WorldWideScience

Sample records for mesoscopic nonequilibrium thermodynamics

  1. Contact Geometry of Mesoscopic Thermodynamics and Dynamics

    Miroslav Grmela

    2014-03-01

    Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.

  2. Nonequilibrium mesoscopic transport: a genealogy

    Das, Mukunda P; Green, Frederick

    2012-01-01

    Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic technology: microscopic conservation and nonequilibrium dissipation. These fundamentals are inherent in quantum transport and gain even greater and more explicit experimental meaning in the passage to atomic-sized devices. We review their genesis, their theoretical context, and their governing role in the electronic response of meso- and nanoscopic systems. (topical review)

  3. Nonequilibrium thermodynamics of nucleation

    Schweizer, M.; Sagis, L.M.C.

    2014-01-01

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a

  4. Non-equilibrium thermodynamics

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  5. Mesoscopic nonequilibrium thermodynamics of solid surfaces and interfaces with triple junction singularities under the capillary and electromigration forces in anisotropic three-dimensional space.

    Ogurtani, Tarik Omer

    2006-04-14

    A theory of irreversible thermodynamics of curved surfaces and interfaces with triple junction singularities is elaborated to give a full consideration of the effects of the specific surface Gibbs free energy anisotropy in addition to the diffusional anisotropy, on the morphological evolution of surfaces and interfaces in crystalline solids. To entangle this intricate problem, the internal entropy production associated with arbitrary virtual displacements of triple junction and ordinary points on the interfacial layers, embedded in a multicomponent, multiphase, anisotropic composite continuum system, is formulated by adapting a mesoscopic description of the orientation dependence of the chemical potentials in terms of the rotational degree of freedom of individual microelements. The rate of local internal entropy production resulted generalized forces and conjugated fluxes not only for the grain boundary triple junction transversal and longitudinal movements, but also for the ordinary points. The natural combination of the mesoscopic approach coupled with the rigorous theory of irreversible thermodynamics developed previously by the global entropy production hypothesis yields a well-posed, nonlinear, moving free-boundary value problem in two-dimensional (2D) space, as a unified theory. The results obtained for 2D space are generalized into the three-dimensional continuum by utilizing the invariant properties of the vector operators in connection with the descriptions of curved surfaces in differential geometry. This mathematical model after normalization and scaling procedures may be easily adapted for computer simulation studies without introducing any additional phenomenological system parameters (the generalized mobilities), other than the enlarged concept of the surface stiffness.

  6. Statistical thermodynamics of nonequilibrium processes

    Keizer, Joel

    1987-01-01

    The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo­ dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com­ bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and...

  7. Quantum thermodynamics: a nonequilibrium Green's function approach.

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.

  8. Nonequilibrium thermodynamics of restricted Boltzmann machines

    Salazar, Domingos S. P.

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  9. Nonequilibrium thermodynamics of restricted Boltzmann machines.

    Salazar, Domingos S P

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  10. Canonical operator formulation of nonequilibrium thermodynamics

    Mehrafarin, M.

    1992-09-01

    A novel formulation of nonequilibrium thermodynamics is proposed which emphasises the fundamental role played by the Boltzmann constant k in fluctuations. The equivalence of this and the stochastic formulation is demonstrated. The k → 0 limit of this theory yields the classical deterministic description of nonequilibrium thermodynamics. The new formulation possesses unique features which bear two important results namely the thermodynamic uncertainty principle and the quantisation of entropy production rate. Such a theory becomes indispensable whenever fluctuations play a significant role. (author). 7 refs

  11. Non-Equilibrium Thermodynamics in Multiphase Flows

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  12. What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.

    Kobayashi, Kensuke

    2016-01-01

    Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics.

  13. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  14. Dynamics of mesoscopic systems: Non-equilibrium Green's functions approach

    Špička, Václav; Kalvová, Anděla; Velický, B.

    2010-01-01

    Roč. 42, č. 3 (2010), s. 525-538 ISSN 1386-9477 R&D Projects: GA ČR GA202/08/0361 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : mesoscopic systems * NGF * initial condition * correlations * Ward identities * transients Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.304, year: 2010

  15. Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition

    Benešová, Barbora; Kružík, Martin; Roubíček, Tomáš

    2013-01-01

    Roč. 64, Č. 1 (2013), s. 1-28 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GA106/09/1573; GA ČR GAP201/10/0357 Grant - others:GA ČR(CZ) GA106/08/1397; GA MŠk(CZ) LC06052 Program:GA; LC Institutional support: RVO:67985556 Keywords : ferro-para-magnetism * evolution * thermodynamics Subject RIV: BA - General Mathematics; BA - General Mathematics (UT-L) Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-thermodynamically consistent mesoscopic model of the ferro-paramagnetic transition.pdf

  16. Nonequilibrium Thermodynamics of Driven Disordered Materials

    Bouchbinder, Eran

    2011-03-01

    We present a nonequilibrium thermodynamic framework for describing the dynamics of driven disordered solids (noncrystalline solids near and below their glass temperature, soft glassy materials such as colloidal suspensions and heavily dislocated polycrystalline solids). A central idea in our approach is that the set of mechanically stable configurations, i.e. the part of the system that is described by inherent structures, evolves slowly as compared to thermal vibrations and is characterized by an effective disorder temperature. Our thermodynamics-motivated equations of motion for the flow of energy and entropy are supplemented by coarse-grained internal variables that carry information about the relevant microscopic physics. Applications of this framework to amorphous visco-plasticity (Shear-Transformation-Zone theory), glassy memory effects (the Kovacs effect) and dislocation-mediated polycrystalline plasticity will be briefly discussed.

  17. Non-Equilibrium Thermodynamics of Self-Replicating Protocells

    Fellermann, Harold; Corominas-Murtra, Bernat; Hansen, Per Lyngs

    2018-01-01

    We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven out of equilibrium to ensure protocell growth...... and replication. This coupling allows us to derive the equations of evolution and to rigorously demonstrate how growth and replication life-cycle can be understood as a non-equilibrium thermodynamic cycle. The process does not appeal to genetic information or inheritance, and is based only on non......-equilibrium physics considerations. Our non-equilibrium thermodynamic description of simple, yet realistic, processes of protocell growth and replication, represents an advance in our physical understanding of a central biological phenomenon both in connection to the origin of life and for modern biology....

  18. Electrolytes: transport properties and non-equilibrium thermodynamics

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions

  19. Supersymmetric Field Theory of Non-Equilibrium Thermodynamic System

    Olemskoi, Alexander I.; Brazhnyi, Valerii A.

    1998-01-01

    On the basis of Langevin equation the optimal SUSY field scheme is formulated to discribe a non-equilibrium thermodynamic system with quenched disorder and non-ergodicity effects. Thermodynamic and isothermal susceptibilities, memory parameter and irreversible response are determined at different temperatures and quenched disorder intensities.

  20. On the forces and fluxes in non-equilibrium thermodynamics

    Kitahara, Kazuo

    1986-01-01

    A formulation of non-equilibrium thermodynamics of continuum systems based on local equilibrium assumption is reported. Thermodynamic forces are defined from a generalized local entropy and irreversible fluxes are defined as non-advective parts of fluxes of conservative quantities. The validity of the general evolution criterion and its generalization is discussed. (author)

  1. Nonequilibrium statistical mechanics and stochastic thermodynamics of small systems

    Tu Zhanchun

    2014-01-01

    Thermodynamics is an old subject. The research objects in conventional thermodynamics are macroscopic systems with huge number of particles. In recent 30 years, thermodynamics of small systems is a frontier topic in physics. Here we introduce nonequilibrium statistical mechanics and stochastic thermodynamics of small systems. As a case study, we construct a Canot-like cycle of a stochastic heat engine with a single particle controlled by a time-dependent harmonic potential. We find that the efficiency at maximum power is 1 - √T c /T h , where Tc and Th are the temperatures of cold bath and hot bath, respectively. (author)

  2. Non-equilibrium thermodynamics and physical kinetics

    Bikkin, Halid

    2014-01-01

    This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as "obviously" and "it is easy to show", this treatise is an easy-to-read introduction into this traditional, yet vibrant field.

  3. On Equivalence of Nonequilibrium Thermodynamic and Statistical Entropies

    Purushottam D. Gujrati

    2015-02-01

    Full Text Available We review the concept of nonequilibrium thermodynamic entropy and observables and internal variables as state variables, introduced recently by us, and provide a simple first principle derivation of additive statistical entropy, applicable to all nonequilibrium states by treating thermodynamics as an experimental science. We establish their numerical equivalence in several cases, which includes the most important case when the thermodynamic entropy is a state function. We discuss various interesting aspects of the two entropies and show that the number of microstates in the Boltzmann entropy includes all possible microstates of non-zero probabilities even if the system is trapped in a disjoint component of the microstate space. We show that negative thermodynamic entropy can appear from nonnegative statistical entropy.

  4. Nonequilibrium thermodynamics and fluctuation relations for small systems

    Cao Liang; Ke Pu; Qiao Li-Yan; Zheng Zhi-Gang

    2014-01-01

    In this review, we give a retrospect of the recent progress in nonequilibrium statistical mechanics and thermodynamics in small dynamical systems. For systems with only a few number of particles, fluctuations and nonlinearity become significant and contribute to the nonequilibrium behaviors of the systems, hence the statistical properties and thermodynamics should be carefully studied. We review recent developments of this topic by starting from the Gallavotti—Cohen fluctuation theorem, and then to the Evans—Searles transient fluctuation theorem, Jarzynski free-energy equality, and the Crooks fluctuation relation. We also investigate the nonequilibrium free energy theorem for trajectories involving changes of the heat bath temperature and propose a generalized free-energy relation. It should be noticed that the non-Markovian property of the heat bath may lead to the violation of the free-energy relation. (topical review - statistical physics and complex systems)

  5. Nonequilibrium thermodynamic fluctuations and phase transition in black holes

    Su, R.; Cai, R.; Yu, P.K.N.

    1994-01-01

    Landau nonequilibrium fluctuation and phase transition theory is applied to the discussion of the phase transition of black holes. Some second moments of relevant thermodynamical quantities for Kerr-Newman black holes are estimated. A theorem governing the divergence of some second moments and the occurrence of the phase transition in black holes is given

  6. Non-equilibrium thermodynamics in cells.

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  7. Nonequilibrium thermodynamics of dilute polymer solutions in flow.

    Latinwo, Folarin; Hsiao, Kai-Wen; Schroeder, Charles M

    2014-11-07

    Modern materials processing applications and technologies often occur far from equilibrium. To this end, the processing of complex materials such as polymer melts and nanocomposites generally occurs under strong deformations and flows, conditions under which equilibrium thermodynamics does not apply. As a result, the ability to determine the nonequilibrium thermodynamic properties of polymeric materials from measurable quantities such as heat and work is a major challenge in the field. Here, we use work relations to show that nonequilibrium thermodynamic quantities such as free energy and entropy can be determined for dilute polymer solutions in flow. In this way, we determine the thermodynamic properties of DNA molecules in strong flows using a combination of simulations, kinetic theory, and single molecule experiments. We show that it is possible to calculate polymer relaxation timescales purely from polymer stretching dynamics in flow. We further observe a thermodynamic equivalence between nonequilibrium and equilibrium steady-states for polymeric systems. In this way, our results provide an improved understanding of the energetics of flowing polymer solutions.

  8. Thermodynamics of Growth, Non-Equilibrium Thermodynamics of Bacterial Growth : The Phenomenological and the Mosaic Approach

    Westerhoff, Hans V.; Lolkema, Juke S.; Otto, Roel; Hellingwerf, K

    1982-01-01

    Microbial growth is analyzed in terms of mosaic and phenomenological non-equilibrium thermodynamics. It turns out that already existing parameters devised to measure bacterial growth, such as YATP, µ, and Qsubstrate, have as thermodynamic equivalents flow ratio, output flow and input flow. With this

  9. Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    Fine Eugene J

    2007-07-01

    Full Text Available Abstract Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models, but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie". Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered. Here we review the principles of nonequilibrium thermodynamics and provide an approach to the problem of maintenance and change in body mass by recasting the problem of TAG accumulation and breakdown in the adipocyte in the language of nonequilibrium thermodynamics. We describe adipocyte physiology in terms of cycling between an efficient storage mode and a dissipative mode. Experimentally, this is measured in the rate of fatty acid flux and fatty acid oxidation. Hormonal levels controlled by changes in dietary carbohydrate regulate the relative contributions of the efficient and dissipative parts of the cycle. While no experiment exists that measures all relevant variables, the model is supported by evidence in the literature that 1 dietary carbohydrate, via its

  10. Nonequilibrium thermodynamics of the Kovacs effect

    Bouchbinder, Eran; Langer, J. S.

    We present a thermodynamic theory of the Kovacs effect based on the idea that the configurational degrees of freedom of a glass-forming material are driven out of equilibrium with the heat bath by irreversible thermal contraction and expansion. We assume that the slowly varying configurational subsystem, i.e. the part of the system that is described by inherent structures, is characterized by an effective temperature, and contains a volume-related internal variable. We examine mechanisms by which irreversible dynamics of the fast, kinetic-vibrational degrees of freedom can cause the entropy and the effective temperature of the configurational subsystem to increase during sufficiently rapid changes in the bath temperature. We then use this theory to interpret the numerical simulations by Mossa and Sciortino (MS), who observe the Kovacs effect in more detail than is feasible in laboratory experiments. Our analysis highlights two mechanisms for the equilibration of internal variables. In one of these, an internal variable first relaxes toward a state of quasi-equilibrium determined by the effective temperature, and then approaches true thermodynamic equilibrium as the effective temperature slowly relaxes toward the bath temperature. In the other mechanism, an internal variable directly equilibrates with the bath temperature on intermediate timescales, without equilibrating with the effective temperature at any stage. Both mechanisms appear to be essential for understanding the MS results.

  11. Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1991-01-01

    Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.

  12. Extended irreversible thermodynamics and non-equilibrium temperature

    Casas-Vazquez, Jose'

    2008-02-01

    Full Text Available We briefly review the concept of non-equilibrium temperature from the perspectives of extended irreversible thermodynamics, fluctuation theory, and statistical mechanics. The relations between different proposals are explicitly examined in two especially simple systems: an ideal gas in steady shear flow and a forced harmonic oscillator in a thermal bath. We examine with special detail temperatures related to the average molecular kinetic energy along different spatial directions, to the average configurational energy, to the derivative of the entropy with respect to internal energy, to fluctuation-dissipation relation and discuss their measurement.

  13. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics

    Eu, Byung Chan

    2016-01-01

    This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...

  14. Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States

    Komatsu, Teruhisa S.; Nakagawa, Naoko; Sasa, Shin-ichi; Tasaki, Hal; Ito, Nobuyasu

    2010-01-01

    We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.

  15. Understanding Non-equilibrium Thermodynamics Foundations, Applications, Frontiers

    Jou, David; Lebon, Georgy

    2007-01-01

    This book offers a homogeneous presentation of the many faces of non-equilibrium thermodynamics. The first part is devoted to a description of the nowadays thermodynamic formalism recognized as the classical theory of non-equilibrium processes. This part of the book may serve as a basis to an introductory course dedicated to first-year graduate students in sciences and engineering. The classical description can however not be complete, as it rests on the hypothesis of local equilibrium. This has fostered the development of many theories going beyond local equilibrium and which cannot be put aside. The second part of the book is concerned with these different approaches, and will be of special interest for PhD students and researchers. For the sake of homogeneity, the authors have used the general structure and methods presented in the first part. Indeed, besides their differences, all these formalisms are not closed boxes but present some overlappings and parallelisms which are emphasized in this book. For pe...

  16. Variational discretization of the nonequilibrium thermodynamics of simple systems

    Gay-Balmaz, François; Yoshimura, Hiroaki

    2018-04-01

    In this paper, we develop variational integrators for the nonequilibrium thermodynamics of simple closed systems. These integrators are obtained by a discretization of the Lagrangian variational formulation of nonequilibrium thermodynamics developed in (Gay-Balmaz and Yoshimura 2017a J. Geom. Phys. part I 111 169–93 Gay-Balmaz and Yoshimura 2017b J. Geom. Phys. part II 111 194–212) and thus extend the variational integrators of Lagrangian mechanics, to include irreversible processes. In the continuous setting, we derive the structure preserving property of the flow of such systems. This property is an extension of the symplectic property of the flow of the Euler–Lagrange equations. In the discrete setting, we show that the discrete flow solution of our numerical scheme verifies a discrete version of this property. We also present the regularity conditions which ensure the existence of the discrete flow. We finally illustrate our discrete variational schemes with the implementation of an example of a simple and closed system.

  17. Nonequilibrium thermodynamic potentials for continuous-time Markov chains.

    Verley, Gatien

    2016-01-01

    We connect the rare fluctuations of an equilibrium (EQ) process and the typical fluctuations of a nonequilibrium (NE) stationary process. In the framework of large deviation theory, this observation allows us to introduce NE thermodynamic potentials. For continuous-time Markov chains, we identify the relevant pairs of conjugated variables and propose two NE ensembles: one with fixed dynamics and fluctuating time-averaged variables, and another with fixed time-averaged variables, but a fluctuating dynamics. Accordingly, we show that NE processes are equivalent to conditioned EQ processes ensuring that NE potentials are Legendre dual. We find a variational principle satisfied by the NE potentials that reach their maximum in the NE stationary state and whose first derivatives produce the NE equations of state and second derivatives produce the NE Maxwell relations generalizing the Onsager reciprocity relations.

  18. Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics.

    Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-08-15

    Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and N ad -H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on N ad -H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches.

  19. Nonequilibrium thermodynamic models and applications to hydrogen plasma

    Cho, K.Y.

    1988-01-01

    A generalized multithermal equilibrium (GMTE) thermodynamic model is developed and presented with applications to hydrogen. A new chemical equilibrium equation for GMTE is obtained without the ensemble temperature concept, used by a previous MTE model. The effects of the GMTE model on the derivation and calculation of the thermodynamic, transport, and radiative properties are presented and significant differences from local thermal equilibrium (LTE) and two temperature model are discussed. When the electron translational temperature (T e ) is higher than the translational temperature of the heavy particles, the effects of hydrogen molecular species to the properties are significant at high T e compared with LTE results. The density variations of minor species are orders of magnitude with kinetic nonequilibrium at a constant electron temperature. A collisional-radiative model is also developed with the GMTE chemical equilibrium equation to study the effects of radiative transfer and the ambipolar diffusion on the population distribution of the excited atoms. The nonlocal radiative transfer effect is parameterized by an absorption factor, which is defined as a ratio of the absorbed intensity to the spontaneous emission coefficient

  20. Strong nonequilibrium coherent states in mesoscopic superconductor-semiconductor-superconductor junctions

    Kutchinsky, Jonatan; Wildt, Morten; Taboryski, Rafael Jozef

    1999-01-01

    A biased superconductor-normal metal-superconductor junction is known to be a strong nonequilibrium system, where Andreev scattering at the interfaces creates a quasiparticle distribution function far from equilibrium, a manifestation of this is the well-known subgap structure in the I...

  1. Coherent application of a contact structure to formulate Classical Non-Equilibrium Thermodynamics

    Knobbe, E; Roekaerts, D.J.E.M.

    2017-01-01

    This contribution presents an outline of a new mathematical formulation for
    Classical Non-Equilibrium Thermodynamics (CNET) based on a contact
    structure in differential geometry. First a non-equilibrium state space is introduced as the third key element besides the first and second law of

  2. Non-equilibrium thermodynamics of radiation-induced processes in solids

    Yurov, V.M.; Eshchanov, A.N.; Kuketaev, A.T.; Sidorenya, Yu.S.

    2005-01-01

    In the paper an item about a defect system response in solids on external action (temperature, pressure, light, etc.) from the point of view of non-equilibrium statistical thermodynamics is considered

  3. Non-equilibrium statistical thermodynamics of neutron gas in reactor

    Hayasaka, Hideo

    1977-01-01

    The thermodynamic structures of non-equilibrium steady states of highly rarefied neutron gas in various media are considered for the irreversible processes owing to creative and destructive reactions of neutrons with nuclei of these media and supply from the external sources. Under the so-called clean and cold condition in reactor, the medium is regarded virtually as offering the different chemical potential fields for each subsystem of a steady neutron gas system. The fluctuations around a steady state are considered in a Markovian-Gaussian process. The generalized Einstein relations are derived for stationary neutron gas systems. The forces and flows of neutron gases in a medium are defined upon the general stationary solution of the Fokker-Planck equation. There exist the symmetry of the kinetic coefficients, and the minimum entropy production upon neutron-nuclear reactions. The distribution functions in various media are determined by each corresponding extremum condition under the vanishing of changes of the respective total entropies in the Gibbs equation. (auth.)

  4. Thermodynamic evolution far from equilibrium

    Khantuleva, Tatiana A.

    2018-05-01

    The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.

  5. Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando

    2015-10-21

    The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.

  6. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  7. Nonequilibrium thermodynamics transport and rate processes in physical, chemical and biological systems

    Demirel, Yasar

    2014-01-01

    Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, 3rd edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapte

  8. Non-equilibrium Thermodynamics and the Production of Entropy Life, Earth, and Beyond

    Kleidon, Axel

    2005-01-01

    The present volume studies the application of concepts from non-equilibrium thermodynamics to a variety of research topics. Emphasis is on the Maximum Entropy Production (MEP) principle and applications to Geosphere-Biosphere couplings. Written by leading researchers form a wide range of background, the book proposed to give a first coherent account of an emerging field at the interface of thermodynamics, geophysics and life sciences.

  9. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-01-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction. (paper)

  10. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  11. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    Altaner, Bernhard

    2017-01-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. (paper)

  12. The Matrix model, a driven state variables approach to non-equilibrium thermodynamics

    Jongschaap, R.J.J.

    2001-01-01

    One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC

  13. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems

    Wu, Wei; Wang, Jin

    2014-01-01

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series

  14. Bona Fide Thermodynamic Temperature in Nonequilibrium Kinetic Ising Models

    Sastre, Francisco; Dornic, Ivan; Chaté, Hugues

    2003-01-01

    We show that a nominal temperature can be consistently and uniquely defined everywhere in the phase diagram of large classes of nonequilibrium kinetic Ising spin models. In addition, we confirm the recent proposal that, at critical points, the large-time ``fluctuation-dissipation ratio'' $X_\\infty$ is a universal amplitude ratio and find in particular $X_\\infty \\approx 0.33(2)$ and $X_\\infty = 1/2$ for the magnetization in, respectively, the two-dimensional Ising and voter universality classes.

  15. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  16. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.

    Kleidon, Axel

    2010-01-13

    The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society

  17. Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density functional formulation and nature of steady-state forces

    Hyldgaard, P

    2012-01-01

    The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum statistical mechanics provide consistent but computational costly approaches; alternatively, the use of density-dependent ballistic-transport calculations (e.g., Lang 1995 Phys. Rev. B 52 5335), here denoted ‘DBT’, provides computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest-order approximation to an exact nonequilibrium thermodynamic density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy which, generally, must be treated as an implicit solution of the fully interacting many-body dynamics. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that the uniqueness-of-density proof from a closely related Lippmann-Schwinger collision density functional theory (Hyldgaard 2008 Phys. Rev. B 78 165109) makes it possible to express the variational nonequilibrium thermodynamic description as a single-particle formulation based on universal electron-density functionals; the full nonequilibrium single-particle formulation improves the DBT method, for example, by a more refined account of Gibbs free energy effects. I illustrate a formal evaluation of the zero-temperature thermodynamic grand potential value which I find is closely related to the variation in the scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the

  18. The critical roles of information and nonequilibrium thermodynamics in evolution of living systems.

    Gatenby, Robert A; Frieden, B Roy

    2013-04-01

    Living cells are spatially bounded, low entropy systems that, although far from thermodynamic equilibrium, have persisted for billions of years. Schrödinger, Prigogine, and others explored the physical principles of living systems primarily in terms of the thermodynamics of order, energy, and entropy. This provided valuable insights, but not a comprehensive model. We propose the first principles of living systems must include: (1) Information dynamics, which permits conversion of energy to order through synthesis of specific and reproducible, structurally-ordered components; and (2) Nonequilibrium thermodynamics, which generate Darwinian forces that optimize the system.Living systems are fundamentally unstable because they exist far from thermodynamic equilibrium, but this apparently precarious state allows critical response that includes: (1) Feedback so that loss of order due to environmental perturbations generate information that initiates a corresponding response to restore baseline state. (2) Death due to a return to thermodynamic equilibrium to rapidly eliminate systems that cannot maintain order in local conditions. (3) Mitosis that rewards very successful systems, even when they attain order that is too high to be sustainable by environmental energy, by dividing so that each daughter cell has a much smaller energy requirement. Thus, nonequilibrium thermodynamics are ultimately responsible for Darwinian forces that optimize system dynamics, conferring robustness sufficient to allow continuous existence of living systems over billions of years.

  19. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.

    Khantuleva, Tatiana A; Shalymov, Dmitry S

    2017-03-06

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  20. Solute induced relaxation in glassy polymers: Experimental measurements and nonequilibrium thermodynamic model

    Minelli, Matteo; Doghieri, Ferruccio

    2014-01-01

    Data for kinetics of mass uptake from vapor sorption experiments in thin glassy polymer samples are here interpreted in terms of relaxation times for volume dilation. To this result, both models from non-equilibrium thermodynamics and from mechanics of volume relaxation contribute. Different kind of sorption experiments have been considered in order to facilitate the direct comparison between kinetics of solute induced volume dilation and corresponding data from process driven by pressure or temperature jumps

  1. Generalized multivariate Fokker-Planck equations derived from kinetic transport theory and linear nonequilibrium thermodynamics

    Frank, T.D.

    2002-01-01

    We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions

  2. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  3. Nonequilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications.

    Kleidon, Axel

    2009-06-01

    The Earth system is maintained in a unique state far from thermodynamic equilibrium, as, for instance, reflected in the high concentration of reactive oxygen in the atmosphere. The myriad of processes that transform energy, that result in the motion of mass in the atmosphere, in oceans, and on land, processes that drive the global water, carbon, and other biogeochemical cycles, all have in common that they are irreversible in their nature. Entropy production is a general consequence of these processes and measures their degree of irreversibility. The proposed principle of maximum entropy production (MEP) states that systems are driven to steady states in which they produce entropy at the maximum possible rate given the prevailing constraints. In this review, the basics of nonequilibrium thermodynamics are described, as well as how these apply to Earth system processes. Applications of the MEP principle are discussed, ranging from the strength of the atmospheric circulation, the hydrological cycle, and biogeochemical cycles to the role that life plays in these processes. Nonequilibrium thermodynamics and the MEP principle have potentially wide-ranging implications for our understanding of Earth system functioning, how it has evolved in the past, and why it is habitable. Entropy production allows us to quantify an objective direction of Earth system change (closer to vs further away from thermodynamic equilibrium, or, equivalently, towards a state of MEP). When a maximum in entropy production is reached, MEP implies that the Earth system reacts to perturbations primarily with negative feedbacks. In conclusion, this nonequilibrium thermodynamic view of the Earth system shows great promise to establish a holistic description of the Earth as one system. This perspective is likely to allow us to better understand and predict its function as one entity, how it has evolved in the past, and how it is modified by human activities in the future.

  4. Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law.

    Hsiang, J-T; Chou, C H; Subaşı, Y; Hu, B L

    2018-01-01

    In a series of papers, we intend to take the perspective of open quantum systems and examine from their nonequilibrium dynamics the conditions when the physical quantities, their relations, and the laws of thermodynamics become well defined and viable for quantum many-body systems. We first describe how an open-system nonequilibrium dynamics (ONEq) approach is different from the closed combined system +  environment in a global thermal state (CGTs) setup. Only after the open system equilibrates will it be amenable to conventional thermodynamics descriptions, thus quantum thermodynamics (QTD) comes at the end rather than assumed in the beginning. The linkage between the two comes from the reduced density matrix of ONEq in that stage having the same form as that of the system in the CGTs. We see the open-system approach having the advantage of dealing with nonequilibrium processes as many experiments in the near future will call for. Because it spells out the conditions of QTD's existence, it can also aid us in addressing the basic issues in quantum thermodynamics from first principles in a systematic way. We then study one broad class of open quantum systems where the full nonequilibrium dynamics can be solved exactly, that of the quantum Brownian motion of N strongly coupled harmonic oscillators, interacting strongly with a scalar-field environment. In this paper, we focus on the internal energy, heat capacity, and the third law. We show for this class of physical models, amongst other findings, the extensive property of the internal energy, the positivity of the heat capacity, and the validity of the third law from the perspective of the behavior of the heat capacity toward zero temperature. These conclusions obtained from exact solutions and quantitative analysis clearly disprove claims of negative specific heat in such systems and dispel allegations that in such systems the validity of the third law of thermodynamics relies on quantum entanglement. They are

  5. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.

    Ge, Hao; Qian, Hong

    2013-06-01

    Nonequilibrium thermodynamics of a system situated in a sustained environment with influx and efflux is usually treated as a subsystem in a larger, closed "universe." A question remains with regard to what the minimally required description for the surrounding of such an open driven system is so that its nonequilibrium thermodynamics can be established solely based on the internal stochastic kinetics. We provide a solution to this problem using insights from studies of molecular motors in a chemical nonequilibrium steady state (NESS) with sustained external drive through a regenerating system or in a quasisteady state (QSS) with an excess amount of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). We introduce the key notion of minimal work that is needed, W(min), for the external regenerating system to sustain a NESS (e.g., maintaining constant concentrations of ATP, ADP and Pi for a molecular motor). Using a Markov (master-equation) description of a motor protein, we illustrate that the NESS and QSS have identical kinetics as well as the second law in terms of the same positive entropy production rate. The heat dissipation of a NESS without mechanical output is exactly the W(min). This provides a justification for introducing an ideal external regenerating system and yields a free-energy balance equation between the net free-energy input F(in) and total dissipation F(dis) in an NESS: F(in) consists of chemical input minus mechanical output; F(dis) consists of dissipative heat, i.e. the amount of useful energy becoming heat, which also equals the NESS entropy production. Furthermore, we show that for nonstationary systems, the F(dis) and F(in) correspond to the entropy production rate and housekeeping heat in stochastic thermodynamics and identify a relative entropy H as a generalized free energy. We reach a new formulation of Markovian nonequilibrium thermodynamics based on only the internal kinetic equation without further

  6. Specific heat, polarization and heat conduction in microwave heating systems: A nonequilibrium thermodynamic point of view

    Bergese, Paolo

    2006-01-01

    A microwave (MW) field can induce in a dielectric material an oscillatory polarization. By this mechanism part of the energy carried by the waves is converted into chaotic agitation, and the material heats up. MW heating is a nonequilibrium phenomenon, while conventional heating can generally be considered as quasi-static. Excess (or nonthermal) effects of MWs with respect to conventional heating lie in this difference. Macroscopically, MW heating can be described in the framework of linear nonequilibrium thermodynamics (NET). This approach indicates that in a dielectric material under MW heating the specific heat has a dynamic component linked to the variation of polarization with temperature, and that polarization and heat conduction are intertwined. In particular, linear NET provides a new phenomenological equation for heat conduction that is composed of the classic Fourier's law and an additional term due to polarization relaxation. This term quantitatively describes the excess effect of MWs on thermal conduction

  7. Nonequilibrium Thermodynamics of Hydrate Growth on a Gas-Liquid Interface

    Fu, Xiaojing; Cueto-Felgueroso, Luis; Juanes, Ruben

    2018-04-01

    We develop a continuum-scale phase-field model to study gas-liquid-hydrate systems far from thermodynamic equilibrium. We design a Gibbs free energy functional for methane-water mixtures that recovers the isobaric temperature-composition phase diagram under thermodynamic equilibrium conditions. The proposed free energy is incorporated into a phase-field model to study the dynamics of hydrate formation on a gas-liquid interface. We elucidate the role of initial aqueous concentration in determining the direction of hydrate growth at the interface, in agreement with experimental observations. Our model also reveals two stages of hydrate growth at an interface—controlled by a crossover in how methane is supplied from the gas and liquid phases—which could explain the persistence of gas conduits in hydrate-bearing sediments and other nonequilibrium phenomena commonly observed in natural methane hydrate systems.

  8. Will There Be Future Deceleration? A Study of Particle Creation Mechanism in Nonequilibrium Thermodynamics

    Supriya Pan

    2015-01-01

    Full Text Available The paper deals with nonequilibrium thermodynamics based on adiabatic particle creation mechanism with the motivation of considering it as an alternative choice to explain the recent observed accelerating phase of the universe. Using Friedmann’s equations, it is shown that the deceleration parameter (q can be obtained from the knowledge of the particle production rate (Γ. Motivated by thermodynamical point of view, cosmological solutions are evaluated for the particle creation rates in three cosmic phases, namely, inflation, matter dominated era, and present late time acceleration. The deceleration parameter (q is expressed as a function of the redshift parameter (z, and its variation is presented graphically. Also, statefinder analysis has been presented graphically in three different phases of the universe. Finally, two noninteracting fluids with different particle creation rates are considered as cosmic substratum, and deceleration parameter (q is evaluated. Whether more than one transition of q is possible or not is examined by graphical representations.

  9. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. VALIDITY OF EXCESS ENTROPY PRODUCTION CRITERION OF THERMODYNAMIC STABILITY FOR NONEQUILIBRIUM STEADY STATES

    吴金平

    1991-01-01

    The relation between the excess entropy production criterion of thermodynamic stabilityfor nonequilibrium states and kinetic linear stability principle is discussed. It is shown thatthe condition required by the excess entropy production criterion generally is sufficient, butnot necessary to judge the system stability. The condition required by the excess entropyproduction criterion is stronger than that of the linear stability principle. Only when theproduct matrix between the linearized matrix of kinetic equations and matrix of quadraticform of second-order excess entropy is symmetric, is the condition required by the excessentropy production criterion that the steady steate is asymptotically stable (δ_xP>0) necessaryand sufficient. The counterexample given by Fox to prove that the excess entropy, (δ~2S)ss,is not a Liapunov function is incorrect. Contradictory to his conclusion, the counterexampleis just a positive one that proves that the excess entropy is a Liapunov function. Moreover,the excess entropy production criterion is not limited by symmetric conditions of the linear-ized matrix of kinetic equations. The excess entropy around nonequilibrium steady states,(δ~2S)ss, is a Liapunov function of thermodynamic system.

  11. Nonequilibrium steady state and induced currents of a mesoscopically glassy system: interplay of resistor-network theory and Sinai physics.

    Hurowitz, Daniel; Rahav, Saar; Cohen, Doron

    2013-12-01

    We introduce an explicit solution for the nonequilibrium steady state (NESS) of a ring that is coupled to a thermal bath, and is driven by an external hot source with log-wide distribution of couplings. Having time scales that stretch over several decades is similar to glassy systems. Consequently there is a wide range of driving intensities where the NESS is like that of a random walker in a biased Brownian landscape. We investigate the resulting statistics of the induced current I. For a single ring we discuss how sign of I fluctuates as the intensity of the driving is increased, while for an ensemble of rings we highlight the fingerprints of Sinai physics on the distribution of the absolute value of I.

  12. Non-equilibrium thermodynamics of highly rarefied neutron gas under creative and destructive reactions

    Hayasaka, Hideo

    1978-01-01

    The thermodynamic structures of non-equilibrium steady states of a highly rarefied neutron gas in various media are considered in terms of the irreversible processes due to creative and destructive reactions of neutrons with nuclei of these media and to neutrons supplied from external sources. The respective subsystems of the stationary neutron gas are regarded as imperfect equilibrium systems in the presence of the medium and the external neutron sources, and are treated like different species in a mixture. The entropy production due to neutron-nuclear reactions has a minimum value at the steady state. The distribution function of such a neutron gas is determined from the extremum condition in which entropy does not change, and is expressed as a shifted Boltzmann distribution specified by the respective values of the generalized chemical potential for each energy level. (author)

  13. A non-equilibrium thermodynamic model for tumor extracellular matrix with enzymatic degradation

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2017-07-01

    The extracellular matrix (ECM) of a solid tumor not only affords scaffolding to support tumor architecture and integrity but also plays an essential role in tumor growth, invasion, metastasis, and therapeutics. In this paper, a non-equilibrium thermodynamic theory is established to study the chemo-mechanical behaviors of tumor ECM, which is modeled as a poroelastic polyelectrolyte consisting of a collagen network and proteoglycans. By using the principle of maximum energy dissipation rate, we deduce a set of governing equations for drug transport and mechanosensitive enzymatic degradation in ECM. The results reveal that osmosis is primarily responsible for the compression resistance of ECM. It is suggested that a well-designed ECM degradation can effectively modify the tumor microenvironment for improved efficiency of cancer therapy. The theoretical predictions show a good agreement with relevant experimental observations. This study aimed to deepen our understanding of tumor ECM may be conducive to novel anticancer strategies.

  14. A constitutive rheological model for agglomerating blood derived from nonequilibrium thermodynamics

    Tsimouri, Ioanna Ch.; Stephanou, Pavlos S.; Mavrantzas, Vlasis G.

    2018-03-01

    Red blood cells tend to aggregate in the presence of plasma proteins, forming structures known as rouleaux. Here, we derive a constitutive rheological model for human blood which accounts for the formation and dissociation of rouleaux using the generalized bracket formulation of nonequilibrium thermodynamics. Similar to the model derived by Owens and co-workers ["A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow," J. Fluid Mech. 617, 327-354 (2008)] through polymer network theory, each rouleau in our model is represented as a dumbbell; the corresponding structural variable is the conformation tensor of the dumbbell. The kinetics of rouleau formation and dissociation is treated as in the work of Germann et al. ["Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions," J. Non-Newton. Fluid Mech. 196, 51-57 (2013)] by assuming a set of reversible reactions, each characterized by a forward and a reverse rate constant. The final set of evolution equations for the microstructure of each rouleau and the expression for the stress tensor turn out to be very similar to those of Owens and co-workers. However, by explicitly considering a mechanism for the formation and breakage of rouleaux, our model further provides expressions for the aggregation and disaggregation rates appearing in the final transport equations, which in the kinetic theory-based network model of Owens were absent and had to be specified separately. Despite this, the two models are found to provide similar descriptions of experimental data on the size distribution of rouleaux.

  15. Predicting for thermodynamic instabilities in water/oil/surfactant microemulsions: A mesoscopic modelling approach

    Duvail, Magali, E-mail: magali.duvail@icsm.fr; Zemb, Thomas; Dufrêche, Jean-François [Institut de Chimie Séparative de Marcoule (ICSM), UMR 5257, CEA-CNRS-Université Montpellier 2-ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, F-30207 Bagnols-sur-Cèze Cedex (France); Arleth, Lise [Niels Bohr Institute, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C (Denmark)

    2014-04-28

    The thermodynamics and structural properties of flexible and rigid nonionic water/oil/surfactant microemulsions have been investigated using a two level-cut Gaussian random field method based on the Helfrich formalism. Ternary stability diagrams and scattering spectra have been calculated for different surfactant rigidities and spontaneous curvatures. A more important contribution of the Gaussian elastic constants compared to the bending one is observed on the ternary stability diagrams. Furthermore, influence of the spontaneous curvature of the surfactant points out a displacement of the instability domains which corresponds to the difference between the spontaneous and effective curvatures. We enlighten that a continuous transition from a connected water in oil droplets to a frustrated locally lamellar (oil in water in oil droplets) microstructure is found to occur when increasing the temperature for an oil-rich microemulsion. This continuous transition translated in a shift in the scattering functions, points out that the phase inversion phenomenon occurs by a coalescence of the water droplets.

  16. Application of non-equilibrium thermodynamics to two-phase flows with a change of phase

    Delhaye, J.M.

    1969-01-01

    In this report we use the methods of non-equilibrium thermodynamics in two-phase flows. This paper follows a prior one in which we have studied the conservation laws and derived the general equations of two-phase flow. In the first part the basic ideas of thermodynamics of irreversible systems are given. We follow the classical point of view. The second part is concerned with the derivation of a closed set of equations for the two phase elementary volume model. In this model we assume that the elementary volume contains two phases and that it is possible to define a volumetric local concentration. To obtain the entropy balance we can choose either the reversibility of the barycentric motion or the reversibility of each phase. We adopt the last assumption and our derivation is the same as this of I.Prigogine and P. Mazur about the hydrodynamics of liquid helium. The scope of this work is not to find a general solution to the problems of two phase flows but to obtain a new set of equations which may be used to explain some characteristic phenomena of two-phase flow such as wave propagation or critical states. (author) [fr

  17. Comparing different approaches to nonequilibrium thermodynamics in the context of warm inflation

    Ramos, Rudnei O.; Vicente, Gustavo S.

    2011-01-01

    Full text: Cosmological inflationary models are usually described by the evolution of a background scalar field, the inflaton. These models can be separated in isentropic (cold) and non isentropic (warm) when regarding the production of radiation. In isentropic or cold inflation, inflaton's dynamics occurs with no interactions, driving the universe to a stage of supercooling. In non isentropic inflation, however, the inflaton is coupled to other fields, which cause its decay into radiation. The radiation produced then compensates the supercooling due to expansion. This work is focused in warm inflation. There is a dissipative term in both inflaton's and radiation fluid's equations, due to inflatons decay. Nevertheless, an additional effect arises due to inner couplings in the radiation fluid, which causes internal decays within it. Therefore, the radiation fluid behaves as a nonideal fluid and viscosity effects must be taken into account. We consider here, in particular, bulk viscosity. The presence of dissipative effects leads the radiation fluid out of equilibrium. Hence, an extended thermodynamics is necessary to handle with this departure from equilibrium. Most theories, like the widely used Israel-Stewart (IS) second order theory, works well only near equilibrium (due to the linearity in the thermodynamic flux). In warm inflation, however, we cannot assure that inflation will happen in near equilibrium regime. For this reason, we consider different thermodynamic approaches of nonequilibrium statistical physics that can properly account for beyond equilibrium systems and apply them in the context of warm inflation. The effect of bulk viscosity, as well as shear viscosity, in the context of density perturbation calculations are also briefly compared in these frameworks. (author)

  18. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R

    2014-01-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H

  19. Modeling the nonequilibrium effects in a nonquasi-equilibrium thermodynamic cycle based on steepest entropy ascent and an isothermal-isobaric ensemble

    Li, Guanchen; Spakovsky, Michael R. von

    2016-01-01

    Conventional first principle approaches for studying nonequilibrium or far-from-equilibrium processes depend on the mechanics of individual particles or quantum states. They also require many details of the mechanical features of a system to arrive at a macroscopic property. In contrast, thermodynamics provides an approach for determining macroscopic property values without going into these details, because the overall effect of particle dynamics results, for example, at stable equilibrium in an invariant pattern of the “Maxwellian distribution”, which in turn leads to macroscopic properties. However, such an approach is not generally applicable to a nonequilibrium process except in the near-equilibrium realm. To adequately address these drawbacks, steepest-entropy-ascent quantum thermodynamics (SEAQT) provides a first principle, thermodynamic-ensemble approach applicable to the entire nonequilibrium realm. Based on prior developments by the authors, this paper applies the SEAQT framework to modeling the nonquasi-equilibrium cycle, which a system with variable volume undergoes. Using the concept of hypoequilibrium state and nonequilibrium intensive properties, this framework provides a complete description of the nonequilibrium evolution in state of the system. Results presented here reveal how nonequilibrium effects influence the performance of the cycle. - Highlights: • First-principles nonequilibrium model of thermodynamic cycles. • Study of thermal efficiency losses due to nonequilibrium effects. • Study of systems undergoing nonquasi-equilibrium processes. • Study of the coupling of system relaxation and interaction with a reservoir.

  20. Particle creation and non-equilibrium thermodynamical prescription of dark fluids for universe bounded by an event horizon

    Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy

    2015-01-01

    In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of...

  1. Assessing the Nonequilibrium Thermodynamics in a Quenched Quantum Many-Body System via Single Projective Measurements

    L. Fusco

    2014-08-01

    Full Text Available We analyze the nature of the statistics of the work done on or by a quantum many-body system brought out of equilibrium. We show that, for the sudden quench and for an initial state that commutes with the initial Hamiltonian, it is possible to retrieve the whole nonequilibrium thermodynamics via single projective measurements of observables. We highlight, in a physically clear way, the qualitative implications for the statistics of work coming from considering processes described by operators that either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a quantum many-body system and derive an expression that allows us to give a physical interpretation, for a thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with the unperturbed Hamiltonian. In the commuting case, the observables that we need to measure have an intuitive physical meaning. Conversely, in the noncommuting case, we show that, although it is possible to operate fully within the single-measurement framework irrespectively of the size of the quench, some difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance makes the study of the physics of the system nontrivial and highlights the nonintuitive phenomenology of the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas with the example of the Ising model in a transverse field showing the interesting behavior of the high-order statistical moments of the work distribution for a generic thermal state and linking them to the critical nature of the model itself.

  2. The development of flux-split algorithms for flows with non-equilibrium thermodynamics and chemical reactions

    Grossman, B.; Cinella, P.

    1988-01-01

    A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.

  3. Modeling of thermodynamic non-equilibrium flows around cylinders and in channels

    Sinha, Avick; Gopalakrishnan, Shiva

    2017-11-01

    Numerical simulations for two different types of flash-boiling flows, namely shear flow (flow through a de-Laval nozzle) and free shear flow (flow past a cylinder) are carried out in the present study. The Homogenous Relaxation Model (HRM) is used to model the thermodynamic non-equilibrium process. It was observed that the vaporization of the fluid stream, which was initially maintained at a sub-cooled state, originates at the nozzle throat. This is because the fluid accelerates at the vena-contracta and subsequently the pressure falls below the saturation vapor pressure, generating a two-phase mixture in the diverging section of the nozzle. The mass flow rate at the nozzle was found to decrease with the increase in fluid inlet temperature. A similar phenomenon also occurs for the free shear case due to boundary layer separation, causing a drop in pressure behind the cylinder. The mass fraction of vapor is maximum at rear end of the cylinder, where the size of the wake is highest. As the back pressure is reduced, severe flashing behavior was observed. The numerical simulations were validated against available experimental data. The authors gratefully acknowledge funding from the public-private partnership between DST, Confederation of Indian Industry and General Electric Pvt. Ltd.

  4. A non-equilibrium thermodynamics model of reconstituted Ca(2+)-ATPase.

    Waldeck, A R; van Dam, K; Berden, J; Kuchel, P W

    1998-01-01

    A non-equilibrium thermodynamics (NET) model describing the action of completely coupled or 'slipping' reconstituted Ca(2+)-ATPase is presented. Variation of the coupling stoichiometries with the magnitude of the electrochemical gradients, as the ATPase hydrolyzes ATP, is an indication of molecular slip. However, the Ca2+ and H+ membrane-leak conductances may also be a function of their respective gradients. Such non-ohmic leak typically yields 'flow-force' relationships that are similar to those that are obtained when the pump slips; hence, caution needs to be exercised when interpreting data of Ca(2+)-ATPase-mediated fluxes that display a non-linear dependence on the electrochemical proton (delta mu H) and/or calcium gradients (delta mu Ca). To address this issue, three experimentally verifiable relationships differentiating between membrane leak and enzymic slip were derived. First, by measuring delta mu H as a function of the rate of ATP hydrolysis by the enzyme. Second, by measuring the overall 'efficiency' of the pump as a function of delta mu H. Third, by measuring the proton ejection rate by the pump as a function of its ATP hydrolysis rate.

  5. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    J. G. Dyke

    2011-06-01

    Full Text Available Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  6. A facilitated diffusion model constrained by the probability isotherm: a pedagogical exercise in intuitive non-equilibrium thermodynamics.

    Chapman, Brian

    2017-06-01

    This paper seeks to develop a more thermodynamically sound pedagogy for students of biological transport than is currently available from either of the competing schools of linear non-equilibrium thermodynamics (LNET) or Michaelis-Menten kinetics (MMK). To this end, a minimal model of facilitated diffusion was constructed comprising four reversible steps: cis- substrate binding, cis → trans bound enzyme shuttling, trans -substrate dissociation and trans → cis free enzyme shuttling. All model parameters were subject to the second law constraint of the probability isotherm, which determined the unidirectional and net rates for each step and for the overall reaction through the law of mass action. Rapid equilibration scenarios require sensitive 'tuning' of the thermodynamic binding parameters to the equilibrium substrate concentration. All non-equilibrium scenarios show sigmoidal force-flux relations, with only a minority of cases having their quasi -linear portions close to equilibrium. Few cases fulfil the expectations of MMK relating reaction rates to enzyme saturation. This new approach illuminates and extends the concept of rate-limiting steps by focusing on the free energy dissipation associated with each reaction step and thereby deducing its respective relative chemical impedance. The crucial importance of an enzyme's being thermodynamically 'tuned' to its particular task, dependent on the cis- and trans- substrate concentrations with which it deals, is consistent with the occurrence of numerous isoforms for enzymes that transport a given substrate in physiologically different circumstances. This approach to kinetic modelling, being aligned with neither MMK nor LNET, is best described as intuitive non-equilibrium thermodynamics, and is recommended as a useful adjunct to the design and interpretation of experiments in biotransport.

  7. A thermodynamic analysis of non-equilibrium heat conduction in a semi-infinite medium subjected to a step change in temperature

    Hussain, A.K.; Hussain, T.A.; Shahad, Haroun A.K. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2003-05-01

    The problem of non-equilibrium heat conduction in a semi-infinite medium subjected to a step change in temperature is analyzed thermodynamically using the extended irreversible thermodynamic approach. The results show clearly the wave nature of the dimensionless temperature distribution, Stanton number and the dimensionless entropy change profiles. The non-equilibrium profiles approach the equilibrium profiles as the speed of wave propagation is increased. The results also show that the non-equilibrium temperature is higher than the equilibrium temperature but the difference decreases as the wave propagation speed increases. (Author)

  8. Complete cosmic scenario from inflation to late time acceleration: Nonequilibrium thermodynamics in the context of particle creation

    Chakraborty, Subenoy; Saha, Subhajit

    2014-12-01

    The paper deals with the mechanism of particle creation in the framework of irreversible thermodynamics. The second order nonequilibrium thermodynamical prescription of Israel and Stewart has been presented with particle creation rate, treated as the dissipative effect. In the background of a flat Friedmann-Robertson-Walker (FRW) model, we assume the nonequilibrium thermodynamical process to be isentropic so that the entropy per particle does not change and consequently the dissipative pressure can be expressed linearly in terms of the particle creation rate. Here the dissipative pressure behaves as a dynamical variable having a nonlinear inhomogeneous evolution equation and the entropy flow vector satisfies the second law of thermodynamics. Further, using the Friedmann equations and by proper choice of the particle creation rate as a function of the Hubble parameter, it is possible to show (separately) a transition from the inflationary phase to the radiation era and also from the matter dominated era to late time acceleration. Also, in analogy to analytic continuation, it is possible to show a continuous cosmic evolution from inflation to late time acceleration by adjusting the parameters. It is found that in the de Sitter phase, the comoving entropy increases exponentially with time, keeping entropy per particle unchanged. Subsequently, the above cosmological scenarios have been described from a field theoretic point of view by introducing a scalar field having self-interacting potential. Finally, we make an attempt to show the cosmological phenomenon of particle creation as Hawking radiation, particularly during the inflationary era.

  9. Essential equivalence of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium thermodynamics.

    Montefusco, Alberto; Consonni, Francesco; Beretta, Gian Paolo

    2015-04-01

    By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics in the mathematical language of differential geometry, we compare it with the primitive formulation of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main technical differences of the two approaches. In both dynamical models the description of dissipation is of the "entropy-gradient" type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics. As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity makes it automatically SEA on metric leaves.

  10. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  11. Quantum mechanics and the second law of thermodynamics: an insight gleaned from magnetic hysteresis in the first order phase transition of an isolated mesoscopic-size type I superconductor

    Keefe, Peter D

    2012-01-01

    J Bardeen proposed that the adiabatic phase transition of mesoscopic-size type I superconductors must be accompanied by magnetic hysteresis in the critical magnetic field of sufficient magnitude to satisfy the second law of thermodynamics, herein referred to as ‘Bardeen Hysteresis’. Bardeen Hysteresis remains speculative in that it has not been reported in the literature. This paper investigates Bardeen Hysteresis as a possible accompaniment to the adiabatic phase transition of isolated mesoscopic-size type I superconductors and its implications with respect to the second law of thermodynamics. A causal mechanism for Bardeen Hysteresis is discussed which contrasts with the long accepted causal mechanism of magnetic hysteresis, as first summarized by Pippard, herein referred to as ‘Pippard Hysteresis’. The paper offers guidance for an experimental verification and comments on how the existence of Bardeen Hysteresis has relation to a quantum mechanical basis for the second law of thermodynamics.

  12. Quantum mechanics and the second law of thermodynamics: an insight gleaned from magnetic hysteresis in the first order phase transition of an isolated mesoscopic-size type I superconductor

    Keefe, Peter D.

    2012-11-01

    J Bardeen proposed that the adiabatic phase transition of mesoscopic-size type I superconductors must be accompanied by magnetic hysteresis in the critical magnetic field of sufficient magnitude to satisfy the second law of thermodynamics, herein referred to as ‘Bardeen Hysteresis’. Bardeen Hysteresis remains speculative in that it has not been reported in the literature. This paper investigates Bardeen Hysteresis as a possible accompaniment to the adiabatic phase transition of isolated mesoscopic-size type I superconductors and its implications with respect to the second law of thermodynamics. A causal mechanism for Bardeen Hysteresis is discussed which contrasts with the long accepted causal mechanism of magnetic hysteresis, as first summarized by Pippard, herein referred to as ‘Pippard Hysteresis’. The paper offers guidance for an experimental verification and comments on how the existence of Bardeen Hysteresis has relation to a quantum mechanical basis for the second law of thermodynamics.

  13. Non-equilibrium thermodynamics theory of econometric source discovery for large data analysis

    van Bergem, Rutger; Jenkins, Jeffrey; Benachenhou, Dalila; Szu, Harold

    2014-05-01

    Almost all consumer and firm transactions are achieved using computers and as a result gives rise to increasingly large amounts of data available for analysts. The gold standard in Economic data manipulation techniques matured during a period of limited data access, and the new Large Data Analysis (LDA) paradigm we all face may quickly obfuscate most tools used by Economists. When coupled with an increased availability of numerous unstructured, multi-modal data sets, the impending 'data tsunami' could have serious detrimental effects for Economic forecasting, analysis, and research in general. Given this reality we propose a decision-aid framework for Augmented-LDA (A-LDA) - a synergistic approach to LDA which combines traditional supervised, rule-based Machine Learning (ML) strategies to iteratively uncover hidden sources in large data, the artificial neural network (ANN) Unsupervised Learning (USL) at the minimum Helmholtz free energy for isothermal dynamic equilibrium strategies, and the Economic intuitions required to handle problems encountered when interpreting large amounts of Financial or Economic data. To make the ANN USL framework applicable to economics we define the temperature, entropy, and energy concepts in Economics from non-equilibrium molecular thermodynamics of Boltzmann viewpoint, as well as defining an information geometry, on which the ANN can operate using USL to reduce information saturation. An exemplar of such a system representation is given for firm industry equilibrium. We demonstrate the traditional ML methodology in the economics context and leverage firm financial data to explore a frontier concept known as behavioral heterogeneity. Behavioral heterogeneity on the firm level can be imagined as a firm's interactions with different types of Economic entities over time. These interactions could impose varying degrees of institutional constraints on a firm's business behavior. We specifically look at behavioral heterogeneity for firms

  14. Friction-induced vibrations and self-organization mechanics and non-equilibrium thermodynamics of sliding contact

    Nosonovsky, Michael

    2013-01-01

    Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science....

  15. Particle creation and non-equilibrium thermodynamical prescription of dark fluids for universe bounded by an event horizon

    Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy

    2015-03-01

    In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of state and (ii) Holographic dark energy. In both the cases, the validity of generalized second law of thermodynamics (GSLT) which states that the total entropy of the fluid as well as that of the horizon should not decrease with the evolution of the universe, has been examined graphically for universe bounded by the event horizon. It is found that GSLT holds in both the cases with some restrictions on the interacting coupling parameter.

  16. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures.

    Sevim, S; Sorrenti, A; Franco, C; Furukawa, S; Pané, S; deMello, A J; Puigmartí-Luis, J

    2018-05-01

    Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.

  17. Relation between absorbed dose, charged particle equilibrium and nuclear transformations: A non-equilibrium thermodynamics point of view

    Alvarez-Romero, J. T.

    2006-01-01

    We present a discussion to show that the absorbed dose D is a time-dependent function. This time dependence is demonstrated based on the concepts of charged particle equilibrium and on radiation equilibrium within the context of thermodynamic non-equilibrium. In the latter, the time dependence is due to changes of the rest mass energy of the nuclei and elementary particles involved in the terms ΣQ and Q that appear in the definitions of energy imparted ε and energy deposit ε i , respectively. In fact, nothing is said about the averaging operation of the non-stochastic quantity mean energy imparted ε-bar, which is used in the definition of D according to ICRU 60. It is shown in this research that the averaging operation necessary to define the ε-bar employed to get D cannot be performed with an equilibrium statistical operator ρ(r) as could be expected. Rather, the operation has to be defined with a time-dependent non-equilibrium statistical operator (r, t) therefore, D is a time-dependent function D(r, t). (authors)

  18. Thermodynamic versus non-equilibrium stability of palmitic acid monolayers in calcium-enriched sea spray aerosol proxy systems.

    Wellen Rudd, Bethany A; Vidalis, Andrew S; Allen, Heather C

    2018-04-16

    Of the major cations in seawater (Na+, Mg2+, Ca2+, K+), Ca2+ is found to be the most enriched in fine sea spray aerosols (SSA). In this work, we investigate the binding of Ca2+ to the carboxylic acid headgroup of palmitic acid (PA), a marine-abundant fatty acid, and the impact such binding has on the stability of PA monolayers in both equilibrium and non-equilibrium systems. A range of Ca2+ conditions from 10 μM to 300 mM was utilized to represent the relative concentration of Ca2+ in high and low relative humidity aerosol environments. The CO2- stretching modes of PA detected by surface-sensitive infrared reflection-absorption spectroscopy (IRRAS) reveal ionic binding motifs of the Ca2+ ion to the carboxylate group with varying degrees of hydration. Surface tensiometry was used to determine the thermodynamic equilibrium spreading pressure (ESP) of PA on the various aqueous CaCl2 subphases. Up to concentrations of 1 mM Ca2+, each system reached equilibrium, and Ca2+:PA surface complexation gave rise to a lower energy state revealed by elevated surface pressures relative to water. We show that PA films are not thermodynamically stable at marine aerosol-relevant Ca2+ concentrations ([Ca2+] ≥ 10 mM). IRRAS and vibrational sum frequency generation (VSFG) spectroscopy were used to investigate the surface presence of PA on high concentration Ca2+ aqueous subphases. Non-equilibrium relaxation (NER) experiments were also conducted and monitored by Brewster angle microscopy (BAM) to determine the effect of the Ca2+ ions on PA stability. At high surface pressures, the relaxation mechanisms of PA varied among the systems and were dependent on Ca2+ concentration.

  19. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    Svoboda, Jiří; Fischer, F. D.

    2014-01-01

    Roč. 22, č. 1 (2014), Art . No. 015013 ISSN 0965-0393 Institutional support: RVO:68081723 Keywords : grain boundary segregation * abnormal grain growth * theory * modelling * solute drag Subject RIV: BJ - Thermodynamics Impact factor: 2.167, year: 2014

  20. Mesoscopic biology

    In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...

  1. Nonequilibrium entropies

    Maes, Christian

    2012-01-01

    In contrast to the quite unique entropy concept useful for systems in (local) thermodynamic equilibrium, there is a variety of quite distinct nonequilibrium entropies, reflecting different physical points. We disentangle these entropies as they relate to heat, fluctuations, response, time asymmetry, variational principles, monotonicity, volume contraction or statistical forces. However, not all of those extensions yield state quantities as understood thermodynamically. At the end we sketch how aspects of dynamical activity can take over for obtaining an extended Clausius relation.

  2. A new perspective on the electron transfer: recovering the Butler-Volmer equation in non-equilibrium thermodynamics.

    Dreyer, Wolfgang; Guhlke, Clemens; Müller, Rüdiger

    2016-09-28

    Electron transfer reactions are commonly described by the phenomenological Butler-Volmer equation which has its origin in kinetic theories. The Butler-Volmer equation relates interfacial reaction rates to bulk quantities like the electrostatic potential and electrolyte concentrations. Although the general structure of the equation is well accepted, for modern electrochemical systems like batteries and fuel cells there is still intensive discussion about the specific dependencies of the coefficients. A general guideline for the derivation of Butler-Volmer type equations is missing in the literature. We derive very general relations of Butler-Volmer structure which are based on a rigorous non-equilibrium thermodynamic model and allow for adaption to a wide variety of electrochemical systems. We discuss the application of the new thermodynamic approach to different scenarios like the classical electron transfer reactions at metal electrodes and the intercalation process in lithium-iron-phosphate electrodes. Furthermore we show that under appropriate conditions also adsorption processes can lead to Butler-Volmer equations. We illustrate the application of our theory by a strongly simplified example of electroplating.

  3. Some aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics

    Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty

    1990-01-01

    An exact equation is derived for the dissipation function of a homogeneous, isotropic, Newtonian fluid, with terms associated with irreversible compression or expansion, wave radiation, and the square of the vorticity. This and other forms of the dissipation function are used to identify simple flows, such as incompressible channel flow, the potential vortex with rotational core, and incompressible, irrotational flow as minimally dissipative distributions. A comparison of the hydrodynamic and thermodynamic stability characteristics of a parallel shear flow suggests that an association exists between flow stability and the variation of net dissipation with disturbance amplitude, and that nonlinear effects, such as bounded disturbance amplitude, may be examined from a thermodynamic basis.

  4. Dilepton production from quark gluon plasma using non-equilibrium thermodynamics

    Sinha, B.

    1984-01-01

    The importance of the approach phase to the thermodynamic equilibrium has been investigated for dilepton production from quark-gluon plasma - an effective temperature for the quarks as Brounian particle in a heat bath of gluons has been suggested. The spectrum for low invariant mass is, as a consequence, sharper

  5. Entropy production and thermodynamics of nonequilibrium stationary states: a point of view.

    Gallavotti, Giovanni

    2004-09-01

    Entropy might be a not well defined concept if the system can undergo transformations involving stationary nonequilibria. It might be analogous to the heat content (once called "caloric") in transformations that are not isochoric (i.e., which involve mechanical work): it could be just a quantity that can be transferred or created, like heat in equilibrium. The text first reviews the philosophy behind a recently proposed definition of entropy production in nonequilibrium stationary systems. A detailed technical attempt at defining the entropy of a stationary states via their variational properties follows: the unsatisfactory aspects of the results add arguments in favor of the nonexistence of a function of state to be identified with entropy; at the same time new aspects and properties of the phase space contraction emerge. Copyright 2004 American Institute of Physics

  6. Nonequilibrium Thermodynamic Treatment of a Warm Plasma in Strong Magnetic and Electric Fields

    Abourabia, A.M.; Shahein, R.A.

    2008-01-01

    In the framework of the irreversible thermodynamics we study a rarefied and collisional warm electron plasma under the effects of external strong magnetic and electric fields which generate small wave amplitudes. We adopt the linear theory and normal mode solution in the MHD model to calculate the perturbations in pressure, mass density, components of velocity, electric and magnetic fields. By applying the second law of thermodynamics it is concluded that the change in the internal energy of the plasma particles predicts whether they gain from or lose energy to the generated waves .The obtained results agree with the physical ground bounded by the positive nature of the entropy production. The predictions have been carried out within the range of the frequency of the generated waves and the distance from the Debye sphere

  7. The thermodynamic meaning of local temperature of nonequilibrium open quantum systems

    Ye, LvZhou; Zheng, Xiao; Yan, YiJing; Di Ventra, Massimiliano

    2016-01-01

    Measuring the local temperature of nanoscale systems out of equilibrium has emerged as a new tool to study local heating effects and other local thermal properties of systems driven by external fields. Although various experimental protocols and theoretical definitions have been proposed to determine the local temperature, the thermodynamic meaning of the measured or defined quantities remains unclear. By performing analytical and numerical analysis of bias-driven quantum dot systems both in ...

  8. Nonequilibrium dissipation-free transport in F₁-ATPase and the thermodynamic role of asymmetric allosterism.

    Kawaguchi, Kyogo; Sasa, Shin-Ichi; Sagawa, Takahiro

    2014-06-03

    F1-ATPase (or F1), the highly efficient and reversible biochemical engine, has motivated physicists as well as biologists to imagine the design principles governing machines in the fluctuating world. Recent experiments have clarified yet another interesting property of F1; the dissipative heat inside the motor is very small, irrespective of the velocity of rotation and energy transport. Conceptual interest is devoted to the fact that the amount of internal dissipation is not simply determined by the sequence of equilibrium pictures, but also relies on the rotational-angular dependence of nucleotide affinity, which is a truly nonequilibrium aspect. We propose that the totally asymmetric allosteric model (TASAM), where adenosine triphosphate (ATP) binding to F1 is assumed to have low dependence on the angle of the rotating shaft, produces results that are most consistent with the experiments. Theoretical analysis proves the crucial role of two time scales in the model, which explains the universal mechanism to produce the internal dissipation-free feature. The model reproduces the characteristic torque dependence of the rotational velocity of F1 and predicts that the internal dissipation upon the ATP synthesis direction rotation becomes large at the low nucleotide condition. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  10. Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts

    Sengupta, Tapan K., E-mail: tksen@iitk.ac.in; Bhole, Ashish; Shruti, K. S. [HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Aditi [Department of Engineering, University of Cambridge, Cambridge (United Kingdom); Sharma, Nidhi [Graduate Student, HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Soumyo [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes’ hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes’ hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes’ hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.

  11. Thermodynamic description of non-Markovian information flux of nonequilibrium open quantum systems

    Chen, Hong-Bin; Chen, Guang-Yin; Chen, Yueh-Nan

    2017-12-01

    One of the fundamental issues in the field of open quantum systems is the classification and quantification of non-Markovianity. In the contest of quantity-based measures of non-Markovianity, the intuition of non-Markovianity in terms of information backflow is widely discussed. However, it is not easy to characterize the information flux for a given system state and show its connection to non-Markovianity. Here, by using the concepts from thermodynamics and information theory, we discuss a potential definition of information flux of an open quantum system, valid for static environments. We present a simple protocol to show how a system attempts to share information with its environment and how it builds up system-environment correlations. We also show that the information returned from the correlations characterizes the non-Markovianity and a hierarchy of indivisibility of the system dynamics.

  12. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.

    Han, Bumsoo; Bischof, John C

    2004-04-01

    Understanding the phase change behavior of biomaterials during freezing/thawing including their thermal properties at low temperatures is essential to design and improve cryobiology applications such as cryopreservation and cryosurgery. However, knowledge of phase change behavior and thermal properties of various biomaterials is still incomplete, especially at cryogenic temperatures (solutions--either water-NaCl or phosphate buffered saline (PBS)--with various chemical additives were investigated. The chemical additives studied are glycerol and raffinose as CPAs, an AFP (Type III, molecular weight = 6500), and NaCl as a cryosurgical adjuvant. The phase change behavior was investigated using a differential scanning calorimeter (DSC) and a cryomicroscope. The specific and latent heat of these solutions were also measured with the DSC. The saline solutions have two distinct phase changes--water/ice and eutectic phase changes. During freezing, eutectic solidification of both water-NaCl and PBS are significantly supercooled below their thermodynamic equilibrium eutectic temperatures. However, their melting temperatures are close to thermodynamic equilibrium during thawing. These eutectic phase changes disappear when even a small amount (0.1 M glycerol) of CPA was added, but they are still observed after the addition of an AFP. The specific heats of these solutions are close to that of ice at very low temperatures (< or = -100 degrees C) regardless of the additives, but they increase between -100 degrees C and -30 degrees C with the addition of CPAs. The amount of latent heat, which is evaluated with sample weight, generally decreases with the addition of the additives, but can be normalized to approximately 300 J/g based on the weight of water which participates in the phase change. This illustrates that thermal properties, especially latent heat, of a biomaterial should be evaluated based on the understanding of its phase change behavior. The results of the present

  13. Theoretical Application of Irreversible (Nonequilibrium) Thermodynamic Principles to Enhance Solute Fluxes across Nanofabricated Hemodialysis Membranes

    Hedayat, Assem; Elmoselhi, Hamdi; Shoker, Ahmed

    2012-01-01

    Objective. Nanotechnology has the potential to improve hemodialysis membrane technology. Thus, a major objective is to understand how to enhance toxic solute fluxes across these membranes. The aim of this concept building study is to review the application of irreversible thermodynamic (IT) to solute fluxes. Methods. We expanded the application of the Nernst-Planck equation to include the Kedem-Katchalsky equation, pH, membrane thickness, pore size, and electric potential as variables. Results. (1) Reducing the membrane's thickness from 25 μm to 25 nm increased the flux of creatinine, β2-microglobulin, and tumor necrosis factor-α (TNF-α) by a thousand times but prevented completely albumin flux, (2) applying an electric potential of 50–400 mV across the membrane enhanced the flux of the respective molecules by 71.167 × 10−3, 38.7905 × 10−8, and 0.595 × 10−13 mol/s, and (3) changing the pH from 7.35 to 7.42 altered the fluxes minimally. Conclusions. The results supported an argument to investigate the application of IT to study forces of fluxes across membranes. Reducing the membrane's thickness—together with the application of an electrical potential—qualities achievable by nanotechnology, can enhance the removal of uremic toxins by many folds. However, changing the pH at a specific membrane thickness does not affect the flux significantly. PMID:23209903

  14. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    Svoboda, J; Fischer, F D

    2014-01-01

    Abnormal grain growth as the abrupt growth of a group of the largest grains in a multi-grain system is treated within the context of unequal retardation of grain growth due to the segregation of solute atoms from the bulk of the grains into the grain boundaries. During grain boundary migration, the segregated solute atoms are dragged under a small driving force or left behind the migrating grain boundary under a large driving force. Thus, the solute atoms in the grain boundaries of large grains, exhibiting a large driving force, can be released from the grain boundary. The mobility of these grain boundaries becomes significantly higher and abnormal grain growth is spontaneously provoked. The mean-field model presented here assumes that each grain is described by its grain radius and by its individual segregation parameter. The thermodynamic extremal principle is engaged to obtain explicit evolution equations for the radius and segregation parameter of each grain. Simulations of grain growth kinetics for various conditions of segregation with the same initial setting (100 000 grains with a given radius distribution) are presented. Depending on the diffusion coefficients of the solute in the grain boundaries, abnormal grain growth may be strongly or marginally pronounced. Solute segregation and drag can also significantly contribute to the stabilization of the grain structure. Qualitative agreement with several experimental results is reported. (paper)

  15. Theoretical Application of Irreversible (Nonequilibrium Thermodynamic Principles to Enhance Solute Fluxes across Nanofabricated Hemodialysis Membranes

    Assem Hedayat

    2012-01-01

    Full Text Available Objective. Nanotechnology has the potential to improve hemodialysis membrane technology. Thus, a major objective is to understand how to enhance toxic solute fluxes across these membranes. The aim of this concept building study is to review the application of irreversible thermodynamic (IT to solute fluxes. Methods. We expanded the application of the Nernst-Planck equation to include the Kedem-Katchalsky equation, pH, membrane thickness, pore size, and electric potential as variables. Results. (1 Reducing the membrane’s thickness from 25 μm to 25 nm increased the flux of creatinine, β2-microglobulin, and tumor necrosis factor-α (TNF-α by a thousand times but prevented completely albumin flux, (2 applying an electric potential of 50–400 mV across the membrane enhanced the flux of the respective molecules by 71.167 × 10-3, 38.7905 × 10-8, and 0.595 × 10-13 mol/s, and (3 changing the pH from 7.35 to 7.42 altered the fluxes minimally. Conclusions. The results supported an argument to investigate the application of IT to study forces of fluxes across membranes. Reducing the membrane’s thickness—together with the application of an electrical potential—qualities achievable by nanotechnology, can enhance the removal of uremic toxins by many folds. However, changing the pH at a specific membrane thickness does not affect the flux significantly.

  16. Equilibrium thermodynamics - Callen's postulational approach

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  17. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to

  18. Fluctuations When Driving Between Nonequilibrium Steady States

    Riechers, Paul M.; Crutchfield, James P.

    2017-08-01

    Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.

  19. On the nonequilibrium thermodynamics

    Kitahara, Kazuo [Tokyo Institute of Technology (Japan); Miyazaki, Kunimasa; Bendeaux, D.

    1997-09-22

    To show how to include flow variables of multi-component fluids in entropy we examine the concept of internal energy and show that total energy rather than internal energy is more appropriate as independent variable. To derive hydrodynamics for each component of mixture Navier-stokes equation for one-component fluid is well established but that for multi-component fluid is not well established. We use the Ansatz of {open_quotes}symplectic{close_quotes} structure in the reversible part of hydrodynamics to derive the {open_quotes}Navier-Stokes equation{close_quotes} for mixture. To show the modification of Onsager reciprocity relation in the presence of mass flow. Rederivation of Fluctuation-Dissipation theorem for mixture.

  20. Application of the thermodynamic extremal principle to phase-field modeling of non-equilibrium solidification in multi-component alloys

    Zhang, Xiao; Wang, Haifeng; Kuang, Wangwang; Zhang, Jianbao

    2017-01-01

    Modeling of non-equilibrium solidification in multi-component alloys is of singular importance in microstructure control, which however owing to the complex systems with complex additional constraints is still an open problem. In this work, the thermodynamic extremal principle was applied to solve the complex additional constraints self-consistently in thermodynamics. Consequently, short-range solute redistribution and long-range solute diffusion that share the same mobility are integrated naturally into the solute diffusion equations, thus avoiding the introduction of additional kinetic coefficients (e.g. interface permeability) to describe solute redistribution. Application to the non-equilibrium solidification of Al-Si-Cu alloys shows that anomalous solute trapping and anomalous solute profiles within the diffuse interface could occur, thus highlighting the important effect of the interaction among the component elements on the interface kinetics. The current phase-field model might be preferred for simulations not only because of its simplest form of evolution equations but also its feasibility to increase the simulation efficiency by the “thin interface limit” analysis.

  1. Definition of Nonequilibrium Entropy of General Systems

    Mei, Xiaochun

    1999-01-01

    The definition of nonequilibrium entropy is provided for the general nonequilibrium processes by connecting thermodynamics with statistical physics, and the principle of entropy increment in the nonequilibrium processes is also proved in the paper. The result shows that the definition of nonequilibrium entropy is not unique.

  2. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui

    1990-01-01

    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.

  3. Mesoscopic modeling and parameter estimation of a lithium-ion battery based on LiFePO4/graphite

    Jokar, Ali; Désilets, Martin; Lacroix, Marcel; Zaghib, Karim

    2018-03-01

    A novel numerical model for simulating the behavior of lithium-ion batteries based on LiFePO4(LFP)/graphite is presented. The model is based on the modified Single Particle Model (SPM) coupled to a mesoscopic approach for the LFP electrode. The model comprises one representative spherical particle as the graphite electrode, and N LFP units as the positive electrode. All the SPM equations are retained to model the negative electrode performance. The mesoscopic model rests on non-equilibrium thermodynamic conditions and uses a non-monotonic open circuit potential for each unit. A parameter estimation study is also carried out to identify all the parameters needed for the model. The unknown parameters are the solid diffusion coefficient of the negative electrode (Ds,n), reaction-rate constant of the negative electrode (Kn), negative and positive electrode porosity (εn&εn), initial State-Of-Charge of the negative electrode (SOCn,0), initial partial composition of the LFP units (yk,0), minimum and maximum resistance of the LFP units (Rmin&Rmax), and solution resistance (Rcell). The results show that the mesoscopic model can simulate successfully the electrochemical behavior of lithium-ion batteries at low and high charge/discharge rates. The model also describes adequately the lithiation/delithiation of the LFP particles, however, it is computationally expensive compared to macro-based models.

  4. Statistical mechanics of nonequilibrium liquids

    Evans, Denis J; Craig, D P; McWeeny, R

    1990-01-01

    Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory,

  5. Mesoscopic Self-Assembly: A Shift to Complexity

    Massimo eMastrangeli

    2015-06-01

    Full Text Available By focusing on the construction of thermodynamically stable structures, the self-assembly of mesoscopic systems has proven capable of formidable achievements in the bottom-up engineering of micro- and nanosystems. Yet, inspired by an analogous evolution in supramolecular chemistry, synthetic mesoscopic self-assembly may have a lot more ahead, within reach of a shift toward fully three-dimensional architectures, collective interactions of building blocks and kinetic control. All over these challenging fronts, complexity holds the key.

  6. Thermodynamics

    Fermi, Enrico

    1956-01-01

    Indisputably, this is a modern classic of science. Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entr

  7. Mesoscopic pairing without superconductivity

    Hofmann, Johannes

    2017-12-01

    We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.

  8. Non-Equilibrium Thermodynamic Analysis of Double Diffusive, Nanofluid Forced Convection in Catalytic Microreactors with Radiation Effects

    Lilian Govone

    2017-12-01

    Full Text Available This paper presents a theoretical investigation of the second law performance of double diffusive forced convection in microreactors with the inclusion of nanofluid and radiation effects. The investigated microreactors consist of a single microchannel, fully filled by a porous medium. The transport of heat and mass are analysed by including the thick walls and a first order, catalytic chemical reaction on the internal surfaces of the microchannel. Two sets of thermal boundary conditions are considered on the external surfaces of the microchannel; (1 constant temperature and (2 constant heat flux boundary condition on the lower wall and convective boundary condition on the upper wall. The local thermal non-equilibrium approach is taken to thermally analyse the porous section of the system. The mass dispersion equation is coupled with the transport of heat in the nanofluid flow through consideration of Soret effect. The problem is analytically solved and illustrations of the temperature fields, Nusselt number, total entropy generation rate and performance evaluation criterion (PEC are provided. It is shown that the radiation effect tends to modify the thermal behaviour within the porous section of the system. The radiation parameter also reduces the overall temperature of the system. It is further demonstrated that, expectedly, the nanoparticles reduce the temperature of the system and increase the Nusselt number. The total entropy generation rate and consequently PEC shows a strong relation with radiation parameter and volumetric concentration of nanoparticles.

  9. Introduction to the generalized theory of non-equilibrium Cahn-Hilliard phase transitions (Thermodynamic problems in continuum mechanics

    Eugeniy A. Lukashev

    2017-11-01

    Full Text Available The occurrence of convective currents and their development from regular forms with the subsequent transition to irregular turbulent currents draw attention to the fact that they are responsible for the efficiency of many technological processes of heat and mass transfer. Such technological processes are basic in the chemical, petrochemical, power, metallurgical and other industries. Convective flows arise in liquids and gases in the gravitational field in the presence of spatial inhomogeneity of the density created by the inhomogeneity of the temperature and the concentration of components arising during, for example, chemical reactions or other causes. With increasing temperature difference, the resting liquid loses its stability, which then leads to the appearance of a convective flow (Rayleigh–Bénard instability. A further increase in the temperature difference leads to an instability of the primary convective flow, and the hydrodynamic crisis leads to a heat transfer crisis. The paper reconstructs the early stage of the Rayleigh–Bénard convective instability considered as a nonequilibrium phase transition with the spinodal decomposition (diffusion separation mechanism.

  10. Applications of mesoscopic physics

    Feng, Shechao.

    1993-01-01

    Research activities in the area ''applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves'' are briefly summarized. The main thrust in fundamental research is in the general areas of mesoscopic effects in disordered semiconductors and metals and the related field of applications of mesoscopic physics to the subject matter of classical wave propagation through disordered scattering media. Specific topics are Fabry-Perot interferometer with disorder: correlations and light localization; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; and transmission and reflection correlations of second harmonic waves in nonlinear random media. Research in applied physics centered on far infrared photon-assisted transport through quantum point contact devices and photon migration distributions in multiple scattering media. 7 refs

  11. Thermodynamics

    Zanchini, E.

    1988-01-01

    The definition of energy, in thermodynamics, is dependent by starting operative definitions of the basic concepts of physics on which it rests, such as those of isolated systems, ambient of a system, separable system and set of separable states. Then the definition of energy is rigorously extended to open systems. The extension gives a clear physical meaning to the concept of energy difference between two states with arbitrary different compositions

  12. Nuclear thermodynamics below particle threshold

    Schiller, A.; Agvaanluvsan, U.; Algin, E.; Bagheri, A.; Chankova, R.; Guttormsen, M.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Voinov, A.

    2005-01-01

    From a starting point of experimentally measured nuclear level densities, we discuss thermodynamical properties of nuclei below the particle emission threshold. Since nuclei are essentially mesoscopic systems, a straightforward generalization of macroscopic ensemble theory often yields unphysical results. A careful critique of traditional thermodynamical concepts reveals problems commonly encountered in mesoscopic systems. One of which is the fact that microcanonical and canonical ensemble theory yield different results, another concerns the introduction of temperature for small, closed systems. Finally, the concept of phase transitions is investigated for mesoscopic systems

  13. Generalization of Gibbs Entropy and Thermodynamic Relation

    Park, Jun Chul

    2010-01-01

    In this paper, we extend Gibbs's approach of quasi-equilibrium thermodynamic processes, and calculate the microscopic expression of entropy for general non-equilibrium thermodynamic processes. Also, we analyze the formal structure of thermodynamic relation in non-equilibrium thermodynamic processes.

  14. Mesoscopic photon heat transistor

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...

  15. Lattice Boltzmann model capable of mesoscopic vorticity computation

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  16. Mesoscopic phenomena in solids

    Altshuler, BL; Webb, RA

    1991-01-01

    The physics of disordered systems has enjoyed a resurgence of interest in the last decade. New concepts such as weak localization, interaction effects and Coulomb gap, have been developed for the transport properties of metals and insulators. With the fabrication of smaller and smaller samples and the routine availability of low temperatures, new physics has emerged from the studies of small devices. The new field goes under the name ""mesoscopic physics"" and has rapidly developed, both experimentally and theoretically. This book is designed to review the current status of the field.

  17. Dynamic theory for the mesoscopic electric circuit

    Chen Bin; Shen Xiaojuan; Li Youquan; Sun LiLy; Yin Zhujian

    2005-01-01

    The quantum theory for mesoscopic electric circuit with charge discreteness is briefly described. The minibands of quasienergy in LC design mesoscopic electric circuit have been found. In the mesoscopic 'pure' inductance design circuit, just like in the mesoscopic metallic rings, the quantum dynamic characteristics have been obtained explicitly. In the 'pure' capacity design circuit, the Coulomb blockade had also been addressed

  18. Nonequilibrium molecular dynamics: The first 25 years

    Hoover, W.G.

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments

  19. The nonequilibrium molecular dynamics

    Hoover, W.G.

    1992-03-01

    MOLECULAR DYNAMICS has been generalized in order to simulate a variety of NONEQUILIBRIUM systems. This generalization has been achieved by adopting microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress. Some of the problems already treated include rapid plastic deformation, intense heat conduction, strong shockwaves simulation, and far-from-equilibrium phase transformations. Continuing advances in technique and in the modeling of interatomic forces, coupled with qualitative improvements in computer hardware, are enabling such simulations to approximate real-world microscale and nanoscale experiments

  20. Nonequilibrium statistical mechanics ensemble method

    Eu, Byung Chan

    1998-01-01

    In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium Audience This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena

  1. Universal mesoscopic conductance fluctuations

    Evangelou, S.N.

    1992-01-01

    The theory of conductance fluctuations in disordered metallic systems with size large compared to the mean free path of the electron but small compared to localization length is considered. It is demonstrates that fluctuations have an universal character and are due to repulsion between levels and spectral rigidity. The basic fluctuation measures for the energy spectrum in the mesoscopic regime of disordered systems are consistent with the Gaussian random matrix ensemble predictions. Although our disordered electron random matrix ensemble does not belong to the Gaussian ensemble the two ensembles turn out to be essentially similar. The level repulsion and the spectral rigidity found in nuclear spectra should also be observed in the metallic regime of Anderson localization. 7 refs. (orig.)

  2. Quantum Transport in Mesoscopic Systems

    voltage bias, the tunneling of the electron from the lead to the dot and vice versa will happen very rarely. Then two successive ..... A typical mesoscopic quantum dot system (a small drop- .... dynamical behavior of the distribution function of the.

  3. Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics

    Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R.; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-01-01

    Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and Nad-H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict...

  4. Mesoscopic Simulations of Crosslinked Polymer Networks

    Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.

    2016-08-01

    A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.

  5. Stochastic thermodynamics

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  6. 氪等离子体热力学非平衡输运性质的计算%Calculation of Transport Properties of Krypton Plasma in Thermodynamic Nonequilibrium

    孙素蓉; 王海兴

    2013-01-01

    pressure and non-equilibrium parameter (θ =Te/Th) significantly affect the values of viscosity,thermal conductivity,and electrical conductivity.With the reduction of pressure and increased degree of thermodynamic nonequilibrium,the viscosity of krypton plasmas decreases.The degree of thermodynamic nonequilibrium significantly affects the peak value of thermal conductivity.In a high-temperature region,the electron translation thermal conductivity is dominant and increases with the increase of pressure,meanwhile,the electrical conductivity also increases with the increase of pressure.The variation of electrical conductivity with pressure is opposite in lowtemperature region.Under the condition of local thermodynamic equilibrium,the calculated transport properties of krypton plasma agree well with previously reported data.

  7. Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors.

    Taupin, M; Khaymovich, I M; Meschke, M; Mel'nikov, A S; Pekola, J P

    2016-03-16

    Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data.

  8. Non-equilibrium supramolecular polymerization.

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  9. Non-dissipative effects in nonequilibrium systems

    Maes, Christian

    2018-01-01

    This book introduces and discusses both the fundamental aspects and the measurability of applications of time-symmetric kinetic quantities, outlining the features that constitute the non-dissipative branch of non-equilibrium physics. These specific features of non-equilibrium dynamics have largely been ignored in standard statistical mechanics texts. This introductory-level book offers novel material that does not take the traditional line of extending standard thermodynamics to the irreversible domain. It shows that although stationary dissipation is essentially equivalent with steady non-equilibrium and ubiquitous in complex phenomena, non-equilibrium is not determined solely by the time-antisymmetric sector of energy-entropy considerations. While this should not be very surprising, this book provides timely, simple reminders of the role of time-symmetric and kinetic aspects in the construction of non-equilibrium statistical mechanics.

  10. Mesoscopic quantum cryptography

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2017-03-15

    Since a strictly single-photon source is not yet available, in quantum cryptography systems, one uses, as information quantum states, coherent radiation of a laser with an average number of photons of μ ≈ 0.1–0.5 in a pulse, attenuated to the quasi-single-photon level. The linear independence of a set of coherent quasi-single-photon information states leads to the possibility of unambiguous measurements that, in the presence of losses in the line, restrict the transmission range of secret keys. Starting from a certain value of critical loss (the length of the line), the eavesdropper knows the entire key, does not make errors, and is not detected—the distribution of secret keys becomes impossible. This problem is solved by introducing an additional reference state with an average number of photons of μ{sub cl} ≈ 10{sup 3}–10{sup 6}, depending on the length of the communication line. It is shown that the use of a reference state does not allow the eavesdropper to carry out measurements with conclusive outcome while remaining undetected. A reference state guarantees detecting an eavesdropper in a channel with high losses. In this case, information states may contain a mesoscopic average number of photons in the range of μ{sub q} ≈ 0.5–10{sup 2}. The protocol proposed is easy to implement technically, admits flexible adjustment of parameters to the length of the communication line, and is simple and transparent for proving the secrecy of keys.

  11. Computer simulation of nonequilibrium processes

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed

  12. Nonequilibrium molecular dynamics theory, algorithms and applications

    Todd, Billy D

    2017-01-01

    Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and...

  13. Mesoscopic models of biological membranes

    Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.

    2006-01-01

    Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...

  14. Statewide mesoscopic simulation for Wyoming.

    2013-10-01

    This study developed a mesoscopic simulator which is capable of representing both city-level and statewide roadway : networks. The key feature of such models are the integration of (i) a traffic flow model which is efficient enough to : scale to larg...

  15. Spin tunnelling in mesoscopic systems

    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the ...

  16. Non-equilibrium thermodynamics and energy distribution function of neutron gas in constant power reactor under coupling of neutrons and medium

    Hayasaka, Hideo

    1983-01-01

    The thermodynamics and the energy distribution function of the neutron gas in a constant power reactor are considered, taking into account the burn-up of fuel. To separate the secular motion of neutrons owing to fuel burn-up and the microscopic fluctuations of neutrons around this motion, a long time of the order of several months is divided into m equal intervals, and the respective states corresponding to m small time intervals are treated as quasi-stationary states. The local energy distribution function of the neutron gas in the quasi-stationary state is given by a generalized Boltzmann distribution specified by the respective generalized activity coefficient for each subsystem. The effects of fuel burn-up on the respective distribution functions for successive small time intervals are taken into account through various quantities relating to reactor physics, depending upon the fuel burn-up, by successive approximation. (author)

  17. Thermodynamics Far from Equilibrium: from Glasses to Black Holes

    Nieuwenhuizen, Th. M.

    2001-01-01

    A framework for the non-equilibrium thermodynamics of glasses is discussed. It also explains the non-equilibrium thermodynamics of a black hole isolated from matter. The first and second laws of black dynamics and black hole thermodynamics are shown to coincide, while the third laws deal with different issues.

  18. Thermodynamics of complexity

    Westerhoff, Hans V.; Jensen, Peter Ruhdal; Snoep, Jacky L.

    1998-01-01

    -called emergent properties. Tendency towards increased entropy is an essential determinant for the behaviour of ideal gas mixtures, showing that even in the simplest physical/chemical systems, (dys)organisation of components is crucial for the behaviour of systems. This presentation aims at illustrating...... that the behaviour of two functionally interacting biological components (molecules, protein domains, pathways, organelles) differs from the behaviour these components would exhibit in isolation from one another, where the difference should be essential for the maintenance and growth of the living state, For a true...... understanding of this BioComplexity, modem thermodynamic concepts and methods (nonequilibrium thermodynamics, metabolic and hierarchical control analysis) will be needed. We shall propose to redefine nonequilibrium thermodynamics as: The science that aims at understanding the behaviour of nonequilibrium systems...

  19. Rheology via nonequilibrium molecular dynamics

    Hoover, W.G.

    1982-10-01

    The equilibrium molecular dynamics formulated by Newton, Lagrange, and Hamilton has been modified in order to simulate rheologial molecular flows with fast computers. This modified Nonequilibrium Molecular Dynamics (NEMD) has been applied to fluid and solid deformations, under both homogeneous and shock conditions, as well as to the transport of heat. The irreversible heating associated with dissipation could be controlled by carrying out isothermal NEMD calculations. The new isothermal NEMD equations of motion are consistent with Gauss' 1829 Least-Constraint principle as well as certain microscopic equilibrium and nonequilibrium statistical formulations due to Gibbs and Boltzmann. Application of isothermal NEMD revealed high-frequency and high-strain-rate behavior for simple fluids which resembled the behavior of polymer solutions and melts at lower frequencies and strain rates. For solids NEMD produces plastic flows consistent with experimental observations at much lower strain rates. The new nonequilibrium methods also suggest novel formulations of thermodynamics in nonequilibrium systems and shed light on the failure of the Principle of Material Frame Indifference

  20. Mesoscopic model for binary fluids

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  1. Mesoscopic spin Hall effect in semiconductor nanostructures

    Zarbo, Liviu

    The spin Hall effect (SHE) is a name given to a collection of diverse phenomena which share two principal features: (i) longitudinal electric current flowing through a paramagnetic semiconductor or metallic sample leads to transverse spin current and spin accumulation of opposite sign at opposing lateral edges; (ii) SHE does not require externally applied magnetic field or magnetic ordering in the equilibrium state of the sample, instead it relies on the presence of spin-orbit (SO) couplings within the sample. This thesis elaborates on a new type of phenomenon within the SHE family, predicted in our recent studies [Phys. Rev. B 72, 075361 (2005); Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 72, 075335 (2005); Phys. Rev. B 73 , 075303 (2006); and Europhys. Lett. 77, 47004 (2007)], where pure spin current flows through the transverse electrodes attached to a clean finitesize two-dimensional electron gas (2DEG) due to unpolarized charge current injected through its longitudinal leads. If transverse leads are removed, the effect manifests as nonequilibrium spin Hall accumulation at the lateral edges of 2DEG wires. The SO coupling driving this SHE effect is of the Rashba type, which arises due to structural inversion asymmetry of semiconductor heterostructure hosting the 2DEG. We term the effect "mesoscopic" because the spin Hall currents and accumulations reach optimal value in samples of the size of the spin precession length---the distance over which the spin of an electron precesses by an angle pi. In strongly SO-coupled structures this scale is of the order of ˜100 nm, and, therefore, mesoscopic in the sense of being much larger than the characteristic microscopic scales (such as the Fermi wavelength, screening length, or the mean free path in disordered systems), but still much smaller than the macroscopic ones. Although the first theoretical proposal for SHE, driven by asymmetry in SO-dependent scattering of spin-up and spin-down electrons off impurities

  2. Generators of nonequilibrium low-temperature plasma

    Dautov, G.Yu.

    1988-01-01

    Results are described of a study and of the characteristics of sources of a non-equilibrium gas-discharge plasma. The plasma generators considered include glow, high frequency, and arc discharge generators. Thermodynamic, ionic, and electronic processes occurring in the plasmas are evaluated

  3. Nonequilibrium quantum fluctuations of work.

    Allahverdyan, A E

    2014-09-01

    The concept of work is basic for statistical thermodynamics. To gain a fuller understanding of work and its (quantum) features, it needs to be represented as an average of a fluctuating quantity. Here I focus on the work done between two moments of time for a thermally isolated quantum system driven by a time-dependent Hamiltonian. I formulate two natural conditions needed for the fluctuating work to be physically meaningful for a system that starts its evolution from a nonequilibrium state. The existing definitions do not satisfy these conditions due to issues that are traced back to noncommutativity. I propose a definition of fluctuating work that is free of previous drawbacks and that applies for a wide class of nonequilibrium initial states. It allows the deduction of a generalized work-fluctuation theorem that applies for an arbitrary (out-of-equilibrium) initial state.

  4. Mesoscopic fluctuations and intermittency in aging dynamics

    Sibani, P.

    2006-01-01

    Mesoscopic aging systems are characterized by large intermittent noise fluctuations. In a record dynamics scenario (Sibani P. and Dall J., Europhys. Lett., 64 (2003) 8) these events, quakes, are treated as a Poisson process with average αln (1 + t/tw), where t is the observation time, tw is the age and α is a parameter. Assuming for simplicity that quakes constitute the only source of de-correlation, we present a model for the probability density function (PDF) of the configuration autocorrelation function. Beside α, the model has the average quake size 1/q as a parameter. The model autocorrelation PDF has a Gumbel-like shape, which approaches a Gaussian for large t/tw and becomes sharply peaked in the thermodynamic limit. Its average and variance, which are given analytically, depend on t/tw as a power law and a power law with a logarithmic correction, respectively. Most predictions are in good agreement with data from the literature and with the simulations of the Edwards-Anderson spin-glass carried out as a test.

  5. Statistical Thermodynamics and Microscale Thermophysics

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  6. Nonequilibrium Statistical Operator Method and Generalized Kinetic Equations

    Kuzemsky, A. L.

    2018-01-01

    We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.

  7. Principle of Entropy Maximization for Nonequilibrium Steady States

    Shapiro, Alexander; Stenby, Erling Halfdan

    2002-01-01

    The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...

  8. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.

    Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui

    2017-09-26

    Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.

  9. Spin tunnelling in mesoscopic systems

    Garg, Anupam

    2001-02-01

    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.

  10. Mass transport thermodynamics in nonisothermal molecular liquid mixtures

    Semenov, Semen N [Institute for Biochemical Physics, Russian Academy of Sciences, Moscow (Russian Federation); Schimpf, M E [Department of Chemistry and Biochemistry, Boise State University, Boise, ID (United States)

    2009-10-31

    Mass transport in a nonisothermal binary molecular mixture is systematically discussed in terms of nonequilibrium thermodynamics, which for the first time allows a consistent and unambiguous description of the process. The thermodynamic and hydrodynamic approaches are compared, revealing that nonequilibrium thermodynamics and physicochemical hydrodynamics yield essentially the same results for molecular systems. The applicability limits for the proposed version of the thermodynamic approach are determined for large particles. (methodological notes)

  11. Dissipative electromagnetism from a nonequilibrium thermodynamics perspective

    Jelic, A.; Hütter, M.; Öttinger, H.C.

    2006-01-01

    Dissipative effects in electromagnetism on macroscopic scales are examined by coarse-graining the microscopic Maxwell equations with respect to time. We illustrate a procedure to derive the dissipative effects on the macroscopic scale by using a Green-Kubo type expression in terms of the microscopic

  12. Coulomb drag in the mesoscopic regime

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  13. Coulomb drag in the mesoscopic regime

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...

  14. Nonequilibrium statistical physics a modern perspective

    Livi, Roberto

    2017-01-01

    Statistical mechanics has been proven to be successful at describing physical systems at thermodynamic equilibrium. Since most natural phenomena occur in nonequilibrium conditions, the present challenge is to find suitable physical approaches for such conditions: this book provides a pedagogical pathway that explores various perspectives. The use of clear language, and explanatory figures and diagrams to describe models, simulations and experimental findings makes the book a valuable resource for undergraduate and graduate students, and also for lecturers organizing teaching at varying levels of experience in the field. Written in three parts, it covers basic and traditional concepts of nonequilibrium physics, modern aspects concerning nonequilibrium phase transitions, and application-orientated topics from a modern perspective. A broad range of topics is covered, including Langevin equations, Levy processes, directed percolation, kinetic roughening and pattern formation.

  15. Extended Irreversible Thermodynamics

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  16. Nonlinear dynamics in a laser field: spontaneous oscillation of mesoscopic soft matter

    Nomura, S; Yoshikawa, K

    2003-01-01

    Experimental studies on the utilization of a laser to create a thermodynamically open system in a mesoscopic scale have been performed, where the laser has the roles to generate attractive and scattering forces on an optically trapped object. We have succeeded in the observation of various novel oscillatory phenomena under laser illumination. In this paper, we present the results of new experiments on the cyclic oscillation of a single giant molecule and periodic bursting in a cluster of micrometer sized beads.

  17. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

    Öttinger, Hans Christian

    2018-04-01

    Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

  18. Mesoscopic effects in the quantum Hall regime

    . When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior for strong disorder. This behavior may be of relevance ...

  19. Quantum fluctuations in mesoscopic and macroscopic systems

    Cerdeira, H.A.; Guinea Lopez, F.; Weiss, U.

    1991-01-01

    The conference presentations have been grouped in three chapters; Quantum Transport (4 papers), Dissipation in Discrete Systems (7 papers) and Mesoscopic Junction, Rings and Arrays (6 papers). A separate abstract was prepared for each paper. Refs and figs

  20. Photon side-bands in mesoscopics

    Jauho, Antti-Pekka

    1998-01-01

    This paper reviews several applications of photonic side bands, used by Buttiker and Landauer (Phys. Rev. Lett. 49, 1739 (1982)) in their theory of traversal time in tunneling, in transport and optics of mesoscopic systems. Topics include generalizations of the transmission theory of transport...... to time-dependent situations, optics and transport of mesoscopic systems in THz electromagnetic fields, and phase-measurements of photon-assisted tunneling through a quantum dot. (C) 1998 Academic Press Limited....

  1. Braun-Le Chatelier principle in dissipative thermodynamics

    Pavelka, Michal; Grmela, Miroslav

    2016-01-01

    Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of thermodynamic potential. Analogously, from convexity of dissipation potential it follows how steady non-equilibrium states shift when thermodynamic forces are varied, which is the extension of the principle to dissipative thermodynamics.

  2. Efficiency bounds for nonequilibrium heat engines

    Mehta, Pankaj; Polkovnikov, Anatoli

    2013-01-01

    We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodic engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples. -- Highlights: ► Derived efficiency bounds for heat engines working with a single reservoir. ► Analyzed both ergodic and non-ergodic engines. ► Showed that non-ergodic engines can be more efficient. ► Extended fundamental thermodynamic relation to arbitrary nonequilibrium processes

  3. Nonequilibrium work relation in a macroscopic system

    Sughiyama, Yuki; Ohzeki, Masayuki

    2013-01-01

    We reconsider a well-known relationship between the fluctuation theorem and the second law of thermodynamics by evaluating stochastic evolution of the density field (probability measure valued process). In order to establish a bridge between microscopic and macroscopic behaviors, we must take the thermodynamic limit of a stochastic dynamical system following the standard procedure in statistical mechanics. The thermodynamic path characterizing a dynamical behavior in the macroscopic scale can be formulated as an infimum of the action functional for the stochastic evolution of the density field. In our formulation, the second law of thermodynamics can be derived only by symmetry of the action functional without recourse to the Jarzynski equality. Our formulation leads to a nontrivial nonequilibrium work relation for metastable (quasi-stationary) states, which are peculiar in the macroscopic system. We propose a prescription for computing the free energy for metastable states based on the resultant work relation. (paper)

  4. On nonequilibrium many-body systems. 1: The nonequilibrium statistical operator method

    Algarte, A.C.S.; Vasconcellos, A.R.; Luzzi, R.; Sampaio, A.J.C.

    1985-01-01

    The theoretical aspects involved in the treatment of many-body systems strongly departed from equilibrium are discussed. The nonequilibrium statistical operator (NSO) method is considered in detail. Using Jaynes' maximum entropy formalism complemented with an ad hoc hypothesis a nonequilibrium statistical operator is obtained. This approach introduces irreversibility from the outset and we recover statistical operators like those of Green-Mori and Zubarev as particular cases. The connection with Generalized Thermodynamics and the construction of nonlinear transport equations are briefly described. (Author) [pt

  5. Thermodynamics of statistical inference by cells.

    Lang, Alex H; Fisher, Charles K; Mora, Thierry; Mehta, Pankaj

    2014-10-03

    The deep connection between thermodynamics, computation, and information is now well established both theoretically and experimentally. Here, we extend these ideas to show that thermodynamics also places fundamental constraints on statistical estimation and learning. To do so, we investigate the constraints placed by (nonequilibrium) thermodynamics on the ability of biochemical signaling networks to estimate the concentration of an external signal. We show that accuracy is limited by energy consumption, suggesting that there are fundamental thermodynamic constraints on statistical inference.

  6. 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors

    Saraniti, M; Nonequilibrium Carrier Dynamics in Semiconductors

    2006-01-01

    International experts gather every two years at this established conference to discuss recent developments in theory and experiment in non-equilibrium transport phenomena. These developments have been the driving force behind the spectacular advances in semiconductor physics and devices over the last few decades. Originally known as "Hot Carriers in Semiconductors," the 14th conference in the series covered a wide spectrum of traditional topics dealing with non-equilibrium phenomena, ranging from quantum transport to optical phenomena in mesoscopic and nano-scale structures. Particular attention was given this time to emerging areas of this rapidly evolving field, with many sessions covering terahertz devices, high field transport in nitride semiconductors, spintronics, molecular electronics, and bioelectronics applications.

  7. Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs

    Ghorui, S; Das, A K

    2012-01-01

    Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.

  8. Time-dependent photon heat transport through a mesoscopic Josephson device

    Lu, Wen-Ting; Zhao, Hong-Kang, E-mail: zhaohonk@bit.edu.cn

    2017-02-15

    The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.

  9. Time-dependent photon heat transport through a mesoscopic Josephson device

    Lu, Wen-Ting; Zhao, Hong-Kang

    2017-01-01

    The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.

  10. Nonequilibrium fluctuations in a resistor.

    Garnier, N; Ciliberto, S

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I, and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P = R I2 in the system by just studying the PDFs' symmetries.

  11. Vortex properties of mesoscopic superconducting samples

    Cabral, Leonardo R.E. [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Barba-Ortega, J. [Grupo de Fi' sica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Souza Silva, C.C. de [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Albino Aguiar, J., E-mail: albino@df.ufpe.b [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil)

    2010-10-01

    In this work we investigated theoretically the vortex properties of mesoscopic samples of different geometries, submitted to an external magnetic field. We use both London and Ginzburg-Landau theories and also solve the non-linear Time Dependent Ginzburg-Landau equations to obtain vortex configurations, equilibrium states and the spatial distribution of the superconducting electron density in a mesoscopic superconducting triangle and long prisms with square cross-section. For a mesoscopic triangle with the magnetic field applied perpendicularly to sample plane the vortex configurations were obtained by using Langevin dynamics simulations. In most of the configurations the vortices sit close to the corners, presenting twofold or three-fold symmetry. A study of different meta-stable configurations with same number of vortices is also presented. Next, by taking into account de Gennes boundary conditions via the extrapolation length, b, we study the properties of a mesoscopic superconducting square surrounded by different metallic materials and in the presence of an external magnetic field applied perpendicularly to the square surface. It is determined the b-limit for the occurrence of a single vortex in a mesoscopic square of area d{sup 2}, for 4{xi}(0){<=}d{<=}10{xi}(0).

  12. On nonequilibrium many-body systems 2: ultra fast relaxation phenomena in semiconductors

    Algarte, A.C.S.; Vasconcellos, A.R.; Luzzi, R.

    1986-01-01

    The application of the nonequilibrium statistical operator (NSO) method to the study of the irreversible thermodynamics and optical responses of semiconductors probed by ultrafast laser spectroscopy is described. (Author) [pt

  13. Nonequilibrium Phenomena in Plasmas

    Sharma, A Surjalal

    2005-01-01

    The complexity of plasmas arises mainly from their inherent nonlinearity and far from equilibrium nature. The nonequilibrium behavior of plasmas is evident in the natural settings, for example, in the Earth's magnetosphere. Similarly, laboratory plasmas such as fusion bottles also have their fair share of complex behavior. Nonequilibrium phenomena are intimately connected with statistical dynamics and form one of the growing research areas in modern nonlinear physics. These studies encompass the ideas of self-organization, phase transition, critical phenomena, self-organized criticality and turbulence. This book presents studies of complexity in the context of nonequilibrium phenomena using theory, modeling, simulations, and experiments, both in the laboratory and in nature.

  14. Towards a thermodynamics of active matter.

    Takatori, S C; Brady, J F

    2015-03-01

    Self-propulsion allows living systems to display self-organization and unusual phase behavior. Unlike passive systems in thermal equilibrium, active matter systems are not constrained by conventional thermodynamic laws. A question arises, however, as to what extent, if any, can concepts from classical thermodynamics be applied to nonequilibrium systems like active matter. Here we use the new swim pressure perspective to develop a simple theory for predicting phase separation in active matter. Using purely mechanical arguments we generate a phase diagram with a spinodal and critical point, and define a nonequilibrium chemical potential to interpret the "binodal." We provide a generalization of thermodynamic concepts like the free energy and temperature for nonequilibrium active systems. Our theory agrees with existing simulation data both qualitatively and quantitatively and may provide a framework for understanding and predicting the behavior of nonequilibrium active systems.

  15. Quantum switching of polarization in mesoscopic ferroelectrics

    Sa de Melo, C.A.

    1996-01-01

    A single domain of a uniaxial ferroelectric grain may be thought of as a classical permanent memory. At the mesoscopic level this system may experience considerable quantum fluctuations due to tunneling between two possible memory states, thus destroying the classical permanent memory effect. To study these quantum effects the concrete example of a mesoscopic uniaxial ferroelectric grain is discussed, where the orientation of the electric polarization determines two possible memory states. The possibility of quantum switching of the polarization in mesoscopic uniaxial ferroelectric grains is thus proposed. To determine the degree of memory loss, the tunneling rate between the two polarization states is calculated at zero temperature both in the absence and in the presence of an external static electric field. In addition, a discussion of crossover temperature between thermally activated behavior and quantum tunneling behavior is presented. And finally, environmental effects (phonons, defects, and surfaces) are also considered. copyright 1996 The American Physical Society

  16. PREFACE: Advanced many-body and statistical methods in mesoscopic systems

    Anghel, Dragos Victor; Sabin Delion, Doru; Sorin Paraoanu, Gheorghe

    2012-02-01

    It has increasingly been realized in recent times that the borders separating various subfields of physics are largely artificial. This is the case for nanoscale physics, physics of lower-dimensional systems and nuclear physics, where the advanced techniques of many-body theory developed in recent times could provide a unifying framework for these disciplines under the general name of mesoscopic physics. Other fields, such as quantum optics and quantum information, are increasingly using related methods. The 6-day conference 'Advanced many-body and statistical methods in mesoscopic systems' that took place in Constanta, Romania, between 27 June and 2 July 2011 was, we believe, a successful attempt at bridging an impressive list of topical research areas: foundations of quantum physics, equilibrium and non-equilibrium quantum statistics/fractional statistics, quantum transport, phases and phase transitions in mesoscopic systems/superfluidity and superconductivity, quantum electromechanical systems, quantum dissipation, dephasing, noise and decoherence, quantum information, spin systems and their dynamics, fundamental symmetries in mesoscopic systems, phase transitions, exactly solvable methods for mesoscopic systems, various extension of the random phase approximation, open quantum systems, clustering, decay and fission modes and systematic versus random behaviour of nuclear spectra. This event brought together participants from seventeen countries and five continents. Each of the participants brought considerable expertise in his/her field of research and, at the same time, was exposed to the newest results and methods coming from the other, seemingly remote, disciplines. The talks touched on subjects that are at the forefront of topical research areas and we hope that the resulting cross-fertilization of ideas will lead to new, interesting results from which everybody will benefit. We are grateful for the financial and organizational support from IFIN-HH, Ovidius

  17. Nonequilibrium quantum field theories

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  18. Limits of predictions in thermodynamic systems: a review

    Marsland, Robert, III; England, Jeremy

    2018-01-01

    The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.

  19. SRB states and nonequilibrium statistical mechanics close to equilibrium

    Gallavotti, Giovannni; Ruelle, David

    1996-01-01

    Nonequilibrium statistical mechanics close to equilibrium is studied using SRB states and a formula for their derivatives with respect to parameters. We write general expressions for the thermodynamic fluxes (or currents) and the transport coefficients, generalizing previous results. In this framework we give a general proof of the Onsager reciprocity relations.

  20. Mesoscopic simulations of crosslinked polymer networks

    Megariotis, G.; Vogiatzis, G.G.; Schneider, L.; Müller, M.; Theodorou, D.N.

    2016-01-01

    A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1'4-polyisoprene' is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn

  1. Deterministic thermostats, theories of nonequilibrium systems and parallels with the ergodic condition

    Jepps, Owen G; Rondoni, Lamberto

    2010-01-01

    Deterministic 'thermostats' are mathematical tools used to model nonequilibrium steady states of fluids. The resulting dynamical systems correctly represent the transport properties of these fluids and are easily simulated on modern computers. More recently, the connection between such thermostats and entropy production has been exploited in the development of nonequilibrium fluid theories. The purpose and limitations of deterministic thermostats are discussed in the context of irreversible thermodynamics and the development of theories of nonequilibrium phenomena. We draw parallels between the development of such nonequilibrium theories and the development of notions of ergodicity in equilibrium theories. (topical review)

  2. Improved thermodynamic treatment of vacancy-mediated diffusion and creep

    Fischer, F. D.; Hackl, K.; Svoboda, Jiří

    2016-01-01

    Roč. 108, APR (2016), s. 347-354 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Thermodynamics * Non-equilibrium * Diffusion * Vacancies * Thermodynamic extremal principle Subject RIV: BJ - Thermodynamics Impact factor: 5.301, year: 2016

  3. Thermodynamics and economics

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  4. Thermodynamic metrics and optimal paths.

    Sivak, David A; Crooks, Gavin E

    2012-05-11

    A fundamental problem in modern thermodynamics is how a molecular-scale machine performs useful work, while operating away from thermal equilibrium without excessive dissipation. To this end, we derive a friction tensor that induces a Riemannian manifold on the space of thermodynamic states. Within the linear-response regime, this metric structure controls the dissipation of finite-time transformations, and bestows optimal protocols with many useful properties. We discuss the connection to the existing thermodynamic length formalism, and demonstrate the utility of this metric by solving for optimal control parameter protocols in a simple nonequilibrium model.

  5. Nonequilibrium statistical physics

    Röpke, Gerd

    2013-01-01

    Authored by one of the top theoretical physicists in Germany, and a well-known authority in the field, this is the only coherent presentation of the subject suitable for masters and PhD students, as well as postdocs in physics and related disciplines.Starting from a general discussion of the nonequilibrium state, different standard approaches such as master equations, and kinetic and linear response theory, are derived after special assumptions. This allows for an insight into the problems of nonequilibrium physics, a discussion of the limits, and suggestions for improvements. Applications

  6. CHAIRMEN'S FOREWORD: The Seventh International Conference on New Phenomena in Mesoscopic Structures & The Fifth International Conference on Surfaces and Interfaces of Mesoscopic Devices

    Aoyagi, Yoshinobu; Goodnick, Stephen M.

    2006-05-01

    This special issue of the Journal of Physics: Conference Series contains the proceedings of the joint Seventh International Conference on New Phenomena in Mesoscopic Structures and Fifth International Conference on Surfaces and Interfaces of Mesoscopic Devices, which was held from November 27th - December 2nd, 2005, at the Ritz Carlton Kapalua, Maui, Hawaii. The string of these conferences dates back to the first one in 1989. Of special importance is that this year's conference was dedicated to Professor Gottfried Landwehr, in recognition of his many outstanding contributions to semiconductor physics. A personal tribute to Prof Landwehr by Dr K von Klitzing leads off this issue. The scope of NPMS-7/SIMD-5 spans nano-fabrication through complex phase coherent mesoscopic systems including nano-transistors and nano-scale characterization. Topics of interest include: •Nanoscale fabrication: high-resolution electron lithography, FIB nano-patterning, scanning- force-microscopy (SFM) lithography, SFM-stimulated growth, novel patterning, nano-imprint lithography, special etching, and self-assembled monolayers •Nanocharacterization: SFM characterization, ballistic-electron emission microscopy (BEEM), optical studies of nanostructures, tunneling, properties of discrete impurities, phase coherence, noise, THz studies, and electro-luminescence in small structures •Nanodevices: ultra-scaled FETs, quantum single-electron transistors (SETS), resonant tunneling diodes, ferromagnetic and spin devices, superlattice arrays, IR detectors with quantum dots and wires, quantum point contacts, non-equilibrium transport, simulation, ballistic transport, molecular electronic devices, carbon nanotubes, spin selection devices, spin-coupled quantum dots, and nanomagnetics •Quantum-coherent transport: the quantum Hall effect, ballistic quantum systems, quantum-computing implementations and theory, and magnetic spin systems •Mesoscopic structures: quantum wires and dots, quantum chaos

  7. Coulomb drag in coherent mesoscopic systems

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means......, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  8. Mesoscopic quantum emitters coupled to plasmonic nanostructures

    Andersen, Mads Lykke

    for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect......This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... to allow for e- cient plasmon-based single-photon sources. Theoretical studies of coupling and propagation properties of plasmonic waveguides reveal that a high-refractive index of the medium surrounding the emitter, e.g. nGaAs = 3.5, limits the realizability of ecient plasmon-based single-photon sources...

  9. Nonequilibrium statistical physics of small systems: fluctuation relations and beyond (annual reviews of nonlinear dynamics and complexity (vch))

    2013-01-01

    This book offers a comprehensive picture of nonequilibrium phenomena in nanoscale systems. Written by internationally recognized experts in the field, this book strikes a balance between theory and experiment, and includes in-depth introductions to nonequilibrium fluctuation relations, nonlinear dynamics and transport, single molecule experiments, and molecular diffusion in nanopores. The authors explore the application of these concepts to nano- and biosystems by cross-linking key methods and ideas from nonequilibrium statistical physics, thermodynamics, stochastic theory, and dynamical s

  10. Relativistic thermodynamics and kinetic theory, with applications to cosmology

    Stewart, J.M.

    1973-01-01

    The discussion of relativistic thermodynamics and kinetic theory with applications to cosmology also covers the fundamentals and nonequilibrium relativistic kinetic theory and applications to cosmology and astrophysics. (U.S.)

  11. X-ray diffraction from mesoscopic systems

    Press, W.; Bahr, D.; Tolan, M.; Burandt, B.; Mueller, M.; Mueller-Buschbaum, P.; Nitz, V.; Stettner, J.

    1994-01-01

    Two activities of our group concerning structures on mesoscopic length scales are presented: (1) CoSi 2 layers buried in Si-wafers have been studied with many scattering geometries; the emphasis is on diffuse scattering from rough interfaces and diffuse scattering from atomic scale defects. (2) The other example is an investigation of laterally structured surfaces in the region of total external reflection and around Bragg peaks. In both cases extensions of the presently available models are necessary. ((orig.))

  12. Entanglement in mesoscopic structures: Role of projection

    Beenakker, C.W.J.; Lebedev, A.V.; Blatter, G.; Lesovik, G.B.

    2004-01-01

    We present a theoretical analysis of the appearance of entanglement in non-interacting mesoscopic structures. Our setup involves two oppositely polarized sources injecting electrons of opposite spin into the two incoming leads. The mixing of these polarized streams in an ideal four-channel beam splitter produces two outgoing streams with particular tunable correlations. A Bell inequality test involving cross-correlated spin-currents in opposite leads signals the presence of spin-entanglement ...

  13. Limiting processes in non-equilibrium classical statistical mechanics

    Jancel, R.

    1983-01-01

    After a recall of the basic principles of the statistical mechanics, the results of ergodic theory, the transient at the thermodynamic limit and his link with the transport theory near the equilibrium are analyzed. The fundamental problems put by the description of non-equilibrium macroscopic systems are investigated and the kinetic methods are stated. The problems of the non-equilibrium statistical mechanics are analyzed: irreversibility and coarse-graining, macroscopic variables and kinetic description, autonomous reduced descriptions, limit processes, BBGKY hierarchy, limit theorems [fr

  14. Thermodynamics in f(G,T Gravity

    M. Sharif

    2018-01-01

    Full Text Available This paper explores the nonequilibrium behavior of thermodynamics at the apparent horizon of isotropic and homogeneous universe model in f(G,T gravity (G and T represent the Gauss-Bonnet invariant and trace of the energy-momentum tensor, resp.. We construct the corresponding field equations and analyze the first as well as generalized second law of thermodynamics in this scenario. It is found that an auxiliary term corresponding to entropy production appears due to the nonequilibrium picture of thermodynamics in first law. The universal condition for the validity of generalized second law of thermodynamics is also obtained. Finally, we check the validity of generalized second law of thermodynamics for the reconstructed f(G,T models (de Sitter and power-law solutions. We conclude that this law holds for suitable choices of free parameters.

  15. A Floquet-Green's function approach to mesoscopic transport under ac bias

    Wu, B H; Cao, J C

    2008-01-01

    The current response of a mesoscopic system under a periodic ac bias is investigated by combining the Floquet theorem and the nonequilibrium Green's function method. The band structure of the lead under ac bias is fully taken into account by using appropriate self-energies in an enlarged Floquet space. Both the retarded and lesser Green's functions are obtained in the Floquet basis to account for the interference and interaction effects. In addition to the external ac bias, the time-varying Coulomb interaction, which is treated at the self-consistent Hartree-Fock level, provides another internal ac field. The numerical results show that the time-varying Coulomb field yields decoherence and reduces the ringing behavior of the current response to a harmonic bias

  16. Theory and modeling of spin-transport on the microscopic and the mesoscopic scale

    Stickler, B.

    2013-01-01

    It is the aim of this thesis to contribute to the description of spin dynamics in solid state systems. In the first part of this work we present a full quantum treatment of spin-coherent transport in halfmetal / semiconductor CrAs / GaAs heterostructures. The theoretical approach is based on the ab-initio determination of the electronic structures of the materials involved and on the calculation of the band offset. These ingredients are in the second step cast into an effective nearest-neighbor tight-binding Hamiltonian. Finally, in the third step, we investigate by means of the non-equilibrium Green's function technique the current which flows through such a heterostructure if a finite bias is applied. With the help of this strategy it is possible to identify CrAs / GaAs heterostructures as probable candidates for all-semiconductor room-temperature spin-filtering devices, which operate without externally applied magnetic fields. In the second part of this thesis we derive a linear semiclassical spinorial Boltzmann equation. For many (mesoscopic) device geometries a full quantum treatment of transport dynamics may not be necessary and may not be feasible with state-of-the-art techniques. The derivation is based on the quantum mechanical description of a composite quantum system by means of von Neumann's equation. The Born-Markov limit allows us to derive a Lindblad master equation for the reduced system plus non-Markovian corrections. Finally, we perform a Wigner transformation and take the semiclassical limit in order to obtain a spinorial Boltzmann equation, suitable for the description of spin transport on the mesoscopic scale. It has to be emphasized that the spinorial Boltzmann equation constitutes the missing link between a full quantum treatment and heuristically introduced mesoscopic models for spin transport in solid state systems. (author) [de

  17. Fabrication methods for mesoscopic flying vehicle

    Cheng, Yih-Lin

    2001-10-01

    Small-scale flying vehicles are attractive tools for atmospheric science research. A centimeter-size mesoscopic electric helicopter, the mesicopter, has been developed at Stanford University for these applications. The mesoscopic scale implies a design with critical features between tens of microns and several millimeters. Three major parts in the mesicopter are challenging to manufacture. Rotors require smooth 3D surfaces and a blade thickness of less than 100 mum. Components in the DC micro-motor must be made of engineering materials, which is difficult on the mesoscopic scale. Airframe fabrication has to integrate complex 3D geometry into one single structure at this scale. In this research, material selection and manufacturing approaches have been investigated and implemented. In rotor fabrication, high-strength polymers manufactured by the Shape Deposition Manufacturing (SDM) technique were the top choice. Aluminum alloys were only considered as the second choice because the fabrication process is more involved. Lift tests showed that the 4-blade polymer and aluminum rotors could deliver about 90% of the expected lift (4g). To explain the rotor performance, structural analyses of spinning rotors were performed and the fabricated geometry was investigated. The bending deflections and the torsional twists were found to be too small to degrade aerodynamic performance. The rotor geometry was verified by laser scanning and by cross-section observations. Commercially available motors are used in the prototypes but a smaller DC micro-motor was designed for future use. Components of the DC micro-motors were fabricated by the Mesoscopic Additive/Subtractive Material Processing technique, which is capable of shaping engineering materials on the mesoscopic scale. The approaches are described in this thesis. The airframe was manufactured using the SDM process, which is capable of building complex parts without assembly. Castable polymers were chosen and mixed with glass

  18. Statistical thermodynamics

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  19. Adiabatic Hamiltonian deformation, linear response theory, and nonequilibrium molecular dynamics

    Hoover, W.G.

    1980-01-01

    Although Hamiltonians of various kinds have previously been used to derive Green-Kubo relations for the transport coefficients, the particular choice described is uniquely related to thermodynamics. This nonequilibrium Hamiltonian formulation of fluid flow provides pedagogically simple routes to nonequilibrium fluxes and distribution functions, to theoretical understanding of long-time effects, and to new numerical methods for simulating systems far from equilibrium. The same methods are now being applied to solid-phase problems. At the relatively high frequencies used in the viscous fluid calculations described, solids typically behave elastically. Lower frequencies lead to the formation of dislocations and other defects, making it possible to study plastic flow. A property of the nonequilibrium equations of motion which might be profitably explored is their effective irreversibility. Because only a few particles are necessary to generate irreversible behavior, simulations using adiabatic deformations of the kind described here could perhaps elucidate the instability in the equations of motion responsible for irreversibility

  20. INTRODUCTION: Nonequilibrium Processes in Plasmas

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    have the presentation of monitoring of the deposition of airborne particles by the group from Belgrade led by Mirjana Tasić, and a study of such particles by elemental analysis by van Grieken and his colleagues from Belgium. We hope that the continuation of our workshops and the publication of our books will contribute to finding a common thread that connects different topics, even different fields, that share some aspects of the phenomena associated with non-equilibrium. As Anton Chekhov once stated 'Only entropy comes easy' so any work aimed at bringing order into the field is difficult. Organization of the workshop and publication of the book are of course not as hard as the pursuit of knowledge itself but we hope that it is, to some degree, a minor contribution to the everlasting human struggle against the entropy. And while we, of course, agree with scientists that are much better than we are that thermodynamics will never be overthrown, it is only human to try to cheat it. Doing the related science is allowing us to achieve exactly that and it is a source of numerous practical applications. The editors are grateful to all the members of the Gaseous Electronics Laboratory for organization of the workshop, in particular the members of the organizing committee and the staff of the Academy of Science and Institute of Physics. Finally and above all we acknowledge great efforts of all the participants who have invested a lot of funds, their time and effort to join us, sometimes travelling from distant continents. This book exists, however, mainly thanks to the efforts of all the authors who have invested their time and experience to write the papers. We also acknowledge the contribution by Professor Rastko Ćirić whose rendering of Maxwell's demon remains as symbol of our meeting and our publications. Perhaps the most chaotic aspect of human society, as our current experience teaches us, is the flow of funds and several agencies helped us get the needed funds to

  1. Quantum Spin Transport in Mesoscopic Interferometer

    Zein W. A.

    2007-10-01

    Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.

  2. Quantum gambling using mesoscopic ring qubits

    Pakula, Ireneusz

    2007-01-01

    Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg et al. is one of the simplest yet still hard to implementapplications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Mesoscopic NbSe3 wires

    Zant, H.S.J. van der; Kalwij, A.; Mantel, O.C.; Markovic, N.

    1999-01-01

    We have fabricated wire structures with (sub)micron sizes in the charge-density wave conductor NbSe 3 . Electrical transport measurements include complete mode-locking on Shapiro steps and show that the patterning has not affected the CDW material. Our mesoscopic wires show strong fluctuation and hysteresis effects in the low-temperature current-voltage characteristics, as well as a strong reduction of the phase-slip voltage. This reduction can not be explained with existing models. We suggest that single phase-slip events are responsible for a substantial reduction of the CDW strain in micron-sized systems. (orig.)

  4. Fluctuations and localization in mesoscopic electron

    Janssen, Martin

    2001-01-01

    The quantum phenomena of tunneling and interference show up not only in the microscopic world of atoms and molecules, but also in cold materials of the real world, such as metals and semiconductors. Though not fully macroscopic, such mesoscopic systems contain a huge number of particles, and the holistic nature of quantum mechanics becomes evident already in simple electronic measurements. The measured quantity fluctuates as a function of applied fields in an unpredictable, yet reproducible way. Despite this fingerprint character of fluctuations, their statistical properties are universal, i.e

  5. Quantum gambling using mesoscopic ring qubits

    Pakula, Ireneusz [University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-07-15

    Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg et al. is one of the simplest yet still hard to implementapplications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Quantum Effect in the Mesoscopic RLC Circuits with a Source

    Liu Jianxin; Yan Zhanyuan

    2005-01-01

    The research work on the quantum effects in mesoscopic circuits has undergone a rapid development recently, however the whole quantum theory of the mesoscopic circuits should consider the discreteness of the electric charge. In this paper, based on the fundamental fact that the electric charge takes discrete values, the finite-difference Schroedinger equation of the mesoscopic RLC circuit with a source is achieved. With a unitary transformation, the Schroedinger equation becomes the standard Mathieu equation, then the energy spectrum and the wave functions of the system are obtained. Using the WKBJ method, the average of currents and square of the current are calculated. The results show the existence of the current fluctuation, which causes noise in the circuits. This paper is an application of the whole quantum mesoscopic circuits theory to the fundamental circuits, and the results will shed light on the design of the miniation circuits, especially on the purpose of reducing quantum noise coherent controlling of the mesoscopic quantum states.

  7. A study in cosmology and causal thermodynamics

    Oliveira, H.P. de.

    1986-01-01

    The especial relativity of thermodynamic theories for reversible and irreversible processes in continuous medium is studied. The formalism referring to equilibrium and non-equilibrium configurations, and theories which includes the presence of gravitational fields are discussed. The nebular model in contraction with dissipative processes identified by heat flux and volumetric viscosity is thermodymically analysed. This model is presented by a plane conformal metric. The temperature, pressure, entropy and entropy production within thermodynamic formalism which adopts the hypothesis of local equilibrium, is calculated. The same analysis is carried out considering a causal thermodynamics, which establishes a local entropy of non-equilibrium. Possible homogeneous and isotropic cosmological models, considering the new phenomenological equation for volumetric viscosity deriving from cause thermodynamics are investigated. The found out models have plane spatial section (K=0) and some ones do not have singularities. The energy conditions are verified and the entropy production for physically reasobable models are calculated. (M.C.K.) [pt

  8. Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation

    Grossman, B.; Cinnella, P.

    1990-01-01

    The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.

  9. Importance of thermal nonequilibrium considerations for the simulation of nuclear reactor LOCA transients

    Fischer, S.R.; Nelson, R.A.; Sullivan, L.H.

    1980-01-01

    The purpose of this paper is to show the importance of considering thermal nonequilibrium effects in computer simulations of the refill and reflood portions of pressurized water reactor (PWR) loss-of-coolnat accident (LOCA) transients. Although RELAP4 assumes thermodynamic equilibrium between phases, models that account for the nonequilibrium phenomena associated with the mixing of subcooled emergency cooling water with steam and the superheating of vapor in the presence of liquid droplets have recently been incorporated into the code. Code calculated results, both with and without these new models, have been compared with experimental test data to assess the importance of including thermal nonequilibrium phenomena in computer code simulations

  10. Effect of nonequilibrium degree on separation factor in carbon isotope separation by CO2 microwave discharge

    Masaaki Suzuki; Shinsuke Mori; Noritaka Matsumoto; Hiroshi Akatsuka

    1999-01-01

    The local separation factor and the local nonequilibrium degree just behind the plasma region were obtained. The plasma gas compositions measured by the enthalpy probe system were substantially thermodynamic nonequilibrium conditions, when the input energy was 4 J/cm 3 . The measured maximum value of the separation factor was 1.01, although it changed locally. The measured separation factor and its nonequilibrium condition were discussed. Anyway, the only small value obtained in this experiments is similar to the recent data obtained by Kurchatov group and is less than published data, which is measured spectroscopically [ru

  11. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model

    Akira Takada

    2018-03-01

    Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.

  12. Nonequilibrium effects in Isoscaling

    Dorso, C. O.; Lopez, J. A.

    2007-01-01

    In this work we study within a simple model different properties of the system that allow us to understand the properties of the isoscaling observable. We first show that isoscaling is a general property of fragmenting systems. We show this by using a simple generalized percolation model. We show that the usual isoscaling property can be obtained in the case of bond percolation in bichromatic lattices with any regular topology. In this case the probabilities of each color (isospin) are independent. We then explore the effect of introducing 'non-equilibrium' effects

  13. Instabilities and nonequilibrium structures

    Tirapegui, E.; Villarroel, D.

    1987-01-01

    Physical systems can be studied both near to and far from equilibrium where instabilities appear. The behaviour in these two regions is reviewed in this book, from both the theoretical and application points of view. The influence of noise in these situations is an essential feature which cannot be ignored. It is therefore discussed using phenomenological and theoretical approaches for the numerous problems which still remain in the field. This volume should appeal to mathematicians and physicists interested in the areas of instability, bifurcation theory, dynamical systems, pattern formation, nonequilibrium structures and statistical mechanics. (Auth.)

  14. Nonequilibrium pressurizer model; Model za neravnotezne uslove u sudu za odrzavanje pritiska

    Stevanovic, V; Studovic, M [masinski fakultet, Beograd (Yugoslavia)

    1984-07-01

    The paper represents a nonequilibrium pressurizer model developed at the Faculty of Mechanical engineering as a sub model of complete NSSS model for predicting behaviour of corresponding components under transient conditions. Apart from other approaches, developed model was started with assumption that governing processes in pressurizer behaviour are interfaces heat and mass transfer processes. Such procedure has difficulties with information about values of interfaces and thermodynamic potential for mass and energy transfer across interfaces, during thermodynamic nonequilibrium state of vapour and liquid. To overcome these difficulties it was introduced the mass and energy parameters which successfully solve this problem. The model was verified with several analytical and experimental results. (author)

  15. Basic Thermodynamics

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  16. Basic Thermodynamics

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  17. Nonequilibrium dynamical mean-field theory

    Eckstein, Martin

    2009-12-21

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  18. Nonequilibrium dynamical mean-field theory

    Eckstein, Martin

    2009-01-01

    The aim of this thesis is the investigation of strongly interacting quantum many-particle systems in nonequilibrium by means of the dynamical mean-field theory (DMFT). An efficient numerical implementation of the nonequilibrium DMFT equations within the Keldysh formalism is provided, as well a discussion of several approaches to solve effective single-site problem to which lattice models such as the Hubbard-model are mapped within DMFT. DMFT is then used to study the relaxation of the thermodynamic state after a sudden increase of the interaction parameter in two different models: the Hubbard model and the Falicov-Kimball model. In the latter case an exact solution can be given, which shows that the state does not even thermalize after infinite waiting times. For a slow change of the interaction, a transition to adiabatic behavior is found. The Hubbard model, on the other hand, shows a very sensitive dependence of the relaxation on the interaction, which may be called a dynamical phase transition. Rapid thermalization only occurs at the interaction parameter which corresponds to this transition. (orig.)

  19. Non-equilibrium quantum heat machines

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  20. Non-equilibrium quantum heat machines

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-01-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound. (paper)

  1. Mesoscopic and continuum modelling of angiogenesis

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  2. Mesoscopic and continuum modelling of angiogenesis

    Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

    2014-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  3. Transport properties of mesoscopic graphene rings

    Xu, N.; Ding, J.W.; Wang, B.L.; Shi, D.N.; Sun, H.Q.

    2012-01-01

    Based on a recursive Green's function method, we investigate the conductance of mesoscopic graphene rings in the presence of disorder, in the limit of phase coherent transport. Two models of disorder are considered: edge disorder and surface disorder. Our simulations show that the conductance decreases exponentially with the edge disorder and the surface disorder. In the presence of flux, a clear Aharonov-Bohm conductance oscillation with the period Φ 0 (Φ 0 =h/e) is observed. The edge disorder and the surface disorder have no effect on the period of AB oscillation. The amplitudes of AB oscillations vary with gate voltage and flux, which is consistent with the previous results. Additionally, ballistic rectification and negative differential resistance are observed in I-V curves, with on/off characteristic.

  4. Vortex-antivortex patterns in mesoscopic superconductors

    Teniers, Gerd; Moshchalkov, V.V.; Chibotaru, L.F.; Ceulemans, Arnout

    2003-01-01

    We have studied the nucleation of superconductivity in mesoscopic structures of different shape (triangle, square and rectangle). This was made possible by using an analytical gauge transformation for the vector potential A which gives A n =0 for the normal component along the boundary line of the rectangle. As a consequence the superconductor-vacuum boundary condition reduces to the Neumann boundary condition. By solving the linearized Ginzburg-Landau equation with this boundary condition we have determined the field-temperature superconducting phase boundary and the corresponding vortex patterns. The comparison of these patterns for different structures demonstrates that the critical parameters of a superconductor can be manipulated and fine-tuned through nanostructuring

  5. Mesoscopic rings with spin-orbit interactions

    Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto, E-mail: berche@lpm.u-nancy.f [Statistical Physics Group, Institut Jean Lamour, UMR CNRS No 7198, Universite Henri Poincare, Nancy 1, B.P. 70239, F-54506 Vandoeuvre les Nancy (France)

    2010-09-15

    A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin currents are derived following an intuitive definition, and then a more thorough derivation is built upon the canonical Lagrangian formulation that emphasizes the SU(2) gauge structure of the transport problem of spin-1/2 fermions in spin-orbit active media. The quantization conditions that follow from the constraint of single-valued Pauli spinors are also discussed. The targeted students are those of a graduate condensed matter physics course.

  6. Statistical thermodynamics

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  7. Equilibrium and shot noise in mesoscopic systems

    Martin, T.

    1994-10-01

    Within the last decade, there has been a resurgence of interest in the study of noise in Mesoscopic devices, both experimentally and theoretically. Noise in solid state devices can have different origins: there is 1/f noise, which is believed to arise from fluctuations in the resistance of the sample due to the motion of impurities. On top of this contribution is a frequency independent component associated with the stochastic nature of electron transport, which will be the focus of this paper. If the sample considered is small enough that dephasing and inelastic effects can be neglected, equilibrium (thermal) and excess noise can be completely described in terms of the elastic scattering properties of the sample. As mentioned above, noise arises as a consequence of random processes governing the transport of electrons. Here, there are two sources of randomness: first, electrons incident on the sample occupy a given energy state with a probability given by the Fermi-Dirac distribution function. Secondly, electrons can be transmitted across the sample or reflected in the same reservoir where they came from with a probability given by the quantum mechanical transmission/reflection coefficients. Equilibrium noise refers to the case where no bias voltage is applied between the leads connected to the sample, where thermal agitation alone allows the electrons close to the Fermi level to tunnel through the sample. In general, equilibrium noise is related to the conductance of the sample via the Johnson-Nyquist formula. In the presence of a bias, in the classical regime, one expects to recover the full shot noise < {Delta}{sup 2}I >= 2I{Delta}{mu} as was observed a long time ago in vacuum diodes. In the Mesoscopic regime, however, excess noise is reduced below the shot noise level. The author introduces a more intuitive picture, where the current passing through the device is a superposition of pulses, or electron wave packets, which can be transmitted or reflected.

  8. Systematic parameter inference in stochastic mesoscopic modeling

    Lei, Huan; Yang, Xiu [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Zhen [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2017-02-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.

  9. Quantum thermodynamics of nanoscale steady states far from equilibrium

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  10. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    Cui, Ping

    celebrated Marcus' inversion and Kramers' turnover behaviors, the new theory also shows some distinct quantum solvation effects that can alter the ET mechanism. Moreover, the present theory predicts further for the ET reaction thermodynamics, such as equilibrium Gibbs free-energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. In Chapter 6, we discuss the constructed QDTs, in terms of their unified mathematical structure that supports a linear dynamics space, and thus facilitates their applications to various physical problems. The involving details are exemplified with the CODDE form of QDT. As the linear space is concerned, we identify the Schrodinger versus Heisenberg picture and the forward versus backward propagation of the reduced, dissipative Liouville dynamics. For applications we discuss the reduced linear response theory and the optimal control problems, in which the correlated effects of non-Markovian dissipation and field driving are shown to be important. In Chapter 7, we turn to quantum transport, i.e., electric current through molecular or mesoscopic systems under finite applied voltage. By viewing the nonequilibrium transport setup as a quantum open system, we develop a reduced-density-matrix approach to quantum transport. The resulting current is explicitly expressed in terms of the molecular reduced density matrix by tracing out the degrees of freedom of the electrodes at finite bias and temperature. We propose a conditional quantum master equation theory, which is an extension of the conventional (or unconditional) QDT by tracing out the well-defined bath subsets individually, instead of the entire bath degrees of freedom. Both the current and the noise spectrum can be conveniently analyzed in terms of the conditional reduced density matrix dynamics. By far, the QDT (including the conditional one) has only been exploited in second-order form. A self-consistent Born approximation for the system

  11. Non-equilibrium Economics

    Katalin Martinás

    2007-02-01

    Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.

  12. Dynamic magnetoconductance fluctuations and oscillations in mesoscopic wires and rings

    Liu, D. Z.; Hu, Ben Yu-Kuang; Stafford, C. A.

    1994-01-01

    Using a finite-frequency recursive Green's-function technique, we calculate the dynamic magnetoconductance fluctuations and oscillations in disordered mesoscopic normal-metal systems, incorporating interparticle Coulomb interactions within a self-consistent potential method. In a disorderd metal ...

  13. The Thermodynamic Machinery of Life

    Kurzynski, Michal

    2006-01-01

    Living organisms are open thermodynamic systems whose functional structure has developed and been kinetically frozen during the historical process of biological evolution. A thermodynamics of both nonequilibrium and complex systems is needed for their description. In this book, the foundations of such a thermodynamics are presented. Biological processes at the cellular level are considered as coupled chemical reactions and transport processes across internal and the cytoplasmic membrane. All these processes are catalyzed by specific enzymes hence the kinetics of enzymatic catalysis and its control are described here in detail. The coupling of several processes through a common enzyme is considered in the context of free energy or signal transduction. Special attention is paid to evidence for a rich stochastic internal dynamics of native proteins and its possible role in the control of enzyme activity and in the action of biological molecular machines.

  14. Nanofluidics thermodynamic and transport properties

    Michaelides, Efstathios E (Stathis)

    2014-01-01

    This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...

  15. On the fundamental equation of nonequilibrium statistical physics—Nonequilibrium entropy evolution equation and the formula for entropy production rate

    2010-01-01

    In this paper the author presents an overview on his own research works. More than ten years ago, we proposed a new fundamental equation of nonequilibrium statistical physics in place of the present Liouville equation. That is the stochastic velocity type’s Langevin equation in 6N dimensional phase space or its equivalent Liouville diffusion equation. This equation is time-reversed asymmetrical. It shows that the form of motion of particles in statistical thermodynamic systems has the drift-diffusion duality, and the law of motion of statistical thermodynamics is expressed by a superposition of both the law of dynamics and the stochastic velocity and possesses both determinism and probability. Hence it is different from the law of motion of particles in dynamical systems. The stochastic diffusion motion of the particles is the microscopic origin of macroscopic irreversibility. Starting from this fundamental equation the BBGKY diffusion equation hierarchy, the Boltzmann collision diffusion equation, the hydrodynamic equations such as the mass drift-diffusion equation, the Navier-Stokes equation and the thermal conductivity equation have been derived and presented here. What is more important, we first constructed a nonlinear evolution equation of nonequilibrium entropy density in 6N, 6 and 3 dimensional phase space, predicted the existence of entropy diffusion. This entropy evolution equation plays a leading role in nonequilibrium entropy theory, it reveals that the time rate of change of nonequilibrium entropy density originates together from its drift, diffusion and production in space. From this evolution equation, we presented a formula for entropy production rate (i.e. the law of entropy increase) in 6N and 6 dimensional phase space, proved that internal attractive force in nonequilibrium system can result in entropy decrease while internal repulsive force leads to another entropy increase, and derived a common expression for this entropy decrease rate or

  16. Surface thermodynamics

    Garcia-Moliner, F.

    1975-01-01

    Basic thermodynamics of a system consisting of two bulk phases with an interface. Solid surfaces: general. Discussion of experimental data on surface tension and related concepts. Adsorption thermodynamics in the Gibbsian scheme. Adsorption on inert solid adsorbents. Systems with electrical charges: chemistry and thermodynamics of imperfect crystals. Thermodynamics of charged surfaces. Simple models of charge transfer chemisorption. Adsorption heat and related concepts. Surface phase transitions

  17. How statistical forces depend on thermodynamics and kinetics of driven media

    Basu, U.; Maes, C.; Netočný, Karel

    2015-01-01

    Roč. 114, č. 25 (2015), "250601-1"-"250601-5" ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : stochastic thermodynamics * nonequilibrium steady states * active matter Subject RIV: BE - Theoretical Physics Impact factor: 7.645, year: 2015

  18. An expression of excess work during the transition between nonequilibrium steady states

    Yuge, Tatsuro

    2014-01-01

    Excess work is a nondiverging part of the work during the transition between nonequilibrium steady states (NESSs). It is a central quantity in steady-state thermodynamics (SST), which is a candidate for nonequilibrium thermodynamics theory. We derive an expression of excess work during quasistatic transitions between NESSs by using the macroscopic linear response relation of the NESS. This expression is a line integral of a vector potential in the space of control parameters. We show a relationship between the vector potential and the response function of the NESS, and thus obtain a relationship between the SST and a macroscopic quantity. We also connect the macroscopic formulation to microscopic physics through a microscopic expression of the nonequilibrium response function, which gives a result that is consistent with previous studies. (paper)

  19. Experimental study of nonequilibrium post-chf heat transfer in rod bundles

    Unal, C.; Tuzla, K.; Badr, O.; Neti, S.; Chen, J.

    1986-01-01

    Verifications and improvements of nonequilibrium heat transfer models, for post-critical-heat-flux convective boiling, has been greatly affected by the lack of experimental data regarding the degree of thermodynamic nonequilibrium. Recent studies had been successful in measuring vapor superheats in a vertical single tube. This paper extends the nonequilibrium convective boiling data to a rod bundle geometry. Vapor superheat measurements were obtained in a rod bundle with nine heated rods and a heated shroud. Tests were carried out with water at low mass fluxes with a wide range of dryout conditions. Significant nonequilibrium was observed, with vapor superheats of up to 600 0 C. Parametric effects of mass flux, heat flux and inlet conditions on vapor superheat are presented

  20. Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys

    Zhi-Jun, Wang; Jin-Cheng, Wang; Gen-Cang, Yang

    2010-01-01

    All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed. (cross-disciplinary physics and related areas of science and technology)

  1. Introduction to nonequilibrium statistical mechanics with quantum field theory

    Kita, Takafumi

    2010-01-01

    In this article, we present a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory by considering an ensemble of interacting identical bosons or fermions as an example. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics such as Feynman diagrams, the proper self-energy, and Dyson's equation. The aims are threefold: (1) to explain the fundamentals of nonequilibrium quantum field theory as simple as possible on the basis of the knowledge of the equilibrium counterpart; (2) to elucidate the hierarchy in describing nonequilibrium systems from Dyson's equation on the Keldysh contour to the Navier-Stokes equation in fluid mechanics via quantum transport equations and the Boltzmann equation; (3) to derive an expression of nonequilibrium entropy that evolves with time. In stage (1), we introduce nonequilibrium Green's function and the self-energy uniquely on the round-trip Keldysh contour, thereby avoiding possible confusions that may arise from defining multiple Green's functions at the very beginning. We try to present the Feynman rules for the perturbation expansion as simple as possible. In particular, we focus on the self-consistent perturbation expansion with the Luttinger-Ward thermodynamic functional, i.e., Baym's Φ-derivable approximation, which has a crucial property for nonequilibrium systems of obeying various conservation laws automatically. We also show how the two-particle correlations can be calculated within the Φ-derivable approximation, i.e., an issue of how to handle the 'Bogoliubov-Born-Green-Kirkwood-Yvons (BBGKY) hierarchy'. Aim (2) is performed through successive reductions of relevant variables with the Wigner transformation, the gradient expansion based on the Groenewold-Moyal product, and Enskog's expansion from local equilibrium. This part may be helpful for convincing readers that nonequilibrium systems can be handled microscopically with

  2. Anisotropic nonequilibrium hydrodynamic attractor

    Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.

    2018-02-01

    We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.

  3. A molecular fragment cheminformatics roadmap for mesoscopic simulation.

    Truszkowski, Andreas; Daniel, Mirco; Kuhn, Hubert; Neumann, Stefan; Steinbeck, Christoph; Zielesny, Achim; Epple, Matthias

    2014-12-01

    Mesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application. The molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted f SMILES) with connected molecular fragments to represent a molecular structure. The f SMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software. Mesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and

  4. Mesoscopic model of actin-based propulsion.

    Jie Zhu

    Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  5. Atom chips: mesoscopic physics with cold atoms

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  6. Linear response in the nonequilibrium zero range process

    Maes, Christian; Salazar, Alberto

    2014-01-01

    We explore a number of explicit response formulæ around the boundary driven zero range process to changes in the exit and entrance rates. In such a nonequilibrium regime kinetic (and not only thermodynamic) aspects make a difference in the response. Apart from a number of formal approaches, we illustrate a general decomposition of the linear response into entropic and frenetic contributions, the latter being realized from changes in the dynamical activity at the boundaries. In particular in this way one obtains nonlinear modifications to the Green–Kubo relation. We end by bringing some general remarks about the situation where that nonequilibrium response remains given by the (equilibrium) Kubo formula such as for the density profile in the boundary driven Lorentz gas

  7. The entropy concept for non-equilibrium states.

    Lieb, Elliott H; Yngvason, Jakob

    2013-10-08

    In earlier work, we presented a foundation for the second law of classical thermodynamics in terms of the entropy principle. More precisely, we provided an empirically accessible axiomatic derivation of an entropy function defined on all equilibrium states of all systems that has the appropriate additivity and scaling properties, and whose increase is a necessary and sufficient condition for an adiabatic process between two states to be possible. Here, after a brief review of this approach, we address the question of defining entropy for non-equilibrium states. Our conclusion is that it is generally not possible to find a unique entropy that has all relevant physical properties. We do show, however, that one can define two entropy functions, called S - and S + , which, taken together, delimit the range of adiabatic processes that can occur between non-equilibrium states. The concept of comparability of states with respect to adiabatic changes plays an important role in our reasoning.

  8. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  9. Differences between application of some basic principles of quantum mechanics on atomic and mesoscopic levels

    Nikulov, Alexey

    2005-01-01

    Formalism of the quantum mechanics developed for microscopic (atomic) level comes into collision with some logical difficulties on mesoscopic level. Some fundamental differences between application of its basic principles on microscopic and mesoscopic levels are accentuated.

  10. Charge and spin transport in mesoscopic superconductors

    M. J. Wolf

    2014-02-01

    Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.

  11. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics

    Eu, Byung Chan

    2016-01-01

    This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computin...

  12. Non-equilibrium phase transitions

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  13. Extended thermodynamics

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  14. Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics

    Hagenmüller, David; Schütz, Stefan; Schachenmayer, Johannes; Genes, Claudiu; Pupillo, Guido

    2018-05-01

    We study the interplay between charge transport and light-matter interactions in a confined geometry by considering an open, mesoscopic chain of two-orbital systems resonantly coupled to a single bosonic mode close to its vacuum state. We introduce and benchmark different methods based on self-consistent solutions of nonequilibrium Green's functions and numerical simulations of the quantum master equation, and derive both analytical and numerical results. It is shown that in the dissipative regime where the cavity photon decay rate is the largest parameter, the light-matter coupling is responsible for a steady-state current enhancement scaling with the cooperativity parameter. We further identify different regimes of interest depending on the ratio between the cavity decay rate and the electronic bandwidth. Considering the situation where the lower band has a vanishing bandwidth, we show that for a high-finesse cavity, the properties of the resonant Bloch state in the upper band are transferred to the lower one, giving rise to a delocalized state along the chain. Conversely, in the dissipative regime with low-cavity quality factors, we find that the current enhancement is due to a collective decay of populations from the upper to the lower band.

  15. Time-evolution of photon heat current through series coupled two mesoscopic Josephson junction devices

    Lu, Wen-Ting; Zhao, Hong-Kang; Wang, Jian

    2018-03-01

    Photon heat current tunneling through a series coupled two mesoscopic Josephson junction (MJJ) system biased by dc voltages has been investigated by employing the nonequilibrium Green’s function approach. The time-oscillating photon heat current is contributed by the superposition of different current branches associated with the frequencies of MJJs ω j (j = 1, 2). Nonlinear behaviors are exhibited to be induced by the self-inductance, Coulomb interaction, and interference effect relating to the coherent transport of Cooper pairs in the MJJs. Time-oscillating pumping photon heat current is generated in the absence of temperature difference, while it becomes zero after time-average. The combination of ω j and Coulomb interactions in the MJJs determines the concrete heat current configuration. As the external and intrinsic frequencies ω j and ω 0 of MJJs match some specific combinations, resonant photon heat current exhibits sinusoidal behaviors with large amplitudes. Symmetric and asymmetric evolutions versus time t with respect to ω 1 t and ω 2 t are controlled by the applied dc voltages of V 1 and V 2. The dc photon heat current formula is a special case of the general time-dependent heat current formula when the bias voltages are settled to zero. The Aharonov-Bohm effect has been investigated, and versatile oscillation structures of photon heat current can be achieved by tuning the magnetic fluxes threading through separating MJJs.

  16. Neutron scattering on equilibrium and nonequilibrium phonons, excitons and polaritons

    Broude, V.L.; Sheka, E.F.

    1978-01-01

    A number of problems of solid-state physics representing interest for neutron spectroscopy of future is considered. The development of the neutron inelastic scattering spectroscopy (neutron spectroscopy of equilibrium phonons) is discussed with application to nuclear dynamics of crystals in the thermodynamic equilibrium. The results of high-flux neutron source experiments on molecular crystals are presented. The advantages of neutron inelastic scattering over optical spectroscopy are discussed. The spectroscopy of quasi-equilibrium and non-equilibrium quasi-particles is discussed. In particular, the neutron scattering on polaritons, excitons in thermal equilibrium and production of light-excitons are considered. The problem of the possibility of such experiments is elucidated

  17. Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits

    Liu Jianxin; Yan Zhanyuan; Song Yonghua

    2006-01-01

    Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finite-difference Schroedinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved. The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schroedinger equation can be divided into two Mathieu equations in p-circumflex representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.

  18. Mesoscopic Length Scale Controls the Rheology of Dense Suspensions

    Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric

    2010-09-01

    From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.

  19. Magnetic response of superconducting mesoscopic-size YBCO powder

    Deimling, C.V. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)], E-mail: cesard@df.ufscar.br; Motta, M.; Lisboa-Filho, P.N. [Laboratorio de Materiais Supercondutores, Departamento de Fisica, Universidade Estadual Paulista, Bauru, SP Brazil (Brazil); Ortiz, W.A. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)

    2008-07-15

    In this work it is reported the magnetic behavior of submicron and mesoscopic-size superconducting YBCO powders, prepared by a modified polymeric precursors method. The grain size and microstructure were analyzed using scanning electron microscopy (SEM). Measurements of magnetization and AC-susceptibility as a function of temperature were performed with a quantum design SQUID magnetometer. Our results indicated significant differences on the magnetic propreties, in connection with the calcination temperature and the pressure used to pelletize the samples. This contribution is part of an effort to study vortex dynamics and magnetic properties of submicron and mesoscopic-size superconducting samples.

  20. Modern thermodynamics from heat engines to dissipative structures

    Kondepudi, Dilip

    2014-01-01

    Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition presents a comprehensive introduction to 20th century thermodynamics that can be applied to both equilibrium and non-equilibrium systems, unifying what was traditionally divided into 'thermodynamics' and 'kinetics' into one theory of irreversible processes. This comprehensive text, suitable for introductory as well as advanced courses on thermodynamics, has been widely used by chemists, physicists, engineers and geologists.  Fully revised and expanded, this new edition includes the following updates and featur

  1. Coherence and measurement in quantum thermodynamics.

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  2. Open problems in non-equilibrium physics

    Kusnezov, D.

    1997-01-01

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions

  3. Open problems in non-equilibrium physics

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  4. Nonequilibrium candidate Monte Carlo is an efficient tool for equilibrium simulation

    Nilmeier, J. P.; Crooks, G. E.; Minh, D. D. L.; Chodera, J. D.

    2011-10-24

    Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. While generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.

  5. Stochastic theory of nonequilibrium steady states. Part II: Applications in chemical biophysics

    Ge Hao; Qian Min; Qian Hong

    2012-01-01

    The mathematical theory of nonequilibrium steady state (NESS) has a natural application in open biochemical systems which have sustained source(s) and sink(s) in terms of a difference in their chemical potentials. After a brief introduction in Section , in Part II of this review, we present the widely studied biochemical enzyme kinetics, the workhorse of biochemical dynamic modeling, in terms of the theory of NESS (Section ). We then show that several phenomena in enzyme kinetics, including a newly discovered activation–inhibition switching (Section ) and the well-known non-Michaelis–Menten-cooperativity (Section ) and kinetic proofreading (Section ), are all consequences of the NESS of driven biochemical systems with associated cycle fluxes. Section is focused on nonlinear and nonequilibrium systems of biochemical reactions. We use the phosphorylation–dephosphorylation cycle (PdPC), one of the most important biochemical signaling networks, as an example (Section ). It starts with a brief introduction of the Delbrück–Gillespie process approach to mesoscopic biochemical kinetics (Sections ). We shall discuss the zeroth-order ultrasensitivity of PdPC in terms of a new concept — the temporal cooperativity (Sections ), as well as PdPC with feedback which leads to biochemical nonlinear bistability (Section ). Also, both are nonequilibrium phenomena. PdPC with a nonlinear feedback is kinetically isomorphic to a self-regulating gene expression network, hence the theory of NESS discussed here could have wide applications to many other biochemical systems.

  6. General thermodynamics

    Olander, Donald

    2007-01-01

    The book’s methodology is unified, concise, and multidisciplinary, allowing students to understand how the principles of thermodynamics apply to all technical fields that touch upon this most fundamental of scientific theories. It also offers a rigorous approach to the quantitative aspects of thermodynamics, accompanied by clear explanations to help students transition smoothly from the physical concepts to their mathematical representations

  7. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    Bresme, F.; Armstrong, J.

    2014-01-01

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation

  8. PREFACE: International Symposium on Non-Equilibrium Soft Matter 2010 International Symposium on Non-Equilibrium Soft Matter 2010

    Kawakatsu, T.; Matsuyama, A.; Ohta, T.; Tanaka, H.; Tanaka, S.

    2011-07-01

    Soft matter is a rapidly growing interdisciplinary research field covering a range of subject areas including physics, chemistry, biology, mathematics and engineering. Some of the important universal features of these materials are their mesoscopic structures and their dynamics. Due to the existence of such large-scale structures, which nevertheless exhibit interactions of the order of the thermal energy, soft matter can readily be taken out of equilibrium by imposing a weak external field such as an electric field, a mechanical stress or a shear flow. The importance of the coexistence of microscopic molecular dynamics and the mesoscopic/macroscopic structures and flows requires us to develop hierarchical approaches to understand the nonlinear and nonequilibrium phenomena, which is one of the central issues of current soft matter research. This special section presents selected contributions from the 'International Symposium on Non-Equilibrium Soft Matter 2010' held from 17-20 August 2010 in Nara, Japan, which aimed to describe recent advances in soft matter research focusing especially on its nonequilibrium aspects. The topics discussed cover statics and dynamics of a wide variety of materials ranging from traditional soft matter like polymers, gels, emulsions, liquid crystals and colloids to biomaterials such as biopolymers and biomembranes. Among these studies, we highlighted the physics of biomembranes and vesicles, which has attracted great attention during the last decade; we organized a special session for this active field. The work presented in this issue deals with (1) structure formation in biomembranes and vesicles, (2) rheology of polymers and gels, (3) mesophases in block copolymers, (4) mesoscopic structures in liquid crystals and ionic liquids, and (5) nonequilibrium dynamics. This symposium was organized as part of a research project supported by the Grant-in-Aid for the priority area 'Soft Matter Physics' (2006-2010) from the Ministry of Education

  9. Irreversible Thermodynamics of the Universe: Constraints from Planck Data

    Saha, Subhajit; Chakraborty, Subenoy; Biswas, Atreyee

    2014-01-01

    The present work deals with irreversible universal thermodynamics. The homogenous and isotropic flat model of the universe is chosen as open thermodynamical system and nonequilibrium thermodynamics comes into picture. For simplicity, entropy flow is considered only due to heat conduction. Further, due to Maxwell-Cattaneo modified Fourier law for nonequilibrium phenomenon, the temperature satisfies damped wave equation instead of heat conduction equation. Validity of generalized second law of thermodynamics (GSLT) has been investigated for universe bounded by apparent or event horizon with cosmic substratum as perfect fluid with constant or variable equation of state or interacting dark species. Finally, we have used three Planck data sets to constrain the thermal conductivity λ and the coupling parameter b 2 . These constraints must be satisfied in order for GSLT to hold for universe bounded by apparent or event horizons

  10. Black hole evaporation in a heat bath as a nonequilibrium process and its final fate

    Saida, Hiromi

    2007-01-01

    We consider a black hole in a heat bath, and the whole system which consists of the black hole and the heat bath is isolated from outside environments. When the black hole evaporates, the Hawking radiation causes an energy flow from the black hole to the heat bath. Therefore, since no energy flow arises in an equilibrium state, the thermodynamic state of the whole system is not in equilibrium. That is, in a region around the black hole, the matter field of Hawking radiation and that of heat bath should be in a nonequilibrium state due to the energy flow. Using a simple model which reflects the nonequilibrium nature of energy flow, we find the nonequilibrium effect on a black hole evaporation as follows: if the nonequilibrium region around a black hole is not so large, the evaporation time scale of a black hole in a heat bath becomes longer than that in an empty space (a situation without heat bath), because of the incoming energy flow from the heat bath to the black hole. However, if the nonequilibrium region around a black hole is sufficiently large, the evaporation time scale in a heat bath becomes shorter than that in an empty space, because a nonequilibrium effect of the temperature difference between the black hole and heat bath appears as a strong energy extraction from the black hole by the heat bath. Further, a specific nonequilibrium phenomenon is found: a quasi-equilibrium evaporation stage under the nonequilibrium effect proceeds abruptly to a quantum evaporation stage at a semi-classical level (at black hole radius R g > Planck length) within a very short time scale with a strong burst of energy. (Contrarily, when the nonequilibrium effect is not taken into account, a quasi-equilibrium stage proceeds smoothly to a quantum stage at R g < Planck length without so strong an energy burst.) That is, the nonequilibrium effect of energy flow tends to make a black hole evaporation process more dynamical and to accelerate that process. Finally, on the final fate

  11. Foundations of modelling of nonequilibrium low-temperature plasmas

    Alves, L. L.; Bogaerts, A.; Guerra, V.; Turner, M. M.

    2018-02-01

    This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma-surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.

  12. From the atomic nucleus to mesoscopic systems to microwave cavities

    Abstract. Universal statistical aspects of wave scattering by a variety of physical systems ranging from atomic nuclei to mesoscopic systems and microwave cavities are described. A statistical model for the scattering matrix is employed to address the problem of quantum chaotic scattering. The model, introduced in the past ...

  13. Role of mesoscopic morphology in charge transport of doped ...

    In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among polymer chain, dopant and solvent. Molecular recognition plays a significant role in chain conformation and charge delocalization.

  14. Novel interference effects and a new quantum phase in mesoscopic ...

    Mesoscopic systems have provided an opportunity to study quantum effects beyond the ... tance [2], normal electron persistent currents [3], non-local current and voltage relations .... If both Б½ and Б¾ are positive or flow in the same direction of the potential drop then the ..... Fermi distribution function ¼(¯) = (1 + exp[(¯ - ) М]).

  15. Discrete and mesoscopic regimes of finite-size wave turbulence

    L'vov, V. S.; Nazarenko, S.

    2010-01-01

    Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave 'clusters' consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.

  16. Thermodynamics of Fluids Under Flow Second Edition

    Jou, David; Criado-Sancho, Manuel

    2011-01-01

    This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...

  17. A thermodynamic derivation of the stress-strain relations for Burgers media and related substances

    Kluitenberg, G.A.

    1968-01-01

    A generalization is given of the author's thermodynamic theory for mechanical phenomena in continuous media. The developments are based on the general methods of non-equilibrium thermodynamics. Temperature effects are fully taken into account. It is assumed that several microscopic phenomena occur

  18. Recent advances in sensitized mesoscopic solar cells.

    Grätzel, Michael

    2009-11-17

    -intensive high vacuum and materials purification steps that are currently employed in the fabrication of all other thin-film solar cells. Organic materials are abundantly available, so that the technology can be scaled up to the terawatt scale without running into feedstock supply problems. This gives organic-based solar cells an advantage over the two major competing thin-film photovoltaic devices, i.e., CdTe and CuIn(As)Se, which use highly toxic materials of low natural abundance. However, a drawback of the current embodiment of OPV cells is that their efficiency is significantly lower than that for single and multicrystalline silicon as well as CdTe and CuIn(As)Se cells. Also, polymer-based OPV cells are very sensitive to water and oxygen and, hence, need to be carefully sealed to avoid rapid degradation. The research discussed within the framework of this Account aims at identifying and providing solutions to the efficiency problems that the OPV field is still facing. The discussion focuses on mesoscopic solar cells, in particular, dye-sensitized solar cells (DSCs), which have been developed in our laboratory and remain the focus of our investigations. The efficiency problem is being tackled using molecular science and nanotechnology. The sensitizer constitutes the heart of the DSC, using sunlight to pump electrons from a lower to a higher energy level, generating in this fashion an electric potential difference, which can exploited to produce electric work. Currently, there is a quest for sensitizers that achieve effective harnessing of the red and near-IR part of sunlight, converting these photons to electricity better than the currently used generation of dyes. Progress in this area has been significant over the past few years, resulting in a boost in the conversion efficiency of the DSC that will be reviewed.

  19. Non-equilibrium Friedmann cosmologies

    Oliveira, H.P. de; Salim, J.M.

    1987-01-01

    A uniform cosmological model filled with a fluid which possesses pressure and bulk viscosity is developed using extended thermodynamics. The Einsten and thermodynamic equations can be exactly integrated on Friedmann-like situation. One of the solutions is non singular: it starts from a steady state behavior and expands to a situation where viscosity dies out. (author) [pt

  20. Atmospheric thermodynamics

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  1. Thermodynamic holography

    Wei, Bo-Bo; Jiang, Zhan-Feng; Liu, Ren-Bao

    2015-01-01

    The holographic principle states that the information about a volume of a system is encoded on the boundary surface of the volume. Holography appears in many branches of physics, such as optics, electromagnetism, many-body physics, quantum gravity, and string theory. Here we show that holography is also an underlying principle in thermodynamics, a most important foundation of physics. The thermodynamics of a system is fully determined by its partition function. We prove that the partition function of a finite but arbitrarily large system is an analytic function on the complex plane of physical parameters, and therefore the partition function in a region on the complex plane is uniquely determined by its values along the boundary. The thermodynamic holography has applications in studying thermodynamics of nano-scale systems (such as molecule engines, nano-generators and macromolecules) and provides a new approach to many-body physics. PMID:26478214

  2. Molecular Thermodynamics for Cell Biology as Taught with Boxes

    Mayorga, Luis S.; Lopez, Maria Jose; Becker, Wayne M.

    2012-01-01

    Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be…

  3. Thermodynamic theory of equilibrium fluctuations

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  4. Simulating metabolism with statistical thermodynamics.

    Cannon, William R

    2014-01-01

    New methods are needed for large scale modeling of metabolism that predict metabolite levels and characterize the thermodynamics of individual reactions and pathways. Current approaches use either kinetic simulations, which are difficult to extend to large networks of reactions because of the need for rate constants, or flux-based methods, which have a large number of feasible solutions because they are unconstrained by the law of mass action. This report presents an alternative modeling approach based on statistical thermodynamics. The principles of this approach are demonstrated using a simple set of coupled reactions, and then the system is characterized with respect to the changes in energy, entropy, free energy, and entropy production. Finally, the physical and biochemical insights that this approach can provide for metabolism are demonstrated by application to the tricarboxylic acid (TCA) cycle of Escherichia coli. The reaction and pathway thermodynamics are evaluated and predictions are made regarding changes in concentration of TCA cycle intermediates due to 10- and 100-fold changes in the ratio of NAD+:NADH concentrations. Finally, the assumptions and caveats regarding the use of statistical thermodynamics to model non-equilibrium reactions are discussed.

  5. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.

    Grima, R

    2010-07-21

    Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the

  6. Nonequilibrium self-organization in alloys under irradiation leading to the formation of nano composites

    Enrique, R A; Averback, R S; Bellon, P

    2003-01-01

    Alloys under irradiation are continuously driven away from equilibrium: Every time an external particle interacts with the atoms in the solid, a perturbation very localized in space and time is produced. Under this external forcing, phase and microstructural evolution depends ultimately on the dynamical interaction between the external perturbation and the internal recovery kinetics of the alloy. We consider the nonequilibrium steady state of an immiscible binary alloy subject to mixing by heavy-ion irradiation. It has been found that the range of the forced atomic relocations taking place during collision cascades plays an important role on the final microstructure: when this range is large enough, it can lead to the spontaneous formation of compositional patterns at the nanometer scale. These results were rationalized in the framework of a continuum model solved by deriving a nonequilibrium thermodynamic potential. Here we derive the nonequilibrium structure factor by including the role of fluctuations. In ...

  7. Beyond the second law entropy production and non-equilibrium systems

    Lineweaver, Charles; Niven, Robert; Regenauer-Lieb, Klaus

    2014-01-01

    The Second Law, a cornerstone of thermodynamics, governs the average direction of dissipative, non-equilibrium processes. But it says nothing about their actual rates or the probability of fluctuations about the average. This interdisciplinary book, written and peer-reviewed by international experts, presents recent advances in the search for new non-equilibrium principles beyond the Second Law, and their applications to a wide range of systems across physics, chemistry and biology. Beyond The Second Law brings together traditionally isolated areas of non-equilibrium research and highlights potentially fruitful connections between them, with entropy production playing the unifying role. Key theoretical concepts include the Maximum Entropy Production principle, the Fluctuation Theorem, and the Maximum Entropy method of statistical inference. Applications of these principles are illustrated in such diverse fields as climatology, cosmology, crystal growth morphology, Earth system science, environmental physics, ...

  8. Emergence of a fluctuation relation for heat in nonequilibrium Landauer processes

    Taranto, Philip; Modi, Kavan; Pollock, Felix A.

    2018-05-01

    In a generalized framework for the Landauer erasure protocol, we study bounds on the heat dissipated in typical nonequilibrium quantum processes. In contrast to thermodynamic processes, quantum fluctuations are not suppressed in the nonequilibrium regime and cannot be ignored, making such processes difficult to understand and treat. Here we derive an emergent fluctuation relation that virtually guarantees the average heat produced to be dissipated into the reservoir either when the system or reservoir is large (or both) or when the temperature is high. The implication of our result is that for nonequilibrium processes, heat fluctuations away from its average value are suppressed independently of the underlying dynamics exponentially quickly in the dimension of the larger subsystem and linearly in the inverse temperature. We achieve these results by generalizing a concentration of measure relation for subsystem states to the case where the global state is mixed.

  9. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states

    de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.

  10. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)

    2016-07-15

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  11. Stochastic thermodynamics, fluctuation theorems and molecular machines

    Seifert, Udo

    2012-01-01

    Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation–dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production. (review article)

  12. Equilibrium and nonequilibrium dynamics of soft sphere fluids.

    Ding, Yajun; Mittal, Jeetain

    2015-07-14

    We use computer simulations to test the freezing-point scaling relationship between equilibrium transport coefficients (self-diffusivity, viscosity) and thermodynamic parameters for soft sphere fluids. The fluid particles interact via the inverse-power potential (IPP), and the particle softness is changed by modifying the exponent of the distance-dependent potential term. In the case of IPP fluids, density and temperature are not independent variables and can be combined to obtain a coupling parameter to define the thermodynamic state of the system. We find that the rescaled coupling parameter, based on its value at the freezing point, can approximately collapse the diffusivity and viscosity data for IPP fluids over a wide range of particle softness. Even though the collapse is far from perfect, the freezing-point scaling relationship provides a convenient and effective way to compare the structure and dynamics of fluid systems with different particle softness. We further show that an alternate scaling relationship based on two-body excess entropy can provide an almost perfect collapse of the diffusivity and viscosity data below the freezing transition. Next, we perform nonequilibrium molecular dynamics simulations to calculate the shear-dependent viscosity and to identify the distinct role of particle softness in underlying structural changes associated with rheological properties. Qualitatively, we find a similar shear-thinning behavior for IPP fluids with different particle softness, though softer particles exhibit stronger shear-thinning tendency. By investigating the distance and angle-dependent pair correlation functions in these systems, we find different structural features in the case of IPP fluids with hard-sphere like and softer particle interactions. Interestingly, shear-thinning in hard-sphere like fluids is accompanied by enhanced translational order, whereas softer fluids exhibit loss of order with shear. Our results provide a systematic evaluation

  13. Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble

    Berggren, Tomas; Duits, Maurice

    2017-09-01

    In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.

  14. Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor

    Xie, Tianyu; Shi, Fazhan; Chen, Sanyou; Guo, Maosen; Chen, Yisheng; Zhang, Yixing; Yang, Yu; Gao, Xingyu; Kong, Xi; Wang, Pengfei; Tateishi, Kenichiro; Uesaka, Tomohiro; Wang, Ya; Zhang, Bo; Du, Jiangfeng

    2018-06-01

    Quantum sensing based on nitrogen-vacancy (N -V ) centers in diamond has been developed as a powerful tool for microscopic magnetic resonance. However, the reported sensor-to-sample distance is limited within tens of nanometers resulting from the cubic decrease of the signal of spin fluctuation with the increasing distance. Here we extend the sensing distance to tens of micrometers by detecting spin polarization rather than spin fluctuation. We detect the mesoscopic magnetic resonance spectra of polarized electrons of a pentacene-doped crystal, measure its two typical decay times, and observe the optically enhanced spin polarization. This work paves the way for the N -V -based mesoscopic magnetic resonance spectroscopy and imaging at ambient conditions.

  15. Robust mesoscopic superposition of strongly correlated ultracold atoms

    Hallwood, David W.; Ernst, Thomas; Brand, Joachim

    2010-01-01

    We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct states scales much more favorably with particle number than in schemes relying on weak interactions, thus making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of parameters may serve as a 'smoking gun' signature for detecting superposition states.

  16. How should we understand non-equilibrium many-body steady states?

    Maghrebi, Mohammad; Gorshkov, Alexey

    : Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.

  17. What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics

    Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj

    Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.

  18. Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water

    Limmer, David; Chandler, David

    2013-03-01

    We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.

  19. Non-equilibrium fluctuation-induced interactions

    Dean, David S

    2012-01-01

    We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.

  20. Relativistic thermodynamics of Fluids. l

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  1. Current correlations in superconductor - normal metal mesoscopic structures

    Bignon, Guillaume

    2005-01-01

    Thanks to the experimental progress in miniaturization and cryogenics over the last twenty years, it is now possible to build sufficiently small electric circuits where the wave like nature of electron becomes significant. In such electric circuit transport properties like current and noise are modified. It corresponds to the mesoscopic scale. Moreover, connecting a mesoscopic circuit to a superconductor enhances the effects due to interference between electrons since a superconductor is a macroscopic source of coherent electrons pairs: the Cooper pairs. In this thesis, we study current correlations in mesoscopic normal metal - superconductor structures. First, the energy dependence of current noise in a normal metal - superconductor tunnel junction is analysed taking into account weak disorder and interactions. We show that if the normal metal is out of equilibrium, current and noise become independent. Next, we consider the case of a superconductor connected to two normal metals by tunnel junctions. We show that it is possible to change the sign of current crossed correlation by tuning the voltages and that it can be used to probe the size of the Cooper pairs. Lastly, using Usadel's quasi-classic theory, we study the energy dependence of noise in a normal metal - normal metal - superconductor double junction. We show that barrier's transparencies modifies significantly both current and noise. (author) [fr

  2. Modern thermodynamics

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  3. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  4. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    Glavatskiy, K. S.

    2015-01-01

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval

  5. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  6. Colored thermal noise driven dynamical system in the presence and absence of non-equilibrium constraint: time dependence of information entropy flux and entropy production

    Goswami, Gurupada; Mukherjee, Biswajit; Bag, Bidhan Chandra

    2005-01-01

    We have studied the relaxation of non-Markovian and thermodynamically closed system both in the absence and presence of non-equilibrium constraint in terms of the information entropy flux and entropy production based on the Fokker-Planck and the entropy balance equations. Our calculation shows how the relaxation time depends on noise correlation time. It also considers how the non-equilibrium constraint is affected by system parameters such as noise correlation time, strength of dissipation and frequency of dynamical system. The interplay of non-equilibrium constraint, frictional memory kernel, noise correlation time and frequency of dynamical system reveals the extremum nature of the entropy production

  7. Colored thermal noise driven dynamical system in the presence and absence of non-equilibrium constraint: time dependence of information entropy flux and entropy production

    Goswami, Gurupada; Mukherjee, Biswajit; Bag, Bidhan Chandra

    2005-06-01

    We have studied the relaxation of non-Markovian and thermodynamically closed system both in the absence and presence of non-equilibrium constraint in terms of the information entropy flux and entropy production based on the Fokker-Planck and the entropy balance equations. Our calculation shows how the relaxation time depends on noise correlation time. It also considers how the non-equilibrium constraint is affected by system parameters such as noise correlation time, strength of dissipation and frequency of dynamical system. The interplay of non-equilibrium constraint, frictional memory kernel, noise correlation time and frequency of dynamical system reveals the extremum nature of the entropy production.

  8. The persistent current and energy spectrum on a driven mesoscopic LC-circuit with Josephson junction

    Pahlavanias, Hassan

    2018-03-01

    The quantum theory for a mesoscopic electric circuit including a Josephson junction with charge discreteness is studied. By considering coupling energy of the mesoscopic capacitor in Josephson junction device, a Hamiltonian describing the dynamics of a quantum mesoscopic electric LC-circuit with charge discreteness is introduced. We first calculate the persistent current on a quantum driven ring including Josephson junction. Then we obtain the persistent current and energy spectrum of a quantum mesoscopic electrical circuit which includes capacitor, inductor, time-dependent external source and Josephson junction.

  9. Nonequilibrium theory of flame propagation

    Merzhanov, A.G.

    1995-01-01

    The nonequilibrium theory of flame propagation is considered as applied to the following three processes of wave propagation: the combustion waves of the second kind, the combustion waves with broad reaction zones, and the combustion waves with chemical stages. Kinetic and combustion wave parameters are presented for different in composition mixtures of boron and transition metals, such as Zr, Hf, Ti, Nb, Ta, Mo, as well as for the Ta-N, Zr-C-H, Nb-B-O systems to illustrate specific features of the above-mentioned processes [ru

  10. Conservation laws and symmetries in stochastic thermodynamics.

    Polettini, Matteo; Bulnes-Cuetara, Gregory; Esposito, Massimiliano

    2016-11-01

    Phenomenological nonequilibrium thermodynamics describes how fluxes of conserved quantities, such as matter, energy, and charge, flow from outer reservoirs across a system and how they irreversibly degrade from one form to another. Stochastic thermodynamics is formulated in terms of probability fluxes circulating in the system's configuration space. The consistency of the two frameworks is granted by the condition of local detailed balance, which specifies the amount of physical quantities exchanged with the reservoirs during single transitions between configurations. We demonstrate that the topology of the configuration space crucially determines the number of independent thermodynamic affinities (forces) that the reservoirs generate across the system and provides a general algorithm that produces the fundamental affinities and their conjugate currents contributing to the total dissipation, based on the interplay between macroscopic conservations laws for the currents and microscopic symmetries of the affinities.

  11. Statistical thermodynamics

    Schrödinger, Erwin

    1952-01-01

    Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.

  12. Mesoscopic modeling of DNA denaturation rates: Sequence dependence and experimental comparison

    Dahlen, Oda, E-mail: oda.dahlen@ntnu.no; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117 7491 Trondheim (Norway)

    2015-06-21

    Using rare event simulation techniques, we calculated DNA denaturation rate constants for a range of sequences and temperatures for the Peyrard-Bishop-Dauxois (PBD) model with two different parameter sets. We studied a larger variety of sequences compared to previous studies that only consider DNA homopolymers and DNA sequences containing an equal amount of weak AT- and strong GC-base pairs. Our results show that, contrary to previous findings, an even distribution of the strong GC-base pairs does not always result in the fastest possible denaturation. In addition, we applied an adaptation of the PBD model to study hairpin denaturation for which experimental data are available. This is the first quantitative study in which dynamical results from the mesoscopic PBD model have been compared with experiments. Our results show that present parameterized models, although giving good results regarding thermodynamic properties, overestimate denaturation rates by orders of magnitude. We believe that our dynamical approach is, therefore, an important tool for verifying DNA models and for developing next generation models that have higher predictive power than present ones.

  13. Calculating zeros: Non-equilibrium free energy calculations

    Oostenbrink, Chris; Gunsteren, Wilfred F. van

    2006-01-01

    Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every λ-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations

  14. Non-equilibrium phase transition

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken

  15. Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics

    Chimal, J C; Sánchez, N; Ramírez, PR

    2017-01-01

    In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)

  16. A Novel Derivation of the Time Evolution of the Entropy for Macroscopic Systems in Thermal Non-Equilibrium

    Enrico Sciubba

    2017-11-01

    Full Text Available The paper discusses how the two thermodynamic properties, energy (U and exergy (E, can be used to solve the problem of quantifying the entropy of non-equilibrium systems. Both energy and exergy are a priori concepts, and their formal dependence on thermodynamic state variables at equilibrium is known. Exploiting the results of a previous study, we first calculate the non-equilibrium exergy En-eq can be calculated for an arbitrary temperature distributions across a macroscopic body with an accuracy that depends only on the available information about the initial distribution: the analytical results confirm that En-eq exponentially relaxes to its equilibrium value. Using the Gyftopoulos-Beretta formalism, a non-equilibrium entropy Sn-eq(x,t is then derived from En-eq(x,t and U(x,t. It is finally shown that the non-equilibrium entropy generation between two states is always larger than its equilibrium (herein referred to as “classical” counterpart. We conclude that every iso-energetic non-equilibrium state corresponds to an infinite set of non-equivalent states that can be ranked in terms of increasing entropy. Therefore, each point of the Gibbs plane corresponds therefore to a set of possible initial distributions: the non-equilibrium entropy is a multi-valued function that depends on the initial mass and energy distribution within the body. Though the concept cannot be directly extended to microscopic systems, it is argued that the present formulation is compatible with a possible reinterpretation of the existing non-equilibrium formulations, namely those of Tsallis and Grmela, and answers at least in part one of the objections set forth by Lieb and Yngvason. A systematic application of this paradigm is very convenient from a theoretical point of view and may be beneficial for meaningful future applications in the fields of nano-engineering and biological sciences.

  17. Homogeneous non-equilibrium two-phase critical flow model

    Schroeder, J.J.; Vuxuan, N.

    1987-01-01

    An important aspect of nuclear and chemical reactor safety is the ability to predict the maximum or critical mass flow rate from a break or leak in a pipe system. At the beginning of such a blowdown, if the stagnation condition of the fluid is subcooled or slightly saturated thermodynamic non-equilibrium exists in the downstream, e.g. the fluid becomes superheated to a degree determined by the liquid pressure. A simplified non-equilibrium model, explained in this report, is valid for rapidly decreasing pressure along the flow path. It presumes that fluid has to be superheated by an amount governed by physical principles before it starts to flash into steam. The flow is assumed to be homogeneous, i.e. the steam and liquid velocities are equal. An adiabatic flow calculation mode (Fanno lines) is employed to evaluate the critical flow rate for long pipes. The model is found to satisfactorily describe critical flow tests. Good agreement is obtained with the large scale Marviken tests as well as with small scale experiments. (orig.)

  18. Non-equilibrium theory of arrested spinodal decomposition

    Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP (Mexico)

    2015-11-07

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

  19. Applications of nonequilibrium melting concept to damage-accumulation processes

    Lam, N.Q.; Okamoto, P.R.

    1998-01-01

    The authors recent study of crystalline-to-amorphous transformation led to the successful development of a unified thermodynamic description of disorder-induced amorphization and heat-induced melting, based on a generalized version of the Lindemann melting criterion. The generalized criterion requires that the melting temperature of a defective crystal decreases with increasing static atomic disorder. Hence, any crystal can melt at temperatures below the melting point of its perfect crystalline state when driven far from equilibrium by introducing critical amounts of misfitting solute atoms and lattice imperfections, radiation damage, and/or tensile stresses. This conceptual approach to nonequilibrium melting provides new insight into long-standing materials problems such as brittle fracture, embrittlement, and environmentally-induced cracking, for example irradiation-assisted stress corrosion cracking

  20. Exactly solvable nonequilibrium Langevin relaxation of a trapped nanoparticle

    Salazar, Domingos S P; Lira, Sérgio A

    2016-01-01

    In this work, we study the nonequilibrium statistical properties of the relaxation dynamics of a nanoparticle trapped in a harmonic potential. We report an exact time-dependent analytical solution to the Langevin dynamics that arises from the stochastic differential equation of our system’s energy in the underdamped regime. By utilizing this stochastic thermodynamics approach, we are able to completely describe the heat exchange process between the nanoparticle and the surrounding environment. As an important consequence of our results, we observe the validity of the heat exchange fluctuation theorem in our setup, which holds for systems arbitrarily far from equilibrium conditions. By extending our results for the case of N noninterating nanoparticles, we perform analytical asymptotic limits and direct numerical simulations that corroborate our analytical predictions. (paper)

  1. Non-equilibrium reaction rates in chemical kinetic equations

    Gorbachev, Yuriy

    2018-05-01

    Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.

  2. Small Systems and Limitations on the Use of Chemical Thermodynamics

    Tovbin, Yu. K.

    2018-01-01

    Limitations on using chemical thermodynamics to describe small systems are formulated. These limitations follow from statistical mechanics for equilibrium and nonequilibrium processes and reflect (1) differences between characteristic relaxation times in momentum, energy, and mass transfer in different aggregate states of investigated systems; (2) achievements of statistical mechanics that allow us to determine criteria for the size of smallest region in which thermodynamics can be applied and the scale of the emergence of a new phase, along with criteria for the conditions of violating a local equilibrium. Based on this analysis, the main thermodynamic results are clarified: the phase rule for distorted interfaces, the sense and area of applicability of Gibbs's concept of passive forces, and the artificiality of Kelvin's equation as a result of limitations on the thermodynamic approach to considering small bodies. The wrongness of introducing molecular parameters into thermodynamic derivations, and the activity coefficient for an activated complex into the expression for a reaction rate constant, is demonstrated.

  3. New methods of thermodynamics; Nouvelles methodes en thermodynamique

    NONE

    2001-07-01

    This day, organized by the SFT French Society of Thermology, took stock on the new methods in the domain of the thermodynamics. Eight papers have been presented during this day: new developments of the thermodynamics in finite time; the optimal efficiency of energy converters; a version of non-equilibrium thermodynamics with entropy and information as positive and negative thermal change; the role of thermodynamics in process integration; application of the thermodynamics to critical nuclear accidents; the entropic analysis help in the case of charge and discharge state of an energy storage process; fluid flow threw a stable state in the urban hydraulic; a computer code for phase diagram prediction. (A.L.B.)

  4. Thermodynamics in f(R,T) theory of gravity

    Sharif, M.; Zubair, M.

    2012-01-01

    A non-equilibrium picture of thermodynamics is discussed at the apparent horizon of FRW universe in f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor. We take two forms of the energy-momentum tensor of dark components and demonstrate that equilibrium description of thermodynamics is not achievable in both cases. We check the validity of the first and second law of thermodynamics in this scenario. It is shown that the Friedmann equations can be expressed in the form of first law of thermodynamics T h dS' h +T h d jmath S' = −dE'+W'dV, where d jmath S' is the entropy production term. Finally, we conclude that the second law of thermodynamics holds both in phantom and non-phantom phases

  5. Solvation thermodynamics

    Ben-Naim, Arieh

    1987-01-01

    This book deals with a subject that has been studied since the beginning of physical chemistry. Despite the thousands of articles and scores of books devoted to solvation thermodynamics, I feel that some fundamen­ tal and well-established concepts underlying the traditional approach to this subject are not satisfactory and need revision. The main reason for this need is that solvation thermodynamics has traditionally been treated in the context of classical (macroscopic) ther­ modynamics alone. However, solvation is inherently a molecular pro­ cess, dependent upon local rather than macroscopic properties of the system. Therefore, the starting point should be based on statistical mechanical methods. For many years it has been believed that certain thermodynamic quantities, such as the standard free energy (or enthalpy or entropy) of solution, may be used as measures of the corresponding functions of solvation of a given solute in a given solvent. I first challenged this notion in a paper published in 1978 b...

  6. Monte Carlo estimates of interfacial tension in the two-dimensional Ising model from non-equilibrium methods

    Híjar, Humberto; Sutmann, Godehard

    2008-01-01

    Non-equilibrium methods for estimating free energy differences are used in order to calculate the interfacial tension between domains with opposite magnetizations in two-dimensional Ising lattices. Non-equilibrium processes are driven by changing the boundary conditions for two opposite sides of the lattice from periodic to antiperiodic and vice versa. This mechanism, which promotes the appearance and disappearance of the interface, is studied by means of Monte Carlo simulations performed at different rates and using different algorithms, thus allowing for testing the applicability of non-equilibrium methods for processes driven far from or close to equilibrium. Interfaces in lattices with different widths and heights are studied and the interface tension as a function of these quantities is obtained. It is found that the estimates of the interfacial tension from non-equilibrium procedures are in good agreement with previous reports as well as with exact results. The efficiency of the different procedures used is analyzed and the dynamics of the interface under these perturbations is briefly discussed. A method for determining the efficiency of non-equilibrium methods as regards thermodynamic perturbation is also presented. It is found that for all cases studied, the Crooks non-equilibrium method for estimating free energy differences is the most efficient one

  7. Quantum transport through mesoscopic disordered interfaces, junctions, and multilayers

    Nikolic, Branislav K.

    2002-01-01

    This study explores perpendicular transport through macroscopically inhomogeneous three-dimensional disordered conductors using mesoscopic methods (the real-space Green function technique in a two-probe measuring geometry). The nanoscale samples (containing ∼ 1000 atoms) are modelled by a tight-binding Hamiltonian on a simple cubic lattice where disorder is introduced in the on-site potential energy. I compute the transport properties of: disordered metallic junctions formed by concatenating two homogeneous samples with different kinds of microscopic disorder, a single strongly disordered interface, and multilayers composed of such interfaces and homogeneous layers characterized by different strengths of the same type of microscopic disorder. This allows us to: contrast the resistor model (semiclassical) approach with a fully quantum description of dirty mesoscopic multilayers; study the transmission properties of dirty interfaces (where the Schep-Bauer distribution of transmission eigenvalues is confirmed for a single interface, as well as for a stack of such interfaces that is thinner than the localization length); and elucidate the effect of coupling to ideal leads ('measuring apparatus') on the conductance of both bulk conductors and dirty interfaces. When a multilayer contains a ballistic layer in between two interfaces, its disorder-averaged conductance oscillates as a function of the Fermi energy. I also address some fundamental issues in quantum transport theory - the relationship between the Kubo formula in the exact state representation and the 'mesoscopic Kubo formula' (which gives the exact zero-temperature conductance of a finite-size sample attached to two semi-infinite ideal leads) is thoroughly re-examined by comparing their outcomes for both the junctions and homogeneous samples. (author)

  8. Fabrication of mesoscopic floating Si wires by introducing dislocations

    Motohashi, Mitsuya; Shimizu, Kazuya; Niwa, Masaaki; Suzuki, Toshiaki

    2014-01-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization. (paper)

  9. Fabrication of mesoscopic floating Si wires by introducing dislocations

    Motohashi, Mitsuya; Shimizu, Kazuya; Suzuki, Toshiaki; Niwa, Masaaki

    2014-12-01

    We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization.

  10. Numerical simulation of lubrication mechanisms at mesoscopic scale

    Hubert, C.; Bay, Niels; Christiansen, Peter

    2011-01-01

    The mechanisms of liquid lubrication in metal forming are studied at a mesoscopic scale, adopting a 2D sequential fluid-solid weak coupling approach earlier developed in the first author's laboratory. This approach involves two computation steps. The first one is a fully coupled fluid-structure F...... of pyramidal indentations. The tests are performed with variable reduction and drawing speed under controlled front and back tension forces. Visual observations through a transparent die of the fluid entrapment and escape from the cavities using a CCD camera show the mechanisms of Micro......PlastoHydroDynamic Lubrication (MPHDL) as well as cavity shrinkage due to lubricant compression and escape and strip deformation....

  11. Mesoscopic Rydberg Gate Based on Electromagnetically Induced Transparency

    Mueller, M.; Lesanovsky, I.; Zoller, P.; Weimer, H.; Buechler, H. P.

    2009-01-01

    We demonstrate theoretically a parallelized C-NOT gate which allows us to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond time scale. Our scheme relies on the strong and long-ranged interaction between Rydberg atoms triggering electromagnetically induced transparency. By this we can robustly implement a conditional transfer of all ensemble atoms between two logical states, depending on the state of the control atom. We outline a many-body interferometer which allows a comparison of two many-body quantum states by performing a measurement of the control atom.

  12. Superconducting proximity effect in mesoscopic superconductor/normal-metal junctions

    Takayanagi, H; Toyoda, E

    1999-01-01

    The superconducting proximity effect is discussed in mesoscopic superconductor/normal-metal junctions. The newly-developed theory shows long-range phase-coherent effect which explaines early experimental results of giant magnetoresistance oscillations in an Andreev interferometer. The theory also shows that the proximity correction to the conductance (PCC) has a reentrant behavior as a function of energy. The reentrant behavior is systematically studied in a gated superconductor-semiconductor junction. A negative PCC is observed in the case of a weak coupling between the normal metal and the external reservoir. Phase coherent ac effect is also observed when rf is irradiated to the junction.

  13. Introduction to wave scattering, localization, and mesoscopic phenomena

    Sheng, Ping

    1995-01-01

    This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)

  14. Organogels thermodynamics, structure, solvent role, and properties

    Guenet, Jean-Michel

    2016-01-01

    This book provides a physics-oriented introduction to organogels with a comparison to polymer thermoreversible gels whenever relevant. The past decade has seen the development of a wide variety of newly-synthesized molecules that can spontaneously self-assemble or crystallize from their organic or aqueous solutions to produce fibrillar networks, namely organogels, with potential applications in organic electronics, light harvesting, bio-imaging, non-linear optics, and the like. This compact volume presents a detailed outlook of these novel molecular systems with special emphasis upon their thermodynamics, morphology, molecular structure, and rheology. The definition of these complex systems is also tackled, as well as the role of the solvent. The text features numerous temperature-phase diagrams for a variety of organogels as well as illustrations of their structures at the microscopic, mesoscopic and macroscopic level. A review of some potential applications is provided including hybrid functional materials ...

  15. Quantum Effect in a Diode Included Nonlinear Inductance-Capacitance Mesoscopic Circuit

    Yan Zhanyuan; Zhang Xiaohong; Ma Jinying

    2009-01-01

    The mesoscopic nonlinear inductance-capacitance circuit is a typical anharmonic oscillator, due to diodes included in the circuit. In this paper, using the advanced quantum theory of mesoscopic circuits, which based on the fundamental fact that the electric charge takes discrete value, the diode included mesoscopic circuit is firstly studied. Schroedinger equation of the system is a four-order difference equation in p-circumflex representation. Using the extended perturbative method, the detail energy spectrum and wave functions are obtained and verified, as an application of the results, the current quantum fluctuation in the ground state is calculated. Diode is a basis component in a circuit, its quantization would popularize the quantum theory of mesoscopic circuits. The methods to solve the high order difference equation are helpful to the application of mesoscopic quantum theory.

  16. Quantum Rényi relative entropies affirm universality of thermodynamics.

    Misra, Avijit; Singh, Uttam; Bera, Manabendra Nath; Rajagopal, A K

    2015-10-01

    We formulate a complete theory of quantum thermodynamics in the Rényi entropic formalism exploiting the Rényi relative entropies, starting from the maximum entropy principle. In establishing the first and second laws of quantum thermodynamics, we have correctly identified accessible work and heat exchange in both equilibrium and nonequilibrium cases. The free energy (internal energy minus temperature times entropy) remains unaltered, when all the entities entering this relation are suitably defined. Exploiting Rényi relative entropies we have shown that this "form invariance" holds even beyond equilibrium and has profound operational significance in isothermal process. These results reduce to the Gibbs-von Neumann results when the Rényi entropic parameter α approaches 1. Moreover, it is shown that the universality of the Carnot statement of the second law is the consequence of the form invariance of the free energy, which is in turn the consequence of maximum entropy principle. Further, the Clausius inequality, which is the precursor to the Carnot statement, is also shown to hold based on the data processing inequalities for the traditional and sandwiched Rényi relative entropies. Thus, we find that the thermodynamics of nonequilibrium state and its deviation from equilibrium together determine the thermodynamic laws. This is another important manifestation of the concepts of information theory in thermodynamics when they are extended to the quantum realm. Our work is a substantial step towards formulating a complete theory of quantum thermodynamics and corresponding resource theory.

  17. Quantum thermodynamics. Emergence of thermodynamic behavior within composite quantum systems. 2. ed.

    Gemmer, Jochen; Michel, M.; Mahler, Guenter

    2009-01-01

    This introductory text treats thermodynamics as an incomplete description of quantum systems with many degrees of freedom. Its main goal is to show that the approach to equilibrium -with equilibrium characterized by maximum ignorance about the open system of interest- neither requires that many particles nor is the precise way of partitioning, relevant for the salient features of equilibrium and equilibration. Furthermore, the text depicts that it is indeed quantum effects that are at work in bringing about thermodynamic behavior of modest-sized open systems, thus making Von Neumann's concept of entropy appear much more widely useful than sometimes feared, far beyond truly macroscopic systems in equilibrium. This significantly revised and expanded second edition pays more attention to the growing number of applications, especially non-equilibrium phenomena and thermodynamic processes of the nano-domain. In addition, to improve readability and reduce unneeded technical details, a large portion of this book has been thoroughly rewritten. (orig.)

  18. Ecosystem thermodynamics

    Gomez Palacio, German Rau

    1998-01-01

    Ecology is no more a descriptive and self-sufficient science. Many viewpoints are needed simultaneously to give a full coverage of such complex systems: ecosystems. These viewpoints come from physics, chemistry, and nuclear physics, without a new far from equilibrium thermodynamics and without new mathematical tools such as catastrophe theory, fractal theory, cybernetics and network theory, the development of ecosystem science would never have reached the point of today. Some ideas are presented about the importance that concept such as energy, entropy, exergy information and none equilibrium have in the analysis of processes taking place in ecosystems

  19. A novel grid-based mesoscopic model for evacuation dynamics

    Shi, Meng; Lee, Eric Wai Ming; Ma, Yi

    2018-05-01

    This study presents a novel grid-based mesoscopic model for evacuation dynamics. In this model, the evacuation space is discretised into larger cells than those used in microscopic models. This approach directly computes the dynamic changes crowd densities in cells over the course of an evacuation. The density flow is driven by the density-speed correlation. The computation is faster than in traditional cellular automata evacuation models which determine density by computing the movements of each pedestrian. To demonstrate the feasibility of this model, we apply it to a series of practical scenarios and conduct a parameter sensitivity study of the effect of changes in time step δ. The simulation results show that within the valid range of δ, changing δ has only a minor impact on the simulation. The model also makes it possible to directly acquire key information such as bottleneck areas from a time-varied dynamic density map, even when a relatively large time step is adopted. We use the commercial software AnyLogic to evaluate the model. The result shows that the mesoscopic model is more efficient than the microscopic model and provides more in-situ details (e.g., pedestrian movement pattern) than the macroscopic models.

  20. Mesoscopic Iron-Oxide Nanorod Polymer Nanocomposite Films

    Ferrier, Robert; Ohno, Kohji; Composto, Russell

    2012-02-01

    Dispersion of nanostructures in polymer matrices is required in order to take advantage of the unique properties of the nano-sized filler. This work investigates the dispersion of mesoscopic (200 nm long) iron-oxide rods (FeNRs) grafted with poly(methyl methacrylate) (PMMA) brushes having molecular weights (MWs) of 3.7K, 32K and 160K. These rods were then dispersed in either a poly(methyl methacrylate) or poly(oxyethylene) (PEO) matrix film so that the matrix/brush interaction is either entropic (PMMA matrix) or enthalpic and entropic (PEO matrix). Transmission electron microscopy (TEM) was used to determine the dispersion of the FeNRs in the polymer matrix. The results show that the FeNRs with the largest brush were always dispersed in the matrix, whereas the rods with the shorter brushes always aggregated in the matrix. This suggests that the brush MW is a critical parameter to achieve dispersion of these mesoscopic materials. This work can be extended to understand the dispersion of other types of mesocopic particles

  1. Spontaneous and persistent currents in superconductive and mesoscopic structures (Review)

    Kulik, I. O.

    2004-07-01

    We briefly review aspects of superconductive persistent currents in Josephson junctions of the S/I/S, S/O/S and S/N/S types, focusing on the origin of jumps in the current versus phase dependences, and discuss in more detail the persistent and the "spontaneous" currents in Aharonov-Bohm mesoscopic and nanoscopic (macromolecular) structures. A fixed-number-of-electrons mesoscopic or macromolecular conducting ring is shown to be unstable against structural transformation removing spatial symmetry (in particular, azimuthal periodicity) of its electron-lattice Hamiltonian. In the case when the transformation is blocked by strong coupling to an external azimuthally symmetric environment, the system becomes bistable in its electronic configuration at a certain number of electrons. Under such a condition, the persistent current has a nonzero value even at an (almost) zero applied Aharonov-Bohm flux and results in very high magnetic susceptibility dM/dH at small nonzero fields, followed by an oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory magnetization in cyclic metallo-organic molecules by Gatteschi et al. can be attributed to persistent currents. If this proves correct, it may present an opportunity for (and, more generally, macromolecular cyclic structures may suggest the possibility of) engineering quantum computational tools based on the Aharonov-Bohm effect in ballistic nanostructures and macromolecular cyclic aggregates.

  2. Coherent current states in mesoscopic four-terminal Josephson junction

    Zareyan, M.; Omelyanchouk, A.N.

    1999-01-01

    A theory is offered for the ballistic 4-terminal Josephson junction. The studied system consist of a mesoscopic two-dimensional normal rectangular layer which is attached on each side to the bulk superconducting banks (terminals). A relation is obtained between the currents through the different terminals, that is valid for arbitrary temperatures and junction sizes. The nonlocal coupling of the supercurrent leads to a new effect, specific for the mesoscopic weak link between two superconducting rings; an applied magnetic flux through one of the rings produces a magnetic flux in the other ring even in the absence of an external flux through the other one. The phase dependent distributions of the local density of Andreev states, of the supercurrents and of the induced order parameter are obtained. The 'interference pattern' for the anomalous average inside the two-dimensional region cam be regulated by the applied magnetic fluxes or the transport currents. For some values of the phase differences between the terminals, the current vortex state and two-dimensional phase slip center appear

  3. Mesoscopic structure conditions the emergence of cooperation on social networks.

    Sergi Lozano

    Full Text Available BACKGROUND: We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. METHODOLOGY/PRINCIPAL FINDINGS: We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates. CONCLUSION: Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.

  4. Flexible histone tails in a new mesoscopic oligonucleosome model.

    Arya, Gaurav; Zhang, Qing; Schlick, Tamar

    2006-07-01

    We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.

  5. Mesoscopic structure conditions the emergence of cooperation on social networks

    Lozano, S.; Arenas, A.; Sanchez, A.

    2008-12-01

    We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.

  6. Temperature in non-equilibrium states: a review of open problems and current proposals

    Casas-Vazquez, J; Jou, D

    2003-01-01

    The conceptual problems arising in the definition and measurement of temperature in non-equilibrium states are discussed in this paper in situations where the local-equilibrium hypothesis is no longer satisfactory. This is a necessary and urgent discussion because of the increasing interest in thermodynamic theories beyond local equilibrium, in computer simulations, in non-linear statistical mechanics, in new experiments, and in technological applications of nanoscale systems and material sciences. First, we briefly review the concept of temperature from the perspectives of equilibrium thermodynamics and statistical mechanics. Afterwards, we explore which of the equilibrium concepts may be extrapolated beyond local equilibrium and which of them should be modified, then we review several attempts to define temperature in non-equilibrium situations from macroscopic and microscopic bases. A wide review of proposals is offered on effective non-equilibrium temperatures and their application to ideal and real gases, electromagnetic radiation, nuclear collisions, granular systems, glasses, sheared fluids, amorphous semiconductors and turbulent fluids. The consistency between the different relativistic transformation laws for temperature is discussed in the new light gained from this perspective. A wide bibliography is provided in order to foster further research in this field

  7. Link prediction based on nonequilibrium cooperation effect

    Li, Lanxi; Zhu, Xuzhen; Tian, Hui

    2018-04-01

    Link prediction in complex networks has become a common focus of many researchers. But most existing methods concentrate on neighbors, and rarely consider degree heterogeneity of two endpoints. Node degree represents the importance or status of endpoints. We describe the large-degree heterogeneity as the nonequilibrium between nodes. This nonequilibrium facilitates a stable cooperation between endpoints, so that two endpoints with large-degree heterogeneity tend to connect stably. We name such a phenomenon as the nonequilibrium cooperation effect. Therefore, this paper proposes a link prediction method based on the nonequilibrium cooperation effect to improve accuracy. Theoretical analysis will be processed in advance, and at the end, experiments will be performed in 12 real-world networks to compare the mainstream methods with our indices in the network through numerical analysis.

  8. Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment.

    Astumian, R D

    2018-01-11

    In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.

  9. Thermodynamics in f(T Gravity with Nonminimal Coupling to Matter

    Tahereh Azizi

    2017-01-01

    Full Text Available In the present paper, we study the thermodynamics behavior of the field equations for the generalized f(T gravity with arbitrary coupling between matter and the torsion scalar. In this regard, we explore the verification of the first law of thermodynamics at the apparent horizon of the Friedmann-Robertson-Walker universe in two different perspectives, namely, the nonequilibrium and equilibrium descriptions of thermodynamics. Furthermore, we investigate the validity of the second law of thermodynamics for both descriptions of this scenario with the assumption that the temperature of matter inside the horizon is similar to that of horizon.

  10. Non-equilibrium dog-flea model

    Ackerson, Bruce J.

    2017-11-01

    We develop the open dog-flea model to serve as a check of proposed non-equilibrium theories of statistical mechanics. The model is developed in detail. Then it is applied to four recent models for non-equilibrium statistical mechanics. Comparison of the dog-flea solution with these different models allows checking claims and giving a concrete example of the theoretical models.

  11. Plasma wave instabilities in nonequilibrium graphene

    Aryal, Chinta M.; Hu, Ben Yu-Kuang; Jauho, Antti-Pekka

    2016-01-01

    We study two-stream instabilities in a nonequilibrium system in which a stream of electrons is injected into doped graphene. As with equivalent nonequilibrium parabolic band systems, we find that the graphene systems can support unstable charge-density waves whose amplitudes grow with time. We...... of the injected electrons that maximizes the growth rate increases with increasing | q |. We compare the range and strength of the instability in graphene to that of two- and three-dimensional parabolic band systems....

  12. Aerospace Applications of Non-Equilibrium Plasma

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  13. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  14. Interactions between electrons, mesoscopic Josephson effect and asymmetric current fluctuations

    Huard, B.

    2006-07-01

    This article discusses three experiments on the properties of electronic transport at the mesoscopic scale. The first one allowed to measure the energy exchange rate between electrons in a metal contaminated by a very weak concentration of magnetic impurities. The role played by magnetic impurities in the Kondo regime on those energy exchanges is quantitatively investigated, and the global measured exchange rate is larger than expected. The second experiment is a measurement of the current-phase relation in a system made of two superconductors linked through a single atom. We thus provide quantitative support for the recent description of the mesoscopic Josephson effect. The last experiment is a measurement of the asymmetry of the current fluctuations in a mesoscopic conductor, using a Josephson junction as a threshold detector. Cet ouvrage décrit trois expériences portant sur les propriétés du transport électronique à l'échelle mésoscopique. La première a permis de mesurer le taux d'échange d'énergie entre électrons dans un métal contenant une très faible concentration d'impuretés magnétiques. Nous avons validé la description quantitative du rôle des impuretés magnétiques dans le régime Kondo sur ces échanges énergétiques et aussi montré que le taux global d'échange est plus fort que prévu. La seconde expérience est une mesure de la relation courant-phase dans un système constitué de deux supraconducteurs couplés par un seul atome. Elle nous a permis de conforter quantitativement la récente description de l'effet Josephson mésoscopique. La dernière expérience est unemesure de l'asymétrie des fluctuations du courant dans un conducteur mésoscopique en utilisant une Jonction Josephson comme détecteur de seuil.

  15. Equilibrium thermodynamics

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  16. Electrical Conductivity of Charged Particle Systems and Zubarev's Nonequilibrium Statistical Operator Method

    Röpke, G.

    2018-01-01

    One of the fundamental problems in physics that are not yet rigorously solved is the statistical mechanics of nonequilibrium processes. An important contribution to describing irreversible behavior starting from reversible Hamiltonian dynamics was given by D. N. Zubarev, who invented the method of the nonequilibrium statistical operator. We discuss this approach, in particular, the extended von Neumann equation, and as an example consider the electrical conductivity of a system of charged particles. We consider the selection of the set of relevant observables. We show the relation between kinetic theory and linear response theory. Using thermodynamic Green's functions, we present a systematic treatment of correlation functions, but the convergence needs investigation. We compare different expressions for the conductivity and list open questions.

  17. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal

    Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang

    2017-08-01

    Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.

  18. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal.

    Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang

    2017-08-01

    Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.

  19. Unbiased free energy estimates in fast nonequilibrium transformations using Gaussian mixtures

    Procacci, Piero

    2015-01-01

    In this paper, we present an improved method for obtaining unbiased estimates of the free energy difference between two thermodynamic states using the work distribution measured in nonequilibrium driven experiments connecting these states. The method is based on the assumption that any observed work distribution is given by a mixture of Gaussian distributions, whose normal components are identical in either direction of the nonequilibrium process, with weights regulated by the Crooks theorem. Using the prototypical example for the driven unfolding/folding of deca-alanine, we show that the predicted behavior of the forward and reverse work distributions, assuming a combination of only two Gaussian components with Crooks derived weights, explains surprisingly well the striking asymmetry in the observed distributions at fast pulling speeds. The proposed methodology opens the way for a perfectly parallel implementation of Jarzynski-based free energy calculations in complex systems

  20. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  1. Shear Viscosity of Benzene, Toluene, and p-Xylene by Non-equilibrium Molecular Dynamics Simulations

    Lee, Song Hi

    2004-01-01

    Green and Kubo showed that the phenomenological coefficients describing many transport processes and time dependent phenomena in general could be written as integrals over a certain type of function called a time correlation function. The Green-Kubo formulas are the formal expressions for hydrodynamic field variables and some of the thermodynamic properties in terms of the microscopic variables of an N-particle system. The identification of microscopic expressions for macroscopic variables is made by a process of comparison of the conservation equations of hydrodynamics with the microscopic equations of change for conserved densities. The importance of these formulas is three-fold: they provide an obvious method for calculating transport coefficients using computer simulation, a convenient starting point for constructing analytic theories for non-equilibrium processes, and an essential information for designing non-equilibrium molecular dynamics (NEMD) algorithm.

  2. Thermodynamics of long-run economic innovation and growth

    Garrett, Timothy J.

    2013-01-01

    This article derives prognostic expressions for the evolution of globally aggregated economic wealth, productivity, inflation, technological change, innovation and growth. The approach is to treat civilization as an open, non-equilibrium thermodynamic system that dissipates energy and diffuses matter in order to sustain existing circulations and to further its material growth. Appealing to a prior result that established a fixed relationship between a very general representation of global eco...

  3. Fundamentals of classical statistical thermodynamics dissipation, relaxation, and fluctuation theorems

    Evans, Denis James; Williams, Stephen Rodney

    2016-01-01

    Both a comprehensive overview and a treatment at the appropriate level of detail, this textbook explains thermodynamics and generalizes the subject so it can be applied to small nano- or biosystems, arbitrarily far from or close to equilibrium. In addition, nonequilibrium free energy theorems are covered with a rigorous exposition of each one. Throughout, the authors stress the physical concepts along with the mathematical derivations. For researchers and students in physics, chemistry, materials science and molecular biology, this is a useful text for postgraduate courses in statistical mechanics, thermodynamics and molecular simulations, while equally serving as a reference for university teachers and researchers in these fields.

  4. Thermodynamic behavior of particular f(R,T)-gravity models

    Sharif, M.; Zubair, M.

    2013-01-01

    We investigate the thermodynamics at the apparent horizon of the FRW universe in f(R, T) theory in the nonequilibrium description. The laws of thermodynamics are discussed for two particular models of the f(R, T) theory. The first law of thermodynamics is expressed in the form of the Clausius relation T h dS-circumflex h = δ Q , where δQ is the energy flux across the horizon and dS-circumflex is the entropy production term. Furthermore, the conditions for the generalized second law of thermodynamics to be preserved are established with the constraints of positive temperature and attractive gravity. We illustrate our results for some concrete models in this theory

  5. Size and field effect on mesoscopic spin glass

    Komatsu, K. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)]. E-mail: komatsu@az.appi.keio.ac.jp; Maki, H. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Taniyama, T. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Sato, T. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)

    2007-03-15

    Spin glass particles were prepared as the mesoscopic system in order to examine the space scale of spin glass domain (droplet). The peak temperature T {sub peak} in the temperature-dependent magnetization is systematically reduced with decreasing average particle size. This is due to the imitation of droplet growth to the particle diameter. The magnetic field H also decreases T {sub peak}, which is caused by the reduction of the barrier height by Zeeman energy. However, there appears different tendency in the relation between H and T {sub peak} below 100 Oe. This indicates the existence of crossover between the two regimes in which the free energy and Zeeman energy govern the droplet excitation.

  6. Out-of-equilibrium spin transport in mesoscopic superconductors.

    Quay, C H L; Aprili, M

    2018-08-06

    The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).

  7. Transport Characteristics of Mesoscopic Radio-Frequency Single Electron Transistor

    Phillips, A. H.; Kirah, K.; Aly, N. A. I.; El-Sayes, H. E.

    2008-01-01

    The transport property of a quantum dot under the influence of external time-dependent field is investigated. The mesoscopic device is modelled as semiconductor quantum dot coupled weakly to superconducting leads via asymmetric double tunnel barriers of different heights. An expression for the current is deduced by using the Landauer–Buttiker formula, taking into consideration of both the Coulomb blockade effect and the magnetic field. It is found that the periodic oscillation of the current with the magnetic field is controlled by the ratio of the frequency of the applied ac-field to the electron cyclotron frequency. Our results show that the present device operates as a radio-frequency single electron transistor

  8. Persistent currents in an ensemble of isolated mesoscopic rings

    Altland, A.; Iida, S.; Mueller-Groelling, A.; Weidenmueller, H.A.

    1992-01-01

    In this work, the authors calculate the persistent current induced at zero temperature by an external, constant, and homogeneous magnetic field in an ensemble of isolated mesoscopic rings. In each ring, the electrons are assumed to move independently under the influence of a Gaussian white noise random impurity potential. They account for the magnetic field only in terms of the flux threading each ring, without considering the field present in the body of the ring. Particular attention is paid to the constraint of integer particle number on each ring. The authors evaluate the persistent current non-perturbatively, using a generating functional involving Grassmann integration. The magnetic flux threading each ring breaks the orthogonal symmetry of the formalism; forcing us to calculate explicitly the orthogonal-unitary crossover. 24 refs., 1 fig

  9. Collective excitability in a mesoscopic neuronal model of epileptic activity

    Jedynak, Maciej; Pons, Antonio J.; Garcia-Ojalvo, Jordi

    2018-01-01

    At the mesoscopic scale, the brain can be understood as a collection of interacting neuronal oscillators, but the extent to which its sustained activity is due to coupling among brain areas is still unclear. Here we address this issue in a simplified situation by examining the effect of coupling between two cortical columns described via Jansen-Rit neural mass models. Our results show that coupling between the two neuronal populations gives rise to stochastic initiations of sustained collective activity, which can be interpreted as epileptic events. For large enough coupling strengths, termination of these events results mainly from the emergence of synchronization between the columns, and thus it is controlled by coupling instead of noise. Stochastic triggering and noise-independent durations are characteristic of excitable dynamics, and thus we interpret our results in terms of collective excitability.

  10. Coherent X-ray diffraction studies of mesoscopic materials

    Shabalin, Anatoly

    2015-12-01

    This thesis is devoted to three separate projects, which can be considered as independent. First, the dynamical scattering effects in the Coherent X-ray Diffractive Imaging (CXDI) method are discussed. Based on the simulation results, a straightforward method for correction for the refraction and absorption artifacts in the Bragg CXDI reconstruction is suggested. The second part summarizes the results of an Coherent X-ray Diffractive Imaging experiment with a single colloidal crystal grain. A remarkable result is that positions of individual particles in the crystal lattice have been resolved in three dimensions. The third project is devoted to X-ray diffraction experimental studies of structural evolution of colloidal crystalline films upon incremental heating. Based on the results of the analysis a model of structural evolution of a colloidal crystal upon heating on nanoscopic and mesoscopic length scales is suggested.

  11. Reaction-Transport Systems Mesoscopic Foundations, Fronts, and Spatial Instabilities

    Horsthemke, Werner; Mendez, Vicenc

    2010-01-01

    This book is an introduction to the dynamics of reaction-diffusion systems, with a focus on fronts and stationary spatial patterns. Emphasis is on systems that are non-standard in the sense that either the transport is not simply classical diffusion (Brownian motion) or the system is not homogeneous. A important feature is the derivation of the basic phenomenological equations from the mesoscopic system properties. Topics addressed include transport with inertia, described by persistent random walks and hyperbolic reaction-transport equations and transport by anomalous diffusion, in particular subdiffusion, where the mean square displacement grows sublinearly with time. In particular reaction-diffusion systems are studied where the medium is in turn either spatially inhomogeneous, compositionally heterogeneous or spatially discrete. Applications span a vast range of interdisciplinary fields and the systems considered can be as different as human or animal groups migrating under external influences, population...

  12. Manipulating mesoscopic multipartite entanglement with atom-light interfaces

    Stasinska, J.; Rodo, C.; Paganelli, S.; Birkl, G.; Sanpera, A.

    2009-01-01

    Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation, and detection of genuine multipartite entanglement (Greenberger-Horne-Zeilinger and clusterlike states) between mesoscopic atomic ensembles without the need of individual addressing of the samples. Our results extend in a nontrivial way the Einstein-Podolsky-Rosen entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature (London) 413, 400 (2001)]. We find that under realistic conditions, a second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.

  13. Broken detailed balance and non-equilibrium dynamics in living systems: a review

    Gnesotto, F. S.; Mura, F.; Gladrow, J.; Broedersz, C. P.

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  14. Broken detailed balance and non-equilibrium dynamics in living systems: a review.

    Gnesotto, F S; Mura, F; Gladrow, J; Broedersz, C P

    2018-03-05

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  15. Mesoscopic approach to describe high burn-up fuel behaviour

    Kinoshita, M.

    1999-01-01

    The grain sub-division and the rim structure formation are new phenomena for LWR fuel engineering. The consequence of these are now under investigation in several international programs such as HBRP (High Burnup Rim Project) of CRIEPI, NFIR of EPRI, and EdF/CEA program in France. The theoretical understanding of this phenomenon is underway. Here, the process is peculiar in the following points; (1) majority of the domain of the material are changed to a new morphology after the restructuring, (2) the final size of the new grains is around 0.1 μm which is neither atomic scale nor macroscopic scale. (3) the morphology of the restructured domain indicates fractal like feature which indicates complex process is under-taken. From the first feature, the process is similar to phase transitions or metallographic transformations. However, as the crystallographic structure has no change before and after the restructuring, it is not the phase transition nor the transformation of atomic scale instability. The focus could be put on the material transport of mesoscopic scale which create the peculiar morphology. Indeed there are flows of energy and disturbances in crystallographic structure in nuclear materials on duty. Although the fission energy is 10 4 larger than the formation energy of the defects, thanks to the stability of the selected material, most of energy is thermalized without crystallographic instability. Little remained energy creates flows of disturbances and the new structure is a consequence of ordering process driven by these flows of disturbances. Therefore this phenomenon is a good example to study cooperative ordering process in physics of materials. This paper presents some of present understandings of the rim structure formation based on the mesoscopic mechanistic theories. Possible future development is also proposed (author) (ml)

  16. Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system.

    Raj Kumar Pan

    Full Text Available One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. The coordination of many different co-occurring processes at this level underlies the command and control of overall network activity. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations such as, optimizing for resource constraints (viz., total wiring cost and communication efficiency (i.e., network path length. Even including information about the genetic relatedness of the cells cannot account for the observed modular structure. Comparison with other complex networks designed for efficient transport (of signals or resources implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including

  17. Signatures of topological phase transitions in mesoscopic superconducting rings

    Pientka, Falko; Romito, Alessandro; Duckheim, Mathias; Oppen, Felix von; Oreg, Yuval

    2013-01-01

    We investigate Josephson currents in mesoscopic rings with a weak link which are in or near a topological superconducting phase. As a paradigmatic example, we consider the Kitaev model of a spinless p-wave superconductor in one dimension, emphasizing how this model emerges from more realistic settings based on semiconductor nanowires. We show that the flux periodicity of the Josephson current provides signatures of the topological phase transition and the emergence of Majorana fermions (MF) situated on both sides of the weak link even when fermion parity is not a good quantum number. In large rings, the MF hybridize only across the weak link. In this case, the Josephson current is h/e periodic in the flux threading the loop when fermion parity is a good quantum number but reverts to the more conventional h/2e periodicity in the presence of fermion-parity changing relaxation processes. In mesoscopic rings, the MF also hybridize through their overlap in the interior of the superconducting ring. We find that in the topological superconducting phase, this gives rise to an h/e-periodic contribution even when fermion parity is not conserved and that this contribution exhibits a peak near the topological phase transition. This signature of the topological phase transition is robust to the effects of disorder. As a byproduct, we find that close to the topological phase transition, disorder drives the system deeper into the topological phase. This is in stark contrast to the known behavior far from the phase transition, where disorder tends to suppress the topological phase. (paper)

  18. Thermodynamics of random reaction networks.

    Jakob Fischer

    Full Text Available Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  19. Thermodynamics of random reaction networks.

    Fischer, Jakob; Kleidon, Axel; Dittrich, Peter

    2015-01-01

    Reaction networks are useful for analyzing reaction systems occurring in chemistry, systems biology, or Earth system science. Despite the importance of thermodynamic disequilibrium for many of those systems, the general thermodynamic properties of reaction networks are poorly understood. To circumvent the problem of sparse thermodynamic data, we generate artificial reaction networks and investigate their non-equilibrium steady state for various boundary fluxes. We generate linear and nonlinear networks using four different complex network models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz, Pan-Sinha) and compare their topological properties with real reaction networks. For similar boundary conditions the steady state flow through the linear networks is about one order of magnitude higher than the flow through comparable nonlinear networks. In all networks, the flow decreases with the distance between the inflow and outflow boundary species, with Watts-Strogatz networks showing a significantly smaller slope compared to the three other network types. The distribution of entropy production of the individual reactions inside the network follows a power law in the intermediate region with an exponent of circa -1.5 for linear and -1.66 for nonlinear networks. An elevated entropy production rate is found in reactions associated with weakly connected species. This effect is stronger in nonlinear networks than in the linear ones. Increasing the flow through the nonlinear networks also increases the number of cycles and leads to a narrower distribution of chemical potentials. We conclude that the relation between distribution of dissipation, network topology and strength of disequilibrium is nontrivial and can be studied systematically by artificial reaction networks.

  20. Quantum bit string commitment protocol using polarization of mesoscopic coherent states

    Mendonca, Fabio Alencar; Ramos, Rubens Viana

    2008-01-01

    In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed

  1. Quantum bit string commitment protocol using polarization of mesoscopic coherent states

    Mendonça, Fábio Alencar; Ramos, Rubens Viana

    2008-02-01

    In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed.

  2. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  3. The Markov process admits a consistent steady-state thermodynamic formalism

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  4. Nonequilibrium steady state of biochemical cycle kinetics under non-isothermal conditions

    Jin, Xiao; Ge, Hao

    2018-04-01

    The nonequilibrium steady state of isothermal biochemical cycle kinetics has been extensively studied, but that under non-isothermal conditions has been much less extensively investigated. When the heat exchange between subsystems is slow, the isothermal assumption of the whole system breaks down, as is true for many types of living organisms. Here, starting with a four-state model of molecular transporter across the cell membrane, we generalize the nonequilibrium steady-state theory of isothermal biochemical cycle kinetics to the circumstances with non-uniform temperatures of subsystems in terms of general master equation models. We obtain a new thermodynamic relationship between the chemical reaction rates and thermodynamic potentials in non-isothermal circumstances, based on the overdamped dynamics along the continuous reaction coordinate. We show that the entropy production can vary up to 3% in real cells, even when the temperature difference across the cell membrane is only approximately 1 K. We then decompose the total thermodynamic driving force into its thermal and chemical components and predict that the net flux of molecules transported by the molecular transporter can potentially go against the temperature gradient in the absence of a chemical driving force. Furthermore, we demonstrate that the simple application of the isothermal transition-state rate formula for each chemical reaction in terms of only the reactant’ temperature is not thermodynamically consistent. Therefore, we mathematically derive several revised reaction rate formulas that are not only consistent with the new thermodynamic relationship but also approximate the exact reaction rate better than Kramers’ rate formula under isothermal conditions.

  5. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    Snigireva, I; Snigirev, A

    2013-01-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals

  6. Electronic properties of mesoscopic graphene structures: Charge confinement and control of spin and charge transport

    Rozhkov, A.V., E-mail: arozhkov@gmail.co [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow (Russian Federation); Giavaras, G. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Yury P. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Freilikher, Valentin [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2011-06-15

    This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pn-junctions, pnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.

  7. Irreversible thermodynamics of dark energy on the entropy-corrected apparent horizon

    Karami, K; Sahraei, N [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, M, E-mail: KKarami@uok.ac.i, E-mail: mjamil@camp.nust.edu.p [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2010-10-15

    We study the irreversible (non-equilibrium) thermodynamics of the Friedmann-Robertson-Walker (FRW) universe containing only dark energy. Using the modified entropy-area relation that is motivated by loop quantum gravity, we calculate the entropy-corrected form of the apparent horizon of the FRW universe.

  8. Revisiting the Glansdorff–Prigogine criterion for stability within irreversible thermodynamics

    Maes, C.; Netočný, Karel

    2015-01-01

    Roč. 159, č. 6 (2015), s. 1286-1299 ISSN 0022-4715 R&D Projects: GA ČR GAP204/12/0897 Institutional support: RVO:68378271 Keywords : irreversible processes * thermodynamic stability * excess entropy production * nonequilibrium free energy * Clausius heat theorem Subject RIV: BE - Theoretical Physics Impact factor: 1.537, year: 2015

  9. A thermodynamic derivation of equations for dielectric-relaxation phenomena in anisotropic polarizable media

    Ciancio, V.; Kluitenberg, G.A.

    1990-01-01

    Using the general methods of non-equilibrium thermodynamics, a theory for anisotropic polarizable media in which dielectric relaxation phenomena occur is developed. Assuming that ii microscopic phenomena give rise to dielectric relaxation, the contributions of these phenomena to the macroscopic

  10. Thermodynamics of Radiation Modes

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  11. Continuum model of non-equilibrium solvation and solvent effect on ultra-fast processes

    Li Xiangyuan; Fu Kexiang; Zhu Quan

    2006-01-01

    In the past 50 years, non-equilibrium solvation theory for ultra-fast processes such as electron transfer and light absorption/emission has attracted particular interest. A great deal of research efforts was made in this area and various models which give reasonable qualitative descriptions for such as solvent reorganization energy in electron transfer and spectral shift in solution, were developed within the framework of continuous medium theory. In a series of publications by the authors, we clarified that the expression of the non-equilibrium electrostatic free energy that is at the dominant position of non-equilibrium solvation and serves as the basis of various models, however, was incorrectly formulated. In this work, the authors argue that reversible charging work integration was inappropriately applied in the past to an irreversible path linking the equilibrium or the non-equilibrium state. Because the step from the equilibrium state to the nonequilibrium state is factually thermodynamically irreversible, the conventional expression for non-equilibrium free energy that was deduced in different ways is unreasonable. Here the authors derive the non-equilibrium free energy to a quite different form according to Jackson integral formula. Such a difference throws doubts to the models including the famous Marcus two-sphere model for solvent reorganization energy of electron transfer and the Lippert-Mataga equation for spectral shift. By introducing the concept of 'spring energy' arising from medium polarizations, the energy constitution of the non-equilibrium state is highlighted. For a solute-solvent system, the authors separate the total electrostatic energy into different components: the self-energies of solute charge and polarized charge, the interaction energy between them and the 'spring energy' of the solvent polarization. With detailed reasoning and derivation, our formula for non-equilibrium free energy can be reached through different ways. Based on the

  12. Incorporation of coupled nonequilibrium chemistry into a two-dimensional nozzle code (SEAGULL)

    Ratliff, A. W.

    1979-01-01

    A two-dimensional multiple shock nozzle code (SEAGULL) was extended to include the effects of finite rate chemistry. The basic code that treats multiple shocks and contact surfaces was fully coupled with a generalized finite rate chemistry and vibrational energy exchange package. The modified code retains all of the original SEAGULL features plus the capability to treat chemical and vibrational nonequilibrium reactions. Any chemical and/or vibrational energy exchange mechanism can be handled as long as thermodynamic data and rate constants are available for all participating species.

  13. A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks.

    Fleming, R M T; Maes, C M; Saunders, M A; Ye, Y; Palsson, B Ø

    2012-01-07

    We derive a convex optimization problem on a steady-state nonequilibrium network of biochemical reactions, with the property that energy conservation and the second law of thermodynamics both hold at the problem solution. This suggests a new variational principle for biochemical networks that can be implemented in a computationally tractable manner. We derive the Lagrange dual of the optimization problem and use strong duality to demonstrate that a biochemical analogue of Tellegen's theorem holds at optimality. Each optimal flux is dependent on a free parameter that we relate to an elementary kinetic parameter when mass action kinetics is assumed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Implementation of a nonequilibrium condensation model in RELAP4/MOD7

    Fischer, S.R.; Chow, H.; Van Arsdall, G.

    1979-01-01

    RALAp, which is used to simulate the thermal hydraulic behavior of light water reactors subjected to various LOCA transients, is based on the assumption of thermodynamic equilibrium between liquid and vapor within fluid volumes. This assumption, while being appropriate for much of a LOCA transient, is not adequate during the ECC accumulator injection phase as determined by comparisons of code calculations with experimental data. To overcome this limitation, a general model to simulate the nonequilibrium phenomena associated with the mixing of subcooled water with saturated steam has been developed and is operational on preliminary versions of RELAP4/MOD7

  15. Linking Equilibrium and Nonequilibrium Dynamics in Glass-Forming Systems

    Mauro, John C.; Guo, Xiaoju; Smedskjær, Morten Mattrup

    , we show that the nonequilibrium glassy dynamics are intimately connected with the equilibrium liquid dynamics. This is accomplished by deriving a new functional form for the thermal history dependence of nonequilibrium viscosity, which is validated against experimental measurements of industrial...

  16. Mathematical foundations of thermodynamics

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  17. Nonideal plasmas as non-equilibrium media

    Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A

    2003-01-01

    Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations

  18. On the excess energy of nonequilibrium plasma

    Timofeev, A. V.

    2012-01-01

    The energy that can be released in plasma due to the onset of instability (the excess plasma energy) is estimated. Three potentially unstable plasma states are considered, namely, plasma with an anisotropic Maxwellian velocity distribution of plasma particles, plasma with a two-beam velocity distribution, and an inhomogeneous plasma in a magnetic field with a local Maxwellian velocity distribution. The excess energy can serve as a measure of the degree to which plasma is nonequilibrium. In particular, this quantity can be used to compare plasmas in different nonequilibrium states.

  19. Characterization of nonequilibrium states of trapped Bose–Einstein condensates

    Yukalov, V. I.; Novikov, A. N.; Bagnato, V. S.

    2018-06-01

    The generation of different nonequilibrium states in trapped Bose–Einstein condensates is studied by numerically solving the nonlinear Schrödinger equation. Inducing nonequilibrium states by shaking a trap creates the following states: weak nonequilibrium, the state of vortex germs, the state of vortex rings, the state of straight vortex lines, the state of deformed vortices, vortex turbulence, grain turbulence, and wave turbulence. A characterization of nonequilibrium states is advanced by introducing effective temperature, Fresnel number, and Mach number.

  20. Linear irreversible thermodynamics and Onsager reciprocity for information-driven engines

    Yamamoto, Shumpei; Ito, Sosuke; Shiraishi, Naoto; Sagawa, Takahiro

    2016-11-01

    In the recent progress in nonequilibrium thermodynamics, information has been recognized as a kind of thermodynamic resource that can drive thermodynamic current without any direct energy injection. In this paper, we establish the framework of linear irreversible thermodynamics for a broad class of autonomous information processing. In particular, we prove that the Onsager reciprocity holds true with information: The linear response matrix is well-defined and is shown symmetric with both of the information affinity and the conventional thermodynamic affinity. As an application, we derive a universal bound for the efficiency at maximum power for information-driven engines in the linear regime. Our result reveals the fundamental role of information flow in linear irreversible thermodynamics.

  1. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.

    Glavatskiy, K S

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  2. Thermodynamic tables to accompany Modern engineering thermodynamics

    Balmer, Robert T

    2011-01-01

    This booklet is provided at no extra charge with new copies of Balmer's Modern Engineering Thermodynamics. It contains two appendices. Appendix C contains 40 thermodynamic tables, and Appendix D consists of 6 thermodynamic charts. These charts and tables are provided in a separate booklet to give instructors the flexibility of allowing students to bring the tables into exams. The booklet may be purchased separately if needed.

  3. Classical and statistical thermodynamics

    Rizk, Hanna A

    2016-01-01

    This is a text book of thermodynamics for the student who seeks thorough training in science or engineering. Systematic and thorough treatment of the fundamental principles rather than presenting the large mass of facts has been stressed. The book includes some of the historical and humanistic background of thermodynamics, but without affecting the continuity of the analytical treatment. For a clearer and more profound understanding of thermodynamics this book is highly recommended. In this respect, the author believes that a sound grounding in classical thermodynamics is an essential prerequisite for the understanding of statistical thermodynamics. Such a book comprising the two wide branches of thermodynamics is in fact unprecedented. Being a written work dealing systematically with the two main branches of thermodynamics, namely classical thermodynamics and statistical thermodynamics, together with some important indexes under only one cover, this treatise is so eminently useful.

  4. Stochastic Independence as a Resource for Small-Scale Thermodynamics

    Lostaglio, Matteo; Mueller, Markus P.; Pastena, Michele

    It is well-known in thermodynamics that the creation of correlations costs work. It seems then a truism that if a thermodynamic transformation A --> B is impossible, so will be any transformation that in sending A to B also correlates among them some auxiliary systems C. Surprisingly, we show that this is not the case for non-equilibrium thermodynamics of microscopic systems. On the contrary, the creation of correlations greatly extends the set of accessible states, to the point that we can perform on individual systems and in a single shot any transformation that would otherwise be possible only if the number of systems involved was very large. We also show that one only ever needs to create a vanishingly small amount of correlations (as measured by mutual information) among a small number of auxiliary systems (never more than three). The many, severe constraints of microscopic thermodynamics are reduced to the sole requirement that the non-equilibrium free energy decreases in the transformation. This shows that, in principle, reliable extraction of work equal to the free energy of a system can be performed by microscopic engines.

  5. Stochastic Independence as a Resource in Small-Scale Thermodynamics

    Lostaglio, Matteo; Müller, Markus P.; Pastena, Michele

    2015-10-01

    It is well known in thermodynamics that the creation of correlations costs work. It seems then a truism that if a thermodynamic transformation A →B is impossible, so will be any transformation that in sending A to B also correlates among them some auxiliary systems C . Surprisingly, we show that this is not the case for nonequilibrium thermodynamics of microscopic systems. On the contrary, the creation of correlations greatly extends the set of accessible states, to the point that we can perform on individual systems and in a single shot any transformation that would otherwise be possible only if the number of systems involved was very large. We also show that one only ever needs to create a vanishingly small amount of correlations (as measured by mutual information) among a small number of auxiliary systems (never more than three). The many, severe constraints of microscopic thermodynamics are reduced to the sole requirement that the nonequilibrium free energy decreases in the transformation. This shows that, in principle, reliable extraction of work equal to the free energy of a system can be performed by microscopic engines.

  6. Quantum distribution function of nonequilibrium system

    Sogo, Kiyoshi; Fujimoto, Yasushi.

    1990-03-01

    A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)

  7. Nonequilibrium Molecular Energy Coupling and Conversion Mechanisms

    2016-08-28

    resolved temperature measurements, by pure rotational picosecond broadband Coherent Anti-Stokes Raman Spectroscopy ( CARS ), and kinetic modeling...rotational ps CARS for thermometry measurements in highly transient nonequilibrium plasmas. Rotational-translational temperatures are measured for time...primarily on localized flow heating on sub-acoustic time scale, and for assessing feasibility of high-speed aerodynamic flow control by vibrational

  8. Introduction to the nonequilibrium functional renormalization group

    Berges, J.; Mesterházy, D.

    2012-01-01

    In these lectures we introduce the functional renormalization group out of equilibrium. While in thermal equilibrium typically a Euclidean formulation is adequate, nonequilibrium properties require real-time descriptions. For quantum systems specified by a given density matrix at initial time, a generating functional for real-time correlation functions can be written down using the Schwinger-Keldysh closed time path. This can be used to construct a nonequilibrium functional renormalization group along similar lines as for Euclidean field theories in thermal equilibrium. Important differences include the absence of a fluctuation-dissipation relation for general out-of-equilibrium situations. The nonequilibrium renormalization group takes on a particularly simple form at a fixed point, where the corresponding scale-invariant system becomes independent of the details of the initial density matrix. We discuss some basic examples, for which we derive a hierarchy of fixed point solutions with increasing complexity from vacuum and thermal equilibrium to nonequilibrium. The latter solutions are then associated to the phenomenon of turbulence in quantum field theory.

  9. Non-equilibrium modelling of distillation

    Wesselingh, JA; Darton, R

    1997-01-01

    There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase

  10. Evolution and non-equilibrium physics

    Becker, Nikolaj; Sibani, Paolo

    2014-01-01

    We argue that the stochastic dynamics of interacting agents which replicate, mutate and die constitutes a non-equilibrium physical process akin to aging in complex materials. Specifically, our study uses extensive computer simulations of the Tangled Nature Model (TNM) of biological evolution...

  11. Entropy analysis on non-equilibrium two-phase flow models

    Karwat, H.; Ruan, Y.Q.

    1995-01-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships

  12. Numerical solutions of several reflected shock-wave flow fields with nonequilibrium chemical reactions

    Hanson, R. K.; Presley, L. L.; Williams, E. V.

    1972-01-01

    The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.

  13. Entropy analysis on non-equilibrium two-phase flow models

    Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  14. Tungsten Oxide Nanofibers Self-assembled Mesoscopic Microspheres as High-performance Electrodes for Supercapacitor

    Xu, Juan; Ding, Taotao; Wang, Jin; Zhang, Jun; Wang, Shuai; Chen, Changqing; Fang, Yanyan; Wu, Zhihao; Huo, Kaifu; Dai, Jiangnan

    2015-01-01

    Highlights: • WO 3 mesoscopic microspheres self-assembled by nanofibers. • Inorganic solvent H 2 O 2 play an integral role in the process of self-assembly. • WO 3 mesoscopic microspheres exhibit specific capacitance value of 797.05 F g −1 at a constant density of 0.5 A g −1 in 2 M H 2 SO 4 aqueous solution. • The WO 3 //AC asymmetric supercapacitor displays a maximum energy density of 97.61 Wh kg −1 and power density of 28.01 kW kg −1 . - Abstract: Mesoscopic WO 3 microspheres composed of self-assembly nanofibers were prepared by hydrothermal reaction of tungsten acid potassium and H 2 O 2 . The mesoscopic WO 3 microspheres offer desired porous properties and large effective active areas provided by intertwining nanofibers, thereby resulting in excellent supercapacitive properties due to facile electrolyte flow and fast reaction kinetics. In three electrode configuration, mesoscopic WO 3 microspheres exhibit specific capacitance value of 797.05 F g −1 at the current density of 0.5 A g −1 and excellent cycling stability without decay after 2000 cycles in 2 M H 2 SO 4 aqueous solution. These values are superior to other reported WO 3 composites. An asymmetric supercapacitor is constructed using the as-prepared WO 3 mesoscopic microspheres as the positive electrode and the activated carbon as the negative electrode, which displays excellent electrochemical performance with a maximum energy density of 97.61 Wh kg −1 and power density of 28.01 kW kg −1 . These impressive performances suggest that the mesoscopic WO 3 microspheres are promising electrode materials for supercapacitor

  15. Mesoscopic approach to modeling elastic-plastic polycrystalline material behaviour

    Kovac, M.; Cizelj, L.

    2001-01-01

    Extreme loadings during severe accident conditions might cause failure or rupture of the pressure boundary of a reactor coolant system. Reliable estimation of the extreme deformations can be crucial to determine the consequences of such an accident. One of important drawbacks of classical continuum mechanics is idealization of inhomogenous microstructure of materials. This paper discusses the mesoscopic approach to modeling the elastic-plastic behavior of a polycrystalline material. The main idea is to divide the continuum (e.g., polycrystalline aggregate) into a set of sub-continua (grains). The overall properties of the polycrystalline aggregate are therefore determined by the number of grains in the aggregate and properties of randomly shaped and oriented grains. The random grain structure is modeled with Voronoi tessellation and random orientations of crystal lattices are assumed. The elastic behavior of monocrystal grains is assumed to be anisotropic. Crystal plasticity is used to describe plastic response of monocrystal grains. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to two-dimensional models.(author)

  16. Quantum Coherence and Random Fields at Mesoscopic Scales

    Rosenbaum, Thomas F.

    2016-01-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  17. Aggregation of Frenkel defects under irradiation: a mesoscopic approach

    Soppe, W.; Kotomin, E.

    1993-08-01

    The radiation-induced aggregation of Frenkel defects in solids is studied in terms of a mesoscopic approach. The asymmetry in elastic interactions between mobile interstitials (I-I) and between interstitials and vacancies (I-V) plays a decisive role in the aggregation of similar defects. The conditions for defect aggregation are studied in detail for NaCl crystals. The critical dose rate for aggregation has been calculated as a function of the temperature as well as the aggregation rate as a function of temperature and dose rate. Furthermore, the role of deep traps (like impurities and di-vacancies), reducing the mobility of interstitials, and the role of dislocations serving as sinks for interstitials, are studied. The aggregation appears to reach a maximum at a distinct temperature which is in agreement both with experiment and the Jain-Lidiard theory. The model also predicts a shift of this maximum towards lower temperatures if the dose rate is decreased. The consequences of the model for the disposal of nuclear waste in rock salt formations, are briefly discussed. (orig.)

  18. Quantum Coherence and Random Fields at Mesoscopic Scales

    Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)

    2016-03-01

    We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.

  19. Insight or illusion? seeing inside the cell with mesoscopic simulations

    Shillcock, Julian C.

    2008-01-01

     the dynamics of spatially heterogeneous membranes and the crowded cytoplasmic environment to be followed at a modest computational cost. The price for such power is that the atomic detail of the constituents is much lower than in atomistic Molecular Dynamics simulations. We argue that this price is worth...... by spatial resolution and the speed of molecular rearrangements. The increase in computing power of the last few decades enables the construction of computational tools for observing cellular processes in silico. As experiments yield increasing amounts of data on the protein and lipid constituents...... of the cell, computer simulations parametrized using this data are beginning to allow models of cellular processes to be interrogated in ways unavailable in the laboratory. Mesoscopic simulations retain only those molecular features that are believed to be relevant to the processes of interest. This allows...

  20. Mechanical aspects of allotropic phase change at the mesoscopic scale

    Valance, St.

    2007-12-01

    The prediction of the mechanical state of steel structures submit to thermo-mechanical loading must take into account consequences of allotropic phase change. Indeed, phase change induce, at least for steels, a mechanism of TRansformation Induced Plasticity (TRIP) leading to irreversible deformation even for loading less than elastic yield limit. Homogenized analytical models generally fail to achieve a correct prediction for complex loading. In order to overcome these difficulties, we present a model achieving a sharper description of the phenomenon. The mesoscopic working scale we adopt here is the grain scale size. Hence, we consider that the behaviour of each phase is homogenous in the sense of continuous media mechanic, whereas the front is explicitly described. We work both experimentally and numerically. Experimentally, we designed a test facility enabling thermo mechanical loading of the sample under partial vacuum. Acquisition of sample surface while martensitic transformation is happening leads, under some hypothesis and thanks to Digital Image Correlation, to the partial identification of area affected by transformation. Numerically, the eXtended Finite Element Method is applied for weakly discontinuous displacement fields. Used of this method needs to numerically track the transformation front -discontinuity support. In that goal, based on level set method, we develop FEM numerical scheme enabling recognition and propagation of discontinuity support. Finally, this work is complete by an approach of driving forces introduced through Eshelbian mechanics which are dual of front velocity. (author)

  1. Non-equilibrium work distribution for interacting colloidal particles under friction

    Gomez-Solano, Juan Ruben; July, Christoph; Mehl, Jakob; Bechinger, Clemens

    2015-01-01

    We experimentally investigate the non-equilibrium steady-state distribution of the work done by an external force on a mesoscopic system with many coupled degrees of freedom: a colloidal crystal mechanically driven across a commensurate periodic light field. Since this system mimics the spatiotemporal dynamics of a crystalline surface moving on a corrugated substrate, our results show general properties of the work distribution for atomically flat surfaces undergoing friction. We address the role of several parameters which can influence the shape of the work distribution, e.g. the number of particles used to locally probe the properties of the system and the time interval to measure the work. We find that, when tuning the control parameters to induce particle depinning from the substrate, there is an abrupt change of the shape of the work distribution. While in the completely static and sliding friction regimes the work distribution is Gaussian, non-Gaussian tails show up due to the spatiotemporal heterogeneity of the particle dynamics during the transition between these two regimes. (paper)

  2. The effect of non-equilibrium metal cooling on the interstellar medium

    Capelo, Pedro R.; Bovino, Stefano; Lupi, Alessandro; Schleicher, Dominik R. G.; Grassi, Tommaso

    2018-04-01

    By using a novel interface between the modern smoothed particle hydrodynamics code GASOLINE2 and the chemistry package KROME, we follow the hydrodynamical and chemical evolution of an isolated galaxy. In order to assess the relevance of different physical parameters and prescriptions, we constructed a suite of 10 simulations, in which we vary the chemical network (primordial and metal species), how metal cooling is modelled (non-equilibrium versus equilibrium; optically thin versus thick approximation), the initial gas metallicity (from 10 to 100 per cent solar), and how molecular hydrogen forms on dust. This is the first work in which metal injection from supernovae, turbulent metal diffusion, and a metal network with non-equilibrium metal cooling are self-consistently included in a galaxy simulation. We find that properly modelling the chemical evolution of several metal species and the corresponding non-equilibrium metal cooling has important effects on the thermodynamics of the gas, the chemical abundances, and the appearance of the galaxy: the gas is typically warmer, has a larger molecular-gas mass fraction, and has a smoother disc. We also conclude that, at relatively high metallicity, the choice of molecular-hydrogen formation rates on dust is not crucial. Moreover, we confirm that a higher initial metallicity produces a colder gas and a larger fraction of molecular gas, with the low-metallicity simulation best matching the observed molecular Kennicutt-Schmidt relation. Finally, our simulations agree quite well with observations that link star formation rate to metal emission lines.

  3. Self-organized crystallization mechanism of non-equilibrium 2:1 type phyllosilicate systems

    2002-01-01

    The crystallization mechanism of 2:1 type regular interstratified minerals is investigated in views of non-equilibrium thermodynamics. The structural chemistry of relative layers and their interstratified combinations is analyzed and six kinds of non-equilibrium chemical systems have been induced. The universal laws of chemical reactions which happened in the interface region of these non-equilibrium systems have been summarized. From these laws, two reaction systems crystallizing out Tosudite and Rectorite respectively have been recovered. The kinetic model of chemical reactions has been developed by means of the mass conservation law. The oscillatory solution showing regular interstratified features has also been obtained numerically. These results indicate that the difference in original chemical composition among systems can affect the chemical connotation of reactants, intermediate products and resultants, and the flow chart of chemical reaction, but cannot change their crystallization behavior of network-forming cations, bigger and smaller network-modifying cations during crystallization. Hence, their kinetic model reflecting the universal crystallization law of these cations is just the same. These systems will crystallize out regular interstratified minerals at suitable parameters, which always exist as domain with nanometer-sized in thickness and can be called the self-organized ordering structure.

  4. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  5. Quantum thermodynamics of the resonant-level model with driven system-bath coupling

    Haughian, Patrick; Esposito, Massimiliano; Schmidt, Thomas L.

    2018-02-01

    We study nonequilibrium thermodynamics in a fermionic resonant-level model with arbitrary coupling strength to a fermionic bath, taking the wide-band limit. In contrast to previous theories, we consider a system where both the level energy and the coupling strength depend explicitly on time. We find that, even in this generalized model, consistent thermodynamic laws can be obtained, up to the second order in the drive speed, by splitting the coupling energy symmetrically between system and bath. We define observables for the system energy, work, heat, and entropy, and calculate them using nonequilibrium Green's functions. We find that the observables fulfill the laws of thermodynamics, and connect smoothly to the known equilibrium results.

  6. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  7. Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)

    Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato

    2008-10-01

    Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of

  8. Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law

    Greffet, Jean-Jacques; Bouchon, Patrick; Brucoli, Giovanni; Marquier, François

    2018-04-01

    The goal of this paper is to introduce a local form of Kirchhoff law to model light emission by nonequilibrium bodies. While absorption by a finite-size body is usually described using the absorption cross section, we introduce a local absorption rate per unit volume and also a local thermal emission rate per unit volume. Their equality is a local form of Kirchhoff law. We revisit the derivation of this equality and extend it to situations with subsystems in local thermodynamic equilibrium but not in equilibrium between them, such as hot electrons in a metal or electrons with different Fermi levels in the conduction band and in the valence band of a semiconductor. This form of Kirchhoff law can be used to model (i) thermal emission by nonisothermal finite-size bodies, (ii) thermal emission by bodies with carriers at different temperatures, and (iii) spontaneous emission by semiconductors under optical (photoluminescence) or electrical pumping (electroluminescence). Finally, we show that the reciprocity relation connecting light-emitting diodes and photovoltaic cells derived by Rau is a particular case of the local Kirchhoff law.

  9. Light Emission by Nonequilibrium Bodies: Local Kirchhoff Law

    Jean-Jacques Greffet

    2018-04-01

    Full Text Available The goal of this paper is to introduce a local form of Kirchhoff law to model light emission by nonequilibrium bodies. While absorption by a finite-size body is usually described using the absorption cross section, we introduce a local absorption rate per unit volume and also a local thermal emission rate per unit volume. Their equality is a local form of Kirchhoff law. We revisit the derivation of this equality and extend it to situations with subsystems in local thermodynamic equilibrium but not in equilibrium between them, such as hot electrons in a metal or electrons with different Fermi levels in the conduction band and in the valence band of a semiconductor. This form of Kirchhoff law can be used to model (i thermal emission by nonisothermal finite-size bodies, (ii thermal emission by bodies with carriers at different temperatures, and (iii spontaneous emission by semiconductors under optical (photoluminescence or electrical pumping (electroluminescence. Finally, we show that the reciprocity relation connecting light-emitting diodes and photovoltaic cells derived by Rau is a particular case of the local Kirchhoff law.

  10. Generalization of the nuclear equation of state to nonequilibrium states

    Neise, L.W.

    1990-10-01

    In this thesis it was shown, how the thermodynamic terms can be generalized, so that they are also still applicable in nonequilibrium states. Thereby the method with a generalized grand canonical potential presented here is also applicable to two mutually steadily streaming through parts of nuclear matter. The momentum anisotropy is described by a parameter which enters the equation of state quite similarly as for instance the temperature. While now in a purely position-dependent microscopical interaction a momentum anisotropy only means an additional additive kinetic energy, momentum-dependent forces, as they play a role in nucleus-nucleus collisions, lead to complicated connections, which were analyzed in this thesis. An important advance of the procedure presented here is the relativistic formulation, which allows to study also large momentum anisotropies respectively large relative flow velocities. It could be shown that the formation of delta matter is forced by a momentum anisotropy. Especially interesting is the influence of a momentum anisotropy on the phase transition between hadronic matter and a quark-gluon plasma. (orig./HSI) [de

  11. A calculational scheme for nonequilibrium quantum field system

    Yamanaka, Y.

    1991-01-01

    A new calculational scheme is presented for interacting nonequi-librium time dependent quantum field systems within the framework of thermo field dynamics (TFD), taking account of the fact that the thermal vacuum should go through many inequivalent state vector spaces. A para-meter parametrizing various state vector spaces has to be introduced and plays a role of new time-variable. Thus we have double-time TFD. The 2 requirements in this double-time TFD are imposed to establish a quasi-particle picture to get an attainable scheme of perturbative calculation : the existence of the spectral representation for the full propagator and the diagonalization of the quasi-particle Hamiltonian. The 1st condition turns out to amount to the existence of local-time tempera-ture. The 2nd condition leads to the master equation for the number density. This formalism is applied to high-energy heavy ion collision process. The very fundamental question is then how the thermodynamical properties such as heat and temperature appear in such an isolated system. This double-time TFD, suitable for isolated thermal systems of quantum fields, can handle the situation from the beginning of the process. (author). 24 refs.; 1 fig

  12. Equilibrium and non-equilibrium metal-ceramic interfaces

    Gao, Y.; Merkle, K.L.

    1992-01-01

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO 2 ) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO 2 system, ZrO 2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO 2 phase. It appears that formation of the cubic ZrO 2 is facilitated by alignment with the Au matrix. Most of the ZrO 2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO 2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This paper reports that this indicates that there may be a relatively strong bond between MgO and Au

  13. Role of Sink Density in Nonequilibrium Chemical Redistribution in Alloys

    Martínez, Enrique; Senninger, Oriane; Caro, Alfredo; Soisson, Frédéric; Nastar, Maylise; Uberuaga, Blas P.

    2018-03-01

    Nonequilibrium chemical redistribution in open systems submitted to external forces, such as particle irradiation, leads to changes in the structural properties of the material, potentially driving the system to failure. Such redistribution is controlled by the complex interplay between the production of point defects, atomic transport rates, and the sink character of the microstructure. In this work, we analyze this interplay by means of a kinetic Monte Carlo (KMC) framework with an underlying atomistic model for the Fe-Cr model alloy to study the effect of ideal defect sinks on Cr concentration profiles, with a particular focus on the role of interface density. We observe that the amount of segregation decreases linearly with decreasing interface spacing. Within the framework of the thermodynamics of irreversible processes, a general analytical model is derived and assessed against the KMC simulations to elucidate the structure-property relationship of this system. Interestingly, in the kinetic regime where elimination of point defects at sinks is dominant over bulk recombination, the solute segregation does not directly depend on the dose rate but only on the density of sinks. This model provides new insight into the design of microstructures that mitigate chemical redistribution and improve radiation tolerance.

  14. Work extraction and thermodynamics for individual quantum systems

    Skrzypczyk, Paul; Short, Anthony J.; Popescu, Sandu

    2014-06-01

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a ‘weight’ that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.

  15. Optimal protocols and optimal transport in stochastic thermodynamics.

    Aurell, Erik; Mejía-Monasterio, Carlos; Muratore-Ginanneschi, Paolo

    2011-06-24

    Thermodynamics of small systems has become an important field of statistical physics. Such systems are driven out of equilibrium by a control, and the question is naturally posed how such a control can be optimized. We show that optimization problems in small system thermodynamics are solved by (deterministic) optimal transport, for which very efficient numerical methods have been developed, and of which there are applications in cosmology, fluid mechanics, logistics, and many other fields. We show, in particular, that minimizing expected heat released or work done during a nonequilibrium transition in finite time is solved by the Burgers equation and mass transport by the Burgers velocity field. Our contribution hence considerably extends the range of solvable optimization problems in small system thermodynamics.

  16. Stochastic thermodynamics and entropy production of chemical reaction systems

    Tomé, Tânia; de Oliveira, Mário J.

    2018-06-01

    We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end, we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states and on appropriate definitions of entropy and entropy production. The system is in contact with a heat reservoir and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlögl reaction models.

  17. Thermodynamics in Einstein's thought

    Klein, M.J.

    1983-01-01

    The role of the thermodynamical approach in the Einstein's scientific work is analyzed. The Einstein's development of a notion about statistical fluctuations of thermodynamical systems that leads him to discovery of corpuscular-wave dualism is retraced

  18. Non-Equilibrium Relations for Bounded Rational Decision-Making in Changing Environments

    Jordi Grau-Moya

    2017-12-01

    Full Text Available Living organisms from single cells to humans need to adapt continuously to respond to changes in their environment. The process of behavioural adaptation can be thought of as improving decision-making performance according to some utility function. Here, we consider an abstract model of organisms as decision-makers with limited information-processing resources that trade off between maximization of utility and computational costs measured by a relative entropy, in a similar fashion to thermodynamic systems undergoing isothermal transformations. Such systems minimize the free energy to reach equilibrium states that balance internal energy and entropic cost. When there is a fast change in the environment, these systems evolve in a non-equilibrium fashion because they are unable to follow the path of equilibrium distributions. Here, we apply concepts from non-equilibrium thermodynamics to characterize decision-makers that adapt to changing environments under the assumption that the temporal evolution of the utility function is externally driven and does not depend on the decision-maker’s action. This allows one to quantify performance loss due to imperfect adaptation in a general manner and, additionally, to find relations for decision-making similar to Crooks’ fluctuation theorem and Jarzynski’s equality. We provide simulations of several exemplary decision and inference problems in the discrete and continuous domains to illustrate the new relations.

  19. Heat and thermodynamics

    Saxena, A K

    2014-01-01

    Heat and thermodynamics aims to serve as a textbook for Physics, Chemistry and Engineering students. The book covers basic ideas of Heat and Thermodynamics, Kinetic Theory and Transport Phenomena, Real Gases, Liquafaction and Production and Measurement of very Low Temperatures, The First Law of Thermodynamics, The Second and Third Laws of Thermodynamics and Heat Engines and Black Body Radiation. KEY FEATURES Emphasis on concepts Contains 145 illustrations (drawings), 9 Tables and 48 solved examples At the end of chapter exercises and objective questions

  20. Self-organization of mesoscopic silver wires by electrochemical deposition

    Sheng Zhong

    2014-08-01

    Full Text Available Long, straight mesoscale silver wires have been fabricated from AgNO3 electrolyte via electrodeposition without the help of templates, additives, and surfactants. Although the wire growth speed is very fast due to growth under non-equilibrium conditions, the wire morphology is regular and uniform in diameter. Structural studies reveal that the wires are single-crystalline, with the [112] direction as the growth direction. A possible growth mechanism is suggested. Auger depth profile measurements show that the wires are stable against oxidation under ambient conditions. This unique system provides a convenient way for the study of self-organization in electrochemical environments as well as for the fabrication of highly-ordered, single-crystalline metal nanowires.

  1. Equilibrium thermodynamics in modified gravitational theories

    Bamba, Kazuharu; Geng, C.-Q.; Tsujikawa, Shinji

    2010-01-01

    We show that it is possible to obtain a picture of equilibrium thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density f(R,φ,X), where R is the Ricci scalar and X is the kinetic energy of a scalar field φ. This comes from a suitable definition of an energy-momentum tensor of the 'dark' component that respects to a local energy conservation in the Jordan frame. In this framework the horizon entropy S corresponding to equilibrium thermodynamics is equal to a quarter of the horizon area A in units of gravitational constant G, as in Einstein gravity. For a flat cosmological background with a decreasing Hubble parameter, S globally increases with time, as it happens for viable f(R) inflation and dark energy models. We also show that the equilibrium description in terms of the horizon entropy S is convenient because it takes into account the contribution of both the horizon entropy S in non-equilibrium thermodynamics and an entropy production term.

  2. Spacetime thermodynamics in the presence of torsion

    Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele

    2017-12-01

    It was shown by Jacobson in 1995 that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. With the aim to understand if such thermodynamical description is an intrinsic property of gravitation, many attempts have been made so far to generalize this treatment to a broader class of gravitational theories. Here we consider the case of the Einstein-Cartan theory as a prototype of theories with nonpropagating torsion. In doing so, we study the properties of Killing horizons in the presence of torsion, establish the notion of local causal horizon in Riemann-Cartan spacetimes, and derive the generalized Raychaudhuri equation for these kinds of geometries. Then, starting with the entropy that can be associated to these local causal horizons, we derive the Einstein-Cartan equation by implementing the Clausius equation. We outline two ways of proceeding with the derivation depending on whether we take torsion as a geometric field or as a matter field. In both cases we need to add internal entropy production terms to the Clausius equation as the shear and twist cannot be taken to be 0 a priori for our setup. This fact implies the necessity of a nonequilibrium thermodynamics treatment for the local causal horizon. Furthermore, it implies that a nonzero twist at the horizon in general contributes to the Hartle-Hawking tidal heating for black holes with possible implications for future observations.

  3. Advanced classical thermodynamics

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  4. Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale

    Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, Andrei V.; Grigoriev, S. V.

    2014-01-01

    The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale

  5. Mesoscopic dynamics of diffusion-influenced enzyme kinetics.

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-28

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t(-1/2) and t(-3/2) power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  6. Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics

    Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.

    2012-12-01

    Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.

  7. Mesoscopic dynamics of diffusion-influenced enzyme kinetics

    Chen, Jiang-Xing; Kapral, Raymond

    2011-01-01

    A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t^{-1/2} and t^{-3/2} power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.

  8. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-01-01

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure

  9. Exact results in nonequilibrium statistical mechanics: Formalism and applications in chemical kinetics and single-molecule free energy estimation

    Adib, Artur B.

    In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.

  10. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  11. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  12. Josephson junction in the quantum mesoscopic electric circuits with charge discreteness

    Pahlavani, H.

    2018-04-01

    A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.

  13. Effect of mesoscopic fluctuations on equation of state in cluster-forming systems

    A. Ciach

    2012-06-01

    Full Text Available Equation of state for systems with particles self-assembling into aggregates is derived within a mesoscopic theory combining density functional and field-theoretic approaches. We focus on the effect of mesoscopic fluctuations in the disordered phase. The pressure - volume fraction isotherms are calculated explicitly for two forms of the short-range attraction long-range repulsion potential. Mesoscopic fluctuations lead to an increased pressure in each case, except for very small volume fractions. When large clusters are formed, the mechanical instability of the system is present at much higher temperature than found in mean-field approximation. In this case phase separation competes with the formation of periodic phases (colloidal crystals. In the case of small clusters, no mechanical instability associated with separation into dilute and dense phases appears.

  14. Many-body effects in the mesoscopic x-ray edge problem

    Hentschel, Martina; Roeder, Georg; Ullmo, Denis

    2007-01-01

    Many-body phenomena, a key interest in the investigation of bulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray exciton of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozieres-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case. (author)

  15. Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems

    Christopher Jarzynski

    2017-01-01

    Full Text Available We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E. Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton’s equations in the full phase space.

  16. Nonequilibrium recombination after a curved shock wave

    Wen, Chihyung; Hornung, Hans

    2010-02-01

    The effect of nonequilibrium recombination after a curved two-dimensional shock wave in a hypervelocity dissociating flow of an inviscid Lighthill-Freeman gas is considered. An analytical solution is obtained with the effective shock values derived by Hornung (1976) [5] and the assumption that the flow is ‘quasi-frozen’ after a thin dissociating layer near the shock. The solution gives the expression of dissociation fraction as a function of temperature on a streamline. A rule of thumb can then be provided to check the validity of binary scaling for experimental conditions and a tool to determine the limiting streamline that delineates the validity zone of binary scaling. The effects on the nonequilibrium chemical reaction of the large difference in free stream temperature between free-piston shock tunnel and equivalent flight conditions are discussed. Numerical examples are presented and the results are compared with solutions obtained with two-dimensional Euler equations using the code of Candler (1988) [10].

  17. Introduction to applied thermodynamics

    Helsdon, R M; Walker, G E

    1965-01-01

    Introduction to Applied Thermodynamics is an introductory text on applied thermodynamics and covers topics ranging from energy and temperature to reversibility and entropy, the first and second laws of thermodynamics, and the properties of ideal gases. Standard air cycles and the thermodynamic properties of pure substances are also discussed, together with gas compressors, combustion, and psychrometry. This volume is comprised of 16 chapters and begins with an overview of the concept of energy as well as the macroscopic and molecular approaches to thermodynamics. The following chapters focus o

  18. Twenty lectures on thermodynamics

    Buchdahl, H A

    2013-01-01

    Twenty Lectures on Thermodynamics is a course of lectures, parts of which the author has given various times over the last few years. The book gives the readers a bird's eye view of phenomenological and statistical thermodynamics. The book covers many areas in thermodynamics such as states and transition; adiabatic isolation; irreversibility; the first, second, third and Zeroth laws of thermodynamics; entropy and entropy law; the idea of the application of thermodynamics; pseudo-states; the quantum-static al canonical and grand canonical ensembles; and semi-classical gaseous systems. The text

  19. Lattice Boltzmann approach for complex nonequilibrium flows.

    Montessori, A; Prestininzi, P; La Rocca, M; Succi, S

    2015-10-01

    We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.

  20. Nonequilibrium Phase Transitions Associated with DNA Replication

    2011-02-11

    polymerases) catalyzing the growth of a DNA primer strand (the nascent chain of nucleotides complementary to the template strand) based on the Watson ...the fraction (error rate) of monomers for which y, where y is the correct Watson - Crick complementary base of , can be obtained by ¼ X...Nonequilibrium Phase Transitions Associated with DNA Replication Hyung-June Woo* and Anders Wallqvist Biotechnology High Performance Computing

  1. Nonequilibrium statistical averages and thermo field dynamics

    Marinaro, A.; Scarpetta, Q.

    1984-01-01

    An extension of thermo field dynamics is proposed, which permits the computation of nonequilibrium statistical averages. The Brownian motion of a quantum oscillator is treated as an example. In conclusion it is pointed out that the procedure proposed to computation of time-dependent statistical average gives the correct two-point Green function for the damped oscillator. A simple extension can be used to compute two-point Green functions of free particles

  2. Passing from Mesoscopy to Macroscopy. The Mesoscopic Parameter \\bar k

    Maslov, V. P.

    2018-01-01

    In previous papers of the author it was shown that, depending on the hidden parameter, purely quantum problems behave like classical ones. In the present paper, it is shown that the Bose-Einstein and the Fermi-Dirac distributions, which until now were regarded as dealing with quantum particles, describe, for the appropriate values of the hidden parameter, the macroscopic thermodynamics of classical molecules.

  3. Rational extended thermodynamics

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  4. Mesoscopic fluctuations in the critical current in InAs-coupled Josephson junctions

    Takayanagi, Hideaki; Hansen, J.B.; Nitta, Junsaku

    1994-01-01

    Mesoscopic fluctuations were confirmed for the critical current in a p-type InAs-coupled Josephson junction. The critical current was measured as a function of the gate voltage corresponding to the change in the Fermi energy. The critical current showed a mesoscopic fluctuation and its behavior was the same as that of the conductance measured at the same time in both the weak and strong localization regimes. The magnitude and the typical period of the fluctuation are discussed and compared to theoretical predictions. ((orig.))

  5. Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters

    Grä tzel, Carole; Zakeeruddin, Shaik M.

    2013-01-01

    Mesoscopic solar cells are one of the most promising photovoltaic technologies among third generation photovoltaics due to their low cost and high efficiency. The morphology of wide-band semiconductors, sensitized with molecular or nanosized light harvesters, used as electron collectors contribute substantially to the device performance. Recent developments in the use of organic-inorganic layer structured perovskites as light absorbers and as electron or hole transport materials allows reduction in the thickness of photoanodes to the submicron level and have raised the power conversion efficiency of solid state mesoscopic solar cells above the 10% level.

  6. Analysis of the elastic behaviour of nonclassical nonlinear mesoscopic materials in quasi-static experiments

    Ruffino, E.; Scalerandi, M.

    2000-01-01

    As discovered by recent quasi-static and dynamic resonance experiments, the classical nonlinear theory fails in describing the hysteretic behaviour of nonlinear mesoscopic materials like rocks, concrete, etc. The paper applies the local interaction simulation approach (LISA) for studying such kind of nonclassical nonlinearity. To this purpose, in the LISA treatment of ultrasonic wave propagation has been included a phenomenological model, based on the PM space approach, of the local mesoscopic features of rocks and other materials with localized damages. A quantitative comparison of simulation and experimental results in quasi-static experiments is also presented

  7. Probabilistic simulation of mesoscopic “Schrödinger cat” states

    Opanchuk, B.; Rosales-Zárate, L.; Reid, M.D.; Drummond, P.D., E-mail: pdrummond@swin.edu.au

    2014-02-01

    We carry out probabilistic phase-space sampling of mesoscopic Schrödinger cat quantum states, demonstrating multipartite Bell violations for up to 60 qubits. We use states similar to those generated in photonic and ion-trap experiments. These results show that mesoscopic quantum superpositions are directly accessible to probabilistic sampling, and we analyze the properties of sampling errors. We also demonstrate dynamical simulation of super-decoherence in ion traps. Our computer simulations can be either exponentially faster or slower than experiment, depending on the correlations measured.

  8. Quantum thermodynamics for driven dissipative bosonic systems

    Ochoa, Maicol A.; Zimbovskaya, Natalya; Nitzan, Abraham

    2018-02-01

    We investigate two prototypical dissipative bosonic systems under slow driving and arbitrary system-bath coupling strength, recovering their dynamic evolution as well as the heat and work rates, and we verify that thermodynamic laws are respected. Specifically, we look at the damped harmonic oscillator and the damped two-level system. For the former, we study independently the slow time-dependent perturbation in the oscillator frequency and in the coupling strength. For the latter, we concentrate on the slow modulation of the energy gap between the two levels. Importantly, we are able to find the entropy production rates for each case without explicitly defining nonequilibrium extensions for the entropy functional. This analysis also permits the definition of phenomenological friction coefficients in terms of structural properties of the system-bath composite.

  9. Thermodynamics of a stochastic twin elevator.

    Kumar, Niraj; Van den Broeck, Christian; Esposito, Massimiliano; Lindenberg, Katja

    2011-11-01

    We study the nonequilibrium thermodynamics of a single particle with two available energy levels, in contact with a classical (Maxwell-Boltzmann) or quantum (Bose-Einstein) heat bath. The particle can undergo transitions between the levels via thermal activation or deactivation. The energy levels are alternately raised at a given rate regardless of occupation by the particle, maintaining a fixed energy gap equal to ε between them. We explicitly calculate the work, heat, and entropy production rates. The efficiency in both the classical and the quantum case goes to a limit between 100 and 50% that depends on the relative rates of particle transitions and level elevation. In the classical problem we explicitly find the large deviation functions for heat, work, and internal energy.

  10. Dynamics and Thermodynamics of Molecular Machines

    Golubeva, Natalia

    2014-01-01

    to their microscopic size, molecular motors are governed by principles fundamentally different from those describing the operation of man-made motors such as car engines. In this dissertation the dynamic and thermodynamic properties of molecular machines are studied using the tools of nonequilibrium statistical......Molecular machines, or molecular motors, are small biophysical devices that perform a variety of essential metabolic processes such as DNA replication, protein synthesis and intracellular transport. Typically, these machines operate by converting chemical energy into motion and mechanical work. Due...... mechanics. The first part focuses on noninteracting molecular machines described by a paradigmatic continuum model with the aim of comparing and contrasting such a description to the one offered by the widely used discrete models. Many molecular motors, for example, kinesin involved in cellular cargo...

  11. Molecular thermodynamics for cell biology as taught with boxes.

    Mayorga, Luis S; López, María José; Becker, Wayne M

    2012-01-01

    Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be taught to rationalize why these very ordered systems proliferate actively all over our planet in seeming contradiction to the second law of thermodynamics. We propose a model consisting of boxes with different shapes that contain small balls that are in constant motion due to a stream of air blowing from below. This is a simple macroscopic system that can be easily visualized by students and that can be understood as mimicking the behavior of a set of molecules exchanging energy. With such boxes, the basic concepts of entropy, enthalpy, and free energy can be taught while reinforcing a molecular understanding of the concepts and stressing the stochastic nature of the thermodynamic laws. In addition, time-related concepts, such as reaction rates and activation energy, can be readily visualized. Moreover, the boxes provide an intuitive way to introduce the role in cellular organization of "information" and Maxwell's demons operating under nonequilibrium conditions.

  12. Molecular Thermodynamics for Cell Biology as Taught with Boxes

    Mayorga, Luis S.; López, María José; Becker, Wayne M.

    2012-01-01

    Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be taught to rationalize why these very ordered systems proliferate actively all over our planet in seeming contradiction to the second law of thermodynamics. We propose a model consisting of boxes with different shapes that contain small balls that are in constant motion due to a stream of air blowing from below. This is a simple macroscopic system that can be easily visualized by students and that can be understood as mimicking the behavior of a set of molecules exchanging energy. With such boxes, the basic concepts of entropy, enthalpy, and free energy can be taught while reinforcing a molecular understanding of the concepts and stressing the stochastic nature of the thermodynamic laws. In addition, time-related concepts, such as reaction rates and activation energy, can be readily visualized. Moreover, the boxes provide an intuitive way to introduce the role in cellular organization of “information” and Maxwell's demons operating under nonequilibrium conditions. PMID:22383615

  13. Mean-Field Critical Behavior and Ergodicity Break in a Nonequilibrium One-Dimensional Rsos Growth Model

    Mendonça, J. Ricardo G.

    We investigate the nonequilibrium roughening transition of a one-dimensional restricted solid-on-solid model by directly sampling the stationary probability density of a suitable order parameter as the surface adsorption rate varies. The shapes of the probability density histograms suggest a typical Ginzburg-Landau scenario for the phase transition of the model, and estimates of the "magnetic" exponent seem to confirm its mean-field critical behavior. We also found that the flipping times between the metastable phases of the model scale exponentially with the system size, signaling the breaking of ergodicity in the thermodynamic limit. Incidentally, we discovered that a closely related model not considered before also displays a phase transition with the same critical behavior as the original model. Our results support the usefulness of off-critical histogram techniques in the investigation of nonequilibrium phase transitions. We also briefly discuss in the appendix a good and simple pseudo-random number generator used in our simulations.

  14. Step-wise pulling protocols for non-equilibrium dynamics

    Ngo, Van Anh

    The fundamental laws of thermodynamics and statistical mechanics, and the deeper understandings of quantum mechanics have been rebuilt in recent years. It is partly because of the increasing power of computing resources nowadays, that allow shedding direct insights into the connections among the thermodynamics laws, statistical nature of our world, and the concepts of quantum mechanics, which have not yet been understood. But mostly, the most important reason, also the ultimate goal, is to understand the mechanisms, statistics and dynamics of biological systems, whose prevailing non-equilibrium processes violate the fundamental laws of thermodynamics, deviate from statistical mechanics, and finally complicate quantum effects. I believe that investigations of the fundamental laws of non-equilibrium dynamics will be a frontier research for at least several more decades. One of the fundamental laws was first discovered in 1997 by Jarzynski, so-called Jarzynski's Equality. Since then, different proofs, alternative descriptions of Jarzynski's Equality, and its further developments and applications have been quickly accumulated. My understandings, developments and applications of an alternative theory on Jarzynski's Equality form the bulk of this dissertation. The core of my theory is based on stepwise pulling protocols, which provide deeper insight into how fluctuations of reaction coordinates contribute to free-energy changes along a reaction pathway. We find that the most optimal pathways, having the largest contribution to free-energy changes, follow the principle of detailed balance. This is a glimpse of why the principle of detailed balance appears so powerful for sampling the most probable statistics of events. In a further development on Jarzynski's Equality, I have been trying to use it in the formalism of diagonal entropy to propose a way to extract useful thermodynamic quantities such temperature, work and free-energy profiles from far

  15. An introduction to equilibrium thermodynamics

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  16. Thermodynamics for scientists and engineers

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  17. Thermodynamics of Bioreactions.

    Held, Christoph; Sadowski, Gabriele

    2016-06-07

    Thermodynamic principles have been applied to enzyme-catalyzed reactions since the beginning of the 1930s in an attempt to understand metabolic pathways. Currently, thermodynamics is also applied to the design and analysis of biotechnological processes. The key thermodynamic quantity is the Gibbs energy of reaction, which must be negative for a reaction to occur spontaneously. However, the application of thermodynamic feasibility studies sometimes yields positive Gibbs energies of reaction even for reactions that are known to occur spontaneously, such as glycolysis. This article reviews the application of thermodynamics in enzyme-catalyzed reactions. It summarizes the basic thermodynamic relationships used for describing the Gibbs energy of reaction and also refers to the nonuniform application of these relationships in the literature. The review summarizes state-of-the-art approaches that describe the influence of temperature, pH, electrolytes, solvents, and concentrations of reacting agents on the Gibbs energy of reaction and, therefore, on the feasibility and yield of biological reactions.

  18. Small-angle scattering study of mesoscopic structures in charged gel and their evolution on dehydration

    Sugiyama, Masaaki; Annaka, Masahiko; Hara, Kazuhiro

    2003-01-01

    Mesoscopic structures, with length scales similar to10(2) Angstrom, were investigated by small-angle X-ray and neutron scattering (SAXS and SANS) in several N-isopropylacrylamide-sodium acrylate (NIPA-SA) copolymeric hydrogels with varying [NIPA]/[SA] ratios and water contents. The SAXS experimen...

  19. Mesoscopic Numerical Computation of Compressive Strength and Damage Mechanism of Rubber Concrete

    Z. H. Xie

    2015-01-01

    Full Text Available Evaluations of both macroscopic and mesoscopic strengths of materials have been the topic of a great deal of recent research. This paper presents the results of a study, based on the Walraven equation of the production of a mesoscopic random aggregate structure containing various rubber contents and aggregate sizes. On a mesoscopic scale, the damage mechanism in the rubber concrete and the effects of the rubber content and aggregate-mortar interface on the rubber concrete’s compressive resistance property were studied. The results indicate that the random aggregate structural model very closely approximates the experimental results in terms of the fracture distribution and damage characteristics under uniaxial compression. The aggregate-mortar interface mechanical properties have a substantial impact on the test sample’s strength and fracture distribution. As the rubber content increases, the compressive strength and elastic modulus of the test sample decrease proportionally. This paper presents graphics of the entire process from fracture propagation to structural failure of the test piece by means of the mesoscopic finite-element method, which provides a theoretical reference for studying the damage mechanism in rubber concrete and performing parametric calculations.

  20. Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions

    Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it

    2017-05-15

    Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.