Mesoscopic models of biological membranes
DEFF Research Database (Denmark)
Venturoli, M.; Sperotto, Maria Maddalena; Kranenburg, M.
2006-01-01
Phospholipids are the main components of biological membranes and dissolved in water these molecules self-assemble into closed structures, of which bilayers are the most relevant from a biological point of view. Lipid bilayers are often used, both in experimental and by theoretical investigations...... to coarse grain a biological membrane. The conclusion of this comparison is that there can be many valid different strategies, but that the results obtained by the various mesoscopic models are surprisingly consistent. A second objective of this review is to illustrate how mesoscopic models can be used...
Mesoscopic model for binary fluids
Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.
2017-10-01
We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.
Mesoscopic and continuum modelling of angiogenesis
Spill, F.
2014-03-11
Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.
Mesoscopic and continuum modelling of angiogenesis
Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.
2014-01-01
Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.
Systematic parameter inference in stochastic mesoscopic modeling
Energy Technology Data Exchange (ETDEWEB)
Lei, Huan; Yang, Xiu [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Zhen [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)
2017-02-01
We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.
Mesoscopic model of actin-based propulsion.
Directory of Open Access Journals (Sweden)
Jie Zhu
Full Text Available Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.
Mesoscopic analysis of drying shrinkage damage in a cementitious material
DEFF Research Database (Denmark)
Moonen, P.; Pedersen, R.R.; Simone, A.
2008-01-01
Concrete and cement-based materials exhibit shrinkage when exposed to drying. Structural effects and inhomogeneity of material properties adverse free shrinkage, hereby inducing stress concentrations and possibly damage. In this contribution, the magnitude of shrinkage- induced damage during...... temperatures are considered: 35 °C and 50 °C. Significantly more micro-damage and higher internal stresses are found for the latter, revealing the importance of drying shrinkage damage, even at laboratory scale....
Lattice Boltzmann model capable of mesoscopic vorticity computation
Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping
2017-11-01
It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.
A novel grid-based mesoscopic model for evacuation dynamics
Shi, Meng; Lee, Eric Wai Ming; Ma, Yi
2018-05-01
This study presents a novel grid-based mesoscopic model for evacuation dynamics. In this model, the evacuation space is discretised into larger cells than those used in microscopic models. This approach directly computes the dynamic changes crowd densities in cells over the course of an evacuation. The density flow is driven by the density-speed correlation. The computation is faster than in traditional cellular automata evacuation models which determine density by computing the movements of each pedestrian. To demonstrate the feasibility of this model, we apply it to a series of practical scenarios and conduct a parameter sensitivity study of the effect of changes in time step δ. The simulation results show that within the valid range of δ, changing δ has only a minor impact on the simulation. The model also makes it possible to directly acquire key information such as bottleneck areas from a time-varied dynamic density map, even when a relatively large time step is adopted. We use the commercial software AnyLogic to evaluate the model. The result shows that the mesoscopic model is more efficient than the microscopic model and provides more in-situ details (e.g., pedestrian movement pattern) than the macroscopic models.
Flexible histone tails in a new mesoscopic oligonucleosome model.
Arya, Gaurav; Zhang, Qing; Schlick, Tamar
2006-07-01
We describe a new mesoscopic model of oligonucleosomes that incorporates flexible histone tails. The nucleosome cores are modeled using the discrete surface-charge optimization model, which treats the nucleosome as an electrostatic surface represented by hundreds of point charges; the linker DNAs are treated using a discrete elastic chain model; and the histone tails are modeled using a bead/chain hydrodynamic approach as chains of connected beads where each bead represents five protein residues. Appropriate charges and force fields are assigned to each histone chain so as to reproduce the electrostatic potential, structure, and dynamics of the corresponding atomistic histone tails at different salt conditions. The dynamics of resulting oligonucleosomes at different sizes and varying salt concentrations are simulated by Brownian dynamics with complete hydrodynamic interactions. The analyses demonstrate that the new mesoscopic model reproduces experimental results better than its predecessors, which modeled histone tails as rigid entities. In particular, our model with flexible histone tails: correctly accounts for salt-dependent conformational changes in the histone tails; yields the experimentally obtained values of histone-tail mediated core/core attraction energies; and considers the partial shielding of electrostatic repulsion between DNA linkers as a result of the spatial distribution of histone tails. These effects are crucial for regulating chromatin structure but are absent or improperly treated in models with rigid histone tails. The development of this model of oligonucleosomes thus opens new avenues for studying the role of histone tails and their variants in mediating gene expression through modulation of chromatin structure.
Mesoscopic modelling and simulation of soft matter.
Schiller, Ulf D; Krüger, Timm; Henrich, Oliver
2017-12-20
The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.
Collective excitability in a mesoscopic neuronal model of epileptic activity
Jedynak, Maciej; Pons, Antonio J.; Garcia-Ojalvo, Jordi
2018-01-01
At the mesoscopic scale, the brain can be understood as a collection of interacting neuronal oscillators, but the extent to which its sustained activity is due to coupling among brain areas is still unclear. Here we address this issue in a simplified situation by examining the effect of coupling between two cortical columns described via Jansen-Rit neural mass models. Our results show that coupling between the two neuronal populations gives rise to stochastic initiations of sustained collective activity, which can be interpreted as epileptic events. For large enough coupling strengths, termination of these events results mainly from the emergence of synchronization between the columns, and thus it is controlled by coupling instead of noise. Stochastic triggering and noise-independent durations are characteristic of excitable dynamics, and thus we interpret our results in terms of collective excitability.
Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition
Czech Academy of Sciences Publication Activity Database
Benešová, Barbora; Kružík, Martin; Roubíček, Tomáš
2013-01-01
Roč. 64, Č. 1 (2013), s. 1-28 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GA106/09/1573; GA ČR GAP201/10/0357 Grant - others:GA ČR(CZ) GA106/08/1397; GA MŠk(CZ) LC06052 Program:GA; LC Institutional support: RVO:67985556 Keywords : ferro-para-magnetism * evolution * thermodynamics Subject RIV: BA - General Mathematics; BA - General Mathematics (UT-L) Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-thermodynamically consistent mesoscopic model of the ferro-paramagnetic transition.pdf
Mesoscopic approach to modeling elastic-plastic polycrystalline material behaviour
International Nuclear Information System (INIS)
Kovac, M.; Cizelj, L.
2001-01-01
Extreme loadings during severe accident conditions might cause failure or rupture of the pressure boundary of a reactor coolant system. Reliable estimation of the extreme deformations can be crucial to determine the consequences of such an accident. One of important drawbacks of classical continuum mechanics is idealization of inhomogenous microstructure of materials. This paper discusses the mesoscopic approach to modeling the elastic-plastic behavior of a polycrystalline material. The main idea is to divide the continuum (e.g., polycrystalline aggregate) into a set of sub-continua (grains). The overall properties of the polycrystalline aggregate are therefore determined by the number of grains in the aggregate and properties of randomly shaped and oriented grains. The random grain structure is modeled with Voronoi tessellation and random orientations of crystal lattices are assumed. The elastic behavior of monocrystal grains is assumed to be anisotropic. Crystal plasticity is used to describe plastic response of monocrystal grains. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to two-dimensional models.(author)
Mesoscopic kinetic Monte Carlo modeling of organic photovoltaic device characteristics
Kimber, Robin G. E.; Wright, Edward N.; O'Kane, Simon E. J.; Walker, Alison B.; Blakesley, James C.
2012-12-01
Measured mobility and current-voltage characteristics of single layer and photovoltaic (PV) devices composed of poly{9,9-dioctylfluorene-co-bis[N,N'-(4-butylphenyl)]bis(N,N'-phenyl-1,4-phenylene)diamine} (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) have been reproduced by a mesoscopic model employing the kinetic Monte Carlo (KMC) approach. Our aim is to show how to avoid the uncertainties common in electrical transport models arising from the need to fit a large number of parameters when little information is available, for example, a single current-voltage curve. Here, simulation parameters are derived from a series of measurements using a self-consistent “building-blocks” approach, starting from data on the simplest systems. We found that site energies show disorder and that correlations in the site energies and a distribution of deep traps must be included in order to reproduce measured charge mobility-field curves at low charge densities in bulk PFB and F8BT. The parameter set from the mobility-field curves reproduces the unipolar current in single layers of PFB and F8BT and allows us to deduce charge injection barriers. Finally, by combining these disorder descriptions and injection barriers with an optical model, the external quantum efficiency and current densities of blend and bilayer organic PV devices can be successfully reproduced across a voltage range encompassing reverse and forward bias, with the recombination rate the only parameter to be fitted, found to be 1×107 s-1. These findings demonstrate an approach that removes some of the arbitrariness present in transport models of organic devices, which validates the KMC as an accurate description of organic optoelectronic systems, and provides information on the microscopic origins of the device behavior.
Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.
Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui
2017-09-26
Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.
Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.
2015-10-01
An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit
International Nuclear Information System (INIS)
Nguyen, T.D.
2010-01-01
This Ph.D. thesis aims at characterising and modeling the mechanical behavior of concrete at the mesoscopic scale. The more general scope of this study is the development of mesoscopic model for concrete; this model is to represent the concrete as a heterogeneous medium, taking into account the difference between aggregate and cement paste respecting the grading curve, the model parameters describe the mechanical and thermal behavior of cement paste and aggregates. We are interested in understanding the concrete behaviour, considered one structure. A program of random granular structure valid in 2D and 3D has been developed. This program is interfaced with the Finite Element code CAST3M in order to compute the numerical simulations. A method for numerical representation of the inclusions of concrete was also developed and validated by projection of the geometry on the shape functions, thus eliminating the problems of meshing that made the representation of all aggregates skeleton almost impossible, particularly in 3D. Firstly, the model is studied in two-dimensional and three-dimensional in order to optimize the geometrical model of the inner structure of concrete in terms of the meshing strategy and the smallest size of the aggregate to be taken into account. The results of the 2D and 3D model are analyzed and compared in the case of uniaxial tension and uniaxial compression. The model used is an isotropic unilateral damage model from Fichant [Fichant et al., 1999]. The model allows to simulate both the macroscopic behavior but also with the local studies of the distribution of crack and crack opening. The model shows interesting results on the transition from diffuse to localized damage and is able to reproduce dilatancy in compression. Finally, the mesoscopic model is applied to three simulations: the calculation of the permeability of cracked concrete; the simulation of the hydration of concrete at early age and finally the scale effect illustrated by bending
Mesoscopic Modeling and Simulation of the Dynamic Tensile Behavior of Concrete
DEFF Research Database (Denmark)
Pedersen, Ronnie; Simone, A.; Sluys, L. J.
2013-01-01
of the most significant constitutive model parameters on global and local response. Different distributions and shapes of the aggregate grains are tested. Three model parameter sets, corresponding to different moisture conditions, are employed in the analysis of two specimens in which the applied loading rate......We present a two-dimensional mesoscopic finite element model for simulating the rate- and moisture-dependent material behavior of concrete. The idealized mesostructure consists of aggregate grains surrounded by an interfacial transition zone embedded in the bulk material. We examine the influence...
Zhao, Lifei; Li, Zhen; Caswell, Bruce; Ouyang, Jie; Karniadakis, George Em
2018-06-01
We simulate complex fluids by means of an on-the-fly coupling of the bulk rheology to the underlying microstructure dynamics. In particular, a continuum model of polymeric fluids is constructed without a pre-specified constitutive relation, but instead it is actively learned from mesoscopic simulations where the dynamics of polymer chains is explicitly computed. To couple the bulk rheology of polymeric fluids and the microscale dynamics of polymer chains, the continuum approach (based on the finite volume method) provides the transient flow field as inputs for the (mesoscopic) dissipative particle dynamics (DPD), and in turn DPD returns an effective constitutive relation to close the continuum equations. In this multiscale modeling procedure, we employ an active learning strategy based on Gaussian process regression (GPR) to minimize the number of expensive DPD simulations, where adaptively selected DPD simulations are performed only as necessary. Numerical experiments are carried out for flow past a circular cylinder of a non-Newtonian fluid, modeled at the mesoscopic level by bead-spring chains. The results show that only five DPD simulations are required to achieve an effective closure of the continuum equations at Reynolds number Re = 10. Furthermore, when Re is increased to 100, only one additional DPD simulation is required for constructing an extended GPR-informed model closure. Compared to traditional message-passing multiscale approaches, applying an active learning scheme to multiscale modeling of non-Newtonian fluids can significantly increase the computational efficiency. Although the method demonstrated here obtains only a local viscosity from the polymer dynamics, it can be extended to other multiscale models of complex fluids whose macro-rheology is unknown.
Long-time integration methods for mesoscopic models of pattern-forming systems
International Nuclear Information System (INIS)
Abukhdeir, Nasser Mohieddin; Vlachos, Dionisios G.; Katsoulakis, Markos; Plexousakis, Michael
2011-01-01
Spectral methods for simulation of a mesoscopic diffusion model of surface pattern formation are evaluated for long simulation times. Backwards-differencing time-integration, coupled with an underlying Newton-Krylov nonlinear solver (SUNDIALS-CVODE), is found to substantially accelerate simulations, without the typical requirement of preconditioning. Quasi-equilibrium simulations of patterned phases predicted by the model are shown to agree well with linear stability analysis. Simulation results of the effect of repulsive particle-particle interactions on pattern relaxation time and short/long-range order are discussed.
A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.
Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L
2016-11-05
The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.
A Mesoscopic Model for Protein-Protein Interactions in Solution
Lund, Mikael; Jönsson, Bo
2003-01-01
Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote aggregation. Here we present a computational model describing interactions between protein molecules in solution. The calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear ma...
Theory and modeling of spin-transport on the microscopic and the mesoscopic scale
International Nuclear Information System (INIS)
Stickler, B.
2013-01-01
It is the aim of this thesis to contribute to the description of spin dynamics in solid state systems. In the first part of this work we present a full quantum treatment of spin-coherent transport in halfmetal / semiconductor CrAs / GaAs heterostructures. The theoretical approach is based on the ab-initio determination of the electronic structures of the materials involved and on the calculation of the band offset. These ingredients are in the second step cast into an effective nearest-neighbor tight-binding Hamiltonian. Finally, in the third step, we investigate by means of the non-equilibrium Green's function technique the current which flows through such a heterostructure if a finite bias is applied. With the help of this strategy it is possible to identify CrAs / GaAs heterostructures as probable candidates for all-semiconductor room-temperature spin-filtering devices, which operate without externally applied magnetic fields. In the second part of this thesis we derive a linear semiclassical spinorial Boltzmann equation. For many (mesoscopic) device geometries a full quantum treatment of transport dynamics may not be necessary and may not be feasible with state-of-the-art techniques. The derivation is based on the quantum mechanical description of a composite quantum system by means of von Neumann's equation. The Born-Markov limit allows us to derive a Lindblad master equation for the reduced system plus non-Markovian corrections. Finally, we perform a Wigner transformation and take the semiclassical limit in order to obtain a spinorial Boltzmann equation, suitable for the description of spin transport on the mesoscopic scale. It has to be emphasized that the spinorial Boltzmann equation constitutes the missing link between a full quantum treatment and heuristically introduced mesoscopic models for spin transport in solid state systems. (author) [de
Mesoscopic model of temporal and spatial heterogeneity in aging colloids
DEFF Research Database (Denmark)
Becker, Nikolaj; Sibani, Paolo; Boettcher, Stefan
2014-01-01
We develop a simple and effective description of the dynamics of dense hard sphere colloids in the aging regime deep in the glassy phase. Our description complements the many efforts to understand the onset of jamming in low density colloids, whose dynamics is still time-homogeneous. Based...... scattering function and particle mean-square displacements for jammed colloidal systems, and we predict a growth for the peak of the χ4 mobility correlation function that is logarithmic in waiting-time. At the same time, our model suggests a novel unified description for the irreversible aging dynamics...
Mesoscopic segregation of excitation and inhibition in a brain network model.
Directory of Open Access Journals (Sweden)
Daniel Malagarriga
2015-02-01
Full Text Available Neurons in the brain are known to operate under a careful balance of excitation and inhibition, which maintains neural microcircuits within the proper operational range. How this balance is played out at the mesoscopic level of neuronal populations is, however, less clear. In order to address this issue, here we use a coupled neural mass model to study computationally the dynamics of a network of cortical macrocolumns operating in a partially synchronized, irregular regime. The topology of the network is heterogeneous, with a few of the nodes acting as connector hubs while the rest are relatively poorly connected. Our results show that in this type of mesoscopic network excitation and inhibition spontaneously segregate, with some columns acting mainly in an excitatory manner while some others have predominantly an inhibitory effect on their neighbors. We characterize the conditions under which this segregation arises, and relate the character of the different columns with their topological role within the network. In particular, we show that the connector hubs are preferentially inhibitory, the more so the larger the node's connectivity. These results suggest a potential mesoscale organization of the excitation-inhibition balance in brain networks.
Modeling elasto-plastic behavior of polycrystalline grain structure of steels at mesoscopic level
International Nuclear Information System (INIS)
Kovac, Marko; Cizelj, Leon
2005-01-01
The multiscale model is proposed to explicitly account for the inhomogeneous structure of polycrystalline materials. Grains and grain boundaries are modeled explicitly using Voronoi tessellation. The constitutive model of crystal grains utilizes anisotropic elasticity and crystal plasticity. Commercially available finite element code is applied to solve the boundary value problem defined at the macroscopic scale. No assumption regarding the distribution of the mesoscopic strain and stress fields is used, apart the finite element discretization. The proposed model is then used to estimate the minimum size of polycrystalline aggregate of selected reactor pressure vessel steel (22 NiMoCr 3 7), above which it can be considered macroscopically homogeneous. Elastic and rate-independent plastic deformation modes are considered. The results are validated by the experimental and simulation results from the literature
Besson, Ugo; Viennot, Laurence
2004-01-01
This article examines the didactic suitability of introducing models at an intermediate (i.e. mesoscopic) scale in teaching certain subjects, at an early stage. The design and evaluation of two short sequences based on this rationale will be outlined: one bears on propulsion by solid friction, the other on fluid statics in the presence of gravity.…
Li, Shu-Bin; Cao, Dan-Ni; Dang, Wen-Xiu; Zhang, Lin
As a new cross-discipline, the complexity science has penetrated into every field of economy and society. With the arrival of big data, the research of the complexity science has reached its summit again. In recent years, it offers a new perspective for traffic control by using complex networks theory. The interaction course of various kinds of information in traffic system forms a huge complex system. A new mesoscopic traffic flow model is improved with variable speed limit (VSL), and the simulation process is designed, which is based on the complex networks theory combined with the proposed model. This paper studies effect of VSL on the dynamic traffic flow, and then analyzes the optimal control strategy of VSL in different network topologies. The conclusion of this research is meaningful to put forward some reasonable transportation plan and develop effective traffic management and control measures to help the department of traffic management.
Indian Academy of Sciences (India)
In this paper we present a qualitative outlook of mesoscopic biology where the typical length scale is of the order of nanometers and the energy scales comparable to thermal energy. Novel biomolecular machines, governed by coded information at the level of DNA and proteins, operate at these length scales in biological ...
Mesoscopic modeling and parameter estimation of a lithium-ion battery based on LiFePO4/graphite
Jokar, Ali; Désilets, Martin; Lacroix, Marcel; Zaghib, Karim
2018-03-01
A novel numerical model for simulating the behavior of lithium-ion batteries based on LiFePO4(LFP)/graphite is presented. The model is based on the modified Single Particle Model (SPM) coupled to a mesoscopic approach for the LFP electrode. The model comprises one representative spherical particle as the graphite electrode, and N LFP units as the positive electrode. All the SPM equations are retained to model the negative electrode performance. The mesoscopic model rests on non-equilibrium thermodynamic conditions and uses a non-monotonic open circuit potential for each unit. A parameter estimation study is also carried out to identify all the parameters needed for the model. The unknown parameters are the solid diffusion coefficient of the negative electrode (Ds,n), reaction-rate constant of the negative electrode (Kn), negative and positive electrode porosity (εn&εn), initial State-Of-Charge of the negative electrode (SOCn,0), initial partial composition of the LFP units (yk,0), minimum and maximum resistance of the LFP units (Rmin&Rmax), and solution resistance (Rcell). The results show that the mesoscopic model can simulate successfully the electrochemical behavior of lithium-ion batteries at low and high charge/discharge rates. The model also describes adequately the lithiation/delithiation of the LFP particles, however, it is computationally expensive compared to macro-based models.
Revisiting the mesoscopic Termonia and Smith model for deformation of polymers
International Nuclear Information System (INIS)
Krishna Reddy, B; Basu, Sumit; Estevez, Rafael
2008-01-01
Mesoscopic models for polymers have the potential to link macromolecular properties with the mechanical behaviour without being too expensive computationally. An interesting, popular and rather simple model to this end was proposed by Termonia and Smith (1987 Macromolecules 20 835–8). In this model the macromolecular ensemble is viewed as a collection of two-dimensional self-avoiding random walks on a regular lattice whose lattice points represent entanglements. The load is borne by members representing van der Waals bonds as well as macromolecular strands between two entanglement points. Model polymers simulated via this model exhibited remarkable qualitative similarity with real polymers with respect to their molecular weight, entanglement spacing, strain rate and temperature dependence. In this work, we revisit this model and present a detailed reformulation within the framework of a finite deformation finite element scheme. The physical origins of each of the parameters in the model are investigated and inherent assumptions in the model which contribute to its success are critically probed
Mesoscopic modeling of DNA denaturation rates: Sequence dependence and experimental comparison
Energy Technology Data Exchange (ETDEWEB)
Dahlen, Oda, E-mail: oda.dahlen@ntnu.no; Erp, Titus S. van, E-mail: titus.van.erp@ntnu.no [Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Realfagbygget D3-117 7491 Trondheim (Norway)
2015-06-21
Using rare event simulation techniques, we calculated DNA denaturation rate constants for a range of sequences and temperatures for the Peyrard-Bishop-Dauxois (PBD) model with two different parameter sets. We studied a larger variety of sequences compared to previous studies that only consider DNA homopolymers and DNA sequences containing an equal amount of weak AT- and strong GC-base pairs. Our results show that, contrary to previous findings, an even distribution of the strong GC-base pairs does not always result in the fastest possible denaturation. In addition, we applied an adaptation of the PBD model to study hairpin denaturation for which experimental data are available. This is the first quantitative study in which dynamical results from the mesoscopic PBD model have been compared with experiments. Our results show that present parameterized models, although giving good results regarding thermodynamic properties, overestimate denaturation rates by orders of magnitude. We believe that our dynamical approach is, therefore, an important tool for verifying DNA models and for developing next generation models that have higher predictive power than present ones.
Mesoscopic effects in an agent-based bargaining model in regular lattices.
Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo
2011-03-09
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.
Mesoscopic effects in an agent-based bargaining model in regular lattices.
Directory of Open Access Journals (Sweden)
David J Poza
Full Text Available The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.
Mesoscopic modeling of structural and thermodynamic properties of fluids confined by rough surfaces.
Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Gama Goicochea, Armando
2015-10-21
The interfacial and structural properties of fluids confined by surfaces of different geometries are studied at the mesoscopic scale using dissipative particle dynamics simulations in the grand canonical ensemble. The structure of the surfaces is modeled by a simple function, which allows us to simulate readily different types of surfaces through the choice of three parameters only. The fluids we have modeled are confined either by two smooth surfaces or by symmetrically and asymmetrically structured walls. We calculate structural and thermodynamic properties such as the density, temperature and pressure profiles, as well as the interfacial tension profiles for each case and find that a structural order-disorder phase transition occurs as the degree of surface roughness increases. However, the magnitude of the interfacial tension is insensitive to the structuring of the surfaces and depends solely on the magnitude of the solid-fluid interaction. These results are important for modern nanotechnology applications, such as in the enhanced recovery of oil, and in the design of porous materials with specifically tailored properties.
Mesoscopic modeling of the response of human dental enamel to mid-infrared radiation
Vila Verde, Ana; Ramos, Marta; Stoneham, A. M.
2006-03-01
Ablation of human dental enamel, a composite biomaterial with water pores, is of significant importance in minimally invasive laser dentistry but progress in the area is hampered by the lack of optimal laser parameters. We use mesoscopic finite element models of this material to study its response to mid-infrared radiation. Our results indicate that the cost-effective, off-the-shelf CO2 laser at λ = 10.6 μm may in fact ablate enamel precisely, reproducibly and with limited unwanted side effects such as cracking or heating, provided that a pulse duration of 10 μs is used. Furthermore, our results also indicate that the Er:YAG laser (λ = 2.94 μm), currently popular for laser dentistry, may in fact cause unwanted deep cracking in the enamel when regions with unusually high water content are irradiated, and also provide an explanation for the large range of ablation threshold values observed for this material. The model may be easily adapted to study the response of any composite material to infrared radiation and thus may be useful for the scientific community.
The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm
Zhang, Jinhua; Zhang, Yadong; Wang, Guikun; Fang, Qin
2018-06-01
The watershed algorithm has been used widely in the x-ray computed tomography (XCT) image segmentation. It provides a transformation defined on a grayscale image and finds the lines that separate adjacent images. However, distortion occurs in developing a mesoscopic model of metallic foam based on XCT image data. The cells are oversegmented at some events when the traditional watershed algorithm is used. The improved watershed algorithm presented in this paper can avoid oversegmentation and is composed of three steps. Firstly, it finds all of the connected cells and identifies the junctions of the corresponding cell walls. Secondly, the image segmentation is conducted to separate the adjacent cells. It generates the lost cell walls between the adjacent cells. Optimization is then performed on the segmentation image. Thirdly, this improved algorithm is validated when it is compared with the image of the metallic foam, which shows that it can avoid the image segmentation distortion. A mesoscopic model of metallic foam is thus formed based on the improved algorithm, and the mesoscopic characteristics of the metallic foam, such as cell size, volume and shape, are identified and analyzed.
Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram.
Dafilis, Mathew P; Frascoli, Federico; Cadusch, Peter J; Liley, David T J
2013-06-01
The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.
Wang, XinJie; Wu, YanQing; Huang, FengLei
2017-01-05
A mesoscopic framework is developed to quantify the thermal-mechanical-chemical responses of polymer-bonded explosive (PBX) samples under impact loading. A mesoscopic reactive model is developed for the cyclotetramethylenetetranitramine (HMX) crystal, which incorporates nonlinear elasticity, crystal plasticity, and temperature-dependent chemical reaction. The proposed model was implemented in the finite element code ABAQUS by the user subroutine VUMAT. A series of three-dimensional mesoscale models were constructed and calculated under low-strength impact loading scenarios from 100m/s to 600m/s where only the first wave transit is studied. Crystal anisotropy and microstructural heterogeneity are responsible for the nonuniform stress field and fluctuations of the stress wave front. At a critical impact velocity (≥300m/s), a chemical reaction is triggered because the temperature contributed by the volumetric and plastic works is sufficiently high. Physical quantities, including stress, temperature, and extent of reaction, are homogenized from those across the microstructure at the mesoscale to compare with macroscale measurements, which will advance the continuum-level models. The framework presented in this study has important implications in understanding hot spot ignition processes and improving predictive capabilities in energetic materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Statewide mesoscopic simulation for Wyoming.
2013-10-01
This study developed a mesoscopic simulator which is capable of representing both city-level and statewide roadway : networks. The key feature of such models are the integration of (i) a traffic flow model which is efficient enough to : scale to larg...
International Nuclear Information System (INIS)
Nastac, Laurentiu; El Kaddah, Nagy
2012-01-01
It is well known that casting at low superheat has a strong influence on the solidification morphology and macro- and microstructures of the cast alloy. This paper describes a stochastic mesoscopic solidification model for predicting the grain structure and segregation in cast alloy at low superheat. This model was applied to predict the globular solidification morphology and size as well as solute redistribution of Al in cast Mg AZ31B alloy at superheat of 5°C produced by the Magnetic Suspension Melting (MSM) process, which is an integrated containerless induction melting and casting process. The castings produced at this low superheat have fine globular grain structure, with an average grain size of 80 μm, which is about 3 times smaller than that obtained by conventional casting techniques. The stochastic model was found to reasonably predict the observed grain structure and Al microsegregation. This makes the model a useful tool for controlling the structure of cast magnesium alloys.
Directory of Open Access Journals (Sweden)
Abbas Hosseini
2017-10-01
Full Text Available A mesoscopic analytical model of wrinkling of Plain-Woven Composite Preforms (PWCPs under the bias extension test is presented, based on a new instability analysis. The analysis is aimed to facilitate a better understanding of the nature of wrinkle formation in woven fabrics caused by large in-plane shear, while it accounts for the effect of fabric and process parameters on the onset of wrinkling. To this end, the mechanism of wrinkle formation in PWCPs in mesoscale is simplified and an equivalent structure composed of bars and different types of springs is proposed, mimicking the behavior of a representative PWCP element at the post-locking state. The parameters of this equivalent structure are derived based on geometric and mechanical characteristics of the PWCP. The principle of minimum total potential energy is employed to formluate the model, and experimental validation is carried out to reveal the effectiveness of the derived wrinkling prediction equation.
Modeling of electrical and mesoscopic circuits at quantum nanoscale from heat momentum operator
El-Nabulsi, Rami Ahmad
2018-04-01
We develop a new method to study electrical circuits at quantum nanoscale by introducing a heat momentum operator which reproduces quantum effects similar to those obtained in Suykens's nonlocal-in-time kinetic energy approach for the case of reversible motion. The series expansion of the heat momentum operator is similar to the momentum operator obtained in the framework of minimal length phenomenologies characterized by the deformation of Heisenberg algebra. The quantization of both LC and mesoscopic circuits revealed a number of motivating features like the emergence of a generalized uncertainty relation and a minimal charge similar to those obtained in the framework of minimal length theories. Additional features were obtained and discussed accordingly.
Dzwinel, Witold; Yuen, David A
2002-03-15
The dispersion of the agglomerating fluid process involving colloids has been investigated at the mesoscale level by a discrete particle approach--the hybrid fluid-particle model (FPM). Dynamical processes occurring in the granulation of colloidal agglomerate in solvents are severely influenced by coupling between the dispersed microstructures and the global flow. On the mesoscale this coupling is further exacerbated by thermal fluctuations, particle-particle interactions between colloidal beds, and hydrodynamic interactions between colloidal beds and the solvent. Using the method of FPM, we have tackled the problem of dispersion of a colloidal slab being accelerated in a long box filled with a fluid. Our results show that the average size of the agglomerated fragments decreases with increasing shearing rate gamma, according to the power law A x gamma(k), where k is around 2. For larger values of gamma, the mean size of the agglomerate S(avg) increases slowly with gamma from the collisions between the aggregates and the longitudinal stretching induced by the flow. The proportionality constant A increases exponentially with the scaling factor of the attractive forces acting between the colloidal particles. The value of A shows a rather weak dependence on the solvent viscosity. But A increases proportionally with the scaling factor of the colloid-solvent dissipative interactions. Similar type of dependence can be found for the mixing induced by Rayleigh-Taylor instabilities involving the colloidal agglomerate and the solvent. Three types of fragmentation structures can be identified, which are called rupture, erosion, and shatter. They generate very complex structures with multiresolution character. The aggregation of colloidal beds is formed by the collisions between aggregates, which are influenced by the flow or by the cohesive forces for small dispersion energies. These results may be applied to enhance our understanding concerning the nonlinear complex
Model Stickiness in Spray Drying
DEFF Research Database (Denmark)
Petersen, Thomas
only slightly and then typically moved slightly away before either stopping with contact (sticky) or bouncing with no contact (non-sticky). Sticky particles had a large apparent contact angle, similar to what would be expected for a liquid with poor wetting properties. The velocity did not seem...... to change this much, although slight deformation was seen when the impact velocity was at the highest used values. The phenomenon did not appear to change noticeable when the droplet was dried in a high relative humidity environment. The qualitative difference observable between Teon and stainless steel...... was very limited. On Stainless steel the droplet seemed to wet slightly more after the initial impact while the contact area was constant for Teon. Modelling work was carried out to help understand the phenomenon, but also to investigate how the impact scaled for particle size. This was done using...
Mesoscopic pairing without superconductivity
Hofmann, Johannes
2017-12-01
We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.
Dry dock gate stability modelling
Oktoberty; Widiyanto; Sasono, E. J.; Pramono, S.; Wandono, A. T.
2018-03-01
The development of marine transportation needs in Indonesia increasingly opens national shipyard business opportunities to provide shipbuilding services to the shipbuilding vessels. That emphasizes the stability of prime. The ship's decking door becomes an integral part of the efficient place and the specification of the use of the asset of its operational ease. This study aims to test the stability of Dry Dock gate with the length of 35.4 meters using Maxsurf and Hydromax in analyzing the calculation were in its assessment using interval per 500 mm length so that it can get detail data toward longitudinal and transverse such as studying Ship planning in general. The test result shows dry dock gate meets IMO standard with ballast construction containing 54% and 68% and using fix ballast can produce GMt 1,924 m, tide height 11,357m. The GMt value indicates dry dick gate can be stable and firmly erect at the base of the mouth dry dock. When empty ballast produces GMt 0.996 which means dry dock date is stable, but can easily be torn down. The condition can be used during dry dock gate treatment.
Applications of mesoscopic physics
International Nuclear Information System (INIS)
Feng, Shechao.
1993-01-01
Research activities in the area ''applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves'' are briefly summarized. The main thrust in fundamental research is in the general areas of mesoscopic effects in disordered semiconductors and metals and the related field of applications of mesoscopic physics to the subject matter of classical wave propagation through disordered scattering media. Specific topics are Fabry-Perot interferometer with disorder: correlations and light localization; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; and transmission and reflection correlations of second harmonic waves in nonlinear random media. Research in applied physics centered on far infrared photon-assisted transport through quantum point contact devices and photon migration distributions in multiple scattering media. 7 refs
MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS
Directory of Open Access Journals (Sweden)
Daniele Penteado Rosa
2015-06-01
Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol
cellPACK: a virtual mesoscope to model and visualize structural systems biology.
Johnson, Graham T; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S; Sanner, Michel F; Olson, Arthur J
2015-01-01
cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10-100 nm) between molecular and cellular biology scales. cellPACK's modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive three-dimensional models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is available as open-source code, with tools for validation of models and with 'recipes' and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org/.
New mesoscopic constitutive model for deformation of pearlitic steels up to moderate strains
Alkorta, J.; Martínez-Esnaola, J. M.; de Jaeger, P.; Gil Sevillano, J.
2017-07-01
A new constitutive model for deformation of pearlitic steels has been developed that describes the mechanical behaviour and microstructural evolution of lamellar multi-colony pearlite. The model, a two-phase continuum model, considers the plastic anisotropy of ferrite derived from its lamellar structure but ignores any anisotropy associated with cementite and does not consider the crystal structure of either constituent. The resulting plastic constitutive equation takes into account a dependence on both the pearlitic spacing (arising from the confined slip of dislocations in the lamellae) and on strengthening from the evolving intra-lamellar dislocation density. A Kocks-Mecking strain hardening/recovery model is used for the lamellar ferrite, whereas perfect-plastic behaviour is assumed for cementite. The model naturally captures the microstructural evolution and the internal micro-stresses developed due to the different mechanical behaviour of both phases. The model is also able to describe the lamellar evolution (orientation and interlamellar spacing) with good accuracy. The role of plastic anisotropy in the ferritic phase has also been studied, and the results show that anisotropy has an important impact on both microstructural evolution and strengthening of heavily drawn wires.
Spin tunnelling in mesoscopic systems
Garg, Anupam
2001-02-01
We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.
Mesoscopic modeling of failure and damage-induced anisotropy in brick masonry
Massart, T.J.; Peerlings, R.H.J.; Geers, M.G.D.
2004-01-01
Masonry may be considered macroscopically as a periodic two-phase material. The possible occurrence of cracking in each of the phases leads to a complex mechanical behaviour. Most existing macroscopic models defined for such materials are phenomenological and either isotropic or orthotropic. In this
Mean field theories and dual variation mathematical structures of the mesoscopic model
Suzuki, Takashi
2015-01-01
Mean field approximation has been adopted to describe macroscopic phenomena from microscopic overviews. It is still in progress; fluid mechanics, gauge theory, plasma physics, quantum chemistry, mathematical oncology, non-equilibirum thermodynamics. spite of such a wide range of scientific areas that are concerned with the mean field theory, a unified study of its mathematical structure has not been discussed explicitly in the open literature. The benefit of this point of view on nonlinear problems should have significant impact on future research, as will be seen from the underlying features of self-assembly or bottom-up self-organization which is to be illustrated in a unified way. The aim of this book is to formulate the variational and hierarchical aspects of the equations that arise in the mean field theory from macroscopic profiles to microscopic principles, from dynamics to equilibrium, and from biological models to models that arise from chemistry and physics.
Extended Hubbard model for mesoscopic transport in donor arrays in silicon
Le, Nguyen H.; Fisher, Andrew J.; Ginossar, Eran
2017-12-01
Arrays of dopants in silicon are promising platforms for the quantum simulation of the Fermi-Hubbard model. We show that the simplest model with only on-site interaction is insufficient to describe the physics of an array of phosphorous donors in silicon due to the strong intersite interaction in the system. We also study the resonant tunneling transport in the array at low temperature as a mean of probing the features of the Hubbard physics, such as the Hubbard bands and the Mott gap. Two mechanisms of localization which suppresses transport in the array are investigated: The first arises from the electron-ion core attraction and is significant at low filling; the second is due to the sharp oscillation in the tunnel coupling caused by the intervalley interference of the donor electron's wave function. This disorder in the tunnel coupling leads to a steep exponential decay of conductance with channel length in one-dimensional arrays, but its effect is less prominent in two-dimensional ones. Hence, it is possible to observe resonant tunneling transport in a relatively large array in two dimensions.
A mathematical model for DRY-OUT
International Nuclear Information System (INIS)
Mariy, A.; Khattab, M.; Olama, H.
1989-01-01
In this study a model has been developed for describing the thermal surface conditions at dry out in a vertical channel with uniform heat flux. The use of droplet generation rate and vapor-droplet-wall heat transfer relations together with the dry and wet side energy equations lead to evaluation of the wall surface temperature and heat transfer distributions before and after dry out. Comparison with the previous theoretical and experimental results are presented. The steady state approach developed showed to be in good agreement with the experimental results
Analysing improvements to on-street public transport systems: a mesoscopic model approach
DEFF Research Database (Denmark)
Ingvardson, Jesper Bláfoss; Kornerup Jensen, Jonas; Nielsen, Otto Anker
2017-01-01
and other advanced public transport systems (APTS), the attractiveness of such systems depends heavily on their implementation. In the early planning stage it is advantageous to deploy simple and transparent models to evaluate possible ways of implementation. For this purpose, the present study develops...... headway time regularity and running time variability, i.e. taking into account waiting time and in-vehicle time. The approach was applied on a case study by assessing the effects of implementing segregated infrastructure and APTS elements, individually and in combination. The results showed...... that the reliability of on-street public transport operations mainly depends on APTS elements, and especially holding strategies, whereas pure infrastructure improvements induced travel time reductions. The results further suggested that synergy effects can be obtained by planning on-street public transport coherently...
Implementation of Bus Rapid Transit in Copenhagen: A Mesoscopic Model Approach
DEFF Research Database (Denmark)
Ingvardson, Jesper Bláfoss; Kornerup Jensen, Jonas
2012-01-01
Bus Rapid Transit(BRT) has shown to be an efficient and cost-effective mode of public transport, and has gained popularity in many cities around the world.To optimise the operations and infrastructure it is advantageous to deploy transportmodels. However, microscopic models are very inefficient...... upgrades (busways and enhanced stations) ensure a reduction to traveltime whereas no improvements to reliability occur. Upgrades to technology and serviceplanning (pre-paid fare collection, boarding and alighting from all doors, special BRT vehicles, ITS, and active bus control) ensure an increase...... in service reliability whereas only small reductions to travel time are observed. By combining all BRT elements it is possible to obtain synergies where the improved reliability due to planning and technology elements makes it possible to utilise the infrastructure optimally. Hence, it is possible...
Mesoscopic photon heat transistor
DEFF Research Database (Denmark)
Ojanen, T.; Jauho, Antti-Pekka
2008-01-01
We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...
MODELLING OF THIN LAYER DRYING KINETICS OF COCOA BEANS DURING ARTIFICIAL AND NATURAL DRYING
Directory of Open Access Journals (Sweden)
C.L. HII
2008-04-01
Full Text Available Drying experiments were conducted using air-ventilated oven and sun dryer to simulate the artificial and natural drying processes of cocoa beans. The drying data were fitted with several published thin layer drying models. A new model was introduced which is a combination of the Page and two-term drying model. Selection of the best model was investigated by comparing the determination of coefficient (R2, reduced chi-square (2 and root mean square error (RMSE between the experimental and predicted values. The results showed that the new model was found best described the artificial and natural drying kinetics of cocoa under the conditions tested.
Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer
International Nuclear Information System (INIS)
Kaleta, Agnieszka; Górnicki, Krzysztof; Winiczenko, Radosław; Chojnacka, Aneta
2013-01-01
Highlights: ► Three new drying models are formulated. ► The developed models are various modifications of the Page model. ► Nineteen models are used to describe the fluidized bed drying of apple. ► The Page model and formulated model is considered as the most appropriate. - Abstract: Three new drying models were formulated. The developed models are various modifications of the Page model. The models were used to describe the drying behaviour of apple (var. Ligol) dried in a fluidized bed dryer. The suitability of new models to describe the drying characteristics were compared to the accuracy of sixteen models available from the literature. The accuracies of the models were measured using the correlation coefficient (R), root mean square error (RMSE), and reduced chi-square (χ 2 ). Three new developed models described the drying characteristics of apple cubes satisfactorily (R > 0.997). The Page model and one of the empirical models formulated by the authors of this study can be considered as the most appropriate (R > 0.9977, RMSE = 0.0094–0.0167, χ 2 = 0.0001–0.0002). The effect of drying air temperature on the drying models parameters were also determined. The shrinkage of apple cubes during drying was measured to assess the changes in quality of dried apples
DEFF Research Database (Denmark)
Venturoli, M.; Smit, B.; Sperotto, Maria Maddalena
2005-01-01
membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions......-induced protein tilt, with the hydrophobic mismatch ( positive and negative) between the protein hydrophobic length and the pure lipid bilayer hydrophobic thickness. The protein-induced bilayer perturbation was quantified in terms of a coherence length, xi(P), of the lipid bilayer hydrophobic thickness pro. le...... for positive values of mismatch; a dependence on the protein size appears as well. In the case of large model proteins experiencing extreme mismatch conditions, in the region next to the so-called lipid annulus, there appears an undershooting ( or overshooting) region where the bilayer hydrophobic thickness...
Directory of Open Access Journals (Sweden)
Jason W Bohland
2009-03-01
Full Text Available In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is critical, however, for both basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brainwide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brainwide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open-access data repository; compatibility with existing resources; and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.
Mesoscopic phenomena in solids
Altshuler, BL; Webb, RA
1991-01-01
The physics of disordered systems has enjoyed a resurgence of interest in the last decade. New concepts such as weak localization, interaction effects and Coulomb gap, have been developed for the transport properties of metals and insulators. With the fabrication of smaller and smaller samples and the routine availability of low temperatures, new physics has emerged from the studies of small devices. The new field goes under the name ""mesoscopic physics"" and has rapidly developed, both experimentally and theoretically. This book is designed to review the current status of the field.
Nonequilibrium mesoscopic transport: a genealogy
International Nuclear Information System (INIS)
Das, Mukunda P; Green, Frederick
2012-01-01
Models of nonequilibrium quantum transport underpin all modern electronic devices, from the largest scales to the smallest. Past simplifications such as coarse graining and bulk self-averaging served well to understand electronic materials. Such particular notions become inapplicable at mesoscopic dimensions, edging towards the truly quantum regime. Nevertheless a unifying thread continues to run through transport physics, animating the design of small-scale electronic technology: microscopic conservation and nonequilibrium dissipation. These fundamentals are inherent in quantum transport and gain even greater and more explicit experimental meaning in the passage to atomic-sized devices. We review their genesis, their theoretical context, and their governing role in the electronic response of meso- and nanoscopic systems. (topical review)
Mathematical and computational modeling simulation of solar drying Systems
Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...
Dynamic theory for the mesoscopic electric circuit
International Nuclear Information System (INIS)
Chen Bin; Shen Xiaojuan; Li Youquan; Sun LiLy; Yin Zhujian
2005-01-01
The quantum theory for mesoscopic electric circuit with charge discreteness is briefly described. The minibands of quasienergy in LC design mesoscopic electric circuit have been found. In the mesoscopic 'pure' inductance design circuit, just like in the mesoscopic metallic rings, the quantum dynamic characteristics have been obtained explicitly. In the 'pure' capacity design circuit, the Coulomb blockade had also been addressed
Mesoscopic quantum emitters coupled to plasmonic nanostructures
DEFF Research Database (Denmark)
Andersen, Mads Lykke
for the spontaneous emission of mesoscopic quantum emitters is developed. The light-matter interaction is in this model modied beyond the dipole expectancy and found to both suppress and enhance the coupling to plasmonic modes in excellent agreement with our measurements. We demonstrate that this mesoscopic effect......This thesis reports research on quantum dots coupled to dielectric and plasmonic nano-structures by way of nano-structure fabrication, optical measurements, and theoretical modeling. To study light-matter interaction, plasmonic gap waveguides with nanometer dimensions as well as samples for studies...... to allow for e- cient plasmon-based single-photon sources. Theoretical studies of coupling and propagation properties of plasmonic waveguides reveal that a high-refractive index of the medium surrounding the emitter, e.g. nGaAs = 3.5, limits the realizability of ecient plasmon-based single-photon sources...
Universal mesoscopic conductance fluctuations
International Nuclear Information System (INIS)
Evangelou, S.N.
1992-01-01
The theory of conductance fluctuations in disordered metallic systems with size large compared to the mean free path of the electron but small compared to localization length is considered. It is demonstrates that fluctuations have an universal character and are due to repulsion between levels and spectral rigidity. The basic fluctuation measures for the energy spectrum in the mesoscopic regime of disordered systems are consistent with the Gaussian random matrix ensemble predictions. Although our disordered electron random matrix ensemble does not belong to the Gaussian ensemble the two ensembles turn out to be essentially similar. The level repulsion and the spectral rigidity found in nuclear spectra should also be observed in the metallic regime of Anderson localization. 7 refs. (orig.)
X-ray diffraction from mesoscopic systems
International Nuclear Information System (INIS)
Press, W.; Bahr, D.; Tolan, M.; Burandt, B.; Mueller, M.; Mueller-Buschbaum, P.; Nitz, V.; Stettner, J.
1994-01-01
Two activities of our group concerning structures on mesoscopic length scales are presented: (1) CoSi 2 layers buried in Si-wafers have been studied with many scattering geometries; the emphasis is on diffuse scattering from rough interfaces and diffuse scattering from atomic scale defects. (2) The other example is an investigation of laterally structured surfaces in the region of total external reflection and around Bragg peaks. In both cases extensions of the presently available models are necessary. ((orig.))
Thin layer modelling of Gelidium sesquipedale solar drying process
International Nuclear Information System (INIS)
Ait Mohamed, L.; Ethmane Kane, C.S.; Kouhila, M.; Jamali, A.; Mahrouz, M.; Kechaou, N.
2008-01-01
The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 deg. C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m 3 /s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square (χ 2 ) of 3.381 x 10 -6
Thin layer modelling of Gelidium sesquipedale solar drying process
Energy Technology Data Exchange (ETDEWEB)
Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)
2008-05-15
The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)
Quantum Transport in Mesoscopic Systems
Indian Academy of Sciences (India)
voltage bias, the tunneling of the electron from the lead to the dot and vice versa will happen very rarely. Then two successive ..... A typical mesoscopic quantum dot system (a small drop- .... dynamical behavior of the distribution function of the.
Drying characteristics of zucchini and empirical modeling of its drying process
Directory of Open Access Journals (Sweden)
Naciye Kutlu
2017-10-01
Full Text Available The aim of the study was to dry zucchini (Cucurbita pepo by two different methods (convective hot-air (CHD and microwave-assisted drying (MWD. The effect of air temperature (60, 70 and 80°C, microwave (MW power (180, 360, 540 W and sample thickness (5 and 10 mm on some drying characteristics of zucchini were investigated. Thirteen mathematical models available in the literature were fitted to the experimental moisture ratio data. The coefficients of the models were determined by non-linear regression analysis. It was determined that the model that fits the moisture ratio data the best varies at different drying conditions. Increasing drying temperature and MW power and reducing sample thickness improved the drying rate and drying time. Drying in microwave has reduced the drying time by 52-64% for zucchini. It was found that the effective moisture diffusivities increased with increasing temperature and MW power. MWD samples had better rehydration ratios compared to ones dried only in tray drier for 5 mm thickness.
A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 1. MODEL FORMULATION
A multilayer biochemical dry deposition model has been developed based on the NOAA Multilayer Model (MLM) to study gaseous exchanges between the soil, plants, and the atmosphere. Most of the parameterizations and submodels have been updated or replaced. The numerical integration ...
A MULTILAYER BIOCHEMICAL DRY DEPOSITION MODEL 2. MODEL EVALUATION
The multilayer biochemical dry deposition model (MLBC) described in the accompanying paper was tested against half-hourly eddy correlation data from six field sites under a wide range of climate conditions with various plant types. Modeled CO2, O3, SO2<...
Mesoscopic quantum cryptography
Energy Technology Data Exchange (ETDEWEB)
Molotkov, S. N., E-mail: sergei.molotkov@gmail.com [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)
2017-03-15
Since a strictly single-photon source is not yet available, in quantum cryptography systems, one uses, as information quantum states, coherent radiation of a laser with an average number of photons of μ ≈ 0.1–0.5 in a pulse, attenuated to the quasi-single-photon level. The linear independence of a set of coherent quasi-single-photon information states leads to the possibility of unambiguous measurements that, in the presence of losses in the line, restrict the transmission range of secret keys. Starting from a certain value of critical loss (the length of the line), the eavesdropper knows the entire key, does not make errors, and is not detected—the distribution of secret keys becomes impossible. This problem is solved by introducing an additional reference state with an average number of photons of μ{sub cl} ≈ 10{sup 3}–10{sup 6}, depending on the length of the communication line. It is shown that the use of a reference state does not allow the eavesdropper to carry out measurements with conclusive outcome while remaining undetected. A reference state guarantees detecting an eavesdropper in a channel with high losses. In this case, information states may contain a mesoscopic average number of photons in the range of μ{sub q} ≈ 0.5–10{sup 2}. The protocol proposed is easy to implement technically, admits flexible adjustment of parameters to the length of the communication line, and is simple and transparent for proving the secrecy of keys.
Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.
Fernando, J A K M; Amarasinghe, A D U S
2016-01-01
Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%).
Spin tunnelling in mesoscopic systems
Indian Academy of Sciences (India)
We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic ﬁeld, vanishing completely at special points in the ...
International Nuclear Information System (INIS)
Zant, H.S.J. van der; Kalwij, A.; Mantel, O.C.; Markovic, N.
1999-01-01
We have fabricated wire structures with (sub)micron sizes in the charge-density wave conductor NbSe 3 . Electrical transport measurements include complete mode-locking on Shapiro steps and show that the patterning has not affected the CDW material. Our mesoscopic wires show strong fluctuation and hysteresis effects in the low-temperature current-voltage characteristics, as well as a strong reduction of the phase-slip voltage. This reduction can not be explained with existing models. We suggest that single phase-slip events are responsible for a substantial reduction of the CDW strain in micron-sized systems. (orig.)
An earth system model for evaluation of dry deposition
Energy Technology Data Exchange (ETDEWEB)
Arritt, R.W. [Iowa State Univ., Ames, IA (United States)
1994-12-31
A coupled model of atmosphere, soil, and vegetation showed that interactions among the various components can have important effects on dry deposition of SO{sub 2}. In particular, dry soil (near or below the wilting point) leads to an increase of stomatal resistance and a decrease in deposition. Once the soil moisture is at least twice the wilting point, the model results indicate that additional moisture has little effect on the accumulated daytime dry deposition.
Development of Solar Drying Model for Selected Cambodian Fish Species
Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan
2014-01-01
A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381
Development of Solar Drying Model for Selected Cambodian Fish Species
Directory of Open Access Journals (Sweden)
Anna Hubackova
2014-01-01
Full Text Available A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R2, chi-square (χ2 test, and root-mean-square error (RMSE, the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.
From the atomic nucleus to mesoscopic systems to microwave cavities
Indian Academy of Sciences (India)
Abstract. Universal statistical aspects of wave scattering by a variety of physical systems ranging from atomic nuclei to mesoscopic systems and microwave cavities are described. A statistical model for the scattering matrix is employed to address the problem of quantum chaotic scattering. The model, introduced in the past ...
Modeling of Seepage Losses in Sewage Sludge Drying Bed ...
African Journals Online (AJOL)
This research was carried out to develop a model governing seepage losses in sewage sludge drying bed. The model will assist in the design of sludge drying beds for effective management of wastes derived from households' septic systems. In the experiment conducted this study, 125kg of sewage sludge, 90.7% moisture ...
Evaluation of treatment for dry eye with 2-hydroxyestradiol using a dry eye rat model.
Higuchi, Akihiro; Oonishi, Erina; Kawakita, Tetsuya; Tsubota, Kazuo
2016-01-01
2-hydroxy estradiol (2-OHE2) is a catechol derivative of 17β -Estradiol (E2) and it is synthesized from E2 catalyzed by cytochrome P4501A1. Previous studies reported that 2-OHE2 is a physiologic antioxidant in lipoproteins, liver microsomes, and the brain. Catechol derivatives show an anti-inflammatory effect through the inhibition of prostaglandin endoperoxide synthase (PGS) activity. Corneal erosion caused by dry eye is related to an increase in oxidative stress and inflammation in ocular surface cells. We investigated the therapeutic effects of 2-OHE2 on corneal damage caused by dry eye. Steroidal radical scavenging activity was confirmed through the electron spin resonance (ESR) method. PGS activity was measured using the COX Fluorescent Activity Assay Kit. To evaluate the effect of 2-OHE2 on the treatment for dry eye, 2-OHE2 was applied as an eye drop experiment using dry eye model rats. 2-OHE2 scavenged tyrosyl radical and possibly suppressed oxidative stress in corneal epithelial cells. In addition, 2-OHE2 inhibited PGS activity, and 2-OHE2 is probably a competitive inhibitor of PGS. Corneal PGS activity was upregulated in the dry eye group. Therefore, 2-OHE2 eye drops improved corneal erosion in dry eye model rats. 2-OHE2 is a candidate for the treatment of dry eye through the suppression of inflammation and oxidative stress in the cornea.
Modeling of convective drying kinetics of Pistachio kernels in a fixed bed drying system
Directory of Open Access Journals (Sweden)
Balbay Asım
2013-01-01
Full Text Available Drying kinetics of Pistachio kernels (PKs with initial moisture content of 32.4% (w.b was investigated as a function of drying conditions in a fixed bed drying system. The drying experiments were carried out at different temperatures of drying air (40, 60 and 80°C and air velocities (0.05, 0.075 and 0.1 m/s. Several experiments were performed in terms of mass of PKs (15g and 30g using a constant air velocity of 0.075 m/s. The fit quality of models was evaluated using the determination coefficient (R2, sum square error (SSE and root mean square error (RMSE. Among the selected models, the Midilli et al model was found to be the best models for describing the drying behavior of PKs. The activation energies were calculated as 29.2 kJ/mol and effective diffusivity values were calculated between 1.38 and 4.94x10-10 m2/s depending on air temperatures.
MODELS OF HOURLY DRY BULB TEMPERATURE AND ...
African Journals Online (AJOL)
Hourly meteorological data of both dry bulb temperature and relative humidity for 18 locations in Nigeria for the period 1995 to 2009 were analysed to obtain the mean monthly average and monthly hourly average of each of the two meteorological variables for each month for each location. The difference between the ...
Mathematical modelling of thin layer drying of pear
Directory of Open Access Journals (Sweden)
Lutovska Monika
2016-01-01
Full Text Available In this study, a thin - layer drying of pear slices as a function of drying conditions were examined. The experimental data set of thin - layer drying kinetics at five drying air temperatures 30, 40, 50, 60 and 70°C, and three drying air velocities 1, 1.5 and 2 m s-1 were obtained on the experimental setup, designed to imitate industrial convective dryer. Five well known thin - layer drying models from scientific literature were used to approximate the experimental data in terms of moisture ratio. In order to find which model gives the best results, numerical experiments were made. For each model and data set, the statistical performance index, (φ, and chi-squared, (χ2, value were calculated and models were ranked afterwards. The performed statistical analysis shows that the model of Midilli gives the best statistical results. Because the effect of drying air temperature and drying air velocity on the empirical parameters was not included in the base Midilli model, in this study the generalized form of this model was developed. With this model, the drying kinetic data of pear slices can be approximated with high accuracy. The effective moisture diffusivity was determined by using Fick’s second laws. The obtained values of the effective moisture diffusivity, (Deff, during drying ranged between 6.49 x 10-9 and 3.29 x 10-8 m2 s-1, while the values of activation energy (E0 varied between 28.15 to 30.51 kJ mol-1.
Large-area dry bean yield prediction modeling in Mexico
Given the importance of dry bean in Mexico, crop yield predictions before harvest are valuable for authorities of the agricultural sector, in order to define support for producers. The aim of this study was to develop an empirical model to estimate the yield of dry bean at the regional level prior t...
A Grey-Box Model for Spray Drying Plants
DEFF Research Database (Denmark)
Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2013-01-01
Multi-stage spray drying is an important and widely used unit operation in the production of food powders. In this paper we develop and present a dynamic model of the complete drying process in a multi-stage spray dryer. The dryer is divided into three stages: The spray stage and two fluid bed...
Energy Technology Data Exchange (ETDEWEB)
Verde, A Vila [Department of Chemical Engineering, Fenske Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Ramos, M M D [Department of Physics, University of Minho, 4710-057 Braga (Portugal); Stoneham, A M [London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2007-05-21
Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO{sub 2} at 10.6 {mu}m and Er:YAG at 2.94 {mu}m). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO{sub 2} and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of {approx}10 {mu}s are used, the CO{sub 2} laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 {mu}s duration can induce high stress transients which may cause unwanted cracking.
Vila Verde, A.; Ramos, M. M. D.; Stoneham, A. M.
2007-05-01
Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO2 at 10.6 µm and Er:YAG at 2.94 µm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO2 and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of ap10 µs are used, the CO2 laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 µs duration can induce high stress transients which may cause unwanted cracking.
International Nuclear Information System (INIS)
Verde, A Vila; Ramos, M M D; Stoneham, A M
2007-01-01
Human dental enamel has a porous mesostructure at the nanometre to micrometre scales that affects its thermal and mechanical properties relevant to laser treatment. We exploit finite-element models to investigate the response of this mesostructured enamel to mid-infrared lasers (CO 2 at 10.6 μm and Er:YAG at 2.94 μm). Our models might easily be adapted to investigate ablation of other brittle composite materials. The studies clarify the role of pore water in ablation, and lead to an understanding of the different responses of enamel to CO 2 and Er:YAG lasers, even though enamel has very similar average properties at the two wavelengths. We are able to suggest effective operating parameters for dental laser ablation, which should aid the introduction of minimally-invasive laser dentistry. In particular, our results indicate that, if pulses of ∼10 μs are used, the CO 2 laser can ablate dental enamel without melting, and with minimal damage to the pulp of the tooth. Our results also suggest that pulses with 0.1-1 μs duration can induce high stress transients which may cause unwanted cracking
Mathematical Modeling of Thin Layer Microwave Drying of Taro Slices
Kumar, Vivek; Sharma, H. K.; Singh, K.
2016-03-01
The present study investigated the drying kinetics of taro slices precooked in different medium viz water (WC), steam (SC) and Lemon Solution (LC) and dried at different microwave power 360, 540 and 720 W. Drying curves of all precooked slices at all microwave powers showed falling rate period along with a very short accelerating period at the beginning of the drying. At all microwave powers, higher drying rate was observed for LC slices as compared to WC and SC slices. To select a suitable drying curve, seven thin-layer drying models were fitted to the experimental data. The data revealed that the Page model was most adequate in describing the microwave drying behavior of taro slices precooked in different medium. The highest effective moisture diffusivity value of 2.11 × 10-8 m2/s was obtained for LC samples while the lowest 0.83 × 10-8 m2/s was obtained for WC taro slices. The activation energy (E a ) of LC taro slices was lower than the E a of WC and SC taro slices.
CFD modelling of condensers for freeze-drying processes
Indian Academy of Sciences (India)
Freeze-drying; condenser; CFD simulation; mathematical modelling; ... it is used for the stabilization and storage of delicate, heat-sensitive materials .... The effect of the surface mass transfer has been included in the continuity equation and.
Mathematical modeling of drying of pretreated and untreated pumpkin.
Tunde-Akintunde, T Y; Ogunlakin, G O
2013-08-01
In this study, drying characteristics of pretreated and untreated pumpkin were examined in a hot-air dryer at air temperatures within a range of 40-80 °C and a constant air velocity of 1.5 m/s. The drying was observed to be in the falling-rate drying period and thus liquid diffusion is the main mechanism of moisture movement from the internal regions to the product surface. The experimental drying data for the pumpkin fruits were used to fit Exponential, General exponential, Logarithmic, Page, Midilli-Kucuk and Parabolic model and the statistical validity of models tested were determined by non-linear regression analysis. The Parabolic model had the highest R(2) and lowest χ(2) and RMSE values. This indicates that the Parabolic model is appropriate to describe the dehydration behavior for the pumpkin.
A new approach for modeling dry deposition velocity of particles
Giardina, M.; Buffa, P.
2018-05-01
The dry deposition process is recognized as an important pathway among the various removal processes of pollutants in the atmosphere. In this field, there are several models reported in the literature useful to predict the dry deposition velocity of particles of different diameters but many of them are not capable of representing dry deposition phenomena for several categories of pollutants and deposition surfaces. Moreover, their applications is valid for specific conditions and if the data in that application meet all of the assumptions required of the data used to define the model. In this paper a new dry deposition velocity model based on an electrical analogy schema is proposed to overcome the above issues. The dry deposition velocity is evaluated by assuming that the resistances that affect the particle flux in the Quasi-Laminar Sub-layers can be combined to take into account local features of the mutual influence of inertial impact processes and the turbulent one. Comparisons with the experimental data from literature indicate that the proposed model allows to capture with good agreement the main dry deposition phenomena for the examined environmental conditions and deposition surfaces to be determined. The proposed approach could be easily implemented within atmospheric dispersion modeling codes and efficiently addressing different deposition surfaces for several particle pollution.
Advanced computational modelling for drying processes – A review
International Nuclear Information System (INIS)
Defraeye, Thijs
2014-01-01
Highlights: • Understanding the product dehydration process is a key aspect in drying technology. • Advanced modelling thereof plays an increasingly important role for developing next-generation drying technology. • Dehydration modelling should be more energy-oriented. • An integrated “nexus” modelling approach is needed to produce more energy-smart products. • Multi-objective process optimisation requires development of more complete multiphysics models. - Abstract: Drying is one of the most complex and energy-consuming chemical unit operations. R and D efforts in drying technology have skyrocketed in the past decades, as new drivers emerged in this industry next to procuring prime product quality and high throughput, namely reduction of energy consumption and carbon footprint as well as improving food safety and security. Solutions are sought in optimising existing technologies or developing new ones which increase energy and resource efficiency, use renewable energy, recuperate waste heat and reduce product loss, thus also the embodied energy therein. Novel tools are required to push such technological innovations and their subsequent implementation. Particularly computer-aided drying process engineering has a large potential to develop next-generation drying technology, including more energy-smart and environmentally-friendly products and dryers systems. This review paper deals with rapidly emerging advanced computational methods for modelling dehydration of porous materials, particularly for foods. Drying is approached as a combined multiphysics, multiscale and multiphase problem. These advanced methods include computational fluid dynamics, several multiphysics modelling methods (e.g. conjugate modelling), multiscale modelling and modelling of material properties and the associated propagation of material property variability. Apart from the current challenges for each of these, future perspectives should be directed towards material property
Modeling of microwave-convective drying of pistachios
International Nuclear Information System (INIS)
Kouchakzadeh, Ahmad; Shafeei, Sahameh
2010-01-01
The microwave-convective drying of two varieties of Iranian pistachios (Khany and Abasaliy) was performed in a laboratory scale microwave dryer, which was developed for this purpose. The drying rate curves show that first rapidly decreased and then very little reduction in moisture ratio observed with increase of drying time. A non-linear regression page model represents good agreement with experimental data with coefficient of determination and mean square of deviation as 0.9612 and 2.25 x 10 -5 for Khany and 0.9997 and 4.28 x 10 -5 for Abasaliy pistachios respectively.
Modeling of Evaporation Losses in Sewage Sludge Drying Bed ...
African Journals Online (AJOL)
A model for evaporation losses in sewage sludge drying bed was derived from first principles. This model was developed based on the reasoning that the rate at which evaporation is taking place is directly proportional to the instantaneous quantity of water in the sludge. The aim of this work was to develop a model to assist ...
Transport properties of mesoscopic graphene rings
International Nuclear Information System (INIS)
Xu, N.; Ding, J.W.; Wang, B.L.; Shi, D.N.; Sun, H.Q.
2012-01-01
Based on a recursive Green's function method, we investigate the conductance of mesoscopic graphene rings in the presence of disorder, in the limit of phase coherent transport. Two models of disorder are considered: edge disorder and surface disorder. Our simulations show that the conductance decreases exponentially with the edge disorder and the surface disorder. In the presence of flux, a clear Aharonov-Bohm conductance oscillation with the period Φ 0 (Φ 0 =h/e) is observed. The edge disorder and the surface disorder have no effect on the period of AB oscillation. The amplitudes of AB oscillations vary with gate voltage and flux, which is consistent with the previous results. Additionally, ballistic rectification and negative differential resistance are observed in I-V curves, with on/off characteristic.
Modeling drying of iron ore pellets
Ljung, Anna-Lena
2010-01-01
Iron ore pellets are a highly refined product supplied to the steel making industry for use in blast furnaces or direct reduction processes. The use of pellets offers many advantages such as customer adopted products, transportability and mechanical strength yet the production is time and energy consuming. Being such, there is a natural driving force to enhance the pelletization in order to optimize production and improve quality. The aim with this thesis is to develop numerical models with w...
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing...
Modeling of an industrial drying process by artificial neural networks
Directory of Open Access Journals (Sweden)
E. Assidjo
2008-09-01
Full Text Available A suitable method is needed to solve the nonquality problem in the grated coconut industry due to the poor control of product humidity during the process. In this study the possibility of using an artificial neural network (ANN, precisely a Multilayer Perceptron, for modeling the drying step of the production of grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this parameter and consequently reduce the proportion of the product that does not meet the humidity specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying.
Drying of materials in fluidized bed: mathematical modeling
International Nuclear Information System (INIS)
Wildhagen, Gloria Regina S.; Silva, Eder F.; Calcada, Luis A.; Massarani, Giulio
2000-01-01
A three phase mathematical model for drying process in a fluidized bed was established. This model representing a bubble, interstitial gas and solid phase was based on principles of mass and energy conservation and on empirical relations for heat and mass transfer between phases. A fluidized bed dryer was built to test the results of proposed model with those obtained by experiments using alumina particles as a bed charge. A good agreement between the numerical and the experimental results were observed(author)
Mesoscopic effects in the quantum Hall regime
Indian Academy of Sciences (India)
. When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior for strong disorder. This behavior may be of relevance ...
Quantum fluctuations in mesoscopic and macroscopic systems
International Nuclear Information System (INIS)
Cerdeira, H.A.; Guinea Lopez, F.; Weiss, U.
1991-01-01
The conference presentations have been grouped in three chapters; Quantum Transport (4 papers), Dissipation in Discrete Systems (7 papers) and Mesoscopic Junction, Rings and Arrays (6 papers). A separate abstract was prepared for each paper. Refs and figs
Photon side-bands in mesoscopics
DEFF Research Database (Denmark)
Jauho, Antti-Pekka
1998-01-01
This paper reviews several applications of photonic side bands, used by Buttiker and Landauer (Phys. Rev. Lett. 49, 1739 (1982)) in their theory of traversal time in tunneling, in transport and optics of mesoscopic systems. Topics include generalizations of the transmission theory of transport...... to time-dependent situations, optics and transport of mesoscopic systems in THz electromagnetic fields, and phase-measurements of photon-assisted tunneling through a quantum dot. (C) 1998 Academic Press Limited....
Kwon, Jin Woo; Chung, Yeon Woong; Choi, Jin A; La, Tae Yoon; Jee, Dong Hyun; Cho, Yang Kyung
2016-01-01
To compare the effects of the surgical insult of cataract surgery on corneal inflammatory infiltration, neovascularization (NV) and lymphangiogenesis (LY) between the dry eye and non-dry eye in murine cataract surgery models. We established two groups of animals, one with normal eyes (non-dry eye) and the second with induced dry eyes. In both groups, we used surgical insults to mimic human cataract surgery, which consisted of lens extraction, corneal incision and suture. After harvesting of corneas on the 9(th) postoperative day and immunohistochemical staining, we compared NV, LY and CD11b+ cell infiltration in the corneas. Dry eye group had significantly more inflammatory infiltration (21.75%±7.17% vs 3.65%±1.49%; P=0.049). The dry eye group showed significantly more NV (48.21%±4.02% vs 26.24%±6.01%; P=0.016) and greater levels of LY (9.27%±0.48% vs 4.84%±1.15%; P=0.007). In corneas on which no surgery was performed, there was no induction of NV in both the dry and non-dry group, but dry eye group demonstrated more CD11b+ cells infiltration than the non-dry eye group (0.360%±0.160% vs 0.023%±0.006%; P=0.068). Dry eye group showed more NV than non-dry eye group in both topical PBS application and subconjunctival PBS injection (P=0.020 and 0.000, respectively). In a murine cataract surgery model, preexisting dry eye can induce more postoperative NV, LY, and inflammation in corneal tissue.
Kwon, Jin Woo; Chung, Yeon Woong; Choi, Jin A; La, Tae Yoon; Jee, Dong Hyun; Cho, Yang Kyung
2016-01-01
AIM To compare the effects of the surgical insult of cataract surgery on corneal inflammatory infiltration, neovascularization (NV) and lymphangiogenesis (LY) between the dry eye and non-dry eye in murine cataract surgery models. METHODS We established two groups of animals, one with normal eyes (non-dry eye) and the second with induced dry eyes. In both groups, we used surgical insults to mimic human cataract surgery, which consisted of lens extraction, corneal incision and suture. After harvesting of corneas on the 9th postoperative day and immunohistochemical staining, we compared NV, LY and CD11b+ cell infiltration in the corneas. RESULTS Dry eye group had significantly more inflammatory infiltration (21.75%±7.17% vs 3.65%±1.49%; P=0.049). The dry eye group showed significantly more NV (48.21%±4.02% vs 26.24%±6.01%; P=0.016) and greater levels of LY (9.27%±0.48% vs 4.84%±1.15%; P=0.007). In corneas on which no surgery was performed, there was no induction of NV in both the dry and non-dry group, but dry eye group demonstrated more CD11b+ cells infiltration than the non-dry eye group (0.360%±0.160% vs 0.023%±0.006%; P=0.068). Dry eye group showed more NV than non-dry eye group in both topical PBS application and subconjunctival PBS injection (P=0.020 and 0.000, respectively). CONCLUSION In a murine cataract surgery model, preexisting dry eye can induce more postoperative NV, LY, and inflammation in corneal tissue. PMID:26949638
Modeling and simulation of milk emulsion drying in spray dryers
Directory of Open Access Journals (Sweden)
V. S. Birchal
2005-06-01
Full Text Available This work aims at modeling and simulating the drying of whole milk emulsion in spray dryers. Drops and particles make up the discrete phase and are distributed into temporal compartments following their residence time in the dryer. Air is the continuous and well-mixed phase. Mass and energy balances are developed for each phase, taking into account their interactions. Constitutive equations for describing the drop swelling and drying mechanisms as well as the heat and mass transfer between particles and hot air are proposed and analyzed. A set of algebraic-differential equations is obtained and solved by specific numerical codes. Results from experiments carried out in a pilot spray dryer are used to validate the model developed and the numerical algorithm. Comparing the simulated and experimental data, it is shown that the model predicts well the individual drop-particle history inside the dryer as well as the overall outlet air-particle temperature and humidity.
Mesoscopic fluctuations and intermittency in aging dynamics
Sibani, P.
2006-01-01
Mesoscopic aging systems are characterized by large intermittent noise fluctuations. In a record dynamics scenario (Sibani P. and Dall J., Europhys. Lett., 64 (2003) 8) these events, quakes, are treated as a Poisson process with average αln (1 + t/tw), where t is the observation time, tw is the age and α is a parameter. Assuming for simplicity that quakes constitute the only source of de-correlation, we present a model for the probability density function (PDF) of the configuration autocorrelation function. Beside α, the model has the average quake size 1/q as a parameter. The model autocorrelation PDF has a Gumbel-like shape, which approaches a Gaussian for large t/tw and becomes sharply peaked in the thermodynamic limit. Its average and variance, which are given analytically, depend on t/tw as a power law and a power law with a logarithmic correction, respectively. Most predictions are in good agreement with data from the literature and with the simulations of the Edwards-Anderson spin-glass carried out as a test.
What We Have Learned from Animal Models of Dry Eye
Stern, Michael E.; Pflugfelder, Stephen C.
2017-01-01
Animal models have proved valuable to investigate the pathogenesis of dry eye disease, identify therapeutic targets and the efficacy of candidate therapeutics for dry eye. Pharmacological inhibition of the lacrimal functional unit and exposure of the mouse eye to desiccating stress was found to activate innate immune pathways, promote dendritic cell maturation and initiate an adaptive T cell response to ocular surface antigens. Disease relevant mediators and pathways have been identified through use of genetically altered mice, specific inhibitors and adoptive transfer of desiccating stress primed CD4+ T cells to naïve recipients. Findings from mouse models have elucidated the mechanism of action of cyclosporine A and the rationale for developing lifitegrast, the two currently approved therapeutics in the US. PMID:28282318
Sustainable Dry Land Management Model on Corn Agribusiness System
Directory of Open Access Journals (Sweden)
Yulia Pujiharti
2008-01-01
Full Text Available The study aimed at building model of dry land management. Dynamic System Analysis was used to build model and Powersim 2.51 version for simulating. The parameter used in model were fertilizer (urea, SP-36, ACL, productivity (corn, cassava, mungbean, soil nutrient (N, P, K, crop nutrient requirements (corn, cassava, mungbean, mucuna, price (corn, cassava, mungbeans corn flour, feed, urea, SP-36, KCl, food security credit, area planted of (maize, cassava, mungbean, area harvested of (maize, cassava, mungbean, (corn, cassava, mungbean production, wages and farmer income. Sustainable indicator for ecology aspect was soil fertility level, economic aspects were productivity and farmer income, and social aspects were job possibility and traditions. The simulation result indicated that sustainable dry land management can improve soil fertility and increase farmer revenue, became sustainable farming system and farmer society. On the other hand, conventional dry land management decreased soil fertility and yield, caused farmer earnings to decrease and a farm activity could not be continued. Fertilizer distribution did not fulfill farmer requirement, which caused fertilizer scarcity. Food security credit increased fertilizer application. Corn was processed to corn flour or feed to give value added.
Simulation of Anterior Cruciate Ligament Reconstruction in a Dry Model.
Dwyer, Tim; Slade Shantz, Jesse; Chahal, Jaskarndip; Wasserstein, David; Schachar, Rachel; Kulasegaram, K Mahan; Theodoropoulos, John; Greben, Rachel; Ogilvie-Harris, Darrell
2015-12-01
As the demand increases for demonstration of competence in surgical skill, the need for validated assessment tools also increases. The purpose of this study was to validate a dry knee model for the assessment of performance of anterior cruciate ligament reconstruction (ACLR). The hypothesis was that the combination of a checklist and a previously validated global rating scale would be a valid and reliable means of assessing ACLR when performed by residents in a dry model. Controlled laboratory study. All residents, sports medicine staff, and fellows were invited to perform a hamstring ACLR using anteromedial drilling and Endobutton fixation on a dry model of an anterior cruciate ligament. Previous exposure to knee arthroscopy and ACLR was recorded. A detailed surgical manuscript and technique video were sent to all participants before the study. Residents were evaluated by staff surgeons with task-specific checklists created by use of a modified Delphi procedure and the Arthroscopic Surgical Skill Evaluation Tool (ASSET). Each procedure (hand movements and arthroscopic video) was recorded and scored by a fellow blinded to the year of training of each participant. A total of 29 residents, 5 fellows, and 6 staff surgeons (40 participants total) performed an ACLR on the dry model. The internal reliability (Cronbach alpha) of the test when using the total ASSET score was very high (>0.9). One-way analysis of variance for the total ASSET score and the total checklist score demonstrated a difference between participants based on year of training (P .05). A good correlation was seen between the total ASSET score and prior exposure to knee arthroscopy (0.73) and ACLR (0.65). The interrater reliability (intraclass correlation coefficient) between the examiner ratings and the blinded assessor ratings for the total ASSET score was very high (>0.8). The results of this study provide evidence that the performance of an ACLR in a dry model is a reliable method of assessing a
Vortex properties of mesoscopic superconducting samples
Energy Technology Data Exchange (ETDEWEB)
Cabral, Leonardo R.E. [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Barba-Ortega, J. [Grupo de Fi' sica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Souza Silva, C.C. de [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil); Albino Aguiar, J., E-mail: albino@df.ufpe.b [Laboratorio de Supercondutividade e Materiais Avancados, Departamento de Fisica, Universidade Federal de Pernambuco, Recife 50670-901 (Brazil)
2010-10-01
In this work we investigated theoretically the vortex properties of mesoscopic samples of different geometries, submitted to an external magnetic field. We use both London and Ginzburg-Landau theories and also solve the non-linear Time Dependent Ginzburg-Landau equations to obtain vortex configurations, equilibrium states and the spatial distribution of the superconducting electron density in a mesoscopic superconducting triangle and long prisms with square cross-section. For a mesoscopic triangle with the magnetic field applied perpendicularly to sample plane the vortex configurations were obtained by using Langevin dynamics simulations. In most of the configurations the vortices sit close to the corners, presenting twofold or three-fold symmetry. A study of different meta-stable configurations with same number of vortices is also presented. Next, by taking into account de Gennes boundary conditions via the extrapolation length, b, we study the properties of a mesoscopic superconducting square surrounded by different metallic materials and in the presence of an external magnetic field applied perpendicularly to the square surface. It is determined the b-limit for the occurrence of a single vortex in a mesoscopic square of area d{sup 2}, for 4{xi}(0){<=}d{<=}10{xi}(0).
Heat and Mass Transfer Model in Freeze-Dried Medium
Alfat, Sayahdin; Purqon, Acep
2017-07-01
There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.
Modeling seasonal surface temperature variations in secondary tropical dry forests
Cao, Sen; Sanchez-Azofeifa, Arturo
2017-10-01
Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.
Quantum switching of polarization in mesoscopic ferroelectrics
International Nuclear Information System (INIS)
Sa de Melo, C.A.
1996-01-01
A single domain of a uniaxial ferroelectric grain may be thought of as a classical permanent memory. At the mesoscopic level this system may experience considerable quantum fluctuations due to tunneling between two possible memory states, thus destroying the classical permanent memory effect. To study these quantum effects the concrete example of a mesoscopic uniaxial ferroelectric grain is discussed, where the orientation of the electric polarization determines two possible memory states. The possibility of quantum switching of the polarization in mesoscopic uniaxial ferroelectric grains is thus proposed. To determine the degree of memory loss, the tunneling rate between the two polarization states is calculated at zero temperature both in the absence and in the presence of an external static electric field. In addition, a discussion of crossover temperature between thermally activated behavior and quantum tunneling behavior is presented. And finally, environmental effects (phonons, defects, and surfaces) are also considered. copyright 1996 The American Physical Society
Mathematical modeling of a convective textile drying process
Directory of Open Access Journals (Sweden)
G. Johann
2014-12-01
Full Text Available This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The simulation results were compared with experimental data obtained from the literature. In the statistical analysis the Shapiro-Wilk test was used to validate the model and, in all cases simulated, the results were p-values greater than 5 %, indicating normality of the data. The R-squared values were above 0.997 and the ratios Fcalculated/Fsimulated, at the 95 % confidence level, higher than five, indicating that the modeling was predictive in all simulations.
Drying kinetics of RDF: Experimental investigation and modeling
Directory of Open Access Journals (Sweden)
Słomka-Polonis Karolina
2018-01-01
Full Text Available An experimental study was performed to determine the drying characteristics of an oversized fraction of RDF alternative fuel using a laboratory scale hot air dryer at a variety air temperatures and a constant air velocity. For this research the industrial RDF was derived from a Regional Municipal Waste Treatment Facility near the city of Kraków, Poland. The samples of RDF were prepared in two forms: ovesized (unmodified condition and shreded in a two-drum crusher. In addition, the RDF was sorted into three groups of samples: paper, plastic, textiles. Each form of RDF and each group of samples were dried in hot air dryer at temperatures of 50, 70 i 90 °C and a constant air velocity of 1,5 [m·s-1]. The loss of the the samples mass were measured in a continues manner until the equilibrum moisture content was reached. The effective moisture diffusivity [m2·s-1] and activation energies [kJ·mol-1] was amounted. The analysis of the course of moisture content change concludes that that the drying of the RDF alternative fuel occured mainly in the II period of the process during which the transport of water content was carried out by diffusion. And, to a lesser extent, with the surface heat transfer in II period. Based on the calculated data there was a model determined which presented the best possible matching of the course of moisture content change.
Modelling of intermittent microwave convective drying: parameter sensitivity
Directory of Open Access Journals (Sweden)
Zhang Zhijun
2017-06-01
Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Model-based optimization of the primary drying step during freeze-drying
DEFF Research Database (Denmark)
Mortier, Séverine Thérèse F.C.; Van Bockstal, Pieter-Jan; Nopens, Ingmar
2015-01-01
Since large molecules are considered the key driver for growth of the pharmaceutical industry, the focus of the pharmaceutical industry is shifting from small molecules to biopharmaceuticals: around 50% of the approved biopharmaceuticals are freeze-dried products. Therefore, freeze- drying is an ...
Mechanistic modelling of the drying behaviour of single pharmaceutical granules
DEFF Research Database (Denmark)
Thérèse F.C. Mortier, Séverine; Beer, Thomas De; Gernaey, Krist
2012-01-01
The trend to move towards continuous production processes in pharmaceutical applications enhances the necessity to develop mechanistic models to understand and control these processes. This work focuses on the drying behaviour of a single wet granule before tabletting, using a six...... phase (submodel 2), the water inside the granule evaporates. The second submodel contains an empirical power coefficient, b. A sensitivity analysis was performed to study the influence of parameters on the moisture content of single pharmaceutical granules, which clearly points towards the importance...
DEFF Research Database (Denmark)
Van Bockstal, Pieter-Jan; Corver, Jos; Mortier, Séverine Thérèse F.C.
2018-01-01
. These results assist in the selection of proper materials which could serve as IR window in the continuous freeze-drying prototype. The modelling framework presented in this paper fits the model-based design approach used for the development of this prototype and shows the potential benefits of this design...... requires the fundamental mechanistic modelling of each individual process step. Therefore, a framework is presented for the modelling and control of the continuous primary drying step based on non-contact IR radiation. The IR radiation emitted by the radiator filaments passes through various materials...
Development of a distributed air pollutant dry deposition modeling framework
International Nuclear Information System (INIS)
Hirabayashi, Satoshi; Kroll, Charles N.; Nowak, David J.
2012-01-01
A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. - Highlights: ► A distributed air pollutant dry deposition modeling system was developed. ► The developed system enhances the functionality of i-Tree Eco. ► The developed system employs nationally available input datasets. ► The developed system is transferable to any U.S. city. ► Future planting and protection spots were visually identified in a case study. - Employing nationally available datasets and a GIS, this study will provide urban forest managers in U.S. cities a framework to quantify and visualize urban forest structure and its air pollution removal effect.
Mesoscopic simulations of crosslinked polymer networks
Megariotis, G.; Vogiatzis, G.G.; Schneider, L.; Müller, M.; Theodorou, D.N.
2016-01-01
A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1'4-polyisoprene' is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn
Fluidized bed drying characteristics and modeling of ginger ( zingiber officinale) slices
Parlak, Nezaket
2015-08-01
In this study fluidized bed drying characteristics of ginger have been investigated. The effects of the fluidizing air temperature, velocity, humidity and bed height on the drying performance of ginger slices have been found. The experimental moisture loss data of ginger slices has been fitted to the eight thin layer drying models. Two-term model drying model has shown a better fit to the experimental data with R2 of 0.998 as compared to others.
International Nuclear Information System (INIS)
Lahsasni, Siham; Kouhila, Mohammed; Mahrouz, Mostafa; Idlimam, Ali; Jamali, Abdelkrim
2004-01-01
This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 deg. C of ambient air temperature, 50 to 60 deg. C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m 3 /s of drying air flow rate and 200 to 950 W/m 2 of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square (χ 2 ) of 4.6572 10 -5
Energy Technology Data Exchange (ETDEWEB)
Lahsasni, S.; Mahrouz, M. [Unite de Chimie Agroalimentaire (LCOA), Faculte des Sciences Semlalia, Marrakech (Morocco); Kouhila, M.; Idlimam, A.; Jamali, A. [Ecole Normale Superieure, Marrakech (Morocco). Lab. d' Energie Solaire et Plantes Aromatiques et Medicinales
2004-02-01
This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 {sup o} C of ambient air temperature, 50 to 60 {sup o}C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m{sup 3}/s of drying air flow rate and 200 to 950 W/m{sup 2} of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square ({chi}{sup 2}) of 4.6572 10{sup -5}. (Author)
Tunable quasiparticle trapping in Meissner and vortex states of mesoscopic superconductors.
Taupin, M; Khaymovich, I M; Meschke, M; Mel'nikov, A S; Pekola, J P
2016-03-16
Nowadays, superconductors serve in numerous applications, from high-field magnets to ultrasensitive detectors of radiation. Mesoscopic superconducting devices, referring to those with nanoscale dimensions, are in a special position as they are easily driven out of equilibrium under typical operating conditions. The out-of-equilibrium superconductors are characterized by non-equilibrium quasiparticles. These extra excitations can compromise the performance of mesoscopic devices by introducing, for example, leakage currents or decreased coherence time in quantum devices. By applying an external magnetic field, one can conveniently suppress or redistribute the population of excess quasiparticles. In this article, we present an experimental demonstration and a theoretical analysis of such effective control of quasiparticles, resulting in electron cooling both in the Meissner and vortex states of a mesoscopic superconductor. We introduce a theoretical model of quasiparticle dynamics, which is in quantitative agreement with the experimental data.
Quantum transport through mesoscopic disordered interfaces, junctions, and multilayers
International Nuclear Information System (INIS)
Nikolic, Branislav K.
2002-01-01
This study explores perpendicular transport through macroscopically inhomogeneous three-dimensional disordered conductors using mesoscopic methods (the real-space Green function technique in a two-probe measuring geometry). The nanoscale samples (containing ∼ 1000 atoms) are modelled by a tight-binding Hamiltonian on a simple cubic lattice where disorder is introduced in the on-site potential energy. I compute the transport properties of: disordered metallic junctions formed by concatenating two homogeneous samples with different kinds of microscopic disorder, a single strongly disordered interface, and multilayers composed of such interfaces and homogeneous layers characterized by different strengths of the same type of microscopic disorder. This allows us to: contrast the resistor model (semiclassical) approach with a fully quantum description of dirty mesoscopic multilayers; study the transmission properties of dirty interfaces (where the Schep-Bauer distribution of transmission eigenvalues is confirmed for a single interface, as well as for a stack of such interfaces that is thinner than the localization length); and elucidate the effect of coupling to ideal leads ('measuring apparatus') on the conductance of both bulk conductors and dirty interfaces. When a multilayer contains a ballistic layer in between two interfaces, its disorder-averaged conductance oscillates as a function of the Fermi energy. I also address some fundamental issues in quantum transport theory - the relationship between the Kubo formula in the exact state representation and the 'mesoscopic Kubo formula' (which gives the exact zero-temperature conductance of a finite-size sample attached to two semi-infinite ideal leads) is thoroughly re-examined by comparing their outcomes for both the junctions and homogeneous samples. (author)
Thermal modelling of a dry revolving vane compressor
Ooi, K. T.; Aw, K. T.
2017-08-01
The lubricant used in compressors serves to lubricate, to seal the gaps to reduce internal leakage and to a certain extent, to cool. However, a lubricant free compressor is attractive if lubricants become a source of contaminant, or in areas where the compressor needs be placed under any orientation, such as those in military or portable computing. In this paper, a thermal model for a dry revolving vane compressor is presented. This thermal model sets out to predict the steady-state operating temperatures of the compressor components. The lumped thermal conductance method was employed. The results of the components temperature will be presented and discussed. A high potential for overheating is observed at the shaft bearings.
International Nuclear Information System (INIS)
Ruffino, E.; Scalerandi, M.
2000-01-01
As discovered by recent quasi-static and dynamic resonance experiments, the classical nonlinear theory fails in describing the hysteretic behaviour of nonlinear mesoscopic materials like rocks, concrete, etc. The paper applies the local interaction simulation approach (LISA) for studying such kind of nonclassical nonlinearity. To this purpose, in the LISA treatment of ultrasonic wave propagation has been included a phenomenological model, based on the PM space approach, of the local mesoscopic features of rocks and other materials with localized damages. A quantitative comparison of simulation and experimental results in quasi-static experiments is also presented
Development of Solar Drying Model for Selected Cambodian Fish Species
Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan
2014-01-01
A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h...
Mathematical modelling of the thin layer solar drying of banana, mango and cassava
Energy Technology Data Exchange (ETDEWEB)
Koua, Kamenan Blaise; Fassinou, Wanignon Ferdinand; Toure, Siaka [Laboratoire d' Energie Solaire, Universite de Cocody- Abidjan, 22 BP 582 Abidjan 22 (Ivory Coast); Gbaha, Prosper [Laboratoire d' Energie Nouvelle et Renouvelable, Institut National Polytechnique, Felix HOUPHOUET - BOIGNY de Yamoussoukro (Ivory Coast)
2009-10-15
The main objectives of this paper are firstly to investigate the behaviour of the thin layer drying of plantain banana, mango and cassava experimentally in a direct solar dryer and secondly to perform mathematical modelling by using thin layer drying models encountered in literature. The variation of the moisture content of the products studied and principal drying parameters are analysed. Seven statistical models, which are empirical or semi-empirical, are tested to validate the experimental data. A non-linear regression analysis using a statistical computer program is used to evaluate the constants of the models. The Henderson and Pabis drying model is found to be the most suitable for describing the solar drying curves of plantain banana, mango and cassava. The drying data of these products have been analysed to obtain the values of the effective diffusivity during the falling drying rate phase. (author)
Modeling of Particle Emission During Dry Orthogonal Cutting
Khettabi, Riad; Songmene, Victor; Zaghbani, Imed; Masounave, Jacques
2010-08-01
Because of the risks associated with exposure to metallic particles, efforts are being put into controlling and reducing them during the metal working process. Recent studies by the authors involved in this project have presented the effects of cutting speeds, workpiece material, and tool geometry on particle emission during dry machining; the authors have also proposed a new parameter, named the dust unit ( D u), for use in evaluating the quantity of particle emissions relative to the quantity of chips produced during a machining operation. In this study, a model for predicting the particle emission (dust unit) during orthogonal turning is proposed. This model, which is based on the energy approach combined with the microfriction and the plastic deformation of the material, takes into account the tool geometry, the properties of the worked material, the cutting conditions, and the chip segmentation. The model is validated using experimental results obtained during the orthogonal turning of 6061-T6 aluminum alloy, AISI 1018, AISI 4140 steels, and grey cast iron. A good agreement was found with experimental results. This model can help in designing strategies for reducing particle emission during machining processes, at the source.
Modelling wetting and drying effects over complex topography
Tchamen, G. W.; Kahawita, R. A.
1998-06-01
The numerical simulation of free surface flows that alternately flood and dry out over complex topography is a formidable task. The model equation set generally used for this purpose is the two-dimensional (2D) shallow water wave model (SWWM). Simplified forms of this system such as the zero inertia model (ZIM) can accommodate specific situations like slowly evolving floods over gentle slopes. Classical numerical techniques, such as finite differences (FD) and finite elements (FE), have been used for their integration over the last 20-30 years. Most of these schemes experience some kind of instability and usually fail when some particular domain under specific flow conditions is treated. The numerical instability generally manifests itself in the form of an unphysical negative depth that subsequently causes a run-time error at the computation of the celerity and/or the friction slope. The origins of this behaviour are diverse and may be generally attributed to:1. The use of a scheme that is inappropriate for such complex flow conditions (mixed regimes).2. Improper treatment of a friction source term or a large local curvature in topography.3. Mishandling of a cell that is partially wet/dry.In this paper, a tentative attempt has been made to gain a better understanding of the genesis of the instabilities, their implications and the limits to the proposed solutions. Frequently, the enforcement of robustness is made at the expense of accuracy. The need for a positive scheme, that is, a scheme that always predicts positive depths when run within the constraints of some practical stability limits, is fundamental. It is shown here how a carefully chosen scheme (in this case, an adaptation of the solver to the SWWM) can preserve positive values of water depth under both explicit and implicit time integration, high velocities and complex topography that may include dry areas. However, the treatment of the source terms: friction, Coriolis and particularly the bathymetry
Coulomb drag in coherent mesoscopic systems
DEFF Research Database (Denmark)
Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2001-01-01
We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means......, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...
Empirical Modeling on Hot Air Drying of Fresh and Pre-treated Pineapples
Directory of Open Access Journals (Sweden)
Tanongkankit Yardfon
2016-01-01
Full Text Available This research was aimed to study drying kinetics and determine empirical model of fresh pineapple and pre-treated pineapple with sucrose solution at different concentrations during drying. 3 mm thick samples were immersed into 30, 40 and 50 Brix of sucrose solution before hot air drying at temperatures of 60, 70 and 80°C. The empirical models to predict the drying kinetics were investigated. The results showed that the moisture content decreased when increasing the drying temperatures and times. Increase in sucrose concentration led to longer drying time. According to the statistical values of the highest coefficients (R2, the lowest least of chi-square (χ2 and root mean square error (RMSE, Logarithmic model was the best models for describing the drying behavior of soaked samples into 30, 40 and 50 Brix of sucrose solution.
When to stop drying fruit: Insights from hygrothermal modelling
International Nuclear Information System (INIS)
Defraeye, Thijs
2017-01-01
Highlights: • Partial dehydration reduces energy consumption and processing time and improves product quality. • This study gives a quantitative insight in when fruit drying should be stopped. • Decrease in dryer residence time of 2%, 24% and 70% are found for different stopping criteria. - Abstract: Stopping the drying process prior to complete dehydration reduces energy consumption and processing time but can also improve product quality. Using hygrothermal simulations, different stopping criteria are evaluated, which are based on the final water activity and residual moisture content in the fruit. Their impact on drying time and moisture redistribution kinetics inside fruit is quantified. One of the variants leads to a significant reduction in residence time in the dryer (24%), compared to full dehydration. For this variant, drying is stopped when the average moisture content in the sample reaches the value corresponding to an equilibrium water activity of 60% in the sample, as determined from the sorption isotherm. At the same time, this variant does not induce problems with fruit spoilage, as a sufficiently low water activity is reached after moisture redistribution during relaxation in the ambient environment. In addition, the relation of the drying time to the drying air temperature was quantified for all stopping criteria, as well as the impact of the humidity of the ambient environment in which the dried fruits are placed afterwards. This study gives a better quantitative insight in when fruit drying should be stopped, given specific drying conditions, without having to compromise food safety.
Mathematical modeling of drying of pretreated and untreated pumpkin
Tunde-Akintunde, T. Y.; Ogunlakin, G. O.
2011-01-01
In this study, drying characteristics of pretreated and untreated pumpkin were examined in a hot-air dryer at air temperatures within a range of 40–80 °C and a constant air velocity of 1.5 m/s. The drying was observed to be in the falling-rate drying period and thus liquid diffusion is the main mechanism of moisture movement from the internal regions to the product surface. The experimental drying data for the pumpkin fruits were used to fit Exponential, General exponential, Logarithmic, Page...
Measured and modeled dry deposition velocities over the ESCOMPTE area
Michou, M.; Laville, P.; Serça, D.; Fotiadi, A.; Bouchou, P.; Peuch, V.-H.
2005-03-01
Measurements of the dry deposition velocity of ozone have been made by the eddy correlation method during ESCOMPTE (Etude sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions). The strong local variability of natural ecosystems was sampled over several weeks in May, June and July 2001 for four sites with varying surface characteristics. The sites included a maize field, a Mediterranean forest, a Mediterranean shrub-land, and an almost bare soil. Measurements of nitrogen oxide deposition fluxes by the relaxed eddy correlation method have also been carried out at the same bare soil site. An evaluation of the deposition velocities computed by the surface module of the multi-scale Chemistry and Transport Model MOCAGE is presented. This module relies on a resistance approach, with a detailed treatment of the stomatal contribution to the surface resistance. Simulations at the finest model horizontal resolution (around 10 km) are compared to observations. If the seasonal variations are in agreement with the literature, comparisons between raw model outputs and observations, at the different measurement sites and for the specific observing periods, are contrasted. As the simulated meteorology at the scale of 10 km nicely captures the observed situations, the default set of surface characteristics (averaged at the resolution of a grid cell) appears to be one of the main reasons for the discrepancies found with observations. For each case, sensitivity studies have been performed in order to see the impact of adjusting the surface characteristics to the observed ones, when available. Generally, a correct agreement with the observations of deposition velocities is obtained. This advocates for a sub-grid scale representation of surface characteristics for the simulation of dry deposition velocities over such a complex area. Two other aspects appear in the discussion. Firstly, the strong influence of the soil water content to the plant
A new nonhuman primate model of severe dry eye.
Qin, Yi; Tan, Xiaobo; Zhang, Yingnan; Jie, Ying; Labbe, Antoine; Pan, Zhiqiang
2014-05-01
The aim of this study was to establish a new rhesus monkey model of severe dry eye. A total of 8 rhesus monkeys were used for the study. Four monkeys had their main lacrimal gland and nictitating membrane surgically removed (group 1). Another 4 monkeys had a similar surgery with further application of 50% trichloroacetic acid on the bulbar conjunctiva (group 2). The ocular surface was evaluated before and after the surgery (1, 4, 8, 12, and 24 weeks) using Schirmer-1 test, corneal fluorescein staining, and the lissamine green test. Conjunctival impression cytology was also performed before and 24 weeks after the surgery. Finally, the cornea and the conjunctiva were evaluated using light microscopy. A significant decrease in tear secretion was observed in all operated eyes. Schirmer test data measured were ≤4 mm in all the operated eyes. Slit-lamp examination also revealed abnormal staining in all the operated eyes that remained stable until the end of the experiment. In group 2, corneal fluorescein staining and lissamine green test values were always ≥5 (max 12) and ≥4 (max 9), respectively. Impression cytology specimens of both the treated groups showed conjunctival squamous metaplasia and a decreased number of goblet cells. Under light microscopy, the corneal epithelium appeared irregular with edematous basal epithelial cells. The conjunctiva showed a decreased goblet cell density with infiltration of inflammatory cells. Complete removal of the principal lacrimal gland and nictitating membrane associated with the application of 50% trichloroacetic acid on the conjunctiva could induce severe dry eye in rhesus monkeys.
Contact Geometry of Mesoscopic Thermodynamics and Dynamics
Directory of Open Access Journals (Sweden)
Miroslav Grmela
2014-03-01
Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.
Entanglement in mesoscopic structures: Role of projection
Beenakker, C.W.J.; Lebedev, A.V.; Blatter, G.; Lesovik, G.B.
2004-01-01
We present a theoretical analysis of the appearance of entanglement in non-interacting mesoscopic structures. Our setup involves two oppositely polarized sources injecting electrons of opposite spin into the two incoming leads. The mixing of these polarized streams in an ideal four-channel beam splitter produces two outgoing streams with particular tunable correlations. A Bell inequality test involving cross-correlated spin-currents in opposite leads signals the presence of spin-entanglement ...
Mesoscopic structure conditions the emergence of cooperation on social networks.
Directory of Open Access Journals (Sweden)
Sergi Lozano
Full Text Available BACKGROUND: We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. METHODOLOGY/PRINCIPAL FINDINGS: We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates. CONCLUSION: Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.
Mesoscopic structure conditions the emergence of cooperation on social networks
Energy Technology Data Exchange (ETDEWEB)
Lozano, S.; Arenas, A.; Sanchez, A.
2008-12-01
We study the evolutionary Prisoner's Dilemma on two social networks substrates obtained from actual relational data. We find very different cooperation levels on each of them that cannot be easily understood in terms of global statistical properties of both networks. We claim that the result can be understood at the mesoscopic scale, by studying the community structure of the networks. We explain the dependence of the cooperation level on the temptation parameter in terms of the internal structure of the communities and their interconnections. We then test our results on community-structured, specifically designed artificial networks, finding a good agreement with the observations in both real substrates. Our results support the conclusion that studies of evolutionary games on model networks and their interpretation in terms of global properties may not be sufficient to study specific, real social systems. Further, the study allows us to define new quantitative parameters that summarize the mesoscopic structure of any network. In addition, the community perspective may be helpful to interpret the origin and behavior of existing networks as well as to design structures that show resilient cooperative behavior.
Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato
Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif
2016-03-01
In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.
Modeling of thin layer drying of tarragon (Artemisia dracunculus L.)
ArabHosseini, A.; Huisman, W.; Boxtel, van A.J.B.; Mueller, J.
2009-01-01
The drying behavior of tarragon leaves as well as chopped plants were evaluated at air temperatures ranging from 40 to 90 °C, at various air relative humidities and a constant air velocity of 0.6 m/s. The experimental data was fitted to a number of thin layer drying equations. The equations were
STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS
Directory of Open Access Journals (Sweden)
Mojtaba Nouri
2015-06-01
Full Text Available The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C and microwave (90, 180, 360, 600 and 900w in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2, Chi square(X2, root mean square errors(RSME. Results also revealed that temperature and microwave power effectively reduce the drying time when increase. Drying occurs in degrading stage; moreover the comparison of results exhibited that Page and Two sentences models were fitted appropriately to estimate moisture changing and drying description. Regarding all the results, it is cleared that microwave method is an appropriate method in spinach drying as a result of reducing drying temperature and its high efficiency.
Fabrication methods for mesoscopic flying vehicle
Cheng, Yih-Lin
2001-10-01
Small-scale flying vehicles are attractive tools for atmospheric science research. A centimeter-size mesoscopic electric helicopter, the mesicopter, has been developed at Stanford University for these applications. The mesoscopic scale implies a design with critical features between tens of microns and several millimeters. Three major parts in the mesicopter are challenging to manufacture. Rotors require smooth 3D surfaces and a blade thickness of less than 100 mum. Components in the DC micro-motor must be made of engineering materials, which is difficult on the mesoscopic scale. Airframe fabrication has to integrate complex 3D geometry into one single structure at this scale. In this research, material selection and manufacturing approaches have been investigated and implemented. In rotor fabrication, high-strength polymers manufactured by the Shape Deposition Manufacturing (SDM) technique were the top choice. Aluminum alloys were only considered as the second choice because the fabrication process is more involved. Lift tests showed that the 4-blade polymer and aluminum rotors could deliver about 90% of the expected lift (4g). To explain the rotor performance, structural analyses of spinning rotors were performed and the fabricated geometry was investigated. The bending deflections and the torsional twists were found to be too small to degrade aerodynamic performance. The rotor geometry was verified by laser scanning and by cross-section observations. Commercially available motors are used in the prototypes but a smaller DC micro-motor was designed for future use. Components of the DC micro-motors were fabricated by the Mesoscopic Additive/Subtractive Material Processing technique, which is capable of shaping engineering materials on the mesoscopic scale. The approaches are described in this thesis. The airframe was manufactured using the SDM process, which is capable of building complex parts without assembly. Castable polymers were chosen and mixed with glass
DEFF Research Database (Denmark)
Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F.C.; Corver, Jos
2018-01-01
Pharmaceutical batch freeze-drying is commonly used to improve the stability of biological therapeutics. The primary drying step is regulated by the dynamic settings of the adaptable process variables, shelf temperature Ts and chamber pressure Pc. Mechanistic modelling of the primary drying step...
PWR-to-PWR fuel cycle model using dry process
International Nuclear Information System (INIS)
Iqbal, M.; Jeong, Chang Joon; Rho, Gyu Hong
2002-03-01
PWR-to-PWR fuel cycle model has been developed to recycle the spent fuel using the dry fabrication process. Two types of fuels were considered; first fuel was based on low initial enrichment with low discharge burnup and second one was based on more initial enrichment with high discharge burnup in PWR. For recycling calculations, the HELIOS code was used, in which all of the available fission products were considered. The decay of 10 years was applied for reuse of the spent fuel. Sensitivity analysis for the fresh feed material enrichment has also been carried out. If enrichment of the mixing material is increased the saving of uranium reserves would be decreased. The uranium saving of low burned fuel increased from 4.2% to 7.4% in fifth recycling step for 5 wt% to 19.00wt% mixing material enrichment. While for high burned fuel, there was no uranium saving, which implies that higher uranium enrichment required than 5 wt%. For mixing of 15 wt% enriched fuel, the required mixing is about 21.0% and 37.0% of total fuel volume for low and high burned fuel, respectively. With multiple recycling, reductions in waste for low and high burned fuel became 80% and 60%, for first recycling, respectively. In this way, waste can be reduced more and the cost of the waste disposal reduction can provide the economic balance
Drying of mint leaves in a solar dryer and under open sun: Modelling, performance analyses
International Nuclear Information System (INIS)
Akpinar, E. Kavak
2010-01-01
In this study was investigated the thin-layer drying characteristics in solar dryer with forced convection and under open sun with natural convection of mint leaves, and, performed energy analysis and exergy analysis of solar drying process of mint leaves. An indirect forced convection solar dryer consisting of a solar air collector and drying cabinet was used in the experiments. The drying data were fitted to ten the different mathematical models. Among the models, Wang and Singh model for the forced solar drying and the natural sun drying were found to best explain thin-layer drying behaviour of mint leaves. Using the first law of thermodynamics, the energy analysis throughout solar drying process was estimated. However, exergy analysis during solar drying process was determined by applying the second law of thermodynamics. Energy utilization ratio (EUR) values of drying cabinet varied in the ranges between 7.826% and 46.285%. The values of exergetic efficiency were found to be in the range of 34.760-87.717%. The values of improvement potential varied between 0 and 0.017 kJ s -1 . Energy utilization ratio and improvement potential decreased with increasing drying time and ambient temperature while exergetic efficiency increased.
Directory of Open Access Journals (Sweden)
Beigi Mohsen
2017-01-01
Full Text Available The present study aimed at investigation of deep bed drying of rough rice kernels at various thin layers at different drying air temperatures and flow rates. A comparative study was performed between mathematical thin layer models and artificial neural networks to estimate the drying curves of rough rice. The suitability of nine mathematical models in simulating the drying kinetics was examined and the Midilli model was determined as the best approach for describing drying curves. Different feed forward-back propagation artificial neural networks were examined to predict the moisture content variations of the grains. The ANN with 4-18-18-1 topology, transfer function of hyperbolic tangent sigmoid and a Levenberg-Marquardt back propagation training algorithm provided the best results with the maximum correlation coefficient and the minimum mean square error values. Furthermore, it was revealed that ANN modeling had better performance in prediction of drying curves with lower root mean square error values.
Mesoscopic Numerical Computation of Compressive Strength and Damage Mechanism of Rubber Concrete
Directory of Open Access Journals (Sweden)
Z. H. Xie
2015-01-01
Full Text Available Evaluations of both macroscopic and mesoscopic strengths of materials have been the topic of a great deal of recent research. This paper presents the results of a study, based on the Walraven equation of the production of a mesoscopic random aggregate structure containing various rubber contents and aggregate sizes. On a mesoscopic scale, the damage mechanism in the rubber concrete and the effects of the rubber content and aggregate-mortar interface on the rubber concrete’s compressive resistance property were studied. The results indicate that the random aggregate structural model very closely approximates the experimental results in terms of the fracture distribution and damage characteristics under uniaxial compression. The aggregate-mortar interface mechanical properties have a substantial impact on the test sample’s strength and fracture distribution. As the rubber content increases, the compressive strength and elastic modulus of the test sample decrease proportionally. This paper presents graphics of the entire process from fracture propagation to structural failure of the test piece by means of the mesoscopic finite-element method, which provides a theoretical reference for studying the damage mechanism in rubber concrete and performing parametric calculations.
An empirical model to predict infield thin layer drying rate of cut switchgrass
International Nuclear Information System (INIS)
Khanchi, A.; Jones, C.L.; Sharma, B.; Huhnke, R.L.; Weckler, P.; Maness, N.O.
2013-01-01
A series of 62 thin layer drying experiments were conducted to evaluate the effect of solar radiation, vapor pressure deficit and wind speed on drying rate of switchgrass. An environmental chamber was fabricated that can simulate field drying conditions. An empirical drying model based on maturity stage of switchgrass was also developed during the study. It was observed that solar radiation was the most significant factor in improving the drying rate of switchgrass at seed shattering and seed shattered maturity stage. Therefore, drying switchgrass in wide swath to intercept the maximum amount of radiation at these stages of maturity is recommended. Moreover, it was observed that under low radiation intensity conditions, wind speed helps to improve the drying rate of switchgrass. Field operations such as raking or turning of the windrows are recommended to improve air circulation within a swath on cloudy days. Additionally, it was found that the effect of individual weather parameters on the drying rate of switchgrass was dependent on maturity stage. Vapor pressure deficit was strongly correlated with the drying rate during seed development stage whereas, vapor pressure deficit was weakly correlated during seed shattering and seed shattered stage. These findings suggest the importance of using separate drying rate models for each maturity stage of switchgrass. The empirical models developed in this study can predict the drying time of switchgrass based on the forecasted weather conditions so that the appropriate decisions can be made. -- Highlights: • An environmental chamber was developed in the present study to simulate field drying conditions. • An empirical model was developed that can estimate drying rate of switchgrass based on forecasted weather conditions. • Separate equations were developed based on maturity stage of switchgrass. • Designed environmental chamber can be used to evaluate the effect of other parameters that affect drying of crops
International Nuclear Information System (INIS)
Albright, B.J.; Yin, L.; Bowers, K.J.; Kline, J.L.; Montgomery, D.S.; Fernandez, J.C.; Daughton, W.
2006-01-01
The authors use explicit particle-in-cell simulations to model stimulated scattering processes in media with both solitary and multiple laser hot spots. These simulations indicate coupling among hot spots, whereby scattered light, plasma waves, and hot electrons generated in one laser hot spot may propagate to neighboring hot spots, which can be destabilized to enhanced backscatter. A nonlinear statistical model of a stochastic beam exhibiting this coupled behavior is described here. Calibration of the model using particle-in-cell simulations is performed, and a threshold is derived for 'detonation' of the beam to high reflectivity. (authors)
A Location-Allocation Model for Seaport-Dry Port System Optimization
Directory of Open Access Journals (Sweden)
Xuejun Feng
2013-01-01
Full Text Available Seaports participate in hinterland economic development through partnerships with dry ports, and the combined seaport-dry port network serves as the backbone of regional logistics. This paper constructs a location-allocation model for the regional seaport-dry port network optimization problem and develops a greedy algorithm and a genetic algorithm to obtain its solution. This model is applicable to situations under which the geographic distribution of demand is known. A case study involving configuration of dry ports near the west bank of the Taiwan Strait is conducted, and the model is successfully applied.
Mathematical Modelling of Drying Kinetics of Wheat in Electron Fired Fluidized Bed Drying System
Deomore, Dayanand N.; Yarasu, Ravindra B.
2018-02-01
The conventional method of electrical heating is replaced by electron firing system. The drying kinetics of wheat is studied using electron fired fluidized bed dryer. The results are simulated by using ANSYS. It was observed that the graphs are in agreement with each other. Therefore, the new proposed electronic firing system can be employed instead of electrical firing. It was observed that the drop in Relative Humidity in case of Electrical heating is 68.75% for temp reaching up to 70° C in 67 sec for pressure drop of 13 psi while for the electronic Firing system it is 67.6 % temp reaches to 70° C in 70 sec for pressure drop of 12.67 psi. As the results are in agreement with each other it was concluded that for the grains like wheat which has low initial moisture content both systems can be used.
International Nuclear Information System (INIS)
Ishihara, M.; Shibata, T.; Takahashi, T.; Baba, S.; Hoshiya, T.
2002-01-01
With the aim of nuclear application of ceramics in the high-temperature engineering field, the authors have investigated the mesoscopic microstructure related to the mechanical and thermal properties of ceramics. In this paper, recent activities concerning mechanical properties, strength and Young's modulus are presented. In the strength research field, the brittle fracture model considering pore/grain mesoscopic microstructure was expanded so as to render possible an estimation of the strength under stress gradient conditions. Furthermore, the model was expanded to treat the pore/crack interaction effect. The performance of the developed model was investigated from a comparison with experimental data and the Weibull strength theory. In the field of Young's modulus research, ultrasonic wave propagation was investigated using the pore/wave interaction model. Three kinds of interaction modes are treated in the model. The model was applied to the graphite, and its applicability was investigated through comparison with experimental data. (authors)
Directory of Open Access Journals (Sweden)
Samuel Enahoro Agarry
2017-01-01
Full Text Available The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h and 1.67-7 h, respectively at temperature ranging from 75 to 35oC. The drying of red pepper and bitter leaf was both in the constant and falling rate period. Four semi-empirical mathematical drying models (Newton, Page, Henderson and Pabis, and Logarithmic models were fitted to the experimental drying curves. The models were compared using the coefficient of determination (R^2 and the root mean square error (RMSE. The Page model has shown a better fit to the experimental drying data of red pepper and bitter leaf, respectively as relatively compared to other tested models. Moisture transport during drying was described by the application of Fick’s diffusion model and the effective moisture diffusivity was estimated. The value ranges from 15.69 to 84.79 × 10-9 m2/s and 0.294 to 1.263 × 10-9 m2/s for red pepper and bitter leaf, respectively. The Arrhenius-type relationship describes the temperature dependence of effective moisture diffusivity and was determined to be 37.11 kJ/mol and 32.86 kJ/mol for red pepper and bitter leaf, respectively. A correlation between the drying time and the heat transfer area was also developed.
Quantum Spin Transport in Mesoscopic Interferometer
Directory of Open Access Journals (Sweden)
Zein W. A.
2007-10-01
Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.
Quantum gambling using mesoscopic ring qubits
International Nuclear Information System (INIS)
Pakula, Ireneusz
2007-01-01
Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg et al. is one of the simplest yet still hard to implementapplications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Fluctuations and localization in mesoscopic electron
Janssen, Martin
2001-01-01
The quantum phenomena of tunneling and interference show up not only in the microscopic world of atoms and molecules, but also in cold materials of the real world, such as metals and semiconductors. Though not fully macroscopic, such mesoscopic systems contain a huge number of particles, and the holistic nature of quantum mechanics becomes evident already in simple electronic measurements. The measured quantity fluctuates as a function of applied fields in an unpredictable, yet reproducible way. Despite this fingerprint character of fluctuations, their statistical properties are universal, i.e
Quantum gambling using mesoscopic ring qubits
Energy Technology Data Exchange (ETDEWEB)
Pakula, Ireneusz [University of Silesia, Institute of Physics, ul. Uniwersytecka 4, 40-007 Katowice (Poland)
2007-07-15
Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg et al. is one of the simplest yet still hard to implementapplications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Quantum Effect in the Mesoscopic RLC Circuits with a Source
International Nuclear Information System (INIS)
Liu Jianxin; Yan Zhanyuan
2005-01-01
The research work on the quantum effects in mesoscopic circuits has undergone a rapid development recently, however the whole quantum theory of the mesoscopic circuits should consider the discreteness of the electric charge. In this paper, based on the fundamental fact that the electric charge takes discrete values, the finite-difference Schroedinger equation of the mesoscopic RLC circuit with a source is achieved. With a unitary transformation, the Schroedinger equation becomes the standard Mathieu equation, then the energy spectrum and the wave functions of the system are obtained. Using the WKBJ method, the average of currents and square of the current are calculated. The results show the existence of the current fluctuation, which causes noise in the circuits. This paper is an application of the whole quantum mesoscopic circuits theory to the fundamental circuits, and the results will shed light on the design of the miniation circuits, especially on the purpose of reducing quantum noise coherent controlling of the mesoscopic quantum states.
Giardina, M.; Buffa, P.; Cervone, A.; De Rosa, F.; Lombardo, C.; Casamirra, M.
2017-11-01
In the framework of a National Research Program funded by the Italian Minister of Economic Development, the Department of Energy, Information Engineering and Mathematical Models (DEIM) of Palermo University and ENEA Research Centre of Bologna, Italy are performing several research activities to study physical models and mathematical approaches aimed at investigating dry deposition mechanisms of radioactive pollutants. On the basis of such studies, a new approach to evaluate the dry deposition velocity for particles is proposed. Comparisons with some literature experimental data show that the proposed dry deposition scheme can capture the main phenomena involved in the dry deposition process successfully.
Jahedi Rad, Shahpour; Kaveh, Mohammad; Sharabiani, Vali Rasooli; Taghinezhad, Ebrahim
2018-05-01
The thin-layer convective- infrared drying behavior of white mulberry was experimentally studied at infrared power levels of 500, 1000 and 1500 W, drying air temperatures of 40, 55 and 70 °C and inlet drying air speeds of 0.4, 1 and 1.6 m/s. Drying rate raised with the rise of infrared power levels at a distinct air temperature and velocity and thus decreased the drying time. Five mathematical models describing thin-layer drying have been fitted to the drying data. Midlli et al. model could satisfactorily describe the convective-infrared drying of white mulberry fruit with the values of the correlation coefficient (R 2=0.9986) and root mean square error of (RMSE= 0.04795). Artificial neural network (ANN) and fuzzy logic methods was desirably utilized for modeling output parameters (moisture ratio (MR)) regarding input parameters. Results showed that output parameters were more accurately predicted by fuzzy model than by the ANN and mathematical models. Correlation coefficient (R 2) and RMSE generated by the fuzzy model (respectively 0.9996 and 0.01095) were higher than referred values for the ANN model (0.9990 and 0.01988 respectively).
Directory of Open Access Journals (Sweden)
Cristian F. Costa
2016-06-01
Full Text Available ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s-1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol-1. Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.
Heat and mass transfer models to understand the drying mechanisms of a porous substrate.
Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti
2016-02-01
While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.
Transport Characteristics of Mesoscopic Radio-Frequency Single Electron Transistor
International Nuclear Information System (INIS)
Phillips, A. H.; Kirah, K.; Aly, N. A. I.; El-Sayes, H. E.
2008-01-01
The transport property of a quantum dot under the influence of external time-dependent field is investigated. The mesoscopic device is modelled as semiconductor quantum dot coupled weakly to superconducting leads via asymmetric double tunnel barriers of different heights. An expression for the current is deduced by using the Landauer–Buttiker formula, taking into consideration of both the Coulomb blockade effect and the magnetic field. It is found that the periodic oscillation of the current with the magnetic field is controlled by the ratio of the frequency of the applied ac-field to the electron cyclotron frequency. Our results show that the present device operates as a radio-frequency single electron transistor
Coherent X-ray diffraction studies of mesoscopic materials
International Nuclear Information System (INIS)
Shabalin, Anatoly
2015-12-01
This thesis is devoted to three separate projects, which can be considered as independent. First, the dynamical scattering effects in the Coherent X-ray Diffractive Imaging (CXDI) method are discussed. Based on the simulation results, a straightforward method for correction for the refraction and absorption artifacts in the Bragg CXDI reconstruction is suggested. The second part summarizes the results of an Coherent X-ray Diffractive Imaging experiment with a single colloidal crystal grain. A remarkable result is that positions of individual particles in the crystal lattice have been resolved in three dimensions. The third project is devoted to X-ray diffraction experimental studies of structural evolution of colloidal crystalline films upon incremental heating. Based on the results of the analysis a model of structural evolution of a colloidal crystal upon heating on nanoscopic and mesoscopic length scales is suggested.
Modelling the drying kinetics of green peas in a solar dryer and under open sun
Energy Technology Data Exchange (ETDEWEB)
Sunil [Department of Mechanical Engineering, BRCM CET Bahal, Haryana–127028 (India); Varun [Department of Mechanical Engineering, NIT Hamirpur, (H.P.)–177005 (India); Sharma, Naveen [Department of Mechanical and Industrial Engineering, IITR, (U.K.)–247667 (India)
2013-07-01
The drying kinetics of green peas was investigated in an indirect solar dryer and under open sun. The entire drying process took place exclusively in falling rate period. The constant rate period was absent from the drying curves. The rehydration capacity was also determined for peas dried in solar dryer and under open sun. The rehydration capacity of solar dried peas was found higher than open sun dried peas. The drying data obtained from experiments were fitted to eight different mathematical models. The performance of these models was examined by comparing the coefficient of correlation (R2), sum of squares error (SSE), mean squared error (MSE) and root mean square error (RMSE) between observed and predicted values of moisture ratios. Among these models, the thin layer drying model developed by Page showed good agreement with the data obtained from experiments for bottom tray. The Midilli et al. model has shown better fit to the experimental data for top tray and open sun than other models.
Directory of Open Access Journals (Sweden)
Saniso, E.
2007-05-01
Full Text Available The objectives of this research were to study basic physical parameters of three agricultural residues that could be used for prediction of paddy drying kinetics using desiccants, to investigate a suitable methodfor moisture reduction of fresh paddy using 3 absorbents, and to modify the drying model of Inoue et al. for determining the evolution of moisture transfer during the drying period. Rice husk, sago palm rachis andcoconut husk were used as moisture desiccants in these experiments. From the results, it was concluded that the apparent density of all adsorbents was a linear function of moisture content whilst an equilibriummoisture content equation following Hendersonís model gave the best fit to the experimental results. From studying the relationship between moisture ratio and drying time under the condition of drying temperaturesof 30, 50 and 70oC, air flow rate of 1.6 m/s and initial moisture content of absorbents of 15, 20 and 27% dry-basis, it was shown that the moisture ratio decreased when drying time increased. In addition, thethin-layer desiccant drying equation following of the Page model can appropriately explain the evolution of moisture content of paddy over the drying time. The diffusion coefficient of all absorbents, which was in therange of 1x10-8 to 6x10-8 m2/h, was relatively dependent on drying temperature and inversely related to drying time. The diffusivity of coconut husk had the highest value compared to the other absorbents.The simulating modified mathematical model to determine drying kinetics of paddy using absorption technique and the simulated results had good relation to the experimental results for all adsorbents.
Characteristics of Microwave Vacuum Baking and Drying of Oolong and Its Kinetic Model
Rongchuan Lin; Hetong Lin; Qingjiao Lin
2013-01-01
This paper studies the characteristics of microwave vacuum baking and drying of oolong and analyzes the influence of microwave power and vacuum degree in the drying process on the moisture in the tea. According to the variation law of moisture, it explores the relationship between time and wet base moisture contents under different microwave powers and vacuum degrees, as well as the kinetic mathematical model of vacuum drying for oolong using the microwave. Based on the energy balance between...
Mesoscopic scale thermal fatigue damage
International Nuclear Information System (INIS)
Robertson, C.; Fissolo, A.; Fivel, M.
2001-01-01
In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)
Mesoscopic scale thermal fatigue damage
Energy Technology Data Exchange (ETDEWEB)
Robertson, C.; Fissolo, A. [CEA Saclay, Dept. des Materiaux pour le Nucleaire, DMN, 91 - Gif sur Yvette (France); Fivel, M. [Centre National de la Recherche Scientifique, CNRS-GPM2, 38 - Saint Martin d' Heres (France)
2001-07-01
In an attempt to better understand damage accumulation mechanisms in thermal fatigue, dislocation substructures forming in 316L steel during one specific test were examined and simulated. Hence, thin foils taken out of massive, tested specimens were first observed in transmission electron microscopy (TEM). These observations help in determining one initial dislocation configuration to be implemented in a 3-D model combining 3D discrete dislocation dynamics simulation (DDD) and finite element method computations (FEM). It was found that the simulated mechanical behaviour of the DDD microstructure is compatible with FEM and experimental data. The numerically generated dislocation microstructure is similar to ladder-like dislocation arrangements as found in many fatigued f.c.c. materials. Distinct mechanical behaviour for the two active slip systems was shown and deformation mechanisms were proposed. (authors)
Documentation of the DRI Model of the US economy, December 1993
Energy Technology Data Exchange (ETDEWEB)
1994-02-28
The Energy Information Administration (EIA) uses models of the US economy developed by Data Resources, Inc. (DRI) for conducting policy analyses, preparing forecasts for the Annual Energy Outlook, the Short-Term Energy Outlook, and related analyses in conjunction with EIA`s National Energy Modeling System (NEMS) and its other energy market models. Both the DRI Model of the US Economy and the DRI Personal Computer Input-Output Model (PC-IO){sup 2} were developed and are maintained by DRI as proprietary models. This report provides documentation, as required by EIA standards for the use of proprietary models; describes the theoretical basis, structure and functions of both DRI models; and contains brief descriptions of the models and their equations. Appendix A describes how the two large-scale models documented here are used to support the macroeconomic and interindustry modeling associated with the National Energy Modeling System. Appendix B is an article by Stephen McNees of the Federal Reserve Bank of Boston on ``How Large are Economic Forecast Errors.`` This article assesses the forecast accuracy of a number of economic forecasting models (groups) and is attached as an independent assessment of the forecast accuracy of the DRI Model of the US Economy.
Modeling Dry Deposition of Aerosol Particles on Rough Surfaces
Czech Academy of Sciences Publication Activity Database
Hussein, T.; Smolík, Jiří; Kerminen, V.-M.; Kulmala, M.
2012-01-01
Roč. 46, č. 1 (2012), s. 44-59 ISSN 0278-6826 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosol particles * dry deposition * transport Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.780, year: 2012
Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.)
International Nuclear Information System (INIS)
Doymaz, İbrahim
2012-01-01
Highlights: ► In this study, convective drying (50–70 °C) was applied as a preservation technology for persimmon slices. ► The highest drying and rehydration rates obtained with blanched slices. ► The Midilli et al., Page and Weibull models were determined as the suitable models. ► Effective moisture diffusivity, diffusivity constant and activation energy for drying process were determined. - Abstract: The effect of blanching and drying temperature (50, 60 and 70 °C) on drying kinetics and rehydration ratio of persimmons under hot-air drying was investigated. It was observed that both the drying temperature and blanching affected the drying time. The shortest drying times and highest rehydration ratios were obtained from blanched samples. Six thin-layer drying models were evaluated in the kinetics research. The fit quality of the proposed models was evaluated by using the determination of coefficient (R 2 ), reduced chi-square (χ 2 ) and root means square error (RMSE). The Midilli et al., Page and Weibull models showed a better fit to experimental drying data as compared to other models. Effective moisture diffusivity (D eff ) ranged from 7.05 × 10 −11 to 2.34 × 10 −10 m 2 /s calculated using the Fick’s second law. The activation energies of blanched and control samples determined from slope of the Arrhenius plot, ln(D eff ) versus 1/(T + 273.15), was 30.64 and 43.26 kJ/mol, respectively.
Signatures of topological phase transitions in mesoscopic superconducting rings
International Nuclear Information System (INIS)
Pientka, Falko; Romito, Alessandro; Duckheim, Mathias; Oppen, Felix von; Oreg, Yuval
2013-01-01
We investigate Josephson currents in mesoscopic rings with a weak link which are in or near a topological superconducting phase. As a paradigmatic example, we consider the Kitaev model of a spinless p-wave superconductor in one dimension, emphasizing how this model emerges from more realistic settings based on semiconductor nanowires. We show that the flux periodicity of the Josephson current provides signatures of the topological phase transition and the emergence of Majorana fermions (MF) situated on both sides of the weak link even when fermion parity is not a good quantum number. In large rings, the MF hybridize only across the weak link. In this case, the Josephson current is h/e periodic in the flux threading the loop when fermion parity is a good quantum number but reverts to the more conventional h/2e periodicity in the presence of fermion-parity changing relaxation processes. In mesoscopic rings, the MF also hybridize through their overlap in the interior of the superconducting ring. We find that in the topological superconducting phase, this gives rise to an h/e-periodic contribution even when fermion parity is not conserved and that this contribution exhibits a peak near the topological phase transition. This signature of the topological phase transition is robust to the effects of disorder. As a byproduct, we find that close to the topological phase transition, disorder drives the system deeper into the topological phase. This is in stark contrast to the known behavior far from the phase transition, where disorder tends to suppress the topological phase. (paper)
Mathematical modeling of hot air/electrohydrodynamic (EHD) drying kinetics of mushroom slices
International Nuclear Information System (INIS)
Taghian Dinani, Somayeh; Hamdami, Nasser; Shahedi, Mohammad; Havet, Michel
2014-01-01
Highlights: • Hot air/EHD drying behavior of thin layer mushroom slices was evaluated. • A new empirical model was proposed for drying kinetics modeling of mushroom slices. • The new model presents excellent predictions for hot air/EHD drying of mushroom. - Abstract: Researches about mathematical modeling of electrohydrodynamic (EHD) drying are rare. In this study, hot air combined with electrohydrodynamic (EHD) drying behavior of thin layer mushroom slices was evaluated in a laboratory scale dryer at voltages of 17, 19, and 21 kV and electrode gaps of 5, 6, and 7 cm. The drying curves were fitted to ten different mathematical models (Newton, Page, Modified Page, Henderson and Pabis, Logarithmic, Two-term exponential, Midilli and Kucuk, Wang and Singh, Weibull and Parabolic models) and a proposed new empirical model to select a suitable drying equation for drying mushroom slices in a hot air combined with EHD dryer. Coefficients of the models were determined by non-linear regression analysis and the models were compared based on their coefficient of determination (R 2 ), sum of square errors (SSE) and root mean square error (RMSE) between experimental and predicted moisture ratios. According to the results, the proposed model that contains only three parameters provided the best fit with the experimental data. It was closely followed by the Midilli and Kucuk model that contains four parameters. Therefore, the proposed model can present comfortable usage and excellent predictions for the moisture content changes of mushroom slices in the hot air combined with EHD drying system
MODEL OF A PROCESS FOR DRYING Eucalyptus spp AT HIGH TEMPERATURES
Directory of Open Access Journals (Sweden)
P. C. C. PINHEIRO
1998-12-01
Full Text Available A mathematical model of a process for drying of Eucalyptus spp is presented. This model was based on fundamental heat and mass transfer equations and it was numerically solved using a segregated finite volume method. Software in the FORTRAN language was developed to solve the mathematical model. The kinetic parameters of drying for Eucalyptus spp were experimentally obtained by isothermal thermogravimetry (TG. The theoretical results generated using the mathematical model were validated by experimental data.
Wong, Sim-Siong; Altınkaya, Sacide; Mallapragada, Surya K.
2004-01-01
A mathematical model was developed to predict the drying mechanism of semicrystalline polymers involving multiple solvents. Since drying of semicrystalline polymers can be accompanied by changes in polymer degree of crystallinity, the model integrates crystallization kinetics and the Vrentas-Duda diffusion model to provide a better understanding of the mechanism. The model considers the effect of external conditions such as temperature, film shrinkage and diffusion and evaporation of multiple...
DEFF Research Database (Denmark)
Mortier, Séverine Thérèse F.C.; Gernaey, Krist; De Beer, Thomas
2013-01-01
Drying is frequently used in the production of pharmaceutical tablets. Simulation-based control strategy development for such a drying process requires a detailed model. First, the drying of wet granules is modelled using a Population Balance Model. A growth term based on a reduced model was used......, which describes the decrease of the moisture content, to follow the moisture content distribution for a batch of granules. Secondly, different solution methods for solving the PBM are compared. The effect of grid size (discretization methods) is analyzed in terms of accuracy and calculation time. All...
Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves
Balasubramanian, S.; Sharma, R.; Gupta, R. K.; Patil, R. T.
2010-01-01
Effect of temperature on drying behaviour of betel leaves at drying air temperatures of 50, 60 and 70°C was investigated in tunnel as well as cabinet dryer. The L* and b* values increased whereas, a* values decreased, as the drying air temperature increased from 50 to 70°C in both the dryers, but the colour values remained higher for cabinet dryer than tunnel dryer in all cases. Eleven different drying models were compared according to their coefficients of determination (R2), root mean squar...
Mathematical modeling and effective diffusion of Schinus terebinthifolius leaves during drying
Directory of Open Access Journals (Sweden)
André Luís Duarte Goneli
2014-03-01
Full Text Available The drying process of agricultural products is extensively used worldwide for controlling and maintaining their quality. For medicinal and aromatic plants, this importance increases even more. Thus, this study aimed at evaluating the drying kinetics of Schinus terebinthifolius Raddi leaves, as well as adjusting different mathematical models to the experimental values of moisture ratio. The leaves were harvested with initial moisture content of approximately 65% (w.b. and submitted to the drying process under controlled conditions of temperature (40ºC, 50ºC, 60ºC and 70ºC, up to the approximate moisture content of 10% (w.b.. Six mathematical models were adjusted to the experimental data cited at the specific literature and used to predict the drying process of agricultural products. According to the results obtained, it was concluded that the modified Henderson & Pabis and Midilli models were the ones that best represented the drying kinetics of S. terebinthifolius leaves. The temperature increase of the drying air promoted a higher rate of water removal from the product. The effective diffusion coefficient increased with the temperature elevation, and its relation to the drying temperature fitted the Arrhenius equation, which presented activation energy for the liquid diffusion, during the drying process, of 74.96 kJ mol-1, for S. terebinthifolius leaves.
Validation of drying models and rehydration characteristics of betel (Piper betel L.) leaves.
Balasubramanian, S; Sharma, R; Gupta, R K; Patil, R T
2011-12-01
Effect of temperature on drying behaviour of betel leaves at drying air temperatures of 50, 60 and 70°C was investigated in tunnel as well as cabinet dryer. The L* and b* values increased whereas, a* values decreased, as the drying air temperature increased from 50 to 70°C in both the dryers, but the colour values remained higher for cabinet dryer than tunnel dryer in all cases. Eleven different drying models were compared according to their coefficients of determination (R(2)), root mean square error (RMSE) and chi square (χ (2)) to estimate drying curves. The results indicated that, logarithmic model and modified Page model could satisfactorily describe the drying curve of betel leaves for tunnel drying and cabinet dryer, respectively. In terms of colour quality, drying of betel leaves at 60°C in tunnel dryer and at 50°C in cabinet dryer was found optimum whereas, rehydration at 40°C produced the best acceptable product.
Parameters Online Detection and Model Predictive Control during the Grain Drying Process
Directory of Open Access Journals (Sweden)
Lihui Zhang
2013-01-01
Full Text Available In order to improve the grain drying quality and automation level, combined with the structural characteristics of the cross-flow circulation grain dryer designed and developed by us, the temperature, moisture, and other parameters measuring sensors were placed on the dryer, to achieve online automatic detection of process parameters during the grain drying process. A drying model predictive control system was set up. A grain dry predictive control model at constant velocity and variable temperature was established, in which the entire process was dried at constant velocity (i.e., precipitation rate per hour is a constant and variable temperature. Combining PC with PLC, and based on LabVIEW, a system control platform was designed.
Mathematical modeling of convective air drying of quinoa-supplemented feed for laboratory rats
Directory of Open Access Journals (Sweden)
Antonio Vega-Gálvez
2011-02-01
Full Text Available Drying kinetics of quinoa-supplemented feed for laboratory rats during processing at 50, 60, 70, 80 and 90ºC was studied and modeled in this work. Desorption isotherm was obtained at 60ºC giving a monolayer moisture content of 0.04 g water/g d.m. The experimental drying curves showed that drying process took place only in the falling rate period. Several thin-layer drying equations available in the literature were evaluated based on determination coefficient (r², sum squared errors (SSE and Chi-square (χ2 statisticals. In comparison to the experimental moisture values, the values estimated with the Logarithmic model gave the best fit quality (r² >0.994, SSE < 0.00015 and χ2 < 0.00018, showing this equation could predict very accurately the drying time of rat feed under the operative conditions applied.
Modelling Condensation and Simulation for Wheat Germ Drying in Fluidized Bed Dryer
Directory of Open Access Journals (Sweden)
Der-Sheng Chan
2018-06-01
Full Text Available A low-temperature drying with fluidized bed dryer (FBD for wheat germ (WG stabilization could prevent the loss of nutrients during processing. However, both evaporation and condensation behaviors occurred in sequence during FBD drying of WG. The objective of this study was to develop a theoretical thin-layer model coupling with the macro-heat transfer model and the bubble model for simulating both the dehydration and condensation behaviors of WG during low-temperature drying in the FBD. The experimental data were also collected for the model modification. Changes in the moisture content of WG, the air temperature of FBD chamber, and the temperature of WG during drying with different heating approaches were significantly different. The thermal input of WG drying with short heating time approach was one-third of that of WG drying with a traditional heating approach. The mathematical model developed in this study could predict the changes of the moisture content of WG and provide a good understanding of the condensation phenomena of WG during FBD drying.
Modelling and experimental validation of thin layer indirect solar drying of mango slices
Energy Technology Data Exchange (ETDEWEB)
Dissa, A.O.; Bathiebo, J.; Kam, S.; Koulidiati, J. [Laboratoire de Physique et de Chimie de l' Environnement (LPCE), Unite de Formation et de Recherche en Sciences Exactes et Appliquee (UFR/SEA), Universite de Ouagadougou, Avenue Charles de Gaulle, BP 7021 Kadiogo (Burkina Faso); Savadogo, P.W. [Laboratoire Sol Eau Plante, Institut de l' Environnement et de Recherches Agricoles, 01 BP 476, Ouagadougou (Burkina Faso); Desmorieux, H. [Laboratoire d' Automatisme et de Genie des Procedes (LAGEP), UCBL1-CNRS UMR 5007-CPE Lyon, Bat.308G, 43 bd du 11 Nov. 1918 Villeurbanne, Universite Claude Bernard Lyon1, Lyon (France)
2009-04-15
The thin layer solar drying of mango slices of 8 mm thick was simulated and experimented using a solar dryer designed and constructed in laboratory. Under meteorological conditions of harvest period of mangoes, the results showed that 3 'typical days' of drying were necessary to reach the range of preservation water contents. During these 3 days of solar drying, 50%, 40% and 5% of unbound water were eliminated, respectively, at the first, second and the third day. The final water content obtained was about 16 {+-} 1.33% d.b. (13.79% w.b.). This final water content and the corresponding water activity (0.6 {+-} 0.02) were in accordance with previous work. The drying rates with correction for shrinkage and the critical water content were experimentally determined. The critical water content was close to 70% of the initial water content and the drying rates were reduced almost at 6% of their maximum value at night. The thin layer drying model made it possible to simulate suitably the solar drying kinetics of mango slices with a correlation coefficient of r{sup 2} = 0.990. This study thus contributed to the setting of solar drying time of mango and to the establishment of solar drying rates' curves of this fruit. (author)
Vortex-antivortex patterns in mesoscopic superconductors
International Nuclear Information System (INIS)
Teniers, Gerd; Moshchalkov, V.V.; Chibotaru, L.F.; Ceulemans, Arnout
2003-01-01
We have studied the nucleation of superconductivity in mesoscopic structures of different shape (triangle, square and rectangle). This was made possible by using an analytical gauge transformation for the vector potential A which gives A n =0 for the normal component along the boundary line of the rectangle. As a consequence the superconductor-vacuum boundary condition reduces to the Neumann boundary condition. By solving the linearized Ginzburg-Landau equation with this boundary condition we have determined the field-temperature superconducting phase boundary and the corresponding vortex patterns. The comparison of these patterns for different structures demonstrates that the critical parameters of a superconductor can be manipulated and fine-tuned through nanostructuring
Mesoscopic Simulations of Crosslinked Polymer Networks
Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.
2016-08-01
A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.
Mesoscopic rings with spin-orbit interactions
Energy Technology Data Exchange (ETDEWEB)
Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto, E-mail: berche@lpm.u-nancy.f [Statistical Physics Group, Institut Jean Lamour, UMR CNRS No 7198, Universite Henri Poincare, Nancy 1, B.P. 70239, F-54506 Vandoeuvre les Nancy (France)
2010-09-15
A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin currents are derived following an intuitive definition, and then a more thorough derivation is built upon the canonical Lagrangian formulation that emphasizes the SU(2) gauge structure of the transport problem of spin-1/2 fermions in spin-orbit active media. The quantization conditions that follow from the constraint of single-valued Pauli spinors are also discussed. The targeted students are those of a graduate condensed matter physics course.
Equilibrium and shot noise in mesoscopic systems
Energy Technology Data Exchange (ETDEWEB)
Martin, T.
1994-10-01
Within the last decade, there has been a resurgence of interest in the study of noise in Mesoscopic devices, both experimentally and theoretically. Noise in solid state devices can have different origins: there is 1/f noise, which is believed to arise from fluctuations in the resistance of the sample due to the motion of impurities. On top of this contribution is a frequency independent component associated with the stochastic nature of electron transport, which will be the focus of this paper. If the sample considered is small enough that dephasing and inelastic effects can be neglected, equilibrium (thermal) and excess noise can be completely described in terms of the elastic scattering properties of the sample. As mentioned above, noise arises as a consequence of random processes governing the transport of electrons. Here, there are two sources of randomness: first, electrons incident on the sample occupy a given energy state with a probability given by the Fermi-Dirac distribution function. Secondly, electrons can be transmitted across the sample or reflected in the same reservoir where they came from with a probability given by the quantum mechanical transmission/reflection coefficients. Equilibrium noise refers to the case where no bias voltage is applied between the leads connected to the sample, where thermal agitation alone allows the electrons close to the Fermi level to tunnel through the sample. In general, equilibrium noise is related to the conductance of the sample via the Johnson-Nyquist formula. In the presence of a bias, in the classical regime, one expects to recover the full shot noise < {Delta}{sup 2}I >= 2I{Delta}{mu} as was observed a long time ago in vacuum diodes. In the Mesoscopic regime, however, excess noise is reduced below the shot noise level. The author introduces a more intuitive picture, where the current passing through the device is a superposition of pulses, or electron wave packets, which can be transmitted or reflected.
MODELLING OF THIN LAYER SOLAR DRYING KINETICS AND EFFECTIVE DIFFUSIVITY OF Urtica dioica LEAVES
Directory of Open Access Journals (Sweden)
A. LAMHARRAR
2017-08-01
Full Text Available Urtica dioica is an endemic plant of Morocco used for its virtues in traditional medicine. The drying kinetics of Urtica dioica leaves in a convective solar dryer was studied. The kinetics of drying is studied for three temperatures (40, 50 and 60 °C, ambient air temperature ranged from 30 to 35 °C. The experimental results are used to determine the characteristic drying curve. Nine mathematical models have been used for the description of the drying curve. The Midilli-Kuck model was found to be the most suitable for describing the drying curves of Urtica dioica leaves. The drying parameters in this model were quantified as a function of the drying air temperature. Moisture transfer from Urtica dioica leaves was described by applying the Fick’s diffusion model. Effective moisture diffusivity of the product was in the range of 9.38 – 72.92×10-11 m2/s. A value of 88,49 kJ/mol was determined as activation energy.
models of hourly dry bulb temperature and relative humidity of key
African Journals Online (AJOL)
user
3: Worst cases of MFE for Dry bulb temperature and Relative humidity. Fig. 4: Best cases of ... the Second Joint International Conference of. University of Ilorin, Ilorin, Nigeria and University ... Erbs, D. G., “Models and Applications for Weather.
Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan
Arufe, Santiago; Torres, Maria D.; Chenlo, Francisco; Moreira, Ramon
2018-01-01
Water sorption isotherms from 5 up to 65 °C and air drying kinetics at 35, 45 and 55 °C of Mastocarpus stellatus seaweed were determined. Experimental sorption data were modelled using BET and Oswin models. A four-parameter model, based on Oswin model, was proposed to estimate equilibrium moisture content as function of water activity and temperature simultaneously. Drying experiments showed that water removal rate increased significantly with temperature from 35 to 45 °C, but at higher temperatures drying rate remained constant. Some chemical modifications of the hybrid carrageenans present in the seaweed can be responsible of this unexpected thermal trend. Experimental drying data were modelled using two-parameter Page model (n, k). Page parameter n was constant (1.31 ± 0.10) at tested temperatures, but k varied significantly with drying temperature (from 18.5 ± 0.2 10-3 min-n at 35 °C up to 28.4 ± 0.8 10-3 min-n at 45 and 55 °C). Drying experiments allowed the determination of the critical moisture content of seaweed (0.87 ± 0.06 kg water (kg d.b.)-1). A diffusional model considering slab geometry was employed to determine the effective diffusion coefficient of water during the falling rate period at different temperatures.
Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations
Flegg, Mark B.; Hellander, Stefan; Erban, Radek
2015-01-01
© 2015 Elsevier Inc. In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step δ. t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered:. (i)δt→0 and h is fixed;(ii)δt→0 and h→0 such that δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.
Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations
Flegg, Mark B.
2015-05-01
© 2015 Elsevier Inc. In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step δ. t (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter h, the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered:. (i)δt→0 and h is fixed;(ii)δt→0 and h→0 such that δt/h is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.
Dynamic magnetoconductance fluctuations and oscillations in mesoscopic wires and rings
DEFF Research Database (Denmark)
Liu, D. Z.; Hu, Ben Yu-Kuang; Stafford, C. A.
1994-01-01
Using a finite-frequency recursive Green's-function technique, we calculate the dynamic magnetoconductance fluctuations and oscillations in disordered mesoscopic normal-metal systems, incorporating interparticle Coulomb interactions within a self-consistent potential method. In a disorderd metal ...
DEFF Research Database (Denmark)
Mortier, S.T.F.C.; Vedantam, S.; De Beer, T.
Tablets are conventionally produced via consecutive batch process steps. Recent introduction of continuous process equipment is gaining industrial importance in pharmaceutics. Transition to continuous production requires improved understanding of all operations, necessitating the development...... of mechanistic models of multi‐phase systems which in the end allow process control. This contribution focuses on continuous fluidized bed drying of pharmaceutical wet granules. A stepwise approach is used in model development, starting with the drying behaviour of single granules. Experiments to determine...
Mesoscopic Self-Assembly: A Shift to Complexity
Directory of Open Access Journals (Sweden)
Massimo eMastrangeli
2015-06-01
Full Text Available By focusing on the construction of thermodynamically stable structures, the self-assembly of mesoscopic systems has proven capable of formidable achievements in the bottom-up engineering of micro- and nanosystems. Yet, inspired by an analogous evolution in supramolecular chemistry, synthetic mesoscopic self-assembly may have a lot more ahead, within reach of a shift toward fully three-dimensional architectures, collective interactions of building blocks and kinetic control. All over these challenging fronts, complexity holds the key.
Physically based modelling and optimal operation for product drying during post-harvest processing.
Boxtel, van A.J.B.; Lukasse, L.; Farkas, I.; Rendik, Z.
1996-01-01
The development of new procedures for crop production and post-harvest processing requires models. Models based on physical backgrounds are most useful for this purpose because of their extrapolation potential. An optimal procedure is developed for alfalfa drying using a physical model. The model
Drying of Durum Wheat Pasta and Enriched Pasta: A Review of Modeling Approaches.
Mercier, Samuel; Mondor, Martin; Moresoli, Christine; Villeneuve, Sébastien; Marcos, Bernard
2016-05-18
Models on drying of durum wheat pasta and enriched pasta were reviewed to identify avenues for improvement according to consumer needs, product formulation and processing conditions. This review first summarized the fundamental phenomena of pasta drying, mass transfer, heat transfer, momentum, chemical changes, shrinkage and crack formation. The basic equations of the current models were then presented, along with methods for the estimation of pasta transport and thermodynamic properties. The experimental validation of these models was also presented and highlighted the need for further model validation for drying at high temperatures (>-100°C) and for more accurate estimation of the pasta diffusion and mass transfer coefficients. This review indicates the need for the development of mechanistic models to improve our understanding of the mass and heat transfer mechanisms involved in pasta drying, and to consider the local changes in pasta transport properties and relaxation time for more accurate description of the moisture transport near glass transition conditions. The ability of current models to describe dried pasta quality according to the consumers expectations or to predict the impact of incorporating ingredients high in nutritional value on the drying of these enriched pasta was also discussed.
Model for heat and mass transfer in freeze-drying of pellets.
Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda
2009-07-01
Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.
A user-friendly model for spray drying to aid pharmaceutical product development.
Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W
2013-01-01
The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.
Mathematical modeling for the annatto (Bixa orellana L. seed drying process
Directory of Open Access Journals (Sweden)
Dyego da Costa Santos
2013-09-01
Full Text Available The pigment extraction process using annatto (Bixa orellana L. seed produces a large amount of seed waste. Although most of these seeds are discarded, a number of studies report promising results with their use in animal feed. The good fiber content also suggests human nutrition applications, with possible incorporation in dietary foods. In the present study, annatto seeds derived from color extraction were dried, with and without the layer of oil left over from the process. Seeds were dried at 40, 50, 60 and 70 °C. Drying data were fitted to the Diffusion Approximation, Two Term, Midilli, Page and Thompson models. Drying was carried out up to a moisture content of approximately 5% wet basis. All the models studied exhibited adequate fit to the drying kinetics data of the annatto seeds, with coefficients of determination above 0.98 and root mean squared error (RMSE below 1.0. Seeds with oil had longer drying times at 40 and 50 °C and shorter times at 60 and 70 °C. The coefficients of diffusion showed values between 2.67 x 10-11 and 9.50 x 10-11 m² s-1 and between 2.7 x 10-11 and 6.21 x 10-11 m² s-1, while activation energies for liquid diffusions were 38.04 and 23.52 kJ mol-1, for residual seed drying with and without oil, respectively.
Mechanistic modelling of fluidized bed drying processes of wet porous granules
DEFF Research Database (Denmark)
Mortier, Séverine Thérèse F.C.; De Beer, Thomas; Gernaey, Krist
2011-01-01
depending on the geometry of the gas inlet, the gas velocity, characteristics of the particles, the dryer design, etc. Computational Fluid Dynamics (CFD) allows to model this behaviour. Moreover, turbulence can be modelled using several approaches: Reynolds-averaged Navier–Stokes Equations (RANS) or Large...... are powerful tools to gain process insight and eventually develop well-controlled processes. The level of detail embedded in such a model depends on the goal of the model. Several models have therefore been proposed in the literature and are reviewed here. The drying behaviour of one single granule, a porous...... particle, can be described using the continuum approach, the pore network modelling method and the shrinkage of the diameter of the wet core approach. As several granules dry at a drying rate dependent on the gas temperature, gas velocity, porosity, etc., the moisture content of a batch of granules...
Energy Technology Data Exchange (ETDEWEB)
M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my; Wong, J., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my [Unit Penyelidikan Rumpai Laut (UPRL), Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia); Sulaiman, J., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my; Yasir, S. Md., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my [Program Matematik dengan Ekonomi, Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia)
2014-06-19
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
International Nuclear Information System (INIS)
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-01-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m 2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R 2 ), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-06-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
RBF–ARX model of an industrial furnace for drying olive pomace
International Nuclear Information System (INIS)
Casanova-Peláez, P.J.; Cruz-Peragón, F.; Palomar-Carnicero, J.M.; Dorado, R.; López-García, R.
2012-01-01
Highlights: ► We model a real furnace, fuelled with orujo, used to dry olive pomace. ► We apply a radial basic functions–auto-regression with exogenous variables (ARXs–RBFs) method. ► Root-mean-square error and r 2 are used to validate the ARX–RBF model. - Abstract: Drying operations are common in food industries. One of the main components in a drying system is the furnace. The furnace operation involves heat–mass transfer and combustion, thus it demands a complex mathematic representation. Since autoregressive methods are simple, and help to simulate rapidly a system, we model a drying furnace of olive pomace via an auto-regression with exogenous variables (ARXs) method. A neural network of radial basic functions (RBFs) defines the ARX experimental relation between the amounts of dry pomace (moisture content of 15%) used like fuel and the temperature of outlet gases. A real industrial furnace is studied to validate the proposed model, which can help to control the drying process.
Mathematical modeling of thin layer drying of pistachio by using solar energy
Energy Technology Data Exchange (ETDEWEB)
Midilli, A [University of Nigde (Turkey). Dept. of Mechanical Engineering; Kucuk, H [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Mechanical Engineering
2003-05-01
This paper presents a mathematical modeling of thin layer forced and natural solar drying of shelled and unshelled pistachio samples. In order to estimate and select the suitable form of solar drying curves, eight different mathematical models, which are semi-theoretical and/or empirical, were applied to the experimental data and compared according to their coefficients of determination (r,{chi}{sup 2}), which were predicted by non-linear regression analysis using the Statistical Computer Program. It was deduced that the logarithmic model could sufficiently describe thin layer forced solar drying of shelled and unshelled pistachio, while the two term model could define thin layer natural solar drying of these products in evaluation by considering the coefficients of determination, r{sub sfsd}=0.9983, {chi}{sup 2}{sub sfsd}=2.697x10{sup -5}; r{sub ufsd}=0.9990, {chi}{sup 2}{sub ufsd}=1.639x10{sup -5} for thin layer forced solar drying and r{sub snsd}=0.9990, {chi}{sup 2}{sub snsd}=3.212x10{sup -6}; r{sub unsd}=0.9970, {chi}{sup 2}{sub unsd}=4.590x10{sup -5} for thin layer natural solar drying. (Author)
Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis
Energy Technology Data Exchange (ETDEWEB)
Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-07-28
Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO_{2}) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO_{2} Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO_{2} Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately
Empirical models in the description of prickly pear shoot (Nopal drying kinetics
Directory of Open Access Journals (Sweden)
Emmanuel M. Pereira
Full Text Available ABSTRACT The objective of this study was to describe the technological process involved in the drying kinetics of fresh-cut prickly pear shoots through numerical and analytical solutions. Shoots of two different prickly pear species were used, ‘Gigante’ and ‘Miúda’. Drying was performed at different temperatures (50, 60, 70 and 80 °C and weighing procedures were made continuously. The experimental data were expressed as moisture ratio. The Page model showed the best fit to the drying kinetics of minimally processed ‘Gigante’ and ‘Miúda’ prickly pear shoots, with the best coefficients of determination and Chi-square. Peleg and Wang & Singh models can not be used to simulate the drying of ‘Gigante’ and ‘Miúda’ prickly pear shoots within the evaluated range of temperatures, showing an incoherent graphic pattern.
Thermal analysis of dry eye subjects and the thermal impulse perturbation model of ocular surface.
Zhang, Aizhong; Maki, Kara L; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Hindman, Holly B; Aquavella, James V; Zavislan, James M
2015-03-01
In this study, we explore the usage of ocular surface temperature (OST) decay patterns to distinguished between dry eye patients with aqueous deficient dry eye (ADDE) and meibomian gland dysfunction (MGD). The OST profiles of 20 dry eye subjects were measured by a long-wave infrared thermal camera in a standardized environment (24 °C, and relative humidity (RH) 40%). The subjects were instructed to blink every 5 s after 20 ∼ 25 min acclimation. Exponential decay curves were fit to the average temperature within a region of the central cornea. We find the MGD subjects have both a higher initial temperature (p model, referred to as the thermal impulse perturbation (TIP) model. We conclude that long-wave-infrared thermal imaging is a plausible tool in assisting with the classification of dry eye patient. Copyright © 2015 Elsevier Ltd. All rights reserved.
A new dry eye mouse model produced by exorbital and intraorbital lacrimal gland excision.
Shinomiya, Katsuhiko; Ueta, Mayumi; Kinoshita, Shigeru
2018-01-24
Chronic dry eye is an increasingly prevalent condition worldwide, with resulting loss of visual function and quality of life. Relevant, repeatable, and stable animal models of dry eye are still needed. We have developed an improved surgical mouse model for dry eye based on severe aqueous fluid deficiency, by excising both the exorbital and intraorbital lacrimal glands (ELG and ILG, respectively) of mice. After ELG plus ILG excision, dry eye symptoms were evaluated using fluorescein infiltration observation, tear production measurement, and histological evaluation of ocular surface. Tear production in the model mice was significantly decreased compared with the controls. The corneal fluorescein infiltration score of the model mice was also significantly increased compared with the controls. Histological examination revealed significant severe inflammatory changes in the cornea, conjunctiva or meibomian glands of the model mice after surgery. In the observation of LysM-eGFP (+/-) mice tissues, postsurgical infiltration of green fluorescent neutrophils was observed in the ocular surface tissues. We theorize that the inflammatory changes on the ocular surface of this model were induced secondarily by persistent severe tear reduction. The mouse model will be useful for investigations of both pathophysiology as well as new therapies for tear-volume-reduction type dry eye.
Vortex 'puddles' and magic vortex numbers in mesoscopic superconducting disks
Energy Technology Data Exchange (ETDEWEB)
Connolly, M R; Milosevic, M V; Bending, S J [Department of Physics, University of Bath - Claverton Down, Bath, BA2 7AY (United Kingdom); Clem, J R [Ames Laboratory Department of Physics and Astronomy - Iowa State University, Ames, IA 50011-3160 (United States); Tamegai, T, E-mail: mrc61@cam.ac.u [Department of Applied Physics, University of Tokyo - Hongo, Bunkyo-ku, Tokyo 113-8627 (Japan)
2009-03-01
The magnetic properties of a superconducting disk change dramatically when its dimensions become mesoscopic. Unlike large disks, where the screening currents induced by an applied magnetic field are strong enough to force vortices to accumulate in a 'puddle' at the centre, in a mesoscopic disk the interaction between one of these vortices and the edge currents can be comparable to the intervortex repulsion, resulting in a destruction of the ordered triangular vortex lattice structure at the centre. Vortices instead form clusters which adopt polygonal and shell-like structures which exhibit magic number states similar to those of charged particles in a confining potential, and electrons in artificial atoms. We have fabricated mesoscopic high temperature superconducting Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+delta} disks and investigated their magnetic properties using magneto-optical imaging (MOI) and high resolution scanning Hall probe microscopy (SHPM). The temperature dependence of the vortex penetration field measured using MOI is in excellent agreement with models of the thermal excitation of pancake vortices over edge barriers. The growth of the central vortex puddle has been directly imaged using SHPM and magic vortex numbers showing higher stability have been correlated with abrupt jumps in the measured local magnetisation curves.
Directory of Open Access Journals (Sweden)
A. A. Shevtsov
2015-01-01
Full Text Available Spray drying of solutions and suspensions is among the most common methods of producing a wide range of powdered products in chemical, food and pharmaceutical industries. For the drying of heat-sensitive materials, which is fully applicable to the distillery stillage filtrate continuous-flow type of contact of drying agent and the solution droplets is examined. Two-phase simulation method of computational hydrodynamics in a stationary state for studying the process of drying of the distillery stillage filtrate in the pilot spray dryer under the following assumptions was used. The components form an ideal mixture, the properties of which are calculated directly from the properties of the components and their proportions. The droplets were presented in spherical form. The density and specific heat of the solution and the coefficient of vapors diffusion in the gas phase remained unchanged. To solve the heat exchange equations between the drying agent and the drops by the finite volume method the software package ANSYS CFX was used. The bind between the two phases was established by Navier-Stokes equations. The continuous phase (droplets of the distillery stillage filtrate was described by the k-ε turbulence model. The results obtained showed that the interaction of "drop-wall" causes a significant change of velocity, temperature and humidity both of a drying agent and the product particles. The behavior of the particles by spraying, collision with walls and deposition of the finished product allowed to determine the dependence of physical parameters of the drying process, of the geometric dimensions of the dryer. Comparison of simulation results with experimental data showed satisfactory convergence of the results: for the temperature of the powder 10% its humidity of 12% and temperature of the spent drying agent at the outlet from the drier of 13%. The possibility of using the model in the spray dryers designing, and control of the drying process
Modelling of dynamic and quasistatic events with special focus on wood-drying distortions
Ekevad, Mats
2006-01-01
This thesis deals mainly with computer simulations of wood-drying distortions, especially twist. The reason for this is that such distortions often appear in dried timber, and the results are quality downgrades and thus value losses in the wood value chain. A computer simulation is a way to theoretically simulate what happens in reality when moisture content in timber changes. If the computer simulation model is appropriate and capable of realistic simulations of real events, then it is possi...
Heat transfer modelling in a spent-fuel dry storage system
International Nuclear Information System (INIS)
Ritz, J.B.; Le Bonhomme, S.
2001-01-01
The purpose of this paper is to present a numerical modelling of heat transfers in a Spent-Fuel horizontal dry storage. The horizontal dry storage is an interesting issue to momentary store spent fuel containers before the final storage. From a thermal point of view, the cooling of spent fuel container by natural convection is a suitable and inexpensive process but it necessitates to well define the dimensions of the concept due to the difficulty to control the thermal environment. (author)
New model for colour kinetics of plum under infrared vacuum condition and microwave drying.
Chayjan, Reza Amiri; Alaei, Behnam
2016-01-01
Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most important quality indices and plays a determinant role in consumer acceptability of food materials and the processing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness), a* (redness/greenness) and b* (yellowness/blueness) model, which is an international standard for color measurement developed by the Commission Internationale d'Eclairage (CIE). These values were also used to calculate total colour change (∆E), chroma, hue angle, and browning index (BI). A new model was used for mathematical modelling of colour change kinetics. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinetics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and microwave power for initial slow drying of plum slices and provided the desired
Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V
2012-10-01
Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time. Copyright © 2012 Wiley-Liss, Inc.
A molecular fragment cheminformatics roadmap for mesoscopic simulation.
Truszkowski, Andreas; Daniel, Mirco; Kuhn, Hubert; Neumann, Stefan; Steinbeck, Christoph; Zielesny, Achim; Epple, Matthias
2014-12-01
Mesoscopic simulation studies the structure, dynamics and properties of large molecular ensembles with millions of atoms: Its basic interacting units (beads) are no longer the nuclei and electrons of quantum chemical ab-initio calculations or the atom types of molecular mechanics but molecular fragments, molecules or even larger molecular entities. For its simulation setup and output a mesoscopic simulation kernel software uses abstract matrix (array) representations for bead topology and connectivity. Therefore a pure kernel-based mesoscopic simulation task is a tedious, time-consuming and error-prone venture that limits its practical use and application. A consequent cheminformatics approach tackles these problems and provides solutions for a considerably enhanced accessibility. This study aims at outlining a complete cheminformatics roadmap that frames a mesoscopic Molecular Fragment Dynamics (MFD) simulation kernel to allow its efficient use and practical application. The molecular fragment cheminformatics roadmap consists of four consecutive building blocks: An adequate fragment structure representation (1), defined operations on these fragment structures (2), the description of compartments with defined compositions and structural alignments (3), and the graphical setup and analysis of a whole simulation box (4). The basis of the cheminformatics approach (i.e. building block 1) is a SMILES-like line notation (denoted f SMILES) with connected molecular fragments to represent a molecular structure. The f SMILES notation and the following concepts and methods for building blocks 2-4 are outlined with examples and practical usage scenarios. It is shown that the requirements of the roadmap may be partly covered by already existing open-source cheminformatics software. Mesoscopic simulation techniques like MFD may be considerably alleviated and broadened for practical use with a consequent cheminformatics layer that successfully tackles its setup subtleties and
Atom chips: mesoscopic physics with cold atoms
International Nuclear Information System (INIS)
Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.
2005-01-01
Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)
Atmospheric Spray Freeze-Drying: Numerical Modeling and Comparison With Experimental Measurements.
Borges Sebastião, Israel; Robinson, Thomas D; Alexeenko, Alina
2017-01-01
Atmospheric spray freeze-drying (ASFD) represents a novel approach to dry thermosensitive solutions via sublimation. Tests conducted with a second-generation ASFD equipment, developed for pharmaceutical applications, have focused initially on producing a light, fine, high-grade powder consistently and reliably. To better understand the heat and mass transfer physics and drying dynamics taking place within the ASFD chamber, 3 analytical models describing the key processes are developed and validated. First, by coupling the dynamics and heat transfer of single droplets sprayed into the chamber, the velocity, temperature, and phase change evolutions of these droplets are estimated for actual operational conditions. This model reveals that, under typical operational conditions, the sprayed droplets require less than 100 ms to freeze. Second, because understanding the heat transfer throughout the entire freeze-drying process is so important, a theoretical model is proposed to predict the time evolution of the chamber gas temperature. Finally, a drying model, calibrated with hygrometer measurements, is used to estimate the total time required to achieve a predefined final moisture content. Results from these models are compared with experimental data. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Development of Simple Drying Model for Performance Prediction of Solar Dryer: Theoretical Analysis
DEFF Research Database (Denmark)
Singh, Shobhana; Kumar, Subodh
2012-01-01
An analytical moisture diffusion model which considers the influence of external resistance to mass transfer is developed to predict thermal performance of dryer system. The moisture diffusion coefficient, Deff that is necessary to evaluate the prediction model has been determined in terms...... of experimental drying parameters. A laboratory model of mixed-mode solar dryer system is tested with cylindrical potato samples of thickness 5 and 18 mm under simulated indoor conditions. The potato samples were dried at a constant absorbed thermal energy of 750 W/m2 and air mass flow rate of 0.011 kg...
Aggregation of Frenkel defects under irradiation: a mesoscopic approach
International Nuclear Information System (INIS)
Soppe, W.; Kotomin, E.
1993-08-01
The radiation-induced aggregation of Frenkel defects in solids is studied in terms of a mesoscopic approach. The asymmetry in elastic interactions between mobile interstitials (I-I) and between interstitials and vacancies (I-V) plays a decisive role in the aggregation of similar defects. The conditions for defect aggregation are studied in detail for NaCl crystals. The critical dose rate for aggregation has been calculated as a function of the temperature as well as the aggregation rate as a function of temperature and dose rate. Furthermore, the role of deep traps (like impurities and di-vacancies), reducing the mobility of interstitials, and the role of dislocations serving as sinks for interstitials, are studied. The aggregation appears to reach a maximum at a distinct temperature which is in agreement both with experiment and the Jain-Lidiard theory. The model also predicts a shift of this maximum towards lower temperatures if the dose rate is decreased. The consequences of the model for the disposal of nuclear waste in rock salt formations, are briefly discussed. (orig.)
Mechanical aspects of allotropic phase change at the mesoscopic scale
International Nuclear Information System (INIS)
Valance, St.
2007-12-01
The prediction of the mechanical state of steel structures submit to thermo-mechanical loading must take into account consequences of allotropic phase change. Indeed, phase change induce, at least for steels, a mechanism of TRansformation Induced Plasticity (TRIP) leading to irreversible deformation even for loading less than elastic yield limit. Homogenized analytical models generally fail to achieve a correct prediction for complex loading. In order to overcome these difficulties, we present a model achieving a sharper description of the phenomenon. The mesoscopic working scale we adopt here is the grain scale size. Hence, we consider that the behaviour of each phase is homogenous in the sense of continuous media mechanic, whereas the front is explicitly described. We work both experimentally and numerically. Experimentally, we designed a test facility enabling thermo mechanical loading of the sample under partial vacuum. Acquisition of sample surface while martensitic transformation is happening leads, under some hypothesis and thanks to Digital Image Correlation, to the partial identification of area affected by transformation. Numerically, the eXtended Finite Element Method is applied for weakly discontinuous displacement fields. Used of this method needs to numerically track the transformation front -discontinuity support. In that goal, based on level set method, we develop FEM numerical scheme enabling recognition and propagation of discontinuity support. Finally, this work is complete by an approach of driving forces introduced through Eshelbian mechanics which are dual of front velocity. (author)
Restoration of Tear Secretion in a Murine Dry Eye Model by Oral Administration of Palmitoleic Acid.
Kimura, Yuki; Mori, Daisuke; Imada, Toshihiro; Izuta, Yusuke; Shibuya, Michiko; Sakaguchi, Hisayo; Oonishi, Erina; Okada, Naoko; Matsumoto, Kenji; Tsubota, Kazuo
2017-04-05
Sea buckthorn ( Hippophae rhamnoides ) -derived products have traditionally been used as food and medicinal ingredients in Eastern countries. The purpose of this study was to investigate the effect of oral intake of sea buckthorn oil products on tear secretion using a murine dry eye model. Orally administered sea buckthorn pulp oil (not seed oil) restored aqueous tear secretion to its normal value under a dry eye condition. Palmitoleate (C16:1), a fatty acid present in sea buckthorn pulp oil, preserved tear secretion and suppressed inflammatory cytokines in the lacrimal gland to the same extent as that by pulp oil. These results suggest that an oral intake of sea buckthorn pulp oil has a potency to preserve tear secretion capacity in the dry eye state and palmitoleate, its main constituent fatty acid, is an active component of the oil. This effect may enable a potent diet-based treatment for the prevention of dry eye.
Restoration of Tear Secretion in a Murine Dry Eye Model by Oral Administration of Palmitoleic Acid
Directory of Open Access Journals (Sweden)
Shigeru Nakamura
2017-04-01
Full Text Available Sea buckthorn (Hippophae rhamnoides–derived products have traditionally been used as food and medicinal ingredients in Eastern countries. The purpose of this study was to investigate the effect of oral intake of sea buckthorn oil products on tear secretion using a murine dry eye model. Orally administered sea buckthorn pulp oil (not seed oil restored aqueous tear secretion to its normal value under a dry eye condition. Palmitoleate (C16:1, a fatty acid present in sea buckthorn pulp oil, preserved tear secretion and suppressed inflammatory cytokines in the lacrimal gland to the same extent as that by pulp oil. These results suggest that an oral intake of sea buckthorn pulp oil has a potency to preserve tear secretion capacity in the dry eye state and palmitoleate, its main constituent fatty acid, is an active component of the oil. This effect may enable a potent diet-based treatment for the prevention of dry eye.
Energy Technology Data Exchange (ETDEWEB)
Droppo, James G.
2006-07-01
The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and
Emergence of nutrient limitation in tropical dry forests: hypotheses from simulation models
Medvigy, D.; Waring, B. G.; Xu, X.; Trierweiler, A.; Werden, L. K.; Wang, G.; Zhu, Q.; Powers, J. S.
2017-12-01
It is unclear to what extent tropical dry forest productivity may be limited by nutrients. Direct assessment of nutrient limitation through fertilization experiments has been rare, and paradigms pertaining to other ecosystems may not extend to tropical dry forests. For example, because dry tropical forests have a lower water supply than moist tropical forests, dry forests can have lower decomposition rates, higher soil carbon and nitrogen concentrations, and a more open nitrogen cycle than moist forests. We used a mechanistic, numerical model to generate hypotheses about nutrient limitation in tropical dry forests. The model dynamically couples ED2 (vegetation dynamics), MEND (biogeochemistry), and N-COM (plant-microbe competition for nutrients). Here, the MEND-component of the model has been extended to include nitrogen (N) and phosphorus (P) cycles. We focus on simulation of sixteen 25m x 25m plots in Costa Rica where a fertilization experiment has been underway since 2015. Baseline simulations are characterized by both nitrogen and phosphorus limitation of vegetation. Fertilization with N and P increased vegetation biomass, with N fertilization having a somewhat stronger effect. Nutrient limitation was also sensitive to climate and was more pronounced during drought periods. Overflow respiration was identified as a key process that mitigated nutrient limitation. These results suggest that, despite often having richer soils than tropical moist forests, tropical dry forests can also become nutrient-limited. If the climate becomes drier in the next century, as is expected for Central America, drier soils may decrease microbial activity and exacerbate nutrient limitation. The importance of overflow respiration underscores the need for appropriate treatment of microbial dynamics in ecosystem models. Ongoing and new nutrient fertilization experiments will present opportunities for testing whether, and how, nutrient limitation may indeed be emerging in tropical dry
Multidimensional Numerical Modeling of Surges Over Initially Dry Land
National Research Council Canada - National Science Library
Berger, R
2004-01-01
.... The first test case is for a straight flume and the second contains a reservoir and a horseshoe channel section. It is important that the model match the timing of the surge as well as the height In both cases the ADH compared closely with the flume results.
Model based analysis of the drying of a single solution droplet in an ultrasonic levitator
DEFF Research Database (Denmark)
Sloth, Jakob; Kiil, Søren; Jensen, Anker
2006-01-01
are compared to data for the drying of aqueous solutions of maltodextrin DE 15 and trehalose from experiments conducted using an ultrasonic levitator. Model predictions are in good agreement with the experimental data, indicating that the model describes the most important physical phenomena of the process....
Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico
Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen. Richardson
2014-01-01
The carbon balance of secondary dry tropical forests of Mexicoâs Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...
A user-friendly model for spray drying to aid pharmaceutical product development
Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W
2013-01-01
The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source
DEFF Research Database (Denmark)
Ferrari, A.; Gutierrez, S.; Sin, Gürkan
2016-01-01
A steady state model for a production scale milk drying process was built to help process understanding and optimization studies. It involves a spray chamber and also internal/external fluid beds. The model was subjected to a comprehensive statistical analysis for quality assurance using...
Nikulov, Alexey
2005-01-01
Formalism of the quantum mechanics developed for microscopic (atomic) level comes into collision with some logical difficulties on mesoscopic level. Some fundamental differences between application of its basic principles on microscopic and mesoscopic levels are accentuated.
A climatological model for risk computations incorporating site- specific dry deposition influences
International Nuclear Information System (INIS)
Droppo, J.G. Jr.
1991-07-01
A gradient-flux dry deposition module was developed for use in a climatological atmospheric transport model, the Multimedia Environmental Pollutant Assessment System (MEPAS). The atmospheric pathway model computes long-term average contaminant air concentration and surface deposition patterns surrounding a potential release site incorporating location-specific dry deposition influences. Gradient-flux formulations are used to incorporate site and regional data in the dry deposition module for this atmospheric sector-average climatological model. Application of these formulations provide an effective means of accounting for local surface roughness in deposition computations. Linkage to a risk computation module resulted in a need for separate regional and specific surface deposition computations. 13 refs., 4 figs., 2 tabs
Economic Model Predictive Control for Spray Drying Plants
DEFF Research Database (Denmark)
Petersen, Lars Norbert
and a complexity reduced control model is used for state estimation and prediction in the controllers. These models facilitate development and comparison of control strategies. We develop two MPC strategies; a linear tracking MPC with a Real-Time Optimization layer (MPC with RTO) and an Economic Nonlinear MPC (E...... horizon, out of which only the first input is applied to the dryer. This procedure is repeated at each sample instant and is solved numerically in real-time. The MPC with RTO tracks a target that optimizes the cost of operation at steady-state. The E-MPC optimizes the cost of operation directly by having...... this objective directly in the controller. The need for the RTO layer is then eliminated. We demonstrate the application of the proposed MPC with RTO to control an industrial GEA MSDTM-1250 spray dryer, which produces approximately 7500 kg/hr of enriched milk powder. Compared to the conventional PI controller...
Quantum Coherence and Random Fields at Mesoscopic Scales
International Nuclear Information System (INIS)
Rosenbaum, Thomas F.
2016-01-01
We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.
Quantum Coherence and Random Fields at Mesoscopic Scales
Energy Technology Data Exchange (ETDEWEB)
Rosenbaum, Thomas F. [Univ. of Chicago, IL (United States)
2016-03-01
We seek to explore and exploit model, disordered and geometrically frustrated magnets where coherent spin clusters stably detach themselves from their surroundings, leading to extreme sensitivity to finite frequency excitations and the ability to encode information. Global changes in either the spin concentration or the quantum tunneling probability via the application of an external magnetic field can tune the relative weights of quantum entanglement and random field effects on the mesoscopic scale. These same parameters can be harnessed to manipulate domain wall dynamics in the ferromagnetic state, with technological possibilities for magnetic information storage. Finally, extensions from quantum ferromagnets to antiferromagnets promise new insights into the physics of quantum fluctuations and effective dimensional reduction. A combination of ac susceptometry, dc magnetometry, noise measurements, hole burning, non-linear Fano experiments, and neutron diffraction as functions of temperature, magnetic field, frequency, excitation amplitude, dipole concentration, and disorder address issues of stability, overlap, coherence, and control. We have been especially interested in probing the evolution of the local order in the progression from spin liquid to spin glass to long-range-ordered magnet.
Insight or illusion? seeing inside the cell with mesoscopic simulations
DEFF Research Database (Denmark)
Shillcock, Julian C.
2008-01-01
the dynamics of spatially heterogeneous membranes and the crowded cytoplasmic environment to be followed at a modest computational cost. The price for such power is that the atomic detail of the constituents is much lower than in atomistic Molecular Dynamics simulations. We argue that this price is worth...... by spatial resolution and the speed of molecular rearrangements. The increase in computing power of the last few decades enables the construction of computational tools for observing cellular processes in silico. As experiments yield increasing amounts of data on the protein and lipid constituents...... of the cell, computer simulations parametrized using this data are beginning to allow models of cellular processes to be interrogated in ways unavailable in the laboratory. Mesoscopic simulations retain only those molecular features that are believed to be relevant to the processes of interest. This allows...
Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas
2018-02-01
Pharmaceutical batch freeze-drying is commonly used to improve the stability of biological therapeutics. The primary drying step is regulated by the dynamic settings of the adaptable process variables, shelf temperature T s and chamber pressure P c . Mechanistic modelling of the primary drying step leads to the optimal dynamic combination of these adaptable process variables in function of time. According to Good Modelling Practices, a Global Sensitivity Analysis (GSA) is essential for appropriate model building. In this study, both a regression-based and variance-based GSA were conducted on a validated mechanistic primary drying model to estimate the impact of several model input parameters on two output variables, the product temperature at the sublimation front T i and the sublimation rate ṁ sub . T s was identified as most influential parameter on both T i and ṁ sub , followed by P c and the dried product mass transfer resistance α Rp for T i and ṁ sub , respectively. The GSA findings were experimentally validated for ṁ sub via a Design of Experiments (DoE) approach. The results indicated that GSA is a very useful tool for the evaluation of the impact of different process variables on the model outcome, leading to essential process knowledge, without the need for time-consuming experiments (e.g., DoE). Copyright © 2017 Elsevier B.V. All rights reserved.
STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS
Mojtaba Nouri; Marzieh Vahdani; Shilan Rashidzadeh; Lukáš Hleba; Mohammad Ali Shariati
2015-01-01
The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C) and microwave (90, 180, 360, 600 and 900w) in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2), Chi square(X2), root mean square errors(RSME). Results also revealed that temperature and micr...
Mesoscopic spin Hall effect in semiconductor nanostructures
Zarbo, Liviu
The spin Hall effect (SHE) is a name given to a collection of diverse phenomena which share two principal features: (i) longitudinal electric current flowing through a paramagnetic semiconductor or metallic sample leads to transverse spin current and spin accumulation of opposite sign at opposing lateral edges; (ii) SHE does not require externally applied magnetic field or magnetic ordering in the equilibrium state of the sample, instead it relies on the presence of spin-orbit (SO) couplings within the sample. This thesis elaborates on a new type of phenomenon within the SHE family, predicted in our recent studies [Phys. Rev. B 72, 075361 (2005); Phys. Rev. Lett. 95, 046601 (2005); Phys. Rev. B 72, 075335 (2005); Phys. Rev. B 73 , 075303 (2006); and Europhys. Lett. 77, 47004 (2007)], where pure spin current flows through the transverse electrodes attached to a clean finitesize two-dimensional electron gas (2DEG) due to unpolarized charge current injected through its longitudinal leads. If transverse leads are removed, the effect manifests as nonequilibrium spin Hall accumulation at the lateral edges of 2DEG wires. The SO coupling driving this SHE effect is of the Rashba type, which arises due to structural inversion asymmetry of semiconductor heterostructure hosting the 2DEG. We term the effect "mesoscopic" because the spin Hall currents and accumulations reach optimal value in samples of the size of the spin precession length---the distance over which the spin of an electron precesses by an angle pi. In strongly SO-coupled structures this scale is of the order of ˜100 nm, and, therefore, mesoscopic in the sense of being much larger than the characteristic microscopic scales (such as the Fermi wavelength, screening length, or the mean free path in disordered systems), but still much smaller than the macroscopic ones. Although the first theoretical proposal for SHE, driven by asymmetry in SO-dependent scattering of spin-up and spin-down electrons off impurities
Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni
2018-02-01
Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.
Evaluation of a novel dry eye model induced by oral administration of finasteride.
Li, Kai; Zhang, Chuanwei; Yang, Zichao; Wang, Yuliang; Si, Haipeng
2017-12-01
Dry eye is a common eye disease, and suitable animal models are indispensable for investigating the pathogenesis and developing treatments for dry eye. The present study was conducted to develop an androgen deficiency dry eye model induced by finasteride, and to evaluate ocular surface status and inflammatory cytokine gene expression in the lacrimal gland using a cytokine antibody array system. The results revealed that the antiandrogenic drug finasteride induced significant tear deficiency, and the histopathology results revealed significant inflammatory cell infiltration in the lacrimal gland. The cytokine antibody array system identified increased B7‑2 (also known as cluster of differentiation 86), interleukin (IL)‑1β, IL‑4, IL‑6, IL‑10, matrix metalloproteinase‑8, Fas ligand, tumor necrosis factor (TNF)‑α and metalloproteinase inhibitor 1 levels in the lacrimal gland of the dry eye model. These cytokines were validated as candidate markers through the use of western blot analysis and reverse transcription‑quantitative polymerase chain reaction. Both analyses confirmed a significant increase in proinflammatory cytokines, including IL‑1β, IL‑6 and TNF‑α, and anti‑inflammatory cytokines, including IL‑4 and IL‑10. The aforementioned data suggested that inflammation in antiandrogenic models resulted from a balance between inflammatory and anti‑inflammatory responses. Thus, direct finasteride administration may produce an applicable model for dry eye mediated by androgen deficiency. In addition, there may be a correlation between sex, steroid deﬁciency and the inflammatory response. The findings of the present study have provided useful information for the pathogenesis and diagnosis of dry eye mediated by androgen deficiency.
What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.
Kobayashi, Kensuke
2016-01-01
Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics.
Critical review of creep FRAPCON-3 model under dry storage conditions
Energy Technology Data Exchange (ETDEWEB)
Feria, F.; Herranz, L.E. [Unit of Nuclear Safety Research, CIEMAT, Avda. Complutense 22, Madrid, Madrid 28040 (Spain)
2009-06-15
There is a general agreement that cladding creep rupture is the most likely and limiting failure mechanism of spent fuel in dry storage compared to other potential mechanisms, like stress corrosion cracking and/or delayed hydride cracking. Nevertheless, occurrence of creep rupture is very improbable since both decay heat and hoop stress tend to decrease throughout dry storage. In spite of this, the current trend to higher burn up levels needs further attention that ensures safe storage of spent fuel irradiated over 45 GWd/MTU. An extensive work has been carried out during the last four decades in the area of in-reactor creep modelling. Unfortunately, the in-reactor conditions are so different from those prevailing under dry storage, that all the experience gained cannot be extrapolated in a straightforward manner. On the other side, as creep tests simulating conditions throughout a 20-40 year dry storage are impractical, post-irradiation cladding creep behaviour has been modelled by means of time-temperature dependent laws developed on the basis of currently available zirconium alloys data. Additionally, some tests have been exploring the effect of irradiation, hydrogen distribution and material composition on the materials creep behaviour. Adaptation of fuel performance codes initially developed for normal and off-normal reactor operation is not an easy task either. Creep modelling is usually dependent of host codes because a good part of its validation and update has been carried out in an integral way, and as a consequence its independent performance assessment is not an easy task. This work examines the current capability of FRAPCON-3 to model creep behaviour under dry storage conditions. To do so, a review of its major fundamentals has been done and its range of applicability discussed. Once its main approximations and drawbacks have been identified, an attempt to overcome some of them has been intended by implementing an alternative expression for creep under
Modeling of dimensional changes of spent WWER fuel rods during dry storage
International Nuclear Information System (INIS)
Aliev, T.; Evdokimov, I.; Likhanskii, V.; Sorokin, A.; Kolesnik, M.; Kozhakin, A.; Zborovskii, V.; Zvir, E.; Ilyin, P.
2015-01-01
The engineering model of anisotropic creep is developed to predict the behavior of WWER fuel rods in dry storage of spent fuel. The model considers several deformation mechanisms, the main one being the dislocation creep. The effects of radiation defects accumulation and its partial annealing during storage, as well as work hardening are taken into account. Based on the available experimental data preliminary verification of the developed model is performed. The model adequately describes the data set used. Conditions of experiments conducted up to date are more severe in temperature and stresses than ones in dry storage. It is shown that in dry storage additional deformation mechanisms play an important role. One such mechanism is the creep induced by temperature cycling that occurs during the experiments. Thermal cycles produce internal stresses caused by thermal expansion anisotropy in α-Zr crystallites. This mechanism makes a significant contribution to the experimentally measured strain at stresses characteristic for spent fuel claddings. Additional experimental research is planned to expand the range of Verification Matrix to the prototype conditions for dry storage and to improve prediction accuracy of the model. (author)
Amniotic membrane extract ameliorates benzalkonium chloride-induced dry eye in a murine model.
Xiao, Xinye; Luo, Pingping; Zhao, Hui; Chen, Jingyao; He, Hui; Xu, Yuxue; Lin, Zhirong; Zhou, Yueping; Xu, Jianjiang; Liu, Zuguo
2013-10-01
Human amniotic membrane (AM) is avascular but contains various beneficial bioactive factors, its extract (AE) is also effective in treating many ocular surface disorders. In this study, we for the first time evaluated the therapeutic effects of AE on dry eye induced by benzalkonium chloride in a BALB/c mouse model. Topical application of AE (1.5 and 3 μg/eye/day) resulted in significantly longer tear break-up time on Day 3 and 6, lower fluorescein staining scores on Day 3, and lower inflammatory index on Day 6. AE reduced corneal epithelial K10 expression, inflammatory infiltration, and levels of TNF-α, IL-1β and IL-6 in BAC treated mice than that in the control mice. Moreover, decreased TUNEL positive cells in cornea and increased goblet cells in conjunctiva were also observed in AE treated corneas. Finally, AE induced more Ki-67 positive cells in corneal epithelium of dry eye mouse. Taken together, our data provide further support for BAC induced dry eye model as a valuable for dry eye study and suggest a great potential for AE as a therapeutic agent in the clinical treatment of dry eye. Copyright © 2013 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Roberto Lemus-Mondaca
2018-01-01
Full Text Available The focus of this research was based on the application of an osmotic pretreatment (15% NaCl for drying abalone slices, and it evaluates the influence of hot-air drying temperature (40–80°C on the product quality. In addition, the mass transfer kinetics of salt and water was also studied. The optimal time of the osmotic treatment was established until reaching a pseudo equilibrium state of the water and salt content (290 min. The water effective diffusivity values during drying ranged from 3.76 to 4.75 × 10−9 m2/s for three selected temperatures (40, 60, and 80°C. In addition, experimental data were fitted by Weibull distribution model. The modified Weibull model provided good fitting of experimental data according to applied statistical tests. Regarding the evaluated quality parameters, the color of the surface showed a change more significant at high temperature (80°C, whereas the nonenzymatic browning and texture showed a decrease during drying process mainly due to changes in protein matrix and rehydration rates, respectively. In particular, working at 60°C resulted in dried samples with the highest quality parameters.
Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits
International Nuclear Information System (INIS)
Liu Jianxin; Yan Zhanyuan; Song Yonghua
2006-01-01
Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finite-difference Schroedinger equation of the non-dissipative mesoscopic inductance and capacity coupling circuit is achieved. The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finite-difference Schroedinger equation can be divided into two Mathieu equations in p-circumflex representation. With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated.
Mesoscopic Length Scale Controls the Rheology of Dense Suspensions
Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric
2010-09-01
From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.
Magnetic response of superconducting mesoscopic-size YBCO powder
Energy Technology Data Exchange (ETDEWEB)
Deimling, C.V. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)], E-mail: cesard@df.ufscar.br; Motta, M.; Lisboa-Filho, P.N. [Laboratorio de Materiais Supercondutores, Departamento de Fisica, Universidade Estadual Paulista, Bauru, SP Brazil (Brazil); Ortiz, W.A. [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil)
2008-07-15
In this work it is reported the magnetic behavior of submicron and mesoscopic-size superconducting YBCO powders, prepared by a modified polymeric precursors method. The grain size and microstructure were analyzed using scanning electron microscopy (SEM). Measurements of magnetization and AC-susceptibility as a function of temperature were performed with a quantum design SQUID magnetometer. Our results indicated significant differences on the magnetic propreties, in connection with the calcination temperature and the pressure used to pelletize the samples. This contribution is part of an effort to study vortex dynamics and magnetic properties of submicron and mesoscopic-size superconducting samples.
Mesoscopic analyses of porous concrete under static compression and drop weight impact tests
DEFF Research Database (Denmark)
Agar Ozbek, A.S.; Pedersen, R.R.; Weerheijm, J.
2008-01-01
was considered as a four-phase material incorporating aggregates, bulk cement paste, interfacial transition zones and meso-size air pores. The stress-displacement relations obtained from static compression tests, the stress values, and the corresponding damage levels provided by the drop weight impact tests were......The failure process in highly porous concrete was analyzed experimentally and numerically. A triaxial visco-plastic damage model and a mesoscale representation of the material composition were considered to reproduce static compression and drop weight impact tests. In the mesoscopic model, concrete...
Model to predict inhomogeneous protein-sugar distribution in powders prepared by spray drying
Grasmeijer, Niels; Frijlink, Henderik W.; Hinrichs, Wouter L. J.
2016-01-01
A protein can be stabilized by spray drying an aqueous solution of the protein and a sugar, thereby incorporating the protein into a glassy sugar matrix. For optimal stability, the protein should be homogeneously distributed inside the sugar matrix. The aim of this study was to develop a model that
Modeling and Designing of A Nonlineartemperature-Humidity Controller Using Inmushroom-Drying Machine
Wu, Xiuhua; Luo, Haiyan; Shi, Minhui
Drying-process of many kinds of farm produce in a close room, such as mushroom-drying machine, is generally a complicated nonlinear and timedelay cause, in which the temperature and the humidity are the main controlled elements. The accurate controlling of the temperature and humidity is always an interesting problem. It's difficult and very important to make a more accurate mathematical model about the varying of the two. A math model was put forward after considering many aspects and analyzing the actual working circumstance in this paper. Form the model it can be seen that the changes of temperature and humidity in drying machine are not simple linear but an affine nonlinear process. Controlling the process exactly is the key that influences the quality of the dried mushroom. In this paper, the differential geometry theories and methods are used to analyze and solve the model of these smallenvironment elements. And at last a kind of nonlinear controller which satisfied the optimal quadratic performance index is designed. It can be proved more feasible and practical than the conventional controlling.
Modeling of Ammonia Dry Deposition to a Pocosin Landscape Downwind of a Large Poultry Facility
A semi-empirical bi-directional flux modeling approach is used to estimate NH3 air concentrations and dry deposition fluxes to a portion of the Pocosin Lakes National Wildlife Refuge (PLNWR) downwind of a large poultry facility. Meteorological patterns at PLNWR are such that som...
Assessment of dry eye in a GVHD murine model: Approximation through tear osmolarity measurement.
Martínez-Carrasco, Rafael; Sánchez-Abarca, Luis Ignacio; Nieto-Gómez, Cristina; García, Elisabet Martín; Ramos, Teresa L; Velasco, Almudena; Sánchez-Guijo, Fermín; Aijón, José; Hernández-Galilea, Emiliano
2017-01-01
Dry eye disease is one of the most frequent pathological events that take place in the course of the graft versus host disease (GVHD), and is the main cause of deterioration in quality of life for patients. Thus, demonstration of dry eye signs in murine models of oGVHD is crucial for the validation of these models for the study of the disease. Given the increasing evidence that tear osmolarity is an important player of dry eye disease, our purpose in this study was to validate the use of a reliable method to assess tear osmolarity in mice: the electrical impedance method. Then, we wanted to test its utility with an oGVHD model. Tear volume assessment was also performed, using the phenol red thread test. We found differences in tear osmolarity in mice that received a transplant with cells from bone marrow and spleen (the GVHD group) when compared with mice that only received bone marrow cells (the BM group) at day 7 (362 ± 8 mOsm/l and 345 ± 9 mOsm/l respectively; P dry eye disease, what contributes to give relevance to this model for the study of GVHD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermal modeling of the forced convection Sandwich Greenhouse drying system for rubber sheets
International Nuclear Information System (INIS)
Tanwanichkul, B.; Thepa, S.; Rordprapat, W.
2013-01-01
Highlights: • Sandwich Greenhouse is designed for better quality and efficiency of rubber sheet drying. • Thermal models are developed to predict the convection heat transfer coefficient. • The models are validated and show good agreement with the actual experimental data. • The proposed greenhouse can maintain 40–60 °C, suitable for rubber sheet drying. • This greenhouse can bring down the moisture content to 2.8% in fewer than 2 days. - Abstract: In this paper, a novel “Sandwich Greenhouse” for rubber sheet drying is proposed. Using solar energy as the only heat source instead of traditional smoke house that requires firewood, it eliminates shortcomings such as skilled labor monitoring requirement, possible fire hazard, and darken-color rubber sheets due to soot particle contamination. Our greenhouse is specially designed to retain solar energy within, while minimizing the heat loss to the outside environment. The mathematical models are developed to predict the convection mass transfer coefficient and to study the thermal behavior during the drying of rubber sheets under our proposed greenhouse design. Validated with experimental observations, the models show good agreement with the actual experimental data. The experiment demonstrates an effectiveness of our proposed Sandwich Greenhouse, as the temperature of the rubber sheet is 15 °C and 5 °C higher than the ambient temperature during the daytime and nighttime, respectively. As a result, the moisture content of the rubber sheets can decrease from 36.4% to 2.8% in fewer than 2 days
Directory of Open Access Journals (Sweden)
Carolina M. Sánchez-Sáenz
2015-12-01
Full Text Available ABSTRACT Mathematical modeling enables dimensioning of dryers, optimization of drying conditions and the evaluation of process performance. The aim of this research was to describe the behavior of orange bagasse drying using Page's and Fick's second law models, and to assess activation energy (using Arrhenius equation, moisture content, water activity and bulk density of product at the end of the process. The drying experimental assays were performed in 2011 with convective air temperature between 36 and 64 ºC and infrared radiation application time in the range from 23 to 277 s in accordance with the experimental central composite rotatable design. Analysis of variance and F-test were applied to results. At the end of the drying process, moisture content was about 0.09 to 0.87 db and water activity was between 0.25 and 0.87. Bulk density did not vary under studied conditions. Empirical Page's model demonstrated better representation of experimental data than the Fick's model for spheres. Activation energy values were about 18.491; 14.975 and 11.421 kJ mol-1 for infrared application times of 60; 150 e 244 s, respectively.
A new sensory vocabulary for crisp and crunchy dry model foods
Dijksterhuis, G.B.; Luyten, J.M.J.G.; Wijk, de R.A.; Mojet, J.
2007-01-01
The creation of a sensory descriptive panel for dry crusted, `crispy¿ and `crunchy¿ food products is presented. A sensory vocabulary comprising appearance, odour, taste, texture and sound is developed and the panel is trained to use these attributes. Model deep-fried battered snack and baked bread
A new moving boundary model for transient simulation of dry-expansion evaporators
DEFF Research Database (Denmark)
Jensen, Jakob Munch; Knudsen, Hans-Jørgen Høgaard
2002-01-01
A new moving boundary model is presented for describing the dynamics of dry-expansin evaporators. The model is derived from conservation equations for mass and energy integrated over the two-phase and the superheated region. The new model is numerical fast compared to discretized models and very...... robust to sudden changes in the system. The model is well suited for open loop simulation for system design and model based contol strategies as e.g. optimal LQG (linear quadratic gausian) control. Simulation results for a refrigeration system are shown for different changes in evaporator fan speed...
A review of heat pump drying: Part 1 - systems, models and studies
Energy Technology Data Exchange (ETDEWEB)
Colak, Neslihan [Dept. of Food Engineering, Faculty of Engineering, Pamukkale Univ., 20070 Denizli (Turkey); Hepbasli, Arif [Dept. of Mechanical Engineering, Faculty of Engineering, Ege Univ., 35100 Bornova, Izmir (Turkey)
2009-09-15
The first heat pump dryer (HPD) patent applications were started in 1973, while recently, there has been a great interest in utilizing HPDs for drying fruits, vegetables and biological materials. This study deals with reviewing heat pump drying studies and consists of two parts. In the first part of this study, historical development of HPDs was briefly given first. Description of these systems was then presented. Finally, studies conducted on HPD were reviewed in terms of process efficiency modeling and progress of quality. (author)
Restoration of Tear Secretion in a Murine Dry Eye Model by Oral Administration of Palmitoleic Acid
Nakamura, Shigeru; Kimura, Yuki; Mori, Daisuke; Imada, Toshihiro; Izuta, Yusuke; Shibuya, Michiko; Sakaguchi, Hisayo; Oonishi, Erina; Okada, Naoko; Matsumoto, Kenji; Tsubota, Kazuo
2017-01-01
Sea buckthorn (Hippophae rhamnoides)–derived products have traditionally been used as food and medicinal ingredients in Eastern countries. The purpose of this study was to investigate the effect of oral intake of sea buckthorn oil products on tear secretion using a murine dry eye model. Orally administered sea buckthorn pulp oil (not seed oil) restored aqueous tear secretion to its normal value under a dry eye condition. Palmitoleate (C16:1), a fatty acid present in sea buckthorn pulp oil, pr...
Modeling of thermal mode of drying special purposes ceramic products in batch action chamber dryers
Lukianov, E. S.; Lozovaya, S. Yu; Lozovoy, N. M.
2018-03-01
The article is devoted to the modeling of batch action chamber dryers in the processing line for producing shaped ceramic products. At the drying stage, for various reasons, most of these products are warped and cracked due to the occurrence of irregular shrinkage deformations due to the action of capillary forces. The primary cause is an untruly organized drying mode due to imperfection of chamber dryers design specifically because of the heat-transfer agent supply method and the possibility of creating a uniform temperature field in the whole volume of the chamber.
Mesoscopic dynamics of diffusion-influenced enzyme kinetics.
Chen, Jiang-Xing; Kapral, Raymond
2011-01-28
A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t(-1/2) and t(-3/2) power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.
Mesoscopic dynamics of diffusion-influenced enzyme kinetics
Chen, Jiang-Xing; Kapral, Raymond
2011-01-01
A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are modeled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point particles. The system is evolved using a hybrid molecular dynamics-multiparticle collision dynamics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum, and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic interactions among the enzymes and complexes are automatically accounted for in the dynamics. Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the species concentrations. In accord with earlier investigations, regimes where the product production rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition, the species concentrations display both t^{-1/2} and t^{-3/2} power-law behavior, depending on the dynamical regime under investigation. For high enzyme volume fractions, cooperative effects influence the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate molecules newly released in complex dissociation events are determined and shown to have either a power-law form for rebinding to the same enzyme from which they were released or an exponential form for rebinding to different enzymes. The model can be used and extended to explore a variety of issues related concentration effects and diffusion on enzyme kinetics.
Directory of Open Access Journals (Sweden)
Prithvi Simha
2016-03-01
Full Text Available To highlight the shortcomings in conventional methods of extraction, this study investigates the efficacy of Microwave Assisted Extraction (MAE toward bioactive compound recovery from pharmaceutically-significant medicinal plants, Adathoda vasica and Cymbopogon citratus. Initially, the microwave (MW drying behavior of the plant leaves was investigated at different sample loadings, MW power and drying time. Kinetics was analyzed through empirical modeling of drying data against 10 conventional thin-layer drying equations that were further improvised through the incorporation of Arrhenius, exponential and linear-type expressions. 81 semi-empirical Midilli equations were derived and subjected to non-linear regression to arrive at the characteristic drying equations. Bioactive compounds recovery from the leaves was examined under various parameters through a comparative approach that studied MAE against Soxhlet extraction. MAE of A. vasica reported similar yields although drastic reduction in extraction time (210 s as against the average time of 10 h in the Soxhlet apparatus. Extract yield for MAE of C. citratus was higher than the conventional process with optimal parameters determined to be 20 g sample load, 1:20 sample/solvent ratio, extraction time of 150 s and 300 W output power. Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy were performed to depict changes in internal leaf morphology.
A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...
Modeling of the process of moisture loss during the storage of dried apricots.
Miranda, G; Berna, A; Bon, J; Mulet, A
2011-10-01
Moisture content is a reference parameter for dried food because the growth of most microorganisms is inhibited below certain water activity levels. In addition, it has a determining influence on the evolution of important parameters, such as color and flavor, and on other properties and deterioration reactions, such as texture, oxidation processes and nutritional value. During the storage of some dried fruits, moisture is produced due to Maillard reactions and exchanged with the surrounding environment through the packaging. The evolution of dried foods during their shelf life depends on the storage conditions. The aim of this study is to analyze the evolution of the moisture content in dried apricots packaged in different types of containers, namely glass and thermosealed polypropylene trays. The samples were stored at constant temperatures: 5, 15, 25 and 35 °C and were analyzed periodically over a period of 12 months. The sorption isotherms of apricots used in this study were also determined. In order to model how the moisture evolved, an empirical kinetic model was tested. This model considers both water transfer from the fruit and also water production as a result of the Maillard processes. The explained variance was higher than 95% in the samples stored in trays, which were thermosealed with film.
Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content
DEFF Research Database (Denmark)
Chen, Chong; Hu, Kelin; Arthur, Emmanuel
2014-01-01
Accurate information on the dry end (matric potential less than −1500 kPa) of soil water retention curves (SWRCs) is crucial for studying water vapor transport and evaporation in soils. The objectives of this study were to assess the potential of the Oswin model for describing the water adsorption...... curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model...... for soils dominated by 2:1 and 1:1 clays, respectively. Comparison of the Oswin model combined with the Kelvin equation, with water potential estimated from θRH50 (Oswin-KRH50), CS model combined with the Arthur equation (CS-A), and CS-K model, with water potential obtained from θRH50 (CS-KRH50) indicated...
Modelling of a DNB mechanism by dry-out of a nucleation site
International Nuclear Information System (INIS)
Bricard, P.
1995-10-01
This study deals with the modelling of a nucleation site dry-out DNB mechanism which unifies those of Kirby et al. (1967) and Fiori and Bergles (1970). A first model based on a simplified heat balance in the wall at the location of the dry spot is developed and a set of closure relations is proposed. The model is then quantitatively and qualitatively compared to CHF data. In order to support the likelihood of the mechanism, we develop a more elaborated model which couples the unsteady thermal behavior of the wall and the thermal-hydraulics of the fluid described by the different phases of the nucleation cycle. The conditions which enable the boiling crisis to be reached are given
Role of mesoscopic morphology in charge transport of doped ...
Indian Academy of Sciences (India)
In doped polyaniline (PANI), the charge transport properties are determined by mesoscopic morphology, which in turn is controlled by the molecular recognition interactions among polymer chain, dopant and solvent. Molecular recognition plays a signiﬁcant role in chain conformation and charge delocalization.
Novel interference effects and a new quantum phase in mesoscopic ...
Indian Academy of Sciences (India)
Mesoscopic systems have provided an opportunity to study quantum effects beyond the ... tance [2], normal electron persistent currents [3], non-local current and voltage relations .... If both Б½ and Б¾ are positive or flow in the same direction of the potential drop then the ..... Fermi distribution function ¼(¯) = (1 + exp[(¯ - ) М]).
Discrete and mesoscopic regimes of finite-size wave turbulence
International Nuclear Information System (INIS)
L'vov, V. S.; Nazarenko, S.
2010-01-01
Bounding volume results in discreteness of eigenmodes in wave systems. This leads to a depletion or complete loss of wave resonances (three-wave, four-wave, etc.), which has a strong effect on wave turbulence (WT) i.e., on the statistical behavior of broadband sets of weakly nonlinear waves. This paper describes three different regimes of WT realizable for different levels of the wave excitations: discrete, mesoscopic and kinetic WT. Discrete WT comprises chaotic dynamics of interacting wave 'clusters' consisting of discrete (often finite) number of connected resonant wave triads (or quarters). Kinetic WT refers to the infinite-box theory, described by well-known wave-kinetic equations. Mesoscopic WT is a regime in which either the discrete and the kinetic evolutions alternate or when none of these two types is purely realized. We argue that in mesoscopic systems the wave spectrum experiences a sandpile behavior. Importantly, the mesoscopic regime is realized for a broad range of wave amplitudes which typically spans over several orders on magnitude, and not just for a particular intermediate level.
Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem
2015-06-01
The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation.
Kwon, Jin Woo; Choi, Jin A; Shin, Eun Young; La, Tae Yoon; Jee, Dong Hyun; Chung, Yeon Woong; Cho, Yang Kyung
2016-01-01
To evaluate whether trapping vascular endothelial growth factor A (VEGF-A) would suppress angiogenesis and inflammation in dry eye corneas in a murine corneal suture model. We established two groups of animals, one with non-dry eyes and the other with induced dry eyes. In both groups, a corneal suture model was used to induce inflammation and neovascularization. Each of two groups was again divided into three subgroups according to the treatment; subgroup I (aflibercept), subgroup II (dexamethasone) and subgroup III (phosphate buffered saline, PBS). Corneas were harvested and immunohistochemical staining was performed to compare the extents of neovascularization and CD11b+ cell infiltration. Real-time polymerase chain reaction was performed to quantify the expression of inflammatory cytokines and VEGF-A in the corneas. Trapping VEGF-A with aflibercept resulted in significantly decreased angiogenesis and inflammation compared with the dexamethasone and PBS treatments in the dry eye corneas (all P dry eyes. The anti-inflammatory and anti-angiogenic effects of VEGF-A trapping were stronger than those of dexamethasone in both dry eye and non-dry eye corneas (all P dry eye group. Compared with non-dry eye corneas, dry eye corneas have greater amounts of inflammation and neovascularization and also have a more robust response to anti-inflammatory and anti-angiogenic agents after ocular surface surgery. Trapping VEGF-A is effective in decreasing both angiogenesis and inflammation in dry eye corneas after ocular surface surgery.
Modelling the Thin-Layer Drying Kinetics of Untreated and Blanch-Osmotic Pre-treated Tomato Slices
Directory of Open Access Journals (Sweden)
Samuel Enahoro Agarry
2016-10-01
Full Text Available The objective of this study was to investigate the effect of pre-treatment and drying temperature on the drying kinetics and nutritional quality of tomato (Lycopersicon esculantum L. under hot air drying. Tomato samples were blanched at 80oC and osmotically dehydrated using 20% w/w sodium chloride solutions at 30oC for 20 min. The blanch-osmotic pre-treated and untreated tomato slices were dried at temperature of 40, 50, 60, 70 and 80oC, respectively in a hot air-dryer. The results showed that blanch-osmotic pre-treatment offered a higher drying rate and lower or faster drying time than untreated condition. The tomato drying regime was characteristically in the constant and falling rate period. The tomato drying rate curve showed characteristics of porous hygroscopic solids. The optimum drying temperature for tomato was found to be 60oC. Four semi-empirical drying models of Newton, Page, Henderson and Pabis, and Logarithmic were fitted to the drying data using non-linear regression analysis. The most appropriate model was selected using the coefficient of determination (R2 and root mean square error (RMSE. The Page model has shown a better fit to the drying kinetics data of tomato in comparison with other tested models. Transport of moisture during drying was described by Fick’s diffusion model application and the effective moisture diffusivity (Deff thus estimated. The Deff at 60oC was 4.43 × 10-11m2/s and 6.33 × 10-11m2/s for blanch-osmotic pre-treated and untreated tomato slices, respectively.
Kalyuzhnyi, O.; Ilnytskyi, J. M.; Holovatch, Yu; von Ferber, C.
2018-05-01
In this paper we study the shape characteristics of star-like polymers in various solvent quality using a mesoscopic level of modeling. The dissipative particle dynamics simulations are performed for the homogeneous and four different heterogeneous star polymers with the same molecular weight. We analyse the gyration radius and asphericity at the poor, good and θ-solvent regimes. Detailed explanation based on interplay between enthalpic and entropic contributions to the free energy and analyses on of the asphericity of individual branches are provided to explain the increase of the apsphericity in θ-solvent regime.
Effects of Quercetin in a Mouse Model of Experimental Dry Eye.
Oh, Ha Na; Kim, Chae Eun; Lee, Ji Hyun; Yang, Jae Wook
2015-09-01
To evaluate the effect of treatment with quercetin in a mouse model of dry eye. 0.5% quercetin eye drops were prepared and an experimental dry eye model was induced in NOD.B10.H2(b) mice through desiccation stress. The mice were divided into 3 groups according to the treatment regimen: the DS 10D group (desiccation stress for 10 days), the phosphate buffered saline (PBS) group, and the quercetin group. Tear volumes and corneal irregularity scores were measured at 3, 5, 7, and 10 days after treatment. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemistry were performed at the end of the experiment. The quercetin group had increased tear volumes (0.2 ± 0.03 μm, P lacrimal gland than did the PBS group. Topical application of quercetin can help to improve ocular surface disorders of dry eye not only by decreasing the corneal surface irregularity but also by increasing the tear volume and goblet cell density. Moreover, quercetin has the potential for use in eye drops as a treatment for dry eye disease with antiinflammatory effects on the lacrimal functional unit.
Chen, Xiaodong; Sadineni, Vikram; Maity, Mita; Quan, Yong; Enterline, Matthew; Mantri, Rao V
2015-12-01
Lyophilization is an approach commonly undertaken to formulate drugs that are unstable to be commercialized as ready to use (RTU) solutions. One of the important aspects of commercializing a lyophilized product is to transfer the process parameters that are developed in lab scale lyophilizer to commercial scale without a loss in product quality. This process is often accomplished by costly engineering runs or through an iterative process at the commercial scale. Here, we are highlighting a combination of computational and experimental approach to predict commercial process parameters for the primary drying phase of lyophilization. Heat and mass transfer coefficients are determined experimentally either by manometric temperature measurement (MTM) or sublimation tests and used as inputs for the finite element model (FEM)-based software called PASSAGE, which computes various primary drying parameters such as primary drying time and product temperature. The heat and mass transfer coefficients will vary at different lyophilization scales; hence, we present an approach to use appropriate factors while scaling-up from lab scale to commercial scale. As a result, one can predict commercial scale primary drying time based on these parameters. Additionally, the model-based approach presented in this study provides a process to monitor pharmaceutical product robustness and accidental process deviations during Lyophilization to support commercial supply chain continuity. The approach presented here provides a robust lyophilization scale-up strategy; and because of the simple and minimalistic approach, it will also be less capital intensive path with minimal use of expensive drug substance/active material.
Heat and mass transfer coefficients and modeling of infrared drying of banana slices
Directory of Open Access Journals (Sweden)
Fernanda Machado Baptestini
Full Text Available ABSTRACT Banana is one of the most consumed fruits in the world, having a large part of its production performed in tropical countries. This product possesses a wide range of vitamins and minerals, being an important component of the alimentation worldwide. However, the shelf life of bananas is short, thus requiring procedures to prevent the quality loss and increase the shelf life. One of these procedures widely used is drying. This work aimed to study the infrared drying process of banana slices (cv. Prata and determine the heat and mass transfer coefficients of this process. In addition, effective diffusion coefficient and relationship between ripening stages of banana and drying were obtained. Banana slices at four different ripening stages were dried using a dryer with infrared heating source with four different temperatures (65, 75, 85, and 95 ºC. Midilli model was the one that best represented infrared drying of banana slices. Heat and mass transfer coefficients varied, respectively, between 46.84 and 70.54 W m-2 K-1 and 0.040 to 0.0632 m s-1 for temperature range, at the different ripening stages. Effective diffusion coefficient ranged from 1.96 to 3.59 × 10-15 m² s-1. Activation energy encountered were 16.392, 29.531, 23.194, and 25.206 kJ mol-1 for 2nd, 3rd, 5th, and 7th ripening stages, respectively. Ripening stages did not affect the infrared drying of bananas.
Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.
Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K
2013-07-01
Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Numerical simulation of potato slices drying using a two-dimensional finite element model
Directory of Open Access Journals (Sweden)
Beigi Mohsen
2017-01-01
Full Text Available An experimental and numerical study was conducted to investigate the process of potato slices drying. For simulating the moisture transfer in the samples and predict the dehydration curves, a two-dimensional finite element model was developed and programmed in Compaq Visual Fortran, version 6.5. The model solved the Fick’s second law for slab in a shrinkage system to calculate the unsteady two-dimensional moisture transmission in rectangular coordinates (x,y. Moisture diffusivity and moisture transfer coefficient were determined by minimizing the sum squares of residuals between experimental and numerical predicted data. Shrinkage kinetics of the potato slices during dehydration was determined experimentally and found to be a linear function of removed moisture. The determined parameters were used in the mathematical model. The predicted moisture content values were compared to the experimental data and the validation results demonstrated that the dynamic drying curves were predicted by the methodology very well.
Development of A Darcy-flow model applied to simulate the drying of shrinking media
Directory of Open Access Journals (Sweden)
S. Chemkhi
2008-09-01
Full Text Available A mathematical model is developed to describe the coupling between heat, mass, and momentum transfers and is applied to simulate the drying of saturated and shrinking media. This model is called "the Darcy-flow model", which is based on the fact that the liquid flow is induced by a pressure gradient. The main novelties of the model are that firstly no phenomenological law need be introduced by keeping solid mass conservation and solid volume conservation together and secondly we use the effective stresses notion strongly coupling mechanical behaviour with mass transport. The analysis is limited to the preheating and the constant rate drying periods because shrinkage occurs during these two periods for most materials. Our purpose is to simulate the drying process and to compare the results of the simulations and the experiments done on clay material to demonstrate the consistency of the model developed. One of the important conclusions is that is no correlation between moisture flow and moisture gradient.
Recent advances in sensitized mesoscopic solar cells.
Grätzel, Michael
2009-11-17
-intensive high vacuum and materials purification steps that are currently employed in the fabrication of all other thin-film solar cells. Organic materials are abundantly available, so that the technology can be scaled up to the terawatt scale without running into feedstock supply problems. This gives organic-based solar cells an advantage over the two major competing thin-film photovoltaic devices, i.e., CdTe and CuIn(As)Se, which use highly toxic materials of low natural abundance. However, a drawback of the current embodiment of OPV cells is that their efficiency is significantly lower than that for single and multicrystalline silicon as well as CdTe and CuIn(As)Se cells. Also, polymer-based OPV cells are very sensitive to water and oxygen and, hence, need to be carefully sealed to avoid rapid degradation. The research discussed within the framework of this Account aims at identifying and providing solutions to the efficiency problems that the OPV field is still facing. The discussion focuses on mesoscopic solar cells, in particular, dye-sensitized solar cells (DSCs), which have been developed in our laboratory and remain the focus of our investigations. The efficiency problem is being tackled using molecular science and nanotechnology. The sensitizer constitutes the heart of the DSC, using sunlight to pump electrons from a lower to a higher energy level, generating in this fashion an electric potential difference, which can exploited to produce electric work. Currently, there is a quest for sensitizers that achieve effective harnessing of the red and near-IR part of sunlight, converting these photons to electricity better than the currently used generation of dyes. Progress in this area has been significant over the past few years, resulting in a boost in the conversion efficiency of the DSC that will be reviewed.
DEFF Research Database (Denmark)
Mortier, Séverine Thérèse F.C.; Daele, Timothy, Van; Gernaey, Krist V.
2013-01-01
in the reduced model. Simulations of the complex drying model were, in a next phase, used to develop the reduced model, which describes the decrease of the moisture content in function of the gas temperature. The developed reduced model was then included in a Population Balance Equation (PBE) to describe......The development of a Population Balance Model (PBM) for a pharmaceutical granule drying process requires a continuous growth term; the latter actually represents the drying process as the moisture content is the internal coordinate of the PBM. To establish such a PBM, a complex drying model...
Non-isothermal processes during the drying of bare soil: Model Development and Validation
Sleep, B.; Talebi, A.; O'Carrol, D. M.
2017-12-01
Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.
Bouquerel, Laure; Moulin, Nicolas; Drapier, Sylvain; Boisse, Philippe; Beraud, Jean-Marc
2017-10-01
While weight has been so far the main driver for the development of prepreg based-composites solutions for aeronautics, a new weight-cost trade-off tends to drive choices for next-generation aircrafts. As a response, Hexcel has designed a new dry reinforcement type for aircraft primary structures, which combines the benefits of automation, out-of-autoclave process cost-effectiveness, and mechanical performances competitive to prepreg solutions: HiTape® is a unidirectional (UD) dry carbon reinforcement with thermoplastic veil on each side designed for aircraft primary structures [1-3]. One privileged process route for HiTape® in high volume automated processes consists in forming initially flat dry reinforcement stacks, before resin infusion [4] or injection. Simulation of the forming step aims at predicting the geometry and mechanical properties of the formed stack (so-called preform) for process optimisation. Extensive work has been carried out on prepreg and dry woven fabrics forming behaviour and simulation, but the interest for dry non-woven reinforcements has emerged more recently. Some work has been achieved on non crimp fabrics but studies on the forming behaviour of UDs are seldom and deal with UD prepregs only. Tension and bending in the fibre direction, along with inter-ply friction have been identified as the main mechanisms controlling the HiTape® response during forming. Bending has been characterised using a modified Peirce's flexometer [5] and inter-ply friction study is under development. Anisotropic hyperelastic constitutive models have been selected to represent the assumed decoupled deformation mechanisms. Model parameters are then identified from associated experimental results. For forming simulation, a continuous approach at the macroscopic scale has been selected first, and simulation is carried out in the Zset framework [6] using proper shell finite elements.
Analytical calculation of detailed model parameters of cast resin dry-type transformers
International Nuclear Information System (INIS)
Eslamian, M.; Vahidi, B.; Hosseinian, S.H.
2011-01-01
Highlights: → In this paper high frequency behavior of cast resin dry-type transformers was simulated. → Parameters of detailed model were calculated using analytical method and compared with FEM results. → A lab transformer was constructed in order to compare theoretical and experimental results. -- Abstract: Non-flammable characteristic of cast resin dry-type transformers make them suitable for different kind of usages. This paper presents an analytical method of how to obtain parameters of detailed model of these transformers. The calculated parameters are compared and verified with the corresponding FEM results and if it was necessary, correction factors are introduced for modification of the analytical solutions. Transient voltages under full and chopped test impulses are calculated using the obtained detailed model. In order to validate the model, a setup was constructed for testing on high-voltage winding of cast resin dry-type transformer. The simulation results were compared with the experimental data measured from FRA and impulse tests.
International Nuclear Information System (INIS)
Erisman, Jan Willem; Draaijers, Geert
2003-01-01
The influence of forest characteristics on deposition can be modelled reasonably well; forest edge effects and dynamical processes are still uncertain. - Dry deposition of gases and particles to forests is influenced by factors influencing the turbulent transport, such as wind speed, tree height, canopy closure, LAI, etc. as well as by factors influencing surface condition, such as precipitation, relative humidity, global radiation, etc. In this paper, an overview of these factors is given and it is shown which are the most important determining temporal and spatial variation of dry deposition of sodium and sulphur. Furthermore, it is evaluated how well current deposition models are able to describe the temporal and spatial variation in dry deposition. It is concluded that the temporal variation is not modelled well enough, because of limited surface-wetness exchange parameterisations. The influence of forest characteristics are modelled reasonably well, provided enough data describing the forests and the spatial variation in concentration is available. For Europe these data are not available. The means to decrease the atmospheric deposition through forest management is discussed
Global sensitivity analysis applied to drying models for one or a population of granules
DEFF Research Database (Denmark)
Mortier, Severine Therese F. C.; Gernaey, Krist; Thomas, De Beer
2014-01-01
The development of mechanistic models for pharmaceutical processes is of increasing importance due to a noticeable shift toward continuous production in the industry. Sensitivity analysis is a powerful tool during the model building process. A global sensitivity analysis (GSA), exploring sensitiv......The development of mechanistic models for pharmaceutical processes is of increasing importance due to a noticeable shift toward continuous production in the industry. Sensitivity analysis is a powerful tool during the model building process. A global sensitivity analysis (GSA), exploring...... sensitivity in a broad parameter space, is performed to detect the most sensitive factors in two models, that is, one for drying of a single granule and one for the drying of a population of granules [using population balance model (PBM)], which was extended by including the gas velocity as extra input...... compared to our earlier work. beta(2) was found to be the most important factor for the single particle model which is useful information when performing model calibration. For the PBM-model, the granule radius and gas temperature were found to be most sensitive. The former indicates that granulator...
Directory of Open Access Journals (Sweden)
Fan Xiao
2018-05-01
Full Text Available Present investigation evaluates the effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea. Briefly, electron spine resonance was used for the estimation of radical scavenging activity of daidzin and COX Fluorescent Activity Assay Kit was used for the estimation of PGS activity. Dry eye rat model was developed by removing the lacrimal gland and effect of daidzin was evaluated in dry eye rat model by estimating the fluorescein score, tear volume and expressions of heme oxigenase (HO-1, TNF α, Interlukin 6 (IL-6, matrix metallopeptidase 9 (MMP-9 and PGS-2. Result of the present study suggested that daidzin possess tyrosyl radical scavenging activity and thereby decreases the oxidative stress. Activity of PGS significantly increases in dry eye which was inhibited by daidzin treatment due to competitive inhibition of PGS. It also recovers the tear volume in dry eye rat model in which lacrimal gland was removed. Thus corneal erosion was improved by daidzin in dry eye rat model. Thus present study concludes that treatment with daidzin protects the cornea in dry eye rat model by suppression inflammation and oxidative stress. Keywords: Daidzin, Dry eye, Radical scavenging activity, Inflammation
Lopes, Domingos; Almeida, L.R.; Castro, João Paulo; Aranha, José
2005-01-01
Ecosystems net primary production quantification can be done by means of allometric equations. Carbon sequestration studies also involve the quantification of growth dry biomass, knowing the carbon percentage of dry biomass. Fieldwork complexity to collect these kind of data are often limitative for obtaining these mathematical models. Allometric equations were adjusted to estimate dry biomass of individual Pinus pinaster trees, using data from 30 trees. Statisticals form the final equatio...
Directory of Open Access Journals (Sweden)
Chiara Biscarini
2013-01-01
Full Text Available The numerical simulation of fast-moving fronts originating from dam or levee breaches is a challenging task for small scale engineering projects. In this work, the use of fully three-dimensional Navier-Stokes (NS equations and lattice Boltzmann method (LBM is proposed for testing the validity of, respectively, macroscopic and mesoscopic mathematical models. Macroscopic simulations are performed employing an open-source computational fluid dynamics (CFD code that solves the NS combined with the volume of fluid (VOF multiphase method to represent free-surface flows. The mesoscopic model is a front-tracking experimental variant of the LBM. In the proposed LBM the air-gas interface is represented as a surface with zero thickness that handles the passage of the density field from the light to the dense phase and vice versa. A single set of LBM equations represents the liquid phase, while the free surface is characterized by an additional variable, the liquid volume fraction. Case studies show advantages and disadvantages of the proposed LBM and NS with specific regard to the computational efficiency and accuracy in dealing with the simulation of flows through complex geometries. In particular, the validation of the model application is developed by simulating the flow propagating through a synthetic urban setting and comparing results with analytical and experimental laboratory measurements.
Mathematical modeling of the drying of extruded fish feed and its experimental demonstration
DEFF Research Database (Denmark)
Haubjerg, Anders Fjeldbo; Simonsen, B.; Løvgreen, S.
This paper present a mathematical model for the drying of extruded fish feed pellets. The model relies on conservation balances for moisture and energy. Sorption isotherms from literature are used together with diffusion and transfer coefficients obtained from dual parameter regression analysis...... against experimental data. The lumped capacitance method for the estimation of the heat transfer coefficient is used. The model performs well at temperatures ± 5 °C from sorption isotherm specificity, and for different pellet sizes. There is a slight under-estimation of surface temperature of denser feed...
Directory of Open Access Journals (Sweden)
Guodong Li
2017-01-01
Full Text Available On a mesoscopic level, high performance concrete (HPC was assumed to be a heterogeneous composite material consisting of aggregates, mortar, and pores. The concrete mesoscopic structure model had been established based on CT image reconstruction. By combining this model with continuum mechanics, damage mechanics, and fracture mechanics, a relatively complete system for concrete mesoscopic mechanics analysis was established to simulate the process of early-age shrinkage cracking in HPC. This process was based on the dispersion crack model. The results indicated that the interface between the aggregate and mortar was the crack point caused by shrinkage cracks in HPC. The locations of early-age shrinkage cracks in HPC were associated with the spacing and the size of the aggregate particle. However, the shrinkage deformation size of the mortar was related to the scope of concrete cracking and was independent of the crack position. Whereas lower water to cement ratios can improve the early strength of concrete, this ratio cannot control early-age shrinkage cracks in HPC.
Characterisation of the porcine eyeball as an in-vitro model for dry eye.
Menduni, Francesco; Davies, Leon N; Madrid-Costa, D; Fratini, Antonio; Wolffsohn, James S
2018-02-01
To characterise the anatomical parameters of the porcine eye for potentially using it as a laboratory model of dry eye. Anterior chamber depth and angle, corneal curvature, shortest and longest diameter, endothelial cell density, and pachymetry were measured in sixty freshly enucleated porcine eyeballs. Corneal steepest meridian was 7.85±0.32mm, corneal flattest meridian was 8.28±0.32mm, shortest corneal diameter was 12.69±0.58mm, longest corneal diameter was 14.88±0.66mm and central corneal ultrasonic pachymetry was 1009±1μm. Anterior chamber angle was 28.83±4.16°, anterior chamber depth was 1.77±0.27mm, and central corneal thickness measured using OCT was 1248±144μm. Corneal endothelial cell density was 3250±172 cells/mm 2 . Combining different clinical techniques produced a pool of reproducible data on the porcine eye anatomy, which can be used by researchers to assess the viability of using the porcine eye as an in-vitro/ex-vivo model for dry eye. Due to the similar morphology with the human eye, porcine eyeballs may represent a useful and cost effective model to individually study important key factors in the development of dry eye, such as environmental and mechanical stresses. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Validation of a Dry Model for Assessing the Performance of Arthroscopic Hip Labral Repair.
Phillips, Lisa; Cheung, Jeffrey J H; Whelan, Daniel B; Murnaghan, Michael Lucas; Chahal, Jas; Theodoropoulos, John; Ogilvie-Harris, Darrell; Macniven, Ian; Dwyer, Tim
2017-07-01
Arthroscopic hip labral repair is a technically challenging and demanding surgical technique with a steep learning curve. Arthroscopic simulation allows trainees to develop these skills in a safe environment. The purpose of this study was to evaluate the use of a combination of assessment ratings for the performance of arthroscopic hip labral repair on a dry model. Cross-sectional study; Level of evidence, 3. A total of 47 participants including orthopaedic surgery residents (n = 37), sports medicine fellows (n = 5), and staff surgeons (n = 5) performed arthroscopic hip labral repair on a dry model. Prior arthroscopic experience was noted. Participants were evaluated by 2 orthopaedic surgeons using a task-specific checklist, the Arthroscopic Surgical Skill Evaluation Tool (ASSET), task completion time, and a final global rating scale. All procedures were video-recorded and scored by an orthopaedic fellow blinded to the level of training of each participant. The internal consistency/reliability (Cronbach alpha) using the total ASSET score for the procedure was high (intraclass correlation coefficient > 0.9). One-way analysis of variance for the total ASSET score demonstrated a difference between participants based on the level of training ( F 3,43 = 27.8, P 0.9). The results of this study demonstrate that the use of dry models to assess the performance of arthroscopic hip labral repair by trainees is both valid and reliable. Further research will be required to demonstrate a correlation with performance on cadaveric specimens or in the operating room.
Comparison of in vivo efficacy of different ocular lubricants in dry eye animal models.
Zheng, Xiaodong; Goto, Tomoko; Ohashi, Yuichi
2014-04-29
To compare the efficacy of three types of ocular lubricants in protecting corneal epithelial cells in dry eye animal models. Ocular lubricants containing 0.1% or 0.3% sodium hyaluronate (SH), carboxymethylcellulose (CMC), or hydroxypropyl methylcellulose (HPMC) were tested. First, ocular lubricant containing 0.002% fluorescein was dropped onto the rabbit corneas. The fluorescein intensity as an index of retention was measured. Second, a rabbit dry eye model was made by holding the eye open with a speculum, and 50 μL of each ocular lubricant was dropped onto the cornea. After 3 hours, the corneas were stained with 1% methylene blue (MB), and the absorbance of MB was measured. Third, a rat dry eye model was treated with the ocular lubricants for 4 weeks, and the corneal fluorescein staining was scored. Eyes treated with physiological saline were used as controls. Finally, immunohistochemistry was used to analyze occludin, an epithelial barrier protein, in cultured human corneal epithelial cells pretreated with ocular lubricants and desiccated for 20 or 60 minutes. Our results showed that 0.3% SH had a significantly longer retention time than the other lubricants (all P eye syndrome. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Neural network modeling of drying of rice in BAU-STR dryer
Alam, Md. Ashraful; Saha, Chayan Kumer; Alam, Md. Monjurul; Ashraf, Md. Ali; Bala, Bilash Kanti; Harvey, Jagger
2018-05-01
The experimental performance and artificial neural network modeling of rice drying in BAU-STR dryer is presented in this paper. The dryer consists of a biomass stove as a heat source, a perforated inner bin and a perforated outer bin with annular space for grains, and a blower (1 hp) to supply heated air. The dryer capacity was 500 kg of freshly harvested rice. Twenty experimental runs were conducted to investigate the experimental performance of the dryer for drying of rice. An independent multilayer neural network approach was used to predict the performance of the BAU-STR dryer for drying of rice. Ten sets of experimental data were used for training using back propagation algorithm and another ten sets of data were used for testing the artificial neural network model. The prediction of the performance of the dryer was found to be excellent after it was adequately trained. The statistical analysis showed that the errors (MSE and RMSE) were within and acceptable range of ±5% with a coefficient of determination (R2) of 99%. The model can be used to predict the potential of the dryer for different locations, and can also be used in a predictive optimal control algorithm.
International Nuclear Information System (INIS)
Bollon, Julien
2012-01-01
Anaerobic digestion is a biological process that converts organic matter into a methane rich gas (biogas). Among industrial technologies, dry processes (above 15 % total solid content) are more and more used because of their advantages in comparison with conventional wet processes. However, dry anaerobic digestion processes are poorly known and studied because of the 'pasty' nature of digestion media (rheological behavior, equilibria, transfers, biological kinetics). This thesis focuses on two major aspects: i) the nature of the chemical equilibria (sorption, diffusion) involved in digestion media, ii) the establishment and application of a kinetic model adapted to dry media. We first demonstrated that the diffusional mass transfer is highly reduced with increasing total solid without any agitation. One of the consequences is the importance of the liquid-gas transfer for the production of biogas. Then, we have developed a dedicated kinetic model that enables to understand the variability of the kinetic with total solid content. The impacts of this work are both at the laboratory scale, especially for the operation of Specific Methanogenic Activity tests, and at industrial scale, with the need to control total solid content for optimal efficiency, and to adapt the agitation to improve degradation yields. The developed model can be useful for the design and operation of bio-methanization facilities. (author) [fr
Dehumidifier assisted drying of a model fruit pulp-based gel and sensory attributes.
Tiwari, Shipra; Ravi, Ramasamy; Bhattacharya, Suvendu
2012-07-01
Model fruit pulp-based gels were prepared by varying mango pulp (0% to 50%), sucrose (0% to 20%), and agar (1% to 3%) and according to a response surface experimental design followed by drying at a low temperature of 40 °C upto 15 h in a tray dryer assisted by a dehumidifier. The moisture content, shrinkage (SHR), and rheological parameters (failure strain, failure stress (FS), firmness, and energy for compression) were determined as a function of drying time. The composition of gel, particularly the agar content had a prominent effect on the characteristics of the dried gel. Detailed descriptive sensory analysis employing principle component analysis (PCA) biplot indicated two distinct groups of attributes; the first group comprised initial and final moisture contents, extent of moisture removal (EMR), and shrinkage. The fracture stress and energy formed the second group. The analysis of variance for failure stress showed that it depended only on the positive linear and quadratic effects of agar (significant at P ≤ 0.01 and 0.05, respectively). The theoretically predicted extent of moisture removal at 95.6% could be achieved when the level of agar was 1.2%; pulp and sucrose levels were also close to their lowest levels of 3.6% and 0.04%, respectively. Scope exists to develop gel-based fruit analogues wherein an appropriate hydrocolloid can be employed along with fruit juice/pulp. To provide a reasonable shelf-life of the developed intermediate moisture containing product, dehumidifier assisted drying is a pragmatic approach that affects sensory and rheological attributes of the dried fruit analogue. © 2012 Institute of Food Technologists®
Comparison of experimental data with results of some drying models for regularly shaped products
Energy Technology Data Exchange (ETDEWEB)
Kaya, Ahmet [Aksaray University, Department of Mechanical Engineering, Aksaray (Turkey); Aydin, Orhan [Karadeniz Technical University, Department of Mechanical Engineering, Trabzon (Turkey); Dincer, Ibrahim [University of Ontario Institute of Technology, Faculty of Engineering and Applied Science, Oshawa, ON (Canada)
2010-05-15
This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60 C) at specific constant velocity (U = 1 m/s) and the relative humidity {phi}=30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 x 10{sup -5} and 5.981 x 10{sup -5} m{sup 2}/h for slab products, 0.818 x 10{sup -5} and 6.287 x 10{sup -5} m{sup 2}/h for cylindrical products and 1.213 x 10{sup -7} and 7.589 x 10{sup -7} m{sup 2}/h spherical products using the model-I and 0.316 x 10{sup -5}-5.072 x 10{sup -5} m{sup 2}/h for slab products, 0.580 x 10{sup -5}-9.587 x 10{sup -5} m{sup 2}/h for cylindrical products and 1.408 x 10{sup -7}-13.913 x 10{sup -7} m{sup 2}/h spherical products using the model-II. (orig.)
Comparison of experimental data with results of some drying models for regularly shaped products
Kaya, Ahmet; Aydın, Orhan; Dincer, Ibrahim
2010-05-01
This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60°C) at specific constant velocity ( U = 1 m/s) and the relative humidity φ = 30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 × 10-5 and 5.981 × 10-5 m2/h for slab products, 0.818 × 10-5 and 6.287 × 10-5 m2/h for cylindrical products and 1.213 × 10-7 and 7.589 × 10-7 m2/h spherical products using the Model-I and 0.316 × 10-5-5.072 × 10-5 m2/h for slab products, 0.580 × 10-5-9.587 × 10-5 m2/h for cylindrical products and 1.408 × 10-7-13.913 × 10-7 m2/h spherical products using the Model-II.
Modelling extreme dry spells in the Mediterranean region in connection with atmospheric circulation
Tramblay, Yves; Hertig, Elke
2018-04-01
Long droughts periods can affect the Mediterranean region during the winter season, when most of annual precipitation occurs, and consequently have strong impacts on agriculture, groundwater levels and water resources. The goal of this study is to model annual maximum dry spells lengths (AMDSL) that occur during the extended winter season (October to April). The spatial patterns of extreme dry spells and their relationships with large-scale atmospheric circulation were first investigated. Then, AMDSL were modelled using Generalized Extreme Value (GEV) distributions incorporating climatic covariates, to evaluate the dependences of extreme dry spells to synoptic patterns using an analogue approach. The data from a network of 160 rain gauges having daily precipitation measurements between 1960 and 2009 are considered together with the ERA-20C reanalysis of the 20th century to provide atmospheric variables (geopotential heights, humidity, winds). A regional classification of both the occurrence and the duration of AMDSL helped to distinguish three spatially contiguous regions in which the regional distributions were found homogeneous. From composite analysis, significant positive anomalies in geopotential height (Z500) and negative anomalies in zonal wind (U850) and relative and specific humidity (S850, R850) were found to be associated with AMDSL in the three regions and provided the reference to build analogue days. Finally, non-stationary GEV models have been compared, in which the location and scale parameters are related to different atmospheric indices. Results indicates, at the whole Mediterranean scale, that positives anomalies of the North Atlantic Oscillation index and to a lesser extent the Mediterranean Oscillation index are linked to longer extreme dry spells in the majority of stations. For the three regions identified, the frequency of U850 negative anomalies over North Africa is significantly associated with the magnitude of AMDSL. AMDL are also
A radar-based hydrological model for flash flood prediction in the dry regions of Israel
Ronen, Alon; Peleg, Nadav; Morin, Efrat
2014-05-01
Flash floods are floods which follow shortly after rainfall events, and are among the most destructive natural disasters that strike people and infrastructures in humid and arid regions alike. Using a hydrological model for the prediction of flash floods in gauged and ungauged basins can help mitigate the risk and damage they cause. The sparsity of rain gauges in arid regions requires the use of radar measurements in order to get reliable quantitative precipitation estimations (QPE). While many hydrological models use radar data, only a handful do so in dry climate. This research presents a robust radar-based hydro-meteorological model built specifically for dry climate. Using this model we examine the governing factors of flash floods in the arid and semi-arid regions of Israel in particular and in dry regions in general. The hydrological model built is a semi-distributed, physically-based model, which represents the main hydrological processes in the area, namely infiltration, flow routing and transmission losses. Three infiltration functions were examined - Initial & Constant, SCS-CN and Green&Ampt. The parameters for each function were found by calibration based on 53 flood events in three catchments, and validation was performed using 55 flood events in six catchments. QPE were obtained from a C-band weather radar and adjusted using a weighted multiple regression method based on a rain gauge network. Antecedent moisture conditions were calculated using a daily recharge assessment model (DREAM). We found that the SCS-CN infiltration function performed better than the other two, with reasonable agreement between calculated and measured peak discharge. Effects of storm characteristics were studied using synthetic storms from a high resolution weather generator (HiReS-WG), and showed a strong correlation between storm speed, storm direction and rain depth over desert soils to flood volume and peak discharge.
Directory of Open Access Journals (Sweden)
Sze Sing-Hoi
2008-07-01
Full Text Available Abstract Background Since experimental determination of protein folding pathways remains difficult, computational techniques are often used to simulate protein folding. Most current techniques to predict protein folding pathways are computationally intensive and are suitable only for small proteins. Results By assuming that the native structure of a protein is known and representing each intermediate conformation as a collection of fully folded structures in which each of them contains a set of interacting secondary structure elements, we show that it is possible to significantly reduce the conformation space while still being able to predict the most energetically favorable folding pathway of large proteins with hundreds of residues at the mesoscopic level, including the pig muscle phosphoglycerate kinase with 416 residues. The model is detailed enough to distinguish between different folding pathways of structurally very similar proteins, including the streptococcal protein G and the peptostreptococcal protein L. The model is also able to recognize the differences between the folding pathways of protein G and its two structurally similar variants NuG1 and NuG2, which are even harder to distinguish. We show that this strategy can produce accurate predictions on many other proteins with experimentally determined intermediate folding states. Conclusion Our technique is efficient enough to predict folding pathways for both large and small proteins at the mesoscopic level. Such a strategy is often the only feasible choice for large proteins. A software program implementing this strategy (SSFold is available at http://faculty.cs.tamu.edu/shsze/ssfold.
Mathematical model for solar drying of potato cylinders with thermal conductivity radially modulated
Trujillo Arredondo, Mariana
2014-05-01
A mathematical model for drying potato cylinders using solar radiation is proposed and solved analytically. The model incorporates the energy balance for the heat capacity of the potato, the radiation heat transfer from the potato toward the drying chamber and the solar radiation absorbed by the potato during the drying process. Potato cylinders are assumed to exhibit a thermal conductivity which is radially modulated. The method of the Laplace transform, with integral Bromwich and residue theorem will be applied and the analytic solutions for the temperature profiles in the potato cylinder will be derived in the form of an infinite series of Bessel functions, when the thermal conductivity is constant; and in the form of an infinite series of Heun functions, when the thermal conductivity has a linear radial modulation. All computations are performed using computer algebra, specifically Maple. It is expected that the analytical results obtained will be useful in food engineering and industry. Our results suggest some lines for future investigations such as the adoption of more general forms of radial modulation for the thermal conductivity of potato cylinders; and possible applications of other computer algebra software such as Maxima and Mathematica.
System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment
Directory of Open Access Journals (Sweden)
Shiwei Zhang
2014-01-01
Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.
International Nuclear Information System (INIS)
Yue Liyang; Wang Zengbo; Li Lin
2012-01-01
Light could interact differently with thin-film contaminants and particle contaminates because of their different surface morphologies. In the case of dry laser cleaning of small transparent particles, it is well known that particles could function like mini-lenses, causing a localized near-field hot spot effect on the cleaning process. This paper looks into a special, yet important, phenomenon of dry laser cleaning of particles trapped in micro-sized slots. The effects of slot size, particle size and particle aggregate states in the cleaning process have been theoretically investigated, based on a coupled electromagnetic-thermal-mechanical multiphysics modelling and simulation approach. The study is important for the development and optimization of laser cleaning processes for contamination removal from cracks and slots. (paper)
Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble
Berggren, Tomas; Duits, Maurice
2017-09-01
In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.
Mesoscopic Magnetic Resonance Spectroscopy with a Remote Spin Sensor
Xie, Tianyu; Shi, Fazhan; Chen, Sanyou; Guo, Maosen; Chen, Yisheng; Zhang, Yixing; Yang, Yu; Gao, Xingyu; Kong, Xi; Wang, Pengfei; Tateishi, Kenichiro; Uesaka, Tomohiro; Wang, Ya; Zhang, Bo; Du, Jiangfeng
2018-06-01
Quantum sensing based on nitrogen-vacancy (N -V ) centers in diamond has been developed as a powerful tool for microscopic magnetic resonance. However, the reported sensor-to-sample distance is limited within tens of nanometers resulting from the cubic decrease of the signal of spin fluctuation with the increasing distance. Here we extend the sensing distance to tens of micrometers by detecting spin polarization rather than spin fluctuation. We detect the mesoscopic magnetic resonance spectra of polarized electrons of a pentacene-doped crystal, measure its two typical decay times, and observe the optically enhanced spin polarization. This work paves the way for the N -V -based mesoscopic magnetic resonance spectroscopy and imaging at ambient conditions.
Robust mesoscopic superposition of strongly correlated ultracold atoms
International Nuclear Information System (INIS)
Hallwood, David W.; Ernst, Thomas; Brand, Joachim
2010-01-01
We propose a scheme to create coherent superpositions of annular flow of strongly interacting bosonic atoms in a one-dimensional ring trap. The nonrotating ground state is coupled to a vortex state with mesoscopic angular momentum by means of a narrow potential barrier and an applied phase that originates from either rotation or a synthetic magnetic field. We show that superposition states in the Tonks-Girardeau regime are robust against single-particle loss due to the effects of strong correlations. The coupling between the mesoscopically distinct states scales much more favorably with particle number than in schemes relying on weak interactions, thus making particle numbers of hundreds or thousands feasible. Coherent oscillations induced by time variation of parameters may serve as a 'smoking gun' signature for detecting superposition states.
A GLUE uncertainty analysis of a drying model of pharmaceutical granules
DEFF Research Database (Denmark)
Mortier, Séverine Thérèse F.C.; Van Hoey, Stijn; Cierkens, Katrijn
2013-01-01
unit, which is part of the full continuous from-powder-to-tablet manufacturing line (Consigma™, GEA Pharma Systems). A validated model describing the drying behaviour of a single pharmaceutical granule in two consecutive phases is used. First of all, the effect of the assumptions at the particle level...... on the prediction uncertainty is assessed. Secondly, the paper focuses on the influence of the most sensitive parameters in the model. Finally, a combined analysis (particle level plus most sensitive parameters) is performed and discussed. To propagate the uncertainty originating from the parameter uncertainty...
Daull, Philippe; Feraille, Laurence; Barabino, Stefano; Cimbolini, Nicolas; Antonelli, Sophie; Mauro, Virgine; Garrigue, Jean-Sébastien
2016-12-01
Dry eye disease (DED) is a complex, multifactorial pathology characterized by corneal epithelium lesions and inflammation. The aim of the present study was to evaluate the efficacy of a cationic emulsion of cyclosporine A (CsA) in a mouse model that mimics severe dry eye. Eight to 12-week-old female C57BL/6N mice with tail patches of scopolamine were housed in controlled environment chambers to induce dry eye. At day three, following dry eye confirmation by corneal fluorescein staining (CFS, score 0-15) and phenol red thread (PRT) lacrimation test, the mice (n = 10/gp) were either treated 3 times a day in both eyes with drug-free cationic emulsion, a 0.1% CsA cationic emulsion, or 1% methylprednisolone (positive control), or non-treated. Aqueous tear production and CFS scores were evaluated at baseline and throughout the treatment period. The lacrimation test confirmed the scopolamine-induced decrease in aqueous production by the lacrimal gland. A reduction of 59% in induced-CFS was observed following topical treatment with 0.1% CsA. The beneficial effect of the cationic emulsion vehicle itself on keratitis was also clearly evidenced by its better performance over 1% methylprednisolone, -36%, vs. -28% on the CFS scores, respectively. This study indicates that the cationic emulsion of CsA (0.1%) was a very effective formulation for the management of corneal epithelium lesions in a severe DED mouse model. In addition, it performed better than a potent glucocorticosteroid (1% methylprednisolone). This cationic emulsion of CsA (0.1%), combining CsA and a tear film oriented therapy (TFOT), i.e. with vehicle properties that mechanically stabilize the tear film, represents a promising new treatment strategy for the management of the signs of dry eye. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Therapeutic effects of topical doxycycline in a benzalkonium chloride-induced mouse dry eye model.
Zhang, Zhen; Yang, Wen-Zhao; Zhu, Zhen-Zhen; Hu, Qian-Qian; Chen, Yan-Feng; He, Hui; Chen, Yong-Xiong; Liu, Zu-Guo
2014-05-06
We investigated the therapeutic effects and underlying mechanisms of topical doxycycline in a benzalkonium chloride (BAC)-induced mouse dry eye model. Eye drops containing 0.025%, 0.1% doxycycline or solvent were administered to a BAC-induced dry eye model four times daily. The clinical evaluations, including tear break-up time (BUT), fluorescein staining, inflammatory index, and tear volume, were performed on days 0, 1, 4, 7, and 10. Global specimens were collected on day 10 and processed for immunofluorescent staining, TUNEL, and periodic acid-Schiff assay. The levels of inflammatory mediators in the corneas were determined by real-time PCR. The total and phosphorylated nuclear factor-κB (NF-κB) were detected by Western blot. Both 0.025% and 0.1% doxycycline treatments resulted in increased BUT, lower fluorescein staining scores, and inflammatory index on days 4, 7, and 10, while no significant change in tear volume was observed. The 0.1% doxycycline-treated group showed more improvements in decreasing fluorescein staining scores, increasing Ki-67-positive cells, and decreasing TUNEL- and keratin-10-positive cells than other groups. The mucin-filled goblet cells in conjunctivas were increased, and the expression of CD11b and levels of matrix metalloproteinase-9, IL-1β, IL-6, TNF-α, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant in corneas were decreased in both doxycycline-treated groups. In addition, doxycycline significantly reduced the phosphorylation of NF-κB activated in the BAC-treated corneas. Topical doxycycline showed clinical improvements and alleviated ocular surface inflammation on BAC-induced mouse dry eye, suggesting a potential as an anti-inflammatory agent in the clinical treatment of dry eye.
Dynamics of mesoscopic systems: Non-equilibrium Green's functions approach
Czech Academy of Sciences Publication Activity Database
Špička, Václav; Kalvová, Anděla; Velický, B.
2010-01-01
Roč. 42, č. 3 (2010), s. 525-538 ISSN 1386-9477 R&D Projects: GA ČR GA202/08/0361 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : mesoscopic systems * NGF * initial condition * correlations * Ward identities * transients Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.304, year: 2010
Xiao, Fan; Cui, Hua; Zhong, Xiao
2018-05-01
Present investigation evaluates the effect of daidzin in dry eye rat model through the suppression of inflammation and oxidative stress in the cornea. Briefly, electron spine resonance was used for the estimation of radical scavenging activity of daidzin and COX Fluorescent Activity Assay Kit was used for the estimation of PGS activity. Dry eye rat model was developed by removing the lacrimal gland and effect of daidzin was evaluated in dry eye rat model by estimating the fluorescein score, tear volume and expressions of heme oxigenase (HO-1), TNF α, Interlukin 6 (IL-6), matrix metallopeptidase 9 (MMP-9) and PGS-2. Result of the present study suggested that daidzin possess tyrosyl radical scavenging activity and thereby decreases the oxidative stress. Activity of PGS significantly increases in dry eye which was inhibited by daidzin treatment due to competitive inhibition of PGS. It also recovers the tear volume in dry eye rat model in which lacrimal gland was removed. Thus corneal erosion was improved by daidzin in dry eye rat model. Thus present study concludes that treatment with daidzin protects the cornea in dry eye rat model by suppression inflammation and oxidative stress.
Infrared (IR) dry-peeling has emerged as an effective non-chemical alternative to conventional lye and steam methods of peeling tomatoes. Successful peel separation induced by IR radiation requires the delivery of a sufficient amount of thermal energy onto tomato surface in a very short duration. Th...
Sustainable Irrigation Allocation Model for Dry and Wet Periods using Reservoir Storage and Inflow
Surianarayanan, S.; Suribabu, C. R.; Ramakrishnan, K.
2017-07-01
The dry period agriculture is inevitable both for the farmers for their earning, and for the soil for its fertility by crop-rotation. In tropical countries like INDIA, dry period agriculture becomes difficult because of less (or) no rain fall. Hence a simple water balancing model for irrigation scheduling, using the measure “Volumetric Reliability” is prepared in this paper, with the storage and inflow of a reservoir both for the dry and wet periods. The case-study is done for a reservoir in INDIA with thirty one years of hydrological data(from 1982 to 2012). The objective of this paper is to prepare a simple water balance model taking 10 days periods of demand and supply for ID crop(Irrigated Dry crop, ground nut) with usage of volumetric reliability concept for the periods of deficiency and adoption of less water requirement crops to reduce the water-stress during critical periods of crop growth, and finally arrive at a feasible allocation schedule for the success of agriculture and the yield throughout the year both for wet and dry crops with the available storage on the start of irrigation for a particular year. The reservoir is divided for storages such as full, deficient and critical storages. The starting storage for the dry period from January is used after adequate allocation for wet crops, the quantity for riparian rights and for drinking water, for the sustainability. By the water-balancing, the time-series for thirty one years, it is found that for twenty two years the demand for the ID crops is satisfied with the storage in the reservoir, and in the remaining years of deficient inflows, for three years (1986,1996,2004)the demand is managed by using the safe reliability factor for demand which can nullify the deficit in demand for the whole supply period. But it is genuine to assure that the reduction in the amount of water for each 10 days periods should not exceed the survival limit of the crop. Necessary soil-moisture must be ensured in the crop
Current correlations in superconductor - normal metal mesoscopic structures
International Nuclear Information System (INIS)
Bignon, Guillaume
2005-01-01
Thanks to the experimental progress in miniaturization and cryogenics over the last twenty years, it is now possible to build sufficiently small electric circuits where the wave like nature of electron becomes significant. In such electric circuit transport properties like current and noise are modified. It corresponds to the mesoscopic scale. Moreover, connecting a mesoscopic circuit to a superconductor enhances the effects due to interference between electrons since a superconductor is a macroscopic source of coherent electrons pairs: the Cooper pairs. In this thesis, we study current correlations in mesoscopic normal metal - superconductor structures. First, the energy dependence of current noise in a normal metal - superconductor tunnel junction is analysed taking into account weak disorder and interactions. We show that if the normal metal is out of equilibrium, current and noise become independent. Next, we consider the case of a superconductor connected to two normal metals by tunnel junctions. We show that it is possible to change the sign of current crossed correlation by tuning the voltages and that it can be used to probe the size of the Cooper pairs. Lastly, using Usadel's quasi-classic theory, we study the energy dependence of noise in a normal metal - normal metal - superconductor double junction. We show that barrier's transparencies modifies significantly both current and noise. (author) [fr
Volume and aboveground biomass models for dry Miombo woodland in Tanzania
DEFF Research Database (Denmark)
Mwakalukwa, Ezekiel Edward; Meilby, Henrik; Treue, Thorsten
2014-01-01
Tools to accurately estimate tree volume and biomass are scarce for most forest types in East Africa, including Tanzania. Based on a sample of 142 trees and 57 shrubs from a 6,065 ha area of dry miombo woodland in Iringa rural district in Tanzania, regression models were developed for volume...... and biomass of three important species, Brachystegia spiciformis Benth. (n=40), Combretum molle G. Don (n=41), and Dalbergia arbutifolia Baker (n=37) separately, and for broader samples of trees (28 species, n=72), shrubs (16 species, n=31), and trees and shrubs combined (44 species, n=104). Applied...... of the predictions tended to increase from general to species-specific models. Except for a few volume and biomass models developed for shrubs, all models had R2 values of 96–99%. Thus, the models appear robust and should be applicable to forests with similar site conditions, species, and diameter ranges....
Effect of human milk as a treatment for dry eye syndrome in a mouse model.
Diego, Jose L; Bidikov, Luke; Pedler, Michelle G; Kennedy, Jeffrey B; Quiroz-Mercado, Hugo; Gregory, Darren G; Petrash, J Mark; McCourt, Emily A
Dry eye syndrome (DES) affects millions of people worldwide. Homeopathic remedies to treat a wide variety of ocular diseases have previously been documented in the literature, but little systematic work has been performed to validate the remedies' efficacy using accepted laboratory models of disease. The purpose of this study was to evaluate the efficacy of human milk and nopal cactus (prickly pear), two widely used homeopathic remedies, as agents to reduce pathological markers of DES. The previously described benzalkonium chloride (BAK) dry eye mouse model was used to study the efficacy of human milk and nopal cactus (prickly pear). BAK (0.2%) was applied to the mouse ocular surface twice daily to induce dry eye pathology. Fluorescein staining was used to verify that the animals had characteristic signs of DES. After induction of DES, the animals were treated with human milk (whole and fat-reduced), nopal, nopal extract derivatives, or cyclosporine four times daily for 7 days. Punctate staining and preservation of corneal epithelial thickness, measured histologically at the end of treatment, were used as indices of therapeutic efficacy. Treatment with BAK reduced the mean corneal epithelial thickness from 36.77±0.64 μm in the control mice to 21.29±3.2 μm. Reduction in corneal epithelial thickness was largely prevented by administration of whole milk (33.2±2.5 μm) or fat-reduced milk (36.1±1.58 μm), outcomes that were similar to treatment with cyclosporine (38.52±2.47 μm), a standard in current dry eye therapy. In contrast, crude or filtered nopal extracts were ineffective at preventing BAK-induced loss of corneal epithelial thickness (24.76±1.78 μm and 27.99±2.75 μm, respectively), as were solvents used in the extraction of nopal materials (26.53±1.46 μm for ethyl acetate, 21.59±5.87 μm for methanol). Epithelial damage, as reflected in the punctate scores, decreased over 4 days of treatment with whole and fat-reduced milk but continued to
A Chronic Autoimmune Dry Eye Rat Model with Increase in Effector Memory T Cells in Eyeball Tissue.
Hou, Aihua; Bose, Tanima; Chandy, K George; Tong, Louis
2017-06-07
Dry eye disease is a very common condition that causes morbidity and healthcare burden and decreases the quality of life. There is a need for a suitable dry eye animal model to test novel therapeutics to treat autoimmune dry eye conditions. This protocol describes a chronic autoimmune dry eye rat model. Lewis rats were immunized with an emulsion containing lacrimal gland extract, ovalbumin, and complete Freund's adjuvant. A second immunization with the same antigens in incomplete Freund's adjuvant was administered two weeks later. These immunizations were administered subcutaneously at the base of the tail. To boost the immune response at the ocular surface and lacrimal glands, lacrimal gland extract and ovalbumin were injected into the forniceal subconjunctiva and lacrimal glands 6 weeks after the first immunization. The rats developed dry eye features, including reduced tear production, decreased tear stability, and increased corneal damage. Immune profiling by flow cytometry showed a preponderance of CD3 + effector memory T cells in the eyeball.
The persistent current and energy spectrum on a driven mesoscopic LC-circuit with Josephson junction
Pahlavanias, Hassan
2018-03-01
The quantum theory for a mesoscopic electric circuit including a Josephson junction with charge discreteness is studied. By considering coupling energy of the mesoscopic capacitor in Josephson junction device, a Hamiltonian describing the dynamics of a quantum mesoscopic electric LC-circuit with charge discreteness is introduced. We first calculate the persistent current on a quantum driven ring including Josephson junction. Then we obtain the persistent current and energy spectrum of a quantum mesoscopic electrical circuit which includes capacitor, inductor, time-dependent external source and Josephson junction.
Directory of Open Access Journals (Sweden)
Seyed-Hassan Miraei Ashtiani
2017-06-01
Full Text Available The drying kinetics of peppermint leaves was studied to determine the best drying method for them. Two drying methods include hot-air and infrared techniques, were employed. Three different temperatures (30, 40, 50 °C and air velocities (0.5, 1, 1.5 m/s were selected for the hot-air drying process. Three levels of infrared intensity (1500, 3000, 4500 W/m2, emitter-sample distance (10, 15, 20 cm and air speed (0.5, 1, 1.5 m/s were used for the infrared drying technique. According to the results, drying had a falling rate over time. Drying kinetics of peppermint leaves was explained and compared using three mathematical models. To determine coefficients of these models, non-linear regression analysis was used. The models were evaluated in terms of reduced chi-square (χ2, root mean square error (RMSE and coefficient of determination (R2 values of experimental and predicted moisture ratios. Statistical analyses indicated that the model with the best fitness in explaining the drying behavior of peppermint samples was the Logarithmic model for hot-air drying and Midilli model for infrared drying. Moisture transfer in peppermint leaves was also described using Fick’s diffusion model. The lowest effective moisture diffusivity (1.096 × 10−11 m2/s occurred during hot-air drying at 30 °C using 0.5 m/s, whereas its highest value (5.928 × 10−11 m2/s belonged to infrared drying using 4500 W/m2 infrared intensity, 0.5 m/s airflow velocity and 10 cm emitter-sample distance. The activation energy for infrared and hot-air drying were ranged from 0.206 to 0.439 W/g, and from 21.476 to 27.784 kJ/mol, respectively.
International Nuclear Information System (INIS)
Fukui, K.; Ito, D.
1999-01-01
It is necessary to predict mulberry growth and yield precisely at any time during the growing period, since mulberry trees are cut anytime along with the increase of the frequency of silkworm rearing per year. Therefore, in this study, attempts were made to develop a model to predict the dry matter production in mulberry fields with standard density with the cooperation of the prefectural experimental stations of Ibaraki, Tochigi, Gunma, Saitama, Tokyo and Gifu. To construct the model, we conducted three experiments. In the first year, we estimated the dry weight of mulberry new shoots based on the length and base width. Logarithm of leaf dry weight of a new shoot was regressed linearly on the logarithm of the product of length and base width. Stem dry weight was estimated with a linear regression of the logarithm on the logarithm of the product of length and base square width. In the next year, we evaluated the maximal effective radiation (Smax) of mulberry, over which mulberry cannot use radiation to produce dry matter. This experiment included shaded and control (non-shaded) plots, and the difference between these plots was analyzed. Shading treatment decreased the dry matter production, but did not affect the radiation conversion efficiency. Shoot dry matter production increased almost proportionally with intercepted radiation except for the later growth periods. Therefore, no Smax was revealed in mulberry fields with standard density. The effect of temperature and growth stage on the radiation conversion efficiency was investigated last year. Relation of temperature and radiation conversion efficiency was not clear for shoot dry matter production. However, there was a positive relation for stem dry mater production. Although the efficiency decreased with mulberry growth for leaf dry matter production, it increased at the early growth stage and decreased at the late stage for stem dry matter production
Directory of Open Access Journals (Sweden)
KARLA V. MARTINS
Full Text Available ABSTRACT Decision support for nutrient application remains an enigma if based on soil nutrient analysis. If the crop could be used as an auxiliary indicator, the plant nutrient status during different growth stages could complement the soil test, improving the fertilizer recommendation. Nutrient absorption and partitioning in the plant are here studied and described with mathematical models. The objective of this study considers the temporal variation of the nutrient uptake rate, which should define crop needs as compared to the critical content in soil solution. A uniform maize crop was grown to observe dry matter accumulation and nutrient content in the plant. The dry matter accumulation followed a sigmoidal model and the macronutrient content a power model. The maximum nutrient absorption occurred at the R4 growth stage, for which the sap concentration was successfully calculated. It is hoped that this new approach of evaluating nutrient sap concentration will help to develop more rational ways to estimate crop fertilizer needs. This new approach has great potential for on-the-go crop sensor-based nutrient application methods and its sensitivity to soil tillage and management systems need to be examined in following studies. If mathematical model reflects management impact adequately, resources for experiments can be saved.
International Nuclear Information System (INIS)
Lindstrom, F.T.; Cawlfield, D.E.; Donahue, M.E.; Emer, D.F.; Shott, G.J.
1992-01-01
US DOE Order 5820.2A (1988) requires that a performance assessment of all new and existing low-level radioactive waste management sites be made. An integral part of every performance assessment is the mathematical modeling of the transport and fate of noble gas radionuclides in the gas phase. Current in depth site characterization of the high desert alluvium in Area 5 of the Nevada Test Site (NTS) is showing that the alluvium is very very dry all the way to the water table (240 meters below land surface). The potential for radioactive noble gas (e.g. Rn-220 and Rn-222) transport to the atmosphere from shallow land burial of Thorium and Uranium waste is very high. Objectives of this modeling effort include: Construct a physics based sits specific noble gas transport model; Include induced advection due to barometric pressure changes at the atmospheric boundary layer (thin) - dry desert alluvium interface; User selected option for use of NOAA barometric pressure or a ''home brewed'' barometric pressure wave made up of up to 15 sinusoids and cosinusoids; Use the model to help make engineering decisions on the design of the burial pits and associated closure caps
Evaluation criterions and establishment of dry eye model of rats induced by BTX-B
Directory of Open Access Journals (Sweden)
Hai-Feng Zhu
2015-09-01
Full Text Available AIM: To establish dry eye model of rats induced by botulinum toxin B(BTX-Band provide the basis for the pathogenesis and experimental treatment of dry eye caused by inflammation. METHODS: Thirty-six healthy female SD rats were selected and divided into four groups randomly, and the experimental group included three groups, which were individually injected 0.1mL 1.25, 5, and 10mU BTX-B solution on the right lacrimal gland; the control group was injected 0.1mL normal saline on the right lacrimal gland, then received Schirmer Ⅰ test(SⅠtand examination of corneal fluorescein(FLstaining respectively at the 3, 7, 14 and 28d. The other 32 rats were selected and divided into two groups randomly, the rats in the experimental group were injected 0.1mL 1.25mU BTX-B solution on the right lacrimal gland and then five rats were randomly chosen to be removed lacrimal gland tissue respectively at the 3, 7, 14, 21, 42d. The Lacritin protein was detected in the qualitative and quantitative way by immunofluorescence and Western-blot, and the histopathological test was received by routine HE staining. RESULTS: The three groups in the experimental group during the preparation of the model appeared that tear secretions decreased and corneal epithelium got damaged at 3d, but there was no significant difference for each other of two changes(P>0.05. The change was reached the peak at 7d and improved at 14d. The tear secretions returned to normal level at 28d, but the damage of corneal epithelium was still existed. The expression of Lacritin protein was only observed in acinar cells of both experimental group and control group, and the content of Lacritin protein in the experimental group decreased significantly. The decreasing situation appeared at 3d, reached the peak at 7d, improved at 14d, began to recover at 28d, and returned to the normal level at 42d. CONCLUSION: Dry eye model of SD rats can be successfully established by lacrimal gland injection of 1.25mU BTX
Meloni, Marisa; De Servi, Barbara; Marasco, Daniela; Del Prete, Salvatore
2011-01-12
The present study was concerned with the development of a new experimental model of dry eye using human reconstructed in vitro corneal epithelium (HCE). The model is based on the use of adapted culture conditions that induce relevant modifications at the cellular and molecular level thus mimicking dry eye. The HCE model was maintained in a controlled environmental setting (relative humidity eye. The evolution of the dry eye condition was assessed by histology, immunohistochemistry staining, scanning electron microscopy, and gene expression by using TaqMan gene assay technology (mucin-4 [MUC4], matrix metallopeptidase-9 [MMP9], tumor necrosis factor-α [TNF-α], and defensin β-2 [DEFB2). The effects of different commercially available tear substitutes on the induced dry eye condition were tested. This in vitro dry eye HCE model, that was well established within 24 h, has the characteristic features of a dry eye epithelium and could be satisfactorily used for preliminary assessment of the protective activity of some artificial tears. The transcriptional study of selected biomarkers showed an increase in MUC4, MMP9, TNF-α, and hBD-2 (DEFB2) gene expression. By using a dynamic approach, we were able to define a biomarker gene signature of dry eye-induced effects that could be predictive of corneal damage in vivo and to discriminate the efficacy among different commercial artificial tears.
A mass and solute balance model for tear volume and osmolarity in the normal and the dry eye
Gaffney, E.A.; Tiffany, J.M.; Yokoi, N.; Bron, A.J.
2010-01-01
Tear hyperosmolarity is thought to play a key role in the mechanism of dry eye, a common symptomatic condition accompanied by visual disturbance, tear film instability, inflammation and damage to the ocular surface. We have constructed a model
Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India
Kumar, M.; Raghubanshi, A. S.
2011-08-01
A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.
SENSITIVITY ANALYSIS OF BIOME-BGC MODEL FOR DRY TROPICAL FORESTS OF VINDHYAN HIGHLANDS, INDIA
M. Kumar; A. S. Raghubanshi
2012-01-01
A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to...
Samuel Enahoro Agarry
2017-01-01
The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h a...
Koszela, K.; OtrzÄ sek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.
2014-04-01
The farming area for vegetables in Poland is constantly changed and modified. Each year the cultivation structure of particular vegetables is different. However, it is the cultivation of carrots that plays a significant role among vegetables. According to the Main Statistical Office (GUS), in 2012 carrot held second position among the cultivated root vegetables, and it was estimated at 835 thousand tons. In the world we are perceived as the leading producer of carrot, due to the fourth place in the ranking of global producers. Poland is the largest producer of this vegetable in the EU [1]. It is also noteworthy, that the demand for dried vegetables is still increasing. This tendency affects the development of drying industry in our country, contributing to utilization of the product surplus. Dried vegetables are used increasingly often in various sectors of food products industry, due to high nutrition value, as well as to changing alimentary preferences of consumers [2-3]. Dried carrot plays a crucial role among dried vegetables, because of its wide scope of use and high nutrition value. It contains a lot of carotene and sugar present in the form of crystals. Carrot also undergoes many different drying processes, which makes it difficult to perform a reliable quality assessment and classification of this dried material. One of many qualitative properties of dried carrot, having important influence on a positive or negative result of the quality assessment, is color and shape. The aim of the research project was to develop a method for the analysis of microwave-vacuum dried carrot images, and its application for the classification of individual fractions in the sample studied for quality assessment. During the research digital photographs of dried carrot were taken, which constituted the basis for assessment performed by a dedicated computer programme developed as a part of the research. Consequently, using a neural model, the dried material was classified [4-6].
Modelling of chloride penetration in concrete under wet/dry cycle
Directory of Open Access Journals (Sweden)
Hong Sung-In
2017-01-01
Full Text Available This present study concerns modelling of chloride penetration in partially saturated concrete. To mimic the intermittent exposure of sea water to concrete, varying environmental conditions for relative humidity and chloride concentration were considered. As for the moisture distribution in concrete, statistical permeability model based on pore size distribution was used to represent influence of material properties on moisture transport. Then, a combined chloride diffusion and convection was modelled in variation of moisture level in concrete. As a result, smaller relative wet duration induces higher rate of chloride penetration due to enhanced moisture permeability from the surface, and also higher concentration gradient near the surface of concrete due to repeated wet/dry cycle. This implies that only diffusion analysis on chloride induced corrosion in concrete structure may underestimate the serviceability in given material performance.
Implementation of a dry process fuel cycle model into the DYMOND code
International Nuclear Information System (INIS)
Park, Joo Hwan; Jeong, Chang Joon; Choi, Hang Bok
2004-01-01
For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada Deuterium Uranium (CANDU) reactor, direct use of spent Pressurized Water Reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-through and DUPIC fuel cycles
Safety verification of radiation shielding and heat transfer for a model for dry
International Nuclear Information System (INIS)
Yu, Haiyan; Tang, Xiaobin; Wang, Peng; Chen, Feida; Chai, Hao; Chen, Da
2015-01-01
Highlights: • New type of dry spent fuel storage was designed. • MC method and FEM were used to verify the reliability of new storage. • Radiation shield and heat transfer both meet IAEA standards: 2 mSv/h, 0.1 mSv/h and 190 °C, 85 °C. • Provided possibilities for future implementation of this type of dry storage. - Abstract: The goal of this research is to develop a type of dry spent fuel storage called CHN-24 container, which could contain an equivalent load of 45 GWD/MTU of spent fuel after 10 years cooling. Basically, radiation shielding performance and safe removal of decay heat, which play important roles in the safety performance, were checked and validated using the Monte Carlo method and finite element analysis to establish the radiation dose rate calculation model and three-dimensional heat transfer model for the CHN-24 container. The dose rates at the surface of the container and at a distance of 1 m from the surface were 0.42 mSv/h and 0.06 mSv/h, respectively. These conform to the International Atomic Energy Agency (IAEA) radioactive material transportation safety standards 2 mSv/h and 0.1 mSv/h. The results shows that the CHN-24 container maintains its structural and material integrity under the condition of normal thermal steady-state heat transfer as well as in case of extreme fire as evinced by transient-state analysis. The temperature inside and on the surface of the container were 150.91 °C and 80 °C under normal storage conditions, which indicated that the design also conform to IAEA heat transfer safety standards of 190 °C and 85 °C
A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10.
Li, Juan; Tan, Gang; Ding, Xiaoyan; Wang, Yahong; Wu, Anhua; Yang, Qichen; Ye, Lei; Shao, Yi
2017-12-01
To introduce a novel dry eye mouse model induced by topical administration of the air pollutant particulate matter 10 (PM 10 ). A total of 60 male BALB/c mice were used in this study and divided into two groups: group A (PBS eye drops, n=30) and group B (PM 10 eye drop group, n=30). Each treatment was dosed four times a day, every time 50ul with the concentration of 5mg/ml PM10, for 14 consecutive days in the right eye. The clinical manifestations of dry eye were measured before therapy and 4, 7 and 14days post-treatment respectively, which included the tear volume, tear break-up (BUT) time, corneal fluorescein staining, rose bengal staining, Lissamine Green staining and inflammatory index. Eye samples were collected on D14 and examined by histologic light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), corneal cytokeration 10 (K10) immunnostaining, and tumor necrosis factor-α (TNF-α), NF-κB-p65 and NF-κB Western Blot analysis. At 0d, 7d and 14d, there were no statistical changes in tear volume, BUT after treatment (P>0.05) with PBS in group A. In group B, all items showed statistical differences at each time point (Plevels of K10 and reduced number of goblet cells in the conjunctival fornix in group B. PM 10 significantly increased the levels of TNF-α, NF-κB-p65 and NF-κB in the cornea. PM 10 can damage the tear film function and cause the destruction of the structural organization of ocular surface in mice. Topical administration of PM 10 in mice induces ocular surface changes that are similar to those of dry eye in humans, representing a novel model of DES. Copyright © 2017. Published by Elsevier Masson SAS.
Mesoscopic simulation of recrystallization and grain growth
International Nuclear Information System (INIS)
Rollett, A.D.
2000-01-01
A brief summary of simulation techniques for recrystallization and grain growth is given. The available methods include surface evolver, front tracking (including finite element methods and vertex methods), networks of curves, phase field, cellular automata, and Monte Carlo. Two of the models that use a regular lattice, the Potts model and the Cellular Automaton (CA) model, have proved to be very useful. Microstructure is represented on a discrete lattice where the value of the field at each point represents the local orientation of the material and boundaries exist between points of unlike orientation. Two issues are discussed: one is a hybrid approach to combining the standard Monte Carlo and cellular automata algorithms for recrystallization modeling. The second is adaptation of the MC method for modeling grain growth (and recrystallization) with physically based boundary properties. Both models have significant limitations in their standard forms. The CA model is very useful and efficient for simulating recrystallization with deterministic motion of the recrystallization fronts. It can be adapted to simulate curvature driven migration provided that multiple sub-lattices are used with a probabilistic switching rule. The Potts model is very successful in modeling curvature driven boundary migration and grain growth. It does not simulate the proportionality between boundary velocity and a stored energy driving force, however, unless rather restricted conditions of stored energy (in relation to the grain boundary energy) and lattice temperature are satisfied. A new approach based on a hybrid of the Potts model (MC) and the Cellular Automaton (CA) model has been developed to obtain the desired limiting behavior for both curvature-driven and stored energy-driven grain boundary migration. The combination of methods is achieved by interleaving the two different types of reorientation event in time. The results show that the hybrid algorithm models the Gibbs
Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans
Directory of Open Access Journals (Sweden)
A. R. Baker
2017-07-01
Full Text Available Anthropogenic nitrogen (N emissions to the atmosphere have increased significantly the deposition of nitrate (NO3− and ammonium (NH4+ to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ∼ 2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep of oxidised N (NOy and reduced N (NHx and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4: ModDep for NOy, NHx and particulate NO3− and NH4+, and surface-level particulate NO3− and NH4+ concentrations. As a model ensemble, ACCMIP can be
Modelling Water Flow through Paddy Soils under Alternate Wetting and Drying Irrigation Practice
Shekhar, S.; Mailapalli, D. R.; Das, B. S.; Raghuwanshi, N. S.
2017-12-01
Alternate wetting and drying (AWD) irrigation practice in paddy cultivation requires an optimum soil moisture stress (OSMS) level at which irrigation water savings can be maximized without compromising the yield reduction. Determining OSMS experimentally is challenging and only possible with appropriate modeling tools. In this study, field experiments on paddy were conducted in thirty non-weighing type lysimeters during dry seasons of 2016 and 2017. Ten plots were irrigated using continuous flooding (CF) and the rest were irrigated with AWD practice at 40mb and 75mb soil moisture stress levels. Depth of ponding and soil suction at 10, 40 and 70 cm from the soil surface were measured daily from all lysimeter plots. The measured field data were used in calibration and validation of Hydrus-1D model and simulated the water flow for both AWD and CF plots. The Hydrus-1D is being used to estimate OSMS for AWD practice and compared the seasonal irrigation water input and deep percolation losses with CF practice.
Off-the-job microsurgical training on dry models: Siberian experience.
Belykh, Evgenii; Byvaltsev, Vadim
2014-01-01
Microsurgical training has become an obligatory part of many neurosurgical training programs. To assess the cost and effectiveness of acquiring and maintaining microneurosurgical skills by training on an off-the-job basis using dry models. A dry off-the-job microneurosurgical training module was set up. Training exercises involved microdissection in a deep operation field, suturing and tying on gauze, untying, pushing of thread end, and microanastomosis. The time to complete the task and success rate were evaluated. The total cost of all necessary equipment and expendables for the training module was US$910. Fifteen residents participated in the continuous off-the-job training. The average time taken to perform the anastomosis decreased after the month of training from 90 to 20 minutes. Authors revealed that at 2 months, the total time and time to complete anastomosis increased significantly for the participants who discontinued practice after the first month, compared with those who just practiced suturing on gauze after the first month (P job training showed to be readily available and can be helpful for microsurgical training in the low-income regions of the world. Our data suggest that microsurgical training should be continuous and repetitive. Simulation training may benefit from models for repetitive training of relevant technical part-skills. Copyright © 2014 Elsevier Inc. All rights reserved.
Diabetes-associated dry eye syndrome in a new humanized transgenic model of type 1 diabetes.
Imam, Shahnawaz; Elagin, Raya B; Jaume, Juan Carlos
2013-01-01
Patients with Type 1 Diabetes (T1D) are at high risk of developing lacrimal gland dysfunction. We have developed a new model of human T1D using double-transgenic mice carrying HLA-DQ8 diabetes-susceptibility haplotype instead of mouse MHC-class II and expressing the human beta cell autoantigen Glutamic Acid Decarboxylase in pancreatic beta cells. We report here the development of dry eye syndrome (DES) after diabetes induction in our humanized transgenic model. Double-transgenic mice were immunized with DNA encoding human GAD65, either naked or in adenoviral vectors, to induce T1D. Mice monitored for development of diabetes developed lacrimal gland dysfunction. Animals developed lacrimal gland disease (classically associated with diabetes in Non Obese Diabetic [NOD] mice and with T1D in humans) as they developed glucose intolerance and diabetes. Animals manifested obvious clinical signs of dry eye syndrome (DES), from corneal erosions to severe keratitis. Histological studies of peri-bulbar areas revealed lymphocytic infiltration of glandular structures. Indeed, infiltrative lesions were observed in lacrimal/Harderian glands within weeks following development of glucose intolerance. Lesions ranged from focal lymphocytic infiltration to complete acinar destruction. We observed a correlation between the severity of the pancreatic infiltration and the severity of the ocular disease. Our results demonstrate development of DES in association with antigen-specific insulitis and diabetes following immunization with clinically relevant human autoantigen concomitantly expressed in pancreatic beta cells of diabetes-susceptible mice. As in the NOD mouse model and as in human T1D, our animals developed diabetes-associated DES. This specific finding stresses the relevance of our model for studying these human diseases. We believe our model will facilitate studies to prevent/treat diabetes-associated DES as well as human diabetes.
Volume and Aboveground Biomass Models for Dry Miombo Woodland in Tanzania
Directory of Open Access Journals (Sweden)
Ezekiel Edward Mwakalukwa
2014-01-01
Full Text Available Tools to accurately estimate tree volume and biomass are scarce for most forest types in East Africa, including Tanzania. Based on a sample of 142 trees and 57 shrubs from a 6,065 ha area of dry miombo woodland in Iringa rural district in Tanzania, regression models were developed for volume and biomass of three important species, Brachystegia spiciformis Benth. (n = 40, Combretum molle G. Don (n = 41, and Dalbergia arbutifolia Baker (n = 37 separately, and for broader samples of trees (28 species, n = 72, shrubs (16 species, n = 32, and trees and shrubs combined (44 species, n = 104. Applied independent variables were log-transformed diameter, height, and wood basic density, and in each case a range of different models were tested. The general tendency among the final models is that the fit improved when height and wood basic density were included. Also the precision and accuracy of the predictions tended to increase from general to species-specific models. Except for a few volume and biomass models developed for shrubs, all models had R2 values of 96–99%. Thus, the models appear robust and should be applicable to forests with similar site conditions, species, and diameter ranges.
DEFF Research Database (Denmark)
Jabbari, Masoud; Hattel, Jesper
2016-01-01
process of thin sheets produced by the tape casting process. The rate of mass loss in the drying process is a key factor that often is of interest, as it affects the final properties of the tapes. The 1D heat conduction equation is solved numerically to obtain the temperature field in a ceramic sheet...... dominant since the fraction of water approaches zero. The developed model is used to simulate a simple test for the drying process. The drying rate is simply calculated by examining the water content in each time step. It is found that the mass loss due to the evaporation is increasing close to linearly...
Directory of Open Access Journals (Sweden)
S. T. Antipov
2014-01-01
Full Text Available Summary. The mathematical model allowed to reproduce and study at qualitative level the change of berries form and the structure of the berries layer in the course of drying. The separate berry in the course of drying loses gradually its elasticity, decreases in volume, the peel gathers in folds, there appear internal emptiness. In the course of drying the berries layer decreases in thickness, contacting berries stick strongly with each other due to the coordinated folds of peel appearing, the layer is condensed due to penetration of the berries which have lost elasticity into emptiness between them. The model with high specification describes black currant drying process and therefore has a large number of the parameters available to change. Among them three most important technological parameters, influencing productivity and the drying quality are chosen: the power of microwave radiation P, thickness of the berries layer h, environmental pressure p. From output indicators of the model the most important are three functions from time: dependence of average humidity of the layer on time Wcp (t, dependence of the speed of change of average humidity on time dWcp (t/dt, dependence of the layer average temperature on time Tср (t. On the standard models classification the offered model is algorithmic, but not analytical. It means that output characteristics of model are calculated with the entrance ones, not by analytical transformations (it is impossible principally for the modeled process, but by means of spatial and temporary sampling and the corresponding calculation algorithm. Detailed research of the microwave drying process by means of the model allows to allocate the following stages: fast heating, the fast dehydration, the slowed-down dehydration, consolidation of a layer of a product, final drying, heating after dehydration.
Experimental verification of the energetic model of the dry mechanical reclamation process
Directory of Open Access Journals (Sweden)
R. Dańko
2008-04-01
Full Text Available The experimental results of the dry mechanical reclamation process, which constituted the bases for the verification of the energetic model of this process, developed by the author on the grounds of the Rittinger’s deterministic hypothesis of the crushing process, are presented in the paper. Used foundry sands with bentonite, with water-glass from the floster technology and used sands with furan FL 105 resin were used in the reclamation tests. In the mechanical and mechanical-cryogenic reclamation a wide range of time variations and reclamation conditions influencing intensity of the reclamation process – covering all possible parameters used in industrial devices - were applied. The developed theoretical model constitutes a new tool allowing selecting optimal times for the reclamation treatment of the given spent foundry sand at the assumed process intensity realized in rotor reclaimers - with leaves or rods as grinding elements mounted horizontally on the rotor axis.
Energy Technology Data Exchange (ETDEWEB)
Didriksen, H.; Sandvig Nielsen, J.; Weel Hansen, M.
2001-06-01
The aim of the project is to present a procedure to optimize existing drying processes. The optimization deals with energy consumption, capacity utilization and product quality. Other factors can also be included in the optimization, e.g. minimization of volume of discharged air. The optimization of existing drying processes will use calculation tool based on a mathematical simulation model for the process to calculate the most optimum operation situation on the basis of given conditions. In the project mathematical models have been developed precisely with this aim. The calculation tools have been developed with a user interface so that the tools can be used by technical staff in industrial companies and by consultants. The project also illustrates control of drying processes. Based on the developed models, the effect of using different types of control strategies by means of model simulations is illustrated. Three types of drying processes are treated: drum dryers, disc dryers and drying chambers. The work with the development of the simulation models has been very central in the project, as these have to be the basis for the optimization of the processes. The work is based on a large amount of information from academical literature and knowledge and experience about modelling thermal processes at dk-TEKNIK. The models constitute the core in the simulation programmes. The models describe the most important physical effects in connection with mass and energy transfer and transport under the drying for the three treated drying technologies. (EHS)
Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions
Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens
2018-04-01
A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.
Probing Cellular Dynamics with Mesoscopic Simulations
DEFF Research Database (Denmark)
Shillcock, Julian C.
2010-01-01
Cellular processes span a huge range of length and time scales from the molecular to the near-macroscopic. Understanding how effects on one scale influence, and are themselves influenced by, those on lower and higher scales is a critical issue for the construction of models in Systems Biology....... Advances in computing hardware and software now allow explicit simulation of some aspects of cellular dynamics close to the molecular scale. Vesicle fusion is one example of such a process. Experiments, however, typically probe cellular behavior from the molecular scale up to microns. Standard particle...... soon be coupled to Mass Action models allowing the parameters in such models to be continuously tuned according to the finer resolution simulation. This will help realize the goal of a computational cellular simulation that is able to capture the dynamics of membrane-associated processes...
Fabrication of mesoscopic floating Si wires by introducing dislocations
International Nuclear Information System (INIS)
Motohashi, Mitsuya; Shimizu, Kazuya; Niwa, Masaaki; Suzuki, Toshiaki
2014-01-01
We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization. (paper)
Fabrication of mesoscopic floating Si wires by introducing dislocations
Motohashi, Mitsuya; Shimizu, Kazuya; Suzuki, Toshiaki; Niwa, Masaaki
2014-12-01
We fabricated a mesoscopic Si wire by introducing dislocations in a silicon wafer before HF anodization. The dislocations formed along the (111) crystal plane. The outline of the dislocation line was an inverted triangle. The resulting wire floated on a bridge girder and had a hybrid structure consisting of a porous layer and crystalline Si. The cross section of the wire had an inverted triangle shape. The wire formation mechanism is discussed in terms of carrier transport, crystal structure, and dislocation formation during anodization.
Numerical simulation of lubrication mechanisms at mesoscopic scale
DEFF Research Database (Denmark)
Hubert, C.; Bay, Niels; Christiansen, Peter
2011-01-01
The mechanisms of liquid lubrication in metal forming are studied at a mesoscopic scale, adopting a 2D sequential fluid-solid weak coupling approach earlier developed in the first author's laboratory. This approach involves two computation steps. The first one is a fully coupled fluid-structure F...... of pyramidal indentations. The tests are performed with variable reduction and drawing speed under controlled front and back tension forces. Visual observations through a transparent die of the fluid entrapment and escape from the cavities using a CCD camera show the mechanisms of Micro......PlastoHydroDynamic Lubrication (MPHDL) as well as cavity shrinkage due to lubricant compression and escape and strip deformation....
Mesoscopic Rydberg Gate Based on Electromagnetically Induced Transparency
International Nuclear Information System (INIS)
Mueller, M.; Lesanovsky, I.; Zoller, P.; Weimer, H.; Buechler, H. P.
2009-01-01
We demonstrate theoretically a parallelized C-NOT gate which allows us to entangle a mesoscopic ensemble of atoms with a single control atom in a single step, with high fidelity and on a microsecond time scale. Our scheme relies on the strong and long-ranged interaction between Rydberg atoms triggering electromagnetically induced transparency. By this we can robustly implement a conditional transfer of all ensemble atoms between two logical states, depending on the state of the control atom. We outline a many-body interferometer which allows a comparison of two many-body quantum states by performing a measurement of the control atom.
Superconducting proximity effect in mesoscopic superconductor/normal-metal junctions
Takayanagi, H; Toyoda, E
1999-01-01
The superconducting proximity effect is discussed in mesoscopic superconductor/normal-metal junctions. The newly-developed theory shows long-range phase-coherent effect which explaines early experimental results of giant magnetoresistance oscillations in an Andreev interferometer. The theory also shows that the proximity correction to the conductance (PCC) has a reentrant behavior as a function of energy. The reentrant behavior is systematically studied in a gated superconductor-semiconductor junction. A negative PCC is observed in the case of a weak coupling between the normal metal and the external reservoir. Phase coherent ac effect is also observed when rf is irradiated to the junction.
Introduction to wave scattering, localization, and mesoscopic phenomena
Sheng, Ping
1995-01-01
This book gives readers a coherent picture of waves in disordered media, including multiple scattered waves. The book is intended to be self-contained, with illustrated problems and solutions at the end of each chapter to serve the double purpose of filling out the technical and mathematical details and giving the students exercises if used as a course textbook.The study of wave behavior in disordered media has applications in:Condensed matter physics (semi and superconductor nanostructures and mesoscopic phenomena)Materials science/analytical chemistry (analysis of composite and crystalline structures and properties)Optics and electronics (microelectronic and optoelectronic devices)Geology (seismic exploration of Earths subsurface)
Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions
Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens
2018-01-01
A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute
Quantum Effect in a Diode Included Nonlinear Inductance-Capacitance Mesoscopic Circuit
International Nuclear Information System (INIS)
Yan Zhanyuan; Zhang Xiaohong; Ma Jinying
2009-01-01
The mesoscopic nonlinear inductance-capacitance circuit is a typical anharmonic oscillator, due to diodes included in the circuit. In this paper, using the advanced quantum theory of mesoscopic circuits, which based on the fundamental fact that the electric charge takes discrete value, the diode included mesoscopic circuit is firstly studied. Schroedinger equation of the system is a four-order difference equation in p-circumflex representation. Using the extended perturbative method, the detail energy spectrum and wave functions are obtained and verified, as an application of the results, the current quantum fluctuation in the ground state is calculated. Diode is a basis component in a circuit, its quantization would popularize the quantum theory of mesoscopic circuits. The methods to solve the high order difference equation are helpful to the application of mesoscopic quantum theory.
Analytical model of contamination during the drying of cylinders of jamonable muscle
Montoya Arroyave, Isabel
2014-05-01
For a cylinder of jamonable muscle of radius R and length much greater than R; considering that the internal resistance to the transfer of water is much greater than the external and that the internal resistance is one certain function of the distance to the axis; the distribution of the punctual moisture in the jamonable cylinder is analytically computed in terms of the Bessel's functions. During the process of drying and salted the jamonable cylinder is sensitive to contaminate with bacterium and protozoa that come from the environment. An analytical model of contamination is presents using the diffusion equation with sources and sinks, which is solve by the method of the Laplace transform, the Bromwich integral, the residue theorem and some special functions like Bessel and Heun. The critical times intervals of drying and salted are computed in order to obtain the minimum possible contamination. It is assumed that both external moisture and contaminants decrease exponentially with time. Contaminants profiles are plotted and discussed some possible techniques of contaminants detection. All computations are executed using Computer Algebra, specifically Maple. It is said that the results are important for the food industry and it is suggested some future research lines.
A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems
Directory of Open Access Journals (Sweden)
Mladena Luković
2016-07-01
Full Text Available Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC, for controlling the damage development due to drying shrinkage in concrete repairs was also examined.
Mesoscopic Electronics in Solid State Nanostructures
Heinzel, Thomas
2007-01-01
This text treats electronic transport in the regime where conventional textbook models are no longer applicable, including the effect of electronic phase coherence, energy quantization and single-electron charging. This second edition is completely updated and expanded, and now comprises new chapters on spin electronics and quantum information processing, transport in inhomogeneous magnetic fields, organic/molecular electronics, and applications of field effect transistors. The book also provides an overview of semiconductor processing technologies and experimental techniques. With a number of
Onwude, Daniel I.; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-04-01
This study investigated the drying kinetics, mass and heat transfer characteristics of sweet potato slices (0.4-0.6 cm thickness) during drying based on mid-infrared experimental set-up (intensity of 1100-1400 W/m2). Thin layer drying models were used to evaluate the drying kinetics of sweet potato slices. Two analytical models (Fick's diffusion model, and Dincer and Dost model) were used to study the mass transfer behaviour of sweet potato slices with and without shrinkage during mid-infrared drying. The heat transfer flux between the emitter and sweet potato slices was also investigated. Results demonstrated that an increase in infrared intensity from 1100 W/m2 to 1400 W/m2 resulted in increased in average radiation heat flux by 3.4 times and a 15% reduction in the overall drying time. The two-term exponential model was found to be the best in predicting the drying kinetics of sweet potato slices during mid-infrared drying. The specific heat consumption varied from 0.91-4.82 kWh/kg. The effective moisture diffusivity with and without shrinkage using the Fick's diffusion model varied from 2.632 × 10-9 to 1.596 × 10-8 m2/s, and 1.24 × 10-8 to 2.4 × 10-8 m2/s using Dincer and Dost model, respectively. The obtained values of mass transfer coefficient, Biot number and activation energy varied from 5.99 × 10-6 to 1.17 × 10-5 m/s, 0.53 to 2.62, and 12.83 kJ/mol to 34.64 kJ/mol, respectively. The values obtained for Biot number implied the existence of simultaneous internal and external resistances. The findings further explained that mid-infrared intensity of 1100 W/m2 did not significantly affect the quality of sweet potato during drying, demonstrating a great potential of applying low intensity mid-infrared radiation in the drying of agricultural crops.
Study of microwave drying of wet materials based on one-dimensional two-phase model
Salomatov, Vl V.; Karelin, V. A.
2017-11-01
Currently, microwave is one of the most interesting ways to conduct drying of dielectric materials, in particular coal. In this paper, two processes were considered - heating and drying. The temperature field of the coal semi-mass in the heating mode is found analytically strictly with the use of integral transformations. The drying process is formulated as a nonlinear Stephen problem with a moving boundary of the liquid-vapor phase transformation. The temperature distribution, speed and drying time in this mode are determined approximately analytically. Parametric analysis of the influence of the material and boundary conditions on the dynamics of warming up and drying is revealed.
Khan, Tanvir R.; Perlinger, Judith A.
2017-10-01
Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001) (Z01), Petroff and Zhang (2010) (PZ10), Kouznetsov and Sofiev (2012) (KS12), Zhang and He (2014) (ZH14), and Zhang and Shao (2014) (ZS14), respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy); the influence of imprecision in input parameter values on the modeled Vd (uncertainty); and identification of the most influential parameter(s) (sensitivity). The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs): grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy), we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm) for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp = 0.001 to 1.0 µm, friction velocity was one of
Directory of Open Access Journals (Sweden)
T. R. Khan
2017-10-01
Full Text Available Despite considerable effort to develop mechanistic dry particle deposition parameterizations for atmospheric transport models, current knowledge has been inadequate to propose quantitative measures of the relative performance of available parameterizations. In this study, we evaluated the performance of five dry particle deposition parameterizations developed by Zhang et al. (2001 (Z01, Petroff and Zhang (2010 (PZ10, Kouznetsov and Sofiev (2012 (KS12, Zhang and He (2014 (ZH14, and Zhang and Shao (2014 (ZS14, respectively. The evaluation was performed in three dimensions: model ability to reproduce observed deposition velocities, Vd (accuracy; the influence of imprecision in input parameter values on the modeled Vd (uncertainty; and identification of the most influential parameter(s (sensitivity. The accuracy of the modeled Vd was evaluated using observations obtained from five land use categories (LUCs: grass, coniferous and deciduous forests, natural water, and ice/snow. To ascertain the uncertainty in modeled Vd, and quantify the influence of imprecision in key model input parameters, a Monte Carlo uncertainty analysis was performed. The Sobol' sensitivity analysis was conducted with the objective to determine the parameter ranking from the most to the least influential. Comparing the normalized mean bias factors (indicators of accuracy, we find that the ZH14 parameterization is the most accurate for all LUCs except for coniferous forest, for which it is second most accurate. From Monte Carlo simulations, the estimated mean normalized uncertainties in the modeled Vd obtained for seven particle sizes (ranging from 0.005 to 2.5 µm for the five LUCs are 17, 12, 13, 16, and 27 % for the Z01, PZ10, KS12, ZH14, and ZS14 parameterizations, respectively. From the Sobol' sensitivity results, we suggest that the parameter rankings vary by particle size and LUC for a given parameterization. Overall, for dp = 0.001 to 1.0
Hibler, Susanne; Wagner, Christophe; Gieseler, Henning
2012-01-01
In a previous study, heat transfer coefficients of different 10 mL tubing and molded vials were determined gravimetrically via sublimation tests with pure water. Contrary to "conventional wisdom", only small differences in K(v) values between tubing and molded vials were found in the pressure range relevant for pharmaceutical freeze-drying. In order to investigate the impact of these relatively small differences on the primary drying time of an actual product, freeze-drying experiments with 5% gentamicin sulfate solution as a model system were performed at 68, 100 and 200 mTorr. The primary drying times of the API in recently developed molded (EasyLyo™), tubing (TopLyo™) and polymer vials (TopPac™) were compared. At 68 and 100 mTorr the primary drying time of the drug in the glass vials only differed by 3% to 4%, while the polymer vial took around 9% longer. At 200 mTorr, the API in the EasyLyo™ vials dried approximately 15% faster compared to the other vial types. The present study suggest that molded vials that have been modified in design to have better heat transfer properties can achieve drying times comparable to tubing vials.
Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model
Shellito, Peter J.; Small, Eric E.; Livneh, Ben
2018-03-01
Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.
Shrinkage modeling of concrete reinforced by palm fibres in hot dry environments
Akchiche, Hamida; Kriker, Abdelouahed
2017-02-01
The cement materials, such as concrete and conventional mortar present very little resistance to traction and cracking, these hydraulic materials which induces large withdrawals on materials and cracks in structures. The hot dry environments such as: the Saharan regions of Algeria, Indeed, concrete structures in these regions are very fragile, and present high shrinkage. Strengthening of these materials by fibers can provide technical solutions for improving the mechanical performance. The aim of this study is firstly, to reduce the shrinkage of conventional concrete with its reinforcement with date palm fibers. In fact, Algeria has an extraordinary resources in natural fibers (from Palm, Abaca, Hemp) but without valorization in practical areas, especially in building materials. Secondly, to model the shrinkage behavior of concrete was reinforced by date palm fibers. In the literature, several models for still fiber concrete were founded but few are offers for natural fiber concretes. To do so, a still fiber concretes model of YOUNG - CHERN was used. According to the results, a reduction of shrinkage with reinforcement by date palm fibers was showed. A good ability of molding of shrinkage of date palm reinforced concrete with YOUNG - CHERN Modified model was obtained. In fact, a good correlation between experimental data and the model data was recorded.
Mesoscopic fluctuations in biharmonically driven flux qubits
Ferrón, Alejandro; Domínguez, Daniel; Sánchez, María José
2017-01-01
We investigate flux qubits driven by a biharmonic magnetic signal, with a phase lag that acts as an effective time reversal broken parameter. The driving induced transition rate between the ground and the excited state of the flux qubit can be thought of as an effective transmittance, profiting from a direct analogy between interference effects at avoided level crossings and scattering events in disordered electronic systems. For time scales prior to full relaxation, but large compared to the decoherence time, this characteristic rate has been accessed experimentally by Gustavsson et al. [Phys. Rev. Lett. 110, 016603 (2013)], 10.1103/PhysRevLett.110.016603 and its sensitivity with both the phase lag and the dc flux detuning explored. In this way, signatures of universal conductance fluctuationslike effects have been analyzed and compared with predictions from a phenomenological model that only accounts for decoherence, as a classical noise. Here we go beyond the classical noise model and solve the full dynamics of the driven flux qubit in contact with a quantum bath employing the Floquet-Born-Markov master equation. Within this formalism, the computed relaxation and decoherence rates turn out to be strongly dependent on both the phase lag and the dc flux detuning. Consequently, the associated pattern of fluctuations in the characteristic rates display important differences with those obtained within the mentioned phenomenological model. In particular, we demonstrate the weak localizationlike effect in the average values of the relaxation rate. Our predictions can be tested for accessible but longer time scales than the current experimental times.
Robust depth selectivity in mesoscopic scattering regimes using angle-resolved measurements.
González-Rodríguez, P; Kim, A D; Moscoso, M
2013-03-01
We study optical imaging of tissues in the mesoscopic scattering regime in which light multiply scatters in tissues but is not fully diffusive. We use the radiative transport equation to model light propagation and an ℓ1-optimization method to solve the inverse source problem. We show that recovering the location and strength of several point-like sources that are close to each other is not possible when using angle-averaged measurements. The image reliability is limited by a spatial scale that is on the order of the transport mean-free path, even under the most ideal conditions. However, by using just a few angle-resolved measurements, the proposed method is able to overcome this limitation.
Directory of Open Access Journals (Sweden)
Zhongxiang Liu
2016-04-01
Full Text Available Fatigue fracture of bridge stay-cables is usually a multiscale process as the crack grows from micro-scale to macro-scale. Such a process, however, is highly uncertain. In order to make a rational prediction of the residual life of bridge cables, a probabilistic fatigue approach is proposed, based on a comprehensive vehicle load model, finite element analysis and multiscaling and mesoscopic fracture mechanics. Uncertainties in both material properties and external loads are considered. The proposed method is demonstrated through the fatigue life prediction of cables of the Runyang Cable-Stayed Bridge in China, and it is found that cables along the bridge spans may have significantly different fatigue lives, and due to the variability, some of them may have shorter lives than those as expected from the design.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
Modeling and Adhesive Tool Wear in Dry Drilling of Aluminum Alloys
International Nuclear Information System (INIS)
Girot, F.; Gutierrez-Orrantia, M. E.; Calamaz, M.; Coupard, D.
2011-01-01
One of the challenges in aeronautic drilling operations is the elimination of cutting fluids while maintaining the quality of drilled parts. This paper therefore aims to increase the tool life and process quality by working on relationships existing between drilling parameters (cutting speed and feed rate), coatings and tool geometry. In dry drilling, the phenomenon of Built-Up Layer is the predominant damage mechanism. A model fitting the axial force with the cutting parameters and the damage has been developed. The burr thickness and its dispersion decrease with the feed rate. The current diamond coatings which exhibit a strong adhesion to the carbide substrate can limit this adhesive layer phenomenon. A relatively smooth nano-structured coating strongly limits the development of this layer.
Charge and spin transport in mesoscopic superconductors
Directory of Open Access Journals (Sweden)
M. J. Wolf
2014-02-01
Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.
International Nuclear Information System (INIS)
Li, Xinyi; Takaoka, Masaki; Zhu, Fenfen; Oshita, Kazuyuki; Mizuno, Tadao; Morisawa, Shinsuke
2010-01-01
Over the past two decades, China has experienced rapid urbanization, which also leads to a lot of environmental problems including those of sewage sludge. As the amount of sewage sludge increases, conventional methods of treatment, such as compost and landfill, are facing the problems of limitations in demands or land. Considering that the demand of constructive materials in China keeps increasing, reusing municipal sewage sludge (MSS) in cement manufactory plant as fuels and raw materials is another practicable way to deal with it. The aim of this study is to describe the process of the heating of sewage sludge under different atmospheres of nitrogen and oxygen, and to find out some relation between the moisture of MSS and the heating time under different surrounding temperature by means of a mathematical model. In this study, we compared 4 kinds of MSS sampled in Beijing and Osaka. First of all, we defined the differences in those fundamental physical properties, such as concentration of various elements, calorific values and so on. Then the macroscopical thermal properties of the sludges were observed by means of thermogravimetric (TG) analysis. Both pyrolysis and combustion of 4 samples of MSS were studied by TG dynamic runs carried out at 10K/m. Visual observation of the heating profiles shows three stages in the heating process, which have been characterized. At last, we focused on batch processing drying tests using muffle furnace under temperature of 200, 250 and 300 degrees Celsius. The volatile matters loss besides moisture during heating process was evaluated and the experimental drying curves were matched with a mathematical model. (author)
Mesoscopic Iron-Oxide Nanorod Polymer Nanocomposite Films
Ferrier, Robert; Ohno, Kohji; Composto, Russell
2012-02-01
Dispersion of nanostructures in polymer matrices is required in order to take advantage of the unique properties of the nano-sized filler. This work investigates the dispersion of mesoscopic (200 nm long) iron-oxide rods (FeNRs) grafted with poly(methyl methacrylate) (PMMA) brushes having molecular weights (MWs) of 3.7K, 32K and 160K. These rods were then dispersed in either a poly(methyl methacrylate) or poly(oxyethylene) (PEO) matrix film so that the matrix/brush interaction is either entropic (PMMA matrix) or enthalpic and entropic (PEO matrix). Transmission electron microscopy (TEM) was used to determine the dispersion of the FeNRs in the polymer matrix. The results show that the FeNRs with the largest brush were always dispersed in the matrix, whereas the rods with the shorter brushes always aggregated in the matrix. This suggests that the brush MW is a critical parameter to achieve dispersion of these mesoscopic materials. This work can be extended to understand the dispersion of other types of mesocopic particles
Spontaneous and persistent currents in superconductive and mesoscopic structures (Review)
Kulik, I. O.
2004-07-01
We briefly review aspects of superconductive persistent currents in Josephson junctions of the S/I/S, S/O/S and S/N/S types, focusing on the origin of jumps in the current versus phase dependences, and discuss in more detail the persistent and the "spontaneous" currents in Aharonov-Bohm mesoscopic and nanoscopic (macromolecular) structures. A fixed-number-of-electrons mesoscopic or macromolecular conducting ring is shown to be unstable against structural transformation removing spatial symmetry (in particular, azimuthal periodicity) of its electron-lattice Hamiltonian. In the case when the transformation is blocked by strong coupling to an external azimuthally symmetric environment, the system becomes bistable in its electronic configuration at a certain number of electrons. Under such a condition, the persistent current has a nonzero value even at an (almost) zero applied Aharonov-Bohm flux and results in very high magnetic susceptibility dM/dH at small nonzero fields, followed by an oscillatory dependence at larger fields. We tentatively assume that previously observed oscillatory magnetization in cyclic metallo-organic molecules by Gatteschi et al. can be attributed to persistent currents. If this proves correct, it may present an opportunity for (and, more generally, macromolecular cyclic structures may suggest the possibility of) engineering quantum computational tools based on the Aharonov-Bohm effect in ballistic nanostructures and macromolecular cyclic aggregates.
Coherent current states in mesoscopic four-terminal Josephson junction
International Nuclear Information System (INIS)
Zareyan, M.; Omelyanchouk, A.N.
1999-01-01
A theory is offered for the ballistic 4-terminal Josephson junction. The studied system consist of a mesoscopic two-dimensional normal rectangular layer which is attached on each side to the bulk superconducting banks (terminals). A relation is obtained between the currents through the different terminals, that is valid for arbitrary temperatures and junction sizes. The nonlocal coupling of the supercurrent leads to a new effect, specific for the mesoscopic weak link between two superconducting rings; an applied magnetic flux through one of the rings produces a magnetic flux in the other ring even in the absence of an external flux through the other one. The phase dependent distributions of the local density of Andreev states, of the supercurrents and of the induced order parameter are obtained. The 'interference pattern' for the anomalous average inside the two-dimensional region cam be regulated by the applied magnetic fluxes or the transport currents. For some values of the phase differences between the terminals, the current vortex state and two-dimensional phase slip center appear
Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.
Calonne, Neige; Geindreau, Christian; Flin, Frédéric
2014-11-26
Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.
Engineering mesoscopic superpositions of superfluid flow
International Nuclear Information System (INIS)
Hallwood, D. W.; Brand, J.
2011-01-01
Modeling strongly correlated atoms demonstrates the possibility to prepare quantum superpositions that are robust against experimental imperfections and temperature. Such superpositions of vortex states are formed by adiabatic manipulation of interacting ultracold atoms confined to a one-dimensional ring trapping potential when stirred by a barrier. Here, we discuss the influence of nonideal experimental procedures and finite temperature. Adiabaticity conditions for changing the stirring rate reveal that superpositions of many atoms are most easily accessed in the strongly interacting, Tonks-Girardeau, regime, which is also the most robust at finite temperature. NOON-type superpositions of weakly interacting atoms are most easily created by adiabatically decreasing the interaction strength by means of a Feshbach resonance. The quantum dynamics of small numbers of particles is simulated and the size of the superpositions is calculated based on their ability to make precision measurements. The experimental creation of strongly correlated and NOON-type superpositions with about 100 atoms seems feasible in the near future.
Trierweiler, A.; Xu, X.; Gei, M. G.; Powers, J. S.; Medvigy, D.
2016-12-01
Tropical dry forests (TDFs) have immense functional diversity and face multiple resource constraints (both water and nutrients). Legumes are abundant and exhibit a wide diversity of N2-fixing strategies in TDFs. The abundance and diversity of legumes and their interaction with N2-fixing bacteria may strongly control the coupled carbon-nitrogen cycle in the biome and influence whether TDFs will be particularly vulnerable or uniquely adapted to projected global change. However, the importance of N2-fixation in TDFs and the carbon cost of acquiring N through symbiotic relationships are not fully understood. Here, we use models along with field measurements to examine the role of legumes, nitrogen fixation, and plant-symbiont nutrient exchanges in TDFs. We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs. The new version incorporates plant-mycorrhizae interactions and multiple resource constraints (carbon, nitrogen, phosphorus, and water). We represent legumes and other functional groups found in TDFs with a range of resource acquisition strategies. In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies (e.g. N2-fixing bacteria and mycorrhizal fungi) according to the nutrient limitation status. We test (i) the model's performance against a nutrient gradient of field sites in Costa Rica and (ii) the model's sensitivity to the carbon cost to acquire N through fixation and mycorrhizal relationships. We also report on simulated tree community responses to ongoing field nutrient fertilization experiments. We found that the inclusion of the N2-fixation legume plant functional traits were critical to reproducing community dynamics of Costa Rican field TDF sites and have a large impact on forest biomass. Simulated ecosystem fixation rates matched the magnitude and temporal patterns of field measured fixation. Our results show that symbiotic nitrogen fixation plays an
Dell, Zachary E.; Schweizer, Kenneth S.
2017-04-01
We develop a segment-scale, force-based theory for the breakdown of the unentangled Rouse model and subsequent emergence of isotropic mesoscopic localization and entropic elasticity in chain polymer liquids in the absence of ergodicity-restoring anisotropic reptation or activated hopping motion. The theory is formulated in terms of a conformational N-dynamic-order-parameter generalized Langevin equation approach. It is implemented using a universal field-theoretic Gaussian thread model of polymer structure and closed at the level of the chain dynamic second moment matrix. The physical idea is that the isotropic Rouse model fails due to the dynamical emergence, with increasing chain length, of time-persistent intermolecular contacts determined by the combined influence of local uncrossability, long range polymer connectivity, and a self-consistent treatment of chain motion and the dynamic forces that hinder it. For long chain melts, the mesoscopic localization length (identified as the tube diameter) and emergent entropic elasticity predictions are in near quantitative agreement with experiment. Moreover, the onset chain length scales with the semi-dilute crossover concentration with a realistic numerical prefactor. Distinctive novel predictions are made for various off-diagonal correlation functions that quantify the full spatial structure of the dynamically localized polymer conformation. As the local excluded volume constraint and/or intrachain bonding spring are softened to allow chain crossability, the tube diameter is predicted to swell until it reaches the radius-of-gyration at which point mesoscopic localization vanishes in a discontinuous manner. A dynamic phase diagram for such a delocalization transition is constructed, which is qualitatively consistent with simulations and the classical concept of a critical entanglement degree of polymerization.
Intact skull chronic windows for mesoscopic wide-field imaging in awake mice
Silasi, Gergely; Xiao, Dongsheng; Vanni, Matthieu P.; Chen, Andrew C. N.; Murphy, Timothy H.
2016-01-01
Background Craniotomy-based window implants are commonly used for microscopic imaging, in head-fixed rodents, however their field of view is typically small and incompatible with mesoscopic functional mapping of cortex. New Method We describe a reproducible and simple procedure for chronic through-bone wide-field imaging in awake head-fixed mice providing stable optical access for chronic imaging over large areas of the cortex for months. Results The preparation is produced by applying clear-drying dental cement to the intact mouse skull, followed by a glass coverslip to create a partially transparent imaging surface. Surgery time takes about 30 minutes. A single set-screw provides a stable means of attachment for mesoscale assessment without obscuring the cortical field of view. Comparison with Existing Methods We demonstrate the utility of this method by showing seed-pixel functional connectivity maps generated from spontaneous cortical activity of GCAMP6 signals in both awake and anesthetized mice. Conclusions We propose that the intact skull preparation described here may be used for most longitudinal studies that do not require micron scale resolution and where cortical neural or vascular signals are recorded with intrinsic sensors. PMID:27102043
Energy Technology Data Exchange (ETDEWEB)
Broden, Henrik; Ramstroem, Erik [TPS Termiska Processer AB, Nykoeping (Sweden)
2005-02-01
Combustion of wet wood fuel at high grate loading requires good control of the burnout position to avoid unacceptably high content of unburnt fuel in the ash. To control the burn-out position, control actions on the grate feeding must be made with sufficient range and anticipation. One way to improve the understanding of the dynamic fuel bed response on changes in control system parameters is mathematical modelling. The research task has been to develop a mathematical model of a drying fuel bed on a moving grate. The model includes a simplified description of drying, pyrolysis and char combustion and also pusher/grate movement and primary air flow/distribution. The objectives of the project have been to establish the most likely mechanism for drying and ignition of a wet fuel bed on a moving grate by the use of mathematical modelling and also to create a tool for simulation of control system step responses. The target group for the project are individuals working in the area of control system development of grate fired boilers. Three different assumptions on drying and ignition front propagation in a bio fuel bed with 50 and 53 % moisture have been modelled: 1. Drying and ignition from an underlying char layer in a co-current primary air flow 2. Drying and ignition from an overlaying char layer in counter-current primary air flow 3. Drying and ignition from both an underlying and overlaying char layer The model with drying and ignition driven by an underlying char layer is the projection, which gives the fastest and time-wise the most similar course to what one normally sees in grate fired boilers. The model with drying and ignition from above is not capable of upholding a stable diffusion controlled burning char layer since too small quantities of heat is transferred into the fuel bed. The model with drying and ignition from both directions results in similar combustion rate as the first model. The similar course of combustion is due to the energy for drying
Earth System Models Underestimate Soil Carbon Diagnostic Times in Dry and Cold Regions.
Jing, W.; Xia, J.; Zhou, X.; Huang, K.; Huang, Y.; Jian, Z.; Jiang, L.; Xu, X.; Liang, J.; Wang, Y. P.; Luo, Y.
2017-12-01
Soils contain the largest organic carbon (C) reservoir in the Earth's surface and strongly modulate the terrestrial feedback to climate change. Large uncertainty exists in current Earth system models (ESMs) in simulating soil organic C (SOC) dynamics, calling for a systematic diagnosis on their performance based on observations. Here, we built a global database of SOC diagnostic time (i.e.,turnover times; τsoil) measured at 320 sites with four different approaches. We found that the estimated τsoil was comparable among approaches of 14C dating () (median with 25 and 75 percentiles), 13C shifts due to vegetation change () and the ratio of stock over flux (), but was shortest from laboratory incubation studies (). The state-of-the-art ESMs underestimated the τsoil in most biomes, even by >10 and >5 folds in cold and dry regions, respectively. Moreover,we identified clear negative dependences of τsoil on temperature and precipitation in both of the observational and modeling results. Compared with Community Land Model (version 4), the incorporation of soil vertical profile (CLM4.5) could substantially extend the τsoil of SOC. Our findings suggest the accuracy of climate-C cycle feedback in current ESMs could be enhanced by an improved understanding of SOC dynamics under the limited hydrothermal conditions.
3D MODELS COMPARISON OF COMPLEX SHELL IN UNDERWATER AND DRY ENVIRONMENTS
Directory of Open Access Journals (Sweden)
S. Troisi
2015-04-01
Full Text Available In marine biology the shape, morphology, texture and dimensions of the shells and organisms like sponges and gorgonians are very important parameters. For example, a particular type of gorgonian grows every year only few millimeters; this estimation was conducted without any measurement instrument but it has been provided after successive observational studies, because this organism is very fragile: the contact could compromise its structure and outliving. Non-contact measurement system has to be used to preserve such organisms: the photogrammetry is a method capable to assure high accuracy without contact. Nevertheless, the achievement of a 3D photogrammetric model of complex object (as gorgonians or particular shells is a challenge in normal environments, either with metric camera or with consumer camera. Indeed, the successful of automatic target-less image orientation and the image matching algorithms is strictly correlated to the object texture properties and of camera calibration quality as well. In the underwater scenario, the environment conditions strongly influence the results quality; in particular, water’s turbidity, the presence of suspension, flare and other optical aberrations decrease the image quality reducing the accuracy and increasing the noise on the 3D model. Furthermore, seawater density variability influences its refraction index and consequently the interior orientation camera parameters. For this reason, the camera calibration has to be performed in the same survey conditions. In this paper, a comparison between the 3D models of a Charonia Tritonis shell are carried out through surveys conducted both in dry and underwater environments.
Cost modelling of electricity producing hot dry rock (HDR) geothermal systems in the UK
International Nuclear Information System (INIS)
Doherty, P.S.
1992-03-01
A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. (Author)
International Nuclear Information System (INIS)
Deng, Baoqing; Ge, Di; Li, Jiajia; Guo, Yuan; Kim, Chang Nyung
2013-01-01
A double-exponential surface sink model for VOCs sorption on building materials is presented. Here, the diffusion of VOCs in the material is neglected and the material is viewed as a surface sink. The VOCs concentration in the air adjacent to the material surface is introduced and assumed to always maintain equilibrium with the material-phase concentration. It is assumed that the sorption can be described by mass transfer between the room air and the air adjacent to the material surface. The mass transfer coefficient is evaluated from the empirical correlation, and the equilibrium constant can be obtained by linear fitting to the experimental data. The present model is validated through experiments in small and large test chambers. The predicted results accord well with the experimental data in both the adsorption stage and desorption stage. The model avoids the ambiguity of model constants found in other surface sink models and is easy to scale up
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
International Nuclear Information System (INIS)
Stotland, Alexander; Peer, Tal; Cohen, Doron; Budoyo, Rangga; Kottos, Tsampikos
2008-01-01
The calculation of the conductance of disordered rings requires a theory that goes beyond the Kubo-Drude formulation. Assuming 'mesoscopic' circumstances the analysis of the electro-driven transitions shows similarities with a percolation problem in energy space. We argue that the texture and the sparsity of the perturbation matrix dictate the value of the conductance, and study its dependence on the disorder strength, ranging from the ballistic to the Anderson localization regime. An improved sparse random matrix model is introduced to capture the essential ingredients of the problem, and leads to a generalized variable range hopping picture. (fast track communication)
Energy Technology Data Exchange (ETDEWEB)
Maltry, W.; Ziegler, T.; Richter, I.
1997-04-01
The report deals with problems associated with the harnessing of solar energy for drying bulk farm products: technical fundamentals, enthalpy diagrams, models for grain drying, experimental investigations, analysis of drying processes, benefits and applications of drying processes, advances. (HW) [Deutsch] Der Bericht behandelt die Probleme der Solarenergienutzung zur Trockung landwirtschaftlicher Massengueter: - Trocknungstechnische Grundlagen - Enthalpie-Diagramme - Modelle zur Koernertrocknung - experimentelle Untersuchungen - Analyse von Trocknungsprozesse - Nutzen und Verwertbarkeit der Trocknungsprozesse - Fortschritte. (HW)
Akihiro Higuchi; Hiroyoshi Inoue; Yoshio Kaneko; Erina Oonishi; Kazuo Tsubota
2016-01-01
The ocular surface is strongly affected by oxidative stress, which causes many ocular diseases including dry eye. Previously, we showed that selenium compounds, e.g., selenoprotein P and Se-lactoferrin, were candidates for treatment of dry eye. This paper shows the efficacy of Se-lactoferrin for the treatment of dry eye compared with Diquas as a control drug using two dry eye models and incorporation of lactoferrin into corneal epithelial cells via lactoferrin receptors. We show the efficacy ...
Tabuchi, Nobuhito; Toshida, Hiroshi; Koike, Daisuke; Odaka, Akito; Suto, Chikako; Ohta, Toshihiko; Murakami, Akira
We examined the wound-healing effect of retinol palmitate (VApal) on mucin gene and protein expressions in a rat dry eye model based on lacrimal gland (LG) resection after injury. The rat dry eye model was prepared by surgical resection of the main LG in male Long-Evans rats. After alkaline injury of the central part of the lower palpebral conjunctiva bilaterally, VApal eye drops at 1,500 IU/mL in one eye and a vehicle in the fellow eye were both administered 6 times a day for 7 days. The expression of mucin gene and protein was analyzed by real-time polymerase chain reaction or enzyme-linked immunosorbent assay in the cornea and conjunctiva of MUC1, MUC4, MUC16, and MUC5AC after 1, 3, (5), and 7 days of treatment with VApal. Significant decreases in fluorescein-stained areas and rose bengal scores were observed in VApal-treated dry eyes compared with vehicle-treated dry eyes at both 3 (P dry eye model after injury. VApal also promoted conjunctival MUC16 expression. These results indicate that VApal has efficacy in improving keratoconjunctival epithelial damage associated with decreased tear production.
Joossen, Cedric; Lanckacker, Ellen; Zakaria, Nadia; Koppen, Carina; Joossens, Jurgen; Cools, Nathalie; De Meester, Ingrid; Lambeir, Anne-Marie; Delputte, Peter; Maes, Louis; Cos, Paul
2016-05-01
The aim of this research was to optimize and validate an animal model for dry eye, adopting clinically relevant evaluation parameters. Dry eye was induced in female Wistar rats by surgical removal of the exorbital lacrimal gland. The clinical manifestations of dry eye were evaluated by tear volume measurements, corneal fluorescein staining, cytokine measurements in tear fluid, MMP-9 mRNA expression and CD3(+) cell infiltration in the conjunctiva. The animal model was validated by treatment with Restasis(®) (4 weeks) and commercial dexamethasone eye drops (2 weeks). Removal of the exorbital lacrimal gland resulted in 50% decrease in tear volume and a gradual increase in corneal fluorescein staining. Elevated levels of TNF-α and IL-1α have been registered in tear fluid together with an increase in CD3(+) cells in the palpebral conjunctiva when compared to control animals. Additionally, an increase in MMP-9 mRNA expression was recorded in conjunctival tissue. Reference treatment with Restasis(®) and dexamethasone eye drops had a positive effect on all evaluation parameters, except on tear volume. This rat dry eye model was validated extensively and judged appropriate for the evaluation of novel compounds and therapeutic preparations for dry eye disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Ilknur Alibas
2014-06-01
Full Text Available Celery (Apium graveolens L. var. secalinum Alef leaves with 50±0.07 g weight and 91.75±0.15% humidity (~11.21 db were dried using 8 different microwave power densities ranging between 1.8-20 W g-1, until the humidity fell down to 8.95±0.23% (~0.1 db. Microwave drying processes were completed between 5.5 and 77 min depending on the microwave power densities. In this study, measured values were compared with predicted values obtained from twenty thin layer drying theoretical, semi-empirical and empirical equations with a new thin layer drying equation. Within applied microwave power density; models whose coefficient and correlation (R² values are highest were chosen as the best models. Weibull distribution model gave the most suitable predictions at all power density. At increasing microwave power densities, the effective moisture diffusivity values ranged from 1.595 10-10 to 6.377 10-12 m2 s-1. The activation energy was calculated using an exponential expression based on Arrhenius equation. The linear relationship between the drying rate constant and effective moisture diffusivity gave the best fit.
Effect of chitosan-N-acetylcysteine conjugate in a mouse model of botulinum toxin B-induced dry eye.
Hongyok, Teeravee; Chae, Jemin J; Shin, Young Joo; Na, Daero; Li, Li; Chuck, Roy S
2009-04-01
To evaluate the effect of a thiolated polymer lubricant, chitosan-N-acetylcysteine conjugate (C-NAC), in a mouse model of dry eye. Eye drops containing 0.5% C-NAC, 0.3% C-NAC, a vehicle (control group), artificial tears, or fluorometholone were applied in a masked fashion in a mouse model of induced dry eye from 3 days to 4 weeks after botulinum toxin B injection. Corneal fluorescein staining was periodically recorded. Real-time reverse transcriptase-polymerase chain reaction and immunofluorescence staining were performed at the end of the study to evaluate inflammatory cytokine expressions. Mice treated with C-NAC, 0.5%, and fluorometholone showed a downward trend that was not statistically significant in corneal staining compared with the other groups. Chitosan-NAC formulations, fluorometholone, and artificial tears significantly decreased IL-1beta (interleukin 1beta), IL-10, IL-12alpha, and tumor necrosis factor alpha expression in ocular surface tissues. The botulinum toxin B-induced dry eye mouse model is potentially useful in evaluating new dry eye treatment. Evaluation of important molecular biomarkers suggests that C-NAC may impart some protective ocular surface properties. However, clinical data did not indicate statistically significant improvement of tear production and corneal staining in any of the groups tested. Topically applied C-NAC might protect the ocular surface in dry eye syndrome, as evidenced by decreased inflammatory cytokine expression.
Interactions between electrons, mesoscopic Josephson effect and asymmetric current fluctuations
Huard, B.
2006-07-01
This article discusses three experiments on the properties of electronic transport at the mesoscopic scale. The first one allowed to measure the energy exchange rate between electrons in a metal contaminated by a very weak concentration of magnetic impurities. The role played by magnetic impurities in the Kondo regime on those energy exchanges is quantitatively investigated, and the global measured exchange rate is larger than expected. The second experiment is a measurement of the current-phase relation in a system made of two superconductors linked through a single atom. We thus provide quantitative support for the recent description of the mesoscopic Josephson effect. The last experiment is a measurement of the asymmetry of the current fluctuations in a mesoscopic conductor, using a Josephson junction as a threshold detector. Cet ouvrage décrit trois expériences portant sur les propriétés du transport électronique à l'échelle mésoscopique. La première a permis de mesurer le taux d'échange d'énergie entre électrons dans un métal contenant une très faible concentration d'impuretés magnétiques. Nous avons validé la description quantitative du rôle des impuretés magnétiques dans le régime Kondo sur ces échanges énergétiques et aussi montré que le taux global d'échange est plus fort que prévu. La seconde expérience est une mesure de la relation courant-phase dans un système constitué de deux supraconducteurs couplés par un seul atome. Elle nous a permis de conforter quantitativement la récente description de l'effet Josephson mésoscopique. La dernière expérience est unemesure de l'asymétrie des fluctuations du courant dans un conducteur mésoscopique en utilisant une Jonction Josephson comme détecteur de seuil.
... Eye » Facts About Dry Eye Listen Facts About Dry Eye Fact Sheet Blurb The National Eye Institute (NEI) ... and their families search for general information about dry eye. An eye care professional who has examined the ...
Mathematical Modeling of Microwave-Assisted Convective Heating and Drying of Grapes
This research studied the processing performance and product quality of Thompson seedless grapes dried using microwave-assisted convective hot air drying as well as the effect of blanching and dipping pretreatments. Two pretreatment methods were compared, dipping into 2% ethyl oleate (V/V) and 5% p...
Measuring and modelling of diffusivities in carbohydrate-rich matrices during thin film drying
Perdana, J.A.; Sman, van der R.G.M.; Fox, M.B.; Boom, R.M.; Schutyser, M.A.I.
2014-01-01
Knowledge about moisture diffusivity in solid matrices is a key for understanding drying behaviour of for example probiotic or enzymatic formulations. This paper presents an experimental procedure to determine moisture diffusivity on the basis of thin film drying and gravimetric analysis in a
Zellnitz, Sarah; Redlinger-Pohn, Jakob Dominik; Kappl, Michael; Schroettner, Hartmuth; Urbanetz, Nora Anne
2013-04-15
The aim of this work is the physical modification and characterization of the surface topography of glass beads used as model carriers in dry powder inhalers (DPIs). By surface modification the contact area between drug and carrier and thereby interparticle forces may be modified. Thus the performance of DPIs that relies on interparticle interactions may be improved. Glass beads were chosen as model carriers because various prospects of physical surface modification may be applied without affecting other factors also impacting interparticle interactions like particle size and shape. To generate rough surfaces glass beads were processed mechanically by friction and impaction in a ball mill with different grinding materials that were smaller and harder with respect to the glass beads. By varying the grinding time (4 h, 8 h) and by using different grinding media (tungsten carbide, quartz) surfaces with different shades of roughness were generated. Depending on the hardness of the grinding material and the grinding time the surface roughness was more or less pronounced. Surface roughness parameters and specific surface area were determined via several complementary techniques in order to get an enhanced understanding of the impact of the modifying procedure on the surface properties of the glass beads. Copyright © 2013 Elsevier B.V. All rights reserved.
Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols
International Nuclear Information System (INIS)
Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag
2015-01-01
Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions
Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols
Energy Technology Data Exchange (ETDEWEB)
Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag, E-mail: mehra@iitb.ac.in [Indian Institute of Technology Bombay, Department of Chemical Engineering (India)
2015-01-15
Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions.
Directory of Open Access Journals (Sweden)
Malkanthi Evans
2012-01-01
Full Text Available Diverse and significant benefits against cold/flu symptoms and seasonal allergies have been observed with a dried fermentate (DF derived from Saccharomyces cerevisiae (EpiCor in multiple published randomized trials. To determine if DF may influence other immune conditions, two separate animal studies were conducted. Study 1 examined the ability of DF to prevent or reduce inflammation when given orally for 14 days to rats prior to receiving 1% carrageenan (localized inflammation model. DF significantly (P<0.05 reduced swelling at all time points (1, 2, 3, 6, 12, and 24 hours versus the control. Edema severity and PGE2 levels were reduced by approximately 50% and 25% (P<0.05, respectively. Study 2 examined the ability of DF to treat established inflammation induced by type-2 collagen in mice over 4 weeks (autoimmune arthritis model. Significantly reduced arthritis scores, antibody response to type-2 collagen, and interferon-gamma levels were observed compared to controls (all parameters P<0.05. DF favorably impacts multiple acute and potentially chronic immunologic inflammatory control mechanisms and should be further tested in clinical trials.
Mkoga, Z. J.; Tumbo, S. D.; Kihupi, N.; Semoka, J.
There is big effort to disseminate conservation tillage practices in Tanzania. Despite wide spread field demonstrations there has been some field experiments meant to assess and verify suitability of the tillage options in local areas. Much of the experiments are short lived and thus long term effects of the tillage options are unknown. Experiments to study long term effects of the tillage options are lacking because they are expensive and cannot be easily managed. Crop simulation models have the ability to use long term weather data and the local soil parameters to assess long term effects of the tillage practices. The Agricultural Production Systems Simulator (APSIM) crop simulation model; was used to simulate long term production series of soil moisture and grain yield based on the soil and weather conditions in Mkoji sub-catchment of the great Ruaha river basin in Tanzania. A 24 year simulated maize yield series based on conventional tillage with ox-plough, without surface crop residues (CT) treatment was compared with similar yield series based on conservation tillage (ox-ripping, with surface crop residues (RR)). Results showed that predicted yield averages were significantly higher in conservation tillage than in conventional tillage ( P APSIM simulation model, showed that average soil moisture in the conservation tillage was significantly higher ( P < 0.05) (about 0.29 mm/mm) than in conventional tillage (0.22 mm/mm) treatment during the seasons which received rainfall between 468 and 770 mm. Similarly the conservation tillage treatment recorded significantly higher yields (4.4 t/ha) ( P < 0.01) than the conventional tillage (3.6 t/ha) treatment in the same range of seasonal rainfall. On the other hand there was no significant difference in soil moisture for the seasons which received rainfall above 770 mm. In these seasons grain yield in conservation tillage treatment was significantly lower (3.1 kg/ha) than in the conventional tillage treatment (4.8 kg
Directory of Open Access Journals (Sweden)
Ghaderi A.
2012-01-01
Full Text Available Drying characteristics of button mushroom slices were determined using microwave vacuum drier at various powers (130, 260, 380, 450 W and absolute pressures (200, 400, 600, 800 mbar. To select a suitable mathematical model, 6 thin-layer drying models were fitted to the experimental data. The fitting rates of models were assessed based on three parameters; highest R2, lowest chi square ( and root mean square error (RMSE. In addition, using the experimental data, an ANN trained by standard back-propagation algorithm, was developed in order to predict moisture ratio (MR and drying rate (DR values based on the three input variables (drying time, absolute pressure, microwave power. Different activation functions and several rules were used to assess percentage error between the desired and the predicted values. According to our findings, Midilli et al. model showed a reasonable fitting with experimental data. While, the ANN model showed its high capability to predict the MR and DR quite well with determination coefficients (R2 of 0.9991, 0.9995 and 0.9996 for training, validation and testing, respectively. Furthermore, their predictions Mean Square Error were 0.00086, 0.00042 and 0.00052, respectively.
Nguyen, Thanh Khuong; Khalloufi, Seddik; Mondor, Martin; Ratti, Cristina
2018-01-01
In the present work, the impact of glass transition on shrinkage of non-cellular food systems (NCFS) during air-drying will be assessed from experimental data and the interpretation of a 'shrinkage' function involved in a mathematical model. Two NCFS made from a mixture of water/maltodextrin/agar (w/w/w: 1/0.15/0.015) were created out of maltodextrins with dextrose equivalent 19 (MD19) or 36 (MD36). The NCFS made with MD19 had 30°C higher Tg than those with MD36. This information indicated that, during drying, the NCFS with MD19 would pass from rubbery to glassy state sooner than NCFS MD36, for which glass transition only happens close to the end of drying. For the two NCFS, porosity and volume reduction as a function of moisture content were captured with high accuracy when represented by the mathematical models previously developed. No significant differences in porosity and in maximum shrinkage between both samples during drying were observed. As well, no change in the slope of the shrinkage curve as a function of moisture content was perceived. These results indicate that glass transition alone is not a determinant factor in changes of porosity or volume during air-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.
Therapeutic efficacy of fibroblast growth factor 10 in a rabbit model of dry eye.
Zheng, Wenjing; Ma, Mingming; Du, Ergang; Zhang, Zhengwei; Jiang, Kelimu; Gu, Qing; Ke, Bilian
2015-11-01
The aim of the present study was to investigate the therapeutic efficacy of fibroblast growth factor 10 (FGF10) in the promotion of healing, survival and expression of mucin in corneal epithelial cells in a rabbit dry eye model. A total of 12 healthy female New Zealand white rabbits were divided randomly into three groups. The lacrimal glands were injected with saline either alone (normal control group) or with concanavalin A (Con A), with either topical phosphate‑buffered saline (PBS; PBS control group) or 25 µg/ml FGF10 (FGF10 treatment group). Lacrimal gland inflammation, tear function, corneal epithelial cell integrity, cell apoptosis and mucin expression were subsequently assessed. Lacrimal gland tissue biopsies were performed in conjunction with histology and electron microscopy observations. Tear meniscus height (TMH) and tear meniscus area (TMA) were measured using Fourier domain‑optical coherence tomography. Tear membrane break‑up time (TBUT) was also assessed and corneal fluorescein staining was performed. The percentages of apoptotic corneal and conjunctival (Cj) epithelial cells (ECs) were counted using a terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling method. The mRNA expression levels of Muc1 were determined using reverse transcription‑quantitative polymerase chain reaction analyses. The TMH and TMA values of the PBS and treatment groups were found to be significantly reduced, compared with those of the normal control group 3 days after Con A injection. However, the TMH and TMA of the FGF10 treatment group were higher, compared with those of the PBS group 3 and 7 days after treatment, respectively. Furthermore, the FGF10 treatment group exhibited prolonged TBUT, reduced corneal fluorescein staining and repaired epithelial cell ultrastructure7 days after treatment. The percentages of apoptotic corneal‑ and Cj‑ECs in the FGF10 treatment group were significantly reduced, compared with those in the PBS group. FGF10
Rodríguez-Bencomo, Juan José; Andújar-Ortiz, Inmaculada; Moreno-Arribas, M. Victoria; Simó, Carolina; González, Javier; Chana, Antonio; Dávalos, J.Z.; Pozo-Bayón, Mª Ángeles
2014-01-01
The impact of the addition of glutathione-enriched Inactive dry yeast preparations (g-IDYs) on the stability of some typical wine terpenes (linalool, α-terpineol, β-citronellol, and nerol) stored under accelerated oxidative conditions was evaluated in model wines. Additionally, the effects of a second type of IDY preparation with a different claim (fermentative nutrient) and the sole addition of commercial glutathione into the model wines were also assessed. Model wines were spiked with the l...
Size and field effect on mesoscopic spin glass
Energy Technology Data Exchange (ETDEWEB)
Komatsu, K. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)]. E-mail: komatsu@az.appi.keio.ac.jp; Maki, H. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan); Taniyama, T. [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Sato, T. [Department of Applied Physics and Physico-Infomatics, Faculty of Science and Technology, Keio University, Yokohama 223-8522 (Japan)
2007-03-15
Spin glass particles were prepared as the mesoscopic system in order to examine the space scale of spin glass domain (droplet). The peak temperature T {sub peak} in the temperature-dependent magnetization is systematically reduced with decreasing average particle size. This is due to the imitation of droplet growth to the particle diameter. The magnetic field H also decreases T {sub peak}, which is caused by the reduction of the barrier height by Zeeman energy. However, there appears different tendency in the relation between H and T {sub peak} below 100 Oe. This indicates the existence of crossover between the two regimes in which the free energy and Zeeman energy govern the droplet excitation.
Out-of-equilibrium spin transport in mesoscopic superconductors.
Quay, C H L; Aprili, M
2018-08-06
The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).
Persistent currents in an ensemble of isolated mesoscopic rings
International Nuclear Information System (INIS)
Altland, A.; Iida, S.; Mueller-Groelling, A.; Weidenmueller, H.A.
1992-01-01
In this work, the authors calculate the persistent current induced at zero temperature by an external, constant, and homogeneous magnetic field in an ensemble of isolated mesoscopic rings. In each ring, the electrons are assumed to move independently under the influence of a Gaussian white noise random impurity potential. They account for the magnetic field only in terms of the flux threading each ring, without considering the field present in the body of the ring. Particular attention is paid to the constraint of integer particle number on each ring. The authors evaluate the persistent current non-perturbatively, using a generating functional involving Grassmann integration. The magnetic flux threading each ring breaks the orthogonal symmetry of the formalism; forcing us to calculate explicitly the orthogonal-unitary crossover. 24 refs., 1 fig
Reaction-Transport Systems Mesoscopic Foundations, Fronts, and Spatial Instabilities
Horsthemke, Werner; Mendez, Vicenc
2010-01-01
This book is an introduction to the dynamics of reaction-diffusion systems, with a focus on fronts and stationary spatial patterns. Emphasis is on systems that are non-standard in the sense that either the transport is not simply classical diffusion (Brownian motion) or the system is not homogeneous. A important feature is the derivation of the basic phenomenological equations from the mesoscopic system properties. Topics addressed include transport with inertia, described by persistent random walks and hyperbolic reaction-transport equations and transport by anomalous diffusion, in particular subdiffusion, where the mean square displacement grows sublinearly with time. In particular reaction-diffusion systems are studied where the medium is in turn either spatially inhomogeneous, compositionally heterogeneous or spatially discrete. Applications span a vast range of interdisciplinary fields and the systems considered can be as different as human or animal groups migrating under external influences, population...
Manipulating mesoscopic multipartite entanglement with atom-light interfaces
International Nuclear Information System (INIS)
Stasinska, J.; Rodo, C.; Paganelli, S.; Birkl, G.; Sanpera, A.
2009-01-01
Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation, and detection of genuine multipartite entanglement (Greenberger-Horne-Zeilinger and clusterlike states) between mesoscopic atomic ensembles without the need of individual addressing of the samples. Our results extend in a nontrivial way the Einstein-Podolsky-Rosen entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature (London) 413, 400 (2001)]. We find that under realistic conditions, a second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.
Mesoscopic approach to describe high burn-up fuel behaviour
International Nuclear Information System (INIS)
Kinoshita, M.
1999-01-01
The grain sub-division and the rim structure formation are new phenomena for LWR fuel engineering. The consequence of these are now under investigation in several international programs such as HBRP (High Burnup Rim Project) of CRIEPI, NFIR of EPRI, and EdF/CEA program in France. The theoretical understanding of this phenomenon is underway. Here, the process is peculiar in the following points; (1) majority of the domain of the material are changed to a new morphology after the restructuring, (2) the final size of the new grains is around 0.1 μm which is neither atomic scale nor macroscopic scale. (3) the morphology of the restructured domain indicates fractal like feature which indicates complex process is under-taken. From the first feature, the process is similar to phase transitions or metallographic transformations. However, as the crystallographic structure has no change before and after the restructuring, it is not the phase transition nor the transformation of atomic scale instability. The focus could be put on the material transport of mesoscopic scale which create the peculiar morphology. Indeed there are flows of energy and disturbances in crystallographic structure in nuclear materials on duty. Although the fission energy is 10 4 larger than the formation energy of the defects, thanks to the stability of the selected material, most of energy is thermalized without crystallographic instability. Little remained energy creates flows of disturbances and the new structure is a consequence of ordering process driven by these flows of disturbances. Therefore this phenomenon is a good example to study cooperative ordering process in physics of materials. This paper presents some of present understandings of the rim structure formation based on the mesoscopic mechanistic theories. Possible future development is also proposed (author) (ml)
Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system.
Directory of Open Access Journals (Sweden)
Raj Kumar Pan
Full Text Available One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. The coordination of many different co-occurring processes at this level underlies the command and control of overall network activity. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations such as, optimizing for resource constraints (viz., total wiring cost and communication efficiency (i.e., network path length. Even including information about the genetic relatedness of the cells cannot account for the observed modular structure. Comparison with other complex networks designed for efficient transport (of signals or resources implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including
Cost modelling of electricity-producing hot dry rock (HDR) geothermal systems in the United Kingdom
International Nuclear Information System (INIS)
Doherty, P.; Harrison, R.
1995-01-01
A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. The geometrical arrangement and the shape of the reservoir constitute major uncertainties in HDR systems. Their effect on temperature has a major influence on system performance, and therefore a range of theoretically possible geometries have been studied and the importance of geometrical effects on HDR electricity costs assessed. The most cost effective HDR arrangement in terms of optimized volumes and flow rates has been investigated for a world-wide range of thermal settings. The main conclusions from this study suggests that for HDR electricity to be economic, thermal gradients of 55 o C/km and above, well depths of 5 km or less, and production fluid temperatures of 210 o C and above are required. (UK)
Directory of Open Access Journals (Sweden)
Christoph Häni
2018-04-01
Full Text Available A controlled ammonia (NH3 release experiment was performed at a grassland site. The aim was to quantify the effect of dry deposition between the source and the receptors (NH3 measurement locations on emission rate estimates by means of inverse dispersion modelling. NH3 was released for three hours at a constant rate of Q = 6.29 mg s−1 from a grid of 36 orifices spread over an area of 250 m2. The increase in line-integrated NH3 concentration was measured with open-path optical miniDOAS devices at different locations downwind of the artificial source. Using a backward Lagrangian stochastic (bLS dispersion model (bLSmodelR, the fraction of the modelled release rate to the emitted NH3 ( Q bLS / Q was calculated from the measurements of the individual instruments. Q bLS / Q was found to be systematically lower than 1, on average between 0.69 and 0.91, depending on the location of the receptor. We hypothesized that NH3 dry deposition to grass and soil surfaces was the main factor responsible for the observed depletion of NH3 between source and receptor. A dry deposition algorithm based on a deposition velocity approach was included in the bLS modelling. Model deposition velocities were evaluated from a ‘big-leaf’ canopy resistance analogy. Canopy resistances (generally termed R c that provided Q bLS / Q = 1 ranged from 75 to 290 s m−1, showing that surface removal of NH3 by dry deposition can plausibly explain the original underestimation of Q bLS / Q . The inclusion of a dry deposition process in dispersion modelling is crucial for emission estimates, which are based on concentration measurements of depositing tracers downwind of homogeneous area sources or heterogeneously-distributed hot spots, such as, e.g., urine patches on pastures in the case of NH3.
Almatroudi, Ahmad; Hu, Honghua; Deva, Anand; Gosbell, Iain B; Jacombs, Anita; Jensen, Slade O; Whiteley, Greg; Glasbey, Trevor; Vickery, Karen
2015-10-01
The environment has been shown to be a source of pathogens causing infections in hospitalised patients. Incorporation of pathogens into biofilms, contaminating dry hospital surfaces, prolongs their survival and renders them tolerant to normal hospital cleaning and disinfection procedures. Currently there is no standard method for testing efficacy of detergents and disinfectants against biofilm formed on dry surfaces. The aim of this study was to develop a reproducible method of producing Staphylococcus aureus biofilm with properties similar to those of biofilm obtained from dry hospital clinical surfaces, for use in efficacy testing of decontamination products. The properties (composition, architecture) of model biofilm and biofilm obtained from clinical dry surfaces within an intensive care unit were compared. The CDC Biofilm Reactor was adapted to create a dry surface biofilm model. S. aureus ATCC 25923 was grown on polycarbonate coupons. Alternating cycles of dehydration and hydration in tryptone soy broth (TSB) were performed over 12 days. Number of biofilm bacteria attached to individual coupons was determined by plate culture and the coefficient of variation (CV%) calculated. The DNA, glycoconjugates and protein content of the biofilm were determined by analysing biofilm stained with SYTO 60, Alexa-488-labelled Aleuria aurantia lectin and SyproOrange respectively using Image J and Imaris software. Biofilm architecture was analysed using live/dead staining and confocal microscopy (CM) and scanning electron microscopy (SEM). Model biofilm was compared to naturally formed biofilm containing S. aureus on dry clinical surfaces. The CDC Biofilm reactor reproducibly formed a multi-layered, biofilm containing about 10(7) CFU/coupon embedded in thick extracellular polymeric substances. Within run CV was 9.5% and the between run CV was 10.1%. Protein was the principal component of both the in vitro model biofilm and the biofilms found on clinical surfaces. Continued
Saylor, Rick D.; Wolfe, Glenn M.; Meyers, Tilden P.; Hicks, Bruce B.
2014-01-01
The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (less than 3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.
Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model
Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao
2014-05-01
Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past
Quantum bit string commitment protocol using polarization of mesoscopic coherent states
International Nuclear Information System (INIS)
Mendonca, Fabio Alencar; Ramos, Rubens Viana
2008-01-01
In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed
Quantum bit string commitment protocol using polarization of mesoscopic coherent states
Mendonça, Fábio Alencar; Ramos, Rubens Viana
2008-02-01
In this work, we propose a quantum bit string commitment protocol using polarization of mesoscopic coherent states. The protocol is described and its security against brute force and quantum cloning machine attack is analyzed.
Spdef null mice lack conjunctival goblet cells and provide a model of dry eye
Marko, C.K.; Menon, B.B.; Chen, G.; Whitsett, J.A.; Clevers, H.; Gipson, I.K.
2013-01-01
Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific
High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials
International Nuclear Information System (INIS)
Snigireva, I; Snigirev, A
2013-01-01
We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals
Energy Technology Data Exchange (ETDEWEB)
Rozhkov, A.V., E-mail: arozhkov@gmail.co [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow (Russian Federation); Giavaras, G. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Yury P. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Freilikher, Valentin [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2011-06-15
This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pn-junctions, pnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.
The effects of freeze-dried Ganoderma lucidum mycelia on a recurrent oral ulceration rat model.
Xie, Ling; Zhong, Xiaohong; Liu, Dongbo; Liu, Lin; Xia, Zhilan
2017-12-01
Conventional scientific studies had supported the use of polysaccharides and β-glucans from a number of fungi, including Ganoderma lucidum for the treatment of recurrent oral ulceration (ROU). Our aim of the present study was to evaluate whether freeze-dried powder from G. lucidum mycelia (FDPGLM) prevents ROU in rats. A Sprague-Dawley (SD) rat model with ROU was established by autoantigen injection. The ROU rats were treated with three different dosages of FDPGLM and prednisone acetate (PA), and their effects were evaluated according to the clinical therapeutic evaluation indices of ROU. High-dose FDPGLM induced significantly prolonged total intervals and a reduction in the number of ulcers and ulcer areas, thereby indicating that the treatment was effective in preventing ROU. Enzyme-linked immunosorbent assay (ELISA) showed that high-dose FDPGLM significantly enhanced the serum transforming growth factor-β1 (TGF-β1) levels, whereas reduced those of interleukin-6 (IL-6) and interleukin-17 (IL-17). Flow cytometry (FCM) showed that the proportion of CD4 + CD25 + Foxp3 + (forkhead box P3) regulatory T cells (Tregs) significantly increased by 1.5-fold in the high-dose FDPGLM group compared to that in the rat model group (P < 0.01). The application of middle- and high-dose FDPGLM also resulted in the upregulation of Foxp3 and downregulation of retinoid-related orphan receptor gamma t(RORγt) mRNA. High-dose FDPGLM possibly plays a role in ROU by promoting CD4 + CD25 + Foxp3 + Treg and inhibiting T helper cell 17 differentiation. This study also shows that FDPGLM may be potentially used as a complementary and alternative medicine treatment scheme for ROU.
A model for dry sodium bicarbonate duct injection flue gas desulfurization
Energy Technology Data Exchange (ETDEWEB)
Changfa Wu; Soon-Jai Khang; Tim C. Keener; Sang-Kwun Lee [University of Cincinnati, Cincinnati, OH (United States). Department of Chemical Engineering
2004-03-01
A mathematical model is developed for simulation of dry sodium bicarbonate (NaHCO{sub 3}) duct injection for the removal of sulfur dioxide (SO{sub 2}) in flue gases across a fabric filter (baghouse). The model employs parallel reaction kinetics and assumes that the sodium bicarbonate injection process can be separated into two stages. The first stage is a transport duct section where NaHCO{sub 3} particles are injected into the sulfur dioxide laden gas stream. The second stage is the fabric filter section where sodium sorbents are collected and behave as a variable depth fixed bed reactor. The process simulation for the efficiency of desulfurization in flue gas is performed and evaluated for a variety of operating conditions. It is found that the removal of SO{sub 2} within the duct section is small and negligible for most practical conditions, with a contribution normally less than 5% of total SO{sub 2} removal. The major removal of SO{sub 2} occurs across the filter cake, which accumulates the sorbent particles on the fabric filter. These particles are periodically disposed as the filter is cleaned. The major factors for the process are temperature, particle size and SO{sub 2} gas concentration for all operating conditions. At low temperatures, the removal of SO{sub 2} increases as temperature increases, but the removal decreases at higher temperatures due to the impact of the thermal decomposition reaction of NaHCO{sub 3} on SO{sub 2} removal. It was found that the temperature for the highest removal of SO{sub 2} is within the range of 127-150{sup o}C and the removal efficiency also depends on particle size.
Fu, X.; Hu, L.; Lee, K. M.; Zou, J.; Ruan, X. D.; Yang, H. Y.
2010-10-01
This paper presents a method for dry calibration of an electromagnetic flowmeter (EMF). This method, which determines the voltage induced in the EMF as conductive liquid flows through a magnetic field, numerically solves a coupled set of multiphysical equations with measured boundary conditions for the magnetic, electric, and flow fields in the measuring pipe of the flowmeter. Specifically, this paper details the formulation of dry calibration and an efficient algorithm (that adaptively minimizes the number of measurements and requires only the normal component of the magnetic flux density as boundary conditions on the pipe surface to reconstruct the magnetic field involved) for computing the sensitivity of EMF. Along with an in-depth discussion on factors that could significantly affect the final precision of a dry calibrated EMF, the effects of flow disturbance on measuring errors have been experimentally studied by installing a baffle at the inflow port of the EMF. Results of the dry calibration on an actual EMF were compared against flow-rig calibration; excellent agreements (within 0.3%) between dry calibration and flow-rig tests verify the multiphysical computation of the fields and the robustness of the method. As requiring no actual flow, the dry calibration is particularly useful for calibrating large-diameter EMFs where conventional flow-rig methods are often costly and difficult to implement.
Causes of model dry and warm bias over central U.S. and impact on climate projections.
Lin, Yanluan; Dong, Wenhao; Zhang, Minghua; Xie, Yuanyu; Xue, Wei; Huang, Jianbin; Luo, Yong
2017-10-12
Climate models show a conspicuous summer warm and dry bias over the central United States. Using results from 19 climate models in the Coupled Model Intercomparison Project Phase 5 (CMIP5), we report a persistent dependence of warm bias on dry bias with the precipitation deficit leading the warm bias over this region. The precipitation deficit is associated with the widespread failure of models in capturing strong rainfall events in summer over the central U.S. A robust linear relationship between the projected warming and the present-day warm bias enables us to empirically correct future temperature projections. By the end of the 21st century under the RCP8.5 scenario, the corrections substantially narrow the intermodel spread of the projections and reduce the projected temperature by 2.5 K, resulting mainly from the removal of the warm bias. Instead of a sharp decrease, after this correction the projected precipitation is nearly neutral for all scenarios.Climate models repeatedly show a warm and dry bias over the central United States, but the origin of this bias remains unclear. Here the authors associate this bias to precipitation deficits in models and after applying a correction, projected precipitation in this region shows no significant changes.
Directory of Open Access Journals (Sweden)
Warita Alves de Melo
Full Text Available Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the arid climatic conditions associated with the Last Glacial Maximum (LGM, which is known as the modern-day dry forest refugia hypothesis. We studied the demographic history of Tabebuia rosealba (Bignoniaceae to understand the disjunct geographic distribution of South American SDTFs based on statistical phylogeography and ecological niche modeling (ENM. We specifically tested the dry forest refugia hypothesis; i.e., if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the LGM. We sampled 235 individuals across 18 populations in Central Brazil and analyzed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH and ycf6-trnC intergenic spacers and nuclear (ITS nrDNA genomes. We performed coalescence simulations of alternative hypotheses under demographic expectations from two a priori biogeographic hypotheses (1. the Pleistocene Arc hypothesis and, 2. a range shift to Amazon Basin and other two demographic expectances predicted by ENMs (3. expansion throughout the Neotropical South America, including Amazon Basin, and 4. retraction during the LGM. Phylogenetic analyses based on median-joining network showed haplotype sharing among populations with evidence of incomplete lineage sorting. Coalescent analyses showed smaller effective population sizes for T. roseoalba during the LGM compared to the present-day. Simulations and ENM also showed that its current spatial pattern of genetic diversity is most likely due to a scenario of range retraction during the LGM instead of the fragmentation from a once extensive and largely contiguous SDTF across South America, not supporting the
Kushwaha, Deepika; Dutta, Susmita
2017-05-01
The present work aims at evaluation of the potential of cyanobacterial biomass to remove Cu(II) from simulated wastewater. Both dried and carbonized forms of Lyngbya majuscula, a cyanobacterial strain, have been used for such purpose. The influences of different experimental parameters viz., initial Cu(II) concentration, solution pH and adsorbent dose have been examined on sorption of Cu(II). Kinetic and equilibrium studies on Cu(II) removal from simulated wastewater have been done using both dried and carbonized biomass individually. Pseudo-second-order model and Langmuir isotherm have been found to fit most satisfactorily to the kinetic and equilibrium data, respectively. Maximum 87.99 and 99.15 % of Cu(II) removal have been achieved with initial Cu(II) concentration of 10 and 25 mg/L for dried and carbonized algae, respectively, at an adsorbent dose of 10 g/L for 20 min of contact time and optimum pH 6. To optimize the removal process, Response Surface Methodology has been employed using both the dried and carbonized biomass. Removal with initial Cu(II) concentration of 20 mg/L, with 0.25 g adsorbent dose in 50 mL solution at pH 6 has been found to be optimum with both the adsorbents. This is the first ever attempt to make a comparative study on Cu(II) removal using both dried algal biomass and its activated carbon. Furthermore, regeneration of matrix was attempted and more than 70% and 80% of the adsorbent has been regenerated successfully in the case of dried and carbonized biomass respectively upto the 3rd cycle of regeneration study.
Potential of yeasts isolated from dry-cured ham to control ochratoxin A production in meat models.
Peromingo, Belén; Núñez, Félix; Rodríguez, Alicia; Alía, Alberto; Andrade, María J
2018-03-02
The environmental conditions reached during the ripening of dry-cured meat products favour the proliferation of moulds on their surface. Some of these moulds are hazardous to consumers because of their ability to produce ochratoxin A (OTA). Biocontrol using Debaryomyces hansenii could be a suitable strategy to prevent the growth of ochratoxigenic moulds and OTA accumulation in dry-cured meat products. The aim of this work was to evaluate the ability of two strains of D. hansenii to control the growth and OTA production of Penicillium verrucosum in a meat model under water activities (a w ) values commonly reached during the dry-cured meat product ripening. The presence of D. hansenii strains triggered a lengthening of the lag phase and a decrease of the growth rate of P. verrucosum in meat-based media at 0.97 and 0.92 a w . Both D. hansenii strains significantly reduced OTA production (between 85.16 and 92.63%) by P. verrucosum in the meat-based medium at 0.92 a w . Neither absorption nor detoxification of OTA by D. hansenii strains seems to be involved. However, a repression of the expression of the non-ribosomal peptide synthetase (otanpsPN) gene linked to the OTA biosynthetic pathway was observed in the presence of D. hansenii. To confirm the protective role of D. hansenii strains, they were inoculated together with P. verrucosum Pv45 in dry-fermented sausage and dry-cured ham slices. Although P. verrucosum Pv45 counts were not affected by the presence of D. hansenii in both meat matrices, a reduction of OTA amount was observed. Therefore, the effect of D. hansenii strains on OTA accumulation should be attributed to a reduction at transcriptional level. Consequently, native D. hansenii can be useful as biocontrol agent in dry-cured meat products for preventing the hazard associated with the presence of OTA. Copyright © 2018 Elsevier B.V. All rights reserved.
de Melo, Warita Alves; Lima-Ribeiro, Matheus S; Terribile, Levi Carina; Collevatti, Rosane G
2016-01-01
Studies based on contemporary plant occurrences and pollen fossil records have proposed that the current disjunct distribution of seasonally dry tropical forests (SDTFs) across South America is the result of fragmentation of a formerly widespread and continuously distributed dry forest during the arid climatic conditions associated with the Last Glacial Maximum (LGM), which is known as the modern-day dry forest refugia hypothesis. We studied the demographic history of Tabebuia rosealba (Bignoniaceae) to understand the disjunct geographic distribution of South American SDTFs based on statistical phylogeography and ecological niche modeling (ENM). We specifically tested the dry forest refugia hypothesis; i.e., if the multiple and isolated patches of SDTFs are current climatic relicts of a widespread and continuously distributed dry forest during the LGM. We sampled 235 individuals across 18 populations in Central Brazil and analyzed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH and ycf6-trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. We performed coalescence simulations of alternative hypotheses under demographic expectations from two a priori biogeographic hypotheses (1. the Pleistocene Arc hypothesis and, 2. a range shift to Amazon Basin) and other two demographic expectances predicted by ENMs (3. expansion throughout the Neotropical South America, including Amazon Basin, and 4. retraction during the LGM). Phylogenetic analyses based on median-joining network showed haplotype sharing among populations with evidence of incomplete lineage sorting. Coalescent analyses showed smaller effective population sizes for T. roseoalba during the LGM compared to the present-day. Simulations and ENM also showed that its current spatial pattern of genetic diversity is most likely due to a scenario of range retraction during the LGM instead of the fragmentation from a once extensive and largely contiguous SDTF across South America, not supporting the South
Guzmán, Mauricio; Keitelman, Irene; Sabbione, Florencia; Trevani, Analía S; Giordano, Mirta N; Galletti, Jeremías G
2016-10-01
Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression. Here we report comparable findings in an entirely different murine model of dry eye that involves resection of the extraorbital lacrimal glands but no systemic muscarinic receptor blockade. Upon ocular instillation of ovalbumin, a delayed breakdown in mucosal tolerance to this antigen was observed in excised but not in sham-operated mice, which was mediated by interferon γ- and interleukin 17-producing antigen-specific T cells. Consistently, antigen-specific regulatory T cells were detectable in sham-operated but not in excised mice. As for other models of ocular surface disorders, epithelial activation of the NF-κB pathway by desiccating stress was determinant in the mucosal immune outcome. Underscoring the role of mucosal tolerance disruption in dry eye pathogenesis, its prevention by a topical NF-κB inhibitor led to reduced corneal damage in excised mice. Altogether these results show that surgically originated desiccating stress also initiates an abnormal Th1/Th17 T cell response to harmless exogenous antigens that reach the ocular surface. This event might actually contribute to corneal damage and challenges the conception of dry eye as a strictly autoimmune disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kunda, Nitesh K; Alfagih, Iman M; Dennison, Sarah R; Somavarapu, Satyanarayana; Merchant, Zahra; Hutcheon, Gillian A; Saleem, Imran Y
2015-08-15
Pulmonary delivery of macromolecules has been the focus of attention as an alternate route of delivery with benefits such as; large surface area, thin alveolar epithelium, rapid absorption and extensive vasculature. In this study, a model protein, bovine serum albumin (BSA) was adsorbed onto cationic PGA-co-PDL polymeric nanoparticles (NPs) prepared by a single emulsion solvent evaporation method using a cationic surfactant didodecyldimethylammonium bromide (DMAB) at 2% w/w (particle size: 128.64±06.01 nm and zeta-potential: +42.32±02.70 mV). The optimum cationic NPs were then surface adsorbed with BSA, NP:BSA (100:4) ratio yielded 10.01±1.19 μg of BSA per mg of NPs. The BSA adsorbed NPs (5 mg/ml) were then spray-dried in an aqueous suspension of L-leucine (7.5 mg/ml, corresponding to a ratio of 1:1.5/NP:L-leu) using a Büchi-290 mini-spray dryer to produce nanocomposite microparticles (NCMPs) containing cationic NPs. The aerosol properties showed a fine particle fraction (FPF, dae<4.46 μm) of 70.67±4.07% and mass median aerodynamic diameter (MMAD) of 2.80±0.21 μm suggesting a deposition in the respiratory bronchiolar region of the lungs.The cell viability was 75.76±03.55% (A549 cell line) at 156.25 μg/ml concentration after 24 h exposure. SDS-PAGE and circular dichroism (CD) confirmed that the primary and secondary structure of the released BSA was maintained. Moreover, the released BSA showed 78.76±1.54% relative esterolytic activity compared to standard BSA. Copyright © 2015 Elsevier B.V. All rights reserved.
Sensitization of trigeminal brainstem pathways in a model for tear deficient dry eye.
Rahman, Mostafeezur; Okamoto, Keiichiro; Thompson, Randall; Katagiri, Ayano; Bereiter, David A
2015-05-01
Chronic dry eye disease (DE) is associated with an unstable tear film and symptoms of ocular discomfort. The characteristics of symptoms suggest a key role for central neural processing; however, little is known about central neuroplasticity and DE. We used a model for tear deficient DE and assessed effects on eye blink behavior, orbicularis oculi muscle activity (OOemg), and trigeminal brainstem neural activity in male rats. Ocular-responsive neurons were recorded at the interpolaris/caudalis transition (Vi/Vc) and Vc/upper cervical cord (Vc/C1) regions under isoflurane, whereas OOemg activity was recorded under urethane. Spontaneous tear volume was reduced by ∼50% at 14 days after exorbital gland removal. Hypertonic saline-evoked eye blink behavior in awake rats was enhanced throughout the 14 days after surgery. Saline-evoked neural activity at the Vi/Vc transition and in superficial and deep laminae at the Vc/C1 region was greatly enhanced in DE rats. Neurons from DE rats classified as wide dynamic range displayed enlarged convergent periorbital receptive fields consistent with central sensitization. Saline-evoked OOemg activity was markedly enhanced in DE rats compared with controls. Synaptic blockade at the Vi/Vc transition or the Vc/C1 region greatly reduced hypertonic saline-evoked OOemg activity in DE and sham rats. These results indicated that persistent tear deficiency caused sensitization of ocular-responsive neurons at multiple regions of the caudal trigeminal brainstem and enhanced OOemg activity. Central sensitization of ocular-related brainstem circuits is a significant factor in DE and likely contributes to the apparent weak correlation between peripheral signs of tear dysfunction and symptoms of irritation.
Higuchi, Akihiro; Inoue, Hiroyoshi; Kaneko, Yoshio; Oonishi, Erina; Tsubota, Kazuo
2016-11-11
The ocular surface is strongly affected by oxidative stress, which causes many ocular diseases including dry eye. Previously, we showed that selenium compounds, e.g., selenoprotein P and Se-lactoferrin, were candidates for treatment of dry eye. This paper shows the efficacy of Se-lactoferrin for the treatment of dry eye compared with Diquas as a control drug using two dry eye models and incorporation of lactoferrin into corneal epithelial cells via lactoferrin receptors. We show the efficacy of Se-lactoferrin eye drops in the tobacco smoke exposure rat dry eye model and short-term rabbit dry eye model, although Diquas eye drops were only effective in the short-term rabbit dry eye model. These results indicate that Se-lactoferrin was useful in the oxidative stress-causing dry eye model. Se-lactoferrin was taken into corneal epithelium cells via lactoferrin receptors. We identified LRP1 as the lactoferrin receptor in the corneal epithelium involved in lactoferrin uptake. Se-lactoferrin eye drops did not irritate the ocular surface of rabbits. Se-lactoferrin was an excellent candidate for treatment of dry eye, reducing oxidative stress by a novel mechanism.
Directory of Open Access Journals (Sweden)
Salemović Duško R.
2017-01-01
Full Text Available This paper presents the mathematical model and numerical analysis of the convective drying process of thick slices of colloidal capillary-porous materials slowly moving through conveyor-belt dryer. A flow of hot moist air was used as drying agent. The drying process has been analyzed in the form of a 2-D mathematical model, in two directions: along the conveyor and perpendicular on it. The mathematical model consists of two non-linear differential equations and one equation with a transcendent character and it is based on the mathematical model developed for drying process in a form of a 1-D thin layer. The appropriate boundary conditions were introduced. The presented model is suitable for the automated control of conveyor-belt dryers. The obtained results with analysis could be useful in predicting the drying kinetics of potato slices and similar natural products.
Mazaheri, Davood; Shojaosadati, Seyed Abbas; Zamir, Seyed Morteza; Mousavi, Seyyed Mohammad
2018-04-21
In this work, mathematical modeling of ethanol production in solid-state fermentation (SSF) has been done based on the variation in the dry weight of solid medium. This method was previously used for mathematical modeling of enzyme production; however, the model should be modified to predict the production of a volatile compound like ethanol. The experimental results of bioethanol production from the mixture of carob pods and wheat bran by Zymomonas mobilis in SSF were used for the model validation. Exponential and logistic kinetic models were used for modeling the growth of microorganism. In both cases, the model predictions matched well with the experimental results during the exponential growth phase, indicating the good ability of solid medium weight variation method for modeling a volatile product formation in solid-state fermentation. In addition, using logistic model, better predictions were obtained.
Dry (CO_2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling
International Nuclear Information System (INIS)
Niu, Juntian; Du, Xuesen; Ran, Jingyu; Wang, Ruirui
2016-01-01
Graphical abstract: - Highlights: • CH appears to be the most abundant species on Pt(1 1 1) surface in CH_4 dissociation. • CO_2* + H* → COOH* + * → CO* + OH* is the dominant reaction pathway in CO_2 activation. • Major reaction pathway in CH oxidation: CH* + OH* → CHOH* + * → CHO* + H* → CO* + 2H*. • C* + OH* → COH* + * → CO* + H* is the dominant reaction pathway in C oxidation. - Abstract: Dry reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. In order to design catalysts that minimize the deactivation and improve the selectivity and activity for a high H_2/CO yield, it is necessary to understand the elementary reaction steps involved in activation and conversion of CO_2 and CH_4. In our present work, a microkinetic model based on density functional theory (DFT) calculations is applied to explore the reaction mechanism for methane dry reforming on Pt catalysts. The adsorption energies of the reactants, intermediates and products, and the activation barriers for the elementary reactions involved in the DRM process are calculated over the Pt(1 1 1) surface. In the process of CH_4 direct dissociation, the kinetic results show that CH dissociative adsorption on Pt(1 1 1) surface is the rate-determining step. CH appears to be the most abundant species on the Pt(1 1 1) surface, suggesting that carbon deposition is not easy to form in CH_4 dehydrogenation on Pt(1 1 1) surface. In the process of CO_2 activation, three possible reaction pathways are considered to contribute to the CO_2 decomposition: (I) CO_2* + * → CO* + O*; (II) CO_2* + H* → COOH* + * → CO* + OH*; (III) CO_2* + H* → mono-HCOO* + * → bi-HCOO* + * [CO_2* + H* → bi-HCOO* + *] → CHO* + O*. Path I requires process to overcome the activation barrier of 1.809 eV and the forward reaction is calculated to be strongly endothermic by 1.430 eV. In addition, the kinetic results also indicate this process is not easy to
The Potential of Economic Model Predictive Control for Spray Drying Plants
DEFF Research Database (Denmark)
Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
In 2015 the milk quota system in the European Union will be completely liberalized. As a result, analysts expect production of skimmed and whole milk powder to increase by 5-6% while its price will decline by about 6-7%. Multi-stage spray drying is the prime process for the production of food...... powders. The process is highly energy consuming and capacity depends among other factors on correct control of the dryer. Consequently efficient control and optimization of the spray drying process has become increasingly important to accommodate the future market challenges. The goal of the presentation...
International Nuclear Information System (INIS)
Sameshima, R.
1996-01-01
The linear relationship between the amount of absorbed radiation and dry matter production by crop communities has long been known, and the proportionality constant between them is known as the radiation use efficiency (RUE). To analyze and predict crop production using RUE, the assumption is often made that RUE is not sensitive to radiation intensity and that dry matter production rate (DMPR) is a linear function of radiation intensity.However, there is evidence in opposition to this assumption, including reports of increasing RUE in shade tests, and hyperbolic response of photosynthetic rate to radiation intensity. The following model was developed and used to analyze the response of DMPR and RUE to daily radiation R S : DMPR = DMPR max (R S ) * g(α) where DMPR max (R S ) is the DMPR of a hypothetical soybean community absorbing all radiation, and g(α) represents the effect of radiation absorptivity (α). A hyperbolic curve and a straight line were employed for DMPR max (R S ) and g(α), respectively. Field experimental data including shade tests were used to determine the parameters for the model. Two sets of parameters were required to cover the entire experimental period. DMPR max (R S ) had an apparent curvilinear relationship with R S . The model successfully described dry matter production under successive low radiation conditions, which could not be estimated by a model with RUE insensitive to radiation. (author)
Evaluation of a Novel Artificial Tear in the Prevention and Treatment of Dry Eye in an Animal Model.
She, Yujing; Li, Jinyang; Xiao, Bing; Lu, Huihui; Liu, Haixia; Simmons, Peter A; Vehige, Joseph G; Chen, Wei
2015-11-01
To evaluate effects of a novel multi-ingredient artificial tear formulation containing carboxymethylcellulose (CMC) and hyaluronic acid (HA) in a murine dry eye model. Dry eye was induced in mice (C57BL/6) using an intelligently controlled environmental system (ICES). CMC+HA (Optive Fusion™), CMC-only (Refresh Tears(®)), and HA-only (Hycosan(®)) artificial tears and control phosphate-buffered saline (PBS) were administered 4 times daily and compared with no treatment (n = 64 eyes per group). During regimen 1 (prevention regimen), mice were administered artificial tears or PBS for 14 days (starting day 0) while they were exposed to ICES, and assessed on days 0 and 14. During regimen 2 (treatment regimen), mice exposed to ICES for 14 days with no intervention were administered artificial tears or PBS for 14 days (starting day 14) while continuing exposure to ICES, and assessed on days 0, 14, and 28. Corneal fluorescein staining and conjunctival goblet cell density were measured. Artificial tear-treated mice had significantly better outcomes than control groups on corneal staining and goblet cell density (P dry eye. Improvements observed for corneal fluorescein staining and conjunctival goblet cell retention suggest that this combination may be a viable treatment option for dry eye disease.
Alveolar osteitis; Alveolitis; Septic socket ... You may be more at risk for dry socket if you: Have poor oral health Have a ... after having a tooth pulled Have had dry socket in the past Drink from a straw after ...
International Nuclear Information System (INIS)
Xu, Juan; Ding, Taotao; Wang, Jin; Zhang, Jun; Wang, Shuai; Chen, Changqing; Fang, Yanyan; Wu, Zhihao; Huo, Kaifu; Dai, Jiangnan
2015-01-01
Highlights: • WO 3 mesoscopic microspheres self-assembled by nanofibers. • Inorganic solvent H 2 O 2 play an integral role in the process of self-assembly. • WO 3 mesoscopic microspheres exhibit specific capacitance value of 797.05 F g −1 at a constant density of 0.5 A g −1 in 2 M H 2 SO 4 aqueous solution. • The WO 3 //AC asymmetric supercapacitor displays a maximum energy density of 97.61 Wh kg −1 and power density of 28.01 kW kg −1 . - Abstract: Mesoscopic WO 3 microspheres composed of self-assembly nanofibers were prepared by hydrothermal reaction of tungsten acid potassium and H 2 O 2 . The mesoscopic WO 3 microspheres offer desired porous properties and large effective active areas provided by intertwining nanofibers, thereby resulting in excellent supercapacitive properties due to facile electrolyte flow and fast reaction kinetics. In three electrode configuration, mesoscopic WO 3 microspheres exhibit specific capacitance value of 797.05 F g −1 at the current density of 0.5 A g −1 and excellent cycling stability without decay after 2000 cycles in 2 M H 2 SO 4 aqueous solution. These values are superior to other reported WO 3 composites. An asymmetric supercapacitor is constructed using the as-prepared WO 3 mesoscopic microspheres as the positive electrode and the activated carbon as the negative electrode, which displays excellent electrochemical performance with a maximum energy density of 97.61 Wh kg −1 and power density of 28.01 kW kg −1 . These impressive performances suggest that the mesoscopic WO 3 microspheres are promising electrode materials for supercapacitor
Energy stability of droplets and dry spots in a thin film model of hanging drops
Cheung, Ka-Luen; Chou, Kai-Seng
2017-10-01
The 2-D thin film equation describing the evolution of hang drops is studied. All radially symmetric steady states are classified, and their energy stability is determined. It is shown that the droplet with zero contact angle is the only global energy minimizer and the dry spot with zero contact angle is a strict local energy minimizer.
Modeling of ammonia dry deposition downwind of a large poultry facility
This report describes a study investigating dry deposition of ammonia downwind of a poultry facility located on the southern perimeter of the Pocosin Lakes National Wildlife Refuge. This work is a component of a larger project conducted by the U.S. Fish and Wildlife Service: "Imp...
Albalasmeh, A. A.; Ghezzehei, T.
2011-12-01
Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. The interaction of environmental and biotic agents influences the physical condition of the soil, particularly through soil structural evolution. Wetting and drying cycles are important environmental processes known to enhance aggregation, while clay minerals, sesquioxides and soil organic matter (SOM) are the soil solids most involved in soil structural development. We hypothesize that drying of capillary water transports suspended and/or dissolved cementing agents toward inter-particle contacts and eventually deposits part of the colloidal mass forming inter-particle bonds. Here, we will show the role of wetting and drying cycles on soil aggregation and stabilization and how these cycles transport and deposit organic cementing agents at the inter-particle contact. We will present results of the effect of particle size, number of wetting and drying cycles, viscosity, molecule length and concentration of suspended and/or dissolved cementing agents on soil aggregation and stabilization.
A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems
Lukovic, M.; Savija, B.; Schlangen, H.E.J.G.; Ye, G.; van Breugel, K.
2016-01-01
Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions,
Inflammatory Response to Lipopolysaccharide on the Ocular Surface in a Murine Dry Eye Model.
Simmons, Ken T; Xiao, Yangyan; Pflugfelder, Stephen C; de Paiva, Cintia S
2016-05-01
Toll-like receptor 4 (TLR4) alerts cells to the presence of bacteria by initiating an inflammatory response. We hypothesize that disruption of the ocular surface barrier in dry eye enhances TLR4 signaling. This study determined whether dry eye enhances expression of inflammatory mediators in response to topically applied TLR4 ligand. A single dose of lipopolysaccharide (LPS) or vehicle (endotoxin-free water) was applied to the cornea of nonstressed (NS) mice or mice subjected to 5 days of desiccating stress (DS). After 4 hours, corneal epithelium and conjunctiva were extracted to analyze expression of inflammatory mediators via PCR. Protein expression was confirmed by immunobead assay and immunostaining. Topically applied LPS increased expression of inflammatory mediators IL-1β, CXCL10, IL-12a, and IFN-γ in the conjunctiva, and IL-1β and CXCL10 in the cornea of NS mice compared to that in untreated controls. LPS in DS mice produced 3-fold increased expression of IL-1β in cornea and 2-fold increased expression in IL-12a in conjunctiva compared to that in LPS-treated control mice. LPS increased expression of inflammatory cytokines on the ocular surface. This expression was further increased in dry eye, which suggests that epithelial barrier disruption enhances exposure of LPS to TLR4+ cells and that the inflammatory response to endotoxin-producing commensal or pathogenic bacteria may be more severe in dry eye disease.
López, R.; Vaca, M.; Terres, H.; Lizardi, A.; Morales, J.; Flores, J.; Chávez, S.
2015-01-01
The sunflower is an annual plant native to the Americas. It possesses a large inflorescence (flowering head), and its name is derived from the flower's shape and image, which is often used to capture the sun. The plant has a rough, broad, hairy stem, coarsely toothed, with rough leaves, and circular flower heads. The sunflower seeds are appreciated for their oil, which has become a widespread cooking ingredient. Leaves of the sunflower can be used as cattle feed, while the stems contain a fiber that may be used in paper production. Recently this flower has been used in phytoremediation of soils, contaminated with heavy metals. Sunflower has been probed as an efficient phytoextractor of chromium, lead, aluminum, zinc, cadmium from soil. In this work we present the experimental results of the drying of the sunflower stem, cut in 100 mm longitudinal sections, with diameters in the range of 11-18 mm. The aim was to obtain a dry and easy-to-handle final product, since these plants were originally cultivated in order to extract heavy metals from a polluted soil. The dried stems could then be easily confined or sent to recycle premises to concentrate the metals. The drying process was done in forced convection within a hot air tunnel. The used temperature was 60 °C, the velocity of air was 3 m/s and the required times were 8 hours. The initial average wet mass was 28 g and the final value was 5 g, resulting in the aimed product.
Predictive model for consumer preference of a dried, chip-style persimmon product
The State of California is a major producer of Asian persimmons (Diospyros kaki), however, there is limited availability of persimmons outside of this region and the fruit’s short harvest season. A dried, chip-style product could increase the geographic area and timeframe in which persimmon growers...
A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime
International Nuclear Information System (INIS)
Ha, Sang Jun; No, Hee Cheon
1997-01-01
This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variation in pressure, tube diameter and length, mass flux and inlet subcooling
Chan, Ho Yin; Lankevich, Vladimir; Vekilov, Peter G.; Lubchenko, Vassiliy
2012-01-01
Toward quantitative description of protein aggregation, we develop a computationally efficient method to evaluate the potential of mean force between two folded protein molecules that allows for complete sampling of their mutual orientation. Our model is valid at moderate ionic strengths and accounts for the actual charge distribution on the surface of the molecules, the dielectric discontinuity at the protein-solvent interface, and the possibility of protonation or deprotonation of surface residues induced by the electric field due to the other protein molecule. We apply the model to the protein lysozyme, whose solutions exhibit both mesoscopic clusters of protein-rich liquid and liquid-liquid separation; the former requires that protein form complexes with typical lifetimes of approximately milliseconds. We find the electrostatic repulsion is typically lower than the prediction of the Derjaguin-Landau-Verwey-Overbeek theory. The Coulomb interaction in the lowest-energy docking configuration is nonrepulsive, despite the high positive charge on the molecules. Typical docking configurations barely involve protonation or deprotonation of surface residues. The obtained potential of mean force between folded lysozyme molecules is consistent with the location of the liquid-liquid coexistence, but produces dimers that are too short-lived for clusters to exist, suggesting lysozyme undergoes conformational changes during cluster formation. PMID:22768950
International Nuclear Information System (INIS)
Kim, J. S.; Lee, K. S.; Choi, J. W.; Kwon, S.
2010-01-01
In South Korea, a total of twenty nuclear reactors are in operation; the cumulative amount of spent fuel is estimated to be 10,490 MTU in 2009. The full capacity of the waste storage is expected to be saturated in around 2016. However, a national strategy for spent fuel management has not yet been set down and high level waste (HLW) such as spent fuel will have to be stored at-reactor (AR) by re-racking. Recently an worldwide interest on the dry storage has increased especially around U.S. With a perspective of the material of the spent fuel dry storage cask, the system can be divided into two types of metal and concrete casks. The concrete type cask is a very attractive option because of the cost competitiveness of concrete material and its relatively long-term durability. Although the type of metal cask is chosen, the use of cementitious material is inevitable at least for the cask foundation and the facilities for the protection of dry storage structures. Upon being placed, the performance of concrete begins to deteriorate from the intrinsic change of cement and the physical/ chemical environmental conditions. Thus it is necessary to evaluate the durability of a concrete for the increase of reliability and safety of the whole system during the designed life time. Considering the dry storage system of spent fuel is the item which can create a lot of added value, the development of a dry storage cask is usually initiated by private enterprises among developed countries. The detail research results and specific design criteria for the safety assessment of a concrete cask have not been revealed to the public well. In this paper, the major expected degradation factors and related degradation models of concrete casks were investigated as part of the safety assessment by taking account of the site where Korea industrial nuclear power plants are located
International Nuclear Information System (INIS)
Ha, Sang Jun
1998-02-01
A new dry-spot model for critical heat flux (CHF) is proposed. The new concept for dry area formation based on Poisson distribution of active nucleation sites and the critical active site number is introduced. The model is based on the boiling phenomena observed in nucleate boiling such as Poisson distribution of active nucleation sites and formation of dry spots on the heating surface. It is hypothesized that when the number of bubbles surrounding one bubble exceeds a critical number, the surrounding bubbles restrict the feed of liquid to the microlayer under the bubble. Then a dry spot of vapor will form on the heated surface. As the surface temperature is raised, more and more bubbles will have a population of surrounding active sites over the critical number. Consequently, the number of the spots will increase and the size of dry areas will increase due to merger of several dry spots. If this trend continues, the number of effective sites for heat transport through the wall will diminish, and CHF and transition boiling occur. The model is applicable to pool and subcooled forced convection boiling conditions, based on the common mechanism that CHF and transition boiling are caused by the accumulation and coalescences of dry spots. It is shown that CHF and heat flux in transition boiling can be determined without any empirical parameter based on information on the boiling parameters such as active site density and bubble diameter, etc., in nucleate boiling. It is also shown that the present model well represents actual phenomena on CHF and transition boiling and explains the mechanism on how parameters such as flow modes (pool or flow) and surface wettability influence CHF and transition boiling. Validation of the present model for CHF and transition boiling is achieved without any tuning parameter always present in earlier models. It is achieved by comparing the predictions of CHF and heat flux in transition boiling using measured boiling parameters in nucleate
International Nuclear Information System (INIS)
Dupray, F.
2008-12-01
This Ph.D. thesis aims at characterising and modeling the mechanical behaviour of concrete under high confinement at the mesoscopic scale. This scale corresponds to that of the large aggregates and the cementitious matrix. The more general scope of this study is the understanding of concrete behaviour under dynamic loading. A dynamic impact can generate mean pressures around 1 GPa. But the characterisation of a material response, in an homogeneous state of stress, can only be achieved through quasi-static tests. The experimentations led in 3S-R Laboratory have underlined the importance of the aggregates in the triaxial response of concrete. Modeling concrete at the mesoscopic level, as a composite of an aggregates phase and a mortar phase, permits a representation of the aggregates effect. An experimental study of the behaviour of mortar phase is performed. Usual tests and hydrostatic and triaxial high confinement tests are realised. The parameters of a constitutive model that couples plasticity with a damage law are identified from these tests. This model is able to reproduce the nonlinear compaction of mortar, the damage behaviour under uniaxial tension or compression, and plasticity under high confinement. The biphasic model uses the finite element method with a cubic and regular mesh. A Monte-Carlo method is used to place quasi-spherical aggregates that respect the given particle size of a reference concrete. Each element is identified by belonging either to the mortar or to the aggregate phase. Numerical simulations are compared with the experimental tests on this concrete. The parameters for these simulations are only identified on the mortar. The simulations reproduce the different phases observed in hydrostatic compression. The evolution of axial moduli under growing confinement is shown, as is the good reproduction of the limit-states experimentally observed under high confinement. The fracture aspect of numerical simulations is comparable with that of
Time course of ocular surface and lacrimal gland changes in a new scopolamine-induced dry eye model.
Viau, Sabrina; Maire, Marie-Annick; Pasquis, Bruno; Grégoire, Stéphane; Fourgeux, Cynthia; Acar, Niyazi; Bretillon, Lionel; Creuzot-Garcher, Catherine P; Joffre, Corinne
2008-06-01
The aim of this study was to set up an animal model of dry eye showing disturbance in several components of the lacrimal functional unit, and to describe the time course of the appearance of clinical signs and inflammatory markers. Dry eye was induced in 6-week-old female Lewis rats by a systemic and continuous delivery of scopolamine via osmotic pumps implanted subcutaneously. We first determined the appropriate dose of scopolamine (6, 12.5, or 25 mg/day) for 28 days. In a second set of experiments, we determined markers after 1, 2, 3, 7, 10, 17, or 28 days of a 12.5-mg/day dose. Clinical signs of corneal dryness were evaluated in vivo using fluorescein staining. MHC II expression and mucin Muc5AC production were detected on the conjunctival epithelium using immunostaining. The level of IL-1beta, IL-6, TNF-alpha, and IFN-gamma mRNA was evaluated by real-time polymerase chain reaction in conjunctiva and exorbital lacrimal gland (LG). Lipids were extracted from the exorbital LG for fatty acid analysis. Daily scopolamine doses of 12.5 mg and 25 mg applied for a 28-day period induced keratitis, a decrease in Muc5AC immunostaining density in the conjunctival epithelium, and modifications in the fatty acid composition of the exorbital LG. Animals treated with a 12.5-mg/day dose of scopolamine exhibited an increase in corneal fluorescein staining after 2, 10, and 28 days. All animals exhibited unilateral or bilateral keratitis after 17 days. In the conjunctival epithelium, a significant decrease in Muc5AC immunostaining density was observed at early and late time points, and MHC II expression tended to be increased after 1, 7, 10, and 28 days, without reaching statistical significance. The levels of TNF-alpha, IL-1beta and IL-6 mRNA were increased with scopolamine treatment in both conjunctiva and exorbital LG. Arachidonic acid and the Delta5 desaturase index were significantly increased in the exorbital LG of dry eye animals at each time point. This systemic and
Maria Theresa I. Cabaraban; Charles N. Kroll; Satoshi Hirabayashi; David J. Nowak
2013-01-01
A distributed adaptation of i-Tree Eco was used to simulate dry deposition in an urban area. This investigation focused on the effects of varying temperature, LAI, and NO2 concentration inputs on estimated NO2 dry deposition to trees in Baltimore, MD. A coupled modeling system is described, wherein WRF provided temperature...
International Nuclear Information System (INIS)
López, R; Vaca, M; Terres, H; Lizardi, A; Morales, J; Flores, J; Chávez, S
2015-01-01
The sunflower is an annual plant native to the Americas. It possesses a large inflorescence (flowering head), and its name is derived from the flower's shape and image, which is often used to capture the sun. The plant has a rough, broad, hairy stem, coarsely toothed, with rough leaves, and circular flower heads. The sunflower seeds are appreciated for their oil, which has become a widespread cooking ingredient. Leaves of the sunflower can be used as cattle feed, while the stems contain a fiber that may be used in paper production. Recently this flower has been used in phytoremediation of soils, contaminated with heavy metals. Sunflower has been probed as an efficient phytoextractor of chromium, lead, aluminum, zinc, cadmium from soil. In this work we present the experimental results of the drying of the sunflower stem, cut in 100 mm longitudinal sections, with diameters in the range of 11-18 mm. The aim was to obtain a dry and easy-to-handle final product, since these plants were originally cultivated in order to extract heavy metals from a polluted soil. The dried stems could then be easily confined or sent to recycle premises to concentrate the metals. The drying process was done in forced convection within a hot air tunnel. The used temperature was 60 °C, the velocity of air was 3 m/s and the required times were 8 hours. The initial average wet mass was 28 g and the final value was 5 g, resulting in the aimed product
Spdef Null Mice Lack Conjunctival Goblet Cells and Provide a Model of Dry Eye
Marko, Christina K.; Menon, Balaraj B.; Chen, Gang; Whitsett, Jeffrey A.; Clevers, Hans; Gipson, Ilene K.
2013-01-01
Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef−/− mice, we determined that Spdef is required for conjunct...
Directory of Open Access Journals (Sweden)
Wilton Pereira da Silva
2014-06-01
Full Text Available Mass migrations in coconut slices during osmotic dehydration and drying are described using a diffusion model with boundary condition of the third kind. The osmotic dehydration experiment was performed at 35°Brix (water and sucrose and 40 °C. The convective drying experiments were performed at 50, 60 and 70 °C. The one-dimensional solution of the diffusion equation for an infinite slab was coupled with an optimizer to determine the effective mass diffusivities D and convective mass transfer coefficients h of the five processes studied. The analyses of the obtained results indicate that there is a good agreement between each experimental dataset and the corresponding simulation using D and h determined by optimization.
Kim, Kyung-A; Hyun, Lee Chung; Jung, Sang Hoon; Yang, Sung Jae
2016-01-01
In this study, the beneficial effects of the oral administration of ethanol extract of Diospyros kaki (EEDK) were tested on a mouse dry eye model induced by benzalkonium chloride (BAC). A solution of 0.2% BAC was administered topically to mouse eyes for 14 days, twice daily, to induce dry eye. Various concentrations of EEDK were administrated daily by oral gavage for 14 days after BAC treatment. Preservative-free eye drops were instilled in the positive-control group. The tear secretion volume (Schirmer's test), tear break-up time (BUT), and fluorescein score were measured on the ocular surface. BAC-induced corneal damage was tested with hematoxylin-eosin staining. Moreover, apoptotic cell death in the corneal epithelial layer was investigated with terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. The protein expression level of interleukin-1alpha (IL-1α), IL-1β, IL-6, tumor necrosis factor- alpha (TNF-α), and monocyte chemotactic protein-1 (MCP-1) was determined with western blot analysis. Furthermore, squamous metaplasia in the corneal epithelial layer was detected with immunofluorescent staining for cytokeratine-10. The cellular proliferation in the cornea was examined with immunohistochemical staining for Ki-67. EEDK treatment resulted in prolonged BUT, decreased fluorescein score, increased tear volume, and smoother epithelial cells compared with BAC treatment alone in the cornea. Moreover, EEDK treatment inhibited the inflammatory response and corneal epithelial cell death in a BAC-induced murine dry eye model, and changes in squamous cells were inhibited. Proliferative activity in the corneal epithelium cells was improved with EEDK. EEDK could be a potential therapeutic agent in the clinical treatment of dry eye.
Krauss, Achim H; Corrales, Rosa M; Pelegrino, Flavia S A; Tukler-Henriksson, Johanna; Pflugfelder, Stephen C; de Paiva, Cintia S
2015-09-01
We investigated the effects of GW559090, a novel, competitive, and high-affinity α4 integrin antagonist, in a murine model of dry eye. Through interaction with vascular cell adhesion molecule 1 (VCAM-1) and fibronectin α4β1 integrin is involved in leukocyte trafficking and activation. Female C57BL/6 mice, aged 6 to 8 weeks, were subjected to desiccating stress (DS). Bilateral topical twice daily treatment with GW559090 was compared to vehicle-treated controls. Treatment was initiated at the time of DS induction. Treatment effects were assessed on corneal staining with Oregon Green Dextran (OGD) and expression of inflammatory markers in ocular surface tissues by real time PCR. Dendritic cell activation was measured in draining cervical lymph nodes (CLN) by flow cytometry. Separate groups of mice received GW559090 subcutaneously to evaluate the effects of systemic administration on corneal staining and cells in CLN. Topical GW559090 significantly reduced corneal uptake of OGD compared to vehicle-treated disease controls in a dose-dependent manner (1, 3, 10, and 30 mg/mL) with 30 mg/mL showing the greatest reduction in OGD staining. When administered topically, corneal expression of IL-1α, matrix metalloproteinase (MMP)-9, chemokine ligand 9 (CXCL9), and TGF-β1 was reduced in GW559090-treated eyes. Topical treatment with GW559090 decreased dendritic cell activation in lymph nodes. The effects on corneal staining and cellular composition in CLN were not reproduced by systemic administration of GW559090, suggestive of a local role for integrin antagonism in the treatment of dry eye. The novel α4 integrin antagonist, GW559090, improved outcome measures of corneal staining and ocular surface inflammation in this murine model of dry eye. These results indicate the potential of this novel agent for the treatment of dry eye disease.
Energy Technology Data Exchange (ETDEWEB)
Costa, Antonio Raimundo da Silva
2008-01-15
An electric solar dryer consisting of a solar collector, a drying chamber, an exhaust fan and a fan to promote forced hot air convection were projected, built and tested . Banana drying experiments were also carried out in a static column dryer to model the drying and to obtain parameters that can be used as a first approximation in the modeling of an electric solar dryer, depending on the similarity of the experimental conditions between the two drying systems. From the banana drying experiments conducted in the static column dryer, we obtained food weight data as a function of aqueous concentration and temperature. Simplified mathematical models of the banana drying were made, based on Fick's and Fourier's second equations, which were tested with the experimental data. We determined and/or modeled parameters such as banana moisture content, density, thin layer drying curves, equilibrium moisture content, molecular diffusivity of the water in banana D{sub AB}, extemal mass transfer coefficient k{sub M}, specific heat C{sub p}, thermal conductivity k, latent heat of water evaporation in the food L{sub food}, time to heat food, and minimum energy and power required to heat the food and evaporate the water. When we considered the shrinkage of radius R of a banana, the calculated values of D{sub AB} and k{sub M} generally better represent the phenomenon of water diffusion in a solid. The latent heat of water evaporation in the food L{sub food} calculated by modeling is higher than the latent heat of pure water evaporation L{sub water}. The values calculated for D{sub AB} and K{sub M} that best represent the drying were obtained with the analytical model of the present paper. These values had good agreement with those assessed with a numeric model described in the literature, in which convective boundary condition and food shrinkage are considered. Using parameters such as C{sub p}, D{sub AB}, k, k{sub M} and L{sub food}, one can elaborate the preliminary
Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V
2015-07-03
The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.
Optimizing mesoscopic two-band superconductors for observation of fractional vortex states
Energy Technology Data Exchange (ETDEWEB)
Piña, Juan C. [Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife, PE (Brazil); Núcleo de Tecnologia, CAA, Universidade Federal de Pernambuco, 55002-970 Caruaru, PE (Brazil); Souza Silva, Clécio C. de, E-mail: clecio@df.ufpe [Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife, PE (Brazil); Milošević, Milorad V. [Departamento de Física, Universidade Federal do Ceará, 60455-900 Fortaleza, Ceará (Brazil); Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)
2014-08-15
Highlights: • Observation of fractional vortices in two-band superconductors of broad size range. • There is a minimal sample size for observing each particular fractional state. • Optimal value for stability of each fractional state is determined. • A suitable magnetic dot enhances stability even further. - Abstract: Using the two-component Ginzburg–Landau model, we investigate the effect of sample size and magnitude and homogeneity of external magnetic field on the stability of fractional vortex states in a mesoscopic two-band superconducting disk. We found that each fractional state has a preferable sample size, for which the range of applied field in which the state is stable is pronouncedly large. Vice versa, there exists an optimal magnitude of applied field for which a large range of possible sample radii will support the considered fractional state. Finally, we show that the stability of fractional states can be enhanced even further by magnetic nanostructuring of the sample, i.e. by suitably chosen geometrical parameters and magnetic moment of a ferromagnetic dot placed on top of the superconducting disk.
The Theory of the Reentrant Effect in Susceptibility of Cylindrical Mesoscopic Samples
International Nuclear Information System (INIS)
Gogadze, G.A.
2006-01-01
A theory has been developed to explain the anomalous behavior of the magnetic susceptibility of a normal metal-superconductor (NS) structure in weak magnetic fields at milli kelvin temperatures. The effect was discovered experimentally [A. C. Mota et al., Phys. Rev. Lett. 65, 1514 (1990)]. In cylindrical superconducting samples covered with a thin normal pure metal layer, the susceptibility exhibited a reentrant effect: it started to increase unexpectedly when the temperature was lowered below 100 mK. The effect was observed in mesoscopic NS structures when the N and S metals were in good electric contact. The theory proposed is essentially based on the properties of the Andreev levels in the normal metal. When the magnetic field (or temperature) changes, each of the Andreev levels coincides from time to time with the chemical potential of the metal. As a result, the state of the NS structure experiences strong degeneracy, and the quasiparticle density of states exhibits resonance spikes. This generates a large paramagnetic contribution to the susceptibility, which adds to the diamagnetic contribution, thus leading to the reentrant effect. The explanation proposed was obtained within the model of free electrons. The theory provides a good description of the experimental results
Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics.
Vorontsova, Maria A; Chan, Ho Yin; Lubchenko, Vassiliy; Vekilov, Peter G
2015-11-03
Protein-rich clusters of steady submicron size and narrow size distribution exist in protein solutions in apparent violation of the classical laws of phase equilibrium. Even though they contain a minor fraction of the total protein, evidence suggests that they may serve as essential precursors for the nucleation of ordered solids such as crystals, sickle-cell hemoglobin polymers, and amyloid fibrils. The cluster formation mechanism remains elusive. We use the highly basic protein lysozyme at nearly neutral and lower pH as a model and explore the response of the cluster population to the electrostatic forces, which govern numerous biophysical phenomena, including crystallization and fibrillization. We tune the strength of intermolecular electrostatic forces by varying the solution ionic strength I and pH and find that despite the weaker repulsion at higher I and pH, the cluster size remains constant. Cluster responses to the presence of urea and ethanol demonstrate that cluster formation is controlled by hydrophobic interactions between the peptide backbones, exposed to the solvent after partial protein unfolding that may lead to transient protein oligomers. These findings reveal that the mechanism of the mesoscopic clusters is fundamentally different from those underlying the two main classes of ordered protein solid phases, crystals and amyloid fibrils, and partial unfolding of the protein chain may play a significant role. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions
Magee, N. B.; Miller, A.; Amaral, M.; Cumiskey, A.
2014-11-01
Here we show high-magnification images of hexagonal ice crystals acquired by environmental scanning electron microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions in which rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from -10 °C to -40 °C, in supersaturated and subsaturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomenon interpreted as evidence of 2-D nucleation. New knowledge about the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to supplemental videos of ice growth and sublimation are provided.
Araújo, Tiago Gomes; Leite, Ana Catarina Rezende; Martins da Fonseca, Caíque Silveira; Carvalho, Bruno Melo; Schuler, Alexandre Ricardo Pereira; Lima, Vera Lúcia de Menezes
2011-09-01
Currently, there are no reports in the literature demonstrating any animal model that ingests one of the fattiest animal food source, the bovine brain. We hypothesized that a high-fat diet (HFD), based on dried bovine brain, could be used to develop an animal model possessing a spectrum of insulin resistance-related features. The HFD was formulated with 40% dried bovine brain plus 16.4% butter fat, prepared in-house. Furthermore, the diet contained 52% calories as fat and 73% of total fatty acids were saturated. Swiss mice weighing about 40 g were assigned to two dietary groups (n=6/group), one group received a standard chow diet and the other was given HFD for 3 months. The body weight and biochemical parameters of the animals were measured initially and at monthly intervals until the end of the experiment. Animals fed on a HFD showed a significant increase in the body and adipose tissue weight, serum total cholesterol and triglyceride levels, when compared with mice fed on the control diet. Additionally, the HFD group showed higher circulating levels of liver transaminases, such as alanine aminotransferase and aspartate aminotransferase, compared with the control group. Finally, to illustrate the usefulness of this model, we report that the HFD induced mild hyperglycemia, fasting hyperinsulinemia, and increased the homeostasis model of assessment (HOMA-IR), in comparison with the control group. In conclusion, our results show that HFD, based on dried bovine brain, causes insulin resistance-related metabolic disturbances. Thus, this may be a suitable model to study disturbances in energy metabolism and their consequences.
Periodic order and defects in Ni-based inverse opal-like crystals on the mesoscopic and atomic scale
Chumakova, A. V.; Valkovskiy, G. A.; Mistonov, A. A.; Dyadkin, V. A.; Grigoryeva, N. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Petukhov, Andrei V.; Grigoriev, S. V.
2014-01-01
The structure of inverse opal crystals based on nickel was probed on the mesoscopic and atomic levels by a set of complementary techniques such as scanning electron microscopy and synchrotron microradian and wide-angle diffraction. The microradian diffraction revealed the mesoscopic-scale
Josephson junction in the quantum mesoscopic electric circuits with charge discreteness
Pahlavani, H.
2018-04-01
A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.
Effect of mesoscopic fluctuations on equation of state in cluster-forming systems
Directory of Open Access Journals (Sweden)
A. Ciach
2012-06-01
Full Text Available Equation of state for systems with particles self-assembling into aggregates is derived within a mesoscopic theory combining density functional and field-theoretic approaches. We focus on the effect of mesoscopic fluctuations in the disordered phase. The pressure - volume fraction isotherms are calculated explicitly for two forms of the short-range attraction long-range repulsion potential. Mesoscopic fluctuations lead to an increased pressure in each case, except for very small volume fractions. When large clusters are formed, the mechanical instability of the system is present at much higher temperature than found in mean-field approximation. In this case phase separation competes with the formation of periodic phases (colloidal crystals. In the case of small clusters, no mechanical instability associated with separation into dilute and dense phases appears.
Many-body effects in the mesoscopic x-ray edge problem
International Nuclear Information System (INIS)
Hentschel, Martina; Roeder, Georg; Ullmo, Denis
2007-01-01
Many-body phenomena, a key interest in the investigation of bulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray exciton of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable deviations from the well-understood metallic case where Anderson orthogonality catastrophe and the Mahan-Nozieres-DeDominicis response cause characteristic deviations of the photoabsorption cross section from the naive expectation. Whereas the K-edge is typically rounded in metallic systems, we find a slightly peaked K-edge in generic mesoscopic systems with chaotic-coherent electron dynamics. Thus the behavior of the photoabsorption cross section at threshold depends on the system size and is different for the metallic and the mesoscopic case. (author)
Model Titan atmospheric hydrocarbon analysis by Ion Mobility Spectrometry in dry helium
International Nuclear Information System (INIS)
Kojiro, D.R.; Stimac, R.M.; Wernlund, R.F.; Cohen, M.J.
1990-01-01
Ion Mobility Spectrometry (IMS) is one analytical technique being investigated for the in situ analysis of the atmosphere of Titan. Any hydrocarbon ions that may form react immediately, in microseconds, with the high concentration of water vapor normally present in conventional IMS. By reducing the water concentration to the parts-per-billion range, the lifetime of the hydrocarbon ions may be increased to the milliseconds required for measurement. At low water level concentrations, other species may become the reactant ion. This study focuses on IMS analysis of expected Titan atmospheric hydrocarbons under very dry, low water concentration conditions
Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan
2018-03-01
Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Directory of Open Access Journals (Sweden)
Yiqian Ma
2018-04-01
Full Text Available Eudialyte is a promising mineral for rare earth elements (REE extraction due to its good solubility in acid, low radioactive, and relatively high content of REE. In this paper, a two stage hydrometallurgical treatment of eudialyte concentrate was studied: dry digestion with hydrochloric acid and leaching with water. The hydrochloric acid for dry digestion to eudialyte concentrate ratio, mass of water for leaching to mass of eudialyte concentrate ratio, leaching temperature and leaching time as the predictor variables, and the total rare earth elements (TREE extraction efficiency as the response were considered. After experimental work in laboratory conditions, according to design of experiment theory (DoE, the modeling process was performed using Multiple Linear Regression (MLR, Stepwise Regression (SWR, and Artificial Neural Network (ANN. The ANN model of REE extraction was adopted. Additional tests showed that values predicted by the neural network model were in very good agreement with the experimental results. Finally, the experiments were performed on a scaled up system under optimal conditions that were predicted by the adopted ANN model. Results at the scale-up plant confirmed the results that were obtained in the laboratory.
Mesoscopic fluctuations in the critical current in InAs-coupled Josephson junctions
International Nuclear Information System (INIS)
Takayanagi, Hideaki; Hansen, J.B.; Nitta, Junsaku
1994-01-01
Mesoscopic fluctuations were confirmed for the critical current in a p-type InAs-coupled Josephson junction. The critical current was measured as a function of the gate voltage corresponding to the change in the Fermi energy. The critical current showed a mesoscopic fluctuation and its behavior was the same as that of the conductance measured at the same time in both the weak and strong localization regimes. The magnitude and the typical period of the fluctuation are discussed and compared to theoretical predictions. ((orig.))
Recent trends in mesoscopic solar cells based on molecular and nanopigment light harvesters
Grä tzel, Carole; Zakeeruddin, Shaik M.
2013-01-01
Mesoscopic solar cells are one of the most promising photovoltaic technologies among third generation photovoltaics due to their low cost and high efficiency. The morphology of wide-band semiconductors, sensitized with molecular or nanosized light harvesters, used as electron collectors contribute substantially to the device performance. Recent developments in the use of organic-inorganic layer structured perovskites as light absorbers and as electron or hole transport materials allows reduction in the thickness of photoanodes to the submicron level and have raised the power conversion efficiency of solid state mesoscopic solar cells above the 10% level.
Probabilistic simulation of mesoscopic “Schrödinger cat” states
Energy Technology Data Exchange (ETDEWEB)
Opanchuk, B.; Rosales-Zárate, L.; Reid, M.D.; Drummond, P.D., E-mail: pdrummond@swin.edu.au
2014-02-01
We carry out probabilistic phase-space sampling of mesoscopic Schrödinger cat quantum states, demonstrating multipartite Bell violations for up to 60 qubits. We use states similar to those generated in photonic and ion-trap experiments. These results show that mesoscopic quantum superpositions are directly accessible to probabilistic sampling, and we analyze the properties of sampling errors. We also demonstrate dynamical simulation of super-decoherence in ion traps. Our computer simulations can be either exponentially faster or slower than experiment, depending on the correlations measured.
TRI Microspheres prevent key signs of dry eye disease in a murine, inflammatory model.
Ratay, Michelle L; Balmert, Stephen C; Acharya, Abhinav P; Greene, Ashlee C; Meyyappan, Thiagarajan; Little, Steven R
2017-12-13
Dry eye disease (DED) is a highly prevalent, ocular disorder characterized by an abnormal tear film and ocular surface. Recent experimental data has suggested that the underlying pathology of DED involves inflammation of the lacrimal functional unit (LFU), comprising the cornea, conjunctiva, lacrimal gland and interconnecting innervation. This inflammation of the LFU ultimately results in tissue deterioration and the symptoms of DED. Moreover, an increase of pathogenic lymphocyte infiltration and the secretion of pro-inflammatory cytokines are involved in the propagation of DED-associated inflammation. Studies have demonstrated that the adoptive transfer of regulatory T cells (Tregs) can mediate the inflammation caused by pathogenic lymphocytes. Thus, as an approach to treating the inflammation associated with DED, we hypothesized that it was possible to enrich the body's own endogenous Tregs by locally delivering a specific combination of Treg inducing factors through degradable polymer microspheres (TRI microspheres; TGF-β1, Rapamycin (Rapa), and IL-2). This local controlled release system is capable of shifting the balance of Treg/T effectors and, in turn, preventing key signs of dry eye disease such as aqueous tear secretion, conjunctival goblet cells, epithelial corneal integrity, and reduce the pro-inflammatory cytokine milieu in the tissue.
Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges
P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.
2016-05-01
The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.
Mesoscopic Strains Maps in Woven Composite Laminas During Off-axis Tension
Directory of Open Access Journals (Sweden)
Nicoletto G.
2010-06-01
Full Text Available The mechanics of woven carbon-fiber reinforced plastic (CFRP composites is influenced by the complex architecture of the reinforcement phase. Computational (i.e. finite element based approaches have been used increasingly to model not only the global laminate stiffness, but also damage evolution and laminate strength. The modeling combines the identification of the architectural unit cell (UC, the selection of suitable constitutive models of the different phases, the creation of a fine discretization of the UC in finite elements, the application of an incremental solution procedure that solves iteratively for the stresses and strains in the UC, [1]. The experimental validation of computational models is carried out mainly at the macroscopical level, i.e. simulation of the macroscopic stress-strain curve. Damage, however, is a localized, straindependent phenomenon and therefore only accurate strain distribution within the UC (at the mesolevel can identify critical conditions in terms of damage location, extension and evolution. The validation of computational damage procedures is a key task and full-field optical strain analysis methods appear the ideal instrument. However, only limited examples of direct finte element method (FEM vs experimental strain correlation are found because of the limited sensitivity and spatial resolution of some techniques and the complexity and applicative difficulty of others. The aim of the present paper is to present the application of the digital image correlation (DIC technique, [2], to the full-field strain analysis at the mesoscopic level (i.e. within the UC of a woven CFRP lamina when the direction of loading forms an angle to the material direction. The material under consideration is a woven carbon fiber reinforced epoxy composite. Orthogonal yarns, each made of of several thousand fibers, are woven according the twill-weave architecture is shown in Fig. 1a. Single-ply laminas were manufactured and tested to
Dry and Semi-Dry Tropical Cyclones
Cronin, T.; Chavas, D. R.
2017-12-01
Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy