of cataloging these files and to facilitate their off-line processing, we have adopted the SAM system developed at Fermilab. SAM indexes files according to metadata, keeps track of each file's physical locations, provides dataset management facilities, and facilitates data transfer to off-site grids. To integrate SAM with Fermilab's art software framework and the NOvA production workflow, we have developed methods to embed metadata into our configuration files, art files, and standalone ROOT files. A module in the art framework propagates the embedded information from configuration files into art files, and from input art files to output art files, allowing us to maintain a complete processing history within our files. Embedding metadata in configuration files also allows configuration files indexed in SAM to be used as inputs to Monte Carlo production jobs. Further, SAM keeps track of the input files used to create each output file. Parentage information enables the construction of self-draining datasets which have become the primary production paradigm used at NOvA. In this paper we will present an overview of SAM at NOvA and how it has transformed the file production framework used by the experiment. (paper)

  3. Ground-based Observations and Atmospheric Modelling of Energetic Electron Precipitation Effects on Antarctic Mesospheric Chemistry

    Science.gov (United States)

    Newnham, D.; Clilverd, M. A.; Horne, R. B.; Rodger, C. J.; Seppälä, A.; Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Hendrickx, K.; Megner, L. S.; Kovacs, T.; Feng, W.; Plane, J. M. C.

    2016-12-01

    The effect of energetic electron precipitation (EEP) on the seasonal and diurnal abundances of nitric oxide (NO) and ozone in the Antarctic middle atmosphere during March 2013 to July 2014 is investigated. Geomagnetic storm activity during this period, close to solar maximum, was driven primarily by impulsive coronal mass ejections. Near-continuous ground-based atmospheric measurements have been made by a passive millimetre-wave radiometer deployed at Halley station (75°37'S, 26°14'W, L = 4.6), Antarctica. This location is directly under the region of radiation-belt EEP, at the extremity of magnetospheric substorm-driven EEP, and deep within the polar vortex during Austral winter. Superposed epoch analyses of the ground based data, together with NO observations made by the Solar Occultation For Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite, show enhanced mesospheric NO following moderate geomagnetic storms (Dst ≤ -50 nT). Measurements by co-located 30 MHz riometers indicate simultaneous increases in ionisation at 75-90 km directly above Halley when Kp index ≥ 4. Direct NO production by EEP in the upper mesosphere, versus downward transport of NO from the lower thermosphere, is evaluated using a new version of the Whole Atmosphere Community Climate Model incorporating the full Sodankylä Ion Neutral Chemistry Model (WACCM SIC). Model ionization rates are derived from the Polar orbiting Operational Environmental Satellites (POES) second generation Space Environment Monitor (SEM 2) Medium Energy Proton and Electron Detector instrument (MEPED). The model data are compared with observations to quantify the impact of EEP on stratospheric and mesospheric odd nitrogen (NOx), odd hydrogen (HOx), and ozone.

  4. Winning Attitude & Dedication to Physical Therapy Keep Sam Schmidt on Track

    Science.gov (United States)

    Bosley, Nikki Prevenslik

    2006-01-01

    This article relates how Sam Schmidt returned to living a productive life after an accident left him with spinal cord injury. Schmidt was a former Indy Racing League driver who founded Sam Schmidt Motorsports after his accident in 2000. Schmidt's car hit the wall as he exited turn two during a practice session at Walt Disney World Speedway in…

  5. Technoeconomic Modeling of Battery Energy Storage in SAM

    Energy Technology Data Exchange (ETDEWEB)

    DiOrio, Nicholas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dobos, Aron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Janzou, Steven [National Renewable Energy Lab. (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lundstrom, Blake [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Detailed comprehensive lead-acid and lithium-ion battery models have been integrated with photovoltaic models in an effort to allow System Advisor Model (SAM) to offer the ability to predict the performance and economic benefit of behind the meter storage. In a system with storage, excess PV energy can be saved until later in the day when PV production has fallen, or until times of peak demand when it is more valuable. Complex dispatch strategies can be developed to leverage storage to reduce energy consumption or power demand based on the utility rate structure. This document describes the details of the battery performance and economic models in SAM.

  6. Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes

    Science.gov (United States)

    Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R. T.; Sahin, H.; Selamet, Y.

    2018-01-01

    We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1‧:3″-terphenyl-5‧ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1‧:3‧1‧-terphenyl-5‧ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π-π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.

  7. Solar Energy Deposition Rates in the Mesosphere Derived from Airglow Measurements: Implications for the Ozone Model Deficit Problem

    Science.gov (United States)

    Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura

    2000-01-01

    We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.

  8. ISIS Topside-Sounder Plasma-Wave Investigations as Guides to Desired Virtual Wave Observatory (VWO) Data Search Capabilities

    Science.gov (United States)

    Benson, Robert F.; Fung, Shing F.

    2008-01-01

    Many plasma-wave phenomena, observed by space-borne radio sounders, cannot be properly explained in terms of wave propagation in a cold plasma consisting of mobile electrons and infinitely massive positive ions. These phenomena include signals known as plasma resonances. The principal resonances at the harmonics of the electron cyclotron frequency, the plasma frequency, and the upper-hybrid frequency are well explained by the warm-plasma propagation of sounder-generated electrostatic waves, Other resonances have been attributed to sounder-stimulated plasma instability and non-linear effects, eigenmodes of cylindrical electromagnetic plasma oscillations, and plasma memory processes. Data from the topside sounders of the International Satellites for Ionospheric Studies (ISIS) program played a major role in these interpretations. A data transformation and preservation effort at the Goddard Space Flight Center has produced digital ISIS topside ionograms and a metadata search program that has enabled some recent discoveries pertaining to the physics of these plasma resonances. For example, data records were obtained that enabled the long-standing question (several decades) of the origin of the plasma resonance at the fundamental electron cyclotron frequency to be explained [Muldrew, Radio Sci., 2006]. These data-search capabilities, and the science enabled by them, will be presented as a guide to desired data search capabilities to be included in the Virtual Wave Observatory (VWO).

  9. Sam Wagstaffi unustatud kired / Ahto Külvet

    Index Scriptorium Estoniae

    Külvet, Ahto

    2008-01-01

    Dokumentaalfilm "Black, White & Gray: Sam Wagstaff and Robert Mapplethorpe" : autor ja režissöör James Crump : Ameerika Ühendriigid 2007. Filmi näidati filminädala "Art in America" raames Tallinnas

  10. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    Science.gov (United States)

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; hide

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  11. Solar activity influence on climatic variations of stratosphere and mesosphere in mid-latitudes

    International Nuclear Information System (INIS)

    Taubenheim, J.; Entzian, G.; Voncossart, G.

    1989-01-01

    The direct modulation of temperature of the mid-latitude mesosphere by the solar-cycle EUV variation, which leads to greater heat input at higher solar activity, is well established. Middle atmosphere temperature modulation by the solar cycle is independently confirmed by the variation of reflection heights of low frequency radio waves in the lower ionosphere, which are regularly monitored over about 30 years. As explained elsewhere in detail, these reflection heights depend on the geometric altitude of a certain isobaric surface (near 80 k), and on the solar ionizing Lyman-alpha radiation flux. Knowing the solar cycle variation of Lyman-alpha how much the measured reflection heights would be lowered with the transition from solar minimum to maximum can be calculated, if the vertical baric structure of the neutral atmosphere would remain unchanged. Any discrepancy between expected and observed height change must be explained by an uplifting of the isobaric level from solar minimum to maximum, caused by the temperature rise in the mesosphere. By integrating the solar cycle temperature changes over the height region of the middle atmosphere, and assuming that the lower boundary (tropopause) has no solar cycle variation, the magnitude of this uplifting can be estimated. It is given for the Lidar-derived and for the rocket-measured temperature variations. Comparison suggests that the real amplitude of the solar cycle temperature variation in the mesosphere is underestimated when using the rocket data, but probably overestimated with the Lidar data

  12. Seasonal variation of vertical eddy diffusivity in the troposphere, lower stratosphere and mesosphere over a tropical station

    Directory of Open Access Journals (Sweden)

    D. Narayana Rao

    Full Text Available Long-term VHF radar (53 MHz with 3° beam-width observations at Gadanki (13.5° N, 79.2° E, India, during the period from September 1995 to August 1999 are used to study monthly, seasonal and annual medians of vertical eddy diffusivity, K in the troposphere, lower stratosphere and mesosphere. First, the spectral width contribution due to non-turbulent effects has been removed for further analysis and the monthly, seasonal medians of K are calculated. The monthly median of K in the troposphere shows maximum and minimum in June-July and November-December, respectively. In general, large values of K are seen up to 10 km and then decrease with height. Larger values of K are observed during monsoon and post-monsoon than in winter and summer. In general, the maximum and minimum values of the annual median of K (in logarithmic values in the troposphere are found to be 0.25 and - 1.3 m2 s-1 respectively. In the mesosphere, the monthly median of K shows maximum and minimum during June-July and November-December, respectively, similar to the lower atmosphere. The value of K in the mesosphere becomes larger and it increases with height up to 75 km and again decreases above that height. The maximum values are seen during the summer, followed by equinoxes and a minimum during the winter. In general, the maximum and minimum values of K (in logarithmic values are found to be 0.7 and 0.3 m2 s-1, respectively, in the mesosphere. A comparison of Doppler spectral parameters in different beam directions shows anisotropy in both signal-to- noise ratio (SNR and spectral widths in the mesosphere, whereas it shows isotropy in SNR and anisotropy in the spectral widths in troposphere and lower stratosphere.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides

  13. Electronic patient self-assessment and management (SAM): a novel framework for cancer survivorship.

    Science.gov (United States)

    Vickers, Andrew J; Salz, Talya; Basch, Ethan; Cooperberg, Matthew R; Carroll, Peter R; Tighe, Foss; Eastham, James; Rosen, Raymond C

    2010-06-17

    We propose a novel framework for management of cancer survivorship: electronic patient Self-Assessment and Management (SAM). SAM is a framework for transfer of information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice. Patients who participate in the SAM system are contacted by email at regular intervals and asked to complete validated questionnaires online. Patient responses on these questionnaires are then analyzed in order to provide patients with real-time, online information about their progress and to provide them with tailored and standardized medical advice. Patient-level data from the questionnaires are ported in real time to the patient's health care provider to be uploaded to clinic notes. An initial version of SAM has been developed at Memorial Sloan-Kettering Cancer Center (MSKCC) and the University of California, San Francisco (UCSF) for aiding the clinical management of patients after surgery for prostate cancer. Pilot testing at MSKCC and UCSF suggests that implementation of SAM systems are feasible, with no major problems with compliance (> 70% response rate) or security. SAM is a conceptually simple framework for passing information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice.

  14. Electronic patient self-assessment and management (SAM: a novel framework for cancer survivorship

    Directory of Open Access Journals (Sweden)

    Tighe Foss

    2010-06-01

    Full Text Available Abstract Background We propose a novel framework for management of cancer survivorship: electronic patient Self-Assessment and Management (SAM. SAM is a framework for transfer of information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice. Methods Patients who participate in the SAM system are contacted by email at regular intervals and asked to complete validated questionnaires online. Patient responses on these questionnaires are then analyzed in order to provide patients with real-time, online information about their progress and to provide them with tailored and standardized medical advice. Patient-level data from the questionnaires are ported in real time to the patient's health care provider to be uploaded to clinic notes. An initial version of SAM has been developed at Memorial Sloan-Kettering Cancer Center (MSKCC and the University of California, San Francisco (UCSF for aiding the clinical management of patients after surgery for prostate cancer. Results Pilot testing at MSKCC and UCSF suggests that implementation of SAM systems are feasible, with no major problems with compliance (> 70% response rate or security. Conclusion SAM is a conceptually simple framework for passing information to and from patients in such a way as to increase both the patient's and the health care provider's understanding of the patient's progress, and to help ensure that patient care follows best practice.

  15. The Performance of CSAM SAM when Cycle Length is extended

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Kyung-ho; Moon, Sang-rae [KHNP, Daejeon (Korea, Republic of)

    2016-10-15

    In order to verify validation of that, CPC Axial Power Distribution is compared with Axial Power Distribution based on ICI every week. The difference between CPC Axial Power Distribution and Axial Power Distribution based on ICI increases according as fuels are burned. It is called CPC Axial Power Distribution Root Mean Square Error (CPC RMS Error). SAM and calibration of ex-core detector are important factors influencing the magnitude of the difference. According to vendor, the difference is limited by 8%. Otherwise, CPC penalty increases as many as difference increase. Therefore, KHNP developed Constrained Simulated Annealing Method (CSAM), which has better performance than that of Least Square Method (LSM), to calculate SAM constant. The CSA SAM contributed largely to maintain CPC operating margin. Somewhat, KHNP is developing the technology to be able to operate nuclear power plants for 24 month to optimize their efficiency. This paper shows trends of CPC RMS Error in a case of 24 months operation. Trends are based on data of a few OPR1000s under operation. It is data of OPR1000s that CSA SAM is applied. KHNP is developing the technology to extend operation cycle length in order to optimize the operation efficiency of OPR1000. To verify effect of extended operation cycle length on CPC, CPC Axial Power Distribution RMS Error in a case of 24 months operation was expected using operation data of six cycles in OPR1000. In cases that CPC Axial Power Distribution RMS Error exceeds threshold, operation margin is decreased due to CPC penalty. To prevent CPC operation margin from being decreased, improved method to calculate SAM or to calibrate ex-core detector is required. KHNP will consider the way to maintain CPC operation margin along with 24 month operation technology development, hereafter.

  16. Celiac Disease in Children with Severe Acute Malnutrition (SAM): A Hospital Based Study.

    Science.gov (United States)

    Beniwal, Neetu; Ameta, Gaurav; Chahar, Chandra Kumar

    2017-05-01

    To evaluate the prevalence and clinical features of Celiac disease among children with severe acute malnutrition (SAM). This prospective observational study was conducted in PBM Children Hospital, Bikaner from July 2012 through December 2013. All consecutively admitted children with SAM were recruited. All subjects were screened for Celiac disease by serological test for IgA-anti tissue Transglutaminase (IgA tTG) antibodies. All seropositive children underwent upper gastrointestinal endoscopy for small bowel biopsy for the confirmation. Clinical features of patients with and without celiac disease were compared. The sero-prevalence (IgA tTg positivity) of Celiac disease was found to be 15.38% while prevalence of biopsy confirmed Celiac disease was 14.42% among SAM children. Abdominal distension, diarrhea, anorexia, constipation, pain in abdomen, vitamin deficiencies, edema, clubbing and mouth ulcers were more common in patients of Celiac disease compared to patients without Celiac disease but the difference was statistically significant only for abdominal distension and pain abdomen. There is a high prevalence of Celiac disease in SAM. Screening for Celiac disease (especially in presence of pain abdomen and abdominal distension) should be an essential part of work-up in all children with SAM.

  17. Secondary gravity waves from momentum deposition in the stratosphere, mesosphere, thermosphere and ionosphere

    Science.gov (United States)

    Vadas, S.

    2017-12-01

    In this paper, we investigate the generation, propagation and effectsof secondary gravity waves (GWs) from momentum deposition in the stratosphere, mesosphere, thermosphere and ionosphere in high-resolution GW-resolving models and in TEC/lidar/redline data. We show that secondary GWs generated from the dissipation of orographic GWs at McMurdo Station in Antarctica play a dominant role in the wave activity over McMurdo in the wintertime mesosphere. These secondary GWs are created in the stratosphere, and have been identified in models and data via their telltale "fishbone" appearance in z-t plots. We also show that secondary GWs from the dissipation of GWs excited by deep convectiongenerate concentric rings in the F-region ionosphere. These model results and data point to the importance of secondary GWs from momentumdeposition in the Earth's atmosphere and ionosphere.

  18. Bite-outs and other depletions of mesospheric electrons

    Science.gov (United States)

    Friedrich, Martin; Rapp, Markus; Plane, John M.C.; Torkar, Klaus M.

    2011-01-01

    The ionised mesosphere is less understood than other parts of the ionosphere because of the challenges of making appropriate measurements in this complex region. We use rocket borne in situ measurements of absolute electron density by the Faraday rotation technique and accompanying DC-probe measurements to study the effect of particles on the D-region charge balance. Several examples of electron bite-outs, their actual depth as well as simultaneous observations of positive ions are presented. For a better understanding of the various dependencies we use the ratio β/αi (attachment rate over ion–ion recombination coefficient), derived from the electron and ion density profiles by applying a simplified ion-chemical scheme, and correlate this term with solar zenith angle and moon brightness. The probable causes are different for day and night; recent in situ measurements support existing hypotheses for daytime cases, but also reveal behaviour at night hitherto not reported in the literature. Within the large range of β/αi values obtained from the analysis of 28 high latitude night flights one finds that the intensity of scattered sunlight after sunset, and even moonlight, apparently can photodetach electrons from meteoric smoke particles (MSP) and molecular anions. The large range of values itself can best be explained by the variability of the MSPs and by occasionally occurring atomic oxygen impacting on the negative ion chemistry in the night-time mesosphere under disturbed conditions. PMID:27570472

  19. SAM-dependent enzyme-catalysed pericyclic reactions in natural product biosynthesis

    Science.gov (United States)

    Ohashi, Masao; Liu, Fang; Hai, Yang; Chen, Mengbin; Tang, Man-Cheng; Yang, Zhongyue; Sato, Michio; Watanabe, Kenji; Houk, K. N.; Tang, Yi

    2017-09-01

    Pericyclic reactions—which proceed in a concerted fashion through a cyclic transition state—are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-L-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme ‘toolboxes’. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.

  20. Multiple endmember spectral-angle-mapper (SAM) analysis improves discrimination of Savanna tree species

    CSIR Research Space (South Africa)

    Cho, Moses A

    2009-08-01

    Full Text Available of this paper was to evaluate the classification performance of a multiple-endmember spectral angle mapper (SAM) classification approach in discriminating seven common African savanna tree species and to compare the results with the traditional SAM classifier...

  1. GoSam. A program for automated one-loop calculations

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, N.; Heinrich, G.; Reiter, T. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, G. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, P. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, G. [City Univ. of New York, NY (United States). New York City College of Technology; Tramontano, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2011-11-15

    The program package GoSam is presented which aims at the automated calculation of one-loop amplitudes for multi-particle processes. The amplitudes are generated in terms of Feynman diagrams and can be reduced using either D-dimensional integrand-level decomposition or tensor reduction, or a combination of both. GoSam can be used to calculate one-loop corrections to both QCD and electroweak theory, and model files for theories Beyond the Standard Model can be linked as well. A standard interface to programs calculating real radiation is also included. The flexibility of the program is demonstrated by various examples. (orig.)

  2. GoSam. A program for automated one-loop calculations

    International Nuclear Information System (INIS)

    Cullen, G.; Greiner, N.; Heinrich, G.; Reiter, T.; Luisoni, G.

    2011-11-01

    The program package GoSam is presented which aims at the automated calculation of one-loop amplitudes for multi-particle processes. The amplitudes are generated in terms of Feynman diagrams and can be reduced using either D-dimensional integrand-level decomposition or tensor reduction, or a combination of both. GoSam can be used to calculate one-loop corrections to both QCD and electroweak theory, and model files for theories Beyond the Standard Model can be linked as well. A standard interface to programs calculating real radiation is also included. The flexibility of the program is demonstrated by various examples. (orig.)

  3. GoSam: A program for automated one-loop calculations

    International Nuclear Information System (INIS)

    Cullen, G; Greiner, N; Heinrich, G; Mastrolia, P; Reiter, T; Luisoni, G; Ossola, G; Tramontano, F

    2012-01-01

    The program package GoSam is presented which aims at the automated calculation of one-loop amplitudes for multi-particle processes. The amplitudes are generated in terms of Feynman diagrams and can be reduced using either D-dimensional integrand-level decomposition or tensor reduction, or a combination of both. GoSam can be used to calculate one-loop corrections to both QCD and electroweak theory, and model files for theories Beyond the Standard Model can be linked as well. A standard interface to programs calculating real radiation is also included. The flexibility of the program is demonstrated by various examples.

  4. General Quality Control (QC) Guidelines for SAM Methods

    Science.gov (United States)

    Learn more about quality control guidelines and recommendations for the analysis of samples using the methods listed in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  5. The Porter-Whitesides Discrepancy: Revisiting Odd-Even Effects in Wetting Properties of n-Alkanethiolate SAMs

    Directory of Open Access Journals (Sweden)

    Zhengjia Wang

    2015-12-01

    Full Text Available This review discusses the Porter-Whitesides discrepancy in wetting properties of n-alkanethiolate self-assembled monolayers (SAMs. About 25 years ago, Whitesides and coworker failed to observe any odd-even effect in wetting, however, Porter and his coworker did, albeit in select cases. Most previous studies agreed with Whitesides’ results, suggesting the absence of the odd-even effect in hydrophobicity of n-alkanethiolate SAMs. Recent reports have, however, found the odd-even effect in hydrophobicity of n-alkanethiolate SAMs on smooth substrates, indicating that hydrophobicity, and analogous interfacial properties, of n-alkanethiolate SAMs significantly depends on the properties of substrate. Unfortunately, the Whitesides and Porter papers do not report on the quality of the surfaces used. Based on recent work, we inferred that the original discrepancy between Whitesides and Porter can be attributed to the quality of the surface. Odd-even effect of SAMs in charge transport, capacitance, friction, and SAM structure are also discussed in this review to inform the general discussion. The discrepancy between Porter's group and Whitesides’ group could be due to surface roughness, morphology, oxidation, and adventitious contaminants.

  6. Properties of internal planetary-scale inertio gravity waves in the mesosphere

    Directory of Open Access Journals (Sweden)

    H. G. Mayr

    2004-11-01

    Full Text Available At high latitudes in the upper mesosphere, horizontal wind oscillations have been observed with periods around 10h. Waves with such a period are generated in our Numerical Spectral Model (NSM, and they are identified as planetary-scale inertio gravity waves (IGW. These IGWs have periods between 9 and 11h and appear above 60km in the zonal mean (m=0, as well as in m=1 to 4, propagating eastward and westward. Under the influence of the Coriolis force, the amplitudes of the waves propagating westward are larger at high latitudes than those propagating eastward. The waves grow in magnitude at least up to about 100km and have vertical wavelengths around 25km. Applying a running window of 15 days for spectral analysis, the amplitudes in the wind field are typically between 10 and 20m/s and can reach 30m/s in the westward propagating component for m=1 at the poles. In the temperature perturbations, the wave amplitudes above 100km are typically 5K and as large as 10K for m=0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. Numerical experiments show that such waves are also generated without excitation of the migrating tides. The amplitudes and periods then are similar, indicating that the tides are not essential to generate the waves. However, the seasonal variations without tides are significantly different, which leads to the conclusion that non linear interactions between the semidiurnal tide and planetary waves must contribute to the excitation of the IGWs. Directly or indirectly through the planetary waves, the IGWs are apparently excited by the instabilities that arise in the zonal mean circulation. When the solar heating is turned off for m=0, both the PWs and IGWs essentially disappear. That the IGWs and PWs have common roots in their excitation mechanism is also indicated by the striking similarity of their seasonal variations in the

  7. Safety and Waste Management for SAM Pathogen Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the pathogens included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  8. Safety and Waste Management for SAM Biotoxin Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the biotoxins included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  9. High Resolution Infrared Radiation Sounder (HIRS) for the Nimbus F Spacecraft

    Science.gov (United States)

    Koenig, E. W.

    1975-01-01

    Flown on Nimbus F in June 1975, the high resolution infrared radiation sounder (HIRS) scans with a geographical resolution of 23KM and samples radiance in seventeen selected spectral channels from visible (.7 micron) to far IR (15 micron). Vertical temperature profiles and atmospheric moisture content can be inferred from the output. System operation and test results are described.

  10. Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere

    Science.gov (United States)

    Mathews, J. D.

    1987-01-01

    The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.

  11. SMM mesospheric ozone measurements

    Science.gov (United States)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  12. ISO19770-1:2012 SAM process guidance

    CERN Document Server

    Canavan, Rory

    2012-01-01

    The pocket guide offers a concise summary of the principles of software asset management as conveyed by ISO 19770-1: 2012, and provides advice and guidance on how to kick-start your own SAM programme - something the Standard alone doesn't offer.

  13. Safety and Waste Management for SAM Chemistry Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the chemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  14. Safety and Waste Management for SAM Radiochemical Methods

    Science.gov (United States)

    The General Safety and Waste Management page offers section-specific safety and waste management details for the radiochemical analytes included in EPA's Selected Analytical Methods for Environmental Remediation and Recovery (SAM).

  15. An Assessment of Data from the Advanced Technology Microwave Sounder at the Met Office

    Directory of Open Access Journals (Sweden)

    Amy Doherty

    2015-01-01

    Full Text Available An appraisal of the Advanced Technology Microwave Sounder (ATMS for use in numerical weather prediction (NWP is presented, including an assessment of the data quality, the impact on Met Office global forecasts in preoperational trials, and a summary of performance over a period of 17 months operational use. After remapping, the noise performance (NEΔT of the tropospheric temperature sounding channels is evaluated to be approximately 0.1 K, comparing favourably with AMSU-A. However, the noise is not random, differences between observations and simulations based on short-range forecast fields show a spurious striping effect, due to 1/f noise in the receiver. The amplitude of this signal is several tenths of a Kelvin, potentially a concern for NWP applications. In preoperational tests, adding ATMS data to a full Met Office system already exploiting data from four microwave sounders improves southern hemisphere mean sea level pressure forecasts in the 2- to 5-day range by 1-2%. In operational use, where data from five other microwave sounders is assimilated, forecast impact is typically between −0.05 and −0.1 J/kg (3.4% of total mean impact per day over the period 1 April to 31 July 2013. This suggests benefits beyond redundancy, associated with reducing already small analysis errors.

  16. Measuring tropospheric wind with microwave sounders

    Science.gov (United States)

    Lambrigtsen, B.; Su, H.; Turk, J.; Hristova-Veleva, S. M.; Dang, V. T.

    2017-12-01

    In its 2007 "Decadal Survey" of earth science missions for NASA the U.S. National Research Council recommended that a Doppler wind lidar be developed for a three-dimensional tropospheric winds mission ("3D-Winds"). The technology required for such a mission has not yet been developed, and it is expected that the next Decadal Survey, planned to be released by the end of 2017, will put additional emphasis on the still pressing need for wind measurements from space. The first Decadal Survey also called for a geostationary microwave sounder (GMS) on a Precipitation and All-weather Temperature and Humidity (PATH) mission, which could be used to measure wind from space. Such a sounder, the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR), has been developed at the Jet Propulsion Laboratory (JPL). The PATH mission has not yet been funded by NASA, but a low-cost subset of PATH, GeoStorm has been proposed as a hosted payload on a commercial communications satellite. Both PATH and GeoStorm would obtain frequent (every 15 minutes of better) measurements of tropospheric water vapor profiles, and they can be used to derive atmospheric motion vector (AMV) wind profiles, even in the presence of clouds. Measurement of wind is particularly important in the tropics, where the atmosphere is largely not in thermal balance and wind estimates cannot generally be derived from temperature and pressure fields. We report on simulation studies of AMV wind vectors derived from a GMS and from a cluster of low-earth-orbiting (LEO) small satellites (e.g., CubeSats). The results of two separate simulation studies are very encouraging and show that a ±2 m/s wind speed precision is attainable, which would satisfy WMO requirements. A GMS observing system in particular, which can be implemented now, would enable significant progress in the study of atmospheric dynamics. Copyright 2017 California Institute of Technology. Government sponsorship acknowledged

  17. Microwave Atmospheric Sounder on CubeSat

    Science.gov (United States)

    Padmanabhan, S.; Brown, S. E.; Kangaslahti, P.; Cofield, R.; Russell, D.; Stachnik, R. A.; Su, H.; Wu, L.; Tanelli, S.; Niamsuwan, N.

    2014-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, a summary of radiometer calibration and retrieval techniques of temperature and humidity will be discussed. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a constellation which

  18. Targeting EphA2-Sam and Its Interactome: Design and Evaluation of Helical Peptides Enriched in Charged Residues.

    Science.gov (United States)

    Mercurio, Flavia A; Marasco, Daniela; Di Natale, Concetta; Pirone, Luciano; Costantini, Susan; Pedone, Emilia M; Leone, Marilisa

    2016-11-17

    The EphA2 receptor controls diverse physiological and pathological conditions and its levels are often upregulated in cancer. Targeting receptor overexpression, through modulation of endocytosis and consequent degradation, appears to be an appealing strategy for attacking tumor malignancy. In this scenario, the Sam domain of EphA2 plays a pivotal role because it is the site where protein regulators of endocytosis and stability are recruited by means of heterotypic Sam-Sam interactions. Because EphA2-Sam heterotypic complexes are largely based on electrostatic contacts, we have investigated the possibility of attacking these interactions with helical peptides enriched in charged residues. Several peptide sequences with high predicted helical propensities were designed, and detailed conformational analyses were conducted by diverse techniques including NMR, CD, and molecular dynamics (MD) simulations. Interaction studies were also performed by NMR, surface plasmon resonance (SPR), and microscale thermophoresis (MST) and led to the identification of two peptides capable of binding to the first Sam domain of Odin. These molecules represent early candidates for the generation of efficient Sam domain binders and antagonists of Sam-Sam interactions involving EphA2. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. NOAA JPSS Advanced Technology Microwave Sounder (ATMS)-based Tropical Cyclone (TC) Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The JPSS Microwave Sounder-based Tropical Cyclone (TC) Products provide estimates of tropical cyclone maximum wind speed, minimum sea level pressure, radii of 34,...

  20. SAM-CE, Time-Dependent 3-D Neutron Transport, Gamma Transport in Complex Geometry by Monte-Carlo

    International Nuclear Information System (INIS)

    2003-01-01

    1 - Nature of physical problem solved: The SAM-CE system comprises two Monte Carlo codes, SAM-F and SAM-A. SAM-F supersedes the forward Monte Carlo code, SAM-C. SAM-A is an adjoint Monte Carlo code designed to calculate the response due to fields of primary and secondary gamma radiation. The SAM-CE system is a FORTRAN Monte Carlo computer code designed to solve the time-dependent neutron and gamma-ray transport equations in complex three-dimensional geometries. SAM-CE is applicable for forward neutron calculations and for forward as well as adjoint primary gamma-ray calculations. In addition, SAM-CE is applicable for the gamma-ray stage of the coupled neutron-secondary gamma ray problem, which may be solved in either the forward or the adjoint mode. Time-dependent fluxes, and flux functionals such as dose, heating, count rates, etc., are calculated as functions of energy, time and position. Multiple scoring regions are permitted and these may be either finite volume regions or point detectors or both. Other scores of interest, e.g., collision and absorption densities, etc., are also made. 2 - Method of solution: A special feature of SAM-CE is its use of the 'combinatorial geometry' technique which affords the user geometric capabilities exceeding those available with other commonly used geometric packages. All nuclear interaction cross section data (derived from the ENDF for neutrons and from the UNC-format library for gamma-rays) are tabulated in point energy meshes. The energy meshes for neutrons are internally derived, based on built-in convergence criteria and user- supplied tolerances. Tabulated neutron data for each distinct nuclide are in unique and appropriate energy meshes. Both resolved and unresolved resonance parameters from ENDF data files are treated automatically, and extremely precise and detailed descriptions of cross section behaviour is permitted. Such treatment avoids the ambiguities usually associated with multi-group codes, which use flux

  1. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  2. The ALICE Glance Shift Accounting Management System (SAMS)

    Science.gov (United States)

    Martins Silva, H.; Abreu Da Silva, I.; Ronchetti, F.; Telesca, A.; Maidantchik, C.

    2015-12-01

    ALICE (A Large Ion Collider Experiment) is an experiment at the CERN LHC (Large Hadron Collider) studying the physics of strongly interacting matter and the quark-gluon plasma. The experiment operation requires a 24 hours a day and 7 days a week shift crew at the experimental site, composed by the ALICE collaboration members. Shift duties are calculated for each institute according to their correlated members. In order to ensure the full coverage of the experiment operation as well as its good quality, the ALICE Shift Accounting Management System (SAMS) is used to manage the shift bookings as well as the needed training. ALICE SAMS is the result of a joint effort between the Federal University of Rio de Janeiro (UFRJ) and the ALICE Collaboration. The Glance technology, developed by the UFRJ and the ATLAS experiment, sits at the basis of the system as an intermediate layer isolating the particularities of the databases. In this paper, we describe the ALICE SAMS development process and functionalities. The database has been modelled according to the collaboration needs and is fully integrated with the ALICE Collaboration repository to access members information and respectively roles and activities. Run, period and training coordinators can manage their subsystem operation and ensure an efficient personnel management. Members of the ALICE collaboration can book shifts and on-call according to pre-defined rights. ALICE SAMS features a user profile containing all the statistics and user contact information as well as the Institutes profile. Both the user and institute profiles are public (within the scope of the collaboration) and show the credit balance in real time. A shift calendar allows the Run Coordinator to plan data taking periods in terms of which subsystems shifts are enabled or disabled and on-call responsible people and slots. An overview display presents the shift crew present in the control room and allows the Run Coordination team to confirm the presence

  3. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  4. Observation of mesospheric gravity waves at Comandante Ferraz Antarctica Station (62° S

    Directory of Open Access Journals (Sweden)

    P. B. Souza

    2009-06-01

    Full Text Available An airglow all-sky imager was operated at Comandante Ferraz Antarctica Station (62.1° S, 58.4° W, between April and October of 2007. Mesospheric gravity waves were observed using the OH airglow layer during 43 nights with good weather conditions. The waves presented horizontal wavelengths between 10 and 60 km and observed periods mainly distributed between 5 and 20 min. The observed phase speeds range between 5 m/s and 115 m/s; the majority of the wave velocities were between 10 and 60 m/s. The waves showed a preferential propagation direction towards the southwest in winter (May to July, while during spring (August to October there was an anisotropy with a preferential propagation direction towards the northwest. Unusual mesospheric fronts were also observed. The most probable wave source could be associated to orographic forcing, cold fronts or strong cyclonic activity in the Antarctica Peninsula.

  5. Correlations of mesospheric winds with subtle motion of the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    Y. Bhattacharya

    2010-01-01

    Full Text Available This paper investigates the relationship between high latitude upper mesospheric winds and the state of the stratospheric polar vortex in the absence of major sudden stratospheric warmings. A ground based Michelson Interferometer stationed at Resolute Bay (74°43' N, 94°58' W in the Canadian High Arctic is used to measure mesopause region neutral winds using the hydroxyl (OH Meinel-band airglow emission (central altitude of ~85 km. These observed winds are compared to analysis winds in the upper stratosphere during November and December of 1995 and 1996; years characterized as cold, stable polar vortex periods. Correlation of mesopause wind speeds with those from the upper stratosphere is found to be significant for the 1996 season when the polar vortex is subtly displaced off its initial location by a strong Aleutian High. These mesopause winds are observed to lead stratospheric winds by approximately two days with increasing (decreasing mesospheric winds predictive of decreasing (increasing stratospheric winds. No statistically significant correlations are found for the 1995 season when there is no such displacement of the polar vortex.

  6. Double seismic zone in downgoing slabs and the viscosity of the mesosphere

    International Nuclear Information System (INIS)

    Sleep, N.H.

    1979-01-01

    The seismic zone beneath several island arcs between about 100 and 200 km depth consists of an upper zone having down-dip compression and a lower zone having down-dip tension. Several numerical models of the Aleutina arc were computed to test the hypothesis that these double seismic zones are due to sagging of the slab under its own weight. This sagging occurs because the asthenosphere (between about 100 and 200 km) provides little support or resistance to the slab, which is supported from below by the more viscous mesosphere and from above by the lithosphere. The viscosity of the mesosphere was constrained to the interval between 0.25 x 10 22 and 0.5 x 10 22 P by noting that the slab would have mainly down-dip compression at higher viscosities and mainly down-dip tension at lower viscosities. The deviatoric stress in the slab and the fault plane between the slab and the island arc is about 200--300 bars (expressed as shear stress). The models were calibrated to the observed depth and gravity anomalies in the trench

  7. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    International Nuclear Information System (INIS)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-01-01

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C 12 -SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C 6 , C 12 , or C 18 ) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R a ) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al 2 O 3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C 12 alkyl chain (C 12 -SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C 12 -SAM with desirable alkyl chain length.

  8. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin

    2008-12-16

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a wide range of tunable wettabilities from superhydrophilicity to superhydrophobicity (water contact angles: 0° to 170°). Our approach offers synthetic flexibility in controlling film architecture, surface topography, coating texture, crystallite size, and chemical composition of modifiers (e.g., SAMs derived from alkanethiols). For example, wettability properties of the nanocomposite films can be finely tuned with both inorganic phase (i.e., ZnO/SiO2 and Pt/ZnO/SiO2) and organic phase (i.e., SAMs on Pt/ZnO/SiO2). Due to the presence of catalytic components Pt/ZnO within the nanocomposites, surface reactions of the organic modifiers can further take place at room temperature and elevated temperatures, which provides a means for SAM formation and elimination. Because the Pt/ZnO forms an excellent pair of metal-semiconductors for photocatalysis, the anchored SAMs can also be modified or depleted by UV irradiation (i.e., the films possess self-cleaning ability). Potential applications of these nanocomposite films have been addressed. Our durability tests also confirm that the films are thermally stable and structurally robust in modification- regeneration cycles. © 2008 American Chemical Society.

  9. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses

    Directory of Open Access Journals (Sweden)

    H. E. Thornton

    2009-02-01

    Full Text Available This paper presents results from the first detailed intercomparison of stratosphere-lower mesosphere water vapour analyses; it builds on earlier results from the EU funded framework V "Assimilation of ENVISAT Data" (ASSET project. Stratospheric water vapour plays an important role in many key atmospheric processes and therefore an improved understanding of its daily variability is desirable. With the availability of high resolution, good quality Michelson Interferometer for Passive Atmospheric Sounding (MIPAS water vapour profiles, the ability of four different atmospheric models to assimilate these data is tested. MIPAS data have been assimilated over September 2003 into the models of the European Centre for Medium Range Weather Forecasts (ECMWF, the Belgian Institute for Space and Aeronomy (BIRA-IASB, the French Service d'Aéronomie (SA-IPSL and the UK Met Office. The resultant middle atmosphere humidity analyses are compared against independent satellite data from the Halogen Occultation Experiment (HALOE, the Polar Ozone and Aerosol Measurement (POAM III and the Stratospheric Aerosol and Gas Experiment (SAGE II. The MIPAS water vapour profiles are generally well assimilated in the ECMWF, BIRA-IASB and SA systems, producing stratosphere-mesosphere water vapour fields where the main features compare favourably with the independent observations. However, the models are less capable of assimilating the MIPAS data where water vapour values are locally extreme or in regions of strong humidity gradients, such as the southern hemisphere lower stratosphere polar vortex. Differences in the analyses can be attributed to the choice of humidity control variable, how the background error covariance matrix is generated, the model resolution and its complexity, the degree of quality control of the observations and the use of observations near the model boundaries. Due to the poor performance of the Met Office analyses the results are not included in

  10. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses

    Science.gov (United States)

    Thornton, H. E.; Jackson, D. R.; Bekki, S.; Bormann, N.; Errera, Q.; Geer, A. J.; Lahoz, W. A.; Rharmili, S.

    2009-02-01

    This paper presents results from the first detailed intercomparison of stratosphere-lower mesosphere water vapour analyses; it builds on earlier results from the EU funded framework V "Assimilation of ENVISAT Data" (ASSET) project. Stratospheric water vapour plays an important role in many key atmospheric processes and therefore an improved understanding of its daily variability is desirable. With the availability of high resolution, good quality Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) water vapour profiles, the ability of four different atmospheric models to assimilate these data is tested. MIPAS data have been assimilated over September 2003 into the models of the European Centre for Medium Range Weather Forecasts (ECMWF), the Belgian Institute for Space and Aeronomy (BIRA-IASB), the French Service d'Aéronomie (SA-IPSL) and the UK Met Office. The resultant middle atmosphere humidity analyses are compared against independent satellite data from the Halogen Occultation Experiment (HALOE), the Polar Ozone and Aerosol Measurement (POAM III) and the Stratospheric Aerosol and Gas Experiment (SAGE II). The MIPAS water vapour profiles are generally well assimilated in the ECMWF, BIRA-IASB and SA systems, producing stratosphere-mesosphere water vapour fields where the main features compare favourably with the independent observations. However, the models are less capable of assimilating the MIPAS data where water vapour values are locally extreme or in regions of strong humidity gradients, such as the southern hemisphere lower stratosphere polar vortex. Differences in the analyses can be attributed to the choice of humidity control variable, how the background error covariance matrix is generated, the model resolution and its complexity, the degree of quality control of the observations and the use of observations near the model boundaries. Due to the poor performance of the Met Office analyses the results are not included in the intercomparison

  11. Combining Passive Microwave Sounders with CYGNSS information for improved retrievals: Observations during Hurricane Harvey

    Science.gov (United States)

    Schreier, M. M.

    2017-12-01

    The launch of CYGNSS (Cyclone Global Navigation Satellite System) has added an interesting component to satellite observations: it can provide wind speeds in the tropical area with a high repetition rate. Passive microwave sounders that are overpassing the same region can benefit from this information, when it comes to the retrieval of temperature or water profiles: the uncertainty about wind speeds has a strong impact on emissivity and reflectivity calculations with respect to surface temperature. This has strong influences on the uncertainty of retrieval of temperature and water content, especially under extreme weather conditions. Adding CYGNSS information to the retrieval can help to reduce errors and provide a significantly better sounder retrieval. Based on observations during Hurricane Harvey, we want to show the impact of CYGNSS data on the retrieval of passive microwave sensors. We will show examples on the impact on the retrieval from polar orbiting instruments, like the Advanced Technology Microwave Sounder (ATMS) and AMSU-A/B on NOAA-18 and 19. In addition we will also show the impact on retrievals from HAMSR (High Altitude MMIC Sounding Radiometer), which was flying on the Global Hawk during the EPOCH campaign. We will compare the results with other observations and estimate the impact of additional CYGNSS information on the microwave retrieval, especially on the impact in error and uncertainty reduction. We think, that a synergetic use of these different data sources could significantly help to produce better assimilation products for forecast assimilation.

  12. Annals of SAM meeting `96. National meeting on precious metals; Anales de las jornadas SAM `96. Encuentro nacional de metales preciosos

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Works are presented at the SAM meeting `96 of the Argentine Materials Association. The papers can be grouped under the following main topics: physical metallurgy; ceramics; polymers; precious metals; extractive metallurgy; corrosion; powder metallurgy. refs., ills.

  13. Space Plasma Slab Studies using a new 3D Embedded Reconfigurable MPSoC Sounder

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper presents recent ionospheric slab thickness measurements using a new mobile digital sounder system. The datasets obtained have been compared to the results of existing sounders in operation. The data validity has been verified. The slab thickness data allow constant monitoring of the lower ionosphere revealing the dynamic trends of the physical processes being involved. The prototype offers a tremendous amount of hardware processing power and a previously unseen response time in servicing the input and output data interfaces. This has been enabled by incorporating the latest three-dimensional Ultrascale+ technologies available commercially from the reconfigurable Field Programmable Gate Array (FPGA) computing industry. Furthermore, a previously developed Network-on-Chip (NoC) design methodology has been incorporated for connecting and controlling the application driven multiprocessor network. The system determines electron distributions, aggregate electromagnetic field gradients and plasma current density.

  14. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Lixia [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Du, Pengcheng [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China); Zhou, Hui; Zhang, Kaifeng [National Key Laboratory of Science and Technology on Vacuum Technology and Physics, Lanzhou Institute of Physics, Lanzhou, Gansu 730010 (China); Liu, Peng, E-mail: pliu@lzu.edu.cn [Institute of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu 730000 (China)

    2017-02-28

    Highlights: • n-Alkyltrimethoxysilanes with various chain lengths were self-assembled on silicon. • Effect of alkyl chain lengths (C6, C12, or C18) on the SAMs was investigated. • Surface roughness of the SAMs decreased with increasing the alkyl chain lengths. • The C{sub 12}-SAM possessed superior friction reduction and wear resistance. - Abstract: It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C{sub 6}, C{sub 12}, or C{sub 18}) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (R{sub a}) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al{sub 2}O{sub 3} ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C{sub 12} alkyl chain (C{sub 12}-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C{sub 12}-SAM with desirable alkyl chain length.

  15. The Combustion Experiment on the Sample Analysis at Mars (SAM) Instrument Suite on the Curiosity Rover

    Science.gov (United States)

    Stern, J. C.; Malespin, C. A.; Eigenbrode, J. L.; Graham, H. V.; Archer, P. D., Jr.; Brunner, A. E.; Freissinet, C.; Franz, H. B.; Fuentes, J.; Glavin, D. P.; hide

    2014-01-01

    The combustion experiment on the Sample Analysis at Mars (SAM) suite on Curiosity will heat a sample of Mars regolith in the presence of oxygen and measure composition of the evolved gases using quadrupole mass spectrometry (QMS) and tunable laser spectrometry (TLS). QMS will enable detection of combustion products such as CO, CO2, NO, and other oxidized species, while TLS will enable precise measurements of the abundance and carbon isotopic composition (delta(sup 13)C) of the evolved CO2 and hydrogen isotopic composition (deltaD) of H2O. SAM will perform a two-step combustion to isolate combustible materials below approx.550 C and above approx.550 C. The combustion experiment on SAM, if properly designed and executed, has the potential to answer multiple questions regarding the origins of volatiles seen thus far in SAM evolved gas analysis (EGA) on Mars. Constraints imposed by SAM and MSL time and power resources, as well as SAM consumables (oxygen gas), will limit the number of SAM combustion experiments, so it is imperative to design an experiment targeting the most pressing science questions. Low temperature combustion experiments will primarily target the quantification of carbon (and nitrogen) contributed by SAM wet chemistry reagants MTBSTFA (N-Methyl-N-tert-butyldimethylsilyltrifluoroacetamide) and DMF (Dimethylformamide), which have been identified in the background of blank and sample runs and may adsorb to the sample while the cup is in the Sample Manipulation System (SMS). In addition, differences between the sample and "blank" may yield information regarding abundance and delta(sup 13)C of bulk (both organic and inorganic) martian carbon. High temperature combustion experiments primarily aim to detect refractory organic matter, if present in Cumberland fines, as well as address the question of quantification and deltaD value of water evolution associated with hydroxyl hydrogen in clay minerals.

  16. Kuula. Kuu artist Sam Sparro. Kuu plaat / Mart Juur

    Index Scriptorium Estoniae

    Juur, Mart, 1964-

    2008-01-01

    Artistist Sam Sparrost. Heliplaatidest: "Sex And The City" Original Motion Picture Soundtrack, "Maestro: Blue Note Trip", Melvin/Soo/Remmel/Julm "Geografix", Alanis Morrisette "Flavors Of Entanglement", Guillemots "Red"

  17. 3-Dimensional numerical simulations of the dynamics of the Venusian mesosphere and thermosphere

    Science.gov (United States)

    Tingle, S.; Mueller-Wodarg, I. C.

    2009-12-01

    We present the first results from a new 3-dimensional numerical simulation of the steady state dynamics of the Venusian mesosphere and thermosphere (60-300 km). We have adapted the dynamical core of the Titan thermosphere global circulation model (GCM) [1] to a steady state background atmosphere. Our background atmosphere is derived from a hydrostatic combination of the VTS3 [2] and Venus International Reference Atmosphere (VIRA) [3] empirical models, which are otherwise discontinuous at their 100 km interface. We use 4th order polynomials to link the VTS3 and VIRA thermal profiles and employ hydrostatic balance to derive a consistent density profile. We also present comparisons of our background atmosphere to data from the ESA Venus Express Mission. The thermal structure of the Venusian mesosphere is relatively well documented; however, direct measurements of wind speeds are limited. Venus’ slow rotation results in a negligible Coriolis force. This suggests that the zonal circulation should arise from cyclostrophic balance; where the equatorward component of the centrifugal force balances poleward meridional pressure gradients [4]. The sparseness of direct and in-situ measurements has resulted in the application of cyclostrophic balance to measured thermal profiles to derive wind speeds [5] [6] [7] [8]. However, cyclostrophic balance is only strictly valid at mid latitudes (˜ ± 30-75°) and its applicability to the Venusian mesosphere has not been conclusively demonstrated. Our simulations, by solving the full Navier-Stokes momentum equation, will enable us assess the validity of cyclostrophic balance as a description of mesospheric dynamics. This work is part of an ongoing project to develop the first GCM to encompass the atmosphere from the cloud tops into the thermosphere. When complete, this model will enable self-consistent calculations of the dynamics, energy and composition of the atmosphere. It will thus provide a framework to address many of the

  18. Broadband infrared beam splitter for spaceborne interferometric infrared sounder.

    Science.gov (United States)

    Yu, Tianyan; Liu, Dingquan; Qin, Yang

    2014-10-01

    A broadband infrared beam splitter (BS) on ZnSe substrate used for the spaceborne interferometric infrared sounder (SIIRS) is studied in the spectral range of 4.44-15 μm. Both broadband antireflection coating and broadband beam-splitter coating in this BS are designed and tested. To optimize the optical properties and the stability of the BS, suitable infrared materials were selected, and improved deposition techniques were applied. The designed structures matched experimental data well, and the properties of the BS met the application specification of SIIRS.

  19. Mesospheric Temperature Measurements over Scandinavia During the Gravity Wave Life Cycle Campaign (GW-LCYCLE)

    Science.gov (United States)

    Pautet, P. D.; Taylor, M.; Kaifler, B.

    2016-12-01

    The Gravity Wave Life Cycle (GW-LCYCLE) project took place in Northern Scandinavia during the winter 2015-16. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves, especially the orographic waves generated over the Scandinavian mountain range. A series of instruments was operated at several ground-based locations and on-board the DLR HALO Gulfstream V and Falcon aircrafts. As part of this project, Utah State University (USU) deployed 3 Advanced Mesospheric Temperature Mappers (AMTM) at the ALOMAR facility, Norway (operational since December 2010), at the IRF institute in Kiruna, Sweden, and at the FMI institute in Sodankylä, Finland. Each of these instruments measures the OH (3,1) rotational temperature over a large region (200x160km) at 87km altitude. During the campaign, their total coverage extended across the Scandinavian Mountain Range, from the wind side in the west to 500 km to the east in the lee of the mountains, allowing the investigation of the occurrence and evolution of gravity waves (GWs) over this part of Scandinavia. Furthermore, the AMTM in Sodankylä operated in the container housing a DLR Rayleigh lidar. Both instruments ran simultaneously and autonomously from November 2015 to April 2016, providing an unprecedented complementary high-quality data set. This presentation will introduce preliminary results obtained during this campaign, in particular the evolution of the mesospheric temperature through the winter, the analysis of mountain waves occurrence and dynamics at mesospheric altitude, as well as the investigation of interesting individual GW cases.

  20. On the relationship of polar mesospheric cloud ice water content, particle radius and mesospheric temperature and its use in multi-dimensional models

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2009-11-01

    Full Text Available The distribution of ice layers in the polar summer mesosphere (called polar mesospheric clouds or PMCs is sensitive to background atmospheric conditions and therefore affected by global-scale dynamics. To investigate this coupling it is necessary to simulate the global distribution of PMCs within a 3-dimensional (3-D model that couples large-scale dynamics with cloud microphysics. However, modeling PMC microphysics within 3-D global chemistry climate models (GCCM is a challenge due to the high computational cost associated with particle following (Lagrangian or sectional microphysical calculations. By characterizing the relationship between the PMC effective radius, ice water content (iwc, and local temperature (T from an ensemble of simulations from the sectional microphysical model, the Community Aerosol and Radiation Model for Atmospheres (CARMA, we determined that these variables can be described by a robust empirical formula. The characterized relationship allows an estimate of an altitude distribution of PMC effective radius in terms of local temperature and iwc. For our purposes we use this formula to predict an effective radius as part of a bulk parameterization of PMC microphysics in a 3-D GCCM to simulate growth, sublimation and sedimentation of ice particles without keeping track of the time history of each ice particle size or particle size bin. This allows cost effective decadal scale PMC simulations in a 3-D GCCM to be performed. This approach produces realistic PMC simulations including estimates of the optical properties of PMCs. We validate the relationship with PMC data from the Solar Occultation for Ice Experiment (SOFIE.

  1. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments

    Directory of Open Access Journals (Sweden)

    P. Forkman

    2012-11-01

    Full Text Available Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E are presented. The dataset covers the period 2002–2008 and is hence uniquely long for ground-based observations. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2, MLS on Aura (v3-3, MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200 and SMR on Odin (v225 and v021 is carried out. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events, with high CO mixing ratios during winter and very low amounts during summer in the observed 55–100 km altitude range. During 2004–2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS (200 is good in the altitude range 55–70 km. Above 70 km, OSO shows up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002–2004, CO from MIPAS (12 + 13 is up to 50% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.

  2. Six years of mesospheric CO estimated from ground-based frequency-switched microwave radiometry at 57° N compared with satellite instruments

    Science.gov (United States)

    Forkman, P.; Christensen, O. M.; Eriksson, P.; Urban, J.; Funke, B.

    2012-11-01

    Measurements of mesospheric carbon monoxide, CO, provide important information about the dynamics in the mesosphere region since CO has a long lifetime at these altitudes. Ground-based measurements of mesospheric CO made at the Onsala Space Observatory, OSO, (57° N, 12° E) are presented. The dataset covers the period 2002-2008 and is hence uniquely long for ground-based observations. The simple and stable 115 GHz frequency-switched radiometer, calibration method, retrieval procedure and error characterization are described. A comparison between our measurements and co-located CO measurements from the satellite sensors ACE-FTS on Scisat (v2.2), MLS on Aura (v3-3), MIPAS on Envisat (V3O_CO_12 + 13 and V4O_CO_200) and SMR on Odin (v225 and v021) is carried out. Our instrument, OSO, and the four satellite instruments show the same general variation of the vertical distribution of mesospheric CO in both the annual cycle and in shorter time period events, with high CO mixing ratios during winter and very low amounts during summer in the observed 55-100 km altitude range. During 2004-2008 the agreement of the OSO instrument and the satellite sensors ACE-FTS, MLS and MIPAS (200) is good in the altitude range 55-70 km. Above 70 km, OSO shows up to 25% higher CO column values compared to both ACE and MLS. For the time period 2002-2004, CO from MIPAS (12 + 13) is up to 50% lower than OSO between 55 and 70 km. Mesospheric CO from the two versions of SMR deviates up to ±65% when compared to OSO, but the analysis is based on only a few co-locations.

  3. Fabrication and Surface Properties of Composite Films of SAM/Pt/ZnO/SiO 2

    KAUST Repository

    Yao, Ke Xin; Zeng, Hua Chun

    2008-01-01

    Through synthetic architecture and functionalization with self-assembled monolayers (SAMs), complex nanocomposite films of SAM/Pt/ZnO/SiO2 have been facilely prepared in this work. The nanostructured films are highly uniform and porous, showing a

  4. Fabrication and tribological properties of self-assembled monolayer of n-alkyltrimethoxysilane on silicon: Effect of SAM alkyl chain length

    Science.gov (United States)

    Huo, Lixia; Du, Pengcheng; Zhou, Hui; Zhang, Kaifeng; Liu, Peng

    2017-02-01

    It is well known that the self-assembled organic molecules on a solid surface exhibit the friction-reducing performance. However, the effect of the molecular size of the self-assembled organic molecules has not been established. In the present work, self-assembled monolayers (SAMs) of n-alkyltrimethoxysilanes with different alkyl chain lengths (C6, C12, or C18) were fabricated on silicon substrate. The water contact angles of the SAMs increased from 26.8° of the hydroxylated silicon substrate to near 60° after self-assembly. The atomic force microscopy (AFM) analysis results showed that the mean roughness (Ra) of the SAMs decreased with increasing the alkyl chain length. The tribological properties of the SAMs sliding against Al2O3 ball were evaluated on an UMT-2 tribometer, and the worn surfaces of the samples were analyzed by means of Nano Scratch Tester and surface profilometry. It was found that lowest friction coefficient and smallest width of wear were achieved with the SAMs of C12 alkyl chain (C12-SAM). The superior friction reduction and wear resistance of the SAMs in comparison with the bare silicon substrate are attributed to good adhesion of the self-assembled films to the substrate, especially the C12-SAM with desirable alkyl chain length.

  5. Optimization of pentacene double floating gate memories based on charge injection regulated by SAM functionalization

    Directory of Open Access Journals (Sweden)

    S. Li

    2018-02-01

    Full Text Available Pentacene based double nano-floating gate memories (NFGM by using gold nanoparticles (Au NPs and reduced graphene oxide (rGO sheets as charge trapping layers are prepared and demonstrated. Particularly, the NFGM chemically treated by 2,3,4,5,6-pentafluorobenzenethiol (PFBT self-assembled monolayers (SAM exhibits excellent memory performances, including high mobility of 0.23 cm2V-1s-1, the large memory window of 51 V, and the stable retention property more than 108 s. Comparing the performances of NFGM without treating with PFBT SAM, the improving performances of the memory devices by SAM modification are explained by the increase of charge injection, which could be further investigated by XPS and UPS. In particular, the results highlight the utility of SAM modulations and controlling of charge transport in the development of organic transistor memories.

  6. Optimization of pentacene double floating gate memories based on charge injection regulated by SAM functionalization

    Science.gov (United States)

    Li, S.; Guérin, D.; Lenfant, S.; Lmimouni, K.

    2018-02-01

    Pentacene based double nano-floating gate memories (NFGM) by using gold nanoparticles (Au NPs) and reduced graphene oxide (rGO) sheets as charge trapping layers are prepared and demonstrated. Particularly, the NFGM chemically treated by 2,3,4,5,6-pentafluorobenzenethiol (PFBT) self-assembled monolayers (SAM) exhibits excellent memory performances, including high mobility of 0.23 cm2V-1s-1, the large memory window of 51 V, and the stable retention property more than 108 s. Comparing the performances of NFGM without treating with PFBT SAM, the improving performances of the memory devices by SAM modification are explained by the increase of charge injection, which could be further investigated by XPS and UPS. In particular, the results highlight the utility of SAM modulations and controlling of charge transport in the development of organic transistor memories.

  7. Variability at Multiple Scales: Using an Array of Current- and Pressure-Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    of Current- and Pressure - Sensor Equipped Inverted Echo Sounders to Measure the Ocean 5b. GRANT NUMBER NOOO 14-15-1-2857 5c. PROGRAM ELEMENT NUMBER...inverted echo sounders (lESs) equipped with pressure and current sensors (CPIESs). CPIESs are moored instruments that measure the round-trip acoustic...at a range of spatial and temporal scales. The goals of this project were to enhance the pool of pressure - sensor equipped lESs available at the

  8. Variability at Multiple Scales: Using an Array of Current and Pressure Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    of Current- and Pressure - Sensor Equipped Inverted Echo Sounders to Measure the Ocean 5b. GRANT NUMBER NOOO 14-15-1-2857 5c. PROGRAM ELEMENT NUMBER...inverted echo sounders (lESs) equipped with pressure and current sensors (CPIESs). CPIESs are moored instruments that measure the round-trip acoustic...at a range of spatial and temporal scales. The goals of this project were to enhance the pool of pressure - sensor equipped lESs available at the

  9. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    Science.gov (United States)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Conrad, P. G.; Cabane, M.; Webster, C. R.; Atreya, S. A.; Manning, H.

    2010-01-01

    An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers.

  10. A magnesium-induced triplex pre-organizes the SAM-II riboswitch.

    Directory of Open Access Journals (Sweden)

    Susmita Roy

    2017-03-01

    Full Text Available Our 13C- and 1H-chemical exchange saturation transfer (CEST experiments previously revealed a dynamic exchange between partially closed and open conformations of the SAM-II riboswitch in the absence of ligand. Here, all-atom structure-based molecular simulations, with the electrostatic effects of Manning counter-ion condensation and explicit magnesium ions are employed to calculate the folding free energy landscape of the SAM-II riboswitch. We use this analysis to predict that magnesium ions remodel the landscape, shifting the equilibrium away from the extended, partially unfolded state towards a compact, pre-organized conformation that resembles the ligand-bound state. Our CEST and SAXS experiments, at different magnesium ion concentrations, quantitatively confirm our simulation results, demonstrating that magnesium ions induce collapse and pre-organization. Agreement between theory and experiment bolsters microscopic interpretation of our simulations, which shows that triplex formation between helix P2b and loop L1 is highly sensitive to magnesium and plays a key role in pre-organization. Pre-organization of the SAM-II riboswitch allows rapid detection of ligand with high selectivity, which is important for biological function.

  11. Simulated SAM A-scans on multilayer MEMS components

    DEFF Research Database (Denmark)

    Janting, Jakob; Petersen, Dirch Hjorth; Greisen, Christoffer

    2002-01-01

    A spreadsheet program for simulation of Scanning Acoustic Microscopy (SAM) A-scans on multilayer structures has been developed. Using this program, structure variations in samples can be analysed better. Further samples can be prepared to get optimal signal for enhanced failure and materials...

  12. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weijie, E-mail: 459586768@qq.com; Liu, Yuxi, E-mail: 924013616@qq.com; Wang, Youhua, E-mail: wyouhua1516@163.com

    2016-05-13

    Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwann cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.

  13. Sam68 promotes Schwann cell proliferation by enhancing the PI3K/Akt pathway and acts on regeneration after sciatic nerve crush

    International Nuclear Information System (INIS)

    Wu, Weijie; Liu, Yuxi; Wang, Youhua

    2016-01-01

    Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwann cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.

  14. Response of the mesosphere-thermosphere-ionosphere system to global change - CAWSES-II contribution

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Beig, G.; Marsh, R. D.

    2014-01-01

    Roč. 1, 11 November (2014), 21/ 1-21/ 19 ISSN 2197-4284 R&D Projects: GA ČR GAP209/10/1792; GA MŠk LD12070 Institutional support: RVO:68378289 Keywords : mesosphere * thermosphere * ionosphere * long-term trends * climatic change Subject RIV: DG - Athmosphere Sciences, Meteorology http://www.progearthplanetsci.com/content/1/1/21

  15. ISAMS and MLS for NASA's Upper Atmosphere Research Satellite

    Science.gov (United States)

    Llewellyn-Jones, D.; Dickinson, P. H. G.

    1990-04-01

    The primary goal of NASA's Upper Atmosphere Research Satellite (UARS), planned to be launched in 1991, is to compile data about the structure and behavior of the stratospheric ozone layer, and especially about the threat of the chlorine-based pollutants to its stablility. Two of the payload instruments, manufactured in the UK, are described: the Improved Stratospheric and Mesospheric Sounder (ISAMS), a radiometer designed to measure thermal emission from selected atmospheric constituents at the earth's limb, then making it possible to obtain nearly global coverage of the vertical distribution of temperature and composition from 80 deg S to 80 deg N latitude; and the Microwave Limb Sounder (MLS), a limb sounding radiometer, measuring atmospheric thermal emission from selected molecular spectral lines at mm wavelength, in the frequency regions of 63, 183, and 205 GHz.

  16. Trends and solar cycle effects in mesospheric ice clouds

    Science.gov (United States)

    Lübken, Franz-Josef; Berger, Uwe; Fiedler, Jens; Baumgarten, Gerd; Gerding, Michael

    Lidar observations of mesospheric ice layers (noctilucent clouds, NLC) are now available since 12 years which allows to study solar cycle effects on NLC parameters such as altitudes, bright-ness, and occurrence rates. We present observations from our lidar stations in Kuehlungsborn (54N) and ALOMAR (69N). Different from general expectations the mean layer characteris-tics at ALOMAR do not show a persistent anti-correlation with solar cycle. Although a nice anti-correlation of Ly-alpha and occurrence rates is detected in the first half of the solar cycle, occurrence rates decreased with decreasing solar activity thereafter. Interestingly, in summer 2009 record high NLC parameters were detected as expected in solar minimum conditions. The morphology of NLC suggests that other processes except solar radiation may affect NLC. We have recently applied our LIMA model to study in detail the solar cycle effects on tempera-tures and water vapor concentration the middle atmosphere and its subsequent influence on mesospheric ice clouds. Furthermore, lower atmosphere effects are implicitly included because LIMA nudges to the conditions in the troposphere and lower stratosphere. We compare LIMA results regarding solar cycle effects on temperatures and ice layers with observations at ALO-MAR as well as satellite borne measurements. We will also present LIMA results regarding the latitude variation of solar cycle and trends, including a comparison of northern and southern hemisphere. We have adapted the observation conditions from SBUV (wavelength and scatter-ing angle) in LIMA for a detailed comparison with long term observations of ice clouds from satellites.

  17. Relationship between variability of the semidiurnal tide in the Northern Hemisphere mesosphere and quasi-stationary planetary waves throughout the global middle atmosphere

    Directory of Open Access Journals (Sweden)

    X. Xu

    2009-11-01

    Full Text Available To investigate possible couplings between planetary waves and the semidiurnal tide (SDT, this work examines the statistical correlations between the SDT amplitudes observed in the Northern Hemisphere (NH mesosphere and stationary planetary wave (SPW with wavenumber S=1 (SPW1 amplitudes throughout the global stratosphere and mesosphere. The latter are derived from the Aura-MLS temperature measurements. During NH summer-fall (July–October, the mesospheric SDT amplitudes observed at Svalbard (78° N and Eureka (80° N usually do not show persistent correlations with the SPW1 amplitudes in the opposite hemisphere. Although the SDT amplitudes observed at lower latitudes (~50–70° N, especially at Saskatoon (52° N, are often shown to be highly and positively correlated with the SPW1 amplitudes in high southern latitudes, these correlations cannot be sufficiently explained as evidence for a direct physical link between the Southern Hemisphere (SH winter-early spring SPW and NH summer-early fall mesospheric SDT. This is because the migrating tide's contribution is usually dominant in the mid-high latitude (~50–70° N NH mesosphere during the local late summer-early fall (July–September. The numerical correlation is dominated by similar low-frequency variability or trends between the amplitudes of the NH SDT and SH SPW1 during the respective equinoctial transitions. In contradistinction, during NH winter (November–February, the mesospheric SDT amplitudes at northern mid-high latitudes (~50–80° N are observed to be significantly and positively correlated with the SPW1 amplitudes in the same hemisphere in most cases. Because both the SPW and migrating SDT are large in the NH during the local winter, a non-linear interaction between SPW and migrating SDT probably occurs, thus providing a global non-migrating SDT. This is consistent with observations of SDT in Antarctica that are large in summer than in winter. It is suggested that

  18. Applications of infrared technology; Proceedings of the Meeting, London, England, June 9, 10, 1988

    International Nuclear Information System (INIS)

    Williams, T.L.

    1988-01-01

    Recent developments in thermal imaging and other infrared systems relating to military, industrial, medical, and scientific applications are reviewed. Papers are presented on a new thermal imager using a linear pyroelectric detector array; multichannel near infrared spectroradiometer; technological constraints on the use of thermal imagery for remote sensing; and infrared optical system of the improved stratospheric and mesospheric sounder. Other topics discussed include infrared thermography development for composite material evaluation; infrared process linescanner, and optical infrared starting radiometer

  19. Background of SAM atom-fraction profiles

    International Nuclear Information System (INIS)

    Ernst, Frank

    2017-01-01

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which is validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition

  20. Background of SAM atom-fraction profiles

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Frank

    2017-03-15

    Atom-fraction profiles acquired by SAM (scanning Auger microprobe) have important applications, e.g. in the context of alloy surface engineering by infusion of carbon or nitrogen through the alloy surface. However, such profiles often exhibit an artifact in form of a background with a level that anti-correlates with the local atom fraction. This article presents a theory explaining this phenomenon as a consequence of the way in which random noise in the spectrum propagates into the discretized differentiated spectrum that is used for quantification. The resulting model of “energy channel statistics” leads to a useful semi-quantitative background reduction procedure, which is validated by applying it to simulated data. Subsequently, the procedure is applied to an example of experimental SAM data. The analysis leads to conclusions regarding optimum experimental acquisition conditions. The proposed method of background reduction is based on general principles and should be useful for a broad variety of applications. - Highlights: • Atom-fraction–depth profiles of carbon measured by scanning Auger microprobe • Strong background, varies with local carbon concentration. • Needs correction e.g. for quantitative comparison with simulations • Quantitative theory explains background. • Provides background removal strategy and practical advice for acquisition.

  1. The Box Model and the Acoustic Sounder, a Case Study

    DEFF Research Database (Denmark)

    Jensen, Niels Otto; Lundtang Petersen, Erik

    1979-01-01

    Concentrations of SO2 in a large city during a subsidence situation are predicted as a function of time by means of a simple box model and the predictions are compared to actual SO2 concentration measurements. The agreement between model results and measurements is found to be excellent. The mode...... uses the height of the mixing layer as measured by means of an acoustic sounder. It is demonstrated that this height is a dominant factor in determining the variation of the SO2 concentration...

  2. Development of the criticality capability for the SAM-CE Monte Carlo System

    International Nuclear Information System (INIS)

    Lichtenstein, H.; Troubetzkoy, E.; Steinberg, H.; Cohen, M.O.

    1979-04-01

    A criticality capabilty has been developed and implemented in the SAM-CE Monte Carlo system. The data processing component, SAM-X, preserves, to any required accuracy, the data quality inherent in the ENDF/B library. The generated data is Doppler-broadened and includes (where applicable) probability tables for the unresolved resonance range, and thermal-scattering law data. Curves of several total and partial cross sections are generated and displayed. The Monte Carlo component, SAM-F, includes several eigenvalue estimators and variance reduction schemes. Stratification was found to effect significant improvement in calculational efficiency, but the usefulness of importance sampling is marginal in criticality problems. The entire system has been installed at BNL, for the analysis of TRX benchmarks. The TRX-1 and TRX-2 cell calculations have been performed, with estimated eigenvalues of 1.1751 +- 0.0016 and 1.1605 +- .0015, respectively. These results are shown to be statistically consistent with other sources

  3. Polar mesosphere summer echoes (PMSE: Review of observations and current understanding

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2004-01-01

    Full Text Available Polar mesosphere summer echoes (PMSE are very strong radar echoes primarily studied in the VHF wavelength range from altitudes close to the polar summer mesopause. Radar waves are scattered at irregularities in the radar refractive index which at mesopause altitudes is effectively determined by the electron number density. For efficient scatter, the electron number density must reveal structures at the radar half wavelength (Bragg condition for monostatic radars; ~3 m for typical VHF radars. The question how such small scale electron number density structures are created in the mesopause region has been a longstanding open scientific question for almost 30 years. This paper reviews experimental and theoretical milestones on the way to an advanced understanding of PMSE. Based on new experimental results from in situ observations with sounding rockets, ground based observations with radars and lidars, numerical simulations with microphysical models of the life cycle of mesospheric aerosol particles, and theoretical considerations regarding the diffusivity of electrons in the ice loaded complex plasma of the mesopause region, a consistent explanation for the generation of these radar echoes has been developed. The main idea is that mesospheric neutral air turbulence in combination with a significantly reduced electron diffusivity due to the presence of heavy charged ice aerosol particles (radii ~5–50 nm leads to the creation of structures at spatial scales significantly smaller than the inner scale of the neutral gas turbulent velocity field itself. Importantly, owing to their very low diffusivity, the plasma structures acquire a very long lifetime, i.e., 10 min to hours in the presence of particles with radii between 10 and 50 nm. This leads to a temporal decoupling of active neutral air turbulence and the existence of small scale plasma structures and PMSE and thus readily explains observations proving the absence of neutral air turbulence at

  4. Assimilation of Feng-Yun-3B satellite microwave humidity sounder data over land

    Science.gov (United States)

    Chen, Keyi; Bormann, Niels; English, Stephen; Zhu, Jiang

    2018-03-01

    The ECMWF has been assimilating Feng-Yun-3B (FY-3B) satellite microwave humidity sounder (MWHS) data over ocean in an operational forecasting system since 24 September 2014. It is more difficult, however, to assimilate microwave observations over land and sea ice than over the open ocean due to higher uncertainties in land surface temperature, surface emissivity and less effective cloud screening. We compare approaches in which the emissivity is retrieved dynamically from MWHS channel 1 [150 GHz (vertical polarization)] with the use of an evolving emissivity atlas from 89 GHz observations from the MWHS onboard NOAA and EUMETSAT satellites. The assimilation of the additional data over land improves the fit of short-range forecasts to other observations, notably ATMS (Advanced Technology Microwave Sounder) humidity channels, and the forecast impacts are mainly neutral to slightly positive over the first five days. The forecast impacts are better in boreal summer and the Southern Hemisphere. These results suggest that the techniques tested allow for effective assimilation of MWHS/FY-3B data over land.

  5. Thermosphere-ionosphere-mesosphere energetics and dynamics (TIMED). The TIMED mission and science program report of the science definition team. Volume 1: Executive summary

    Science.gov (United States)

    1991-01-01

    A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.

  6. Raman mapping and in situ SERS spectroelectrochemical studies of 6-mercaptopurine SAMs on the gold electrode.

    Science.gov (United States)

    Yang, Haifeng; Liu, Yanli; Liu, Zhimin; Yang, Yu; Jiang, Jianhui; Zhang, Zongrang; Shen, Guoli; Yu, Ruqin

    2005-02-24

    The self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) were formed at the roughened polycrystalline gold surfaces in acid and alkaline media. The time-dependent Raman mapping spectral analysis in conjunction with the quantum calculations for the vibrational modes using ab initio BLYP/6-31G method suggested that both of the resulted 6MP SAMs adopted the same adsorption mode through the S atom of pyrimidine moiety and the N7 atom of the imidazole moiety anchoring the gold surface in a vertical way. The in situ surface-enhanced Raman scattering spectroelectrochemical experiment was conducted to examine the stability of the SAMs at various bias potentials. It was found that the detaching process of the 6MP SAMs from the surface involved one electron reduction as the voltage was applied at ca. 0.7 V vs a standard calomel electrode.

  7. Orientation of 6-mercaptopurine SAMs at the silver electrode as studied by Raman mapping and in situ SERS.

    Science.gov (United States)

    Chu, Hui; Yang, Haifeng; Huan, Shuangyan; Shen, Guoli; Yu, Ruqin

    2006-03-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) on a silver electrode in acid and alkaline media were investigated by a combination protocol of the SERS technique with Raman mapping, and it was found that the adsorption mode of 6MP SAMs changed with the pH value of the environment. Quantum calculations for the vibrational mode were performed by the BLYP/6-31G method. 6MP was adsorbed on the silver electrode with a tilted orientation via S, N1, and N7 atoms in acid medium, while the SAMs adopted head-on adsorption modes with the S atom and the N1 atom anchoring the silver surface in alkaline medium. However, 6MP SAMs turned to the same upright orientation on the electrode through the S and N7 atoms when either acid or basic solution was removed. Stability of 6MP SAMs was observed by in situ SERS spectroelectrochemical measurements. The results reveal that the desorption potentials of 6MP SAMs formed under acid and alkaline conditions from the Ag electrode were at ca. -1.3 V and -1.6 V vs SCE, respectively.

  8. A global climatology of the mesospheric sodium layer from GOMOS data during the 2002–2008 period

    Directory of Open Access Journals (Sweden)

    D. Fussen

    2010-10-01

    Full Text Available This paper presents a climatology of the mesospheric sodium layer built from the processing of 7 years of GOMOS data. With respect to preliminary results already published for the year 2003, a more careful analysis was applied to the averaging of occultations inside the climatological bins (10° in latitude-1 month. Also, the slant path absorption lines of the Na doublet around 589 nm shows evidence of partial saturation that was responsible for an underestimation of the Na concentration in our previous results. The sodium climatology has been validated with respect to the Fort Collins lidar measurements and, to a lesser extent, to the OSIRIS 2003–2004 data. Despite the important natural sodium variability, we have shown that the Na vertical column has a marked semi-annual oscillation at low latitudes that merges into an annual oscillation in the polar regions,a spatial distribution pattern that was unreported so far. The sodium layer seems to be clearly influenced by the mesospheric global circulation and the altitude of the layer shows clear signs of subsidence during polar winter. The climatology has been parameterized by time-latitude robust fits to allow for easy use. Taking into account the non-linearity of the transmittance due to partial saturation, an experimental approach is proposed to derive mesospheric temperatures from limb remote sounding measurements.

  9. The SAM, not the electrodes, dominates charge transport in metal-monolayer//Ga2O3/gallium-indium eutectic junctions.

    Science.gov (United States)

    Reus, William F; Thuo, Martin M; Shapiro, Nathan D; Nijhuis, Christian A; Whitesides, George M

    2012-06-26

    The liquid-metal eutectic of gallium and indium (EGaIn) is a useful electrode for making soft electrical contacts to self-assembled monolayers (SAMs). This electrode has, however, one feature whose effect on charge transport has been incompletely understood: a thin (approximately 0.7 nm) film-consisting primarily of Ga(2)O(3)-that covers its surface when in contact with air. SAMs that rectify current have been measured using this electrode in Ag(TS)-SAM//Ga(2)O(3)/EGaIn (where Ag(TS) = template-stripped Ag surface) junctions. This paper organizes evidence, both published and unpublished, showing that the molecular structure of the SAM (specifically, the presence of an accessible molecular orbital asymmetrically located within the SAM), not the difference between the electrodes or the characteristics of the Ga(2)O(3) film, causes the observed rectification. By examining and ruling out potential mechanisms of rectification that rely either on the Ga(2)O(3) film or on the asymmetry of the electrodes, this paper demonstrates that the structure of the SAM dominates charge transport through Ag(TS)-SAM//Ga(2)O(3)/EGaIn junctions, and that the electrical characteristics of the Ga(2)O(3) film have a negligible effect on these measurements.

  10. CE-SAM: a conversational interface for ISR mission support

    Science.gov (United States)

    Pizzocaro, Diego; Parizas, Christos; Preece, Alun; Braines, Dave; Mott, David; Bakdash, Jonathan Z.

    2013-05-01

    There is considerable interest in natural language conversational interfaces. These allow for complex user interactions with systems, such as fulfilling information requirements in dynamic environments, without requiring extensive training or a technical background (e.g. in formal query languages or schemas). To leverage the advantages of conversational interactions we propose CE-SAM (Controlled English Sensor Assignment to Missions), a system that guides users through refining and satisfying their information needs in the context of Intelligence, Surveillance, and Reconnaissance (ISR) operations. The rapidly-increasing availability of sensing assets and other information sources poses substantial challenges to effective ISR resource management. In a coalition context, the problem is even more complex, because assets may be "owned" by different partners. We show how CE-SAM allows a user to refine and relate their ISR information needs to pre-existing concepts in an ISR knowledge base, via conversational interaction implemented on a tablet device. The knowledge base is represented using Controlled English (CE) - a form of controlled natural language that is both human-readable and machine processable (i.e. can be used to implement automated reasoning). Users interact with the CE-SAM conversational interface using natural language, which the system converts to CE for feeding-back to the user for confirmation (e.g. to reduce misunderstanding). We show that this process not only allows users to access the assets that can support their mission needs, but also assists them in extending the CE knowledge base with new concepts.

  11. TRX and UO2 criticality benchmarks with SAM-CE

    International Nuclear Information System (INIS)

    Beer, M.; Troubetzkoy, E.S.; Lichtenstein, H.; Rose, P.F.

    1980-01-01

    A set of thermal reactor benchmark calculations with SAM-CE which have been conducted at both MAGI and at BNL are described. Their purpose was both validation of the SAM-CE reactor eigenvalue capability developed by MAGI and a substantial contribution to the data testing of both ENDF/B-IV and ENDF/B-V libraries. This experience also resulted in increased calculational efficiency of the code and an example is given. The benchmark analysis included the TRX-1 infinite cell using both ENDF/B-IV and ENDF/B-V cross section sets and calculations using ENDF/B-IV of the TRX-1 full core and TRX-2 cell. BAPL-UO2-1 calculations were conducted for the cell using both ENDF/B-IV and ENDF/B-V and for the full core with ENDF/B-V

  12. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM).

    Science.gov (United States)

    Xiong, Kai; Zhou, Yan; Hyttel, Poul; Bolund, Lars; Freude, Kristine Karla; Luo, Yonglun

    2016-11-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4 and C-MYC. We have validated that the reprogramming cassette is silenced in the SAM iPSC clones. Expression of pluripotency genes (OCT4, SOX2, LIN28A, NANOG, GDF3, SSEA4, and TRA-1-60), differentiation potential to all three germ layers, and normal karyotypes are validated. These SAM-iPSCs provide a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  13. Produksi Bahasa Tertulis Mahasiswa Penderita Disgrafia Di Fakultas Ilmu Budaya Universitas Sam Ratulangi

    OpenAIRE

    TANGKE, RIMA APRILIANA

    2015-01-01

    This research is entitled “Written Language Production of Student with Disgraphia in Faculty of Humanity Sam Ratulangi University”. The objectives of this research are to describe dysgraphia itself and to analyze the influences of dysgraphia on the written language production of the student in Faculty of Humanity, Sam Ratulangi University. This research uses a descriptive method. There are three steps to finish this research, the first step is preparation. In this step, the writer reads the r...

  14. Evidence of non-LTE Effects in Mesospheric Water Vapor from Spectrally-Resolved Emissions Observed by CIRRIS-1A

    Science.gov (United States)

    Zhou, D. K.; Mlynczak, M. G.; Lopez-Puertas, M.; Zaragoza, G.

    1999-01-01

    Evidence of non-LTE effects in mesospheric water vapor as determined by infrared spectral emission measurements taken from the space shuttle is reported. A cryogenic Michelson interferometer in the CIRRIS-1A shuttle payload yielded high quality, atmospheric infrared spectra. These measurements demonstrate the enhanced daytime emissions of H2O (020-010) which are the result of non-LTE processes and in agreement with non-LTE models. The radiance ratios of H2O (010 to 000) and (020 to 010) Q(1) transitions during daytime are compared with non-LTE model calculations to assess the vibration-to-vibration exchange rate between H2O and O2 in the mesosphere. An exchange rate of 1.2 x 10(exp -12)cc/s is derived.

  15. SABER (TIMED) and MLS (UARS) Temperature Observations of Mesospheric and Stratospheric QBO and Related Tidal Variations

    Science.gov (United States)

    Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.; Russell, James; Mlynczak, Marty; Mengel, John

    2006-01-01

    More than three years of temperature observations from the SABER (TIMED) and MLS WARS) instruments are analyzed to study the annual and inter-annual variations extending from the stratosphere into the upper mesosphere. The SABER measurements provide data from a wide altitude range (15 to 95 km) for the years 2002 to 2004, while the MLS data were taken in the 16 to 55 km altitude range a decade earlier. Because of the sampling properties of SABER and MLS, the variations with local solar time must be accounted for when estimating the zonal mean variations. An algorithm is thus applied that delineates with Fourier analysis the year-long variations of the migrating tides and zonal mean component. The amplitude of the diurnal tide near the equator shows a strong semiannual periodicity with maxima near equinox, which vary from year to year to indicate the influence from the Quasi-biennial Oscillation (QBO) in the zonal circulation. The zonal mean QBO temperature variations are analyzed over a range of latitudes and altitudes, and the results are presented for latitudes from 48"s to 48"N. New results are obtained for the QBO, especially in the upper stratosphere and mesosphere, and at mid-latitudes. At Equatorial latitudes, the QBO amplitudes show local peaks, albeit small, that occur at different altitudes. From about 20 to 40 km, and within about 15" of the Equator, the amplitudes can approach 3S K for the stratospheric QBO or SQBO. For the mesospheric QBO or MQBO, we find peaks near 70 km, with temperature amplitudes reaching 3.5"K, and near 85 km, the amplitudes approach 2.5OK. Morphologically, the amplitude and phase variations derived from the SABER and MLS measurements are in qualitative agreement. The QBO amplitudes tend to peak at the Equator but then increase again pole-ward of about 15" to 20'. The phase progression with altitude varies more gradually at the Equator than at mid-latitudes. A comparison of the observations with results from the Numerical Spectral

  16. THE MYTH OF MATERIAL SUCCESS AS REFLECTED IN SAM WALTON: MADE IN AMERICA-MY STORY

    Directory of Open Access Journals (Sweden)

    Utut Kurniati

    2015-12-01

    Full Text Available American myth of material success had been orchestrated five basic beliefs that were reflected in Sam Walton’s biography, Sam Walton: Made in America-My Story. Those beliefs were: 1 Having a strong will to be successful man in America, Sam Walton was aware that the American democracy allowed its citizens to rise above any limitation in which they may have been born; 2 Then, he rose up from his limitation by hard work. His hard work successfully brought him to the riches and physical comforts; 3 He believed that those rewards came to those who were deserving of them (virtuous; 4 He also believed that those rewards came to those who had the drive and ambition to attain them. Therefore, he was optimistic to attain success in America; 5 Hard work to attain success made Sam Walton a lucky man who received good luck in his life. As a result, his dream of being a successful man in America came true. Keywords: the myth of material success, American dream, hard work

  17. Analysis of the in-vessel phase of SAM strategy for a Korean 1000 MWe PWR

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung-Min; Oh, Seung-Jong [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of). Dept. of NPP Engineering; Diab, Aya [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of). Dept. of NPP Engineering; Ain Shams Univ., Cairo (Egypt). Mechanical Power Engineering Dept.

    2017-12-15

    This paper focuses on the in-vessel phase of Severe Accident Management (SAM) strategy for a Korean 1000 MWe Pressurized Water Reactor (PWR) with reference to ROAAM+ framework approach. To apply ROAAM+, it is needed to identify epistemic and aleatory uncertainties. The selected scenario is a station blackout (SBO) and the corresponding SAM strategy is RCS depressurization followed by water injection into the reactor pressure vessel (RPV). The analysis considers the depressurization timing and the flow rate and timing of in-vessel injection for scenario variations. For the phenomenological uncertainties, the core melting and relocation process is considered to be the most important phenomenon in the in-vessel phase of SAM strategy. Accordingly, a sensitivity analysis is carried out to assess the impact of the cut-off porosity below which the flow area of a core node is zero (EPSCUT), and the critical temperature for cladding rupture (TCLMAX) on the core melting and relocation process. In this paper, the SAM strategy for maintaining the integrity of RPV is derived after quantification of the scenario and phenomenological uncertainties.

  18. Nuclear Protein Sam68 Interacts with the Enterovirus 71 Internal Ribosome Entry Site and Positively Regulates Viral Protein Translation.

    Science.gov (United States)

    Zhang, Hua; Song, Lei; Cong, Haolong; Tien, Po

    2015-10-01

    Enterovirus 71 (EV71) recruits various cellular factors to assist in the replication and translation of its genome. Identification of the host factors involved in the EV71 life cycle not only will enable a better understanding of the infection mechanism but also has the potential to be of use in the development of antiviral therapeutics. In this study, we demonstrated that the cellular factor 68-kDa Src-associated protein in mitosis (Sam68) acts as an internal ribosome entry site (IRES) trans-acting factor (ITAF) that binds specifically to the EV71 5' untranslated region (5'UTR). Interaction sites in both the viral IRES (stem-loops IV and V) and the heterogeneous nuclear ribonucleoprotein K homology (KH) domain of Sam68 protein were further mapped using an electrophoretic mobility shift assay (EMSA) and biotin RNA pulldown assay. More importantly, dual-luciferase (firefly) reporter analysis suggested that overexpression of Sam68 positively regulated IRES-dependent translation of virus proteins. In contrast, both IRES activity and viral protein translation significantly decreased in Sam68 knockdown cells compared with the negative-control cells treated with short hairpin RNA (shRNA). However, downregulation of Sam68 did not have a significant inhibitory effect on the accumulation of the EV71 genome. Moreover, Sam68 was redistributed from the nucleus to the cytoplasm and interacts with cellular factors, such as poly(rC)-binding protein 2 (PCBP2) and poly(A)-binding protein (PABP), during EV71 infection. The cytoplasmic relocalization of Sam68 in EV71-infected cells may be involved in the enhancement of EV71 IRES-mediated translation. Since Sam68 is known to be a RNA-binding protein, these results provide direct evidence that Sam68 is a novel ITAF that interacts with EV71 IRES and positively regulates viral protein translation. The nuclear protein Sam68 is found as an additional new host factor that interacts with the EV71 IRES during infection and could potentially

  19. Seasonal Variations of Mesospheric Gravity Waves Observed with an Airglow All-sky Camera at Mt. Bohyun, Korea (36° N

    Directory of Open Access Journals (Sweden)

    Yong Ha Kim

    2010-09-01

    Full Text Available We have carried out all-sky imaging of OH Meinel, O2 atmospheric and OI 557.7 nm airglow layers in the period from July of 2001 through September of 2005 at Mt. Bohyun, Korea (36.2° N, 128.9° E, Alt = 1,124 m. We analyzed the images observed during a total of 153 clear moonless nights and found 97 events of band-type waves. The characteristics of the observed waves (wavelengths, periods, and phase speeds are consistent with internal gravity waves. The wave occurrence shows an approximately semi-annual variation, with maxima near solstices and minima near equinoxes, which is consistent with other studies of airglow wave observations, but not with those of mesospheric radar/lidar observations. The observed waves tended to propagate westward during fall and winter, and eastward during spring and summer. Our ray tracing study of the observed waves shows that majority of the observed waves seemed to originate from mesospheric altitudes. The preferential directions and the apparent source altitudes can be explained if the observed waves are secondary waves generated from primary waves that have been selected by the filtering process and break up at the mesospheric altitudes.

  20. 77 FR 67813 - Sam Rayburn Dam Project Power Rate

    Science.gov (United States)

    2012-11-14

    ... DEPARTMENT OF ENERGY Southwestern Power Administration Sam Rayburn Dam Project Power Rate AGENCY: Southwestern Power Administration, DOE. ACTION: Notice of Rate Order Approving an Extension of Power Rate on an.... James K. McDonald, Assistant Administrator, Southwestern Power Administration, Department of Energy...

  1. SAM : an experiment dedicated to the Carbon Quest at Mars

    Science.gov (United States)

    Coll, Patrice; Mahaffy, Paul; Webster, Chris; Cabane, Michel; Tan, F.; Coscia, D.; Nolan, T.; Rahen, E.; Teinturier, S.; Goutail, J. P.; Martin, D.; Montaron, C.; Galic, A.

    SAM is a suite of instruments that will be onboard the Mars Science Laboratory (MSL) rover. The SAM team consist of scientists and engineers at GSFC, U. Paris/CNRS, JPL, and Honeybee Robotics, along with many additional external partners. SAM's five science goals will address three of the most fundamental questions about the ability of Mars to support life -past, present, and future. Question 1: What does the inventory of carbon compounds near the surface of Mars tell us about its potential habitability? 1.Goal 1: Survey carbon compound sources and evaluate their possible mechanism of formation and destruction. 2.Goal 2: Search for organic compounds of biotic and prebiotic importance expecially methane. Question 2: What are the chemical and isotopic states of the lighter elements in the solids and atmosphere of Mars and what do they tell us about its potential habitability? 1.Goal 3: Reveal the chemical and isotopic state of elements (i.e., N, H, O, S and others) that are important for life as we know it. 2.Goal 4: Evaluate the habitability of Mars by studying its atmospheric chemistry and the composition of trace species that are evidence of interactions between the atmosphere and soil. Question 3: Were past habitability conditions different from today's? 1.Goal 5: Understand atmospheric and climatic evolution through measurements of noble gas and light element isotopes.

  2. The History of the Austin College Building and Old Main at Sam Houston State University

    Science.gov (United States)

    Singer, Erin; Shields, Samantha

    2017-01-01

    Austin Hall and Old Main serve as the heart of what is now Sam Houston State University. The buildings' rich histories help one to understand how Sam Houston State University and its proud teacher education heritage came to be. To begin with Austin Hall's story, the University's original building has a unique and interesting tale that journeys…

  3. Supplementary Material for: A new mode of SAM domain mediated oligomerization observed in the CASKIN2 neuronal scaffolding protein

    KAUST Repository

    Smirnova, Ekaterina; Kwan, Jamie; Siu, Ryan; Gao, Xin; Zoidl, Georg; Demeler, Borries; Saridakis, Vivian; Donaldson, Logan

    2016-01-01

    Abstract Background CASKIN2 is a homolog of CASKIN1, a scaffolding protein that participates in a signaling network with CASK (calcium/calmodulin-dependent serine kinase). Despite a high level of homology between CASKIN2 and CASKIN1, CASKIN2 cannot bind CASK due to the absence of a CASK Interaction Domain and consequently, may have evolved undiscovered structural and functional distinctions. Results We demonstrate that the crystal structure of the Sterile Alpha Motif (SAM) domain tandem (SAM1-SAM2) oligomer from CASKIN2 is different than CASKIN1, with the minimal repeating unit being a dimer, rather than a monomer. Analytical ultracentrifugation sedimentation velocity methods revealed differences in monomer/dimer equilibria across a range of concentrations and ionic strengths for the wild type CASKIN2 SAM tandem and a structure-directed double mutant that could not oligomerize. Further distinguishing CASKIN2 from CASKIN1, EGFP-tagged SAM tandem proteins expressed in Neuro2a cells produced punctae that were distinct both in shape and size. Conclusions This study illustrates a new way in which neuronal SAM domains can assemble into large macromolecular assemblies that might concentrate and amplify synaptic responses.

  4. A pilot study investigating the feasibility of symptom assessment manager (SAM), a Web-based real-time tool for monitoring challenging behaviors.

    Science.gov (United States)

    Loi, Samantha M; Wanasinghage, Sangeeth; Goh, Anita; Lautenschlager, Nicola T; Darby, David G; Velakoulis, Dennis

    2018-04-01

    Improving and minimizing challenging behaviors seen in psychiatric conditions, including behavioral and psychological symptoms of dementia are important in the care of people with these conditions. Yet there is a lack of systematic evaluation of these as a part of routine clinical care. The Neuropsychiatric Inventory is a validated and reliable tool for rating the severity and disruptiveness of challenging behaviors. We report on the evaluation of a Web-based symptom assessment manager (SAM), designed to address the limitation of previous tools using some of the Neuropsychiatric Inventory functions, to monitor behaviors by staff caring for people with dementia and other psychiatric conditions in inpatient and residential care settings. The SAM was piloted in an 8-bed inpatient neuropsychiatry unit over 5 months. Eleven nurses and 4 clinicians were trained in usage of SAM. Primary outcomes were usage of SAM and perceived usability, utility, and acceptance of SAM. Secondary outcomes were the frequencies of documented behavior. Usage data were analyzed using chi-square and logistic regression analyses. The SAM was used for all admitted patients regardless of diagnosis, with a usage rate of 64% for nurses regularly employed in the unit. Staff provided positive feedback regarding the utility of SAM. The SAM appeared to offer individualized behavior assessment by providing a quick, structured, and standardized platform for assessing behavior in a real-world setting. Further research would involve trialing SAM with more staff in alternative settings such as in home or residential care settings. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Curiosity's Sample Analysis at Mars (SAM) Investigation: Overview of Results from the First 120 Sols on Mars

    Science.gov (United States)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.; Archer, P. D.; Atreya, S. K.; Benna, M.; Brinckerhoff, W. B.; Brunner, A. E.; Buch, A.; Coll, P.; hide

    2013-01-01

    During the first 120 sols of Curiosity s landed mission on Mars (8/6/2012 to 12/7/2012) SAM sampled the atmosphere 9 times and an eolian bedform named Rocknest 4 times. The atmospheric experiments utilized SAM s quadrupole mass spectrometer (QMS) and tunable laser spectrometer (TLS) while the solid sample experiments also utilized the gas chromatograph (GC). Although a number of core experiments were pre-programmed and stored in EEProm, a high level SAM scripting language enabled the team to optimize experiments based on prior runs.

  6. Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    This report updates the baseline cost for parabolic trough solar fields in the United States within NREL's System Advisor Model (SAM). SAM, available at no cost at https://sam.nrel.gov/, is a performance and financial model designed to facilitate decision making for people involved in the renewable energy industry. SAM is the primary tool used by NREL and the U.S. Department of Energy (DOE) for estimating the performance and cost of concentrating solar power (CSP) technologies and projects. The study performed a bottom-up build and cost estimate for two state-of-the-art parabolic trough designs -- the SkyTrough and the Ultimate Trough. The SkyTrough analysis estimated the potential installed cost for a solar field of 1500 SCAs as $170/m2 +/- $6/m2. The investigation found that SkyTrough installed costs were sensitive to factors such as raw aluminum alloy cost and production volume. For example, in the case of the SkyTrough, the installed cost would rise to nearly $210/m2 if the aluminum alloy cost was $1.70/lb instead of $1.03/lb. Accordingly, one must be aware of fluctuations in the relevant commodities markets to track system cost over time. The estimated installed cost for the Ultimate Trough was only slightly higher at $178/m2, which includes an assembly facility of $11.6 million amortized over the required production volume. Considering the size and overall cost of a 700 SCA Ultimate Trough solar field, two parallel production lines in a fully covered assembly facility, each with the specific torque box, module and mirror jigs, would be justified for a full CSP plant.

  7. Geometry modeling for SAM-CE Monte Carlo calculations

    International Nuclear Information System (INIS)

    Steinberg, H.A.; Troubetzkoy, E.S.

    1980-01-01

    Three geometry packages have been developed and incorporated into SAM-CE, for representing in three dimensions the transport medium. These are combinatorial geometry - a general (non-lattice) system, complex combinatorial geometry - a very general system with lattice capability, and special reactor geometry - a special purpose system for light water reactor geometries. Their different attributes are described

  8. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    Science.gov (United States)

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  9. Using multi-beam echo sounder backscatter data for sediment classification in very shallow water environments

    NARCIS (Netherlands)

    Amiri-Simkooei, A.R.; Snellen, M.; Simons, D.G.

    2009-01-01

    In a recent work described in Ref. [1], an angle-independent methodology was developed to use the multi-beam echo sounder backscatter (MBES) data for the seabed sediment classification. The method employs the backscatter data at a certain angle to obtain the number of sediment classes and to

  10. The microwave limb sounder for the Upper Atmosphere Research Satellite

    Science.gov (United States)

    Waters, J. W.; Peckham, G. E.; Suttie, R. A.; Curtis, P. D.; Maddison, B. J.; Harwood, R. S.

    1988-01-01

    The Microwave Limb Sounder was designed to map the concentrations of trace gases from the stratosphere to the lower thermosphere, to improve understanding of the photochemical reactions which take place in this part of the atmosphere. The instrument will measure the intensity of thermal radiation from molecules in the atmosphere at frequencies corresponding to rotational absorption bands of chlorine monoxide, ozone, and water vapor. Molecular concentration profiles will be determined over a height range of 15 to 80 km (20 to 45 km for C10). The 57 deg inclination orbit proposed for the Upper Atmosphere Research Satellite will allow global coverage.

  11. ASAMPSA-E guidance for level 2 PSA Volume 3. Verification and improvement of SAM strategies with L2 PSA

    International Nuclear Information System (INIS)

    Rahni, N.; Raimond, E.; Jan, P.; Lopez, J.; Loeffler, H.; Mildenberger, O.; Kubicek, J.; Vitazkova, J.; Ivanov, I.; Groudev, P.; Lajtha, G.; Serrano, C.; Zhabin, O.; Prosek, Andrej; Dirksen, G.; Yu, S.; Oury, L.; Hultqvist, G.

    2016-01-01

    For each NPP, severe accident management (SAM) strategies shall make use of components or systems and human resources to limit as far as possible the consequences of any severe accident on-site and off-site. L2 PSA is one of the tools that can be used to verify and improve these strategies. The present report (deliverable D40.5 of the project ASAMPSA-E) provides an opportunity for a comparison of objectives in the different countries in terms of SAM strategies verification and improvement. The report summarizes also experience of each partner (including potential deficiencies) involved in this activity, in order to derive some good practices and required progress, addressing: - SAM modeling in L2 PSA, - Positive and negative aspects in current SAM practices, - Discussion on possible criteria related to L2 PSA for verification and improvement: risk reduction (in relation with WP30 activities on risk metrics), reduction of uncertainties on the severe accident progression paths until NPP stabilization, reduction of human failure conditional probabilities (depending on the SAM strategy, the environmental conditions...), - Review with a perspective of verification and improvement of the main SAM strategies (corium cooling, RCS depressurization, control of flammable gases, reactivity control, containment function, containment pressure control, limitation of radioactive releases,...), - SAM strategies to be considered in the context of an extended L2 PSA (as far possible, depending on existing experience), taking into account all operating modes, accidents also occurring in the SFPs and long term and multi-unit accidents. The deliverable D40.5 is developed from the partners' experience. Many of the topics described here are beyond the common practices of L2 PSA applications: in some countries, L2 PSA application is limited to the calculations of frequencies of release categories with no formal requirement for SAM verification and improvement. (authors)

  12. Annals of SAM meeting '96. National meeting on precious metals

    International Nuclear Information System (INIS)

    1996-01-01

    Works are presented at the SAM meeting '96 of the Argentine Materials Association. The papers can be grouped under the following main topics: physical metallurgy; ceramics; polymers; precious metals; extractive metallurgy; corrosion; powder metallurgy. refs., ills

  13. Tropical behavior of mesospheric ozone as observed by SMM

    Science.gov (United States)

    Aikin, A. C.; Kendig, D. J.

    1992-01-01

    The seasonal behavior of low latitude mesospheric ozone, as observed by the SMM satellite solar occultation experiment, is detailed for the 1985-1989 period. Annual as well as semi-annual waves are observed in the 50-70 km altitude region. In the latitude range of +/- 30 deg the ozone phase and amplitude are functions of temperature and seasonal changes in solar flux. Temperature is the controlling factor for the equatorial region and seasonal changes in solar flux become more dominant at latitudes outside the equatorial zone (greater than +/- 15 deg). There is a hemispheric asymmetry in the ozone annual wave in the 20-30 deg region, with Northern Hemispheric ozone having a larger amplitude than Southern Hemispheric ozone.

  14. Applications and Lessons Learned using Data from the Atmospheric Infrared Sounder

    Science.gov (United States)

    Ray, S. E.; Fetzer, E. J.; Olsen, E. T.; Lambrigtsen, B.; Pagano, T. S.; Teixeira, J.; Licata, S. J.; Hall, J. R.

    2016-12-01

    Applications and Lessons Learned using Data from the Atmospheric Infrared SounderSharon Ray, Jet Propulsion Laboratory, California Institute of Technology The Atmospheric Infrared Sounder (AIRS) on NASA's Aqua spacecraft has been returning daily global observations of Earth's atmospheric constituents and properties since 2002. With a 12-year data record and daily, global observations in near real-time, AIRS can play a role in applications that fall under many of the NASA Applied Sciences focus areas. AIRS' involvement in applications is two years in, so what have we learned and what are the pitfalls? AIRS has made gains in drought applications with products under consideration for inclusion in the U.S. Drought Monitor national map, as also with volcano rapid response with an internal alert system and automated products to help characterize plume extent. Efforts are underway with cold air aloft for aviation, influenza outbreak prediction, and vector borne disease. But challenges have occurred both in validation and in crossing the "valley of death" between products and decision makers. AIRS now has improved maps of standard products to be distributed in near real-time via NASA LANCE and by the Goddard DAAC as part of the Obama's administration Big Earth Data Initiative. In addition internal tools have been developed to support development and distribution of our application products. This talk will communicate the status of the AIRS applications effort along with lessons learned, and provide examples of new product imagery designed to best communicate AIRS data.

  15. Mesospheric CO2 ice clouds on Mars observed by Planetary Fourier Spectrometer onboard Mars Express

    Science.gov (United States)

    Aoki, S.; Sato, Y.; Giuranna, M.; Wolkenberg, P.; Sato, T. M.; Nakagawa, H.; Kasaba, Y.

    2018-03-01

    We have investigated mesospheric CO2 ice clouds on Mars through analysis of near-infrared spectra acquired by Planetary Fourier Spectrometer (PFS) onboard the Mars Express (MEx) from MY 27 to MY 32. With the highest spectral resolution achieved thus far in the relevant spectral range among remote-sensing experiments orbiting Mars, PFS enables precise identification of the scattering peak of CO2 ice at the bottom of the 4.3 μm CO2 band. A total of 111 occurrences of CO2 ice cloud features have been detected over the period investigated. Data from the OMEGA imaging spectrometer onboard MEx confirm all of PFS detections from times when OMEGA operated simultaneously with PFS. The spatial and seasonal distributions of the CO2 ice clouds detected by PFS are consistent with previous observations by other instruments. We find CO2 ice clouds between Ls = 0° and 140° in distinct longitudinal corridors around the equatorial region (± 20°N). Moreover, CO2 ice clouds were preferentially detected at the observational LT range between 15-16 h in MY 29. However, observational biases prevent from distinguishing local time dependency from inter-annual variation. PFS also enables us to investigate the shape of mesospheric CO2 ice cloud spectral features in detail. In all cases, peaks were found between 4.240 and 4.265 μm. Relatively small secondary peaks were occasionally observed around 4.28 μm (8 occurrences). These spectral features cannot be reproduced using our radiative transfer model, which may be because the available CO2 ice refractive indices are inappropriate for the mesospheric temperatures of Mars, or because of the assumption in our model that the CO2 ice crystals are spherical and composed by pure CO2 ice.

  16. Vibrational Stark Effect of the Electric-Field Reporter 4-Mercaptobenzonitrile as a Tool for Investigating Electrostatics at Electrode/SAM/Solution Interfaces

    Directory of Open Access Journals (Sweden)

    Peter Hildebrandt

    2012-06-01

    Full Text Available 4-mercaptobenzonitrile (MBN in self-assembled monolayers (SAMs on Au and Ag electrodes was studied by surface enhanced infrared absorption and Raman spectroscopy, to correlate the nitrile stretching frequency with the local electric field exploiting the vibrational Stark effect (VSE. Using MBN SAMs in different metal/SAM interfaces, we sorted out the main factors controlling the nitrile stretching frequency, which comprise, in addition to external electric fields, the metal-MBN bond, the surface potential, and hydrogen bond interactions. On the basis of the linear relationships between the nitrile stretching and the electrode potential, an electrostatic description of the interfacial potential distribution is presented that allows for determining the electric field strengths on the SAM surface, as well as the effective potential of zero-charge of the SAM-coated metal. Comparing this latter quantity with calculated values derived from literature data, we note a very good agreement for Au/MBN but distinct deviations for Ag/MBN which may reflect either the approximations and simplifications of the model or the uncertainty in reported structural parameters for Ag/MBN. The present electrostatic model consistently explains the electric field strengths for MBN SAMs on Ag and Au as well as for thiophenol and mercaptohexanoic acid SAMs with MBN incorporated as a VSE reporter.

  17. Assessing the suitability of written stroke materials: an evaluation of the interrater reliability of the suitability assessment of materials (SAM) checklist.

    Science.gov (United States)

    Hoffmann, Tammy; Ladner, Yvette

    2012-01-01

    Written materials are frequently used to provide education to stroke patients and their carers. However, poor quality materials are a barrier to effective information provision. A quick and reliable method of evaluating material quality is needed. This study evaluated the interrater reliability of the Suitability Assessment of Materials (SAM) checklist in a sample of written stroke education materials. Two independent raters evaluated the materials (n = 25) using the SAM, and ratings were analyzed to reveal total percentage agreements and weighted kappa values for individual items and overall SAM rating. The majority of the individual SAM items had high interrater reliability, with 17 of the 22 items achieving substantial, almost perfect, or perfect weighted kappa value scores. The overall SAM rating achieved a weighted kappa value of 0.60, with a percentage total agreement of 96%. Health care professionals should evaluate the content and design characteristics of written education materials before using them with patients. A tool such as the SAM checklist can be used; however, raters should exercise caution when interpreting results from items with more subjective scoring criteria. Refinements to the scoring criteria for these items are recommended. The value of the SAM is that it can be used to identify specific elements that should be modified before education materials are provided to patients.

  18. Observations of the 10-micron natural laser emission from the mesospheres of Mars and Venus

    Science.gov (United States)

    Espenak, F.; Deming, D.; Jennings, D.; Kostiuk, T.; Mumma, M.; Zipoy, D.

    1983-01-01

    Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74 percent of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 + or - 10 K.

  19. Observations of the 10 micrometer natural laser emission from the mesospheres of Mars and Venus

    Science.gov (United States)

    Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M. J.

    1983-01-01

    Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74% of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 + or - 10 K.

  20. Observations of the 10 micrometer natural laser emission from the mesospheres of Mars and Venus

    International Nuclear Information System (INIS)

    Deming, D.; Espenak, F.; Jennings, D.; Kostiuk, T.; Mumma, M.J.

    1983-06-01

    Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model the flux observed from Venus is 74% of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T 204 + or - 10 K

  1. Geomagnetic control of mesospheric nitric oxide concentration from simultaneous D and F region ionization measurements

    International Nuclear Information System (INIS)

    Pradhan, S.N.; Shirke, J.S.

    1978-01-01

    Investigations are made of D-region electron density profiles derived from 'partial reflection' measurements over a low latitude station (Ahmedabad) during a year of low solar activity. The index relating the electron density with the solar zenith angle is found to increase towards lower zenith angles suggesting both diurnal and seasonal variations in the Nitric oxide concentration. A close correlation is also found between the electron density at 80 km and the maximum ionization density in the F region above. This is interpreted as due to concomitant variation of a sizeable fraction of the Nitric oxide concentration in the mesosphere and lower thermosphere with the overhead F region ionization. A simplified global model is presented for the mesospheric Nitric oxide concentration based on the morphological features of F region and the relationship existing between the ionization levels in F and D regions. Many observed features of the D region ionization including the solar zenith angle dependence, latitudinal and geomagnetic anomaly and long term variability are explained on the basis of this model

  2. Rhodium deposition onto a 4-mercaptopyridine SAM on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Manolova, M. [Institute of Electrochemistry, University of Ulm, 89069 Ulm (Germany); Kayser, M. [Institute of Electrochemistry, University of Ulm, 89069 Ulm (Germany); Kolb, D.M. [Institute of Electrochemistry, University of Ulm, 89069 Ulm (Germany)]. E-mail: dieter.kolb@uni-ulm.de; Boyen, H.-G. [Institute of Solid State Physics, University of Ulm, 89069 Ulm (Germany); Ziemann, P. [Institute of Solid State Physics, University of Ulm, 89069 Ulm (Germany); Mayer, D. [BASF Electronic Materials GmbH, 67056 Ludwigshafen (Germany); Wirth, A. [BASF Electronic Materials GmbH, 67056 Ludwigshafen (Germany)

    2007-02-10

    The application of a recently developed method for the deposition of Pd and Pt on top of a SAM, has been successfully extended to Rh, thus proving the versatility of the new concept. Experimental evidence from cyclic voltammetry, in situ STM and ex situ X-ray photoemission spectroscopy is presented for the deposition of monoatomic high rhodium islands onto a 4-mercaptopyridine self-assembled monolayer on a Au(1 1 1) electrode. By repetitive complexation of the Rh ions to the ring-nitrogen and reduction in a Rh-ion free solution, an almost completely covered SAM is obtained. The consequences of making contacts for molecular electronics are briefly discussed.

  3. MIPAS observations of longitudinal oscillations in the mesosphere and the lower thermosphere: climatology of odd-parity daily frequency modes

    Directory of Open Access Journals (Sweden)

    M. García-Comas

    2016-09-01

    Full Text Available MIPAS global Sun-synchronous observations are almost fixed in local time. Subtraction of the descending and ascending node measurements at each longitude only includes the longitudinal oscillations with odd daily frequencies nodd from the Sun's perspective at 10:00. Contributions from the background atmosphere, daily-invariant zonal oscillations and tidal modes with even-parity daily frequencies vanish. We have determined longitudinal oscillations in MIPAS temperature with nodd and wavenumber k = 0–4 from the stratosphere to 150 km from April 2007 to March 2012. To our knowledge, this is the first time zonal oscillations in temperature have been derived pole to pole in this altitude range from a single instrument. The major findings are the detection of (1 migrating tides at northern and southern high latitudes; (2 significant k = 1 activity at extratropical and high latitudes, particularly in the Southern Hemisphere; (3 k = 3 and k = 4 eastward-propagating waves that penetrate the lower thermosphere with a significantly larger vertical wavelength than in the mesosphere; and (4 a migrating tide quasi-biennial oscillation in the stratosphere, mesosphere and lower thermosphere. MIPAS global measurements of longitudinal oscillations are useful for testing tide modeling in the mesosphere and lower thermosphere region and as a lower boundary for models extending higher up in the atmosphere.

  4. Crystal Structure of Bicc1 SAM Polymer and Mapping of Interactions between the Ciliopathy-Associated Proteins Bicc1, ANKS3, and ANKS6.

    Science.gov (United States)

    Rothé, Benjamin; Leettola, Catherine N; Leal-Esteban, Lucia; Cascio, Duilio; Fortier, Simon; Isenschmid, Manuela; Bowie, James U; Constam, Daniel B

    2018-02-06

    Head-to-tail polymers of sterile alpha motifs (SAM) can scaffold large macromolecular complexes. Several SAM-domain proteins that bind each other are mutated in patients with cystic kidneys or laterality defects, including the Ankyrin (ANK) and SAM domain-containing proteins ANKS6 and ANKS3, and the RNA-binding protein Bicc1. To address how their interactions are regulated, we first determined a high-resolution crystal structure of a Bicc1-SAM polymer, revealing a canonical SAM polymer with a high degree of flexibility in the subunit interface orientations. We further mapped interactions between full-length and distinct domains of Bicc1, ANKS3, and ANKS6. Neither ANKS3 nor ANKS6 alone formed macroscopic homopolymers in vivo. However, ANKS3 recruited ANKS6 to Bicc1, and the three proteins together cooperatively generated giant macromolecular complexes. Thus, the giant assemblies are shaped by SAM domains, their flanking sequences, and SAM-independent protein-protein and protein-mRNA interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater

    Science.gov (United States)

    Glavin, Daniel P.; Freissinet, Caroline; Miller, Kristen E.; Eigenbrode, Jennifer L.; Brunner, Anna E.; Buch, Arnaud; Sutter, Brad; Archer, P. Douglas, Jr.; Atreya, Sushil K.; Brinckerhoff, William B.; hide

    2013-01-01

    A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the

  6. Polar mesosphere winter echoes during MaCWAVE

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2006-07-01

    Full Text Available During the MaCWAVE winter campaign in January 2003, layers of enhanced echo power known as PMWE (Polar Mesosphere Winter Echoes were detected by the ESRAD 52 MHz radar on several occasions. The cause of these echoes is unclear and here we use observations by meteorological and sounding rockets and by lidar to test whether neutral turbulence or aerosol layers might be responsible. PMWE were detected within 30 min of meteorological rocket soundings (falling spheres on 5 separate days. The observations from the meteorological rockets show that, in most cases, conditions likely to be associated with neutral atmospheric turbulence are not observed at the heights of the PMWE. Observations by instrumented sounding rockets confirm low levels of turbulence and indicate considerable small-scale structure in charge density profiles. Comparison of falling sphere and lidar data, on the other hand, show that any contribution of aerosol scatter to the lidar signal at PMWE heights is less than the detection threshold of about 10%.

  7. The JPSS CrIS Instrument and the Evolution of Space-Based Infrared Sounders

    Science.gov (United States)

    Glumb, Ronald; Suwinski, Lawrence; Wells, Steven; Glumb, Anna; Malloy, Rebecca; Colton, Marie

    2018-01-01

    This paper will summarize the development of infrared sounders since the 1970s, describe the technological hurdles that were overcome to provide ever-increasing performance capabilities, and highlight the radiometric performance of the CrIS instrument on JPSS-1 (CrIS-JPSS1). This includes details of the CrIS-JPSS1 measured noise-equivalent spectral radiance (NEdN) performance, radiometric uncertainty performance utilizing a new and improved internal calibration target, short-term and long-term repeatability, spectral uncertainty, and spectral stability. In addition, the full-resolution operating modes for CrIS-JPSS1 will be reviewed, including a discussion of how these modes will be used during on-orbit characterization tests. We will provide a brief update of CrIS-SNPP on-obit performance and the production status of the CrIS instruments for JPSS-2 through JPSS-4. Current technological challenges will also be reviewed, including how ongoing research and development is enabling improvements to future sounders. The expanding usage of infrared sounding data will also be discussed, including demonstration of value via data assimilation, the roles of the public/private sector in communicating the importance of sounding data for long-term observations, and the long road to success from research to operational data products.

  8. Potensi Tinggalan Arkeologis di Kawasan Bandar Udara Sam Ratulangi Manado: Upaya Pelestarian, Pemanfaatan, dan Pengembangan bagi Masyarakat

    Directory of Open Access Journals (Sweden)

    Irfanuddin W. Marzuki

    2016-08-01

    Full Text Available The area of Sam Ratulangi airport’s Manado has archaeological heritage which has been know as it is closed for public. This research used descriptive method, using inductive reasoning. Meanwhile, the analysis method used morphologyl, technology, and contextual analysis. This research aimed to find out the potential of archaeological heritage in Sam Ratulangi airport area of Manado. In addition to its strategy of preservation the haritage included veilbox, bungker, and waruga. The preservation can be conducted by doing protection, development, and utilization. The preservation both physical and non physical protection. The effort for its development and utilization was conducted for the purpose of science, education, culture, and tourism. Kawasan Bandar Udara Sam Ratulangi Manado mempunyai potensi tinggalan arkeologis yang selama ini tidak diketahui masyarakat luas, dikarenakan letak tinggalan yang berada dalam kawasan tertutup untuk umum. Penelitian menggunakan metode deskriptif dengan penalaran induktif. Metode analisis menggunakan analisis morfologi, teknologi dan kontekstual. Tujuan penelitian untuk mengetahui potensi tinggalan arkeologis yang terdapat di kawasan Bandar Udara Sam Ratulangi dan strategi pelestariannya. Tinggalan arkeologis yang terdapat di kawasan Bandar Udara Sam Ratulangi meliputi veilbox, bungker, dan waruga. Upaya pelestarian dapat dilakukan dengan cara perlindungan, pengembangan dan pemanfaatan. Upaya perlindungan meliputi perlindungan secara fisik dan non fisik. Upaya pengembangan dan pemanfaatan dilakukan untuk kepentingan ilmu pengetahuan, pendidikan, kebudayaan dan pariwisata.

  9. Carbon tax effects on the poor: a SAM-based approach

    Science.gov (United States)

    Chapa, Joana; Ortega, Araceli

    2017-09-01

    A SAM-based price model for Mexico is developed in order to assess the effects of the carbon tax, which was part of the fiscal reform approved in 2014. The model is formulated based on a social accounting matrix (SAM) that distinguishes households by the official poverty condition and geographical area. The main results are that the sector that includes coke, refined petroleum and nuclear fuel shows the highest price increase due to the direct impact of the carbon tax; in addition, air transport and inland transport are the most affected sectors, in an indirect manner, because both employ inputs from the former sector. Also, it is found that welfare diminishes more in the rural strata than in the urban one. In the urban area, the carbon tax is regressive: the negative impact of carbon tax on family welfare is greater on the poorest families.

  10. FIGURAL FORMS OF KNOWLEDGE: A STUDY OF THE SHORT PROSE OF SAM SHEPARD

    Directory of Open Access Journals (Sweden)

    RICARDO DA SILVA SOBREIRA

    2008-11-01

    Full Text Available ABSTRACTThe paratactical style and the indeterminacies are literary strategies that resistthe conventional impulse of totalizing the elements projected by the text, becauseinstead of selecting the aspects of reality and subordinating the images andperceptions into a hierarchy, the use of these techniques favors the juxtapositionof multiple perspectives and the frustration of narrative closure. Thus, the useof parataxis and indeterminacies in the collection of short stories Great Dreamof Heaven (2002, by the American author Sam Shepard, tends to challenge theprocess of meaning production through the progressive erasure of narrative“certainties”.KEY WORDS: Postmodern, indeterminacy, parataxis, narrative, Sam Shepard.  

  11. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain?

    Science.gov (United States)

    Mercurio, Flavia A; Costantini, Susan; Di Natale, Concetta; Pirone, Luciano; Guariniello, Stefano; Scognamiglio, Pasqualina L; Marasco, Daniela; Pedone, Emilia M; Leone, Marilisa

    2017-09-01

    Ephrin A2 receptor (EphA2) plays a key role in cancer, it is up-regulated in several types of tumors and the process of ligand-induced receptor endocytosis, followed by degradation, is considered as a potential path to diminish tumor malignancy. Protein modulators of this mechanism are recruited at the cytosolic Sterile alpha motif (Sam) domain of EphA2 (EphA2-Sam) through heterotypic Sam-Sam associations. These interactions engage the C-terminal helix of EphA2 and close loop regions (the so called End Helix side). In addition, several studies report on destabilizing mutations in EphA2 related to cataract formation and located in/or close to the Sam domain. Herein, we analyzed from a structural point of view, one of these mutants characterized by the insertion of a novel 39 residue long polypeptide at the C-terminus of EphA2-Sam. A 3D structural model was built by computational methods and revealed partial disorder in the acquired C-terminal tail and a few residues participating in an α-helix and two short β-strands. We investigated by CD and NMR studies the conformational properties in solution of two peptides encompassing the whole C-terminal tail and its predicted helical region, respectively. NMR binding experiments demonstrated that these peptides do not interact relevantly with either EphA2-Sam or its interactor Ship2-Sam. Molecular dynamics (MD) simulations further indicated that the EphA2 mutant could be represented only through a conformational ensemble and that the C-terminal tail should not largely wrap the EphA2-Sam End-Helix interface and affect binding to other Sam domains. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A stationary phase solution for mountain waves with application to mesospheric mountain waves generated by Auckland Island

    Science.gov (United States)

    Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun

    2017-01-01

    A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.

  13. Satellite Sounder Observations of Contrasting Tropospheric Moisture Transport Regimes: Saharan Air Layers, Hadley Cells, and Atmospheric Rivers

    Energy Technology Data Exchange (ETDEWEB)

    Nalli, Nicholas R.; Barnet, Christopher D.; Reale, Tony; Liu, Quanhua; Morris, Vernon R.; Spackman, J. Ryan; Joseph, Everette; Tan, Changyi; Sun, Bomin; Tilley, Frank; Leung, L. Ruby; Wolfe, Daniel

    2016-12-01

    This paper examines the performance of satellite sounder atmospheric vertical moisture proles (AVMP) under tropospheric conditions encompassing moisture contrasts driven by convection and advection transport mechanisms, specifically Atlantic Ocean Saharan air layers (SALs) and Pacific Ocean moisture conveyer belts (MCBs) commonly referred to as atmospheric rivers (ARs), both of these being mesoscale to synoptic meteorological phenomena within the vicinity of subtropical Hadley subsidence zones. Operational AVMP environmental data records retrieved from the Suomi National Polar-orbiting Partnership (SNPP) NOAA-Unique Combined Atmospheric Processing System (NUCAPS) are collocated with dedicated radiosonde observations (RAOBs) obtained from ocean-based intensive field campaigns; these RAOBs provide uniquely independent correlative truth data not assimilated into numerical weather prediction models for satellite sounder validation over open ocean. Using these marine-based data, we empirically assess the performance of the operational NUCAPS AVMP product for detecting and resolving these tropospheric moisture features over otherwise RAOB-sparse regions.

  14. Interpreting Observations of Large-Scale Traveling Ionospheric Disturbances by Ionospheric Sounders

    Science.gov (United States)

    Pederick, L. H.; Cervera, M. A.; Harris, T. J.

    2017-12-01

    From July to October 2015, the Australian Defence Science and Technology Group conducted an experiment during which a vertical incidence sounder (VIS) was set up at Alice Springs Airport. During September 2015 this VIS observed the passage of many large-scale traveling ionospheric disturbances (TIDs). By plotting the measured virtual heights across multiple frequencies as a function of time, the passage of the TID can be clearly displayed. Using this plotting method, we show that all the TIDs observed during the campaign by the VIS at Alice Springs show an apparent downward phase progression of the crests and troughs. The passage of the TID can be more clearly interpreted by plotting the true height of iso-ionic contours across multiple plasma frequencies; the true heights can be obtained by inverting each ionogram to obtain an electron density profile. These plots can be used to measure the vertical phase speed of a TID and also reveal a time lag between events seen in true height compared to virtual height. To the best of our knowledge, this style of analysis has not previously been applied to other swept-frequency sounder observations. We develop a simple model to investigate the effect of the passage of a large-scale TID on a VIS. The model confirms that for a TID with a downward vertical phase progression, the crests and troughs will appear earlier in virtual height than in true height and will have a smaller apparent speed in true height than in virtual height.

  15. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection.

    Science.gov (United States)

    Zhao, Shanshan; Hong, Wei; Wu, Jianguo; Wang, Yu; Ji, Shaoyi; Zhu, Shuyi; Wei, Chunhong; Zhang, Jinsong; Li, Yi

    2017-10-10

    Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1 , were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1- knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection.

  16. Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites.

    OpenAIRE

    Smalla, M.; Schmieder, P.; Kelly, M.; Ter Laak, A.; Krause, G.; Ball, L.; Wahl, M.; Bork, P.; Oschkinat, H.

    1999-01-01

    The sterile alpha motif (SAM) is a protein interaction domain of around 70 amino acids present predominantly in the N- and C-termini of more than 60 diverse proteins that participate in signal transduction and transcriptional repression. SAM domains have been shown to homo- and hetero-oligomerize and to mediate specific protein-protein interactions. A highly conserved subclass of SAM domains is present at the intracellular C-terminus of more than 40 Eph receptor tyrosine kinases that are invo...

  17. Measurements of the structure and circulation of the stratosphere and mesosphere, 1970

    Science.gov (United States)

    Smith, W. S.; Theon, J. S.; Wright, D. U., Jr.; Casey, J. F.; Horvath, J. J.

    1972-01-01

    Complete data from a total of 26 meteorological rocket soundings of the stratosphere and mesosphere conducted from Barrow, Alaska; Churchill, Canada; and Wallops Island, Va., are presented. These data consist of temperature, pressure, density, and wind profiles from 16 acoustic grenade soundings that cover the 30- to 90-km altitude range, and temperature, pressure, and density profiles from 10 pitot probe soundings that cover the 25- to 120-km altitude range. Errors for each of the 16 grenade soundings are also included. No analysis of the meteorological significance of the data is attempted.

  18. Retrieval of nitric oxide in the mesosphere and lower thermosphere from SCIAMACHY limb spectra

    Directory of Open Access Journals (Sweden)

    S. Bender

    2013-09-01

    Full Text Available We use the ultra-violet (UV spectra in the range 230–300 nm from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY to retrieve the nitric oxide (NO number densities from atmospheric emissions in the gamma-bands in the mesosphere and lower thermosphere. Using 3-D ray tracing, a 2-D retrieval grid, and regularisation with respect to altitude and latitude, we retrieve a whole semi-orbit simultaneously for the altitude range from 60 to 160 km. We present details of the retrieval algorithm, first results, and initial comparisons to data from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. Our results agree on average well with MIPAS data and are in line with previously published measurements from other instruments. For the time of available measurements in 2008–2011, we achieve a vertical resolution of 5–10 km in the altitude range 70–140 km and a horizontal resolution of about 9° from 60° S–60° N. With this we have independent measurements of the NO densities in the mesosphere and lower thermosphere with approximately global coverage. This data can be further used to validate climate models or as input for them.

  19. Noise performance of microwave humidity sounders over their lifetime

    Science.gov (United States)

    Hans, Imke; Burgdorf, Martin; John, Viju O.; Mittaz, Jonathan; Buehler, Stefan A.

    2017-12-01

    The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2), Advanced Microwave Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs) of the instrument and the noise equivalent differential temperature (NEΔT) as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT processing to provide input values for the uncertainty propagation in the generation of a new set of Fundamental Climate Data Records (FCDRs) that are currently produced in the project Fidelity and Uncertainty in Climate data

  20. Smoking-Attributable Mortality, Morbidity, and Economic Costs (SAMMEC) - Smoking-Attributable Mortality (SAM)

    Data.gov (United States)

    U.S. Department of Health & Human Services — 2005-2009. SAMMEC - Smoking-Attributable Mortality, Morbidity, and Economic Costs. Smoking-attributable mortality (SAM) is the number of deaths caused by cigarette...

  1. SAMS--a systems architecture for developing intelligent health information systems.

    Science.gov (United States)

    Yılmaz, Özgün; Erdur, Rıza Cenk; Türksever, Mustafa

    2013-12-01

    In this paper, SAMS, a novel health information system architecture for developing intelligent health information systems is proposed and also some strategies for developing such systems are discussed. The systems fulfilling this architecture will be able to store electronic health records of the patients using OWL ontologies, share patient records among different hospitals and provide physicians expertise to assist them in making decisions. The system is intelligent because it is rule-based, makes use of rule-based reasoning and has the ability to learn and evolve itself. The learning capability is provided by extracting rules from previously given decisions by the physicians and then adding the extracted rules to the system. The proposed system is novel and original in all of these aspects. As a case study, a system is implemented conforming to SAMS architecture for use by dentists in the dental domain. The use of the developed system is described with a scenario. For evaluation, the developed dental information system will be used and tried by a group of dentists. The development of this system proves the applicability of SAMS architecture. By getting decision support from a system derived from this architecture, the cognitive gap between experienced and inexperienced physicians can be compensated. Thus, patient satisfaction can be achieved, inexperienced physicians are supported in decision making and the personnel can improve their knowledge. A physician can diagnose a case, which he/she has never diagnosed before, using this system. With the help of this system, it will be possible to store general domain knowledge in this system and the personnel's need to medical guideline documents will be reduced.

  2. Evolved Gas Analyses of the Murray Formation in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Thompson, L. M.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 13 samples from Gale Crater. All SAM-evolved gas analyses have yielded a multitude of volatiles (e.g., H2O, SO2, H2S, CO2, CO, NO, O2, HCl) [1- 6]. The objectives of this work are to 1) Characterize recent evolved SO2, CO2, O2, and NO gas traces of the Murray formation mudstone, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results relative to understanding the geological history of Gale Crater.

  3. Generation of induced pluripotent stem cells (iPSCs) stably expressing CRISPR-based synergistic activation mediator (SAM)

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Hyttel, Poul

    2016-01-01

    Human fibroblasts were engineered to express the CRISPR-based synergistic activation mediator (SAM) complex: dCas9-VP64 and MS2-P65-HSF1. Two induced pluripotent stem cells (iPSCs) clones expressing SAM were established by transducing these fibroblasts with lentivirus expressing OCT4, SOX2, KLF4...... a novel, useful tool to investigate genetic regulation of stem cell proliferation and differentiation through CRISPR-mediated activation of endogenous genes....

  4. Counter electrojet features in the Brazilian sector: simultaneous observation by radar, digital sounder and magnetometers

    Directory of Open Access Journals (Sweden)

    C. M. Denardini

    2009-04-01

    Full Text Available In the present work we show new results regarding equatorial counter electrojet (CEJ events in the Brazilian sector, based on the RESCO radar, two set of fluxgate magnetometer systems and a digital sounder. RESCO radar is a 50 MHz backscatter coherent radar installed in 1998 at São Luís (SLZ, 2.33° S, 44.60° W, an equatorial site. The Digital sounder routinely monitors the electron density profile at the radar site. The magnetometer systems are fluxgate-type installed at SLZ and Eusébio (EUS, 03.89° S, 38.44° W. From the difference between the horizontal component of magnetic field at SLZ station and the same component at EUS (EEJ ground strength several cases of westward morning electrojet and its normal inversion to the eastward equatorial electrojet (EEJ have been observed. Also, the EEJ ground strength has shown some cases of CEJ events, which been detected with the RESCO radar too. Detection of these events were investigated with respect to their time and height of occurrence, correlation with sporadic E (Es layers at the same time, and their spectral characteristics as well as the radar echo power intensity.

  5. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Janine M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ryberg, David Severin [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a variety of system designs and locations. Many independent snow coverage models have been developed over the last 15 years; however, there has been very little effort verifying these models beyond the system designs and locations on which they were based. Moreover, major PV modeling software products have not yet incorporated any of these models into their workflows. In response to this deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. (2013) into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work, we describe how the snow model is implemented in SAM and we discuss our demonstration of the model's effectiveness at reducing error in annual estimations for three PV arrays. Next, we use this new functionality in conjunction with a long term historical data set to estimate average snow losses across the United States for two typical PV system designs. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nationwide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.

  6. Niedualna uważność a stan samādhi w kontekście badań neurofenomenologicznych

    Directory of Open Access Journals (Sweden)

    Piotr PŁANETA

    2016-12-01

    Full Text Available The aim of this paper is to compare various meditative states, such as Buddhist dhyāna‑s, yogic nirbīja samādhi and nondual awareness (Tib. gñis‑med. The primary source texts I refere to are Yogasūtras of Patañjali, Ānāpānasmṛtisūtra (MN 118, Samādhisūtra (AN 4.41, The Tibetan Yogas of Dream and Sleep. I also discuss some relevant claims of contemporary empirical studies. First, I define the key terms used in Eastern meditation studies as well as in neurophenomenology, a contemporary method applied to examining the meditative states of mind, such as samādhi, dhyāna, and śamatha. Inspired by Shinzen Young, I distinguish three groups of meditative states that might be identified with nondual awareness. These three groups are: (1 the second, the third and fourth Buddhist dhyāna being equivalent to nirvicāra samādhi and nirānanda samādhi in the classical Indian yoga; (2 nirbīja samādhi and (3 nondual awareness, typical to the Mahayāna contemplative traditions. I explain why we can recognize each of the above states as nondual awareness and how they differ from each other. Then, I make a comparison between meditation practice explained in Ānāpānasmṛtisūtra and nondual awareness presented in the Tibetan Buddhism. Besides, I discuss the above kinds of mental states in terms of recent neurophenomenological findings. While doing so, I am trying to demonstrate that our understanding of meditation can benefit from the empirical studies which help us to objectify this kind of subjective experience, to some degree, if they are given an adequate place in our study.

  7. SAMMate: a GUI tool for processing short read alignments in SAM/BAM format

    Directory of Open Access Journals (Sweden)

    Flemington Erik

    2011-01-01

    Full Text Available Abstract Background Next Generation Sequencing (NGS technology generates tens of millions of short reads for each DNA/RNA sample. A key step in NGS data analysis is the short read alignment of the generated sequences to a reference genome. Although storing alignment information in the Sequence Alignment/Map (SAM or Binary SAM (BAM format is now standard, biomedical researchers still have difficulty accessing this information. Results We have developed a Graphical User Interface (GUI software tool named SAMMate. SAMMate allows biomedical researchers to quickly process SAM/BAM files and is compatible with both single-end and paired-end sequencing technologies. SAMMate also automates some standard procedures in DNA-seq and RNA-seq data analysis. Using either standard or customized annotation files, SAMMate allows users to accurately calculate the short read coverage of genomic intervals. In particular, for RNA-seq data SAMMate can accurately calculate the gene expression abundance scores for customized genomic intervals using short reads originating from both exons and exon-exon junctions. Furthermore, SAMMate can quickly calculate a whole-genome signal map at base-wise resolution allowing researchers to solve an array of bioinformatics problems. Finally, SAMMate can export both a wiggle file for alignment visualization in the UCSC genome browser and an alignment statistics report. The biological impact of these features is demonstrated via several case studies that predict miRNA targets using short read alignment information files. Conclusions With just a few mouse clicks, SAMMate will provide biomedical researchers easy access to important alignment information stored in SAM/BAM files. Our software is constantly updated and will greatly facilitate the downstream analysis of NGS data. Both the source code and the GUI executable are freely available under the GNU General Public License at http://sammate.sourceforge.net.

  8. Atmospheric modeling of Mars CH4 subsurface clathrates releases mimicking SAM and 2003 Earth-based detections

    Science.gov (United States)

    Pla-García, J.; Rafkin, S. C.

    2017-12-01

    The aim of this work is to establish the amount of mixing during all martian seasons to test whether CH4 releases inside or outside of Gale crater are consistent with MSL-SAM observations. Several modeling scenarios were configured, including instantaneous and steady releases, both inside and outside the crater. A simulation to mimic the 2003 Earth-based detections (Mumma et al. 2009 or M09) was also performed. In the instantaneous release inside Gale experiments, Ls270 was shown to be the faster mixing season when air within and outside the crater was well mixed: all tracer mass inside the crater is diluted after just 8 hours. The mixing of near surface crater air with the external environment in the rest of the year is potentially rapid but slower than Ls270.In the instantaneous release outside Gale (NW) experiment, in just 12 hours the CH4 that makes it to the MSL landing location is diluted by six orders of magnitude. The timescale of mixing in MRAMS experiments is on the order of 1 sol regardless of season. The duration of the CH4 peak observed by SAM is 100 sols. Therefore there is a steady release inside the crater, or there is a very large magnitude steady release outside the crater. In the steady release Gale experiments, CH4 flux rate from ground is 1.8 kg m-2 s-1 (derived from Gloesener et al. 2017 clathrates fluxes) and it is not predictive. In these experiments, 200 times lower CH4 values detected by SAM are modeled around MSL location. There are CH4 concentration variations of orders of magnitude depending on the hour, so timing of SAM measurements is important. With a larger (but further away) outside crater release area compared to inside, similar CH4 values around MSL are modeled, so distance to source is important. In the steady experiments mimicking M09 detection release area, only 12 times lower CH4 values detected by SAM are modeled around MSL. The highest value in the M09 modeled scenario (0.6 ppbv) is reached in Ls270. This value is the

  9. Measurements of the structure and circulation of the stratosphere and mesosphere, 1971-2

    Science.gov (United States)

    Smith, W. S.; Theon, J. S.; Wright, D. U., Jr.; Ramsdale, D. J.; Horvath, J. J.

    1974-01-01

    Complete data from a total of 43 meteorological rocket soundings of the stratosphere and mesosphere conducted from Barrow, Alaska; Churchill, Canada; Wallops Island Va.; and Kourou, French Guiana are presented. These data consist of temperature, pressure, density, and wind profiles from 35 acoustic grenade soundings that cover the 30 to 90 km altitude range, and temperature, pressure, and density profiles from 8 pitot probe soundings that cover the 25 to 120 km altitude range. Errors for each of the 35 acoustic grenade soundings are also included.

  10. The Au-S bond and SAM-protein contact in long-range electron transfer of pure and biomimetic metalloproteins via functionalized alkanethiol linkers

    DEFF Research Database (Denmark)

    Chi, Qijin; Ford, Michael J.; Halder, Arnab

    disentangled a wealth of data to identify the nature of the crucial Au-S contact, all suggesting prevalence of a Au(0)-thiyl radical unit. Molecular packing is further determined by the SAM molecular structure and involves binding either to Au-atoms mined out of the surface or directly to a flat surface. We...... functionalized alkanethiols have emerged as core linkers. We have studied molecular linking in the long-range ET (LRET) processes in detail using electrochemistry, in situ STM and AFM, and electronic structure computations. A focus is the electronic structure of the Au-S link and the SAM packing. We have...... is exceedingly sensitive to the structure of the thiol-based SAM molecules, testifying to the crucial importance of SAM packing and Au-S binding, and of the SAM link to the protein. Some of the subtleties are illustrated simpler by similar size (5-6 nm) nanoparticles (NPs). Biomimetic NPs must possess a certain...

  11. REPRESENTASI HOMOSEKSUALITAS DI YOUTUBE: (Studi Semiotika pada Video Pernikahan Sam Tsui

    Directory of Open Access Journals (Sweden)

    Lilis Rucirisyanti

    2017-12-01

    Full Text Available Abstract. Social media is instrumental in giving effect to nitizens, good effects or bad effect, then social media can be also represent a person. Diserve social media make it interesting for nitizens. One of social media is Youtube. Many a lot of video at there, strat from tips and trick videos, journey or vacation video, wedding video, and ect. Everyone can publish their video on Youtube. No exception of same sex enthusiast, in this study are homosexual or gay. One of is a wedding video Sam Tsui and Casey Braves. This research is a qualitative research and this research uses semiotcs analysus of Roland Barthes. By doing an analysis of video that have been published by Sam on Youtube, also do document search and literature. The author sees the existence of verbal and non vebal forms of representation from same sex merriage video of men and men.

  12. Application of the SAM Computer Program for Truckee River Stable Channel Analysis

    National Research Council Canada - National Science Library

    Scott, Stephen H

    2006-01-01

    The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to demonstrate the utility of the SAM computer programs for evaluating the stability of a stream restoration design on the Truckee River...

  13. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  14. Mechanical Description of the Mars Climate Sounder Instrument

    Science.gov (United States)

    Jau, Bruno M.

    2008-01-01

    This paper introduces the Mars Climate Sounder (MCS) Instrument of the Mars Reconnaissance Orbiter (MRO) spacecraft. The instrument scans the Martian atmosphere almost continuously to systematically acquire weather and climate observations over time. Its primary components are an optical bench that houses dual telescopes with a total of nine channels for visible and infrared sensing, and a two axis gimbal that provides pointing capabilities. Both rotating joints consist of an integrated actuator with a hybrid planetary/harmonic transmission and a twist cap section that enables the electrical wiring to pass through the rotating joint. Micro stepping is used to reduce spacecraft disturbance torques to acceptable levels while driving the stepper motors. To ensure survivability over its four year life span, suitable mechanical components, lubrication, and an active temperature control system were incorporated. Some life test results and lessons learned are provided to serve as design guidelines for actuator parts and flex cables.

  15. The Seismic Aftershock Monitoring System (SAMS) for OSI - Experiences from IFE14

    Science.gov (United States)

    Gestermann, Nicolai; Sick, Benjamin; Häge, Martin; Blake, Thomas; Labak, Peter; Joswig, Manfred

    2016-04-01

    An on-site inspection (OSI) is the third of four elements of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The sole purpose of an OSI is to confirm whether a nuclear weapon test explosion or any other nuclear explosion has been carried out in violation of the treaty and to gather any facts which might assist in identifying any possible violator. It thus constitutes the final verification measure under the CTBT if all other available measures are not able to confirm the nature of a suspicious event. The Provisional Technical Secretariat (PTS) carried out the Integrated Field Exercise 2014 (IFE14) in the Dead Sea Area of Jordan from 3 November to 9. December 2014. It was a fictitious OSI whose aim was to test the inspection capabilities in an integrated manner. The technologies allowed during an OSI are listed in the Treaty. The aim of the Seismic Aftershock Monitoring System (SAMS) is to detect and localize aftershocks of low magnitudes of the triggering event or collapses of underground cavities. The locations of these events are expected in the vicinity of a possible previous explosion and help to narrow down the search area within an inspection area (IA) of an OSI. The success of SAMS depends on the main elements, hardware, software, deployment strategy, the search logic and not least the effective use of personnel. All elements of SAMS were tested and improved during the Built-Up Exercises (BUE) which took place in Austria and Hungary. IFE14 provided more realistic climatic and hazardous terrain conditions with limited resources. Significant variations in topography of the IA of IFE14 in the mountainous Dead Sea Area of Jordan led to considerable challenges which were not expected from experiences encountered during BUE. The SAMS uses mini arrays with an aperture of about 100 meters and with a total of 4 elements. The station network deployed during IFE14 and results of the data analysis will be presented. Possible aftershocks of

  16. New insights for mesospheric OH: multi-quantum vibrational relaxation as a driver for non-local thermodynamic equilibrium

    Directory of Open Access Journals (Sweden)

    K. S. Kalogerakis

    2018-01-01

    Full Text Available The question of whether mesospheric OH(v rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(v rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-v vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(v rotational population distributions. Rapid OH(high-v + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-v rotational distributions. The effective rotational temperatures of mesospheric OH(v are found to deviate from local thermodynamic equilibrium for all observed vibrational levels. Dedicated to Tom G. Slanger in celebration of his 5 decades of research in aeronomy.

  17. Must, valge + hall : Sam Wagstaffi ja Robert Mapplethorpe'i portree / Madis Palm

    Index Scriptorium Estoniae

    Palm, Madis

    2008-01-01

    Dokumentaalfilm "Black, White & Gray: Sam Wagstaff and Robert Mapplethorpe" : autor ja režissöör James Crump : Ameerika Ühendriigid 2007. Filmi näidati filminädala "Art in America" raames Tallinnas

  18. Plasma density measurements from the GEOS-1 relaxation sounder

    International Nuclear Information System (INIS)

    Etcheto, J.; Bloch, J.J.

    1978-01-01

    The relaxation sounder uses the characteristics of the propagation of radiowaves to sound the plasma surrounding the spacecraft. It determines, in particular, the plasma frequency, which gives the electron density. Measurements over the whole dayside of the magnetosphere, from the evening to the night sectors, are now available. The behaviour of the plasma resonance depends on local time, the nighttime echoes being generally weaker. Density measurements thus obtained are shown and discussed in the context of what is presently known about the plasma distribution in the magnetosphere. In particular, the density around apogee is studied as a function of magnetic activity. On the dayside, it appears to vary between a few and a few tens of electrons per cubic centimeter. The evolution of the density profile for several consecutive days is studied and interpreted tracing back the drift of the particles. (Auth.)

  19. Automatic detection of subglacial lakes in radar sounder data acquired in Antarctica

    Science.gov (United States)

    Ilisei, Ana-Maria; Khodadadzadeh, Mahdi; Dalsasso, Emanuele; Bruzzone, Lorenzo

    2017-10-01

    Subglacial lakes decouple the ice sheet from the underlying bedrock, thus facilitating the sliding of the ice masses towards the borders of the continents, consequently raising the sea level. This motivated increasing attention in the detection of subglacial lakes. So far, about 70% of the total number of subglacial lakes in Antarctica have been detected by analysing radargrams acquired by radar sounder (RS) instruments. Although the amount of radargrams is expected to drastically increase, from both airborne and possible future Earth observation RS missions, currently the main approach to the detection of subglacial lakes in radargrams is by visual interpretation. This approach is subjective and extremely time consuming, thus difficult to apply to a large amount of radargrams. In order to address the limitations of the visual interpretation and to assist glaciologists in better understanding the relationship between the subglacial environment and the climate system, in this paper, we propose a technique for the automatic detection of subglacial lakes. The main contribution of the proposed technique is the extraction of features for discriminating between lake and non-lake basal interfaces. In particular, we propose the extraction of features that locally capture the topography of the basal interface, the shape and the correlation of the basal waveforms. Then, the extracted features are given as input to a supervised binary classifier based on Support Vector Machine to perform the automatic subglacial lake detection. The effectiveness of the proposed method is proven both quantitatively and qualitatively by applying it to a large dataset acquired in East Antarctica by the MultiChannel Coherent Radar Depth Sounder.

  20. Evidence of long-term change in zonal wind in the tropical lower mesosphere: Observations and model simulations

    Czech Academy of Sciences Publication Activity Database

    Ratnam, M. V.; Kumar, G. K.; Rao, N. V.; Murthy, B. V. K.; Laštovička, Jan; Qian, L.

    2013-01-01

    Roč. 40, č. 2 (2013), s. 397-401 ISSN 0094-8276 R&D Projects: GA ČR GAP209/10/1792 Institutional support: RVO:68378289 Keywords : mesosphere * zonal wind * long-term trends * TIME-GCM * climate change Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 4.456, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/grl.50158/abstract

  1. Impact of local and non-local sources of pollution on background US Ozone: synergy of a low-earth orbiting and geostationary sounder constellation

    Science.gov (United States)

    Bowman, K. W.; Lee, M.

    2015-12-01

    Dramatic changes in the global distribution of emissions over the last decade have fundamentally altered source-receptor pollution impacts. A new generation of low-earth orbiting (LEO) sounders complimented by geostationary sounders over North America, Europe, and Asia providing a unique opportunity to quantify the current and future trajectory of emissions and their impact on global pollution. We examine the potential of this constellation of air quality sounders to quantify the role of local and non-local sources of pollution on background ozone in the US. Based upon an adjoint sensitivity method, we quantify the role synoptic scale transport of non-US pollution on US background ozone over months representative of different source-receptor relationships. This analysis allows us distinguish emission trajectories from megacities, e.g. Beijing, or regions, e.g., western China, from natural trends on downwind ozone. We subsequently explore how a combination of LEO and GEO observations could help quantify the balance of local emissions against changes in distant sources . These results show how this unprecedented new international ozone observing system can monitor the changing structure of emissions and their impact on global pollution.

  2. Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

    Science.gov (United States)

    Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.

    2018-01-01

    This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.

  3. Congressmember Sam Farr: Five Decades of Public Service

    OpenAIRE

    Reti, Irene H.; Farr, Sam

    2017-01-01

    Congressmember Sam Farr (born July 4, 1941) represented California’s Central Coast in the United States House of Representatives for twenty-three years until his retirement from office in 2016.  Farr also served six years as a member of the Monterey County Board of Supervisors and twelve years in the California State Assembly. This oral history, a transcript of twenty-five hours of interviews conducted by Irene Reti, director of the UCSC Library’s Regional History Project, during the period i...

  4. Latitudinal Dependence of the Energy Input into the Mesosphere by High Energy Electrons

    Science.gov (United States)

    Wagner, C. U.; Nikutowski, B.; Ranta, H.

    1984-01-01

    Night-time ionspheric absorption measurements give the possibility to study the precipitation of high energy electrons into the mesosphere during and after magnetospheric storms. The uniform Finnish riometer network was used together with measurements from Kuhlungsborn and Collm (GDR) to investigate the night-time absorption as a function of latitude (L=6.5 to 2.5) and storm-time for seven storms. The common trends visible in all these events are summarized in a schematic average picture, showing the distribution of increased ionospheric absorption as a function of latitude (L value) and storm-time.

  5. Genome sequencing and annotation of Stenotrophomonas sp. SAM8

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Stenotrophomonas sp. strain SAM8, isolated from environmental water. The draft genome size is 3,665,538 bp with a G + C content of 67.2% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDAV00000000.

  6. Technical Manual for the SAM Biomass Power Generation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jorgenson, J.; Gilman, P.; Dobos, A.

    2011-09-01

    This technical manual provides context for the implementation of the biomass electric power generation performance model in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). Additionally, the report details the engineering and scientific principles behind the underlying calculations in the model. The framework established in this manual is designed to give users a complete understanding of behind-the-scenes calculations and the results generated.

  7. Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68

    Science.gov (United States)

    Feracci, Mikael; Foot, Jaelle N.; Grellscheid, Sushma N.; Danilenko, Marina; Stehle, Ralf; Gonchar, Oksana; Kang, Hyun-Seo; Dalgliesh, Caroline; Meyer, N. Helge; Liu, Yilei; Lahat, Albert; Sattler, Michael; Eperon, Ian C.; Elliott, David J.; Dominguez, Cyril

    2016-01-01

    Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome. PMID:26758068

  8. Reactions Involving Calcium and Magnesium Sulfates as Potential Sources of Sulfur Dioxide During MSL SAM Evolved Gas Analyses

    Science.gov (United States)

    McAdam, A. C.; Knudson, C. A.; Sutter, B.; Franz, H. B.; Archer, P. D., Jr.; Eigenbrode, J. L.; Ming, D. W.; Morris, R. V.; Hurowitz, J. A.; Mahaffy, P. R.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analyzed several subsamples of 860 C). Sulfides or Fe sulfates were detected by CheMin (e.g., CB, MJ, BK) and could contribute to the high temperature SO2 evolution, but in most cases they are not present in enough abundance to account for all of the SO2. This additional SO2 could be largely associated with x-ray amorphous material, which comprises a significant portion of all samples. It can also be attributed to trace S phases present below the CheMin detection limit, or to reactions which lower the temperatures of SO2 evolution from sulfates that are typically expected to thermally decompose at temperatures outside the SAM temperature range (e.g., Ca and Mg sulfates). Here we discuss the results of SAM-like laboratory analyses targeted at understanding this last possibility, focused on understanding if reactions of HCl or an HCl evolving phase (oxychlorine phases, chlorides, etc.) and Ca and Mg sulfates can result in SO2 evolution in the SAM temperature range.

  9. Molecular tilt-dependent and tyrosine-enhanced electron transfer across ITO/SAM/[DPPC–Au NP–Tyrosine] Janus nanoparticle junction

    Energy Technology Data Exchange (ETDEWEB)

    Sarangi, Nirod Kumar; Patnaik, Archita, E-mail: archita59@yahoo.com [Indian Institute of Technology Madras, Department of Chemistry (India)

    2016-09-15

    Enhanced interfacial electron transfer (ET) across the otherwise insulating indium tin oxide/alkanethiol self-assembled monolayer (SAM)/redox molecule junction was accomplished when a Janus gold nanoparticle (JNP) protected by bioinspired phosphatidylcholine (DPPC) lipid and tyrosine amino acid ligands was anchored on it. In addition to the most theoretical and experimental investigations on the distance-dependent ET across Metal–Organic SAM–Nanoparticle (NP) architectures, the current results succinctly illustrate molecular tilt angle of the SAM and the characteristic of JNP as key factors in expediting the ET rate via electron tunneling. In the absence of JNP, electron tunneling with a tunneling factor β = 1.1 Å{sup −1} across the SAM was the rate-limiting step, evidenced from electrochemical impedance spectroscopy (EIS). The apparent electron transfer rate constant (k{sub app}{sup 0}) for anchored SAM was enhanced by at least one order of magnitude than the DPPC-only protected nanoparticle, suggesting the potential role of tyrosine towards the enhanced ET. The asymmetric and biogenic nature of the construct sheds light on a potential bioelectronic device for novel electronic attributes.Graphical abstractEntry of TOC .

  10. Non-invasive vibrational SFG spectroscopy reveals that bacterial adhesion can alter the conformation of grafted "brush" chains on SAM.

    Science.gov (United States)

    Bulard, Emilie; Guo, Ziang; Zheng, Wanquan; Dubost, Henri; Fontaine-Aupart, Marie-Pierre; Bellon-Fontaine, Marie-Noëlle; Herry, Jean-Marie; Briandet, Romain; Bourguignon, Bernard

    2011-04-19

    Understanding bacterial adhesion on a surface is a crucial step to design new materials with improved properties or to control biofilm formation and eradication. Sum Frequency Generation (SFG) vibrational spectroscopy has been employed to study in situ the conformational response of a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film to the adhesion of hydrophilic and hydrophobic ovococcoid model bacteria. The present work highlights vibrational SFG spectroscopy as a powerful and unique non-invasive biophysical technique to probe and control bacteria interaction with ordered surfaces. Indeed, the SFG vibrational spectral changes reveal different ODT SAM conformations in air and upon exposure to aqueous solution or bacterial adhesion. Furthermore, this effect depends on the bacterial cell surface properties. The SFG spectral modeling demonstrates that hydrophobic bacteria flatten the ODT SAM alkyl chain terminal part, whereas the hydrophilic ones raise this ODT SAM terminal part. Microorganism-induced alteration of grafted chains can thus affect the desired interfacial functionality, a result that should be considered for the design of new reactive materials. © 2011 American Chemical Society

  11. Evidence for Smectite Clays from MSL SAM Analyses of Mudstone at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    McAdam, Amy; Franz, Heather; Mahaffy, Paul R.; Eigenbrode, Jennifer L.; Stern, Jennifer C.; Brunner, Anna; Archer, Paul Douglas; Ming, Douglas W.; Morris, Richard V.; Atreya, Sushil K.

    2013-01-01

    Drilled samples of mudstone from the Sheepbed unit at Yellowknife Bay were analyzed by MSL instruments including the Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments in MSL's Analytical Laboratory. CheMin analyses revealed the first in situ X-ray diffraction based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., saponite) and comprise approx 20% of the mudstone sample (e.g., Bristow et al., this meeting). SAM analyses, which heated the mudstone samples to 1000 C and monitored volatiles evolved to perform in situ evolved gas analysis mass spectrometry (EGA-MS), resulted in a H2O trace exhibiting a wide evolution at temperatures smectite interlayer H2O, and structural H2O/OH from bassanite and akaganeite (identified by CheMin) and H2O/OH from amorphous phases in the sample. The high temperature H2O is consistent with the evolution of H2O from the dehydroxylation of the smectite clay mineral. Comparison to EGA-MS data collected under SAM-like conditions on a variety of clay mineral reference materials indicate that a trioctahedral smectite, such as saponite, is most consistent with the high temperature H2O evolution observed. There may also be SAM EGA-MS evidence for a small high temperature H2O evolution from scoop samples from the Yellowknife Bay Rocknest sand shadow bedform. As in the mudstone samples, this evolution may indicate the detection of smectite clays, and the idea that minor clays may be present in Rocknest materials that could be expected to be at least partially derived from local sources is reasonable. But, because smectite clays were not definitively observed in CheMin analyses of Rocknest materials, they must be present at much lower abundances than the approx 20% observed in the mudstone samples. This potential detection underscores the complementary nature of the MSL CheMin and SAM instruments for investigations of martian sample mineralogy. Information on the nature of Yellowknife

  12. Performance of a 1-micron, 1-joule Coherent Launch Site Atmospheric Wind Sounder

    Science.gov (United States)

    Hawley, James G.; Targ, Russell; Bruner, Richard; Henderson, Sammy W.; Hale, Charles P.; Vetorino, Steven; Lee, R. W.; Harper, Scott; Khan, Tayyab

    1992-01-01

    The paper describes the design and performance of the Coherent Launch Site Atmospheric Wind Sounder (CLAWS), which is a test and demonstration program designed for monitoring winds with a solid-state lidar in real time for the launch site vehicle guidance and control application. Analyses were conducted to trade off CO2 (9.11- and 10.6-microns), Ho:YAG (2.09 microns), and Nd:YAG (1.06-micron) laser-based lidars. The measurements set a new altitude record (26 km) for coherent wind measurements in the stratosphere.

  13. Molecular junctions based on SAMs of cruciform oligo(phenylene ethynylene)s

    DEFF Research Database (Denmark)

    Wei, Zhongming; Li, Tao; Jennum, Karsten Stein

    2012-01-01

    Cruciform oligo(phenylene ethynylene)s (OPEs) with an extended tetrathiafulvalene (TTF) donor moiety (OPE5-TTF and OPE3-TTF) and their simple analogues (OPE5-S and OPE3) without conjugated substituents were used to form high quality self-assembled monolayers (SAMs) on ultra-flat gold substrates...

  14. Selective translational repression of HIV-1 RNA by Sam68DeltaC occurs by altering PABP1 binding to unspliced viral RNA

    Directory of Open Access Journals (Sweden)

    Soros Vanessa

    2008-10-01

    Full Text Available Abstract HIV-1 structural proteins are translated from incompletely spliced 9 kb and 4 kb mRNAs, which are transported to the cytoplasm by Crm1. It has been assumed that once in the cytoplasm, translation of incompletely spliced HIV-1 mRNAs occurs in the same manner as host mRNAs. Previous analyses have demonstrated that Sam68 and a mutant thereof, Sam68ΔC, have dramatic effects on HIV gene expression, strongly enhancing and inhibiting viral structural protein synthesis, respectively. While investigating the inhibition of incompletely spliced HIV-1 mRNAs by Sam68ΔC, we determined that the effect was independent of the perinuclear bundling of the viral RNA. Inhibition was dependent upon the nuclear export pathway used, as translation of viral RNA exported via the Tap/CTE export pathway was not blocked by Sam68ΔC. We demonstrate that inhibition of HIV expression by Sam68ΔC is correlated with a loss of PABP1 binding with no attendant change in polyadenosine tail length of the affected RNAs. The capacity of Sam68ΔC to selectively inhibit translation of HIV-1 RNAs exported by Crm1 suggests that it is able to recognize unique characteristics of these viral RNPs, a property that could lead to new therapeutic approaches to controlling HIV-1 replication.

  15. The Whisper Relaxation Sounder onboard Cluster: A Powerful Tool for Space Plasma Diagnosis around the Earth

    International Nuclear Information System (INIS)

    Trotignon, J.G.; Decreau, P.M.E.; Rauch, J.L.; LeGuirriec, E.; Canu, P.; Darrouzet, F.

    2001-01-01

    The WHISPER relaxation sounder that is onboard the four CLUSTER spacecraft has for main scientific objectives to monitor the natural waves in the 2 kHz - 80 kHz frequency range and, mostly, to determine the total plasma density from the solar wind down to the Earth's plasmasphere. To fulfil these objectives, the WHISPER uses the two long double sphere antennae of the Electric Field and Wave experiment as transmitting and receiving sensors. In its active working mode, the WHISPER works according to principles that have been worked out for topside sounding. A radio wave transmitter sends an almost monochromatic and short wave train. A few milliseconds after, a receiver listens to the surrounding plasma response. Strong and long lasting echoes are actually received whenever the transmitting frequencies coincide with characteristic plasma frequencies. Provided that these echoes, also called resonances, may be identified, the WHISPER relaxation sounder becomes a reliable and powerful tool for plasma diagnosis. When the transmitter is off, the WHISPER behaves like a passive receiver, allowing natural waves to be monitored. The paper aims mainly at the resonance identification process description and the WHISPER capabilities and performance highlighting. (author)

  16. Mesospheric front observations by the OH airglow imager carried out at Ferraz Station on King George Island, Antarctic Peninsula, in 2011

    Science.gov (United States)

    Giongo, Gabriel Augusto; Valentin Bageston, José; Prado Batista, Paulo; Wrasse, Cristiano Max; Dornelles Bittencourt, Gabriela; Paulino, Igo; Paes Leme, Neusa Maria; Fritts, David C.; Janches, Diego; Hocking, Wayne; Schuch, Nelson Jorge

    2018-02-01

    The main goals of this work are to characterize and investigate the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR) airglow images, obtained with an all-sky airglow imager installed at Comandante Ferraz Antarctic Station (EACF, as per its Portuguese acronym) located on King George Island in the Antarctic Peninsula. We identified and analyzed four mesospheric fronts in 2011 over King George Island. In addition, we investigate the atmospheric background environment between 80 and 100 km altitude and discuss the ducts and propagation conditions for these waves. For that, we used wind data obtained from a meteor radar operated at EACF and temperature data obtained from the TIMED/SABER satellite. The vertical wavenumber squared, m2, was calculated for each of the four waves. Even though no clearly defined duct (indicated by positive values of m2 sandwiched between layers above and below with m2 wind in the wave propagation direction (near to south) above the OH peak (88-92 km). The likely wave sources for these four cases were investigated by using meteorological satellite images and in two cases we could find that strong instabilities were potential sources, i.e., a cyclonic activity and a large convective cloud cell. In the other two cases it was not possible to associate troposphere sources as potential candidates for the generation of such wave fronts observed in the mesosphere and secondary wave sources were attributed to these cases.

  17. Instrumentation for optical remote sensing from space; Proceedings of the Meeting, Cannes, France, November 27-29, 1985

    Science.gov (United States)

    Seeley, John S. (Editor); Lear, John W. (Editor); Russak, Sidney L. (Editor); Monfils, Andre (Editor)

    1986-01-01

    Papers are presented on such topics as the development of the Imaging Spectrometer for Shuttle and space platform applications; the in-flight calibration of pushbroom remote sensing instruments for the SPOT program; buttable detector arrays for 1.55-1.7 micron imaging; the design of the Improved Stratospheric and Mesospheric Sounder on the Upper Atmosphere Research Satellite; and SAGE II design and in-orbit performance. Consideration is also given to the Shuttle Imaging Radar-B/C instruments; the Venus Radar Mapper multimode radar system design; various ISO instruments (ISOCAM, ISOPHOT, and SWS and LWS); and instrumentation for the Space Infrared Telescope Facility.

  18. Mesospheric Na Variability and Dependence on Geomagnetic and Solar Activity over Arecibo

    Science.gov (United States)

    Jain, K.; Raizada, S.; Brum, C. G. M.

    2017-12-01

    The Sodium (Na) resonance lidars located at the Arecibo Observatory offer an excellent opportunity to study the mesosphere/lower thermosphere(MLT) region. Different metals like Fe, Mg, Na, K, Ca and their ions are deposited in the 80 - 120 km altitude range due to the ablation of meteors caused by frictional heating during their entry into the Earth's atmosphere. We present an investigation of the neutral mesospheric Na atom layers over Arecibo. Data on the Na concentrations was collected using a resonance lidar tuned to the of Na wavelength at 589 nm. This wavelength is achieved with a dye-laser pumped by the second harmonic (532 nm) generated from a state-of-the-art commercial Nd:YAG laser. The backscattered signal is received on a 0.8 m (diameter) Cassegrain telescope. The study is based on this data acquired from 1998-2017 and its relation to variations in geomagnetic and solar conditions. We also investigate seasonal and long term trends in the data. The nightly-averaged altitude profiles were modeled as Gaussian curves. From this modeled data we obtain parameters such as the peak, abundance, centroid and width of the main Na layer. Preliminary results show that the Na abundance is more sensitive to changes in geomagnetic and solar variations as compared to the width and centroid height. The seasonal variation exhibits higher peak densities during the local summer and has a secondary maximum during the winter [as shown in the attached figure]. Our analysis demonstrates a decrease in the peak and the abundance of Na atoms with the increase of solar and geomagnetic activity.

  19. Whisper, a resonance sounder and wave analyser: Performances and perspectives for the Cluster mission

    DEFF Research Database (Denmark)

    Decreau, P.M.E.; Fergeau, P.; KrannoselsKikh, V.

    1997-01-01

    The WHISPER sounder on the Cluster spacecraft is primarily designed to provide an absolute measurement of the total plasma density within the range 0.2-80 cm(-3). This is achieved by means of a resonance sounding technique which has already proved successful in the regions to be explored. The wav...... in the electron foreshock and solar wind, to investigations about small-scale structures via density and high-frequency emission signatures, and to the analysis of the non-thermal continuum in the magnetosphere....

  20. Jo Ann Baumgartner and Sam Earnshaw: Organizers and Farmers

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    Jo Ann Baumgartner directs the Wild Farm Alliance, based in Watsonville, California. WFA’s mission, as described on the organization’s website, is “to promote agriculture that helps to protect and restore wild Nature.” Through research, publications, presentations, events, policy work, and consulting, the organization works to “connect food systems with ecosystems.” Sam Earnshaw is Central Coast regional coordinator of the Community Alliance with Family Farmers. Working with CAFF’s f...

  1. Reflections on Sam Harris' "Free Will"

    Directory of Open Access Journals (Sweden)

    Daniel C. Dennett

    2017-12-01

    Full Text Available In his book Free Will Sam Harris tries to persuade us to abandon the morally pernicious idea of free will. The following contribution articulates and defends a more sophisticated model of free will that is not only consistent with neuroscience and introspection but also grounds a variety of responsibility that justifies both praise and blame, reward and punishment. This begins with the long lasting parting of opinion between compatibilists (who argue that free will can live comfortably with determinism and incompatibilists (who deny this. While Harris dismisses compatibilism as a form of theology, this article aims at showing that Harris has underestimated and misinterpreted compatibilism and at defending a more sophisticated version of compatibilism that is imprevious to Harris’ criticism.

  2. The response of Antarctica MLT region for the recent Sudden Stratospheric Warming (SSW) over Southern Hemisphere (SH): An overview

    Science.gov (United States)

    Eswaraiah, S.; Kim, Y.; Lee, J.; Kim, J. H.; Venkat Ratnam, M.; Riggin, D. M.; Vijaya Bhaskara Rao, S.

    2017-12-01

    A minor Sudden Stratospheric Warming (SSW) was noticed in the southern hemisphere (SH) during the September (day 259) 2010 along with two episodic warmings in early August (day 212) and late October (day 300) 2010. The signature of the mesosphere and lower thermosphere (MLT) response was detected using the ground based and space borne observations along with the model predictions. The changes in the mesosphere wind field were studied from the observations of both meteor radar and MF radar located at King Sejong Station (62.22°S, 58.78°W) and Rothera (68oS, 68oW), Antarctica, respectively. The zonal winds in the mesosphere reversed approximately a week before the September SSW occurrence. We have also analyzed the MLT tides using both the radars and noticed strong enhancement of semi-diurnal tide (SDT) a few days later the cessation of 2010 SSW. We note the similar enhancement during the 2002 major SSW. Specifically, the SDT amplitude enhancement is greater for the 2010 SSW than 2002 SSW. We found that strong 14-16 day PWs prevailed prior to the 2010 minor SSW and disappeared suddenly after the SSW in the mesosphere by generating the quasi-secondary waves of periodicity 3-9 days. The mesosphere wind reversal is also noticed in "Specified Dynamics" version of Whole Atmosphere Community Climate Model (SD-WACCM) and Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) simulations. The similar zonal wind weakening/reversal in the lower thermosphere between 100 and 140 km are simulated by GAIA. Further, we observed the mesospheric cooling in consistency with SSWs using Microwave Limb Sounder (MLS) data. However, the GAIA simulations showed warming between 130 and 140 km after few days of SSW. Thus, the observation and model simulation indicate for the first time that the 2010 minor SSW also affects dynamics of the MLT region over SH in a manner similar to the 2002 major SSW.

  3. Geomagnetic control of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    J. Bremer

    2000-02-01

    Full Text Available Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E from 1994 until 1997 polar mesosphere summer echoes (PMSE have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E. During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.Keywords: Ionosphere (auroral ionosphere - Magnetospheric physics (energetic particles, precipitating - Radio science (remote sensing

  4. Arctic Strato-Mesospheric Temperature and Wind Variations

    Science.gov (United States)

    Schmidlin, F. J.; Goldberg, R. A.

    2004-01-01

    Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.

  5. Carbon Monoxide Distribution over Peninsular Malaysia from the Atmospheric Infrared Sounder (AIRS)

    Science.gov (United States)

    Rajab, Jaso M.; MatJafri, M. Z.; Lim, H. S.; Abdullah, K.

    2009-07-01

    The Atmospheric Infrared Sounder (AIRS) onboard NASA's Aqua satellite. It daily coverage of ˜70% of the planet represents a significant evolutionary advance in satellite traces gas remote sensing. AIRS, the part of a large international investment to upgrade the operational meteorological satellite systems, is first of the new generation of meteorological advanced sounders for operational and research use, Providing New Insights into Weather and Climate for the 21st Century. Carbon monoxide (CO) is a ubiquitous, an indoor and outdoor air pollutant, is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidization in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. It produced by the incomplete combustion of fossil fuels and biomass burning, and that it has a role as a smog. The aim of this investigation is to study the (CO) carbon monoxide distribution over Peninsular Malaysia. The land use map of the Peninsular Malaysia was conducted by using CO total column amount, obtained from AIRS data, the map & data was processed and analyzed by using Photoshop & SigmaPlot 11.0 programs and compared for timing of various (day time) (28 August 2005 & 29 August 2007) for both direct comparison and the comparison using the same a priori profile, the CO concentrations in 28/8/2005 higher. The CO maps were generated using Kriging Interpolation technique. This interpolation technique produced high correlation coefficient, R2 and low root mean square error, RMS for CO. This study provided useful information for influence change of CO concentration on varies temperature.

  6. NOAA Climate Data Record (CDR) of Intersatellite Calibrated Clear-Sky High Resolution Infrared Radiation Sounder (HIRS) Channel 12 Brightness Temperature Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The High-Resolution Infrared Radiation Sounder (HIRS) of intersatellite calibrated channel 12 brightness temperature (TB) product is a gridded global monthly time...

  7. Methyl group balance in brain and liver: role of choline on increased S-adenosyl methionine (SAM) demand by chronic arsenic exposure.

    Science.gov (United States)

    Ríos, Rosalva; Santoyo, Martha E; Cruz, Daniela; Delgado, Juan Manuel; Zarazúa, Sergio; Jiménez-Capdeville, María E

    2012-11-30

    Arsenic toxicity has been related to its interference with one carbon metabolism, where a high demand of S-adenosylmethionine (SAM) for arsenic methylation as well as a failure of its regeneration would compromise the availability of methyl groups for diverse cellular functions. Since exposed animals show disturbances of methylated products such as methylated arginines, myelin and axon membranes, this work investigates whether alterations of SAM, choline and phosphatidylcholine (PC) in the brain of arsenic exposed rats are associated with myelin alterations and myelin basic protein (MBP) immunoreactivity. Also these metabolites, morphologic and biochemical markers of methyl group alterations were analyzed in the liver, the main site of arsenic methylation. In adult, life-long arsenic exposed rats through drinking water (3 ppm), no changes of SAM, choline and PC concentrations where found in the brain, but SAM and PC were severely decreased in liver accompanied by a significant increase of choline. These results suggest that choline plays an important role as methyl donor in arsenic exposure, which could underlie hepatic affections observed when arsenic exposure is combined with other environmental factors. Also, important myelin and nerve fiber alterations, accompanied by a 75% decrease of MBP immunoreactivity were not associated with a SAM deficit in the brain. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Thermal and Evolved Gas Analysis of Calcite Under Reduced Operating Pressures: Implications for the 2011 MSL Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Lauer, H. V. Jr.; Ming, D. W.; Sutter, B.; Mahaffy, P. R.

    2010-01-01

    The Mars Science Laboratory (MSL) is scheduled for launch in 2011. The science objectives for MSL are to assess the past or present biological potential, to characterize the geology, and to investigate other planetary processes that influence habitability at the landing site. The Sample Analysis at Mars (SAM) is a key instrument on the MSL payload that will explore the potential habitability at the landing site [1]. In addition to searching for organic compounds, SAM will have the capability to characterized evolved gases as a function of increasing temperature and provide information on the mineralogy of volatile-bearing phases such as carbonates, sulfates, phyllosilicates, and Fe-oxyhydroxides. The operating conditions in SAM ovens will be maintained at 30 mb pressure with a He carrier gas flowing at 1 sccm. We have previously characterized the thermal and evolved gas behaviors of volatile-bearing species under reduced pressure conditions that simulated operating conditions of the Thermal and Evolved Gas Analyzer (TEGA) that was onboard the 2007 Mars Phoenix Scout Mission [e.g., 2-8]. TEGA ovens operated at 12 mb pressure with a N2 carrier gas flowing at 0.04 sccm. Another key difference between SAM and TEGA is that TEGA was able to perform differential scanning calorimetry whereas SAM only has a pyrolysis oven. The operating conditions for TEGA and SAM have several key parameter differences including operating pressure (12 vs 30 mb), carrier gas (N2 vs. He), and carrier gas flow rate (0.04 vs 1 sccm). The objectives of this study are to characterize the thermal and evolved gas analysis of calcite under SAM operating conditions and then compare it to calcite thermal and evolved gas analysis under TEGA operating conditions.

  9. iSAM: An iPhone Stealth Airborne Malware

    OpenAIRE

    Damopoulos , Dimitrios; Kambourakis , Georgios; Gritzalis , Stefanos

    2011-01-01

    Part 2: Malware, Information Flow and DoS Attacks; International audience; Modern and powerful mobile devices comprise an attractive target for any potential intruder or malicious code. The usual goal of an attack is to acquire users’ sensitive data or compromise the device so as to use it as a stepping stone (or bot) to unleash a number of attacks to other targets. In this paper, we focus on the popular iPhone device.We create a new stealth and airborne malware namely iSAM able to wirelessly...

  10. Stealing the gold a celebration of the pioneering physics of Sam Edwards

    CERN Document Server

    Goldenfeld, Nigel; Sherrington, D C; Edwards, S F

    2004-01-01

    This title presents a survey of some of the most exciting topics in condensed matter physics today, from the perspective of the pioneering work of Sam Edwards. Original articles from leaders in the field highlight the historical development as well as new and emerging areas.

  11. Evolved Gas Analyses of Sedimentary Materials in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars (SAM) Instrument from Yellowknife Bay to the Stimson Formation

    Science.gov (United States)

    Sutter, B.; McAdam, A. C.; Rampe, E. B.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 10 samples from Gale Crater. All SAM evolved gas analyses have yielded a multitude of volatiles (e.g, H2O, SO2, H2S, CO2, CO, NO, O2, HC1). The objectives of this work are to 1) Characterize the evolved H2O, SO2, CO2, and O2 gas traces of sediments analyzed by SAM through sol 1178, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results releative to understanding the geochemical history of Gale Crater.

  12. Radical SAM Enzymes in the Biosynthesis of Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs

    Directory of Open Access Journals (Sweden)

    Alhosna Benjdia

    2017-11-01

    Full Text Available Ribosomally-synthesized and post-translationally modified peptides (RiPPs are a large and diverse family of natural products. They possess interesting biological properties such as antibiotic or anticancer activities, making them attractive for therapeutic applications. In contrast to polyketides and non-ribosomal peptides, RiPPs derive from ribosomal peptides and are post-translationally modified by diverse enzyme families. Among them, the emerging superfamily of radical SAM enzymes has been shown to play a major role. These enzymes catalyze the formation of a wide range of post-translational modifications some of them having no counterparts in living systems or synthetic chemistry. The investigation of radical SAM enzymes has not only illuminated unprecedented strategies used by living systems to tailor peptides into complex natural products but has also allowed to uncover novel RiPP families. In this review, we summarize the current knowledge on radical SAM enzymes catalyzing RiPP post-translational modifications and discuss their mechanisms and growing importance notably in the context of the human microbiota.

  13. Sensitivity of Middle Atmospheric Temperature and Circulation in the UIUC Mesosphere-Stratosphere-Troposphere GCM to the Treatment of Subgrid-Scale Gravity-Wave Breaking

    Science.gov (United States)

    Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.

    2003-01-01

    The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In

  14. Mesospheric Water Vapor Retrieved from SABER/TIMED Measurements

    Science.gov (United States)

    Feofilov, Arte, G.; Yankovsky, Valentine A.; Marshall, Benjamin T.; Russell, J. M., III; Pesnell, W. D.; Kutepov, Alexander A.; Goldberg, Richard A.; Gordley, Larry L.; Petelina, Svetlama; Mauilova, Rada O.; hide

    2007-01-01

    The SABER instrument on board the TIMED satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT) The H2O concentrations are retrieved from 6.3 micron band radiances. The interpretation of this radiance requires developing a non-LTE H2O model that includes energy exchange processes with the system of O3 and O2 vibrational levels populated at the daytime through a number of photoabsorption and photodissociation processes. We developed a research model base on an extended H2O non-LTE model of Manuilova coupled with the novel model of the electronic kinetics of the O2 and O3 photolysis products suggested by Yankosvky and Manuilova. The performed study of this model helped u to develop and test an optimized operational model for interpretation of SABER 6.3 micron band radiances. The sensitivity of retrievals to the parameters of the model is discussed. The H2O retrievals are compared to other measurements for different seasons and locations.

  15. On the electric breakdown field of the mesosphere and the influence of electron detachment

    DEFF Research Database (Denmark)

    Neubert, Torsten; Chanrion, Olivier Arnaud

    2013-01-01

    It has been suggested recently that electron associative detachment from negative atomic oxygen ions provides an additional source of free electrons in electric discharges of the mesosphere, the sprites, and gigantic jets. Here we study attachment under some simplifying assumptions and show...... that the threshold field decreases with time and can reach values well below the conventional threshold field. The concept of a fixed threshold field therefore itself breaks down. We find that the growth rate decreases with decreasing electric field and that long exposure time of electric fields therefore is needed...

  16. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    Science.gov (United States)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  17. Use of INSAT-3D sounder and imager radiances in the 4D-VAR data assimilation system and its implications in the analyses and forecasts

    Science.gov (United States)

    Indira Rani, S.; Taylor, Ruth; George, John P.; Rajagopal, E. N.

    2016-05-01

    INSAT-3D, the first Indian geostationary satellite with sounding capability, provides valuable information over India and the surrounding oceanic regions which are pivotal to Numerical Weather Prediction. In collaboration with UK Met Office, NCMRWF developed the assimilation capability of INSAT-3D Clear Sky Brightness Temperature (CSBT), both from the sounder and imager, in the 4D-Var assimilation system being used at NCMRWF. Out of the 18 sounder channels, radiances from 9 channels are selected for assimilation depending on relevance of the information in each channel. The first three high peaking channels, the CO2 absorption channels and the three water vapor channels (channel no. 10, 11, and 12) are assimilated both over land and Ocean, whereas the window channels (channel no. 6, 7, and 8) are assimilated only over the Ocean. Measured satellite radiances are compared with that from short range forecasts to monitor the data quality. This is based on the assumption that the observed satellite radiances are free from calibration errors and the short range forecast provided by NWP model is free from systematic errors. Innovations (Observation - Forecast) before and after the bias correction are indicative of how well the bias correction works. Since the biases vary with air-masses, time, scan angle and also due to instrument degradation, an accurate bias correction algorithm for the assimilation of INSAT-3D sounder radiance is important. This paper discusses the bias correction methods and other quality controls used for the selected INSAT-3D sounder channels and the impact of bias corrected radiance in the data assimilation system particularly over India and surrounding oceanic regions.

  18. International ISOE Workshop - Direction Forward for the Finalization of the EG-SAM Report

    International Nuclear Information System (INIS)

    Okyar, H. Burcin

    2014-01-01

    The objective of the ISOE Expert Group on Occupational Radiation Protection in Severe Accident Management and Post-accident Recovery (EG-SAM) is to develop a report on best radiation protection management procedures for proper radiation protection job coverage during severe accident initial response and recovery efforts to identify good radiation protection practices and to organise and communicate radiation protection lessons learned from previous reactor accidents. The outcome of the work will be a new ISOE publication on Occupational Radiation Protection in severe accident management that will find broad use within the NPP radiation protection community. The EG-SAM has finalized an interim report which was presented at the Washington workshop. The interim report covered the following topics: RP Management and Organisation; RP Training and Exercises related to Severe Accident Management; Facility Configuration and Readiness; Overall Approach for Worker Protection; Monitoring and Managing the Radioactive Releases and Contamination; Key Lessons Learned from Past Accidents; Conclusions. Utilities and Regulatory Authorities have identified the factors and aspects which play key roles in achieving good practices on occupational radiation protection in severe accident management and post-accident recovery: knowledge, experience, technology, regulatory requirements and guidance, worker involvement, information exchange, training aspects, etc. They have analysed and quantified their impact on worker doses, and submitted recommendations for further work. The next step will be a final meeting of the EG-SAM for the finalization of the report with workshop inputs before its submission for approval

  19. SAM - Sistema Automatizado del Método MECAP para Especificar Casos de Prueba

    Directory of Open Access Journals (Sweden)

    Kenyer Domínguez

    2010-12-01

    Full Text Available Existen cuatro elementos que son relevantes al momento de definir las pruebas: Confiabilidad, Costo, Tiempo y Calidad. El tiempo de desarrollo y el costo del producto se incrementan cuando se desean pruebas confiables y un software de calidad. Pero ¿qué se puede hacer para que los involucrados comprendan que las pruebas deben ser vistas como una red de seguridad? Si la calidad no se contempla antes de comenzar las pruebas, entonces ella no estará cuando se éstas terminen. El objetivo de este artículo es presentar la herramienta, SAM – Sistema Automatizado del Método MECAP que permite especificar Casos de Prueba a partir de Casos de Uso incorporando elementos que promueven la verificación y validación de la trazabilidad entre la Gestión de Requerimientos, el Análisis y Diseño y las Pruebas. SAM soporta el proceso de pruebas de forma automatizada, mejorando la confiabilidad de las mismas

  20. Measurements of mesospheric ice aerosols using radars and rockets

    Energy Technology Data Exchange (ETDEWEB)

    Strelnikova, Irina; Li, Qiang; Strelnikov, Boris; Rapp, Markus [Leibniz Institute of Atmospheric Physics, Kuehlungsborn (Germany)

    2010-07-01

    Polar summer mesopause is the coldest region of Earth's atmosphere with temperatures as low as minus 130 C. In this extreme environment ice aerosol layers have appeared. Larger aerosols can be seen from the ground as clouds known as NLC (Noctilucent clouds). Ice aerosols from sub-visible range give rise to the phenomena known as Polar Mesosphere Sommer Echo (PMSE). For efficient scattering, electron number density must be structured at the radar half wavelength (Bragg condition). The general requirement to allow for the observation of structures at VHF and higher frequencies is that the dust size (and charge number) must be large enough to extend the convective-diffusive subrange of the energy spectrum of electrons (by reducing their diffusivity) to the wavelength which is shorter than the Bragg-scale of the probing radar. In this paper we present main results of ice particles measurements inside the PMSE layers obtained from in situ rocket soundings and newly developed radar techniques.

  1. Progress in the development of a reactivity capability in the SAM-CE system for validating fuel management codes. Interim report

    International Nuclear Information System (INIS)

    Lichtenstein, H.; Steinberg, H.; Troubetzkoy, E.; Cohen, M.O.; Chui, C.

    1978-02-01

    The SAM-CE Monte Carlo system (for three dimensional neutron, gamma ray and electron transport) has been expanded to include a reactivity capability. The implemented code modifications have effected the following improvements: (a) Doppler broadening of ENDF/B-IV based nuclear data (including fission); (b) probability table representation for the unresolved resonance range; (c) utilization of thermal scattering law data for the moderator; (d) free gas model in the absence of thermal scattering law data; (e) generalization of the nuclear element data tape structure to facilitate data management; (f) generalization of data management routines; (g) extension of the SAM-CE Complex Combinatorial Geometry capability to facilitate treatment of hexagonal lattices; (h) simultaneous use of 4 different eigenvalue estimators; (i) estimation of the eigenfunction in user prescribed spatial domains; and (j) variance reduction via stratification of source (position, energy, direction) and absorption (based on a quota sampling technique), as well as optional suppression of absorption. The new coding has undergone extensive testing, both specific (via drivers and idealized data) and integral (via comparison with previous computations). Base data have been examined for internal consistency and checked for reasonableness. A documented TRX-1 benchmark calculation has been performed. Agreement with other calculations, as well as with experiment, has served to validate the reactivity mode of SAM-CE. Further refinement of the cross section data processing component of SAM-CE (i.e., SAM-X) is suggested

  2. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    Science.gov (United States)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  3. Space Electron Density Gradient Studies using a 3D Embedded Reconfigurable Sounder and ESA/NASA CLUSTER Mission

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper provides a direct comparison between data captured by a new embedded reconfigurable digital sounder, different ground-based ionospheric sounders spread around Europe and the ESA/NASA CLUSTER mission. The CLUSTER mission consists of four identical space probes flying in a formation that allows measurements of the electron density gradient in the local magnetic field. Both the ground-based and the spacecraft instrumentations assist in studying the motion, geometry and boundaries of the plasmasphere. The comparison results are in accordance to each other. Some slight deviations among the captured data were expected from the beginning of this investigation. These small discrepancies are reasonable and seriatim analyzed. The results of this research are significant, since the level of the plasma's ionization, which is related to the solar activity, dominates the propagation of electromagnetic waves through it. Similarly, unusually high solar activity presents serious hazards to orbiting satellites, spaceborne instrumentation, satellite communications and infrastructure located on the Earth's surface. Long-term collaborative study of the data is required to continue, in order to identify and determine the enhanced risk in advance. This would allow scientists to propose an immediate cure.

  4. Theorizing the place of evil within Sam Ukala's Radical Theatre: A ...

    African Journals Online (AJOL)

    The perspectives of evil in this essay will be drawn mainly from the works of such thinkers as Paul Ricoeur, St Augustine, and Friedrich Nietzsche, yet not excluding occasional insights from thinkers like Immanuel Kant, Richard B. Sewall, and so on. Sam Ukala's Akpakaland, Break a Boil and Odour of Justice are the plays to ...

  5. Dosimetric comparison of the specific anthropomorphic mannequin (SAM) to 14 anatomical head models using a novel definition for the mobile phone positioning

    International Nuclear Information System (INIS)

    Kainz, Wolfgang; Christ, Andreas; Kellom, Tocher; Seidman, Seth; Nikoloski, Neviana; Beard, Brian; Kuster, Niels

    2005-01-01

    This paper presents new definitions for obtaining reproducible results in numerical phone dosimetry. Numerous numerical dosimetric studies have been published about the exposure of mobile phone users which concluded with conflicting results. However, many of these studies lack reproducibility due to shortcomings in the description of the phone positioning. The new approach was tested by two groups applying two different numerical program packages to compare the specific anthropomorphic mannequin (SAM) to 14 anatomically correct head models. A novel definition for the positioning of mobile phones next to anatomically correct head models is given along with other essential parameters to be reported. The definition is solely based on anatomical characteristics of the head. A simple up-to-date phone model was used to determine the peak spatial specific absorption rate (SAR) of mobile phones in SAM and in the anatomically correct head models. The results were validated by measurements. The study clearly shows that SAM gives a conservative estimate of the exposure in anatomically correct head models for head only tissue. Depending on frequency, phone position and head size the numerically calculated 10 g averaged SAR in the pinna can be up to 2.1 times greater than the peak spatial SAR in SAM. Measurements in small structures, such as the pinna, will significantly increase the uncertainty; therefore SAM was designed for SAR assessment in the head only. Whether SAM will provide a conservative value for the pinna depends on the pinna SAR limit of the safety standard considered

  6. Elp3 and RlmN: A tale of two mitochondrial tail-anchored radical SAM enzymes in Toxoplasma gondii.

    Science.gov (United States)

    Padgett, Leah R; Lentini, Jenna M; Holmes, Michael J; Stilger, Krista L; Fu, Dragony; Sullivan, William J

    2018-01-01

    Radical S-adenosylmethionine (rSAM) enzymes use a 5'-deoxyadensyl 5'-radical to methylate a wide array of diverse substrates including proteins, lipids and nucleic acids. One such enzyme, Elongator protein-3 (TgElp3), is an essential protein in Toxoplasma gondii, a protozoan parasite that can cause life-threatening opportunistic disease. Unlike Elp3 homologues which are present in all domains of life, TgElp3 localizes to the outer mitochondrial membrane (OMM) via a tail-anchored trafficking mechanism in Toxoplasma. Intriguingly, we identified a second tail-anchored rSAM domain containing protein (TgRlmN) that also localizes to the OMM. The transmembrane domain (TMD) on Toxoplasma Elp3 and RlmN homologues is required for OMM localization and has not been seen beyond the chromalveolates. Both TgElp3 and TgRlmN contain the canonical rSAM amino acid sequence motif (CxxxCxxC) necessary to form the 4Fe-4S cluster required for tRNA modifications. In E. coli, RlmN is responsible for the 2-methlyadenosine (m2A) synthesis at purine 37 in tRNA while in S. cerevisiae, Elp3 is necessary for the formation of 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) at the wobble tRNA position. To investigate why these two rSAM enzymes localize to the mitochondrion in Toxoplasma, and whether or not TgRlmN and TgElp3 possess tRNA methyltransferase activity, a series of mutational and biochemical studies were performed. Overexpression of either TgElp3 or TgRlmN resulted in a significant parasite replication defect, but overexpression was tolerated if either the TMD or rSAM domain was mutated. Furthermore, we show the first evidence that Toxoplasma tRNAGlu contains the mcm5s2U modification, which is the putative downstream product generated by TgElp3 activity.

  7. A global climatology of stratospheric gravity waves from Atmospheric Infrared Sounder observations

    Science.gov (United States)

    Hoffmann, Lars; Xue, Xianghui; Alexander, M. Joan

    2014-05-01

    We present the results of a new study that aims on the detection and classification of `hotspots' of stratospheric gravity waves on a global scale. The analysis is based on a nine-year record (2003 to 2011) of radiance measurements by the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite. We detect the presence of stratospheric gravity waves based on 4.3 micron brightness temperature variances. Our method is optimized for peak events, i.e., strong gravity wave events for which the local variance considerably exceeds background levels. We estimated the occurrence frequencies of these peak events for different seasons and time of day and used the results to find local maxima of gravity wave activity. In addition, we use AIRS radiances at 8.1 micron to simultaneously detect convective events, including deep convection in the tropics and mesoscale convective systems at mid latitudes. We classified the gravity waves according to their sources, based on seasonal occurrence frequencies for convection and by means of topographic data. Our study reproduces well-known hotspots of gravity waves, e.g., the mountain wave hotspots at the Andes and the Antarctic Peninsula or the convective hotspot during the thunderstorm season over the North American Great Plains. However, the high horizontal resolution of the AIRS observations also helped us to locate several smaller hotspots, which were partly unknown or poorly studied so far. Most of these smaller hotspots are found near orographic features like small mountain ranges, in coastal regions, in desert areas, or near isolated islands. This new study will help to select the most promising regions and seasons for future observational studies of gravity waves. Reference: Hoffmann, L., X. Xue, and M. J. Alexander, A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations, J. Geophys. Res., 118, 416-434, doi:10.1029/2012JD018658, 2013.

  8. Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere

    Directory of Open Access Journals (Sweden)

    J. Y. Jia

    2014-11-01

    Full Text Available Absolute values of gravity wave momentum flux (GWMF deduced from satellite measurements by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER instrument and the High Resolution Dynamics Limb Sounder (HIRDLS are correlated with sea surface temperature (SST with the aim of identifying those oceanic regions for which convection is a major source of gravity waves (GWs. Our study identifies those latitude bands where high correlation coefficients indicate convective excitation with confidence. This is based on a global ray-tracing simulation, which is used to delineate the source and wind-filtering effects. Convective GWs are identified at the eastern coasts of the continents and over the warm water regions formed by the warm ocean currents, in particular the Gulf Stream and the Kuroshio. Potential contributions of tropical cyclones to the excitation of the GWs are discussed. Convective excitation can be identified well into the mid-mesosphere. In propagating upward, the centers of GWMF formed by convection shift poleward. Some indications of the main forcing regions are even shown for the upper mesosphere/lower thermosphere (MLT.

  9. Deposition of phospholipid layers on SiO{sub 2} surface modified by alkyl-SAM islands

    Energy Technology Data Exchange (ETDEWEB)

    Tero, R.; Takizawa, M.; Li, Y.J.; Yamazaki, M.; Urisu, T

    2004-11-15

    Formation of the supported planar bilayer of dipalmitoylphosphatidylcholine (DPPC) on SiO{sub 2} surfaces modified with the self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) has been investigated by atomic force microscopy (AFM). DPPC was deposited by the fusion of vesicles on SiO{sub 2} surfaces with OTS-SAM islands of different sizes and densities. The DPPC bilayer membrane formed self-organizingly on the SiO{sub 2} surface with small and sparse OTS islands, while did not when the OTS islands were larger and denser. The relative size between the vesicles and the SiO{sub 2} regions is the critical factor for the formation of the DPPC bilayer membrane.

  10. Noise performance of microwave humidity sounders over their lifetime

    Directory of Open Access Journals (Sweden)

    I. Hans

    2017-12-01

    Full Text Available The microwave humidity sounders Special Sensor Microwave Water Vapor Profiler (SSMT-2, Advanced Microwave Sounding Unit-B (AMSU-B and Microwave Humidity Sounder (MHS to date have been providing data records for 25 years. So far, the data records lack uncertainty information essential for constructing consistent long time data series. In this study, we assess the quality of the recorded data with respect to the uncertainty caused by noise. We calculate the noise on the raw calibration counts from the deep space views (DSVs of the instrument and the noise equivalent differential temperature (NEΔT as a measure for the radiometer sensitivity. For this purpose, we use the Allan deviation that is not biased from an underlying varying mean of the data and that has been suggested only recently for application in atmospheric remote sensing. Moreover, we use the bias function related to the Allan deviation to infer the underlying spectrum of the noise. As examples, we investigate the noise spectrum in flight for some instruments. For the assessment of the noise evolution in time, we provide a descriptive and graphical overview of the calculated NEΔT over the life span of each instrument and channel. This overview can serve as an easily accessible information for users interested in the noise performance of a specific instrument, channel and time. Within the time evolution of the noise, we identify periods of instrumental degradation, which manifest themselves in an increasing NEΔT, and periods of erratic behaviour, which show sudden increases of NEΔT interrupting the overall smooth evolution of the noise. From this assessment and subsequent exclusion of the aforementioned periods, we present a chart showing available data records with NEΔT  <  1 K. Due to overlapping life spans of the instruments, these reduced data records still cover without gaps the time since 1994 and may therefore serve as a first step for constructing long time

  11. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  12. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    Science.gov (United States)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  13. Rayleigh lidar observation of tropical mesospheric inversion layer: a comparison between dynamics and chemistry

    Directory of Open Access Journals (Sweden)

    Ramesh K.

    2018-01-01

    Full Text Available The Rayleigh lidar at National Atmospheric Research Laboratory, Gadanki (13.5°N, 79.2°E, India operates at 532 nm green laser with ~600 mJ/pulse since 2007. The vertical temperature profiles are derived above ~30 km by assuming the atmosphere is in hydrostatic equilibrium and obeys ideal gas law. A large mesospheric inversion layer (MIL is observed at ~77.4-84.6 km on the night of 22 March 2007 over Gadanki. Although dynamics and chemistry play vital role, both the mechanisms are compared for the occurrence of the MIL in the present study.

  14. Rayleigh lidar observation of tropical mesospheric inversion layer: a comparison between dynamics and chemistry

    Science.gov (United States)

    Ramesh, K.; Sridharan, S.; Raghunath, K.

    2018-04-01

    The Rayleigh lidar at National Atmospheric Research Laboratory, Gadanki (13.5°N, 79.2°E), India operates at 532 nm green laser with 600 mJ/pulse since 2007. The vertical temperature profiles are derived above 30 km by assuming the atmosphere is in hydrostatic equilibrium and obeys ideal gas law. A large mesospheric inversion layer (MIL) is observed at 77.4-84.6 km on the night of 22 March 2007 over Gadanki. Although dynamics and chemistry play vital role, both the mechanisms are compared for the occurrence of the MIL in the present study.

  15. Franchising as a Potential Growth Strategy for a Small Business : A Case of Sam-Chi Fast Food Restaurant

    OpenAIRE

    Odunsi, Sadiq

    2015-01-01

    The purpose of this study was to find out whether Sam-Chi fast food restaurant can grow through franchising as well as to give the owners recommendations on how to effectively adopt the franchising business model as a means to grow their business. Sam-Chi restaurant is situated in Lagos, Nigeria and the restaurant is owned and operated by Samuel Okore and his wife Chichi Okore. The theoretical framework of this research is separated into two sections. The first section covers the growth of a ...

  16. Severe accident management (SAM), operator training and instrumentation capabilities - Summary and conclusions

    International Nuclear Information System (INIS)

    2002-01-01

    The Workshop on Operator Training for Severe Accident Management (SAM) and Instrumentation Capabilities During Severe Accidents was organised in collaboration with Electricite de France (Service Etudes et Projets Thermiques et Nucleaires). There were 34 participants, representing thirteen OECD Member countries, the Russian Federation and the OECD/NEA. Almost half the participants represented utilities. The second largest group was regulatory authorities and their technical support organisations. Basically, the Workshop was a follow-up to the 1997 Second Specialist Meeting on Operator Aids for Severe Accident Management (SAMOA-2) [Reports NEA/CSNI/R(97)10 and 27] and to the 1992 Specialist Meeting on Instrumentation to Manage Severe Accidents [Reports NEA/CSNI/R(92)11 and (93)3]. It was aimed at sharing and comparing progress made and experience gained from these two meetings, emphasizing practical lessons learnt during training or incidents as well as feedback from instrumentation capability assessment. The objectives of the Workshop were therefore: - to exchange information on recent and current activities in the area of operator training for SAM, and lessons learnt during the management of real incidents ('operator' is defined hear as all personnel involved in SAM); - to compare capabilities and use of instrumentation available during severe accidents; - to monitor progress made; - to identify and discuss differences between approaches relevant to reactor safety; - and to make recommendations to the Working Group on the Analysis and Management of Accidents and the CSNI (GAMA). The Workshop was organised into five sessions: - 1: Introduction; - 2: Tools and Methods; - 3: Training Programmes and Experience; - 4: SAM Organisation Efficiency; - 5: Instrumentation Capabilities. It was concluded by a Panel and General Discussion. This report presents the summary and conclusions: the meeting confirmed that only limited information is needed for making required decisions

  17. Necrosis-Driven Systemic Immune Response Alters SAM Metabolism through the FOXO-GNMT Axis

    Directory of Open Access Journals (Sweden)

    Fumiaki Obata

    2014-05-01

    Full Text Available Sterile inflammation triggered by endogenous factors is thought to contribute to the pathogenesis of acute and chronic inflammatory diseases. Here, we demonstrate that apoptosis-deficient mutants spontaneously develop a necrosis-driven systemic immune response in Drosophila and provide an in vivo model for studying the organismal response to sterile inflammation. Metabolomic analysis of hemolymph from apoptosis-deficient mutants revealed increased sarcosine and reduced S-adenosyl-methionine (SAM levels due to glycine N-methyltransferase (Gnmt upregulation. We showed that Gnmt was elevated in response to Toll activation induced by the local necrosis of wing epidermal cells. Necrosis-driven inflammatory conditions induced dFoxO hyperactivation, leading to an energy-wasting phenotype. Gnmt was cell-autonomously upregulated by dFoxO in the fat body as a possible rheostat for controlling energy loss, which functioned during fasting as well as inflammatory conditions. We propose that the dFoxO-Gnmt axis is essential for the maintenance of organismal SAM metabolism and energy homeostasis.

  18. ISOE EG-SAM interim report - Report on behalf of the Sub expert Group

    International Nuclear Information System (INIS)

    Harris, Willie; Miller, David W.; Djeffal, Salah; Anderson, Ellen; Couasnon, Olivier; Hagemeyer, Derek; Sovijarvi, Jukka; Amaral, Marcos A.; Tarzia, J.P.; Schmidt, Claudia; Fritioff, Karin; Kaulard, Joerg; Lance, Benoit; Fritioff, Karin; Schieber, Caroline; Hayashida, Yoshihisa; Doty, Rick

    2014-01-01

    During its November 2012 meeting, the expert group decided to develop an interim (preliminary) report before the end of 2013 (with a general perspective and discussion of specific severe accident management worker dose issues), and to finalize the report by organizing the international workshop of 2014 to address national experiences, which will be incorporated to the report. The work of the EG-SAM focuses on radiation protection management and organization, radiation protection training and exercises related to severe accident management, facility configuration and readiness, worker protection, radioactive materials, contamination controls and logistics and key lessons learned especially from the TMI, Chernobyl and Fukushima Dai-ichi accidents. This interim report was completed through intensive work of all Group members nominated by the ISOE, and was accomplished during EG-SAM meetings through 2012-2013. This document gathers the different presentations given by the sub expert groups in charge of each chapter of the report

  19. Electrochemical characterization of a 1,8-octanedithiol self-assembled monolayer (ODT-SAM) on a Au(111) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Raya, Daniel; Madueno, Rafael; Sevilla, Jose Manuel; Blazquez, Manuel; Pineda, Teresa [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Cordoba (Spain)

    2008-11-15

    Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of {omega}-functionalized thiols for its potential applications in the construction of more complex molecular architectures. In this paper, we report on the spontaneous formation of a SAM of octanedithiol (ODT) as a function of the modification time. Electrochemical techniques such as cyclic voltammetry, double layer capacitance and electrochemical impedance spectroscopy are used for the characterization of this monolayer. The increase in modification time brings about changes in the octanedithiol self-assembled monolayer (ODT-SAM) reductive desorption voltammograms that indicate an evolution toward a more ordered and compact monolayer. This trend has also been found by following the changes in the electron transfer processes of the redox probe K{sub 3}Fe(CN){sub 6}. In fact, the ODT-SAM formed at low-modification time does not significantly perturb the electrochemical response as it is typical of either a low coverage or of the presence of large defects in the layer. Upon increasing the modification time, the voltammograms of the redox probe adopt a sigmoidal shape indicating the existence of pinholes in the monolayer distributed as an array of microelectrodes. The surface coverage as well as the size and distribution of these pinholes have been determined by the impedance technique that gives a more reliable evaluation of these monolayer structural parameters. (author)

  20. Scanning Mechanism of the FY-3 Microwave Humidity Sounder

    Science.gov (United States)

    Schmid, Manfred; Jing, Li; Hehr, Christian

    2010-01-01

    Astrium GmbH Germany, developed the scanning equipment for the instrument package of the MicroWave Humidity Sounder (MWHS) flying on the FY-3 meteorological satellite (FY means Feng Yun, Wind and Cloud) in a sun-synchronized orbit of 850-km altitude and at an inclination of 98.8 . The scanning mechanism rotates at variable velocity comprising several acceleration / deceleration phases during each revolution. The Scanning Mechanism contains two output shafts, each rotating a parabolic offset Antenna Reflector. The mechanism is operated in closed loop by means of redundant control electronics. MWHS is a sounding radiometer for measurement of global atmospheric water vapour profiles. An Engineering Qualification Model was developed and qualified and a first Flight Model was launched early 2008. The system is now working for more than two years successful in orbit. A second Flight Model of the Antenna Scanning Mechanism and of its associated control electronics was built and delivered to the customer for application on the follow-on spacecraft that will be launched by the end of 2010.

  1. The captain class : the hidden force that creates the world's greatest teams / Sam Walker

    Trove (Australia)

    Walker, Sam

    2017-01-01

    ... it is. It's not the coach. It's not the star. It's not chemistry. It's not a strategy. It's something else entirely. Several years ago, Sam Walker set out to answer one of the most hotly debated questions in sports ...

  2. Long-term behavior of the concentration of the minor constituents in the mesosphere – a model study

    Directory of Open Access Journals (Sweden)

    M. Grygalashvyly

    2009-04-01

    Full Text Available We investigate the influence the rising concentrations of methane, nitrous oxide and carbon dioxide which have occurred since the pre-industrial era, have had on the chemistry of the mesosphere. For this investigation we use our global 3-D-model COMMA-IAP which was designed for the exploration of the MLT-region and in particular the extended mesopause region. Assumptions and approximations for the trends in the Lyman-α flux (needed for the water vapor dissociation rate, methane and the water vapor mixing ratio at the hygropause are necessary to accomplish this study. To approximate the solar Lyman-α flux back to the pre-industrial time, we derived a quadratic fit using the sunspot number record which extends back to 1749 and is the only solar proxy available for the Lyman-α flux prior to 1947. We assume that methane increases with a constant growth rate from the pre-industrial era to the present. An unsolved problem for the model calculations consists of how the water vapor mixing ratio at the hygropause should be specified during this period. We assume that the hygropause was dryer during pre-industrial times than the present. As a consequence of methane oxidation, the model simulation indicates that the middle atmosphere has become more humid as a result of the rising methane concentration, but with some dependence on height and with a small time delay of few years. The solar influence on the water vapor mixing ratio is insignificant below about 80 km in summer high latitudes, but becomes increasingly more important above this altitude. The enhanced water vapor concentration increases the hydrogen radical concentration and reduces the mesospheric ozone. A second region of stronger ozone decrease is located in the vicinity of the stratopause. Increases in CO2 concentration enhance slightly the concentration of CO in the mesosphere. However, its influence upon the chemistry is small and its main effect is connected with a cooling

  3. The effect of breaking gravity waves on the dynamics and chemistry of the mesosphere and lower thermosphere (invited review)

    Science.gov (United States)

    Garcia, R. R.

    1986-01-01

    The influence of breaking gravity waves on the dynamics and chemical composition of the 60 to 110 km region is investigated with a two dimensional model that includes a parameterization of gravity wave momentum deposition and diffusion. The dynamical model is described by Garcia and Solomon (1983) and Solomon and Garcia (1983) and includes a complete chemical scheme for the mesosphere and lower thermosphere. The parameterization of Lindzen (1981) is used to calculate the momentum deposited and the turbulent diffusion produced by the gravity waves. It is found that wave momentum deposition drives a very vigorous mean meridional circulation, produces a very cold summer mesopause and reverse the zonal wind jets above about 85 km. The seasonal variation of the turbulent diffusion coefficient is consistent with the behavior of mesospheric turbulences inferred from MST radar echoes. The large degree of consistency between model results and various types of dynamical and chemical data supports very strongly the hypothesis that breaking gravity waves play a major role in determining the zonally-averaged dynamical and chemical structure of the 60 to 110 km region of the atmosphere.

  4. Revised Correlation between Odin/OSIRIS PMC Properties and Coincident TIMED/SABER Mesospheric Temperatures

    Science.gov (United States)

    Feofilov, A. G.; Petelina, S. V.; Kutepov, A. A.; Pesnell, W. D.; Goldberg, R. A.; Llewellyn, E. J.; Russell, J. M.

    2006-01-01

    The Optical Spectrograph and Infrared Imaging System (OSIRIS) instrument on board the Odin satellite detects Polar Mesospheric Clouds (PMCs) through the enhancement in the limb-scattered solar radiance. The Sounding of the Atmosphere using the Broadband Emission Radiometry (SABER) instrument on board the TIMED satellite is a limb scanning infrared radiometer that measures temperature and vertical profiles and energetic parameters for minor constituents in the mesosphere and lower thermosphere. The combination of OSIRIS and SABER data has been previously used to statistically derive thermal conditions for PMC existence [Petelina et al., 2005]. a, A.A. Kutepov, W.D. Pesnell, In this work, we employ the simultaneous common volume measurements of PMCs by OSIRIS and temperature profiles measured by SABER for the Northern Hemisphere summers of 2002-2005 and corrected in the polar region by accounting for the vibrational-vibrational energy exchange among the CO2 isotopes [Kutepov et al., 2006]. For each of 20 coincidences identified within plus or minus 1 degree latitude, plus or minus 2 degrees longitude and less than 1 hour time the frost point temperatures were calculated using the corresponding SABER temperature profile and water vapor densities of 1,3, and 10 ppmv. We found that the PMC presence and brightness correlated only with the temperature threshold that corresponds to the frost point. The absolute value of the temperature below the frost point, however, didn't play a significant role in the intensity of PMC signal for the majority of selected coincidences. The presence of several bright clouds at temperatures above the frost point is obviously related to the limitation of the limb geometry when some near- or far-field PMCs located at higher (and warmer) altitudes appear to be at lower altitudes.

  5. Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS /H2O2 Fenton-like system.

    Science.gov (United States)

    Cheng, Min; Zeng, Guangming; Huang, Danlian; Lai, Cui; Liu, Yang; Zhang, Chen; Wan, Jia; Hu, Liang; Zhou, Chengyun; Xiong, Weiping

    2018-07-01

    The presence of antibiotics in aquatic environments has attracted global concern. Fenton process is an attractive yet challenging method for antibiotics degradation, especially when such a reaction can be conducted at neutral pH values. In this study, a novel composite Fe/Co catalyst was synthesized via the modification of steel converter slag (SCS) by salicylic acid-methanol (SAM) and cobalt nitrate (Co(NO 3 ) 2 ). The catalysts were characterized by N 2 -Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results indicated that the Co-SAM-SCS/H 2 O 2 Fenton-like system was very effective for sulfamethazine (SMZ) degradation at a wide pH range. At initial pH of 7.0, the degradation rate of SMZ in Co-SAM-SCS/H 2 O 2 system was 2.48, 3.20, 6.18, and 16.21 times of that in Fe-SAM-SCS/H 2 O 2 , SAM-SCS/H 2 O 2 , Co(NO 3 ) 2 /H 2 O 2 and SCS/H 2 O 2 system, respectively. The preliminary analysis suggested that high surface area of Co-SAM-SCS sample and synergistic effect between introduced Co and SAM-SCS are responsible for the efficient catalytic activity. During the degradation, three main intermediates were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Based on this, a possible degradation pathway was proposed. The SEM images, XRD patterns and XPS spectra before and after the reactions demonstrate that the crystal and chemical structure of Co-SAM-SCS after five cycles are almost unchanged. Besides, the Co-SAM-SCS presented low iron and cobalt leaching (0.17 mg/L and 2.36 mg/L, respectively). The studied Fenton-like process also showed high degradation of SMZ in river water and municipal wastewater. The progress will bring valuable insights to develop high-performance heterogeneous Fenton-like catalysts for environmental remediation. Copyright © 2018

  6. Mesospheric sodium over Gadanki during Geminid meteor shower 2007

    Science.gov (United States)

    Lokanadham, B.; Rakesh Chandra, N.; Bhaskara Rao, S. Vijaya; Raghunath, K.; Yellaiah, G.

    Resonance LIDAR system at Gadanki has been used for observing the mesospheric sodium during the night of 12-13 Dec 2007 when the peak activity of Geminid meteor shower occurred. Geminid meteor shower is observed along with the co-located MST radar in the altitude range 80-110 km. Sodium density profiles have been obtained with a vertical resolution of 300 m and a temporal resolution of 120 s with sodium resonance scattering LIDAR system. The sodium layers were found to exist in the altitude range 90-100 km. The enhanced Geminid meteor rates were recorded with the co-located MST radar in the same altitude range. The sodium concentration in the atmospheric altitude of ~93 km is estimated to be 2000 per cc where the meteoric concentration of Geminid is maximum and reduced to around 800 on the non activity of Geminid. These observations showed that the sodium levels in the E-region are found to be increasing during meteor shower nights at least by a factor of two.

  7. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    Science.gov (United States)

    Zhu, Jiang; Stevens, E.; Zavodsky, B. T.; Zhang, X.; Heinrichs, T.; Broderson, D.

    2014-01-01

    Data assimilation has been demonstrated very useful in improving both global and regional numerical weather prediction. Alaska has very coarser surface observation sites. On the other hand, it gets much more satellite overpass than lower 48 states. How to utilize satellite data to improve numerical prediction is one of hot topics among weather forecast community in Alaska. The Geographic Information Network of Alaska (GINA) at University of Alaska is conducting study on satellite data assimilation for WRF model. AIRS/CRIS sounder profile data are used to assimilate the initial condition for the customized regional WRF model (GINA-WRF model). Normalized standard deviation, RMSE, and correlation statistic analysis methods are applied to analyze one case of 48 hours forecasts and one month of 24-hour forecasts in order to evaluate the improvement of regional numerical model from Data assimilation. The final goal of the research is to provide improved real-time short-time forecast for Alaska regions.

  8. In Situ Analysis of Martian Regolith with the SAM Experiment During the First Mars Year of the MSL Mission: Identification of Organic Molecules by Gas Chromatography from Laboratory Measurements

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Coll, P.; Glavin, D. P.; Freissinet, C.; Navarro-Gonzalez, R.; Francois, P.; Coscia, D.; Bonnet, J. Y.; hide

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover, is specifically designed for in situ molecular and isotopic analyses of martian surface materials and atmosphere. It contributes to the Mars Science Laboratory (MSL) missions primary scientific goal to characterize the potential past, present or future habitability of Mars. In all of the analyses of solid samples delivered to SAM so far, chlorinated organic compounds have been detected above instrument background levels and identified by gas chromatography coupled to mass spectrometry (GC-MS) (Freissinet et al., 2015; Glavin et al., 2013). While some of these may originate from reactions between oxychlorines and terrestrial organic carbon present in the instrument background (Glavin et al., 2013), others have been demonstrated to originate from indigenous organic carbon present in samples (Freissinet et al., 2015). We present here laboratory calibrations that focused on the analyses performed with the MXT-CLP GC column (SAM GC-5 channel) used for nearly all of the GC-MS analyses of the martian soil samples carried out with SAM to date. Complementary to the mass spectrometric data, gas chromatography allows us to separate and identify the species analyzable in a nominal SAM-GC run time of about 21 min. To characterize the analytical capabilities of this channel within the SAM Flight Model (FM) operating conditions on Mars, and their implications on the detection of organic matter, it is required to perform laboratory experimental tests and calibrations on spare model components. This work assesses the SAM flight GC-5 column efficiency, confirms the identification of the molecules based on their retention time, and enables a better understanding of the behavior of the SAM injection trap (IT) and its release of organic molecules. This work will enable further optimization of the SAM-GC runs for additional samples to be analyzed during the MSL mission.

  9. The Impact of Cross-track Infrared Sounder (CrIS) Cloud-Cleared Radiances on Hurricane Joaquin (2015) and Matthew (2016) Forecasts

    Science.gov (United States)

    Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.

    2017-12-01

    Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.

  10. A Study to Evaluate the Organization and the Operating Procedures of the Patient Assistance Function at Brooke Army Medical Center, Fort Sam Houston, Texas

    Science.gov (United States)

    1979-08-01

    15 March 1979. 59Interview with Wendy L. Farace , Head Nurse, Obstetrics/Gynecology Clinic, Brooke Army Medical Center, Fort Sam Houston, Texas, 8...6 February 1979. Farace , Wendy L. Head Nurse, Obstetrica/Gynecology Clinic, Brooke Army Medical Center, Fort Sam Houston, Texas. Interview, 8 January

  11. Effect of aromatic SAMs molecules on graphene/silicon schottky diode performance

    OpenAIRE

    Yağmurcukardeş, Nesli; Aydın, Hasan; Can, Mustafa; Yanılmaz, Alper; Mermer, Ömer; Okur, Salih; Selamet, Yusuf

    2016-01-01

    Au/n-Si/Graphene/Au Schottky diodes were fabricated by transferring atmospheric pressure chemical vapor deposited (APCVD) graphene on silicon substrates. Graphene/n-Si interface properties were improved by using 5-[(3-methylphenyl)(phenyl) amino]isophthalic acid (MePIFA) and 5-(diphenyl)amino]isophthalic acid (DPIFA) aromatic self-assembled monolayer (SAM) molecules. The surface morphologies of modified and non-modified films were investigated by atomic force microscopy and scanning electron ...

  12. Sound velocity from inverted echo sounders (IES) in the western Pacific Ocean from 1992-08-26 to 1993-03-22 (NODC Accession 9300159)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains inverted echo sounder data collected from two stations in the western Pacific, TPW nominally @ 2S and 154E and TPE nominally @ 2S and 164E....

  13. Mesospheric front observations by the OH airglow imager carried out at Ferraz Station on King George Island, Antarctic Peninsula, in 2011

    Directory of Open Access Journals (Sweden)

    G. A. Giongo

    2018-02-01

    Full Text Available The main goals of this work are to characterize and investigate the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR airglow images, obtained with an all-sky airglow imager installed at Comandante Ferraz Antarctic Station (EACF, as per its Portuguese acronym located on King George Island in the Antarctic Peninsula. We identified and analyzed four mesospheric fronts in 2011 over King George Island. In addition, we investigate the atmospheric background environment between 80 and 100 km altitude and discuss the ducts and propagation conditions for these waves. For that, we used wind data obtained from a meteor radar operated at EACF and temperature data obtained from the TIMED/SABER satellite. The vertical wavenumber squared, m2, was calculated for each of the four waves. Even though no clearly defined duct (indicated by positive values of m2 sandwiched between layers above and below with m2 < 0 was found in any of the events, favorable propagation conditions for horizontal propagation of the fronts were found in three cases. In the fourth case, the wave front did not find any duct support and it appeared to dissipate near the zenith, transferring energy and momentum to the medium and, consequently, accelerating the wind in the wave propagation direction (near to south above the OH peak (88–92 km. The likely wave sources for these four cases were investigated by using meteorological satellite images and in two cases we could find that strong instabilities were potential sources, i.e., a cyclonic activity and a large convective cloud cell. In the other two cases it was not possible to associate troposphere sources as potential candidates for the generation of such wave fronts observed in the mesosphere and secondary wave sources were attributed to these cases.

  14. GoSam-2.0. A tool for automated one-loop calculations within the Standard Model and beyond

    International Nuclear Information System (INIS)

    Cullen, Gavin; Deurzen, Hans van; Greiner, Nicolas

    2014-05-01

    We present the version 2.0 of the program package GoSam for the automated calculation of one-loop amplitudes. GoSam is devised to compute one-loop QCD and/or electroweak corrections to multi-particle processes within and beyond the Standard Model. The new code contains improvements in the generation and in the reduction of the amplitudes, performs better in computing time and numerical accuracy, and has an extended range of applicability. The extended version of the ''Binoth-Les-Houches-Accord'' interface to Monte Carlo programs is also implemented. We give a detailed description of installation and usage of the code, and illustrate the new features in dedicated examples.

  15. Charging of mesospheric aerosol particles: the role of photodetachment and photoionization from meteoric smoke and ice particles

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2009-06-01

    Full Text Available Time constants for photodetachment, photoemission, and electron capture are considered for two classes of mesospheric aerosol particles, i.e., meteor smoke particles (MSPs and pure water ice particles. Assuming that MSPs consist of metal oxides like Fe2O3 or SiO, we find that during daytime conditions photodetachment by solar photons is up to 4 orders of magnitude faster than electron attachment such that MSPs cannot be negatively charged in the presence of sunlight. Rather, even photoemission can compete with electron capture unless the electron density becomes very large (>>1000 cm−3 such that MSPs should either be positively charged or neutral in the case of large electron densities. For pure water ice particles, however, both photodetachment and photoemission are negligible due to the wavelength characteristics of its absorption cross section and because the flux of solar photons has already dropped significantly at such short wavelengths. This means that water ice particles should normally be negatively charged. Hence, our results can readily explain the repeated observation of the coexistence of positive and negative aerosol particles in the polar summer mesopause, i.e., small MSPs should be positively charged and ice particles should be negatively charged. These results have further important implications for our understanding of the nucleation of mesospheric ice particles as well as for the interpretation of incoherent scatter radar observations of MSPs.

  16. El Niño-Southern Oscillation effect on quasi-biennial oscillations of temperature diurnal tides in the mesosphere and lower thermosphere

    Science.gov (United States)

    Sun, Yang-Yi; Liu, Huixin; Miyoshi, Yasunobu; Liu, Libo; Chang, Loren C.

    2018-05-01

    In this study, we evaluate the El Niño-Southern Oscillation (ENSO) signals in the two dominant temperature diurnal tides, diurnal westward wavenumber 1 (DW1) and diurnal eastward wavenumber 3 (DE3) on the quasi-biennial oscillation (QBO) scale (18-34 months) from 50 to 100 km altitudes. The tides are derived from the 21-year (January 1996-February 2017) Ground-to-Topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) temperature simulations and 15-year (February 2002-February 2017) Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature observations. The results show that ENSO warm phases shorten the period ( 2 years) of the QBO in DW1 amplitude near the equator and DE3 amplitude at low latitudes of the Northern Hemisphere. In contrast, the QBO period lengthens ( 2.5 years) during the ENSO neutral and cold phases. Correlation analysis shows the long-lasting effect of ENSO on the tidal QBO in the mesosphere and lower thermosphere.[Figure not available: see fulltext.

  17. A global analysis of the ozone deficit in the upper stratosphere and lower mesosphere

    Science.gov (United States)

    Eluszkiewicz, Janusz; Allen, Mark

    1993-01-01

    The global measurements of temperature, ozone, water vapor, and nitrogen dioxide acquired by the Limb Infrared Monitor of the Stratosphere (LIMS), supplemented by a precomputed distribution of chlorine monoxide, are used to test the balance between odd oxygen production and loss in the upper stratosphere and lower mesosphere. An efficient photochemical equilibrium model, whose validity is ascertained by comparison with the results from a fully time-dependent one-dimensional model at selected latitudes, is used in the calculations. The computed ozone abundances are systematically lower than observations for May 1-7, 1979, which suggests, contrary to the conclusions of other recent studies, a real problem in model simulations of stratospheric ozone.

  18. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    Science.gov (United States)

    Liu, Libo; Liu, Huixin; Chen, Yiding; Le, Huijun

    2017-04-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5 °N, 122.3° E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Secondly, the full-width of half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that the FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM and TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2° S, 58.8° E) station. Acknowledgments The TIMED/SABER kinetic temperature (version 2.0) data are provided by the SABER team through http://saber.gats-inc.com/. The temperatures from the NRLMSISE-00 model are calculated using Aerospace Blockset toolbox of MATLAB (2016a). This research was supported by National Natural Science Foundation of China (41231065, 41321003). We acknowledge the use of meteor radar

  19. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    Science.gov (United States)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion

  20. Influence of Oxychlorine Phases During the Pyrolysis of Organic Molecules: Implications for the Quest of Organics on Mars with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Glavin, D. P.; Freissinet, C.; Eigenbrode, J. L.; Archer, P. D., Jr,; Sutter, B.; Mahaffy, P.

    2017-01-01

    One among the main objectives of the Sample Analysis at Mars (SAM) experiment is the in situ molecular analysis of gases evolving from solid samples heated up to approximately 850 degrees Centigrade, and collected by Curiosity on Mars surface/sub-surface in Gale crater. With this aim, SAM uses a gas-chromatograph coupled to a quadrupole mass spectrometer (GC-QMS) devoted to separate, detect and identify both volatile inorganic and organic compounds. SAM detected chlorinated organic molecules produced in evolved gas analysis (EGA) experiments. Several of these were also detected by the Viking experiments in 1976. SAM also detected oxychlorine compounds that were present at the Phoenix landing site. The oxychlorines may be prevelant over much of the martian surface. The C1 to C3 aliphatic chlorohydrocarbons (chloromethane and di- and trichloromethane) detected by SAM were attributed to reaction products occurring between the oxychlorines phases and the organic compounds coming from SAM instrument background. But SAM also showed the presence of a large excess of chlorobenzene and C2 to C4 dichloroalkanes among the volatile species released by the Cumberland sample of the Sheepbed mudstone. For the first time in the history of the Mars exploration, this proved the presence of Mars indigenous organic material at the Mars' surface. However, the identification of the precursor organic compounds of these chlorohydrocarbons is difficult due to the complexity of the reactions occurring during the sample pyrolysis. Laboratory pyrolysis experiments have demonstrated that oxychlorines phases such as perchlorates and chlorates, decomposed into dioxygen and volatile chlorine bearing molecules (HCl and/or Cl2) during the pyrolysis. These chemical species can then react with the organic molecules present in the martian solid samples through oxidation, chlorination and oxychlorination processes.

  1. Toward a standard line for use in multibeam echo sounder calibration

    Science.gov (United States)

    Weber, Thomas C.; Rice, Glen; Smith, Michael

    2018-06-01

    A procedure is suggested in which a relative calibration for the intensity output of a multibeam echo sounder (MBES) can be performed. This procedure identifies a common survey line (i.e., a standard line), over which acoustic backscatter from the seafloor is collected with multiple MBES systems or by the same system multiple times. A location on the standard line which exhibits temporal stability in its seafloor backscatter response is used to bring the intensity output of the multiple MBES systems to a common reference. This relative calibration procedure has utility for MBES users wishing to generate an aggregate seafloor backscatter mosaic using multiple systems, revisiting an area to detect changes in substrate type, and comparing substrate types in the same general area but with different systems or different system settings. The calibration procedure is demonstrated using three different MBES systems over 3 different years in New Castle, NH, USA.

  2. Impact of advanced technology microwave sounder data in the NCMRWF 4D-VAR data assimilation system

    Science.gov (United States)

    Rani, S. Indira; Srinivas, D.; Mallick, Swapan; George, John P.

    2016-05-01

    This study demonstrates the added benefits of assimilating the Advanced Technology Microwave Sounder (ATMS) radiances from the Suomi-NPP satellite in the NCMRWF Unified Model (NCUM). ATMS is a cross-track scanning microwave radiometer inherited the legacy of two very successful instrument namely, Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS). ATMS has 22 channels: 11 temperature sounding channels around 50-60 GHz oxygen band and 6 moisture sounding channels around the 183GHz water vapour band in addition to 5 channels sensitive to the surface in clear conditions, or to water vapour, rain, and cloud when conditions are not clear (at 23, 31, 50, 51 and 89 GHz). Before operational assimilation of any new observation by NWP centres it is standard practice to assess data quality with respect to NWP model background (short-forecast) fields. Quality of all channels is estimated against the model background and the biases are computed and compared against that from the similar observations. The impact of the ATMS data on global analyses and forecasts is tested by adding the ATMS data in the NCUM Observation Processing system (OPS) and 4D-Var variational assimilation (VAR) system. This paper also discusses the pre-operational numerical experiments conducted to assess the impact of ATMS radiances in the NCUM assimilation system. It is noted that the performance of ATMS is stable and it contributes to the performance of the model, complimenting observations from other instruments.

  3. In-flight calibration of mesospheric rocket plasma probes

    International Nuclear Information System (INIS)

    Havnes, Ove; Hartquist, Thomas W.; Kassa, Meseret; Morfill, Gregor E.

    2011-01-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  4. In-flight calibration of mesospheric rocket plasma probes

    Energy Technology Data Exchange (ETDEWEB)

    Havnes, Ove [Institute for Physics and Technology, University of Tromsoe, N-9037 Tromsoe (Norway); University Studies Svalbard (UNIS), N-9170 Longyearbyen, Svalbard (Norway); Hartquist, Thomas W. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Kassa, Meseret [Institute for Physics and Technology, University of Tromsoe, N-9037 Tromsoe (Norway); Morfill, Gregor E. [Max-Planck-Institute fuer extraterrestrische Physik, D-85741Garching (Germany)

    2011-07-15

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  5. In-flight calibration of mesospheric rocket plasma probes.

    Science.gov (United States)

    Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E

    2011-07-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  6. miCLIP-MaPseq, a Substrate Identification Approach for Radical SAM RNA Methylating Enzymes.

    Science.gov (United States)

    Stojković, Vanja; Chu, Tongyue; Therizols, Gabriel; Weinberg, David E; Fujimori, Danica Galonić

    2018-06-13

    Although present across bacteria, the large family of radical SAM RNA methylating enzymes is largely uncharacterized. Escherichia coli RlmN, the founding member of the family, methylates an adenosine in 23S rRNA and several tRNAs to yield 2-methyladenosine (m 2 A). However, varied RNA substrate specificity among RlmN enzymes, combined with the ability of certain family members to generate 8-methyladenosine (m 8 A), makes functional predictions across this family challenging. Here, we present a method for unbiased substrate identification that exploits highly efficient, mechanism-based cross-linking between the enzyme and its RNA substrates. Additionally, by determining that the thermostable group II intron reverse transcriptase introduces mismatches at the site of the cross-link, we have identified the precise positions of RNA modification using mismatch profiling. These results illustrate the capability of our method to define enzyme-substrate pairs and determine modification sites of the largely uncharacterized radical SAM RNA methylating enzyme family.

  7. Identification of Critical Design Points for the EAP of a Space-based Doppler Lidar Wind Sounder

    Science.gov (United States)

    Emmitt, G. D.; Wood, S. A.

    1992-01-01

    The feasibility of making tropospheric wind measurements with a space-based Doppler lidar was studied by a number of agencies over the past 10-15 years. Currently NASA has a plan to launch such an instrument, the Laser Atmospheric Wind Sounder (LAWS), within the next decade. The design of the LAWS continues to undergo a series of iterations common to most instruments targeted for a space platform. In general, the constraints of available platform power, weight allowance, and project funds continue to change. With these changes the performance and design specifications also must change.

  8. The Search for Organic Compounds of Martian Origin in Gale Crater by the Sample Analysis at Mars (SAM) Instrument on Curiosity

    Science.gov (United States)

    Glavin, Daniel; Freissinet, Caroline; Mahaffy, Paul; Miller, Kristen; Eigenbrode, Jennifer; Summons, Roger; Archer, Douglas, Jr.; Brunner, Anna; Martin, Mildred; Buch, Arrnaud; hide

    2014-01-01

    One of the key objectives of the Mars Science Laboratory rover and the Sample Analysis at Mars (SAM) instrument suite is to determine the inventory of organic and inorganic volatiles in the atmosphere and surface regolith and rocks to help assess the habitability potential of Gale Crater. The SAM instrument on the Curiosity rover can detect volatile organic compounds thermally evolved from solid samples using a combination of evolved gas analysis (EGA) and gas chromatography mass spectrometry (GCMS) (Mahaffy et al. 2012). The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest, revealed several chloromethanes and a C4-chlorinated hydrocarbon derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tertbutyldimethylsilyl)- trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background (Glavin et al. 2013). After the analyses at Rocknest, Curiosity traveled to Yellowknife Bay and drilled two separate holes in a fluvio-lacustrine sediment (the Sheepbed unit) designated John Klein and Cumberland. Analyses of the drilled materials by both SAM and the CheMin X-Ray Diffraction instrument revealed a mudstone consisting of 20 wt% smectite clays (Ming et al. 2013; Vaniman et al. 2013), which on Earth are known to aid the concentration and preservation of organic matter. Oxychlorine compounds were also detected in the Sheepbed mudstone during pyrolysis; however, in contrast to Rocknest, much higher levels of chloromethanes were released from the Sheepbed materials, suggesting an additional, possibly martian source of organic carbon (Ming et al. 2013). In addition, elevated abundances of chlorobenzene and a more diverse suite of chlorinated alkanes including dichloropropane and dichlorobutane detected in Cumberland compared to Rocknest suggest that martian or meteoritic organic carbon sources may be preserved in the mudstone (Freissinet et al. 2013

  9. Coupling in the middle atmosphere related to the 2013 major sudden stratospheric warming

    Directory of Open Access Journals (Sweden)

    R. J. de Wit

    2015-03-01

    Full Text Available The previously reported observation of anomalous eastward gravity wave forcing at mesopause heights around the onset of the January 2013 major sudden stratospheric warming (SSW over Trondheim, Norway (63° N, 10° E, is placed in a global perspective using Microwave Limb Sounder (MLS temperature observations from the Aura satellite. It is shown that this anomalous forcing results in a clear cooling over Trondheim about 10 km below mesopause heights. Conversely, near the mesopause itself, where the gravity wave forcing was measured, observations with meteor radar, OH airglow and MLS show no distinct cooling. Polar cap zonal mean temperatures show a similar vertical profile. Longitudinal variability in the high northern-latitude mesosphere and lower thermosphere (MLT is characterized by a quasi-stationary wave-1 structure, which reverses phase at altitudes below ~ 0.1 hPa. This wave-1 develops prior to the SSW onset, and starts to propagate westward at the SSW onset. The latitudinal pole-to-pole temperature structure associated with the major SSW shows a warming (cooling in the winter stratosphere (mesosphere which extends to about 40° N. In the stratosphere, a cooling extending over the equator and far into the summer hemisphere is observed, whereas in the mesosphere an equatorial warming is noted. In the Southern Hemisphere mesosphere, a warm anomaly overlaying a cold anomaly is present, which is shown to propagate downward in time. This observed structure is in accordance with the temperature perturbations predicted by the proposed interhemispheric coupling mechanism for cases of increased winter stratospheric planetary wave activity, of which major SSWs are an extreme case. These results provide observational evidence for the interhemispheric coupling mechanism, and for the wave-mean flow interaction believed to be responsible for the establishment of the anomalies in the summer hemisphere.

  10. In situ analysis of Mars soil sample with the sam gcms instrumentation onboard Curiosity : interpretation and comparison of measurements done at Rocknest and Yelloknife bay sites

    Science.gov (United States)

    Szopa, Cyril; Coll, Patrice; Cabane, Michel; Coscia, David; Buch, Arnaud; Francois, Pascaline; Millan, Maeva; Teinturier, Sammy; Navarro-Gonzales, Rafael; Glavin, Daniel; Freissinet, Caro; Steele, Andrew; Eigenbrode, Jen; Mahaffy, Paul

    2014-05-01

    The characterisation of the chemical and mineralogical composition of regolith samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of thermal-desorption injector and a MXT-CLP chromatographic column was chosen to achieve all the measurements done up today, as it was designed for the separation of a wide range of volatile organic molecules. Three solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, and two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64

  11. Purification of 1-aminocyclopropane-1-carboxylate synthase from apple fruits using s-adenosyl [3,414C]-methionine (SAM) as a probe

    International Nuclear Information System (INIS)

    Yip, Wingkip; Dong, Jianguo; Yang, Shang Fa

    1989-01-01

    Tomato ACC synthase is inactivated by its substrate SAM, with the moiety of aminobutyrate being covalently linked to ACC synthase during the catalytic reactions. A partial purified ACC synthase (the catalytic activity 100 μmol/h·mg protein) from pellets of apple extract was incubated with [3,4 14 C] SAM. Only one radioactive peak was revealed in a C-4 reverse phase HPLC and one radioactive band on SDS-PAGE with an M.W. of 48 kDa. Apple ACC synthase in native form is resistant to V8, α-chromtrypsin and carboxylpeptidase A digestion, but effectively inactivated by trypsin and ficin, as demonstrated by both the activity assay and SAM labeling. The radioactive protein cut from the SDS-PAGE was injected to three mice, two of the mice showed responses to the protein in western blot analysis. The antibodies from mice is currently under characterization

  12. Substrates adoption methodology (SAM) to achieve “Fast, Flexible, Future (F3)” pharmaceutical production processes

    DEFF Research Database (Denmark)

    Singh, Ravendra; Rozada-Sanchez, Raquel; Wrate, Tim

    within the template. In this way the substrates adoption methodology helps to achieve “fast, flexible, future (F3)” pharmaceutical production processes by adapting a recently designed generic modular process-plant. The supporting tools for the substrate adoption are: (1) an ontological knowledge......There is a significant cost associated with process development of a portfolio of pharmaceutical products, few of which will reach the market. Continuous processing will increase the “chemical space” which can increase development efficiency. For example one, particularly attractive option...... is to develop manufacturing processes based on modular continuous systems; a flexible generic continuous modular plant which can be adapted for different substrates. In the work reported here, a substrates adoption methodology (SAM) has been developed. The proposed SAM identifies the necessary changes...

  13. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979-2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002-2015) TIMED/SABER observations

    Science.gov (United States)

    Gan, Quan; Du, Jian; Fomichev, Victor I.; Ward, William E.; Beagley, Stephen R.; Zhang, Shaodong; Yue, Jia

    2017-04-01

    A recent 31 year simulation (1979-2010) by extended Canadian Middle Atmosphere Model (eCMAM30) and the 14 year (2002-2015) observation by the Thermosphere Ionosphere Mesosphere and Dynamics/Sounding of the Atmosphere using Broadband Emssion Radiometry (TIMED/SABER) are utilized to investigate the temperature response to the 11 year solar cycle on the mesosphere. Overall, the zonal mean responses tend to increase with height, and the amplitudes are on the order of 1-2 K/100 solar flux unit (1 sfu = 10-22 W m-2 Hz-1) below 80 km and 2-4 K/100 sfu in the mesopause region (80-100 km) from the eCMAM30, comparatively weaker than those from the SABER except in the midlatitude lower mesosphere. A pretty good consistence takes place at around 75-80 km with a response of 1.5 K/100 sfu within 10°S/N. Also, a symmetric pattern of the responses about the equator agrees reasonably well between the two. It is noteworthy that the eCMAM30 displays an alternate structure with the upper stratospheric cooling and the lower mesospheric warming at midlatitudes of the winter hemisphere, in favor of the long-term Rayleigh lidar observation reported by the previous studies. Through diagnosing multiple dynamical parameters, it is manifested that this localized feature is induced by the anomalous residual circulation as a consequence of the wave-mean flow interaction during the solar maximum year.

  14. Charging of mesospheric aerosol particles: the role of photodetachment and photoionization from meteoric smoke and ice particles

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2009-06-01

    Full Text Available Time constants for photodetachment, photoemission, and electron capture are considered for two classes of mesospheric aerosol particles, i.e., meteor smoke particles (MSPs and pure water ice particles. Assuming that MSPs consist of metal oxides like Fe2O3 or SiO, we find that during daytime conditions photodetachment by solar photons is up to 4 orders of magnitude faster than electron attachment such that MSPs cannot be negatively charged in the presence of sunlight. Rather, even photoemission can compete with electron capture unless the electron density becomes very large (>>1000 cm−3 such that MSPs should either be positively charged or neutral in the case of large electron densities. For pure water ice particles, however, both photodetachment and photoemission are negligible due to the wavelength characteristics of its absorption cross section and because the flux of solar photons has already dropped significantly at such short wavelengths. This means that water ice particles should normally be negatively charged. Hence, our results can readily explain the repeated observation of the coexistence of positive and negative aerosol particles in the polar summer mesopause, i.e., small MSPs should be positively charged and ice particles should be negatively charged. These results have further important implications for our understanding of the nucleation of mesospheric ice particles as well as for the interpretation of incoherent scatter radar observations of MSPs.

  15. Electrochemical characterization of a 1,8-octanedithiol self-assembled monolayer (ODT-SAM) on a Au(1 1 1) single crystal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Raya, Daniel; Madueno, Rafael; Sevilla, Jose Manuel; Blazquez, Manuel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Cordoba (Spain); Pineda, Teresa [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus de Rabanales, Ed. Marie Curie, E-14071 Cordoba (Spain)], E-mail: tpineda@uco.es

    2008-11-15

    Recently, it has becoming increasingly important to control the organization of self-assembled monolayers (SAMs) of {omega}-functionalized thiols for its potential applications in the construction of more complex molecular architectures. In this paper, we report on the spontaneous formation of a SAM of octanedithiol (ODT) as a function of the modification time. Electrochemical techniques such as cyclic voltammetry, double layer capacitance and electrochemical impedance spectroscopy are used for the characterization of this monolayer. The increase in modification time brings about changes in the octanedithiol self-assembled monolayer (ODT-SAM) reductive desorption voltammograms that indicate an evolution toward a more ordered and compact monolayer. This trend has also been found by following the changes in the electron transfer processes of the redox probe K{sub 3}Fe(CN){sub 6}. In fact, the ODT-SAM formed at low-modification time does not significantly perturb the electrochemical response as it is typical of either a low coverage or of the presence of large defects in the layer. Upon increasing the modification time, the voltammograms of the redox probe adopt a sigmoidal shape indicating the existence of pinholes in the monolayer distributed as an array of microelectrodes. The surface coverage as well as the size and distribution of these pinholes have been determined by the impedance technique that gives a more reliable evaluation of these monolayer structural parameters.

  16. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    Science.gov (United States)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  17. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5'-dAdo• "Free Radical" Is Never Free.

    Science.gov (United States)

    Horitani, Masaki; Byer, Amanda S; Shisler, Krista A; Chandra, Tilak; Broderick, Joan B; Hoffman, Brian M

    2015-06-10

    Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S-C5' bond, which creates the highly reactive 5'-deoxyadenosyl radical (5'-dAdo•), the same radical generated by homolytic Co-C bond cleavage in B12 radical enzymes. The SAM surrogate S-3',4'-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of (13)C, (2)H, and (15)N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 "tames" the 5'-dAdo• radical, preventing it from carrying out harmful side reactions: this "free radical" in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S-C5' bond, thereby enabling the 5'-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ∼0.6 Å toward the target and ∼1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5' radical, with "van der Waals control" of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature.

  18. SAM Technical Review Committee Final Report: Summary and Key Recommendations from the Onsite TRC Meeting Held April 22-23, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Blair, N.; Dobos, S.; Janzou, S.; Gilman, P.; Freeman, J.; Kaffine, L.

    2013-08-01

    The System Advisor Model (SAM) is a broad and robust set of models and frameworks for analyzing both system performance and system financing. It does this across a range of technologies dominated by solar technologies including photovoltaics (PV) and concentrated solar power (CSP). The U.S. Department of Energy (DOE) Solar Energy Technology Program requested the SAM development team to review the photovoltaic performance modeling with the development community and specifically, with the independent engineering community. The report summarizes the major effort for this technical review committee (TRC).

  19. Climatology and trends of mesospheric (58-90) temperatures based upon 1982-1986 SME limb scattering profiles

    Science.gov (United States)

    Clancy, R. Todd; Rusch, David W.

    1989-01-01

    Atmospheric temperature profiles for the altitude range 58-90 km were calculated using data on global UV limb radiances from the SME satellite. The major elements of this climatology include a high vertical resolution (about 4 km) and the coverage of the 70-90 km altitude region. The analysis of this extensive data set provides a global definition of mesospheric-lower thermospheric temperature trends over the 1982-1986 period. The observations suggest a pattern of 1-2 K/year decreases in temperatures at 80-90-km altitudes accompanied by 0.5-1.5 K/year increases in temperatures at 65-80-km altitudes.

  20. Resolving the mesospheric nighttime 4.3 µm emission puzzle: comparison of the CO2(ν3) and OH(ν) emission models

    Science.gov (United States)

    Panka, Peter A.; Kutepov, Alexander A.; Kalogerakis, Konstantinos S.; Janches, Diego; Russell, James M.; Rezac, Ladislav; Feofilov, Artem G.; Mlynczak, Martin G.; Yiğit, Erdal

    2017-08-01

    In the 1970s, the mechanism of vibrational energy transfer from chemically produced OH(ν) in the nighttime mesosphere to the CO2(ν3) vibration, OH(ν) ⇒ N2(ν) ⇒ CO2(ν3), was proposed. In later studies it was shown that this "direct" mechanism for simulated nighttime 4.3 µm emissions of the mesosphere is not sufficient to explain space observations. In order to better simulate these observations, an additional enhancement is needed that would be equivalent to the production of 2.8-3 N2(1) molecules instead of one N2(1) molecule in each quenching reaction of OH(ν) + N2(0). Recently a new "indirect" channel of the OH(ν) energy transfer to N2(ν) vibrations, OH(ν) ⇒ O(1D) ⇒ N2(ν), was suggested and then confirmed in a laboratory experiment, where its rate for OH(ν = 9) + O(3P) was measured. We studied in detail the impact of the "direct" and "indirect" mechanisms on CO2(ν3) and OH(ν) vibrational level populations and emissions. We also compared our calculations with (a) the SABER/TIMED nighttime 4.3 µm CO2 and OH 1.6 and 2.0 µm limb radiances of the mesosphere-lower thermosphere (MLT) and (b) with ground- and space-based observations of OH(ν) densities in the nighttime mesosphere. We found that the new "indirect" channel provides a strong enhancement of the 4.3 µm CO2 emission, which is comparable to that obtained with the "direct" mechanism alone but assuming an efficiency that is 3 times higher. The model based on the "indirect" channel also produces OH(ν) density distributions which are in good agreement with both SABER limb OH emission observations and ground and space measurements. This is, however, not true for the model which relies on the "direct" mechanism alone. This discrepancy is caused by the lack of an efficient redistribution of the OH(ν) energy from higher vibrational levels emitting at 2.0 µm to lower levels emitting at 1.6 µm. In contrast, the new  indirect  mechanism efficiently removes at least five quanta in each

  1. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  2. Airborne Deployment and Calibration of Microwave Atmospheric Sounder on 6U CubeSat

    Science.gov (United States)

    Padmanabhan, S.; Brown, S. T.; Lim, B.; Kangaslahti, P.; Russell, D.; Stachnik, R. A.

    2015-12-01

    To accurately predict how the distribution of extreme events may change in the future we need to understand the mechanisms that influence such events in our current climate. Our current observing system is not well-suited for observing extreme events globally due to the sparse sampling and in-homogeneity of ground-based in-situ observations and the infrequent revisit time of satellite observations. Observations of weather extremes, such as extreme precipitation events, temperature extremes, tropical and extra-tropical cyclones among others, with temporal resolution on the order of minutes and spatial resolution on the order of few kms (cost passive microwave sounding and imaging sensors on CubeSats that would work in concert with traditional flagship observational systems, such as those manifested on large environmental satellites (i.e. JPSS,WSF,GCOM-W), to monitor weather extremes. A 118/183 GHz sensor would enable observations of temperature and precipitation extremes over land and ocean as well as tropical and extra-tropical cyclones. This proposed project would enable low cost, compact radiometer instrumentation at 118 and 183 GHz that would fit in a 6U Cubesat with the objective of mass-producing this design to enable a suite of small satellites to image the key geophysical parameters needed to improve prediction of extreme weather events. We take advantage of past and current technology developments at JPL viz. HAMSR (High Altitude Microwave Scanning Radiometer), Advanced Component Technology (ACT'08) to enable low-mass, low-power high frequency airborne radiometers. In this paper, we will describe the design and implementation of the 118 GHz temperature sounder and 183 GHz humidity sounder on the 6U CubeSat. In addition, we will discuss the maiden airborne deployment of the instrument during the Plain Elevated Convection at Night (PECAN) experiment. The successful demonstration of this instrument on the 6U CubeSat would pave the way for the development of a

  3. Rainfall declines over Queensland from 1951-2007 and links to the Subtropical Ridge and the SAM

    International Nuclear Information System (INIS)

    Cottrill, D A; Ribbe, J

    2010-01-01

    Much of southern and eastern Australia including Queensland have experienced rainfall declines over recent decades affecting agricultural production and accelerating water infrastructure development. Rainfall declines from southern Australia have now been directly related to changes in the Southern Annular Mode (SAM) and the subtropical ridge. In southern and coastal Queensland, the rainfall declines have occurred mostly in the austral summer and autumn. Observations from this region reveal the rainfall decline is correlated to an increase in the mean sea level pressure (MSLP) at many stations. The largest increases in MSLP are over southeast Queensland and coastal regions, where some of the largest rainfall declines occur. This study indicates the subtropical ridge as one of the main factors in the rainfall decline over this region. SAM is also likely to be important, although its seasonal influence, apart from winter, is harder to determine.

  4. Influencia del Estado de Oxidación del Ión Cobalto en la Estabilidad de Electrodos Modificados con Monocapas SAM-TOA-ANTA-Con+-HRP-NHis.

    Directory of Open Access Journals (Sweden)

    Pedro R. Matheus*

    Full Text Available Influence of state oxidation of cobalt ion in the stability electrodes modified with monolayers SAM-TOA-ANTA-Con+-HRP-NHis. Quartz Crystal Microbalance (QCM was used to investigate the adsorption of the HRP-NHis enzyme (horseradish peroxidase, which was modified by the addition of a tail of six histidine on its extreme N-terminal. The QCM operating at flow of 0.025 mL min-1 on a crystal whose gold electrode was modified with monolayers of SAM-TOA-ANTA-Co2+ and SAM-TOA-ANTA -Co3+. The oxidize form was obtained from the electrochemical oxidation of a monolayer of SAM-TOA-ANTA-Co2+. The results suggest that the HRP-NHis is attached to both monolayers in a similar way; on the contrary, the desortion of the attached protein is dramatically different. Thus, whereas the ligand-Co2+ bonds are reversible, which allows that the anchored protein is easily replaced by imidazol molecules. The 3+ oxidation state of the metal does not allow the interchange of protein by the imidazol molecules.

  5. Silicon Chemistry in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Plane, John M. C.; Gomez-Martin, Juan Carlos; Feng, Wuhu; Janches, Diego

    2016-01-01

    Silicon is one of the most abundant elements in cosmic dust, and meteoric ablation injects a significant amount of Si into the atmosphere above 80 km. In this study, a new model for silicon chemistry in the mesosphere lower thermosphere is described, based on recent laboratory kinetic studies of Si, SiO,SiO2, and S(exp +). Electronic structure calculations and statistical rate theory are used to show that the likely fate of SiO2 is a two-step hydration to silicic acid (Si(OH)4), which then polymerizes with metal oxides and hydroxides to form meteoric smoke particles. This chemistry is then incorporated into a whole atmosphere chemistry-climate model. The vertical profiles of Si+ and the Si(exp +)Fe(exp +) ratio are shown to be in good agreement with rocket-borne mass spectrometric measurements between 90 and 110 km. Si(exp +) has consistently been observed to be the major meteoric ion around 110 km; this implies that the relative injection rate of Si from meteoric ablation, compared to metals such as Fe and Mg, is significantly larger than expected based on the irrelative chondritic abundances. Finally, the global abundances of SiO and Si(OH)4 show clear evidence of the seasonal meteoric input function, which is much less pronounced in the case of other meteoric species.

  6. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    Science.gov (United States)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  7. Increasing the Fill Factor of Inverted P3HT:PCBM Solar Cells Through Surface Modification of Al-Doped ZnO via Phosphonic Acid-Anchored C60 SAMs

    DEFF Research Database (Denmark)

    Stubhan, Tobias; Salinas, Michael; Ebel, Alexander

    2012-01-01

    The influence of aluminum-doped zinc oxide (AZO) electron extraction layers modified with self-assembled monolayers (SAMs) on inverted polymer solar cells is investigated. It is found that AZO modification with phosphonic acid-anchored Fullerene–SAMs leads to a reduction of the series resistance,...

  8. SAM: Support Vector Machine Based Active Queue Management

    International Nuclear Information System (INIS)

    Shah, M.S.

    2014-01-01

    Recent years have seen an increasing interest in the design of AQM (Active Queue Management) controllers. The purpose of these controllers is to manage the network congestion under varying loads, link delays and bandwidth. In this paper, a new AQM controller is proposed which is trained by using the SVM (Support Vector Machine) with the RBF (Radial Basis Function) kernal. The proposed controller is called the support vector based AQM (SAM) controller. The performance of the proposed controller has been compared with three conventional AQM controllers, namely the Random Early Detection, Blue and Proportional Plus Integral Controller. The preliminary simulation studies show that the performance of the proposed controller is comparable to the conventional controllers. However, the proposed controller is more efficient in controlling the queue size than the conventional controllers. (author)

  9. Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT) region

    OpenAIRE

    X. Liu; X. Liu; J. Xu; H.-L. Liu; J. Yue; W. Yuan

    2014-01-01

    Using a fully nonlinear two-dimensional (2-D) numerical model, we simulated gravity waves (GWs) breaking and their contributions to the formation of large winds and wind shears in the mesosphere and lower thermosphere (MLT). An eddy diffusion coefficient is used in the 2-D numerical model to parameterize realistic turbulent mixing. Our study shows that the momentum deposited by breaking GWs accelerates the mean wind. The resultant large background wind increases the GW's app...

  10. One-step solution fabrication of magnetic chains consisting of jingle-bell-shaped cobalt mesospheres

    Science.gov (United States)

    Liang, Fang; Guo, Lin; Zhong, QunPeng; Wen, Xiaogang; Yang, Shihe; Zheng, Wangzhi; Chen, Chinping; Zhang, Nina; Chu, Weiguo

    2006-09-01

    Using a one-step solution phase approach, the authors have synthesized uniform jingle bell-shaped cobalt mesopheres (550-750nm) and assembled the mesospheres into long magnetic chains (20-30μm). All of the cobalt spheres are hollow with ˜40nm thick shells but each contains an ˜200nm diameter solid ball. The nano- to mesoscale structures were realized via reaction of CoCl2•6H2O and N2H4•H2O in the presence of polyvinylpyrrolidone (PVP) in an ethylene glycol solution. Magnetic measurements show a coercivity of about 75Oe with a remnance of 9.6emu /g at 300K. We propose a possible mechanism for the formation of the nanoto mesoscale structures.

  11. MTG infrared sounder detection chain: first radiometric test results

    Science.gov (United States)

    Dumestier, D.; Pistone, F.; Dartois, T.; Blazquez, E.

    2017-11-01

    Europe's next fleet of geostationary meteorological satellites, MeteoSat Third Generation, will introduce new functions in addition to continuity of high-resolution meteorological data. The atmosphere Infrared Sounder (IRS), as high -end instrument, is part of this challenging program. IRS principle is a Fourier Transform Interferometer, which allows recomposing atmospheric spectrum after infrared photons detection. Transmission spectrums will be used to support numerical weather prediction. IRS instrument is able to offer full disk coverage in one hour, an on-ground resolution of 4 by 4 km, in two spectral bands (MWIR: 1600 to 2175cm-1 and LWIR: 700 to 1210cm-1) with a spectral resolution of 0.6cm-1. Among critical technologies and processes, IRS detection chain shall offer outstanding characteristics in terms of radiometric performance like Signal to Noise Ratio (SNR), dynamic range and linearity. Selected detectors are HgCdTe two-dimensions arrays, cooled at 55 Kelvins, hybridized on snapshot silicon read-out circuit at 160x160 format. Video electronics present 16 bits resolution, and the whole detection chain (Detectors and electronics) permits to reach SNR between 2 000 and 10 000 as requested by the application. Radiometric onground test results performed on design representative detection chains are presented and are confirming the challenging phase A design choices.

  12. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  13. Possible Detection of Perchlorates by the Sample Analysis at Mars (SAM) Instrument: Comparison with Previous Missions

    Science.gov (United States)

    Navarro-Gonzalex, Rafael; Sutter, Brad; Archer, Doug; Ming, Doug; Eigenbrode, Jennifer; Franz, Heather; Glavin, Daniel; McAdam, Amy; Stern, Jennifer; McKay, Christopher; hide

    2013-01-01

    The first chemical analysis of soluble salts in the soil was carried out by the Phoenix Lander in the Martian Arctic [1]. Surprisingly, chlorine was present as magnesium or calcium perchlorate at 0.4 to 0.6 percent. Additional support for the identification of perchlorate came from the evolved gas analysis which detected the release of molecular oxygen at 350-550C [1]. When Mars-like soils from the Atacama Desert were spiked with magnesium perchlorate (1 percent) and heated using the Viking GC-MS protocol, nearly all the organics were combusted but a small amount was chlorinated, forming chloromethane and dichloromethane [2]. These chlorohydrocarbons were detected by the Viking GC-MS experiments when the Martian soil was analyzed but they were considered to be terrestrial contaminants [3]. Reinterpretation of the Viking results suggests Analysis at Mars (SAM) instrument on board the Mars Science Laboratory (MSL) ran four samples from an aeolian bedform named Rocknest. The samples analyzed were portioned from the fifth scoop at this location. The samples were heated to 835C at 35C/min with a He flow. The SAM QMS detected a major oxygen release (300-500C) [5], coupled with the release of chlorinated hydrocarbons (chloromethane, dichloromethane, trichloromethane, and chloromethylpropene) detected both by SAM QMS and GC-MS derived from known Earth organic contaminants in the instrument [6]. Calcium perchlorate appears to be the best candidate for evolved O2 in the Rocknest samples at this time but other Cl species (e.g., chlorates) are possible and must be evaluated. The potential detection of perchlorates in Rocknest material adds weight to the argument that both Viking Landers measured signatures of perchlorates. Even if the source of the organic carbon detected is still unknown, the chlorine source was likely Martian. Two mechanisms have been hypothesized for the formation of soil perchlorate: (1) Atmospheric oxidation of chlorine; and (2) UV photooxidation of

  14. Why Nature Uses Radical SAM Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5′-dAdo• “Free Radical” Is Never Free

    Science.gov (United States)

    Horitani, Masaki; Byer, Amanda S.; Shisler, Krista A.; Chandra, Tilak; Broderick, Joan B.; Hoffman, Brian M.

    2015-01-01

    Lysine 2,3-aminomutase (LAM) is a radical S-adenosyl-L-methionine (SAM) enzyme and, like other members of this superfamily, LAM utilizes radical-generating machinery comprising SAM anchored to the unique Fe of a [4Fe-4S] cluster via a classical five-membered N,O chelate ring. Catalysis is initiated by reductive cleavage of the SAM S–C5′ bond, which creates the highly reactive 5′-deoxyadenosyl radical (5′-dAdo•), the same radical generated by homolytic Co–C bond cleavage in B12 radical enzymes. The SAM surrogate S-3′,4′-anhydroadenosyl-L-methionine (anSAM) can replace SAM as a cofactor in the isomerization of L-α-lysine to L-β-lysine by LAM, via the stable allylic anhydroadenosyl radical (anAdo•). Here electron nuclear double resonance (ENDOR) spectroscopy of the anAdo• radical in the presence of 13C, 2H, and 15N-labeled lysine completes the picture of how the active site of LAM from Clostridium subterminale SB4 “tames” the 5′-dAdo• radical, preventing it from carrying out harmful side reactions: this “free radical” in LAM is never free. The low steric demands of the radical-generating [4Fe-4S]/SAM construct allow the substrate target to bind adjacent to the S–C5′ bond, thereby enabling the 5′-dAdo• radical created by cleavage of this bond to react with its partners by undergoing small motions, ~0.6 Å toward the target and ~1.5 Å overall, that are controlled by tight van der Waals contact with its partners. We suggest that the accessibility to substrate and ready control of the reactive C5′ radical, with “van der Waals control” of small motions throughout the catalytic cycle, is common within the radical SAM enzyme superfamily and is a major reason why these enzymes are the preferred means of initiating radical reactions in nature. PMID:25923449

  15. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements

    Science.gov (United States)

    Singh, Ravindra P.; Pallamraju, Duggirala

    2017-08-01

    This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6°N, 72.8°E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm^{-1} and 1024× 1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80° along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, cz, is calculated and along with the coherent GW time period `τ ', the vertical wavelength, λ z, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, λ y, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (τ , cz, λ z, and λ y), and results on the statistical study of MTIs that exist in the earth's mesospheric

  16. Stool frequency recording in severe acute malnutrition ('StoolSAM'); an agreement study comparing maternal recall versus direct observation using diapers.

    Science.gov (United States)

    Voskuijl, Wieger; Potani, Isabel; Bandsma, Robert; Baan, Anne; White, Sarah; Bourdon, Celine; Kerac, Marko

    2017-06-07

    Approximately 50% of the deaths of children under the age of 5 can be attributed to undernutrition, which also encompasses severe acute malnutrition (SAM). Diarrhoea is strongly associated with these deaths and is commonly diagnosed solely based on stool frequency and consistency obtained through maternal recall. This trial aims to determine whether this approach is equivalent to a 'directly observed method' in which a health care worker directly observed stool frequency using diapers in hospitalised children with complicated SAM. This study was conducted at 'Moyo' Nutritional Rehabilitation Unit, Queen Elizabeth Central Hospital, Malawi. Participants were children aged 5-59 months admitted with SAM. We compared 2 days of stool frequency data obtained with next-day maternal-recall versus a 'gold standard' in which a health care worker observed stool frequency every 2 h using diapers. After study completion, guardians were asked their preferred method and their level of education. We found poor agreement between maternal recall and the 'gold standard' of directly observed diapers. The sensitivity to detect diarrhoea based on maternal recall was poor, with only 75 and 56% of diarrhoea cases identified on days 1 and 2, respectively. However, the specificity was higher with more than 80% of children correctly classified as not having diarrhoea. On day 1, the mean stool frequency difference between the two methods was -0.17 (SD; 1.68) with limits of agreement (of stool frequency) of -3.55 and 3.20 and, similarly on day 2, the mean difference was -0.2 (SD; 1.59) with limits of agreement of -3.38 and 2.98. These limits extend beyond the pre-specified 'acceptable' limits of agreement (±1.5 stool per day) and indicate that the 2 methods are non-equivalent. The higher the stool frequency, the more discrepant the two methods were. Most primary care givers strongly preferred using diapers. This study shows lack of agreement between the assessment of stool frequency in SAM

  17. Coastal lagoon sediments and benthic foraminifera as indicator for Holocene sea-level change: Samsø, southern Kattegat

    DEFF Research Database (Denmark)

    Sander, Lasse; Morigi, Caterina; Pejrup, Morten

    The island of Samsø is located in the southern Kattegat region of Denmark, a relatively sheltered micro-tidal environment. The area experienced a period of rapid transgression during the early Altantic period, reaching its maximum approx. 7,600 yr BP. Since then, isostatic uplift gradually caused....... Over time, an extensive beach ridge system formed, which eventually connected the islands, giving Samsø its characteristic shape. Ephemeral shallow-water lagoons evolved in topographic depressions along the shores of the island, most of which became inactive until today. A semi-enclosed coastal lagoon......-level and to investigate associated geomorphic responses in coastal lagoon and beach ridge systems. Vibracorings will be carried out in these sedimentary environments and will be supplemented with manual auger corings and ground penetrating radar (GPR) surveys to assess vertical variations in the deposited sediments...

  18. Lidar measurements of mesospheric temperature inversion at a low latitude

    Energy Technology Data Exchange (ETDEWEB)

    Siva Kumar, V.; Bhavani Kumar, Y.; Raghunath, K.; Rao, P.B. [National MST Radar Facility, Tirupati (India); Krishnaiah, M. [Sri Venkateswara Univ., Tirupati (India). Dept. of Physics; Mizutani, K.; Aoki, T.; Yasui, M.; Itabe, T. [Communication Research Lab., Tokyo (Japan)

    2001-08-01

    The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5 N, 79.2 E), India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms. (orig.)

  19. Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs

    Directory of Open Access Journals (Sweden)

    Rajendra K. Aithal

    2016-02-01

    Full Text Available Bioengineering of dermal and epidermal cells on surface modified substrates is an active area of research. The cytotoxicity, maintenance of cell phenotype and long-term functionality of human dermal fibroblast (HDF cells on conducting indium tin oxide (ITO and semi-conducting, silicon (Si and gallium arsenide (GaAs, surfaces modified with self-assembled monolayers (SAMs containing amino (–NH2 and methyl (–CH3 end groups have been investigated. Contact angle measurements and infrared spectroscopic studies show that the monolayers are conformal and preserve their functional end groups. Morphological analyses indicate that HDFs grow well on all substrates except GaAs, exhibiting their normal spindle-shaped morphology and exhibit no visible signs of stress or cytoplasmic vacuolation. Cell viability analyses indicate little cell death after one week in culture on all substrates except GaAs, where cells died within 6 h. Cells on all surfaces proliferate except on GaAs and GaAs-ODT. Cell growth is observed to be greater on SAM modified ITO and Si-substrates. Preservation of cellular phenotype assessed through type I collagen immunostaining and positive staining of HDF cells were observed on all modified surfaces except that on GaAs. These results suggest that conducting and semi-conducting SAM-modified surfaces support HDF growth and functionality and represent a promising area of bioengineering research.

  20. Fatty Acid Detection in Mars-Analogous Rock Samples with the TMAH Wet Chemistry Experiment on the Sample Analysis at Mars (SAM) Instrument

    Science.gov (United States)

    Williams, A. J.; Eigenbrode, J. L.; Wilhelm, M. B.; Johnson, S. S.; Craft, K.; O'Reilly, S.; Lewis, J. M. T.; Williams, R.; Summons, R. E.; Benison, K. C.; Mahaffy, P. R.

    2017-12-01

    The Curiosity rover is exploring sedimentary rock sequences in Gale Crater for evidence of habitability and searching for organic compounds using the Sample Analysis at Mars (SAM) instrument suite. SAM includes a gas chromatograph mass spectrometer (GC-MS) and pyrolysis ovens. SAM has the ability to perform wet chemistry experiments, one of which uses tetramethylammonium hydroxide (TMAH) thermochemolysis to liberate bound lipids, making them sufficiently volatile for detection by GC-MS. To determine the effectiveness of the SAM-like TMAH experiment on fatty acid methyl ester (FAME) biomarker identification, rock and sediment samples were collected from a variety of Mars analog environments including iron oxides from a modern mineral precipitate and older surface gossan at Iron Mountain, CA, as well as modern acid salt and neutral lake sediments with mixed iron oxides and clays from Western Australia; siliceous sinter from recently inactive and modern near-vent Icelandic hot springs deposits; modern carbonate ooids from The Bahamas, and organic-rich shale from Germany. Samples underwent pyrolysis with TMAH. Fatty acids were analyzed by pyro-GC-MS using a SAM-like heating ramp (35°C/min) as well as a 500°C flash on a Frontier pyrolyzer and Agilent GC-MS instrument. Results reveal that FAMEs were detectable with the TMAH experiment in nearly all samples. Low molecular weight (MW) C6:0-C10:0 FAMEs were present in all samples, medium MW C11:0-C18:2 FAMEs were present in select samples, and high MW (HMW) C20:0-C30:0 FAMEs were present in the shale sample. Many of these samples exhibited an even-over-odd carbon number preference, indicating biological production. These experiments demonstrate that TMAH thermochemolysis with SAM-like pyro-GC-MS is effective in fatty acid analysis from natural Mars-analog samples that vary in mineralogy, age, and microbial community input. HMW FAMEs are not detected in iron-dominated samples, and may not be detectable at low

  1. A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation

    Directory of Open Access Journals (Sweden)

    B. Funke

    2016-07-01

    Full Text Available The MIPAS Fourier transform spectrometer on board Envisat has measured global distributions of the six principal reactive nitrogen (NOy compounds (HNO3, NO2, NO, N2O5, ClONO2, and HNO4 during 2002–2012. These observations were used previously to detect regular polar winter descent of reactive nitrogen produced by energetic particle precipitation (EPP down to the lower stratosphere, often called the EPP indirect effect. It has further been shown that the observed fraction of NOy produced by EPP (EPP-NOy has a nearly linear relationship with the geomagnetic Ap index when taking into account the time lag introduced by transport. Here we exploit these results in a semi-empirical model for computation of EPP-modulated NOy densities and wintertime downward fluxes through stratospheric and mesospheric pressure levels. Since the Ap dependence of EPP-NOy is distorted during episodes of strong descent in Arctic winters associated with elevated stratopause events, a specific parameterization has been developed for these episodes. This model accurately reproduces the observations from MIPAS and is also consistent with estimates from other satellite instruments. Since stratospheric EPP-NOy depositions lead to changes in stratospheric ozone with possible implications for climate, the model presented here can be utilized in climate simulations without the need to incorporate many thermospheric and upper mesospheric processes. By employing historical geomagnetic indices, the model also allows for reconstruction of the EPP indirect effect since 1850. We found secular variations of solar cycle-averaged stratospheric EPP-NOy depositions on the order of 1 GM. In particular, we model a reduction of the EPP-NOy deposition rate during the last 3 decades, related to the coincident decline of geomagnetic activity that corresponds to 1.8 % of the NOy production rate by N2O oxidation. As the decline of the geomagnetic activity level is expected to continue in the

  2. Phase Change Material for Temperature Control of Imager or Sounder on GOES Type Satellites in GEO

    Science.gov (United States)

    Choi, Michael K.

    2014-01-01

    This paper uses phase change material (PCM) in the scan cavity of an imager or sounder on satellites in geostationary orbit (GEO) to maintain the telescope temperature stable. When sunlight enters the scan aperture, solar heating causes the PCM to melt. When sunlight stops entering the scan aperture, the PCM releases the thermal energy stored to keep the components in the telescope warm. It has no moving parts or bimetallic springs. It reduces heater power required to make up the heat lost by radiation to space through the aperture. It is an attractive thermal control option to a radiator with a louver and a sunshade.

  3. Production of odd nitrogen in the stratosphere and mesosphere - An intercomparison of source strengths

    Science.gov (United States)

    Jackman, C. H.; Frederick, J. E.; Stolarski, R. S.

    1980-01-01

    Galactic cosmic rays (GCRs), nuclear explosions, lightning, solar proton events (SPEs), relativistic electron precipitation, and meteors are related to the oxidation of nitrous oxide by comparing several sources of odd nitrogen (ON) in the stratosphere and mesosphere. Published O3 and N2O data show that ON produced by the reaction of O(1D) with N2O peaks between 25 and 35 km; the GCRs add approximately the same amount of ON as N2O oxidation at the solar minimum for geographic latitudes over 50 deg. Nuclear explosions in 1961-1962 added 1.1 and 2.2 x 10 to the 34th NO molecules each, and SPEs produced greater amounts of ON above 50 deg than N2O oxidation during 1958 through 1960, and in 1972.

  4. A paradigm shift for radical SAM reactions: The organometallic intermediate Ω is central to catalysis.

    Science.gov (United States)

    Byer, Amanda S; Yang, Hao; McDaniel, Elizabeth C; Kathiresan, Venkatesan; Impano, Stella; Pagnier, Adrien; Watts, Hope; Denler, Carly; Vagstad, Anna; Piel, Jörn; Duschene, Kaitlin S; Shepard, Eric M; Shields, Thomas P; Scott, Lincoln G; Lilla, Edward A; Yokoyama, Kenichi; Broderick, William E; Hoffman, Brian M; Broderick, Joan B

    2018-06-28

    Radical S-adenosyl-L-methionine (SAM) en-zymes comprise a vast superfamily catalyzing diverse reactions essential to all life through ho-molytic SAM cleavage to liberate the highly-reactive 5-deoxyadenosyl radical (5-dAdo•). Our recent observation of a catalytically compe-tent organometallic intermediate Ω that forms dur-ing reaction of the radical SAM (RS) enzyme py-ruvate formate-lyase activating-enzyme (PFL-AE) was therefore quite surprising, and led to the question of its broad relevance in the superfamily. We now show that Ω in PFL-AE forms as an in-termediate under a variety of mixing order condi-tions, suggesting it is central to catalysis in this enzyme. We further demonstrate that Ω forms in a suite of RS enzymes chosen to span the totality of superfamily reaction types, implicating Ω as essential in catalysis across the RS superfamily. Finally, EPR and electron nuclear double reso-nance spectroscopy establish that Ω involves an Fe-C5 bond between 5-dAdo• and the [4Fe-4S] cluster. An analogous organometallic bond is found in the well-known adenosylcobalamin (co-enzyme B12) cofactor used to initiate radical reac-tions via a 5'-dAdo• intermediate. Generation of a 5'-dAdo• intermediate via homolytic metal-carbon bond cleavage thus appears to be similar for Ω and coenzyme B12. However coenzyme B12 is involved in enzymes catalyzing of only a small number (~12) of distinct reactions, while the RS superfamily has more than 100,000 distinct se-quences and over 80 reaction types character-ized to date. The appearance of Ω across the RS superfamily therefore dramatically enlarges the sphere of bio-organometallic chemistry in Nature.

  5. The 2003 edition of geisa: a spectroscopic database system for the second generation vertical sounders radiance simulation

    Science.gov (United States)

    Jacquinet-Husson, N.; Lmd Team

    The GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer accessible database system, in its former 1997 and 2001 versions, has been updated in 2003 (GEISA-03). It is developed by the ARA (Atmospheric Radiation Analysis) group at LMD (Laboratoire de Météorologie Dynamique, France) since 1974. This early effort implemented the so-called `` line-by-line and layer-by-layer '' approach for forward radiative transfer modelling action. The GEISA 2003 system comprises three databases with their associated management softwares: a database of spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located in a spectral range from the microwave to the limit of the visible. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. a database of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. a database of refractive indices of basic atmospheric aerosol components. Illustrations will be given of GEISA-03, data archiving method, contents, management softwares and Web access facilities at: http://ara.lmd.polytechnique.fr The performance of instruments like AIRS (Atmospheric Infrared Sounder; http://www-airs.jpl.nasa.gov) in the USA, and IASI (Infrared Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) in Europe, which have a better vertical resolution and accuracy, compared to the presently existing satellite infrared vertical sounders, is directly related to the quality of the spectroscopic parameters of the optically active gases, since these are essential input in the forward models used to simulate recorded radiance spectra. For these upcoming atmospheric sounders, the so-called GEISA/IASI sub-database system has been elaborated

  6. Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images

    Science.gov (United States)

    Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.

    2018-01-01

    We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.

  7. The WHISPER Relaxation Sounder and the CLUSTER Active Archive

    Science.gov (United States)

    Trotignon, J. G.; Décréau, P. M. E.; Rauch, J. L.; Vallières, X.; Rochel, A.; Kougblénou, S.; Lointier, G.; Facskó, G.; Canu, P.; Darrouzet, F.; Masson, A.

    The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) instrument is part of the Wave Experiment Consortium (WEC) of the CLUSTER mission. With the help of the long double sphere antennae of the Electric Field and Wave (EFW) instrument and the Digital Wave Processor (DWP), it delivers active (sounding) and natural (transmitter off) electric field spectra, respectively from 4 to 82 kHz, and from 2 to 80 kHz. These frequency ranges have been chosen to include the electron plasma frequency, which is closely related to the total electron density, in most of the regions encountered by the CLUSTER spacecraft. Presented here is an overview of the WHISPER data products available in the CLUSTER Active Archive (CAA). The instrument and its performance are first recalled. The way the WHISPER products are obtained is then described, with particular attention being paid to the density determination. Both sounding and natural measurements are commonly used in this process, which depends on the ambient plasma regime. This is illustrated using drawings similar to the Bryant plots commonly used in the CLUSTER master science plan. These give a clear overview of typical density values and the parts of the orbits where they are obtained. More information on the applied software or on the quality/reliability of the density determination can also be highlighted.

  8. Mesospheric Precursors to the Major Stratospheric Sudden Warming of 2009: Validation and Dynamical Attribution using a Ground-to-Edge-of-Space Data Assimilation System

    Science.gov (United States)

    2011-01-01

    et al., 2008). Since wind observations are sparse and standard data assimilation systems ( DASs ) do not extend through the mesosphere, we have far...et al., 2008). Figure 1f plots a time-height cross section of wave- 2 F z at 60◦N, scaled by exp(z/2H), where z is pres- sure altitude and H =7 km. As

  9. The Investigation of Chlorates as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Archer, D. P.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A. C.; Mahaffy, P; Stern, J. C.; hide

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detect-ed O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander’s Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Iron mineralogy found in the Rocknest materials when mixed with Ca-perchlorate does cause O2 release temperatures to be closer match to the SAM O2 release data but more work is required in evaluating the catalytic effects of Fe mineralogy on perchlorate decomposition. Chlorates (ClO3-) are relevant Mars materials and potential O2 and Cl sources. The objective of this work is to evaluate the thermal decomposition of select chlorate (ClO3-) salts as possible sources of the O2 and HCl releases in the Gale Crater materials.

  10. Surveillance and Measurement System (SAMS). Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for the decontamination and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology sponsors large-scale demonstration and deployment projects (LSDDPs) to identify and demonstrate technologies that will be safer and more cost-effective. At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects as well as others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of need statements defining specific needs or problems where improved technologies could be incorporated into ongoing D and D tasks. Advances in characterization technologies are continuously being sought to decrease the cost of sampling and increase the speed of obtaining results. Currently it can take as long as 90 days to receive isotopic analysis of radioactive samples from laboratories on soil, liquid, and paint samples. The cost to analyze these types of samples for radionuclides is about $150 per sample. This demonstration investigated the feasibility of using the Surveillance and Measurement System (SAMS) (innovative technology) to make in situ isotopic radiation measurements in paint and soil. Sample collection and on-site laboratory analysis (baseline technology) is currently being used on D and D sampling activities. Benefits expected from using the innovative technology include: Significant decrease in time to receive results on radiological samples; Decrease in cost associated with sample collection, preparation, analysis, and disposal; Equivalent data quality to laboratory analysis; and Fewer

  11. Improving discrimination of savanna tree species through a multiple endmember spectral-angle-mapper (SAM) approach: canopy level analysis

    CSIR Research Space (South Africa)

    Cho, Moses A

    2010-11-01

    Full Text Available sensing. The objectives of this paper were to (i) evaluate the classification performance of a multiple-endmember spectral angle mapper (SAM) classification approach (conventionally known as the nearest neighbour) in discriminating ten common African...

  12. Exploration of the Habitability of Mars with the SAM Suite Investigation on the 2009 Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, P. R.; Cabane, M.; Webster, C. R.

    2008-01-01

    The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.

  13. Séries temporais de NDVI do sensor SPOT Vegetation e algoritmo SAM aplicados ao mapeamento de cana‑de‑açúcar

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo Vicente

    2012-09-01

    Full Text Available O objetivo deste trabalho foi avaliar o mapeamento de área de cana‑de‑açúcar por meio de série temporal, de seis anos de dados do índice de vegetação por diferença normalizada (NDVI, oriundos do sensor Vegetation, a bordo do satélite "système pour l'observation de la Terre" (SPOT. Três classes de cobertura do solo (cana‑de‑açúcar, pasto e floresta, do Estado de São Paulo, foram selecionadas como assinaturas espectro‑temporais de referência, que serviram como membros extremos ("endmembers" para classificação com o algoritmo "spectral angle mapper" (SAM. A partir desta classificação, o mapeamento da área de cana‑de‑açúcar foi realizado com uso de limiares na imagem-regra do SAM, gerados a partir dos valores dos espectros de referência. Os resultados mostram que o algoritmo SAM pode ser aplicado a séries de dados multitemporais de resolução moderada, o que permite eficiente mapeamento de alvo agrícola em escala mesorregional. Dados oficiais de áreas de cana‑de‑açúcar, para as microrregiões paulistas, apresentam boa correlação (r² = 0,8 com os dados obtidos pelo método avaliado. A aplicação do algoritmo SAM mostrou ser útil em análises temporais. As séries temporais de NDVI do sensor SPOT Vegetation podem ser utilizadas para mapeamento da área de cana‑de‑açúcar em baixa resolução.

  14. Highlight on the indigenous organic molecules detected on Mars by SAM and potential sources of artifacts and backgrounds generated by the sample preparation

    Science.gov (United States)

    Buch, A.; Belmahdi, I.; Szopa, C.; Freissinet, C.; Glavin, D. P.; Coll, P. J.; Cabane, M.; Millan, M.; Eigenbrode, J. L.; Navarro-Gonzalez, R.; Stern, J. C.; Pinnick, V. T.; Coscia, D.; Teinturier, S.; Stambouli, M.; Dequaire, T.; Mahaffy, P. R.

    2015-12-01

    Among the experiments which explore the martian soil aboard the Curiosity Rover, SAM experiment is mainly dedicated to the search for indigenous organic compounds. To reach its goals SAM can operate in different analysis modes: Pyrolysis-GC-MS and Pyrolysis-MS (EGA). In addition SAM includes wet chemistry experiments [1] to supports extraction of polar organic compounds from solid samples that improves their detection either by increasing the release of chemical species from solid sample matrices, or by changing their chemical structure to make compounds more amenable to gas chromatography mass spectrometry (GCMS). The two wet chemistry experimental capabilities of SAM provide alternatives to the nominal inert-thermal desorption/pyrolysis analytical protocol and are more aptly suited for polar components: MTBSTFA derivatization [2-3] and TMAH thermochemolysis [4-5]. Here we focus on the MTBSTFA derivatization experiment. In order to build a support used to help the interpretation of SAM results, we have investigated the artifacts and backgrounds sources generated by the all analysis process: Solid sample were heated up to approximately 840°C at a rate of 35°C/min under He flow. For GC analyses, the majority of the gas released was trapped on a hydrocarbon trap (Tenax®) over a specific temperature range. Adsorbed volatiles on the GC injection trap (IT) were then released into the GC column (CLP-MXT 30m x 0.25mm x 0.25μm) by rapidly heating the IT to 300°C. Then, in order better understand the part of compounds detected coming from internal reaction we have performed several lab experiments to mimic the SAM device: Among the sources of artifact, we test: (1) the thermal stability and the organic material released during the degradation of Tenax® and carbosieve, (2) the impact of MTBSTFA and a mixture of DMF and MTBSTFA on the adsorbent, (3) the reaction between the different adsorbents (Tenax® and Carbosieve) and calcium perchlorate and then (4) the sources

  15. Characteristics of monsoon inversions over the Arabian Sea observed by satellite sounder and reanalysis data sets

    Directory of Open Access Journals (Sweden)

    S. Dwivedi

    2016-04-01

    Full Text Available Monsoon inversion (MI over the Arabian Sea (AS is one of the important characteristics associated with the monsoon activity over Indian region during summer monsoon season. In the present study, we have used 5 years (2009–2013 of temperature and water vapour measurement data obtained from satellite sounder instrument, an Infrared Atmospheric Sounding Interferometer (IASI onboard MetOp satellite, in addition to ERA-Interim data, to study their characteristics. The lower atmospheric data over the AS have been examined first to identify the areas where MIs are predominant and occur with higher strength. Based on this information, a detailed study has been made to investigate their characteristics separately in the eastern AS (EAS and western AS (WAS to examine their contrasting features. The initiation and dissipation times of MIs, their percentage occurrence, strength, etc., has been examined using the huge database. The relation with monsoon activity (rainfall over Indian region during normal and poor monsoon years is also studied. WAS ΔT values are  ∼  2 K less than those over the EAS, ΔT being the temperature difference between 950 and 850 hPa. A much larger contrast between the WAS and EAS in ΔT is noticed in ERA-Interim data set vis-à-vis those observed by satellites. The possibility of detecting MI from another parameter, refractivity N, obtained directly from another satellite constellation of GPS Radio Occultation (RO (COSMIC, has also been examined. MI detected from IASI and Atmospheric Infrared Sounder (AIRS onboard the NOAA satellite have been compared to see how far the two data sets can be combined to study the MI characteristics. We suggest MI could also be included as one of the semipermanent features of southwest monsoon along with the presently accepted six parameters.

  16. Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    Science.gov (United States)

    McPeters, Richard D.; Labow, Gordon J.

    2012-01-01

    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data.

  17. Systematic substrate adoption methodology (SAM) for future flexible, generic pharmaceutical production processes

    DEFF Research Database (Denmark)

    Singh, Ravendra; Godfrey, Andy; Gregertsen, Björn

    2013-01-01

    (APIs) for early delivery campaigns. Of these candidates only a few will be successful such that further development is required to scale-up the process. Systematic computer-aided methods and tools are required for faster manufacturing of these API candidates. In this work, a substrate adoption...... methodology (SAM) for a series of substrates with similar molecular functionality has been developed. The objective is to achieve “flexible, fast and future” pharmaceutical production processes by adapting a generic modular process template. Application of the methodology is illustrated through a case study...

  18. Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, Connor J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Atmospheric Radiation Measurement (ARM) Program

    2016-03-01

    The Atmospheric Sounder Spectrometer for Infrared Spectral Technology (ASSIST) measures the absolute infrared (IR) spectral radiance (watts per square meter per steradian per wavenumber) of the sky directly above the instrument. More information about the instrument can be found through the manufacturer’s website. The spectral measurement range of the instrument is 3300 to 520 wavenumbers (cm-1) or 3-19.2 microns for the normal-range instruments and 3300 to 400 cm-1 or 3-25 microns, for the extended-range polar instruments. Spectral resolution is 1.0 cm-1. Instrument field-of-view is 1.3 degrees. Calibrated sky radiance spectra are produced on cycle of about 141 seconds with a group of 6 radiance spectra zenith having dwell times of about 14 seconds each interspersed with 55 seconds of calibration and mirror motion. The ASSIST data is comparable to the Atmospheric Emitted Radiance Interferometer (AERI) data and can be used for 1) evaluating line-by-line radiative transport codes, 2) detecting/quantifying cloud effects on ground-based measurements of infrared spectral radiance (and hence is valuable for cloud property retrievals), and 3) calculating vertical atmospheric profiles of temperature and water vapor and the detection of trace gases.

  19. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars

    Science.gov (United States)

    Szopa, C.; Coll, P. J.; Cabane, M.; Buch, A.; Coscia, D.; Millan, M.; Francois, P.; Belmahadi, I.; Teinturier, S.; Navarro-Gonzalez, R.; Glavin, D. P.; Freissinet, C.; Steele, A.; Eigenbrode, J. L.; Mahaffy, P. R.

    2014-12-01

    The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site. All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013

  20. PDS4 vs PDS3 - A Comparison of PDS Data for Two Mars Rovers - Existing Mars Curiosity Mission Mass Spectrometer (SAM) PDS3 Data vs Future ExoMars Rover Mass Spectrometer (MOMA) PDS4 Data

    Science.gov (United States)

    Lyness, E.; Franz, H. B.; Prats, B.

    2017-12-01

    The Sample Analysis at Mars (SAM) instrument is a suite of instruments on Mars aboard the Mars Science Laboratory rover. Centered on a mass spectrometer, SAM delivers its data to the PDS Atmosphere's node in PDS3 format. Over five years on Mars the process of operating SAM has evolved and extended significantly from the plan in place at the time the PDS3 delivery specification was written. For instance, SAM commonly receives double or even triple sample aliquots from the rover's drill. SAM also stores samples in spare cups for long periods of time for future analysis. These unanticipated operational changes mean that the PDS data deliveries are absent some valuable metadata without which the data can be confusing. The Mars Organic Molecule Analyzer (MOMA) instrument is another suite of instruments centered on a mass spectrometer bound for Mars. MOMA is part of the European ExoMars rover mission schedule to arrive on Mars in 2021. While SAM and MOMA differ in some important scientific ways - MOMA uses an linear ion trap compared to the SAM quadropole mass spectrometer and MOMA has a laser desorption experiment that SAM lacks - the data content from the PDS point of view is comparable. Both instruments produce data containing mass spectra acquired from solid samples collected on the surface of Mars. The MOMA PDS delivery will make use of PDS4 improvements to provide a metadata context to the data. The MOMA PDS4 specification makes few assumptions of the operational processes. Instead it provides a means for the MOMA operators to provide the important contextual metadata that was unanticipated during specification development. Further, the software tools being developed for instrument operators will provide a means for the operators to add this crucial metadata at the time it is best know - during operations.

  1. Representation of solar tides in the stratosphere and lower mesosphere in state-of-the-art reanalyses and in satellite observations

    Science.gov (United States)

    Sakazaki, Takatoshi; Fujiwara, Masatomo; Shiotani, Masato

    2018-02-01

    Atmospheric solar tides in the stratosphere and the lower mesosphere are investigated using temperature data from five state-of-the-art reanalysis data sets (MERRA-2, MERRA, JRA-55, ERA-Interim, and CFSR) as well as TIMED SABER and Aura MLS satellite measurements. The main focus is on the period 2006-2012 during which the satellite observations are available for direct comparison with the reanalyses. Diurnal migrating tides, semidiurnal migrating tides, and nonmigrating tides are diagnosed. Overall the reanalyses agree reasonably well with each other and with the satellite observations for both migrating and nonmigrating components, including their vertical structure and the seasonality. However, the agreement among reanalyses is more pronounced in the lower stratosphere and relatively weaker in the upper stratosphere and mesosphere. A systematic difference between SABER and the reanalyses is found for diurnal migrating tides in the upper stratosphere and the lower mesosphere; specifically, the amplitude of trapped modes in reanalyses is significantly smaller than that in SABER, although such difference is less clear between MLS and the reanalyses. The interannual variability and the possibility of long-term changes in migrating tides are also examined using the reanalyses during 1980-2012. All the reanalyses agree in exhibiting a clear quasi-biennial oscillation (QBO) in the tides, but the most significant indications of long-term changes in the tides represented in the reanalyses are most plausibly explained by the evolution of the satellite observing systems during this period. The tides are also compared in the full reanalyses produced by the Japan Meteorological Agency (i.e., JRA-55) and in two parallel data sets from this agency: one (JRA-55C) that repeats the reanalysis procedure but without any satellite data assimilated and one (JRA-55AMIP) that is a free-running integration of the model constrained only by observed sea surface temperatures. Many aspects

  2. Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Directory of Open Access Journals (Sweden)

    A. J. Spargo

    2017-06-01

    Full Text Available Mesospheric gravity wave (GW momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E experiments (conducted from July 1997 to June 1998 are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions. The received beams were analysed with hybrid Doppler interferometry (HDI (Holdsworth and Reid, 1998, principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997, later re-introduced by Hocking (2005 and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010 of the accuracy of the meteor radar technique.

  3. Lidar measurements of mesospheric temperature inversion at a low latitude

    Directory of Open Access Journals (Sweden)

    V. Siva Kumar

    2001-08-01

    Full Text Available The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E, India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.Key words. Atmospheric composition and structure (pressure, density and temperature. Meterology and atmospheric dynamics (climatology

  4. Mesospheric gravity wave momentum flux estimation using hybrid Doppler interferometry

    Science.gov (United States)

    Spargo, Andrew J.; Reid, Iain M.; MacKinnon, Andrew D.; Holdsworth, David A.

    2017-06-01

    Mesospheric gravity wave (GW) momentum flux estimates using data from multibeam Buckland Park MF radar (34.6° S, 138.5° E) experiments (conducted from July 1997 to June 1998) are presented. On transmission, five Doppler beams were symmetrically steered about the zenith (one zenith beam and four off-zenith beams in the cardinal directions). The received beams were analysed with hybrid Doppler interferometry (HDI) (Holdsworth and Reid, 1998), principally to determine the radial velocities of the effective scattering centres illuminated by the radar. The methodology of Thorsen et al. (1997), later re-introduced by Hocking (2005) and since extensively applied to meteor radar returns, was used to estimate components of Reynolds stress due to propagating GWs and/or turbulence in the radar resolution volume. Physically reasonable momentum flux estimates are derived from the Reynolds stress components, which are also verified using a simple radar model incorporating GW-induced wind perturbations. On the basis of these results, we recommend the intercomparison of momentum flux estimates between co-located meteor radars and vertical-beam interferometric MF radars. It is envisaged that such intercomparisons will assist with the clarification of recent concerns (e.g. Vincent et al., 2010) of the accuracy of the meteor radar technique.

  5. Crystallization and preliminary crystallographic analysis of nosiheptide-resistance methyltransferase from Streptomyces actuosus in complex with SAM

    International Nuclear Information System (INIS)

    Yang, Huirong; Wang, Ping; Dong, Zhenghong; Li, Xueyuan; Gong, Rui; Yang, Ying; Li, Ze; Xu, Youwei; Xu, Yanhui

    2010-01-01

    The expression, purification and crystallization of nosiheptide-resistance methyltransferase (NSR) from Streptomyces actuosus is described. Nosiheptide-resistance methyltransferase (NSR) methylates 23S rRNA at the nucleotide adenosine 1067 in Escherichia coli and thus contributes to resistance against nosiheptide, a sulfur-containing peptide antibiotic. Here, the expression, purification and crystallization of NSR from Streptomyces actuosus are reported. Diffracting crystals were grown by the hanging-drop vapour-diffusion method in reservoir solution consisting of 0.35 M ammonium chloride, 24%(w/v) PEG 3350, 0.1 M MES pH 5.7 at 293 K. Native data have been collected from the apo enzyme and a SAM complex, as well as apo SeMet SAD data. The diffraction patterns of the apo form of NSR, of NSR complexed with SAM and of SeMet-labelled NSR crystals extended to 1.90, 1.95 and 2.25 Å resolution, respectively, using synchrotron radiation. All crystals belonged to space group P2 1 , with approximate unit-cell parameters a = 64.6, b = 69.6, c = 64.9 Å, β = 117.8°

  6. Efecto bioestimulante de Trichoderma harzianum Rifai en posturas de Leucaena, Cedro y Samán

    Directory of Open Access Journals (Sweden)

    Leonides Castellanos González

    2018-01-01

    Full Text Available El presente artículo evaluó el efecto bioestimulante de Trichoderma harzianum Rifai en la producción de postura de Leucaena leucocephala (Lam de Wit., Cedrela odorata L. y Albizia saman (Jacq. Merr. Se desarrollaron tres experimentos en condiciones de vivero, uno para cada especie. Se empleó un diseño completamente aleatorio con cuatro parcelas por tratamiento. En cada experimento los tratamientos fueron: Trichoderma harzianum a razón de 20 g.L-1, 40 g.L-1 y un testigo. Se evaluó el porcentaje de germinación y las variables morfométricas diámetro y altura del tallo, así como biomasa seca en raíz y parte aérea de la planta. Los tratamientos con Trichoderma no incrementaron el porcentaje de germinación en cedro, samán y leucaena. T. harzianum incrementó la altura, el número de hojas y la biomasa seca del área foliar en las plántulas de cedro, mientras que en leucaena y samán solo provocó incrementos del diámetro basal de las plántulas.

  7. Orientational analysis of dodecanethiol and p-nitrothiophenol SAMs on metals with polarisation-dependent SFG spectroscopy.

    Science.gov (United States)

    Cecchet, Francesca; Lis, Dan; Guthmuller, Julien; Champagne, Benoît; Caudano, Yves; Silien, Christophe; Mani, Alaa Addin; Thiry, Paul A; Peremans, André

    2010-02-22

    Polarisation-dependent sum frequency generation (SFG) spectroscopy is used to investigate the orientation of molecules on metallic surfaces. In particular, self-assembled monolayers (SAMs) of dodecanethiol (DDT) and of p-nitrothiophenol (p-NTP), grown on Pt and on Au, have been chosen as models to highlight the ability of combining ppp and ssp polarisations sets (representing the polarisation of the involved beams in the conventional order of SFG, Vis and IR beam) to infer orientational information at metallic interfaces. Indeed, using only the ppp set of data, as it is usually done for metallic surfaces, is not sufficient to determine the full molecular orientation. We show here that simply combining ppp and ssp polarisations enables both the tilt and rotation angles of methyl groups in DDT SAMs to be determined. Moreover, for p-NTP, while the SFG active vibrations detected with the ppp polarisation alone provide no orientational information, however, the combination with ssp spectra enables to retrieve the tilt angle of the p-NTP 1,4 axis. Though orientational information obtained by polarisation-dependent measurements has been extensively used at insulating interfaces, we report here their first application to metallic surfaces.

  8. Orientational Analysis of Dodecanethiol and P-Nitrothiophenol SAMs on Metals with Polarisation - dependent SFG spectroscopy

    International Nuclear Information System (INIS)

    Manea, A.

    2011-01-01

    Polarisation-dependent sum frequency generation (SFG) spectroscopy is used to investigate the orientation of molecules on metallic surfaces. In particular, self-assembled monolayers (SAMs) of dodecanethiol (DDT) and of p-nitro thiophenol (p-NTP), grown on Pt and on Au, have been chosen as models to highlight the ability of combining ppp and ssp polarizations sets (representing the polarisation of the involved beams in the conventional order of SFG, Vis and IR beam) to infer orientational information at metallic interfaces. Indeed, using only the ppp set of data, as it is usually done for metallic surfaces, is not sufficient to determine the full molecular orientation. We show here that simply combining ppp and ssp polarizations enables both the tilt and rotation angles of methyl groups in DDT SAMs to be determined. Moreover, for p-NTP, while the SFG active vibrations detected with the ppp polarisation alone provide no orientational information, however, the combination with ssp spectra enables to retrieve the tilt angle of the p-NTP 1,4 axis. Though orientational information obtained by polarisation-dependent measurements has been extensively used at insulating interfaces, we report here their first application to metallic surfaces. (author)

  9. Solar Cycle Response and Long-Term Trends in the Mesospheric Metal Layers

    Science.gov (United States)

    Dawkins, E. C. M.; Plane, J. M. C.; Chipperfield, M.; Feng, W.; Marsh, D. R.; Hoffner, J.; Janches, D.

    2016-01-01

    The meteoric metal layers (Na, Fe, and K) which form as a result of the ablation of incoming meteors act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere lower thermosphere region. In this work, we examine whether these metal layers are sensitive Fe indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50 year period (1955-2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer time scales (both the 11 year solar cycle and 50 year periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004-2013.

  10. Effectivity System of Management Information in Information Tehcnology Center University of Sam Ratulangi Manado.

    OpenAIRE

    Kalalo, Intani Kirana; Mandey, Jantje; Pombengi, Jericho

    2015-01-01

    In accordance with Regulation of the Minister of Education and Culture of the Republic of Indonesia on the Organization and Work of Sam Ratulangi University of article 105, paragraph 1, which states that the Information and Communication Technology Unit is a unit of the technical implementation in the field of development and management of systems and information and communication technology. And Article 106, namely, Information and Communication Technology Unit has the t...

  11. Kualitas Udara Beberapa Ruang Perpustakaan Di Universitas Sam Ratulangi Manado Berdasarkan Uji Kualitas Fisika

    OpenAIRE

    Sahilatua, Josefine D

    2014-01-01

    : Air pollution not only comes from the outdoors but also indoors. Library is indoors that could potentially by polluted. Level of air quality that not complies the standard will cause symptoms such as sneezing, coughing, skin irritation, shortness of breathing, eye irritation and headache on library users. This research conducted on the five libraries at the Sam Ratulangi University using observational methods. Data collected was content of physical air quality. The variables were air temper...

  12. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  13. Surface barrier analysis of semi-insulating and n{sup +}-type GaAs(0 0 1) following passivation with n-alkanethiol SAMs

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Gregory M. [Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Department of Electrical and Computer Engineering, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada); Institute for Chemical Process and Environmental Technology, National Research Council of Canada, Ottawa, Ontario, K1A 0R6 (Canada); Bensebaa, Farid [Institute for Chemical Process and Environmental Technology, National Research Council of Canada, Ottawa, Ontario, K1A 0R6 (Canada); Dubowski, Jan J., E-mail: jan.j.dubowski@usherbrooke.ca [Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Department of Electrical and Computer Engineering, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada)

    2011-02-15

    The surface Fermi level of semi-insulating and n{sup +}-type GaAs(0 0 1) was determined before and after passivation with n-alkanethiol self-assembled monolayers (SAMs) by X-ray photoelectron spectroscopy. Fermi level positioning was achieved using Au calibration pads integrated directly onto the GaAs surface, prior to SAM deposition, in order to provide a surface equipotential binding energy reference. Fermi level pinning within 50 meV and surface barrier characteristics according to the Advanced Unified Defect Model were observed. Our results demonstrate the effectiveness of the Au integration technique for the determination of band-edge referenced Fermi level positions and are relevant to an understanding of emerging technologies based on the molecular-semiconductor junction.

  14. Modeling the solar cycle change in nitric oxide in the thermosphere and upper mesosphere

    International Nuclear Information System (INIS)

    Fuller-Rowell, T.J.

    1993-01-01

    Measurements from the Solar Mesosphere Explorer (SME) satellite have shown that low-latitude nitric oxide densities at 110 km decrease by about a factor of 8 from January 1982 to April 1985. This time period corresponds to the descending phase of the last solar cycle where the monthly smoothed sunspot number decreased from more than 150 to less than 25. In addition, nitric oxide was observed to vary by a factor of 2 over a solar rotation, during high solar activity. A one-dimensional, globally averaged model of the thermosphere and upper mesosphere has been used to study the height distribution of nitric oxide (NO) and its response to changes in the solar extreme ultraviolet radiation (EUV) through the solar cycle and over a solar rotation. The primary source of nitric oxide is the reaction of excited atomic nitrogen, N( 2 D), with molecular oxygen. The atomic nitrogen is created by a number of ion-neutral reactions and by direct dissociation of molecular nitrogen by photons and photoelectrons. The occurrence of the peak nitric oxide density at or below 115 km is a direct consequence of ionization and dissociation of molecular nitrogen by photoelectrons, which are produced by the solar flux below 30.0 nm (XUV). Nitric oxide is shown to vary over the solar cycle by a factor of 7 at low latitudes in the lower thermosphere E region, due to the estimated change in the solar EUV flux, in good agreement with the SME satellite observations. The NO density is shown to be strongly dependent on the temperature profile in the lower thermosphere and accounts for the difference between the current model and previous work. Wavelengths less than 1.8 nm have little impact on the NO profile. A factor of 3 change in solar flux below 5.0 nm at high solar activity produced a factor of 2 change in the peak NO density, consistent with SME observations over a solar rotation; this change also lowered the peak to 100 km, consistent with rocket data. 52 refs., 10 figs., 5 tabs

  15. The Detection of Evolved Oxygen from the Rocknest Eolian Bedform Material by the Sample Analysis at Mars(SAM) instrument at the Mars Curiosity Landing Site

    Science.gov (United States)

    Sutter, B.; Archer, D.; Ming, D.; Eigenbrode, J. L.; Franz, H.; Glavin, D. P.; McAdam, A.; Mahaffy, P.; Stern, J.; Navarro-Gonzalex, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected an O2 gas release from the Rocknest eolain bedform (Fig. 1). The detection of perchlorate (ClO4-) by the Mars Phoenix Lander s Wet Chemistry Laboratory (WCL) [1] suggests that perchlorate is a possible candidate for evolved O2 release detected by SAM. The perchlorate would also serve as a source of chlorine in the chlorinated hydrocarbons detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS) [2,3]. Chlorates (ClO3-) [4,5] and/or superoxides [6] may also be sources of evolved O2 from the Rocknest materials. The work objectives are to 1) evaluate the O2 release temperatures from Rocknest materials, 2) compare these O2 release temperatures with a series of perchlorates and chlorates, and 3) evaluate superoxide O2- sources and possible perchlorate interactions with other Rocknest phases during QMS analysis.

  16. HPA and SAM axis responses as correlates of self- vs parental ratings of anxiety in boys with an Autistic Disorder.

    Science.gov (United States)

    Bitsika, Vicki; Sharpley, Christopher F; Sweeney, John A; McFarlane, James R

    2014-03-29

    Anxiety and Autistic Disorder (AD) are both neurological conditions and both disorders share some features that make it difficult to precisely allocate specific symptoms to each disorder. HPA and SAM axis activities have been conclusively associated with anxiety, and may provide a method of validating anxiety rating scale assessments given by parents and their children with AD about those children. Data from HPA axis (salivary cortisol) and SAM axis (salivary alpha amylase) responses were collected from a sample of 32 high-functioning boys (M age=11yr) with an Autistic Disorder (AD) and were compared with the boys' and their mothers' ratings of the boys' anxiety. There was a significant difference between the self-ratings given by the boys and ratings given about them by their mothers. Further, only the boys' self-ratings of their anxiety significantly predicted the HPA axis responses and neither were significantly related to SAM axis responses. Some boys showed cortisol responses which were similar to that previously reported in children who had suffered chronic and severe anxiety arising from stressful social interactions. As well as suggesting that some boys with an AD can provide valid self-assessments of their anxiety, these data also point to the presence of very high levels of chronic HPA-axis arousal and consequent chronic anxiety in these boys. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Boron (B) deprivation increases plasma homocysteine and decreases liver S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in rats

    Science.gov (United States)

    The diverse effects of B deprivation suggest that B affects a biomolecule involved in a variety of biochemical reactions. An experiment was conducted to determine whether dietary B affects the liver concentration of SAM, a frequently used enzyme substrate, especially for methylation reactions that y...

  18. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    Science.gov (United States)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  19. Increasing the fill factor of inverted P3HT:PCBM solar cells through surface modification of Al-doped ZnO via phosphonic acid-anchored C60 SAMs

    Energy Technology Data Exchange (ETDEWEB)

    Stubhan, Tobias [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen (Germany); Salinas, Michael; Halik, Marcus [Organic Materials and Devices (OMD)-Institute of Polymer Materials, University Erlangen-Nuremberg, Erlangen (Germany); Ebel, Alexander; Hirsch, Andreas [Institute for Organic Chemistry II, Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen (Germany); Krebs, Frederick C. [Risoe National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde (Denmark); Brabec, Christoph J. [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University, Erlangen-Nuremberg, Erlangen (Germany); Bavarian Center for Applied Energy Research (ZAE Bayern), Erlangen (Germany)

    2012-05-15

    The influence of aluminum-doped zinc oxide (AZO) electron extraction layers modified with self-assembled monolayers (SAMs) on inverted polymer solar cells is investigated. It is found that AZO modification with phosphonic acid-anchored Fullerene-SAMs leads to a reduction of the series resistance, while increasing the parallel resistance. This results in an increased efficiency from 2.9 to 3.3%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Ozone-Temperature Diurnal and Longer Term Correlations, in the Lower Thermosphere, Mesosphere and Stratosphere, Based on Measurements from SABER on TIMED

    Science.gov (United States)

    Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.

    2012-01-01

    The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal

  1. Kto samõi bogatõi v Estonii / Sten-Aleks Pihlak, Kärt Blumberg, Lemmi Kann

    Index Scriptorium Estoniae

    Pihlak, Sten-Aleks

    2008-01-01

    Eesti laevatranspordi kolmik - Ain Hanschmidt, Enn Pant ja Kalev Järvelill on Äripäeva rikaste edetabelis esimesed. Viimaste kuude suure aktsiahinnalanguse tõttu on paljud Äripäeva rikaste edetabelis olijad kaotanud igast kolmest kroonist kaks. Artiklis selgitatakse miks on Äripäeva Rikaste TOPis vähe naisi. Lisad: Iz TOP-500 samõhh bogatõhh ljudei v Estonii; Reitingi bogatshei za prezhnije godõ; Metodika

  2. Condition of The Stratospheric and Mesospheric Ozone Layer Over Bulgaria for the Period 1996-2012

    Science.gov (United States)

    Kaleyna, Petya; Mukhtarov, Plamen; Miloshev, Nikolay

    2014-05-01

    A detailed analysis of the variations of the stratospheric and mesospheric ozone over Bulgaria, in the period 1996-2012, is presented in the article on the basis of ground and satellite measurements of the Total Ozone Content (TOC). The move of the most important components: yearly running mean values, amplitudes and phases of the first four harmonics of the seasonal cycle. Their mean values for the period and the existing long term trends have been found. An evaluation of the general characteristics of the short term variability of the Total Ozone Content (TOC) over Bulgaria also has been made in the article. The impact of the planetary wave activity of the stratosphere on the total ozone has been studied and the climatology of the oscillation amplitudes with periods of 4, 7, 11 and 25 days has been defined.

  3. Acoustic-sounder investigation of the effects of boundary-layer decoupling on long-distance polutant transport

    International Nuclear Information System (INIS)

    Miller, E.L.

    1976-01-01

    The formation of the nocturnal surface temperature inversion results in a decrease in vertical momentum transfer which, in turn, is accompanied by an associated reduction in the transfer of pollutants from the atmosphere to surface sinks, thus decoupling the surface layer from the layer above the inversion. The diurnal oscillation in the surface temperature profiles may therefore have a significant effect upon the transport of atmospheric pollutants over long distances. Flights of a large manned balloon with a diverse array of chemical and meteorological instrumentation aboard, known as Project de Vinci, provided a unique opportunity to combine acoustic-sounder observations of qualitative temperature structure in the atmospheric boundary layer with the chemical measurements necessary to gain increased understanding of this decoupling process and its consequences for pollutant transport. The data collected on ozone on the balloon and the grounds are reported

  4. A phase I study of a new polyamine biosynthesis inhibitor, SAM486A, in cancer patients with solid tumours

    NARCIS (Netherlands)

    Paridaens, R; Uges, DRA; Barbet, N; Choi, L; Seeghers, M; van der Graaf, WTA; Groen, HJM; Dumez, H; Van Buuren, [No Value; Muskiet, F; Capdeville, R; van Oosterom, AT; de Vries, EGE

    Because tumour cell proliferation is highly dependent upon up-regulation of de-novo polyamine synthesis, inhibition of the polyamine synthesis pathway represents a potential target for anticancer therapy. SAM486A (CGP 48664) is a new inhibitor of the polyamine biosynthetic enzyme

  5. Lidar measurements of mesospheric temperature inversion at a low latitude

    Directory of Open Access Journals (Sweden)

    V. Siva Kumar

    Full Text Available The Rayleigh lidar data collected on 119 nights from March 1998 to February 2000 were used to study the statistical characteristics of the low latitude mesospheric temperature inversion observed over Gadanki (13.5° N, 79.2° E, India. The occurrence frequency of the inversion showed semiannual variation with maxima in the equinoxes and minima in the summer and winter, which was quite different from that reported for the mid-latitudes. The peak of the inversion layer was found to be confined to the height range of 73 to 79 km with the maximum occurrence centered around 76 km, with a weak seasonal dependence that fits well to an annual cycle with a maximum in June and a minimum in December. The magnitude of the temperature deviation associated with the inversion was found to be as high as 32 K, with the most probable value occurring at about 20 K. Its seasonal dependence seems to follow an annual cycle with a maximum in April and a minimum in October. The observed characteristics of the inversion layer are compared with that of the mid-latitudes and discussed in light of the current understanding of the source mechanisms.

    Key words. Atmospheric composition and structure (pressure, density and temperature. Meterology and atmospheric dynamics (climatology

  6. Observational evidence of quasi-27-day oscillation propagating from the lower atmosphere to the mesosphere over 20° N

    Directory of Open Access Journals (Sweden)

    K. M. Huang

    2015-10-01

    Full Text Available By using meteor radar, radiosonde and satellite observations over 20° N and NCEP/NCAR reanalysis data during 81 days from 22 December 2004 to 12 March 2005, a quasi-27-day oscillation propagating from the troposphere to the mesosphere is reported. A pronounced 27-day periodicity is observed in the raw zonal wind from meteor radar. Spectral analysis shows that the oscillation also occurs in the meridional wind and temperature and propagates westward with wavenumber s = 1; thus the oscillation is of Rossby wave type. The oscillation attains a large amplitude of about 12 m s−1 in the eastward wind shear region of the troposphere. When the wind shear reverses, its amplitude rapidly decays, and the background wind gradually evolves to be westward. However, the oscillation can penetrate through the weak westward wind field due to its relatively large phase speed. After this, the oscillation restrengthens with its upward propagation and reaches about 20 m s−1 in the mesosphere. Reanalysis data show that the oscillation can propagate to the mid and high latitudes from the low latitudes and has large amplitudes over there. There is another interesting phenomenon that a quasi-46-day oscillation appears simultaneously in the troposphere, but it cannot penetrate through the westward wind field because of its smaller phase speed. In the observational interval, a quasi-27-day periodicity in outgoing long-wave radiation (OLR and specific humidity is found in a latitudinal zone of 5–20° N. Thus the quasi-27-day oscillation may be an atmospheric response to forcing due to the convective activity with a period of about 27 days in the tropical region.

  7. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    International Nuclear Information System (INIS)

    Moldovan, Carmen; Mihailescu, Carmen; Stan, Dana; Ruta, Lavinia; Iosub, Rodica; Gavrila, Raluca; Purica, Munizer; Vasilica, Schiopu

    2009-01-01

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab') 2 fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  8. Effect of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianbin, E-mail: xbliu@imr.ac.cn; Shan, Dayong; Song, Yingwei; Han, En-hou

    2015-01-15

    The influence of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism have been investigated by electrochemical measurements, scanning electron microscopy (SEM) observation and X-ray photoelectron spectroscopy (XPS) analysis. The self-assembled experiment on the AM60B magnesium alloy indicates that the corrosion susceptibility decreases with increasing assembled time until 24 h on cast AM60B alloy and then increases with increase of the assembled time proved by EIS measurement and potentiodynamic curves. The self-assembled experiments on pure magnesium and various heat treated cast AM60B magnesium alloy illuminate that the dissolved aluminum in magnesium solid solution is the key factor for assembled efficiency and is hard to self-assemble on the pure magnesium without aluminum. The corrosion resistance of self-assembled film on AM60B magnesium alloy is monotonically increasing with the dissolved aluminum. The results of XPS analysis reveal the assembled mechanism on AM60B and corroborate the function of Al element. - Highlights: • It is hard to self-assemble on the pure magnesium. • 24 h assembled film has the low corrosion susceptibility by EIS and polarization. • The corrosion susceptibility of SAMs film lie on the Al atom state in AM60B. • The corrosion susceptibility of SAMs film is decreasing with the dissolved Al.

  9. Effect of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism

    International Nuclear Information System (INIS)

    Liu, Xianbin; Shan, Dayong; Song, Yingwei; Han, En-hou

    2015-01-01

    The influence of assembled time on the corrosion behaviors of SAMs film on the AM60B alloy and its assembled mechanism have been investigated by electrochemical measurements, scanning electron microscopy (SEM) observation and X-ray photoelectron spectroscopy (XPS) analysis. The self-assembled experiment on the AM60B magnesium alloy indicates that the corrosion susceptibility decreases with increasing assembled time until 24 h on cast AM60B alloy and then increases with increase of the assembled time proved by EIS measurement and potentiodynamic curves. The self-assembled experiments on pure magnesium and various heat treated cast AM60B magnesium alloy illuminate that the dissolved aluminum in magnesium solid solution is the key factor for assembled efficiency and is hard to self-assemble on the pure magnesium without aluminum. The corrosion resistance of self-assembled film on AM60B magnesium alloy is monotonically increasing with the dissolved aluminum. The results of XPS analysis reveal the assembled mechanism on AM60B and corroborate the function of Al element. - Highlights: • It is hard to self-assemble on the pure magnesium. • 24 h assembled film has the low corrosion susceptibility by EIS and polarization. • The corrosion susceptibility of SAMs film lie on the Al atom state in AM60B. • The corrosion susceptibility of SAMs film is decreasing with the dissolved Al

  10. Characterization of self-assembled monolayers (SAMs) on silicon substrate comparative with polymer substrate for Escherichia coli O157:H7 detection

    Energy Technology Data Exchange (ETDEWEB)

    Moldovan, Carmen, E-mail: carmen.moldovan@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Mihailescu, Carmen, E-mail: carmen_mihail28@yahoo.com [University of Bucharest, 90-92 Sos Panduri, Bucharest (Romania); Stan, Dana, E-mail: dana_stan2005@yahoo.com [DDS Diagnostic, 1 Segovia Street, Bucharest (Romania); Ruta, Lavinia, E-mail: laviniacoco@yahoo.com [University of Bucharest, 90-92 Sos Panduri, Bucharest (Romania); Iosub, Rodica, E-mail: rodica.iosub@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Gavrila, Raluca, E-mail: raluca.gavrila@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Purica, Munizer, E-mail: munizer.purica@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania); Vasilica, Schiopu, E-mail: vasilica.schiopu@imt.ro [National Institute for R and D in Microtechnologies, IMT-Bucharest, 126A Erou Iancu Nicolae, 077190 Bucharest (Romania)

    2009-08-30

    This article presents the characterization of two substrates, silicon and polymer coated with gold, that are functionalized by mixed self-assembled monolayers (SAMs) in order to efficiently immobilize the anti-Escherichia coli O157:H7 polyclonal purified antibody. A biosurface functionalized by SAMs (self-assembled monolayers) technique has been developed. Immobilization of goat anti-E. coli O157:H7 antibody was performed by covalently bonding of thiolate mixed self-assembled monolayers (SAMs) realized on two substrates: polymer coated with gold and silicon coated with gold. The F(ab'){sub 2} fragments of the antibodies have been used for eliminating nonspecific bindings between the Fc portions of antibodies and the Fc receptor on cells. The properties of the monolayers and the biofilm formatted with attached antibody molecules were analyzed at each step using infrared spectroscopy (FTIR-ATR), atomic force microscopy (AFM), scanning electron microscopy (SEM) and cyclic voltammetry (CV). In our study the gold-coated silicon substrates approach yielded the best results. These experimental results revealed the necessity to investigate each stage of the immobilization process taking into account in the same time the factors that influence the chemistry of the surface and the further interactions as well and also provide a solid basis for further studies aiming at elaborating sensitive and specific immunosensor or a microarray for the detection of E. coli O157:H7.

  11. Simultaneous determination of four active components in Alisma orientale (Sam. Juz. by HPLC–DAD using a single reference standard

    Directory of Open Access Journals (Sweden)

    Yao-Wen Zhang

    2015-04-01

    Full Text Available A rapid, simple and practical high-performance liquid chromatography method coupled with diode array detector (HPLC–DAD was developed to evaluate the quality of Alisma orientale (Sam. Juz. through a simultaneous determination of four major active triterpenes using a single standard to determine the multi-components (SSDMCs. Alisol B 23-acetate was selected as the reference compound for calculating the relative response factors. All calibration curves showed good linearity (R2>0.9998 within test ranges. RSDs for intra- and inter-day of four analytes were less than 3.6% and 2.3%; the overall recovery was 92.1–110.2% (SSDMC. The proposed method was successfully applied to quantify the four components in 20 samples from different localities in China. Moreover, significant variations were demonstrated in the content of these compounds. In addition, hierarchical clustering analysis (HCA and principal components analysis (PCA were performed to differentiate and classify the samples based on the contents of Alisol C 23-acetate, Alisol A, Alisol A 24-acetate and Alisol B 23-acetate. This simple, rapid, low-cost and reliable HPLC–DAD method using SSDMC is suitable for routine quantitative analysis and quality control of A. orientale (Sam. Juz. Keywords: SSDMC, Alisma orientale (Sam. Juz, Quality control, HCA, PCA

  12. Potential Precursor Compounds for Chlorohydrocarbons Detected in Gale Crater, Mars, by the SAM Instrument Suite on the Curiosity Rover

    Science.gov (United States)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-01-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  13. Payload charging events in the mesosphere and their impact on Langmuir type electric probes

    Directory of Open Access Journals (Sweden)

    T. A. Bekkeng

    2013-02-01

    Full Text Available Three sounding rockets were launched from Andøya Rocket Range in the ECOMA campaign in December 2010. The aim was to study the evolution of meteoric smoke particles during a major meteor shower. Of the various instruments onboard the rocket payload, this paper presents the data from a multi-Needle Langmuir Probe (m-NLP and a charged dust detector. The payload floating potential, as observed using the m-NLP instrument, shows charging events on two of the three flights. These charging events cannot be explained using a simple charging model, and have implications towards the use of fixed bias Langmuir probes on sounding rockets investigating mesospheric altitudes. We show that for a reliable use of a single fixed bias Langmuir probe as a high spatial resolution relative density measurement, each payload should also carry an additional instrument to measure payload floating potential, and an instrument that is immune to spacecraft charging and measures absolute plasma density.

  14. Reflections on the individual–collective relation in change agency formation in the Samsø renewable energy island project

    DEFF Research Database (Denmark)

    Carlsson, Monica Susanne

    2018-01-01

    This paper offers reflections on change agency formation in the Renewable Energy Island (REI) project on Samsø, following a field visit to the island in June 2016. Both individual and collective agency are set out as central for the processes leading to the change in the REI project, spurring ref...

  15. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    Science.gov (United States)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  16. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover

    Science.gov (United States)

    Millan, M.; Szopa, C.; Buch, A.; Belmahdi, I.; Coll, P.; Glavin, D. P.; Freissinet, C.; Archer, P. D., Jr.; Sutter, B.; Summons, R. E.; hide

    2016-01-01

    The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.

  17. Influence of the solution pH in the 6-mercaptopurine self-assembled monolayer (6MP-SAM) on a Au(111) single-crystal electrode.

    Science.gov (United States)

    Madueño, Rafael; García-Raya, Daniel; Viudez, Alfonso J; Sevilla, José M; Pineda, Teresa; Blázquez, Manuel

    2007-10-23

    Self-assembled monolayers (SAMs) of 6-mercaptopurine (6MP) have been prepared on a Au(111) single-crystal electrode by immersion of the metal surface in a 100 microM 6MP and 0.01 M HClO4 solution. The 6MP-SAM Au(111) single-crystal electrodes were transferred to the cell and allowed to equilibrate with the different aqueous working solutions before the electrochemical experiments. The influence of the solution pH was studied by cyclic voltammetry, double layer capacitance curves, and electrochemical impedance spectroscopy. The electrochemical behavior of the 6MP-SAM in acetic acid at pH 4 presents important differences in comparison to that obtained in 0.1 M KOH solutions. Cyclic voltammograms for the reductive desorption process in acid medium are broad and show some features that can be explained by a phase transition between a chemisorbed and a physisorbed state of the 6MP molecules. The low solubility of these molecules in acid medium could explain this phenomenon and the readsorption of the complete monolayer when the potential is scanned in the positive direction. The variation of the double-layer capacitance values in the potential range of monolayer stability with the pH suggests that the acid-base chemistry of the 6MP molecules is playing a role. This fact has been studied by following the variations of the electron-transfer rate constant of the highly charged redox probes as are Fe(CN)(6)-3/-4 and Ru(NH3)(6)+3/+2 as a function of solution pH. The apparent surface pKa value for the 6MP-SAM (pKa approximately 8) is explained by the total conversion of the different 6MP tautomers that exist in solution to the thiol species in the adsorbed state.

  18. Sample Analysis at Mars (SAM) and Mars Organic Molecule Analyzer (MOMA) as Critical In Situ Investigation for Targeting Mars Returned Samples

    Science.gov (United States)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Szopa, C.; Buch, A.; Goesmann, F.; Goetz, W.; Raulin, F.; SAM Science Team; MOMA Science Team

    2018-04-01

    SAM (Curiosity) and MOMA (ExoMars) Mars instruments, seeking for organics and biosignatures, are essential to establish taphonomic windows of preservation of molecules, in order to target the most interesting samples to return from Mars.

  19. A New Inversion Routine to Produce Vertical Electron-Density Profiles from Ionospheric Topside-Sounder Data

    Science.gov (United States)

    Wang, Yongli; Benson, Robert F.

    2011-01-01

    Two software applications have been produced specifically for the analysis of some million digital topside ionograms produced by a recent analog-to-digital conversion effort of selected analog telemetry tapes from the Alouette-2, ISIS-1 and ISIS-2 satellites. One, TOPIST (TOPside Ionogram Scalar with True-height algorithm) from the University of Massachusetts Lowell, is designed for the automatic identification of the topside-ionogram ionospheric-reflection traces and their inversion into vertical electron-density profiles Ne(h). TOPIST also has the capability of manual intervention. The other application, from the Goddard Space Flight Center based on the FORTRAN code of John E. Jackson from the 1960s, is designed as an IDL-based interactive program for the scaling of selected digital topside-sounder ionograms. The Jackson code has also been modified, with some effort, so as to run on modern computers. This modification was motivated by the need to scale selected ionograms from the millions of Alouette/ISIS topside-sounder ionograms that only exist on 35-mm film. During this modification, it became evident that it would be more efficient to design a new code, based on the capabilities of present-day computers, than to continue to modify the old code. Such a new code has been produced and here we will describe its capabilities and compare Ne(h) profiles produced from it with those produced by the Jackson code. The concept of the new code is to assume an initial Ne(h) and derive a final Ne(h) through an iteration process that makes the resulting apparent-height profile fir the scaled values within a certain error range. The new code can be used on the X-, O-, and Z-mode traces. It does not assume any predefined profile shape between two contiguous points, like the exponential rule used in Jackson s program. Instead, Monotone Piecewise Cubic Interpolation is applied in the global profile to keep the monotone nature of the profile, which also ensures better smoothness

  20. Chemical imaging of structured SAMs with a novel SFG microscope

    Science.gov (United States)

    Hoffmann, Dominik M. P.; Kuhnke, Klaus; Kern, Klaus

    2002-11-01

    We present a newly developed microscope for sum frequency generation (SFG) imaging of opaque and reflecting interfaces. The sample is viewed at an angle of 60° with respect to the surface normal in order to increase the collected SFG intensity. Our setup is designed to keep the whole field of view (FOV) in focus and to compensate for the distortion usually related to oblique imaging by means of a blazed grating. The separation of the SFG intensity and the reflected visible beam is accomplished by a suitable combination of spectral filters. The sum frequency microscope (SFM) is capable of in-situ chemically selective imaging by tuning the IR-beam to vibrational transitions of the respective molecules. The SFM is applied to imaging of structured self-assembled monolayers (SAM) of thiol molecules on a gold surface.

  1. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    Science.gov (United States)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  2. Stool frequency recording in severe acute malnutrition ('StoolSAM'); an agreement study comparing maternal recall versus direct observation using diapers

    NARCIS (Netherlands)

    Voskuijl, Wieger; Potani, Isabel; Bandsma, Robert; Baan, Anne; White, Sarah; Bourdon, Celine; Kerac, Marko

    2017-01-01

    Background: Approximately 50% of the deaths of children under the age of 5 can be attributed to undernutrition, which also encompasses severe acute malnutrition (SAM). Diarrhoea is strongly associated with these deaths and is commonly diagnosed solely based on stool frequency and consistency

  3. Efecto de la polietilenimina en la actividad catalítica de la peroxidasa de rábano (horseradish peroxidase inmovilizada en electrodos de oro modificados con monocapas autoensambladas de tioles (SAMs.

    Directory of Open Access Journals (Sweden)

    Pedro R. Matheus

    2009-05-01

    Full Text Available Effect of the Polyethyleneimine in the Activity Catalytic of the horseradish peroxidase Immobilized on Gold Electrodes Modified with a Self-assembled Monolayer of Thiols (SAMs. Studies were conducted bycyclic voltammetry (CV to investigate the effect of the polymer polyethyleneimine (PEI in the electrochemical reversibility of the mediator thionine and thus the catalytic activity of the enzyme horseradish peroxidase of recombinant HRP-NHis (horseradish peroxidase to the has been added to a chain of six histidine in the extreme N-terminal protein. This self produced monolayers of thiols (SAMS on gold electrodes, with chemical modifications obtained through successive stages in the solid phase of the electrode. The gold electrodes were modified with monolayer SAM-TOA-[ANTA/DADOO] -Co2+ [SAM: self-assembled monolayers of thiols, TOA: dithioctic acid, ANTA: nitrilotriacetic acid, DADOO: 1,8-diamino-3,6-dioxa octane]. The results showed that the presence of the polymer improves the electrochemical reversibility of the mediator to endure catalyticcurrents as high as those that are obtained with molar ratios ANTA:DADOO 10:1 in the absence of PEI, and improve the response voltammetric obtained.

  4. Daily estimates of the migrating tide and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data

    Science.gov (United States)

    Ortland, David A.

    2017-04-01

    Satellites provide a global view of the structure in the fields that they measure. In the mesosphere and lower thermosphere, the dominant features in these fields at low zonal wave number are contained in the zonal mean, quasi-stationary planetary waves, and tide components. Due to the nature of the satellite sampling pattern, stationary, diurnal, and semidiurnal components are aliased and spectral methods are typically unable to separate the aliased waves over short time periods. This paper presents a data processing scheme that is able to recover the daily structure of these waves and the zonal mean state. The method is validated by using simulated data constructed from a mechanistic model, and then applied to Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements. The migrating diurnal tide extracted from SABER temperatures for 2009 has a seasonal variability with peak amplitude (20 K at 95 km) in February and March and minimum amplitude (less than 5 K at 95 km) in early June and early December. Higher frequency variability includes a change in vertical structure and amplitude during the major stratospheric warming in January. The migrating semidiurnal tide extracted from SABER has variability on a monthly time scale during January through March, minimum amplitude in April, and largest steady amplitudes from May through September. Modeling experiments were performed that show that much of the variability on seasonal time scales in the migrating tides is due to changes in the mean flow structure and the superposition of the tidal responses to water vapor heating in the troposphere and ozone heating in the stratosphere and lower mesosphere.

  5. GoSam 2.0. Automated one loop calculations within and beyond the standard model

    International Nuclear Information System (INIS)

    Greiner, Nicolas; Deutsches Elektronen-Synchrotron

    2014-10-01

    We present GoSam 2.0, a fully automated framework for the generation and evaluation of one loop amplitudes in multi leg processes. The new version offers numerous improvements both on generational aspects as well as on the reduction side. This leads to a faster and more stable code for calculations within and beyond the Standard Model. Furthermore it contains the extended version of the standardized interface to Monte Carlo programs which allows for an easy combination with other existing tools. We briefly describe the conceptual innovations and present some phenomenological results.

  6. Discrimination of fish layers using the three-dimensional information obtained by a split-beam echo-sounder

    DEFF Research Database (Denmark)

    Pedersen, Jens

    1996-01-01

    separation angle between neighbours around a reference fish was 68 degrees and 74 degrees, respectively. The estimated mean target strength (TS) was found to be significantly different for the two layers and conforms to the theoretical TS calculated from the diurnal species and size composition of the layers......This study attempts to illustrate the three-dimensional pattern of a ''pelagic'' and a ''benthic'' layer of fish using single- target information obtained using a split-beam echo-sounder. Parameters such as the nearest-neighbour distance and separation angle between the two nearest neighbours...... around a reference fish were used to discriminate between the two layers. The parameters estimated were found to be significantly different between the two layers. The mean nearest-neighbour distance estimated was 6.3 m and 5.8 m for the ''benthic'' and the ''pelagic'' layers, respectively, and the mean...

  7. Isolation and Molecular Characterization of Two Lectins from Dwarf Elder (Sambucus ebulus L. Blossoms Related to the Sam n1 Allergen

    Directory of Open Access Journals (Sweden)

    Tomas Girbes

    2013-10-01

    Full Text Available Sambucus species contain a number of lectins with and without antiribosomal activity. Here, we show that dwarf elder (Sambucus ebulus L. blossoms express two D-galactose-binding lectins that were isolated and purified by affinity chromatography and gel filtration. These proteins, which we named ebulin blo (A-B toxin and SELblo (B-B lectin—blo from blossoms—were subjected to molecular characterization and analysis by MALDI-TOF mass spectrometry and tryptic peptide fingerprinting. Both lectins share a high degree of amino acid sequence homology with Sambucus lectins related to the Sam n1 allergen. Ebulin blo, but not SELblo, was highly toxic by nasal instillation to mice. Overall, our results suggested that both lectins would belong to an allergen family exemplified by Sam n1 and could trigger allergy responses. Furthermore, they raise a concern about ebulin blo toxicity.

  8. Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements

    Science.gov (United States)

    Feofilov, A. G.; Marshall, B. T.; Garcia-Comas, M.; Kutepov, A. A.; Lopez-Puertas, M.; Manuilova, R. O.; Yankovsky, V.A.; Goldberg, R. A.; Gordley, L. L.; Petelin, S.; hide

    2008-01-01

    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed.

  9. Analysis of Temperature and Wind Measurements from the TIMED Mission: Comparison with UARS Data

    Science.gov (United States)

    Huang, Frank; Mayr, Hans; Killeen, Tim; Russell, Jim; Reber, Skip

    2004-01-01

    We report on an analysis of temperature and wind data based respectively on measurements with the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and TIDI (TIMED Doppler Interferometer) instruments on the TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics) mission. Comparisons are made with corresponding results obtained from the HRDI (High Resolution Doppler Imager), MLS (Microwave Limb Sounder) and CLAES (Cryogenic Limb Array Etalon Spectrometer) instruments on the UARS (Upper Atmosphere Research Satellite) spacecraft. The TIMED and UARS instruments have important common and uncommon properties in their sampling of the data as a function local solar time. For comparison between the data from the two satellite missions, we present the derived diurnal tidal and zonal-mean variations of temperature and winds, obtained as functions of season, latitude, and altitude. The observations are also compared with results from the Numerical Spectral Model (NSM).

  10. Observation of atomic oxygen O(1S) green-line emission in the summer polar upper mesosphere associated with high-energy (≥30 keV) electron precipitation during high-speed solar wind streams

    Science.gov (United States)

    Lee, Young-Sook; Kwak, Young-Sil; Kim, Kyung-Chan; Solheim, Brian; Lee, Regina; Lee, Jaejin

    2017-01-01

    The auroral green-line emission at 557.7 nm wavelength as arising from the atomic oxygen O(1S → 1D) transition typically peaks at an altitude of 100 km specifically in the nightside oval, induced by auroral electrons within an energy range of 100 eV-30 keV. Intense aurora is known as being suppressed by sunlight in summer daytime but usually occurs in low electrical background conductivity. However, in the present study in summer (July) sunlit condition, enhancements of O(1S) emission rates observed by using the Wind Imaging Interferometer/UARS were frequently observed at low altitudes below 90 km, where ice particles are created initially as subvisible and detected as polar mesosphere summer echoes, emerging to be an optical phenomenon of polar mesospheric clouds. The intense O(1S) emission occurring in summer exceeds those occurring in the daytime in other seasons both in occurrence and in intensity, frequently accompanied by occurrences of supersonic neutral velocity (300-1500 m s-1). In the mesosphere, ion motion is controlled by electric field and the momentum is transferred to neutrals. The intense O(1S) emission is well associated with high-energy electron precipitation as observed during an event of high-speed solar wind streams. Meanwhile, since the minimum occurrences of O(1S) emission and supersonic velocity are maintained even in the low precipitation flux, the mechanism responsible is not only related to high-energy electron precipitation but also presumably to the local conditions, including the composition of meteoric-charged ice particles and charge separation expected in extremely low temperatures (<150 K).

  11. Large-amplitude mesospheric response to an orographic wave generated over the Southern Ocean Auckland Islands (50.7°S) during the DEEPWAVE project

    Science.gov (United States)

    Pautet, P.-D.; Taylor, M. J.; Fritts, D. C.; Bossert, K.; Williams, B. P.; Broutman, D.; Ma, J.; Eckermann, S. D.; Doyle, J. D.

    2016-02-01

    The Deep Propagating Gravity Wave Experiment (DEEPWAVE) project was conducted over New Zealand and the surrounding regions during June and July 2014, to more fully understand the generation, propagation, and effects of atmospheric gravity waves. A large suite of instruments collected data from the ground to the upper atmosphere (~100 km), with several new remote-sensing instruments operating on board the NSF Gulfstream V (GV) research aircraft, which was the central measurement platform of the project. On 14 July, during one of the research flights (research flight 23), a spectacular event was observed as the GV flew in the lee of the sub-Antarctic Auckland Islands (50.7°S). An apparent "ship wave" pattern was imaged in the OH layer (at ~83.5 km) by the Utah State University Advanced Mesospheric Temperature Mapper and evolved significantly over four successive passes spanning more than 4 h. The waves were associated with orographic forcing generated by relatively strong (15-20 m/s) near-surface wind flowing over the rugged island topography. The mountain wave had an amplitude T' ~ 10 K, a dominant horizontal wavelength ~40 km, achieved a momentum flux exceeding 300 m2 s-2, and eventually exhibited instability and breaking at the OH altitude. This case of deep mountain wave propagation demonstrates the potential for strong responses in the mesosphere arising from a small source under suitable propagation conditions and suggests that such cases may be more common than previously believed.

  12. Fluorocarbon Contamination from the Drill on the Mars Science Laboratory: Potential Science Impact on Detecting Martian Organics by Sample Analysis at Mars (SAM)

    Science.gov (United States)

    Eigenbrode, J. L.; McAdam, A.; Franz, H.; Freissinet, C.; Bower, H.; Floyd, M.; Conrad, P.; Mahaffy, P.; Feldman, J.; Hurowitz, J.; hide

    2013-01-01

    Polytetrafluoroethylene (PTFE or trade name: Teflon by Dupont Co.) has been detected in rocks drilled during terrestrial testing of the Mars Science Laboratory (MSL) drilling hardware. The PTFE in sediments is a wear product of the seals used in the Drill Bit Assemblies (DBAs). It is expected that the drill assembly on the MSL flight model will also shed Teflon particles into drilled samples. One of the primary goals of the Sample Analysis at Mars (SAM) instrument suite on MSL is to test for the presence of martian organics in samples. Complications introduced by the potential presence of PTFE in drilled samples to the SAM evolved gas analysis (EGA or pyrolysisquadrupole mass spectrometry, pyr-QMS) and pyrolysis- gas chromatography mass spectrometry (Pyr- GCMS) experiments was investigated.

  13. Granular statistical mechanics - Building on the legacy of Sir Sam Edwards

    Science.gov (United States)

    Blumenfeld, Raphael

    When Sir Sam Edwards laid down the foundations for the statistical mechanics of jammed granular materials he opened a new field in soft condensed matter and many followed. In this presentation we review briefly the Edwards formalism and some of its less discussed consequences. We point out that the formalism is useful for other classes of systems - cellular and porous materials. A certain shortcoming of the original formalism is then discussed and a modification to overcome it is proposed. Finally, a derivation of an equation of state with the new formalism is presented; the equation of state is analogous to the PVT relation for thermal gases, relating the volume, the boundary stress and measures of the structural and stress fluctuations. NUDT, Changsha, China, Imperial College London, UK, Cambridge University, UK.

  14. Radical SAM, A Novel Protein Superfamily Linking Unresolved Steps in Familiar Biosynthetic Pathways with Radical Mechanisms: Functional Characterization Using New Analysis and Information Visualization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sofia, Heidi J.; Chen, Guang; Hetzler, Elizabeth G.; Reyes Spindola, Jorge F.; Miller, Nancy E.

    2001-03-01

    A large protein superfamily with over 500 members has been discovered and analyzed using powerful new bioinformatics and information visualization methods. Evidence exists that these proteins generate a 5?-deoxyadenosyl radical by reductive cleavage of S-adenosylmethionine (SAM) through an unusual Fe-S center. Radical SAM superfamily proteins function in DNA precursor, vitamin, cofactor, antibiotic, and herbicide biosynthesis in a collection of basic and familiar pathways. One of the members is interferon-inducible and is considered a candidate drug target for osteoporosis. The identification of this superfamily suggests that radical-based catalysis is important in a number of previously well-studied but unresolved biochemical pathways.

  15. Preliminary Regional Analysis of the Kaguya Lunar Radar Sounder (LRS) Data through Eastern Mare Imbrium

    Science.gov (United States)

    Cooper, B.L.; Antonenko, I.; Yamaguchi, Y.; Osinski, G.; Ono, T.; Ku-mamoto, A.

    2009-01-01

    The Lunar Radar Sounder (LRS) experiment on board the Kaguya spacecraft is observing the subsurface structure of the Moon, using ground-penetrating radar operating in the frequency range of 5 MHz [1]. Because LRS data provides in-formation about lunar features below the surface, it allows us to improve our understanding of the processes that formed the Moon, and the post-formation changes that have occurred (such as basin formation and volcanism). We look at a swath of preliminary LRS data, that spans from 7 to 72 N, and from 2 to 10 W, passing through the eastern portion of Mare Imbrium (Figure 1). Using software, designed for the mineral exploration industry, we produce a preliminary, coarse 3D model, showing the regional structure beneath the study area. Future research will involve smaller subsets of the data in regions of interest, where finer structures, such as those identified in [2], can be studied.

  16. Properties of the mesosphere and thermosphere and comparison with CIRA 72

    Science.gov (United States)

    Champion, K. S. W.

    Exospheric temperatures of several reference atmosphere are reviewed and a recommendation is made for the exospheric temperature of a proposed mean CIRA. One of the deficiencies of CIRA 72 and other present thermospheric models is the representation of density changes with geomagnetic activity. This deficiency is illustrated with samples of data. The data show the effects of geomagnetic activity, particle precipitation, a solar proton event, and gravity waves. An empirical model developed from the unique AFGL satellite density data bank using multiple linear regression is reviewed. The present model is for low to moderate solar flux and quiet geomagnetic conditions, but it is planned to extend the model to active conditions. Good progress has been made since CIRA 72 was specified in our knowledge and understanding of the properties of the lower thermosphere, although there are still some unresolved problems. The biggest progress has been made in the theory of tidal effects and of particulate energy deposition and of electrojet heating. On the other hand, it is still not possible to define adequately the systematic variations of the lower boundary conditions of thermospheric models. This is due to lack of knowledge of the systematic variations of the structure properties in the 100 to 120 km altitude region and inadequate information on the mesospheric turbulence profile and variations in the turbopause altitude.

  17. An improvement of wind velocity estimation from radar Doppler spectra in the upper mesosphere

    Directory of Open Access Journals (Sweden)

    S. Takeda

    2001-08-01

    Full Text Available We have developed a new parameter estimation method for Doppler wind spectra in the mesosphere observed with an MST radar such as the MU radar in the DBS (Doppler Beam Swinging mode. Off-line incoherent integration of the Doppler spectra is carried out with a new algorithm excluding contamination by strong meteor echoes. At the same time, initial values on a least square fitting of the Gaussian function are derived using a larger number of integration of the spectra for a longer time and for multiple heights. As a result, a significant improvement has been achieved with the probability of a successful fitting and parameter estimation above 80 km. The top height for the wind estimation has been improved to around 95 km. A comparison between the MU radar and the High Resolution Doppler Imager (HRDI on the UARS satellite is shown and the capability of the new method for a validation of a future satellite mission is suggested.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics – Radio science (remote sensing; signal processing

  18. Case study of mesospheric front dissipation observed over the northeast of Brazil

    Science.gov (United States)

    Fragoso Medeiros, Amauri; Paulino, Igo; Wrasse, Cristiano Max; Fechine, Joaquim; Takahashi, Hisao; Valentin Bageston, José; Paulino, Ana Roberta; Arlen Buriti, Ricardo

    2018-03-01

    On 3 October 2005 a mesospheric front was observed over São João do Cariri (7.4° S, 36.5° W). This front propagated to the northeast and appeared in the airglow images on the west side of the observatory. By about 1.5 h later, it dissipated completely when the front crossed the local zenith. Ahead of the front, several ripple structures appeared during the dissipative process of the front. Using coincident temperature profile from the TIMED/SABER satellite and wind profiles from a meteor radar at São João do Cariri, the background of the atmosphere was investigated in detail. On the one hand, it was noted that a strong vertical wind shear in the propagation direction of the front produced by a semidiunal thermal tide was mainly responsible for the formation of duct (Doppler duct), in which the front propagated up to the zenith of the images. On the other hand, the evolution of the Richardson number as well as the appearance of ripples ahead of the main front suggested that a presence of instability in the airglow layer that did not allow the propagation of the front to the other side of the local zenith.

  19. Global empirical wind model for the upper mesosphere/lower thermosphere. I. Prevailing wind

    Directory of Open Access Journals (Sweden)

    Y. I. Portnyagin

    Full Text Available An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70-110 km, extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.

    Key words: Meteorology and Atmospheric dynamics (general circulation; middle atmosphere dynamics; thermospheric dynamics

  20. A New Structural Form in the SAM/Metal-Dependent O;#8209;Methyltransferase Family: MycE from the Mycinamicin Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Akey, David L.; Li, Shengying; Konwerski, Jamie R.; Confer, Laura A.; Bernard, Steffen M.; Anzai, Yojiro; Kato, Fumio; Sherman, David H.; Smith, Janet L. (Michigan); (Toho)

    2012-08-01

    O-linked methylation of sugar substituents is a common modification in the biosynthesis of many natural products and is catalyzed by multiple families of S-adenosyl-l-methionine (SAM or AdoMet)-dependent methyltransferases (MTs). Mycinamicins, potent antibiotics from Micromonospora griseorubida, can be methylated at two positions on a 6-deoxyallose substituent. The first methylation is catalyzed by MycE, a SAM- and metal-dependent MT. Crystal structures were determined for MycE bound to the product S-adenosyl-l-homocysteine (AdoHcy) and magnesium, both with and without the natural substrate mycinamicin VI. This represents the first structure of a natural product sugar MT in complex with its natural substrate. MycE is a tetramer of a two-domain polypeptide, comprising a C-terminal catalytic MT domain and an N-terminal auxiliary domain, which is important for quaternary assembly and for substrate binding. The symmetric MycE tetramer has a novel MT organization in which each of the four active sites is formed at the junction of three monomers within the tetramer. The active-site structure supports a mechanism in which a conserved histidine acts as a general base, and the metal ion helps to position the methyl acceptor and to stabilize a hydroxylate intermediate. A conserved tyrosine is suggested to support activity through interactions with the transferred methyl group from the SAM methyl donor. The structure of the free enzyme reveals a dramatic order-disorder transition in the active site relative to the S-adenosyl-L-homocysteine complexes, suggesting a mechanism for product/substrate exchange through concerted movement of five loops and the polypeptide C-terminus.