WorldWideScience

Sample records for mesoscale weather conditions

  1. Adaptation of Mesoscale Weather Models to Local Forecasting

    Science.gov (United States)

    Manobianco, John T.; Taylor, Gregory E.; Case, Jonathan L.; Dianic, Allan V.; Wheeler, Mark W.; Zack, John W.; Nutter, Paul A.

    2003-01-01

    Methodologies have been developed for (1) configuring mesoscale numerical weather-prediction models for execution on high-performance computer workstations to make short-range weather forecasts for the vicinity of the Kennedy Space Center (KSC) and the Cape Canaveral Air Force Station (CCAFS) and (2) evaluating the performances of the models as configured. These methodologies have been implemented as part of a continuing effort to improve weather forecasting in support of operations of the U.S. space program. The models, methodologies, and results of the evaluations also have potential value for commercial users who could benefit from tailoring their operations and/or marketing strategies based on accurate predictions of local weather. More specifically, the purpose of developing the methodologies for configuring the models to run on computers at KSC and CCAFS is to provide accurate forecasts of winds, temperature, and such specific thunderstorm-related phenomena as lightning and precipitation. The purpose of developing the evaluation methodologies is to maximize the utility of the models by providing users with assessments of the capabilities and limitations of the models. The models used in this effort thus far include the Mesoscale Atmospheric Simulation System (MASS), the Regional Atmospheric Modeling System (RAMS), and the National Centers for Environmental Prediction Eta Model ( Eta for short). The configuration of the MASS and RAMS is designed to run the models at very high spatial resolution and incorporate local data to resolve fine-scale weather features. Model preprocessors were modified to incorporate surface, ship, buoy, and rawinsonde data as well as data from local wind towers, wind profilers, and conventional or Doppler radars. The overall evaluation of the MASS, Eta, and RAMS was designed to assess the utility of these mesoscale models for satisfying the weather-forecasting needs of the U.S. space program. The evaluation methodology includes

  2. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  3. Application of a COSMO Mesoscale Model to Assess the Influence of Forest Cover Changes on Regional Weather Conditions

    Science.gov (United States)

    Olchev, A.; Rozinkina, I.; Kuzmina, E.; Nikitin, M.; Rivin, G. S.

    2017-12-01

    Modern changes in land use and forest cover have a significant influence on local, regional, and global weather and climate conditions. In this study, the mesoscale model COSMO is used to estimate the possible influence of forest cover change in the central part of the East European Plain on regional weather conditions. The "model region" of the study is surrounded by geographical coordinates 55° and 59°N and 28° and 37°E and situated in the central part of a large modeling domain (50° - 70° N and 15° 55° E), covering almost the entire East European Plain in Northern Eurasia. The forests cover about 50% of the area of the "model region". The modeling study includes 3 main numerical experiments. The first assumes total deforestation of the "model region" and replacement of forests by grasslands. The second is represented by afforestation of the "model region." In the third, weather conditions are simulated with present land use and vegetation structures of the "model region." Output of numerical experiments is at 13.2 km grid resolution, and the ERA-Interim global atmospheric reanalysis (with 6-h resolution in time and 0.75°×0.75° in space) is used to quantify initial and boundary conditions. Numerical experiments for the warm period of 2010 taken as an example show that deforestation and afforestation processes in the selected region can lead to significant changes in weather conditions. Deforestation processes in summer conditions can result in increased air temperature and wind speed, reduction of precipitation, lower clouds, and relative humidity. The afforestation process can result in opposite effects (decreased air temperature, increased precipitation, higher air humidity and fog frequency, and strengthened storm winds). Maximum meteorological changes under forest cover changes are projected for the summer months (July and August). It was also shown that changes of some meteorological characteristics (e.g., air temperature) is observed in the

  4. Evaluation of the Weather Research and Forecasting mesoscale model for GABLS3: Impact of boundary-layer schemes, boundary conditions and spin-up

    NARCIS (Netherlands)

    Kleczek, M.A.; Steeneveld, G.J.; Holtslag, A.A.M.

    2014-01-01

    We evaluated the performance of the three-dimensional Weather Research and Forecasting (WRF) mesoscale model, specifically the performance of the planetary boundary-layer (PBL) parametrizations. For this purpose, Cabauw tower observations were used, with the study extending beyond the third GEWEX

  5. Mesoscale wind fluctuations over Danish waters

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, C.L.

    2010-12-15

    Mesoscale wind fluctuations affect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large fluctuations in power generation that must be balanced using reserve power. Large fluctuations in generated power are a particular problem for offshore wind farms because the typically high concentration of turbines within a limited geographical area means that fluctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water, such as convective rolls and cellular convection, have length scales of tens of kilometers, and can cause large wind fluctuations on a time scale of around an hour. This thesis is an exploration of the predictability of mesoscale wind fluctuations using observations from the world's first two large offshore wind farms - Horns Rev I in the North Sea, and Nysted in the Baltic Sea. The thesis begins with a climatological analysis of wind fluctuations on time scales of 1-10 hours at the two sites. A novel method for calculating conditional climatologies of spectral information is proposed, based on binning and averaging the time axis of the Hilbert spectrum. Results reveal clear patterns between wind fluctuations and locally observed meteorological conditions. The analysis is expanded by classifying wind fluctuations on time scales of 1-3 hours according to synoptic patterns, satellite pictures and wind classes. Results indicate that cold air outbreaks and open cellular convection are a significant contributor to mesoscale wind variability at Horns Rev. The predictability of mesoscale wind fluctuations is tested by implementing standard statistical models that relate local wind variability to parameters based on a large scale weather analysis. The models show some skill, but only achieve a 15% improvement on a persistence forecast. The possibility of explicitly modelling

  6. Toward the use of a mesoscale model at a very high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gasset, N.; Benoit, R.; Masson, C. [Canada Research Chair on Nordic Environment Aerodynamics of Wind Turbines, Ottawa, ON (Canada)

    2008-07-01

    This presentation described a new compressible mesoscale model designed to obtain wind speed data for potential wind power resource development. Microscale modelling and computerized fluid dynamics (CFD) are used to study the mean properties of the surface layer of the atmospheric boundary layer (ABL). Mesoscale models study the temporal evolution of synoptic to mesoscale atmospheric phenomena and environmental modelling. Mesoscale modelling is essential for wind energy applications and large-scale resource evaluation, and can be compared with microscale models in order to validate input data and determine boundary conditions. The compressible community mesoscale model (MC2) was comprised of a national weather prediction (NWP) model with semi-implicit semi-Lagrangian (SISL) dynamics and compressible Euler equation solutions. Physical parameters included radiations; microphysics; thermal stratification; turbulence; and convection. The turbulence diffusion feature included unsteady Reynolds averaged Navier-Stokes; transport equations for turbulent kinetic energy; and mixing lengths. Operating modes included 3-D weather data, and surface and ground properties as well as 1-way self-nesting abilities. The validation framework for the model included a simulation of a set of realistic cases and theoretical cases including full dynamics and physics. Theoretical cases included manually imposed initial and boundary conditions and minimalist physics. Further research is being conducted to refine operating modes and boundary conditions. tabs., figs.

  7. A new Method for the Estimation of Initial Condition Uncertainty Structures in Mesoscale Models

    Science.gov (United States)

    Keller, J. D.; Bach, L.; Hense, A.

    2012-12-01

    The estimation of fast growing error modes of a system is a key interest of ensemble data assimilation when assessing uncertainty in initial conditions. Over the last two decades three methods (and variations of these methods) have evolved for global numerical weather prediction models: ensemble Kalman filter, singular vectors and breeding of growing modes (or now ensemble transform). While the former incorporates a priori model error information and observation error estimates to determine ensemble initial conditions, the latter two techniques directly address the error structures associated with Lyapunov vectors. However, in global models these structures are mainly associated with transient global wave patterns. When assessing initial condition uncertainty in mesoscale limited area models, several problems regarding the aforementioned techniques arise: (a) additional sources of uncertainty on the smaller scales contribute to the error and (b) error structures from the global scale may quickly move through the model domain (depending on the size of the domain). To address the latter problem, perturbation structures from global models are often included in the mesoscale predictions as perturbed boundary conditions. However, the initial perturbations (when used) are often generated with a variant of an ensemble Kalman filter which does not necessarily focus on the large scale error patterns. In the framework of the European regional reanalysis project of the Hans-Ertel-Center for Weather Research we use a mesoscale model with an implemented nudging data assimilation scheme which does not support ensemble data assimilation at all. In preparation of an ensemble-based regional reanalysis and for the estimation of three-dimensional atmospheric covariance structures, we implemented a new method for the assessment of fast growing error modes for mesoscale limited area models. The so-called self-breeding is development based on the breeding of growing modes technique

  8. Nesting Large-Eddy Simulations Within Mesoscale Simulations for Wind Energy Applications

    Science.gov (United States)

    Lundquist, J. K.; Mirocha, J. D.; Chow, F. K.; Kosovic, B.; Lundquist, K. A.

    2008-12-01

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES) account for complex terrain and resolve individual atmospheric eddies on length scales smaller than turbine blades. These small-domain high-resolution simulations are possible with a range of commercial and open- source software, including the Weather Research and Forecasting (WRF) model. In addition to "local" sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecating model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosoviæ (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models

    Science.gov (United States)

    Rontu, Laura; Gleeson, Emily; Räisänen, Petri; Pagh Nielsen, Kristian; Savijärvi, Hannu; Hansen Sass, Bent

    2017-07-01

    This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE-AROME NWP system

  10. Spectral structure of mesoscale winds over the water

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Vincent, Claire Louise; Larsen, Søren Ejling

    2013-01-01

    to describe the spectral slope transition as well as the limit for application of the Taylor hypothesis. The stability parameter calculated from point measurements, the bulk Richardson number, is found insufficient to represent the various atmospheric structures that have their own spectral behaviours under...... spectra show universal characteristics, in agreement with the findings in literature, including the energy amplitude and the −5/3 spectral slope in the mesoscale range transitioning to a slope of −3 for synoptic and planetary scales. The integral time-scale of the local weather is found to be useful...... different stability conditions, such as open cells and gravity waves. For stationary conditions, the mesoscale turbulence is found to bear some characteristics of two-dimensional isotropy, including (1) very minor vertical variation of spectra; (2) similar spectral behaviour for the along- and across...

  11. Mesoscale wind fluctuations over Danish waters

    DEFF Research Database (Denmark)

    Vincent, Claire Louise

    in generated power are a particular problem for oshore wind farms because the typically high concentration of turbines within a limited geographical area means that uctuations can be correlated across large numbers of turbines. Furthermore, organised mesoscale structures that often form over water......Mesoscale wind uctuations aect the large scale integration of wind power because they undermine the day-ahead predictability of wind speed and power production, and because they can result in large uctuations in power generation that must be balanced using reserve power. Large uctuations...... that realistic hour-scale wind uctuations and open cellular convection patterns develop in WRF simulations with 2km horizontal grid spacing. The atmospheric conditions during one of the case studies are then used to initialise a simplied version of the model that has no large scale weather forcing, topography...

  12. Improvement of a mesoscale atmospheric dynamic model PHYSIC. Utilization of output from synoptic numerical prediction model for initial and boundary condition

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Yamazawa, Hiromi

    1995-03-01

    This report describes the improvement of the mesoscale atmospheric dynamic model which is a part of the atmospheric dispersion calculation model PHYSIC. To introduce large-scale meteorological changes into the mesoscale atmospheric dynamic model, it is necessary to make the initial and boundary conditions of the model by using GPV (Grid Point Value) which is the output of the numerical weather prediction model of JMA (Japan Meteorological Agency). Therefore, the program which preprocesses the GPV data to make a input file to PHYSIC was developed and the input process and the methods of spatial and temporal interpolation were improved to correspond to the file. Moreover, the methods of calculating the cloud amount and ground surface moisture from GPV data were developed and added to the model code. As the example of calculation by the improved model, the wind field simulations of a north-west monsoon in winter and a sea breeze in summer in the Tokai area were also presented. (author)

  13. Waterspout Forecasting Method Over the Eastern Adriatic Using a High-Resolution Numerical Weather Model

    Science.gov (United States)

    Renko, Tanja; Ivušić, Sarah; Telišman Prtenjak, Maja; Šoljan, Vinko; Horvat, Igor

    2018-03-01

    In this study, a synoptic and mesoscale analysis was performed and Szilagyi's waterspout forecasting method was tested on ten waterspout events in the period of 2013-2016. Data regarding waterspout occurrences were collected from weather stations, an online survey at the official website of the National Meteorological and Hydrological Service of Croatia and eyewitness reports from newspapers and the internet. Synoptic weather conditions were analyzed using surface pressure fields, 500 hPa level synoptic charts, SYNOP reports and atmospheric soundings. For all observed waterspout events, a synoptic type was determined using the 500 hPa geopotential height chart. The occurrence of lightning activity was determined from the LINET lightning database, and waterspouts were divided into thunderstorm-related and "fair weather" ones. Mesoscale characteristics (with a focus on thermodynamic instability indices) were determined using the high-resolution (500 m grid length) mesoscale numerical weather model and model results were compared with the available observations. Because thermodynamic instability indices are usually insufficient for forecasting waterspout activity, the performance of the Szilagyi Waterspout Index (SWI) was tested using vertical atmospheric profiles provided by the mesoscale numerical model. The SWI successfully forecasted all waterspout events, even the winter events. This indicates that the Szilagyi's waterspout prognostic method could be used as a valid prognostic tool for the eastern Adriatic.

  14. North Pacific Mesoscale Coupled Air-Ocean Simulations Compared with Observations

    Energy Technology Data Exchange (ETDEWEB)

    Cerovecki, Ivana [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; McClean, Julie [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; Koracin, Darko [Desert Research Inst. (DRI), Reno, NV (United States). Division of Atmospheric Sciences

    2014-11-14

    The overall objective of this study was to improve the representation of regional ocean circulation in the North Pacific by using high resolution atmospheric forcing that accurately represents mesoscale processes in ocean-atmosphere regional (North Pacific) model configuration. The goal was to assess the importance of accurate representation of mesoscale processes in the atmosphere and the ocean on large scale circulation. This is an important question, as mesoscale processes in the atmosphere which are resolved by the high resolution mesoscale atmospheric models such as Weather Research and Forecasting (WRF), are absent in commonly used atmospheric forcing such as CORE forcing, employed in e.g. the Community Climate System Model (CCSM).

  15. North American Mesoscale Forecast System (NAM) [12 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The North American Mesoscale Forecast System (NAM) is one of the major regional weather forecast models run by the National Centers for Environmental Prediction...

  16. Application of rain scanner SANTANU and transportable weather radar in analyze of Mesoscale Convective System (MCS) events over Bandung, West Java

    Science.gov (United States)

    Nugroho, G. A.; Sinatra, T.; Trismidianto; Fathrio, I.

    2018-05-01

    Simultaneous observation of transportable weather radar LAPAN-GMR25SP and rain-scanner SANTANU were conducted in Bandung and vicinity. The objective is to observe and analyse the weather condition in this area during rainy and transition season from March until April 2017. From the observation result reported some heavy rainfall with hail and strong winds occurred on March 17th and April 19th 2017. This events were lasted within 1 to 2 hours damaged some properties and trees in Bandung. Mesoscale convective system (MCS) are assumed to be the cause of this heavy rainfall. From two radar data analysis showed a more local convective activity in around 11.00 until 13.00 LT. This local convective activity are showed from the SANTANU observation supported by the VSECT and CMAX of the Transportable radar data that signify the convective activity within those area. MCS activity were observed one hour after that. This event are confirm by the classification of convective-stratiform echoes from radar data and also from the high convective index from Tbb Himawari 8 satellite data. The different MCS activity from this two case study is that April 19 have much more MCS activity than in March 17, 2017.

  17. Assimilation of Doppler weather radar observations in a mesoscale ...

    Indian Academy of Sciences (India)

    Research (PSU–NCAR) mesoscale model (MM5) version 3.5.6. The variational data assimilation ... investigation of the direct assimilation of radar reflectivity data in 3DVAR system. The present ...... Results presented in this paper are based on.

  18. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station

    Science.gov (United States)

    Erell, E.; Williamson, T.

    2006-10-01

    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  19. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    Science.gov (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  20. Boundary layer height determination under summertime anticyclonic weather conditions over the coastal area of Rijeka, Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Nitis, T.; Moussiopoulos, N. [Aristotle Univ. Thessaloniki (Greece). Lab. of Heat Transfer and Environmental Engineering; Klaic, Z.B. [Univ. of Zagreb (Croatia). Andrija Mohorovicic Geophysical Inst., Faculty of Science; Kitsiou, D. [Univ. of the Aegean, Mytilene (Greece). Dept. of Marine Sciences

    2004-07-01

    The atmospheric boundary layer height is a fundamental parameter characterising the structure of the lower troposphere. The determination of this parameter is important in applications that range from meteorological modelling and forecasting to dispersion problems of atmospheric pollutants. Since substances emitted into the atmospheric boundary layer are dispersed horizontally and vertically through the action of turbulence, they are well-mixed over this layer that is widely known as ''mixing layer''. There are two basic approaches for the practical estimation of this height; the first approach suggests profile measurements, either in-situ or by remote sounding (sodar, clear-air radar, lidar) and the second one, the use of models with only a few measured parameters as input. As far as the second approach is concerned, the majority of the models use relatively crude estimates of the roughness length that is often based on constant values for land cover. Consequently, the model results are not quite accurate. The present work aims firstly to evaluate the effect of alternative calculations of the roughness length on the non-hydrostatic mesoscale model (MEMO) performance, based on the use of satellite data, and secondly, to estimate the mixing layer height and analyze its variability in relation to underlying topography and land use. Rijeka, a region with complex topography and several islands in its surroundings, offers the opportunity to examine the above mentioned relationships. The non-hydrostatic mesoscale model MEMO was applied under summertime anticyclonic weather conditions during two multi-day periods characterised by stagnant meteorological conditions. The results proved MEMO capable of simulating mesoscale wind flow reasonably well, however, the use of AVHRR satellite data for calculating the roughness length based on the calculation of the NDVI parameter, optimised the model performance and resulted to a more accurate determination of

  1. Analysis of winter weather conditions and their potential impact on wind farm operations

    Science.gov (United States)

    Novakovskaia, E.; Treinish, L. A.; Praino, A.

    2009-12-01

    Severe weather conditions have two primary impacts on wind farm operations. The first relates to understanding potential damage to the turbines themselves and what actions are required to mitigate the effects. The second is recognizing what conditions may lead to a full or partial shutdown of the wind farm with sufficient lead time to determine the likely inability to meet energy generation committments. Ideally, wind forecasting suitable for wind farm operations should be of sufficient fidelity to resolve features within the boundary layer that lead to either damaging conditions or useful power generation. Given the complexity of the site-specific factors that effect the boundary layer at the scale of typical land-based wind farm locations such as topography, vegetation, land use, soil conditions, etc., which may vary with turbine design and layout within the farm, enabling reliable forecasts of too little or too much wind is challenging. A potential solution should involve continuous updates of alert triggering criteria through analysis of local wind patterns and probabilistic risk assessment for each location. To evaluate this idea, we utilize our operational mesoscale prediction system, dubbed “Deep Thunder”, developed at the IBM Thomas J. Watson Research Center. In particular, we analyze winter-time near-surface winds in upstate New York, where four similar winds farms are located. Each of these farms were built at roughly the same time and utilize similar turbines. Given the relative uncertainty associated with numerical weather prediction at this scale, and the difference in risk assessment due to the two primary impacts of severe weather, probabilistic forecasts are a prerequisite. Hence, we have employed ensembles of weather scenarios, which are based on the NCAR WRF-ARW modelling system. The set of ensemble members was composed with variations in the choices of physics and parameterization schemes, and source of background fields for initial

  2. Skills of different mesoscale models over Indian region during ...

    Indian Academy of Sciences (India)

    tion and prediction of high impact severe weather systems. Such models ... mesoscale models can be run at cloud resolving resolutions (∼1km) ... J. Earth Syst. Sci. 117, No. ..... similar to climate drift, indicating that those error components are ...

  3. Synoptic-scale fire weather conditions in Alaska

    Science.gov (United States)

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  4. WRF Mesoscale Pre-Run for the Wind Atlas of Mexico

    OpenAIRE

    Hahmann, Andrea N.; Pena Diaz, Alfredo; Hansen, Jens Carsten

    2016-01-01

    This report documents the work performed by DTU Wind Energy for the project “Atlas Eólico Mexicano” or the Wind Atlas of Mexico. This document reports on the methods used in “Pre-run” of the windmapping project for Mexico. The interim mesoscale modeling results were calculated from the output of simulations using the Weather, Research and Forecasting (WRF) model. We document the method used to run the mesoscale simulations and to generalize the WRF model wind climatologies. A separate section...

  5. Weather Research and Forecasting (WRF) Regional Atmospheric Model: CNMI

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Commonwealth of the Northern...

  6. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Samoa

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the islands of Samoa at...

  7. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the island of Guam at...

  8. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 3.5-day hourly forecast for the region surrounding the Hawaiian island of Oahu at...

  9. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Maui-Oahu

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Hawaiian islands of Oahu,...

  10. Artificial changes of weather conditions

    International Nuclear Information System (INIS)

    Kozin, I.D.; Vasil'ev, I.V.; Fedulina, I.N.; Zakizhan, Z.Z.; Khalimov, R.A.

    2005-01-01

    Unfavorable weather conditions have undesirable ecological consequences, causes remarkable economical damage. In the paper authors consider physical factors and technical methods of influence on cloud formation. (author)

  11. Weather Research and Forecasting (WRF) Regional Atmospheric Model: Main Hawaiian Islands

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weather Research and Forecasting (WRF) mesoscale numerical weather prediction model 7-day hourly forecast for the region surrounding the Main Hawaiian Islands (MHI)...

  12. Weather conditions: a neglected factor in human salivary cortisol research?

    Science.gov (United States)

    Milas, Goran; Šupe-Domić, Daniela; Drmić-Hofman, Irena; Rumora, Lada; Klarić, Irena Martinović

    2018-02-01

    There is ample evidence that environmental stressors such as extreme weather conditions affect animal behavior and that this process is in part mediated through the elevated activity of the hypothalamic pituitary adrenal axis which results in an increase in cortisol secretion. This relationship has not been extensively researched in humans, and weather conditions have not been analyzed as a potential confounder in human studies of stress. Consequently, the goal of this paper was to assess the relationship between salivary cortisol and weather conditions in the course of everyday life and to test a possible moderating effect of two weather-related variables, the climate region and timing of exposure to outdoors conditions. The sample consisted of 903 secondary school students aged 18 to 21 years from Mediterranean and Continental regions. Cortisol from saliva was sampled in naturalistic settings at three time points over the course of a single day. We found that weather conditions are related to salivary cortisol concentration and that this relationship may be moderated by both the specific climate and the anticipation of immediate exposure to outdoors conditions. Unpleasant weather conditions are predictive for the level of salivary cortisol, but only among individuals who anticipate being exposed to it in the immediate future (e.g., in students attending school in the morning shift). We also demonstrated that isolated weather conditions or their patterns may be relevant in one climate area (e.g., Continental) while less relevant in the other (e.g., Mediterranean). Results of this study draw attention to the importance of controlling weather conditions in human salivary cortisol research.

  13. The impact of reflectivity correction and conversion methods to improve precipitation estimation by weather radar for an extreme low-land Mesoscale Convective System

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-05-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands. For most of the country this led to over 15 hours of near-continuous precipitation, which resulted in total event accumulations exceeding 150 mm in the eastern part of the Netherlands. Such accumulations belong to the largest sums ever recorded in this country and gave rise to local flooding. Measuring precipitation by weather radar within such mesoscale convective systems is known to be a challenge, since measurements are affected by multiple sources of error. For the current event the operational weather radar rainfall product only estimated about 30% of the actual amount of precipitation as measured by rain gauges. In the current presentation we will try to identify what gave rise to such large underestimations. In general weather radar measurement errors can be subdivided into two different groups: 1) errors affecting the volumetric reflectivity measurements taken, and 2) errors related to the conversion of reflectivity values in rainfall intensity and attenuation estimates. To correct for the first group of errors, the quality of the weather radar reflectivity data was improved by successively correcting for 1) clutter and anomalous propagation, 2) radar calibration, 3) wet radome attenuation, 4) signal attenuation and 5) the vertical profile of reflectivity. Such consistent corrections are generally not performed by operational meteorological services. Results show a large improvement in the quality of the precipitation data, however still only ~65% of the actual observed accumulations was estimated. To further improve the quality of the precipitation estimates, the second group of errors are corrected for by making use of disdrometer measurements taken in close vicinity of the radar. Based on these data the parameters of a normalized drop size distribution are estimated for the total event as well as for each precipitation type separately (convective

  14. Relationship between onset of spontaneous pneumothorax and weather conditions.

    Science.gov (United States)

    Mishina, Taijiro; Watanabe, Atsushi; Miyajima, Masahiro; Nakazawa, Junji

    2017-09-01

    Spontaneous pneumothorax (SP) results from the rupture of blebs or bullae. It has been suggested that changes in weather conditions may trigger the onset of SP. Our aim was to examine the association between the onset of primary SP with weather changes in the general population in Sapporo, Japan. From January 2008 through September 2013, 345 consecutive cases with a diagnosis of primary SP were reviewed. All cases of primary SP developed in the area within 40 km from the Sapporo District Meteorological Observatory. Climatic measurements were obtained from the Observatory, which included 1-h readings of weather conditions. Logistic regression model was used to obtain predicted risks for the onset of SP with respect to weather conditions. SP occurred significantly when the atmospheric pressure decreased by - 18 hPa or less during 96 h before the survey date (odds ratio = 1.379, P = 0.026), when the pressure increased by 15 hPa or more during 72 h before the survey date (odds ratio = 1.095, P = 0.007) and when maximum fluctuation in atmospheric pressure over 22 hPa was observed during 96 h before the survey date (odds ratio = 1.519, P = 0.001). Other weather conditions, including the presence of thunderstorms, were not significantly correlated with the onset of pneumothorax. Changes in atmospheric pressure influence the onset of SP. Future studies on the relationship between the onset of SP and weather conditions on days other than before the onset and with large number of patients may enable us to predict the onset of SP in various regions and weather conditions. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Mesoscale Modeling, Forecasting and Remote Sensing Research.

    Science.gov (United States)

    remote sensing , cyclonic scale diagnostic studies and mesoscale numerical modeling and forecasting are summarized. Mechanisms involved in the release of potential instability are discussed and simulated quantitatively, giving particular attention to the convective formulation. The basic mesoscale model is documented including the equations, boundary condition, finite differences and initialization through an idealized frontal zone. Results of tests including a three dimensional test with real data, tests of convective/mesoscale interaction and tests with a detailed

  16. Weather and forecasting at Wilkins ice runway, Antarctica

    International Nuclear Information System (INIS)

    Carpentier, Scott

    2010-01-01

    Aviation forecasts for Wilkins ice runway in East Antarctica are developed within the conceptual framework of flow against a single dome shaped hill. Forecast challenges include the sudden onset of blizzards associated with the formation of an internal gravity wave; frontal weather; transient wake vortices and mesoscale lows; temperature limitations on runway use; and snow and fog events. These key weather aspects are presented within the context of synoptic to local scale climatologies and numerical weather prediction models.

  17. Power losses in electrical networks depending on weather conditions

    International Nuclear Information System (INIS)

    Zhelezko, Yu. S.; Kostyushko, V. A.; Krylov, S. V.; Nikiforov, E. P.; Savchenko, O. V.; Timashova, L. V.; Solomonik, E. A.

    2005-01-01

    Specific power losses to corona and to leakage currents over overhead insulators are presented for 110 - 750-kV transmission lines with different phase design and pole types for different weather conditions. Consumption of electric energy for ice melting on conductors of various cross sections is evaluated. Meteorological data of 1372 weather stations in Russia are processed for a period of 10 years. The territory of the country is divided into 7 regions with approximately homogeneous weather conditions. Specific power losses to corona and leakage currents over overhead insulators are presented for every region

  18. Impacts of Snowy Weather Conditions on Expressway Traffic Flow Characteristics

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available Snowy weather will significantly degrade expressway operations, reduce service levels, and increase driving difficulty. Furthermore, the impact of snow varies in different types of roads, diverse cities, and snow densities due to different driving behavior. Traffic flow parameters are essential to decide what should be appropriate for weather-related traffic management and control strategies. This paper takes Beijing as a case study and analyzes traffic flow data collected by detectors in expressways. By comparing the performance of traffic flow under normal and snowy weather conditions, this paper quantitatively describes the impact of adverse weather on expressway volume and average speeds. Results indicate that average speeds on the Beijing expressway under heavy snow conditions decrease by 10–20 km/h when compared to those under normal weather conditions, the vehicle headway generally increases by 2–4 seconds, and the road capacity drops by about 33%. This paper also develops a specific expressway traffic parameter reduction model which proposes reduction coefficients of expressway volumes and speeds under various snow density conditions in Beijing. The conclusions paper provide effective foundational parameters for urban expressway controls and traffic management under snow conditions.

  19. A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction

    Science.gov (United States)

    Pergaud, Julien; Masson, Valéry; Malardel, Sylvie; Couvreux, Fleur

    2009-07-01

    For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy DiffusivityMass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCSARM) and conserve a realistic evolution of stratocumulus (EUROCSFIRE).

  20. Thermal stress analysis of reactor containment building considering severe weather condition

    International Nuclear Information System (INIS)

    Lee, Yun; Kim, Yun-Yong; Hyun, Jung-Hwan; Kim, Do-Gyeum

    2014-01-01

    Highlights: • We examine that through-wall crack risk in cold weather is high. • It is predicted that cracking in concrete wall will not happen in hot region. • Cracking due to hydration heat can be controlled by appropriate curing condition. • Temperature differences between inner and outer face is relatively small in hot weather. - Abstract: Prediction of concrete cracking due to hydration heat in mass concrete such as reactor containment building (RCB) in nuclear power plant is a crucial issue in construction site. In this study, the numerical analysis for heat transfer and stress development is performed for the containment wall in RCB by considering the severe weather conditions. Finally, concrete cracking risk in hot and cold weather is discussed based on analysis results. In analyses considering severe weather conditions, it is found that the through-wall cracking risk in cold weather is high due to the abrupt temperature difference between inside concrete and the ambient air in cold region. In hot weather, temperature differences between inner and outer face is relatively small, and accordingly the relevant cracking risk is relatively low in contrast with cold weather

  1. WEATHER CONDITIONS AND COMPLAINTS IN FIBROMYALGIA

    NARCIS (Netherlands)

    DEBLECOURT, ACE; KNIPPING, AA; DEVOOGD, N; VANRIJSWIJK, MH

    1993-01-01

    Patients with musculoskeletal disorders, including fibromyalgia syndrome (FS), often state that weather conditions modulate their complaints. There have been a few studies concerning this issue, but the results appear to be contradictory. We tried to relate the subjective symptoms of pain,

  2. WEATHER CONDITIONS AND COMPLAINTS IN FIBROMYALGIA

    NARCIS (Netherlands)

    DEBLECOURT, ACE; KNIPPING, AA; DEVOOGD, N; VANRIJSWIJK, MH

    Patients with musculoskeletal disorders, including fibromyalgia syndrome (FS), often state that weather conditions modulate their complaints. There have been a few studies concerning this issue, but the results appear to be contradictory. We tried to relate the subjective symptoms of pain,

  3. Effects of weather conditions, light conditions, and road lighting on vehicle speed.

    Science.gov (United States)

    Jägerbrand, Annika K; Sjöbergh, Jonas

    2016-01-01

    Light conditions are known to affect the number of vehicle accidents and fatalities but the relationship between light conditions and vehicle speed is not fully understood. This study examined whether vehicle speed on roads is higher in daylight and under road lighting than in darkness, and determined the combined effects of light conditions, posted speed limit and weather conditions on driving speed. The vehicle speed of passenger cars in different light conditions (daylight, twilight, darkness, artificial light) and different weather conditions (clear weather, rain, snow) was determined using traffic and weather data collected on an hourly basis for approximately 2 years (1 September 2012-31 May 2014) at 25 locations in Sweden (17 with road lighting and eight without). In total, the data included almost 60 million vehicle passes. The data were cleaned by removing June, July, and August, which have different traffic patterns than the rest of the year. Only data from the periods 10:00 A.M.-04:00 P.M. and 06:00 P.M.-10:00 P.M. were used, to remove traffic during rush hour and at night. Multivariate adaptive regression splines was used to evaluate the overall influence of independent variables on vehicle speed and nonparametric statistical testing was applied to test for speed differences between dark-daylight, dark-twilight, and twilight-daylight, on roads with and without road lighting. The results show that vehicle speed in general depends on several independent variables. Analyses of vehicle speed and speed differences between daylight, twilight and darkness, with and without road lighting, did not reveal any differences attributable to light conditions. However, vehicle speed decreased due to rain or snow and the decrease was higher on roads without road lighting than on roads with lighting. These results suggest that the strong association between traffic accidents and darkness or low light conditions could be explained by drivers failing to adjust their

  4. Description of the University of Auckland Global Mars Mesoscale Meteorological Model (GM4)

    Science.gov (United States)

    Wing, D. R.; Austin, G. L.

    2005-08-01

    The University of Auckland Global Mars Mesoscale Meteorological Model (GM4) is a numerical weather prediction model of the Martian atmosphere that has been developed through the conversion of the Penn State University / National Center for Atmospheric Research fifth generation mesoscale model (MM5). The global aspect of this model is self consistent, overlapping, and forms a continuous domain around the entire planet, removing the need to provide boundary conditions other than at initialisation, yielding independence from the constraint of a Mars general circulation model. The brief overview of the model will be given, outlining the key physical processes and setup of the model. Comparison between data collected from Mars Pathfinder during its 1997 mission and simulated conditions using GM4 have been performed. Diurnal temperature variation as predicted by the model shows very good correspondence with the surface truth data, to within 5 K for the majority of the diurnal cycle. Mars Viking Data is also compared with the model, with good agreement. As a further means of validation for the model, various seasonal comparisons of surface and vertical atmospheric structure are conducted with the European Space Agency AOPP/LMD Mars Climate Database. Selected simulations over regions of interest will also be presented.

  5. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  6. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    Science.gov (United States)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  7. Meso-scale wind variability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Larsen, X.; Vincent, C.; Soerensen, P.; Pinson, P.; Trombe, P.-J.; Madsen, H.; Cutululis, N.

    2011-11-15

    The project has aimed to characterize mesoscale meteorological phenomenon for the North Sea and the Inner Danish waters, and additionally aimed on improving the predictability and quality of the power production from offshore windfarms. The meso-scale meteorology has been characterized with respect to the physical processes, climatology, spectral characteristics and correlation properties based on measurements from wind farms, satellite data (SAR) and mesoscale numerical modeling (WRF). The abilities of the WRF model to characterize and predict relevant mesoscale phenomenon has been proven. Additionally application of statistical forecasting, using a Markov switching approach that can be related to the meteorological conditions, to analyze and short term predict the power production from an offshore wind farms have been documented. Two PhD studies have been conducted in connection with the project. The project has been a cooperative project between Risoe DTU, IMM DTU, DONG Energy, Vattenfall and VESTAS. It is registered as Energinet.dk, project no. 2007-1-7141. (Author)

  8. Numerical simulations of island effects on airflow and weather during the summer over the island of Oahu

    Science.gov (United States)

    Hiep Van Nguyen; Yie-Leng Chen; Francis Fujioka

    2010-01-01

    The high-resolution (1.5 km) nonhydrostatic fifth-generation Pennsylvania StateUniversity–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) and an advanced land surface model (LSM) are used to study the island-induced airflow and weather for the island of Oahu, Hawaii, under summer trade wind conditions. Despite Oahu’s relatively small...

  9. Evaluation of planetary boundary layer schemes in meso-scale simulations above the North and Baltic Sea

    Science.gov (United States)

    Wurps, Hauke; Tambke, Jens; Steinfeld, Gerald; von Bremen, Lueder

    2014-05-01

    The development and design of wind energy converters for offshore wind farms require profound knowledge of the wind profile in the lower atmosphere. Especially an accurate and reliable estimation of turbulence, shear and veer are necessary for the prediction of energy production and loads. Currently existing wind energy turbines in the North Sea have hub heights of around 90 m and upper tip heights around 150 m, which is already higher than the highest measurement masts (e.g. FINO1: 103 m). The next generation of wind turbines will clearly outrange these altitudes, so the interest is to examine the atmosphere's properties above the North Sea up to 300 m. Therefore, besides the Prandtl layer also the Ekman layer has to be taken into account, which implies that changes of the wind direction with height become more relevant. For this investigation we use the Weather Research and Forecasting Model (WRF), a meso-scale numerical weather prediction system. In this study we compare different planetary boundary layer (PBL) schemes (MYJ, MYNN, QNSE) with the same high quality input from ECMWF used as boundary conditions (ERA-Interim). It was found in previous studies that the quality of the boundary conditions is crucially important for the accuracy of comparisons between different PBL schemes. This is due to the fact that the major source of meso-scale simulation errors is introduced by the driving boundary conditions and not by the different schemes of the meso-scale model itself. Hence, small differences in results from different PBL schemes can be distorted arbitrarily by coarse input data. For instance, ERA-Interim data leads to meso-scale RMSE values of 1.4 m/s at 100 m height above sea surface with mean wind speeds around 10 m/s, whereas other Reanalysis products lead to RMSEs larger than 2 m/s. Second, we compare our simulations to operational NWP results from the COSMO model (run by the DWD). In addition to the wind profile, also the turbulent kinetic energy (TKE

  10. Robust vehicle detection in different weather conditions: Using MIPM.

    Science.gov (United States)

    Yaghoobi Ershadi, Nastaran; Menéndez, José Manuel; Jiménez, David

    2018-01-01

    Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions.

  11. Mesoscale Connections Summer 2017

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    Our challenge derives from the fact that in metals or explosives grains, interfaces and defects control engineering performance in ways that are neither amenable to continuum codes (which fail to rigorously describe the heterogeneities derived from microstructure) nor computationally tractable to first principles atomistic calculations. This is a region called the mesoscale, which stands at the frontier of our desire to translate fundamental science insights into confidence in aging system performance over the range of extreme conditions relevant in a nuclear weapon. For dynamic problems, the phenomena of interest can require extremely good temporal resolutions. A shock wave traveling at 1000 m/s (or 1 mm/μs) passes through a grain with a diameter of 1 micron in a nanosecond (10-9 sec). Thus, to observe the mesoscale phenomena—such as dislocations or phase transformations—as the shock passes, temporal resolution better than picoseconds (10-12 sec) may be needed. As we anticipate the science challenges over the next decade, experimental insights on material performance at the micron spatial scale with picosecond temporal resolution—at the mesoscale— are a clear challenge. This is a challenge fit for Los Alamos in partnership with our sister labs and academia. Mesoscale Connections will draw attention to our progress as we tackle the mesoscale challenge. We hope you like it and encourage suggestions of content you are interested in.

  12. Correlation-study about the ambient dose rate and the weather conditions

    Science.gov (United States)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  13. The Impact of Microphysics on Intensity and Structure of Hurricanes and Mesoscale Convective Systems

    Science.gov (United States)

    Tao, Wei-Kuo; Shi, Jainn J.; Jou, Ben Jong-Dao; Lee, Wen-Chau; Lin, Pay-Liam; Chang, Mei-Yu

    2007-01-01

    During the past decade, both research and operational numerical weather prediction models, e.g. Weather Research and Forecast (WRF) model, have started using more complex microphysical schemes originally developed for high-resolution cloud resolving models (CRMs) with a 1-2 km or less horizontal resolutions. WRF is a next-generation mesoscale forecast model and assimilation system that has incorporated modern software framework, advanced dynamics, numeric and data assimilation techniques, a multiple moveable nesting capability, and improved physical packages. WRF model can be used for a wide range of applications, from idealized research to operational forecasting, with an emphasis on horizontal grid sizes in the range of 1-10 km. The current WRF includes several different microphysics options such as Purdue Lin et al. (1983), WSM 6-class and Thompson microphysics schemes. We have recently implemented three sophisticated cloud microphysics schemes into WRF. The cloud microphysics schemes have been extensively tested and applied for different mesoscale systems in different geographical locations. The performances of these schemes have been compared to those from other WRF microphysics options. We are performing sensitivity tests in using WRF to examine the impact of six different cloud microphysical schemes on precipitation processes associated hurricanes and mesoscale convective systems developed at different geographic locations [Oklahoma (IHOP), Louisiana (Hurricane Katrina), Canada (C3VP - snow events), Washington (fire storm), India (Monsoon), Taiwan (TiMREX - terrain)]. We will determine the microphysical schemes for good simulated convective systems in these geographic locations. We are also performing the inline tracer calculation to comprehend the physical processes (i.e., boundary layer and each quadrant in the boundary layer) related to the development and structure of hurricanes and mesoscale convective systems.

  14. Weather conditions and daily television use in the Netherlands, 1996-2005

    NARCIS (Netherlands)

    Eisinga, R.; Franses, Ph.-H.; Vergeer, M.

    2010-01-01

    This study examines the impact of daily atmospheric weather conditions on daily television use in the Netherlands for the period 1996–2005. The effects of the weather parameters are considered in the context of mood and mood management theory. It is proposed that inclement and uncomfortable weather

  15. Modeling mesoscale eddies

    Science.gov (United States)

    Canuto, V. M.; Dubovikov, M. S.

    Mesoscale eddies are not resolved in coarse resolution ocean models and must be modeled. They affect both mean momentum and scalars. At present, no generally accepted model exists for the former; in the latter case, mesoscales are modeled with a bolus velocity u∗ to represent a sink of mean potential energy. However, comparison of u∗(model) vs. u∗ (eddy resolving code, [J. Phys. Ocean. 29 (1999) 2442]) has shown that u∗(model) is incomplete and that additional terms, "unrelated to thickness source or sinks", are required. Thus far, no form of the additional terms has been suggested. To describe mesoscale eddies, we employ the Navier-Stokes and scalar equations and a turbulence model to treat the non-linear interactions. We then show that the problem reduces to an eigenvalue problem for the mesoscale Bernoulli potential. The solution, which we derive in analytic form, is used to construct the momentum and thickness fluxes. In the latter case, the bolus velocity u∗ is found to contain two types of terms: the first type entails the gradient of the mean potential vorticity and represents a positive contribution to the production of mesoscale potential energy; the second type of terms, which is new, entails the velocity of the mean flow and represents a negative contribution to the production of mesoscale potential energy, or equivalently, a backscatter process whereby a fraction of the mesoscale potential energy is returned to the original reservoir of mean potential energy. This type of terms satisfies the physical description of the additional terms given by [J. Phys. Ocean. 29 (1999) 2442]. The mesoscale flux that enters the momentum equations is also contributed by two types of terms of the same physical nature as those entering the thickness flux. The potential vorticity flux is also shown to contain two types of terms: the first is of the gradient-type while the other terms entail the velocity of the mean flow. An expression is derived for the mesoscale

  16. Influence of weather conditions on natural radioactivity

    International Nuclear Information System (INIS)

    Simion, Florin; Simion, Elena; Cuculeanu, Vasile; Mihalcea, Ion

    2011-01-01

    This paper presents the dependence of the natural radioactivity on atmospheric weather conditions: air temperature, atmospheric pressure, wind speed, atmospherical precipitations and relative humidity. The values used in the paper were taken from the environmental radioactivity monitoring in Botosani city, Romania, as measured by the Environmental Radioactivity Surveillance Station. Daily global measurements of atmospheric deposition beta and atmospheric aerosols as well were carried out, including the indirect determination of radon and thoron, and the absorbed gamma dose rate in air, as well. Sampling and measurement frequency depended on the type of sample analyzed as follows: atmospheric deposition were taken daily, atmospheric aerosols were collected 4 times/day, with a sampling interval of 5 hours while the air absorbed dose rate was determined at a hourly rate. The coefficient of multiple correlation between the type of analysis and weather conditions, was determined. By using multiple linear regression it was highlighted the natural radioactivity dependence on the atmospheric conditions and meteorological parameters by a mathematical expression that can be used to determine missing values in a time series of measured data. By predicting the measured values our procedure can be considered as a validation process of the measurement accuracy

  17. Characterizing the Meso-scale Plasma Flows in Earth's Coupled Magnetosphere-Ionosphere-Thermosphere System

    Science.gov (United States)

    Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.

    2017-12-01

    NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.

  18. Intercomparison of state-of-the-art models for wind energy resources with mesoscale models:

    Science.gov (United States)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria; Badger, Jake; Joergensen, Hans E.

    2016-04-01

    1. Introduction Mesoscale models are increasingly being used to estimate wind conditions to identify perspective areas and sites where to develop wind farm projects. Mesoscale models are functional for giving information over extensive areas with various terrain complexities where measurements are scarce and measurement campaigns costly. Several mesoscale models and families of models are being used, and each often contains thousands of setup options. Since long-term integrations are expensive and tedious to carry out, only limited comparisons exist. To remedy this problem and for evaluating the capabilities of mesoscale models to estimate site wind conditions, a tailored benchmarking study has been co-organized by the European Wind Energy Association (EWEA) and the European Energy Research Alliance Joint Programme Wind Energy (EERA JP WIND). EWEA hosted results and ensured that participants were anonymous. The blind evaluation was performed at the Wind Energy Department of the Technical University of Denmark (DTU) with the following objectives: (1) To highlight common issues on mesoscale modelling of wind conditions on sites with different characteristics, and (2) To identify gaps and strengths of models and understand the root conditions for further evaluating uncertainties. 2. Approach Three experimental sites were selected: FINO 3 (offshore, GE), Høvsore (coastal, DK), and Cabauw (land-based, NL), and three other sites without observations based on . The three mast sites were chosen because the availability of concurrent suitable time series of vertical profiles of winds speed and other surface parameters. The participants were asked to provide hourly time series of wind speed, wind direction, temperature, etc., at various vertical heights for a complete year. The methodology used to derive the time series was left to the choice of the participants, but they were asked for a brief description of their model and many other parameters (e.g., horizontal and

  19. Numerical simulation of terrain-induced mesoscale circulation in the Chiang Mai area, Thailand

    Science.gov (United States)

    Sathitkunarat, Surachai; Wongwises, Prungchan; Pan-Aram, Rudklao; Zhang, Meigen

    2008-11-01

    The regional atmospheric modeling system (RAMS) was applied to Chiang Mai province, a mountainous area in Thailand, to study terrain-induced mesoscale circulations. Eight cases in wet and dry seasons under different weather conditions were analyzed to show thermal and dynamic impacts on local circulations. This is the first study of RAMS in Thailand especially investigating the effect of mountainous area on the simulated meteorological data. Analysis of model results indicates that the model can reproduce major features of local circulation and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction, and temperature monitored at a meteorological tower. Comparison shows that the modeled values are generally in good agreement with observations and that the model captured many of the observed features.

  20. Mesoscale variability in the Bransfield Strait region (Antarctica during Austral summer

    Directory of Open Access Journals (Sweden)

    M. A. García

    1994-08-01

    Full Text Available The Bransfield Strait is one the best-known areas of Antarctica's oceanic surroundings. In spite of this, the study of the mesoscale variability of its local circulation has been addressed only recently. This paper focuses on the mesoscale structure of local physical oceanographic conditions in the Bransfield Strait during the Austral summer as derived from the BIOANTAR 93 cruise and auxiliary remote sensing data. Moreover, data recovered from moored current meters allow identification of transient mesoscale phenomena.

  1. Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions

    Science.gov (United States)

    Linacre, Lorena; Lara-Lara, Rubén; Camacho-Ibar, Víctor; Herguera, Juan Carlos; Bazán-Guzmán, Carmen; Ferreira-Bartrina, Vicente

    2015-12-01

    In order to characterize the carbon biomass spatial distribution of autotrophic and heterotrophic picoplankton populations linked to mesoscale dynamics, an investigation over an extensive open-ocean region of the southern Gulf of Mexico (GM) was conducted. Seawater samples from the mixed layer were collected during wintertime (February-March 2013). Picoplankton populations were counted and sorted using flow cytometry analyses. Carbon biomass was assessed based on in situ cell abundances and conversion factors from the literature. Approximately 46% of the total picoplankton biomass was composed of three autotrophic populations (Prochlorococcus, Synechococcus, and pico-eukaryotes), while 54% consisted of heterotrophic bacteria populations. Prochlorococcus spp. was the most abundant pico-primary producer (>80%), and accounted for more than 60% of the total pico-autotrophic biomass. The distribution patterns of picoplankton biomass were strongly associated with the mesoscale dynamics that modulated the hydrographic conditions of the surface mixed layer. The main features of the carbon distribution pattern were: (1) the deepening of picoplankton biomass to layers closer to the nitracline base in anticyclonic eddies; (2) the shoaling of picoplankton biomass in cyclonic eddies, constraining the autoprokaryote biomasses to the upper layers, as well as accumulating the pico-eukaryote biomass in the cold core of the eddies; and (3) the increase of heterotrophic bacteria biomass in frontal regions between counter-paired anticyclonic and cyclonic eddies. Factors related to nutrient preferences and light conditions may as well have contributed to the distribution pattern of the microbial populations. The findings reveal the great influence of the mesoscale dynamics on the distribution of picoplankton populations within the mixed layer. Moreover, the significance of microbial components (especially Prochlorococcus) in the southern GM during winter conditions was revealed

  2. High-resolution numerical modeling of mesoscale island wakes and sensitivity to static topographic relief data

    Directory of Open Access Journals (Sweden)

    C. G. Nunalee

    2015-08-01

    Full Text Available Recent decades have witnessed a drastic increase in the fidelity of numerical weather prediction (NWP modeling. Currently, both research-grade and operational NWP models regularly perform simulations with horizontal grid spacings as fine as 1 km. This migration towards higher resolution potentially improves NWP model solutions by increasing the resolvability of mesoscale processes and reducing dependency on empirical physics parameterizations. However, at the same time, the accuracy of high-resolution simulations, particularly in the atmospheric boundary layer (ABL, is also sensitive to orographic forcing which can have significant variability on the same spatial scale as, or smaller than, NWP model grids. Despite this sensitivity, many high-resolution atmospheric simulations do not consider uncertainty with respect to selection of static terrain height data set. In this paper, we use the Weather Research and Forecasting (WRF model to simulate realistic cases of lower tropospheric flow over and downstream of mountainous islands using the default global 30 s United States Geographic Survey terrain height data set (GTOPO30, the Shuttle Radar Topography Mission (SRTM, and the Global Multi-resolution Terrain Elevation Data set (GMTED2010 terrain height data sets. While the differences between the SRTM-based and GMTED2010-based simulations are extremely small, the GTOPO30-based simulations differ significantly. Our results demonstrate cases where the differences between the source terrain data sets are significant enough to produce entirely different orographic wake mechanics, such as vortex shedding vs. no vortex shedding. These results are also compared to MODIS visible satellite imagery and ASCAT near-surface wind retrievals. Collectively, these results highlight the importance of utilizing accurate static orographic boundary conditions when running high-resolution mesoscale models.

  3. Towards a generalization procedure for WRF mesoscale wind climatologies

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Casso, P.; Campmany, E.

    We present a method for generalizing wind climatologies generated from mesoscale model output (e.g. the Weather, Research and Forecasting (WRF) model.) The generalization procedure is based on Wind Atlas framework of WAsP and KAMM/WAsP, and been extensively in wind resources assessment in DTU Wind...... generalized wind climatologies estimated by the microscale model WAsP and the methodology presented here. For the Danish wind measurements the mean absolute error in the ‘raw’ wind speeds is 9.2%, while the mean absolute error in the generalized wind speeds is 4.1%. The generalization procedure has been...

  4. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    Science.gov (United States)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  5. Low-level wind response to mesoscale pressure systems

    Science.gov (United States)

    Garratt, J. R.; Physick, W. L.

    1983-09-01

    Observations are presented which show a strong correlation between low-level wind behaviour (e.g., rotation near the surface) and the passage of mesoscale pressure systems. The latter are associated with frontal transition zones, are dominated by a pressure-jump line and a mesoscale high pressure area, and produce locally large horizontal pressure gradients. The wind observations are simulated by specifying a time sequence of perturbation pressure gradient and subsequently solving the vertically-integrated momentum equations with appropriate initial conditions. Very good agreement is found between observed and calculated winds; in particular, (i) a 360 ° rotation in wind on passage of the mesoscale high; (ii) wind-shift lines produced dynamically by the pressure-jump line; (iii) rapid linear increase in wind speed on passage of the pressure jump.

  6. A new technique for observationally derived boundary conditions for space weather

    Science.gov (United States)

    Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson

    2018-04-01

    Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a

  7. Effects of weather and heliophysical conditions on emergency ambulance calls for elevated arterial blood pressure.

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta M; Dobozinskas, Paulius; Sakalyte, Gintare; Lopatiene, Kristina; Mikelionis, Nerijus

    2015-02-27

    We hypothesized that weather and space weather conditions were associated with the exacerbation of essential hypertension. The study was conducted during 2009-2010 in the city of Kaunas, Lithuania. We analyzed 13,475 cards from emergency ambulance calls (EACs), in which the conditions for the emergency calls were made coded I.10-I.15. The Kaunas Weather Station provided daily records of air temperature (T), wind speed (WS), relative humidity, and barometric pressure (BP). We evaluated the associations between daily weather variables and daily number of EACs by applying a multivariate Poisson regression. Unfavorable heliophysical conditions (two days after the active-stormy geomagnetic field or the days with solar WS>600 km/s) increased the daily number of elevated arterial blood pressure (EABP) by 12% (RR=1.12; 95% confidence interval (CI) 1.04-1.21); and WS≥3.5 knots during days of Tweather conditions. These results may help in the understanding of the population's sensitivity to different weather conditions.

  8. Atmospheric Diabatic Heating in Different Weather States and the General Circulation

    Science.gov (United States)

    Rossow, William B.; Zhang, Yuanchong; Tselioudis, George

    2016-01-01

    Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.

  9. A conditional stochastic weather generator for seasonal to multi-decadal simulations

    Science.gov (United States)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Podestá, Guillermo; Bert, Federico

    2018-01-01

    We present the application of a parametric stochastic weather generator within a nonstationary context, enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The generalized linear model framework of the weather generator allows any number of covariates to be included, such as large-scale climate indices, local climate information, seasonal precipitation and temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study, but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total precipitation and mean maximum and minimum temperatures as covariates for conditional simulation. Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial average is the dominant mode of variability across the domain. We find this modification to be effective in capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts and multidecadal projections, both of which are generally of coarse resolution.

  10. Turbulence Dissipation Rates in the Planetary Boundary Layer from Wind Profiling Radars and Mesoscale Numerical Weather Prediction Models during WFIP2

    Science.gov (United States)

    Bianco, L.; McCaffrey, K.; Wilczak, J. M.; Olson, J. B.; Kenyon, J.

    2016-12-01

    When forecasting winds at a wind plant for energy production, the turbulence parameterizations in the forecast models are crucial for understanding wind plant performance. Recent research shows that the turbulence (eddy) dissipation rate in planetary boundary layer (PBL) parameterization schemes introduces significant uncertainty in the Weather Research and Forecasting (WRF) model. Thus, developing the capability to measure dissipation rates in the PBL will allow for identification of weaknesses in, and improvements to the parameterizations. During a preliminary field study at the Boulder Atmospheric Observatory in spring 2015, a 915-MHz wind profiling radar (WPR) measured dissipation rates concurrently with sonic anemometers mounted on a 300-meter tower. WPR set-up parameters (e.g., spectral resolution), post-processing techniques (e.g., filtering for non-atmospheric signals), and spectral averaging were optimized to capture the most accurate Doppler spectra for measuring spectral widths for use in the computation of the eddy dissipation rates. These encouraging results lead to the implementation of the observing strategy on a 915-MHz WPR in Wasco, OR, operating as part of the Wind Forecasting Improvement Project 2 (WFIP2). These observations are compared to dissipation rates calculated from the High-Resolution Rapid Refresh model, a WRF-based mesoscale numerical weather prediction model run for WFIP2 at 3000 m horizontal grid spacing and with a nest, which has 750-meter horizontal grid spacing, in the complex terrain region of the Columbia River Gorge. The observed profiles of dissipation rates are used to evaluate the PBL parameterization schemes used in the HRRR model, which are based on the modeled turbulent kinetic energy and a tunable length scale.

  11. Influence factor analysis of atmospheric electric field monitoring near ground under different weather conditions

    International Nuclear Information System (INIS)

    Wan, Haojiang; Wei, Guanghui; Cui, Yaozhong; Chen, Yazhou

    2013-01-01

    Monitoring of atmospheric electric field near ground plays a critical role in atmospheric environment detecting and lightning warning. Different environmental conditions (e.g. buildings, plants, weather, etc.) have different influences on the data's coherence in an atmospheric electric field detection network. In order to study the main influence factors of atmospheric electric field monitoring under different weather conditions, with the combination of theoretical analysis and experiments, the electric field monitoring data on the ground and on the top of a building are compared in fair weather and thunderstorm weather respectively in this paper. The results show that: In fair weather, the field distortion due to the buildings is the main influence factor on the electric field monitoring. In thunderstorm weather, the corona ions produced from the ground, besides the field distortion due to the buildings, can also influence the electric field monitoring results.

  12. Role of Winter Weather Conditions and Slipperiness on Tourists’ Accidents in Finland

    Directory of Open Access Journals (Sweden)

    Élise Lépy

    2016-08-01

    Full Text Available (1 Background: In Finland, slippery snowy or icy ground surface conditions can be quite hazardous to human health during wintertime. We focused on the impacts of the variability in weather conditions on tourists’ health via documented accidents during the winter season in the Sotkamo area. We attempted to estimate the slipping hazard in a specific context of space and time focusing on the weather and other possible parameters, responsible for fluctuations in the numbers of injuries/accidents; (2 Methods: We used statistical distributions with graphical illustrations to examine the distribution of visits to Kainuu Hospital by non-local patients and their characteristics/causes; graphs to illustrate the distribution of the different characteristics of weather conditions; questionnaires and interviews conducted among health care and safety personnel in Sotkamo and Kuusamo; (3 Results: There was a clear seasonal distribution in the numbers and types of extremity injuries of non-local patients. While the risk of slipping is emphasized, other factors leading to injuries are evaluated; and (4 Conclusions: The study highlighted the clear role of wintery weather conditions as a cause of extremity injuries even though other aspects must also be considered. Future scenarios, challenges and adaptive strategies are also discussed from the viewpoint of climate change.

  13. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling

  14. Mechanism and kinetics of mineral weathering under acid conditions

    NARCIS (Netherlands)

    Anbeek, C.

    1994-01-01

    This study deals with the relationships between crystal structure, grain diameter, surface morphology and dissolution kinetics for feldspar and quartz under acid conditions.

    Intensively ground samples from large, naturally weathered mineral fragments are frequently used in

  15. Rotational and divergent kinetic energy in the mesoscale model ALADIN

    Directory of Open Access Journals (Sweden)

    V. Blažica

    2013-03-01

    Full Text Available Kinetic energy spectra from the mesoscale numerical weather prediction (NWP model ALADIN with horizontal resolution 4.4 km are split into divergent and rotational components which are then compared at horizontal scales below 300 km and various vertical levels. It is shown that about 50% of kinetic energy in the free troposphere in ALADIN is divergent energy. The percentage increases towards 70% near the surface and in the upper troposphere towards 100 hPa. The maximal percentage of divergent energy is found at stratospheric levels around 100 hPa and at scales below 100 km which are not represented by the global models. At all levels, the divergent energy spectra are characterised by shallower slopes than the rotational energy spectra, and the difference increases as horizontal scales become larger. A very similar vertical distribution of divergent energy is obtained by using the standard ALADIN approach for the computation of spectra based on the extension zone and by applying detrending approach commonly used in mesoscale NWP community.

  16. Comparison of methods for the identification of mesoscale wind speed fluctuations

    Directory of Open Access Journals (Sweden)

    Anna Rieke Mehrens

    2017-06-01

    Full Text Available Mesoscale wind speed fluctuations influence the characteristics of offshore wind energy. These recurring wind speed changes on time scales between tens of minutes and six hours lead to power output fluctuations. In order to investigate the meteorological conditions associated with mesoscale wind speed fluctuations, a measure is needed to detect these situations in wind speed time series. Previous studies used the empirical Hilbert-Huang Transform to determine the energy in the mesoscale frequency range or calculated the standard deviation of a band-pass filtered wind speed time series. The aim of this paper is to introduce newly developed empirical mesoscale fluctuation measures and to compare them with existing measures in regard to their sensitivity to recurring wind speed changes. One of the methods is based on the Hilbert-Huang Transform, two on the Fast Fourier Transform and one on wind speed increments. It is found that despite various complexity of the methods, all methods can identify days with highly variable mesoscale wind speeds equally well.

  17. An Initial Assessment of the Impact of CYGNSS Ocean Surface Wind Assimilation on Navy Global and Mesoscale Numerical Weather Prediction

    Science.gov (United States)

    Baker, N. L.; Tsu, J.; Swadley, S. D.

    2017-12-01

    We assess the impact of assimilation of CYclone Global Navigation Satellite System (CYGNSS) ocean surface winds observations into the NAVGEM[i] global and COAMPS®[ii] mesoscale numerical weather prediction (NWP) systems. Both NAVGEM and COAMPS® used the NRL 4DVar assimilation system NAVDAS-AR[iii]. Long term monitoring of the NAVGEM Forecast Sensitivity Observation Impact (FSOI) indicates that the forecast error reduction for ocean surface wind vectors (ASCAT and WindSat) are significantly larger than for SSMIS wind speed observations. These differences are larger than can be explained by simply two pieces of information (for wind vectors) versus one (wind speed). To help understand these results, we conducted a series of Observing System Experiments (OSEs) to compare the assimilation of ASCAT wind vectors with the equivalent (computed) ASCAT wind speed observations. We found that wind vector assimilation was typically 3 times more effective at reducing the NAVGEM forecast error, with a higher percentage of beneficial observations. These results suggested that 4DVar, in the absence of an additional nonlinear outer loop, has limited ability to modify the analysis wind direction. We examined several strategies for assimilating CYGNSS ocean surface wind speed observations. In the first approach, we assimilated CYGNSS as wind speed observations, following the same methodology used for SSMIS winds. The next two approaches converted CYGNSS wind speed to wind vectors, using NAVGEM sea level pressure fields (following Holton, 1979), and using NAVGEM 10-m wind fields with the AER Variational Analysis Method. Finally, we compared these methods to CYGNSS wind speed assimilation using multiple outer loops with NAVGEM Hybrid 4DVar. Results support the earlier studies suggesting that NAVDAS-AR wind speed assimilation is sub-optimal. We present detailed results from multi-month NAVGEM assimilation runs along with case studies using COAMPS®. Comparisons include the fit of

  18. Atmospheric propagation of high power laser radiation at different weather conditions

    OpenAIRE

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-01-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  19. Mesoscale and Local Scale Evaluations of Quantitative Precipitation Estimates by Weather Radar Products during a Heavy Rainfall Event

    Directory of Open Access Journals (Sweden)

    Basile Pauthier

    2016-01-01

    Full Text Available A 24-hour heavy rainfall event occurred in northeastern France from November 3 to 4, 2014. The accuracy of the quantitative precipitation estimation (QPE by PANTHERE and ANTILOPE radar-based gridded products during this particular event, is examined at both mesoscale and local scale, in comparison with two reference rain-gauge networks. Mesoscale accuracy was assessed for the total rainfall accumulated during the 24-hour event, using the Météo France operational rain-gauge network. Local scale accuracy was assessed for both total event rainfall and hourly rainfall accumulations, using the recently developed HydraVitis high-resolution rain gauge network Evaluation shows that (1 PANTHERE radar-based QPE underestimates rainfall fields at mesoscale and local scale; (2 both PANTHERE and ANTILOPE successfully reproduced the spatial variability of rainfall at local scale; (3 PANTHERE underestimates can be significantly improved at local scale by merging these data with rain gauge data interpolation (i.e., ANTILOPE. This study provides a preliminary evaluation of radar-based QPE at local scale, suggesting that merged products are invaluable for applications at very high resolution. The results obtained underline the importance of using high-density rain-gauge networks to obtain information at high spatial and temporal resolution, for better understanding of local rainfall variation, to calibrate remotely sensed rainfall products.

  20. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    Science.gov (United States)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes

  1. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  2. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    P. Josse

    1999-04-01

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  3. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  4. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education

    Science.gov (United States)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.

    2012-12-01

    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a

  5. Effects of Weather and Heliophysical Conditions on Emergency Ambulance Calls for Elevated Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Jone Vencloviene

    2015-02-01

    Full Text Available We hypothesized that weather and space weather conditions were associated with the exacerbation of essential hypertension. The study was conducted during 2009–2010 in the city of Kaunas, Lithuania. We analyzed 13,475 cards from emergency ambulance calls (EACs, in which the conditions for the emergency calls were made coded I.10–I.15. The Kaunas Weather Station provided daily records of air temperature (T, wind speed (WS, relative humidity, and barometric pressure (BP. We evaluated the associations between daily weather variables and daily number of EACs by applying a multivariate Poisson regression. Unfavorable heliophysical conditions (two days after the active-stormy geomagnetic field or the days with solar WS > 600 km/s increased the daily number of elevated arterial blood pressure (EABP by 12% (RR = 1.12; 95% confidence interval (CI 1.04–1.21; and WS ≥ 3.5 knots during days of T < 1.5 °C and T ≥ 12.5 °C by 8% (RR = 1.08; CI 1.04–1.12. An increase of T by 10 °C and an elevation of BP two days after by 10 hPa were associated with a decrease in RR by 3%. An additional effect of T was detected during days of T ≥ 17.5 °C only in females. Women and patients with grade III arterial hypertension at the time of the ambulance call were more sensitive to weather conditions. These results may help in the understanding of the population’s sensitivity to different weather conditions.

  6. Weather conditions associated with autumn migration by mule deer in Wyoming

    Directory of Open Access Journals (Sweden)

    Chadwick D. Rittenhouse

    2015-06-01

    Full Text Available Maintaining ecological integrity necessitates a proactive approach of identifying and acquiring lands to conserve unfragmented landscapes, as well as evaluating existing mitigation strategies to increase connectivity in fragmented landscapes. The increased use of highway underpasses and overpasses to restore connectivity for wildlife species offers clear conservation benefits, yet also presents a unique opportunity to understand how weather conditions may impact movement of wildlife species. We used remote camera observations (19,480 from an existing wildlife highway underpass in Wyoming and daily meteorological observations to quantify weather conditions associated with autumn migration of mule deer in 2009 and 2010. We identified minimal daily temperature and snow depth as proximate cues associated with mule deer migration to winter range. These weather cues were consistent across does and bucks, but differed slightly by year. Additionally, extreme early season snow depth or cold temperature events appear to be associated with onset of migration. This information will assist wildlife managers and transportation officials as they plan future projects to maintain and enhance migration routes for mule deer.

  7. Modelling study of mesoscale cyclogenesis over Ross Sea, Antarctica, on February 18, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Stortini, M.; Morelli, S.; Marchesi, S. [Modena e Reggio Emilia Univ., Modena (Italy). Dipt. di Scienze dell' Ingegneria, Sez. Osservatorio Geofisico

    2000-04-01

    This paper examines the development of a summer event of mesoscale cyclogenesis off the coast of Victoria Land in the presence of katabatic winds, by means of numerical simulations. These refer to the period from 00 UTC 17 February to 00 UTC 19 February 1988 and were performed using the hydrostatic ETA (1993 version) limited area model with resolution 55 km x 55 km x 17 levels. The ETA model reproduces katabatic winds from Terra Nova Bay and a trough on the southwestern Ross Sea. A cyclonic vortex is simulated in the trough, even though it is weaker than the one present in the analysis initialized by the European Center for Medium Range Weather Forecast (Reading, United Kingdom). Idealized simulations with varied surface conditions were also performed. In particular, an ice-covered ocean acts to weaken the atmospheric phenomena, while a no-mountain simulation emphasizes the influence of the orography and the cold winds from the coast of Victoria Land on the mesocyclonic activity.

  8. Deoxynivalenol occurrence in Serbian maize under different weather conditions

    Directory of Open Access Journals (Sweden)

    Jajić Igor M.

    2017-01-01

    Full Text Available The aim of this paper was to investigate deoxynivalenol (DON occurrence in maize samples originating from two harvest seasons in Serbia. The key differences between harvest seasons were weather conditions, specifically the humidity. The samples were analyzed using high performance liquid chromatography with DAD detection, after clean-up on SPE columns. In samples from 2014, DON was found in 82 (100.0% samples with the average content of 2.517 mg/kg (ranged from 0.368 to 11.343 mg/kg. Two samples exceeded maximum level permitted by EU regulations. However, analyzing larger number of samples (163 from 2015 harvest season, DON was present in 51 (31.3% samples in significantly lower concentrations (average of 0.662 mg/kg, ranged from 0.106 to 2.628 mg/kg. None of the samples from 2015 exceeded maximum level permitted by EU regulations. The data on DON presence in Serbian maize were in relation to the different weather conditions that prevailed during the two harvest seasons. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172042

  9. Influence of Met-Ocean Condition Forecasting Uncertainties on Weather Window Predictions for Offshore Operations

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    2017-01-01

    The article briefly presents a novel methodology of weather window estimation for offshore operations and mainly focuses on effects of met-ocean condition forecasting uncertainties on weather window predictions when using the proposed methodology. It is demonstrated that the proposed methodology...... to include stochastic variables, representing met-ocean forecasting uncertainties and the results of such modification are given in terms of predicted weather windows for a selected test case....

  10. Initializing a Mesoscale Boundary-Layer Model with Radiosonde Observations

    Science.gov (United States)

    Berri, Guillermo J.; Bertossa, Germán

    2018-01-01

    A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land-river surface-temperature contrast and low-level circulations of sea-land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994-2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.

  11. Do we need full mesoscale models to simulate the urban heat island? A study over the city of Barcelona.

    Science.gov (United States)

    García-Díez, Markel; Ballester, Joan; De Ridder, Koen; Hooyberghs, Hans; Lauwaet, Dirk; Rodó, Xavier

    2016-04-01

    As most of the population lives in urban environments, the simulation of the urban climate has become an important part of the global climate change impact assessment. However, due to the high resolution required, these simulations demand a large amount of computational resources. Here we present a comparison between a simplified fast urban climate model (UrbClim) and a widely used full mesoscale model, the Weather Research and Forecasting (WRF) model, over the city of Barcelona. In order to check the advantages and disadvantages of each approach, both simulations were compared with station data and with land surface temperature observations retrieved by satellites, focusing on the urban heat island. The effect of changing the UrbClim boundary conditions was studied too, by using low resolution global reanalysis data (70 km) and a higher resolution forecast model (15 km). Finally, a strict comparison of the computational resources consumed by both models was carried out. Results show that, generally, the performance of the simple model is comparable to or better than the mesoscale model. The exception are the winds and the day-to-day correlation in the reanalysis driven run, but these problems disappear when taking the boundary conditions from a higher resolution global model. UrbClim was found to run 133 times faster than WRF, using 4x times higher resolution and, thus, it is an efficient solution for running long climate change simulations over large city ensembles.

  12. Review on the Strength Development Required for the Concrete Structure of Nuclear Power Plant under Cold Weather Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Teak; Park, Chun Jin; Ryu, Gum Sung; Kim, Do Gyeum; Lee, Jang Hwa [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2011-10-15

    As a part of a Department of Energy-Nuclear According to the specifications for the construction execution for a nuclear power plant (NPP), the cold weather concrete should be facilitated that comply with the regulations of ACI-306R. Here, in terms of the standards applied to the cold weather concrete, such concrete should be applied in the case where the daily average temperature is 5 .deg. C or less. So, according to the analysis on the average temperature in winter over the last one year at each NPP construction area, it was found that such had lowered by about 0.5 - 2 .deg. C as compared to the temperature during the normal years (the last ten years) and the number of days applied to the cold weather concrete according to the ACI regulations was shown as 83, so as around 1/4 of year falls into the cold weather conditions and furthermore the recent weather is getting severe, it is necessary to perform the appropriate insulation curing for the cold weather concrete. On the other hand, according to the regulations with regards to the curing conditions for cold weather concrete, the insulation curing of such should be appropriately performed under an environment of 5 .deg. C or greater until the strength of 3.5 MPa (500 Psi) develops. Likewise, according to the regulations regarding the cold weather concrete in the domestic concrete specifications, the insulation curing should be performed until a strength development of 5 MPa (715 Psi) considering the safety factor indicated to the ACI regulation under the temperature of 5 .deg. C or greater. According to the above-mentioned regulations, the NPP structure is required to develop a minimum strength of 5 MPa or greater, and to maintain such important qualities, including strength development, early anti-freezing and duality under cold weather conditions. However, even though the early strength of 5 MPa or greater is secured under the recent abnormal weather conditions and cold weather conditions, if the structure is

  13. Weather conditions conducive to Beijing severe haze more frequent under climate change

    Science.gov (United States)

    Cai, Wenju; Li, Ke; Liao, Hong; Wang, Huijun; Wu, Lixin

    2017-03-01

    The frequency of Beijing winter severe haze episodes has increased substantially over the past decades, and is commonly attributed to increased pollutant emissions from China’s rapid economic development. During such episodes, levels of fine particulate matter are harmful to human health and the environment, and cause massive disruption to economic activities, as occurred in January 2013. Conducive weather conditions are an important ingredient of severe haze episodes, and include reduced surface winter northerlies, weakened northwesterlies in the midtroposphere, and enhanced thermal stability of the lower atmosphere. How such weather conditions may respond to climate change is not clear. Here we project a 50% increase in the frequency and an 80% increase in the persistence of conducive weather conditions similar to those in January 2013, in response to climate change. The frequency and persistence between the historical (1950-1999) and future (2050-2099) climate were compared in 15 models under Representative Concentration Pathway 8.5 (RCP8.5). The increased frequency is consistent with large-scale circulation changes, including an Arctic Oscillation upward trend, weakening East Asian winter monsoon, and faster warming in the lower troposphere. Thus, circulation changes induced by global greenhouse gas emissions can contribute to the increased Beijing severe haze frequency.

  14. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations. Part I: Surface fluxes

    Science.gov (United States)

    Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.

    1999-04-01

    A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is

  15. Use of ground-based wind profiles in mesoscale forecasting

    Science.gov (United States)

    Schlatter, Thomas W.

    1985-01-01

    A brief review is presented of recent uses of ground-based wind profile data in mesoscale forecasting. Some of the applications are in real time, and some are after the fact. Not all of the work mentioned here has been published yet, but references are given wherever possible. As Gage and Balsley (1978) point out, sensitive Doppler radars have been used to examine tropospheric wind profiles since the 1970's. It was not until the early 1980's, however, that the potential contribution of these instruments to operational forecasting and numerical weather prediction became apparent. Profiler winds and radiosonde winds compare favorably, usually within a few m/s in speed and 10 degrees in direction (see Hogg et al., 1983), but the obvious advantage of the profiler is its frequent (hourly or more often) sampling of the same volume. The rawinsonde balloon is launched only twice a day and drifts with the wind. In this paper, I will: (1) mention two operational uses of data from a wind profiling system developed jointly by the Wave Propagation and Aeronomy Laboratories of NOAA; (2) describe a number of displays of these same data on a workstation for mesoscale forecasting developed by the Program for Regional Observing and Forecasting Services (PROFS); and (3) explain some interesting diagnostic calculations performed by meteorologists of the Wave Propagation Laboratory.

  16. The influence of weather conditions on road safety : an assessment of the effect of precipitation and temperature.

    NARCIS (Netherlands)

    Bijleveld, F.D. & Churchill, T.

    2009-01-01

    The influence of changes in extreme weather conditions is often identified as a cause of fluctuations in road safety and the resulting numbers of crashes and casualties. This report focuses on an analysis of the aggregate, accumulated effect of weather conditions (precipitation and temperature) on

  17. The characteristics of local atmospheric circulation around the Wolsung NPP in Korea

    International Nuclear Information System (INIS)

    Lee, G.B.; Lee, M.C.; Song, Y.I.

    1998-01-01

    The transport of air pollutants in coastal regions has been known to be strongly affected by the mesoscale atmospheric circulations such as sea-land breezes. These mesoscale atmospheric circulations depend on synoptic weather conditions. In this study, a three-dimensional sea-land breeze model was developed to evaluate the effects of the sea and land breezes on the atmospheric dispersion of radioactive materials released from nuclear power plants in Korea. In the model, the hydrostatic primitive equations in the terrain-following coordinate system were used. The mesoscale atmospheric circulation simulation were carried out under various synoptic weather conditions for all seasons around the Wolsung nuclear power plant site

  18. Weather conditions may worsen symptoms in rheumatoid arthritis patients: the possible effect of temperature.

    Science.gov (United States)

    Abasolo, Lydia; Tobías, Aurelio; Leon, Leticia; Carmona, Loreto; Fernandez-Rueda, Jose Luis; Rodriguez, Ana Belen; Fernandez-Gutierrez, Benjamin; Jover, Juan Angel

    2013-01-01

    Patients with rheumatoid arthritis (RA) complain that weather conditions aggravate their symptoms. We investigated the short-term effects of weather conditions on worsening of RA and determined possible seasonal fluctuations. We conducted a case-crossover study in Madrid, Spain. Daily cases of RA flares were collected from the emergency room of a tertiary level hospital between 2004 and 2007. 245 RA patients who visited the emergency room 306 times due to RA related complaints as the main diagnostic reason were included in the study. Patients from 50 to 65 years old were 16% more likely to present a flare with lower mean temperatures. Our results support the belief that weather influences rheumatic pain in middle aged patients. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  19. The Influence of Weather Conditions on Joint Pain in Older People with Osteoarthritis: Results from the European Project on OSteoArthritis

    NARCIS (Netherlands)

    Timmermans, E.J.; Schaap, L.A.; Herbolsheimer, F.; Dennison, E.M.; Maggi, S.; Pedersen, N.L.; Castell, M.V; Denkinger, M.D.; Edwards, M.H.; Limongi, F.; Sanchez-Martinez, M.; Siviero, P.; Queipo, R.; Peter, R.; van der Pas, S.; Deeg, D.J.H.

    2015-01-01

    Objective. This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Methods. Data from the population-based European Project on OSteoArthritis were

  20. The Influence of Weather Conditions on Joint Pain in Older People with Osteoarthritis: Results from the European Project on OSteoArthritis.

    Science.gov (United States)

    Timmermans, Erik J; Schaap, Laura A; Herbolsheimer, Florian; Dennison, Elaine M; Maggi, Stefania; Pedersen, Nancy L; Castell, Maria Victoria; Denkinger, Michael D; Edwards, Mark H; Limongi, Federica; Sánchez-Martínez, Mercedes; Siviero, Paola; Queipo, Rocio; Peter, Richard; van der Pas, Suzan; Deeg, Dorly J H

    2015-10-01

    This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Data from the population-based European Project on OSteoArthritis were used. The American College of Rheumatology classification criteria were used to diagnose OA in older people (65-85 yrs). After the baseline interview, at 6 months, and after the 12-18 months followup interview, joint pain was assessed using 2-week pain calendars. Daily values for temperature, precipitation, atmospheric pressure, relative humidity, and wind speed were obtained from local weather stations. Multilevel regression modelling was used to examine the pain-weather associations, adjusted for several confounders. The study included 810 participants with OA in the knee, hand, and/or hip. After adjustment, there were significant associations of joint pain with daily average humidity (B = 0.004, p weather conditions. Changes in weather variables between 2 consecutive days were not significantly associated with reported joint pain. The associations between pain and daily average weather conditions suggest that a causal relationship exist between joint pain and weather variables, but the associations between day-to-day weather changes and pain do not confirm causation. Knowledge about the relationship between joint pain in OA and weather may help individuals with OA, physicians, and therapists to better understand and manage fluctuations in pain.

  1. Development of a parameterization scheme of mesoscale convective systems

    International Nuclear Information System (INIS)

    Cotton, W.R.

    1994-01-01

    The goal of this research is to develop a parameterization scheme of mesoscale convective systems (MCS) including diabatic heating, moisture and momentum transports, cloud formation, and precipitation. The approach is to: Perform explicit cloud-resolving simulation of MCSs; Perform statistical analyses of simulated MCSs to assist in fabricating a parameterization, calibrating coefficients, etc.; Test the parameterization scheme against independent field data measurements and in numerical weather prediction (NWP) models emulating general circulation model (GCM) grid resolution. Thus far we have formulated, calibrated, implemented and tested a deep convective engine against explicit Florida sea breeze convection and in coarse-grid regional simulations of mid-latitude and tropical MCSs. Several explicit simulations of MCSs have been completed, and several other are in progress. Analysis code is being written and run on the explicitly simulated data

  2. Extreme gust wind estimation using mesoscale modeling

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Kruger, Andries

    2014-01-01

    , surface turbulence characteristics. In this study, we follow a theory that is different from the local gust concept as described above. In this theory, the gust at the surface is non-local; it is produced by the deflection of air parcels flowing in the boundary layer and brought down to the surface...... from the Danish site Høvsøre help us to understand the limitation of the traditional method. Good agreement was found between the extreme gust atlases for South Africa and the existing map made from a limited number of measurements across the country. Our study supports the non-local gust theory. While...... through turbulent eddies. This process is modeled using the mesoscale Weather Forecasting and Research (WRF) model. The gust at the surface is calculated as the largest winds over a layer where the averaged turbulence kinetic energy is greater than the averaged buoyancy force. The experiments have been...

  3. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  4. Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves

    Science.gov (United States)

    Yang, Q.; Majda, A.

    2017-12-01

    Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive

  5. Spring weather conditions influence breeding phenology and reproductive success in sympatric bat populations.

    Science.gov (United States)

    Linton, Danielle M; Macdonald, David W

    2018-04-10

    Climate is known to influence breeding phenology and reproductive success in temperate-zone bats, but long-term population level studies and interspecific comparisons are rare. Investigating the extent to which intrinsic (i.e. age), and extrinsic (i.e. spring weather conditions), factors influence such key demographic parameters as the proportion of females becoming pregnant, or completing lactation, each breeding season, is vital to understanding of bat population ecology and life-history traits. Using data from 12 breeding seasons (2006-2017), encompassing the reproductive histories of 623 Myotis daubentonii and 436 Myotis nattereri adult females, we compare rates of recruitment to the breeding population and show that these species differ in their relative sensitivity to environmental conditions and climatic variation, affecting annual reproductive success at the population level. We demonstrate that (1) spring weather conditions influence breeding phenology, with warm, dry and calm conditions leading to earlier parturition dates and advanced juvenile development, whilst cold, wet and windy weather delays birth timing and juvenile growth; (2) reproductive rates in first-year females are influenced by spring weather conditions in that breeding season and in the preceding breeding season when each cohort was born. Pregnancy and lactation rates were both higher when favourable spring foraging conditions were more prevalent; (3) reproductive success increases with age in both species, but at different rates; (4) reproductive rates were consistently higher, and showed less interannual variation, in second-year and older M. daubentonii (mean 91.55% ± 0.05 SD) than M. nattereri (mean 72.74% ± 0.15 SD); (5) estimates of reproductive success at the population level were highly correlated with the size of the juvenile cohort recorded each breeding season. Improving understanding of the influence of environmental conditions, especially extreme climatic

  6. Weather conditions and political party vote share in Dutch national parliament elections, 1971-2010

    Science.gov (United States)

    Eisinga, Rob; Te Grotenhuis, Manfred; Pelzer, Ben

    2012-11-01

    Inclement weather on election day is widely seen to benefit certain political parties at the expense of others. Empirical evidence for this weather-vote share hypothesis is sparse however. We examine the effects of rainfall and temperature on share of the votes of eight political parties that participated in 13 national parliament elections, held in the Netherlands from 1971 to 2010. This paper merges the election results for all Dutch municipalities with election-day weather observations drawn from all official weather stations well distributed over the country. We find that the weather parameters affect the election results in a statistically and politically significant way. Whereas the Christian Democratic party benefits from substantial rain (10 mm) on voting day by gaining one extra seat in the 150-seat Dutch national parliament, the left-wing Social Democratic (Labor) and the Socialist parties are found to suffer from cold and wet conditions. Cold (5°C) and rainy (10 mm) election day weather causes the latter parties to lose one or two parliamentary seats.

  7. Lightning characteristics of derecho producing mesoscale convective systems

    Science.gov (United States)

    Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.

    2016-06-01

    Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.

  8. Paper birch decline in the Niobrara River Valley, Nebraska: Weather, microclimate, and birch stand conditions

    Science.gov (United States)

    Stroh, Esther D.; Miller, Joel P.

    2009-01-01

    The Niobrara River Valley in north-central Nebraska supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation, when regional flora was more boreal in nature (Wright 1970, Kaul and others, 1988). Dieback of canopy-sized birch has been observed throughout the Niobrara Valley in recent years, although no onset dates are documented. The current dieback event probably started around or after the early 1980’s. The study objectives were to understand microclimatic conditions in birch stands relative to nearby weather stations and historic weather conditions, and to assess current health conditions of individual birch trees. Temperature was measured every half-hour from June 2005 through October 2007 in 12 birch stands and individual birch tree health was measured as expressed by percent living canopy in these and 13 additional stands in spring 2006 and 2007. Birch site microclimate was compared to data from a National Weather Service station in Valentine, Nebraska, and to an automated weather station at The Nature Conservancy Niobrara Valley Preserve 24 kilometers north of Johnstown, Nebraska. Historic weather data from the Valentine station and another National Weather Service Station at Ainsworth, Nebraska, were used to reconstruct minimum and maximum temperature at The Nature Conservancy and one microclimate monitoring station using Kalman filtering and smoothing algorithms. Birch stand microclimate differed from local weather stations as well as among stands. Birch health was associated with annual minimum temperature regimes; those stands whose annual daily minimum temperature regimes were most like The Nature Conservancy station contained smaller proportions of living trees. Frequency of freeze/thaw conditions capable of inducing rootlet injury and subsequent crown dieback significantly have

  9. Assimilation of Aircraft Observations in High-Resolution Mesoscale Modeling

    Directory of Open Access Journals (Sweden)

    Brian P. Reen

    2018-01-01

    Full Text Available Aircraft-based observations are a promising source of above-surface observations for assimilation into mesoscale model simulations. The Tropospheric Airborne Meteorological Data Reporting (TAMDAR observations have potential advantages over some other aircraft observations including the presence of water vapor observations. The impact of assimilating TAMDAR observations via observation nudging in 1 km horizontal grid spacing Weather Research and Forecasting model simulations is evaluated using five cases centered over California. Overall, the impact of assimilating the observations is mixed, with the layer with the greatest benefit being above the surface in the lowest 1000 m above ground level and the variable showing the most consistent benefit being temperature. Varying the nudging configuration demonstrates the sensitivity of the results to details of the assimilation, but does not clearly demonstrate the superiority of a specific configuration.

  10. Atmospheric conditions create freeways, detours and tailbacks for migrating birds.

    Science.gov (United States)

    Shamoun-Baranes, Judy; Liechti, Felix; Vansteelant, Wouter M G

    2017-07-01

    The extraordinary adaptations of birds to contend with atmospheric conditions during their migratory flights have captivated ecologists for decades. During the 21st century technological advances have sparked a revival of research into the influence of weather on migrating birds. Using biologging technology, flight behaviour is measured across entire flyways, weather radar networks quantify large-scale migratory fluxes, citizen scientists gather observations of migrant birds and mechanistic models are used to simulate migration in dynamic aerial environments. In this review, we first introduce the most relevant microscale, mesoscale and synoptic scale atmospheric phenomena from the point of view of a migrating bird. We then provide an overview of the individual responses of migrant birds (when, where and how to fly) in relation to these phenomena. We explore the cumulative impact of individual responses to weather during migration, and the consequences thereof for populations and migratory systems. In general, individual birds seem to have a much more flexible response to weather than previously thought, but we also note similarities in migratory behaviour across taxa. We propose various avenues for future research through which we expect to derive more fundamental insights into the influence of weather on the evolution of migratory behaviour and the life-history, population dynamics and species distributions of migrant birds.

  11. Dynamics of Clouds and Mesoscale Circulations over the Maritime Continent

    Science.gov (United States)

    Jin, Y.; Wang, S.; Xian, P.; Reid, J. S.; Nachamkin, J.

    2010-12-01

    In recent decades Southeast Asia (SEA) has seen rapid economic growth as well as increased biomass burning, resulting in high air pollution levels and reduced air qual-ity. At the same time clouds often prevent accurate air-quality monitoring and analysis using satellite observations. The Seven SouthEast Asian Studies (7SEAS) field campaign currently underway over SEA provides an unprecedented opportunity to study the com-plex interplay between aerosol and clouds. 7SEAS is a comprehensive interdisciplinary atmospheric sciences program through international partnership of NASA, NRL, ONR and seven local institutions including those from Indonesia, Malaysia, the Philippines, Singapore, Taiwan, Thailand, and Vietnam. While the original goal of 7SEAS is to iso-late the impacts of aerosol particles on weather and the environment, it is recognized that better understanding of SEA meteorological conditions, especially those associated with cloud formation and evolution, is critical to the success of the campaign. In this study we attempt to gain more insight into the dynamic and physical processes associated with low level clouds and atmospheric circulation at the regional scale over SEA, using the Navy’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS® ), a regional forecast model in operation at FNMOC since 1998. This effort comprises two main components. First, multiple-years of COAMPS operational forecasts over SEA are analyzed for basic climatology of atmospheric fea-tures. Second, mesoscale circulation and cloud properties are simulated at relatively higher resolution (15-km) for selected periods in the Gulf of Tonkin and adjacent coastal areas. Simulation results are compared to MODIS cloud observations and local sound-ings obtained during 7SEAS for model verifications. Atmospheric boundary layer proc-esses are examined in relation to spatial and temporal variations of cloud fields. The cur-rent work serves as an important step toward improving our

  12. A mini-max principle for drift waves and mesoscale fluctuations

    International Nuclear Information System (INIS)

    Itoh, S-I; Itoh, K

    2011-01-01

    A mini-max principle for the system of the drift waves and mesoscale fluctuations (e.g. zonal flows, etc) is studied. For the system of model equations a Lyapunov function is constructed, which takes the minimum when the stationary state is realized. The dynamical evolution describes the access to the state that is realized. The competition between different mesoscale fluctuations is explained. The origins of irreversibility that cause an approach to the stationary state are discussed. A selection rule among fluctuations is derived, and conditions, under which different kinds of mesocale fluctuations coexist, are investigated. An analogy of this minimum principle to the principle of 'minimum Helmholtz free energy' in thermal equilibrium is shown.

  13. Geographic heterogeneity in cycling under various weather conditions: Evidence from Greater Rotterdam

    NARCIS (Netherlands)

    Helbich, M.; Böcker, L.; Dijst, M.J.

    2014-01-01

    With its sustainability, health and accessibility benefits, cycling has nowadays been established on research and policy agendas. Notwithstanding the decision to cycle is closely related to local weather conditions and interwoven with the geographical context, research dealing with both aspects is

  14. Do Wind Turbines Affect Weather Conditions?: A Case Study in Indiana

    Directory of Open Access Journals (Sweden)

    Meghan F. Henschen

    2011-01-01

    Full Text Available Wind turbines are becoming increasingly widespread in the United States as the world looks for cleaner sources of energy. Scientists, policymakers, and citizens have strong opinions regarding the positive and negative effects of wind energy projects, and there is a great deal of misinformation about wind energy circulating on the Web and other media sources. The purpose of this study is to gain a better understanding of how the rotation of hundreds of turbines can influence local weather conditions within a wind farm and in the surrounding areas. This experiment measures temperature, atmospheric pressure, wind speed, wind direction, relative humidity, and evaporation with five weather instruments at Meadow Lake Wind Farm located in White, Jasper, and Benton Counties, Indiana, from November 4 through November 18, 2010. The data show that as wind passes throughout the wind farm, the air warms during the overnight and early morning hours and cools during daytime hours. Observed lower humidity rates and higher evaporation rates downwind also demonstrate that the air dries out as it travels through the wind farm. Further research over multiple seasons is necessary to examine the effects of warmer nighttime temperatures and drier conditions progressively downwind of the installation. Nevertheless, wind turbines did not negatively affect local weather patterns in our small-scale research and may actually prevent frost, which could have important positive implications for farmers by potentially prolonging the growing season.

  15. Integrating K-means Clustering with Kernel Density Estimation for the Development of a Conditional Weather Generation Downscaling Model

    Science.gov (United States)

    Chen, Y.; Ho, C.; Chang, L.

    2011-12-01

    In previous decades, the climate change caused by global warming increases the occurrence frequency of extreme hydrological events. Water supply shortages caused by extreme events create great challenges for water resource management. To evaluate future climate variations, general circulation models (GCMs) are the most wildly known tools which shows possible weather conditions under pre-defined CO2 emission scenarios announced by IPCC. Because the study area of GCMs is the entire earth, the grid sizes of GCMs are much larger than the basin scale. To overcome the gap, a statistic downscaling technique can transform the regional scale weather factors into basin scale precipitations. The statistic downscaling technique can be divided into three categories include transfer function, weather generator and weather type. The first two categories describe the relationships between the weather factors and precipitations respectively based on deterministic algorithms, such as linear or nonlinear regression and ANN, and stochastic approaches, such as Markov chain theory and statistical distributions. In the weather type, the method has ability to cluster weather factors, which are high dimensional and continuous variables, into weather types, which are limited number of discrete states. In this study, the proposed downscaling model integrates the weather type, using the K-means clustering algorithm, and the weather generator, using the kernel density estimation. The study area is Shihmen basin in northern of Taiwan. In this study, the research process contains two steps, a calibration step and a synthesis step. Three sub-steps were used in the calibration step. First, weather factors, such as pressures, humidities and wind speeds, obtained from NCEP and the precipitations observed from rainfall stations were collected for downscaling. Second, the K-means clustering grouped the weather factors into four weather types. Third, the Markov chain transition matrixes and the

  16. The impact of reflectivity correction and accounting for raindrop size distribution variability to improve precipitation estimation by weather radar for an extreme low-land mesoscale convective system

    Science.gov (United States)

    Hazenberg, Pieter; Leijnse, Hidde; Uijlenhoet, Remko

    2014-11-01

    Between 25 and 27 August 2010 a long-duration mesoscale convective system was observed above the Netherlands, locally giving rise to rainfall accumulations exceeding 150 mm. Correctly measuring the amount of precipitation during such an extreme event is important, both from a hydrological and meteorological perspective. Unfortunately, the operational weather radar measurements were affected by multiple sources of error and only 30% of the precipitation observed by rain gauges was estimated. Such an underestimation of heavy rainfall, albeit generally less strong than in this extreme case, is typical for operational weather radar in The Netherlands. In general weather radar measurement errors can be subdivided into two groups: (1) errors affecting the volumetric reflectivity measurements (e.g. ground clutter, radar calibration, vertical profile of reflectivity) and (2) errors resulting from variations in the raindrop size distribution that in turn result in incorrect rainfall intensity and attenuation estimates from observed reflectivity measurements. A stepwise procedure to correct for the first group of errors leads to large improvements in the quality of the estimated precipitation, increasing the radar rainfall accumulations to about 65% of those observed by gauges. To correct for the second group of errors, a coherent method is presented linking the parameters of the radar reflectivity-rain rate (Z - R) and radar reflectivity-specific attenuation (Z - k) relationships to the normalized drop size distribution (DSD). Two different procedures were applied. First, normalized DSD parameters for the whole event and for each precipitation type separately (convective, stratiform and undefined) were obtained using local disdrometer observations. Second, 10,000 randomly generated plausible normalized drop size distributions were used for rainfall estimation, to evaluate whether this Monte Carlo method would improve the quality of weather radar rainfall products. Using the

  17. Structural Characteristics of Nocturnal Mesoscale Convective Systems in the U.S. Great Plains as Observed During the PECAN Field Campaign

    Science.gov (United States)

    Bodine, D. J.; Dougherty, E.; Rasmussen, K. L.; Torres, A. D.

    2015-12-01

    During the summer in the U.S. Great Plains, some of the heaviest precipitation falls from large thunderstorm complexes known as Mesoscale Convective Systems (MCSs). These frequently occurring MCSs are often nocturnal in nature, so the dynamics associated with these systems are more elusive than those in the daytime. The Plains Elevated Convection at Night (PECAN) field campaign was launched over a 7-week period as an endeavor to better understand nocturnal MCSs occurring in the Great Plains. PECAN featured a dense array of ground-based and airborne instruments to observe nocturnal MCS, including dual-polarization radars at multiple frequencies, mobile mesonets, and sounding units. Our role in PECAN involved deploying Ott Parsivel disdrometers to gain information on drop size distributions (DSDs) and fall speeds. Analysis of disdrometer data in conjunction with radar data presented using Contour Frequency by Altitude Diagrams (CFADs) and high-resolution radiosonde data allows for a structural comparison of PECAN MCS cases to previously identified MCS archetypes. Novel insights into the structural evolution of nocturnal MCSs in relation to their synoptic, mesoscale, and thermodynamic environments are presented, using data collected from dense and numerous observation platforms. Understanding the environmental conditions that result in different nocturnal MCS configurations is useful for gaining insight into precipitation distributions and potential severe weather and flooding hazards in the Great Plains.

  18. The Conditions of Creation and Prospects of Weather Derivatives Development on the Domestic Market

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski

    2008-06-01

    Full Text Available Analysing the possibility of creations and prospects of weather derivatives development on the domestic market the first of all should be identify the business areas that are strongly exposed for weather risk, which are: energy, agricultural, building and transportation. The specificity of the Polish climate is the high volatility of the major weather factors like temperature or precipitations. Similar to other European countries where weather derivatives markets already exist (e.g.: Germany, France, and United Kingdom. Having in mind dynamic grow of companies with regards to management processes, used technologies and marketing strategies, the exposure for weather risk is getting higher. Therefore, there is a strong pressure for creation of mechanisms and instruments that will allow reducing that kind of risks. Currently in Poland there are no conditions for development of weather derivatives market due to lack of demand. That situation is caused by low level of awareness regarding to possibilities of reducing weather risks. Within a few years the demand for such the instruments will appear ñ together with growing awareness. Once the demand for weather derivative will appear, the existing infrastructure of financial sector is ready for its implementation. Of course it is hard to say what will be the direction of whether derivatives grow on the domestic financial market but taking into consideration its dynamic grow and strong correlations with global markets, there is a small probability that weather derivatives will not appear on the Polish market ñ it is only the matter of time.

  19. Micro- and meso-scale effects of forested terrain

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Sogachev, Andrey

    2011-01-01

    scales are the height of the planetary boundary layer and the Monin-Obukhov length, which both are related to the energy balance of the surface. Examples of important micro- and meso-scale effects of forested terrain are shown using data and model results from recent and ongoing experiments. For micro......The height and rotor diameter of modern wind turbines are so extensive, that the wind conditions they encounter often are well above the surface layer, where traditionally it is assumed that wind direction and turbulent fluxes are constant with respect to height, if the surface is homogenous....... Deviations from the requirement of homogeneity are often the focus of micro-scale studies in forested areas. Yet, to explain the wind climate in the relevant height range for turbines, it is necessary to also account for the length scales that are important parameters for the meso-scale flow. These length...

  20. Wake modelling combining mesoscale and microscale models

    DEFF Research Database (Denmark)

    Badger, Jake; Volker, Patrick; Prospathospoulos, J.

    2013-01-01

    In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake paramet...

  1. Acoustic Characterization of Mesoscale Objects

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  2. A Preliminary Assessment of Daily Weather Conditions in Nuclear Site for Development of Effective Emergency Plan

    International Nuclear Information System (INIS)

    Han, Seok Jung; Ahn, Kwang Il

    2012-01-01

    A radiological emergency preparedness for nuclear sites is recognized as an important measure against anticipated severe accidents with environmental releases of radioactive materials. While there are many individual means in the emergency preparedness for nuclear accidents, one of most important means is to make a decision of evacuation or shelter of the public residents with the emergency plan zone (EPZ) of a nuclear site. In order to prepare an effective strategy for the evacuation as a basis of the emergency preparedness, it may need the understanding of atmospheric dispersion characteristics of radiation releases to the environment, mainly depending upon the weather conditions of a radiation releases location, i.e., a nuclear site. As a preliminary study for the development of an effective emergency plan, the basic features of the weather conditions of a specific site were investigated. A main interest of this study is to identify whether or not the site weather conditions have specific features helpful for a decision making of evacuation of the public residents

  3. Unifying Inference of Meso-Scale Structures in Networks.

    Science.gov (United States)

    Tunç, Birkan; Verma, Ragini

    2015-01-01

    Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities) of the brain, as well as its auxiliary characteristics (core-periphery).

  4. Unifying Inference of Meso-Scale Structures in Networks.

    Directory of Open Access Journals (Sweden)

    Birkan Tunç

    Full Text Available Networks are among the most prevalent formal representations in scientific studies, employed to depict interactions between objects such as molecules, neuronal clusters, or social groups. Studies performed at meso-scale that involve grouping of objects based on their distinctive interaction patterns form one of the main lines of investigation in network science. In a social network, for instance, meso-scale structures can correspond to isolated social groupings or groups of individuals that serve as a communication core. Currently, the research on different meso-scale structures such as community and core-periphery structures has been conducted via independent approaches, which precludes the possibility of an algorithmic design that can handle multiple meso-scale structures and deciding which structure explains the observed data better. In this study, we propose a unified formulation for the algorithmic detection and analysis of different meso-scale structures. This facilitates the investigation of hybrid structures that capture the interplay between multiple meso-scale structures and statistical comparison of competing structures, all of which have been hitherto unavailable. We demonstrate the applicability of the methodology in analyzing the human brain network, by determining the dominant organizational structure (communities of the brain, as well as its auxiliary characteristics (core-periphery.

  5. Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne

    2012-01-01

    (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree. The crude oils (9 L) were weathered in a laboratory basin (4.8 m3) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability...... is dependent on oil composition, ice conditions and weathering degree. In open water, oil spills rapidly become “not ignitable” due to the weathering e.g. high water content and low content of residual volatile components. The slower weathering of oil spills in ice (50 and 90% ice cover) results in longer time......-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Grane crude oil had a limited timewindow for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from...

  6. Observations of Coastally Transitioning West African Mesoscale Convective Systems during NAMMA

    Directory of Open Access Journals (Sweden)

    Bradley W. Klotz

    2012-01-01

    Full Text Available Observations from the NASA 10 cm polarimetric Doppler weather radar (NPOL were used to examine structure, development, and oceanic transition of West African Mesoscale Convective Systems (MCSs during the NASA African Monsoon Multidisciplinary Analysis (NAMMA to determine possible indicators leading to downstream tropical cyclogenesis. Characteristics examined from the NPOL data include echo-top heights, maximum radar reflectivity, height of maximum radar reflectivity, and convective and stratiform coverage areas. Atmospheric radiosondes launched during NAMMA were used to investigate environmental stability characteristics that the MCSs encountered while over land and ocean, respectively. Strengths of African Easterly Waves (AEWs were examined along with the MCSs in order to improve the analysis of MCS characteristics. Mean structural and environmental characteristics were calculated for systems that produced TCs and for those that did not in order to determine differences between the two types. Echo-top heights were similar between the two types, but maximum reflectivity and height and coverage of intense convection (>50 dBZ are all larger than for the TC producing cases. Striking differences in environmental conditions related to future TC formation include stronger African Easterly Jet, increased moisture especially at middle and upper levels, and increased stability as the MCSs coastally transition.

  7. Mesoscale Effects on Carbon Export: A Global Perspective

    Science.gov (United States)

    Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.; Moore, Jefferson K.

    2018-04-01

    Carbon export from the surface to the deep ocean is a primary control on global carbon budgets and is mediated by plankton that are sensitive to physical forcing. Earth system models generally do not resolve ocean mesoscale circulation (O(10-100) km), scales that strongly affect transport of nutrients and plankton. The role of mesoscale circulation in modulating export is evaluated by comparing global ocean simulations conducted at 1° and 0.1° horizontal resolution. Mesoscale resolution produces a small reduction in globally integrated export production (export production can be large (±50%), with compensating effects in different ocean basins. With mesoscale resolution, improved representation of coastal jets block off-shelf transport, leading to lower export in regions where shelf-derived nutrients fuel production. Export is further reduced in these regions by resolution of mesoscale turbulence, which restricts the spatial area of production. Maximum mixed layer depths are narrower and deeper across the Subantarctic at higher resolution, driving locally stronger nutrient entrainment and enhanced summer export production. In energetic regions with seasonal blooms, such as the Subantarctic and North Pacific, internally generated mesoscale variability drives substantial interannual variation in local export production. These results suggest that biogeochemical tracer dynamics show different sensitivities to transport biases than temperature and salinity, which should be considered in the formulation and validation of physical parameterizations. Efforts to compare estimates of export production from observations and models should account for large variability in space and time expected for regions strongly affected by mesoscale circulation.

  8. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du

    2016-08-01

    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  9. Aerosol radiative effects on mesoscale cloud-precipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign

    Science.gov (United States)

    Park, Shin-Young; Lee, Hyo-Jung; Kang, Jeong-Eon; Lee, Taehyoung; Kim, Cheol-Hee

    2018-01-01

    The online model, Weather Research and Forecasting Model with Chemistry (WRF-Chem) is employed to interpret the effects of aerosol-cloud-precipitation interaction on mesoscale meteorological fields over Northeast Asia during the Megacity Air Pollution Study-Seoul (MAPS-Seoul) 2015 campaign. The MAPS-Seoul campaign is a pre-campaign of the Korea-United States Air Quality (KORUS-AQ) campaign conducted over the Korean Peninsula. We validated the WRF-Chem simulations during the campaign period, and analyzed aerosol-warm cloud interactions by diagnosing both aerosol direct, indirect, and total effects. The results demonstrated that aerosol directly decreased downward shortwave radiation up to -44% (-282 W m-2) for this period and subsequently increased downward longwave radiation up to +15% (∼52 W m-2) in the presence of low-level clouds along the thematic area. Aerosol increased cloud fraction indirectly up to ∼24% with the increases of both liquid water path and the droplet number mixing ratio. Precipitation properties were altered both directly and indirectly. Direct effects simply changed cloud-precipitation quantities via simple updraft process associated with perturbed radiation and temperature, while indirect effects mainly suppressed precipitation, but sometimes increased precipitation in the higher relative humidity atmosphere or near vapor-saturated condition. The total aerosol effects caused a time lag of the precipitation rate with the delayed onset time of up to 9 h. This implies the importance of aerosol effects in improving mesoscale precipitation rate prediction in the online approach in the presence of non-linear warm cloud.

  10. Effects of forest cover changes in European Russia on regional weather conditions: results of numerical experiments with the COSMO-CLM model

    Science.gov (United States)

    Olchev, Alexander; Kuzmina, Ekaterina; Rozinkina, Inna; Nikitin, Mikhail; Rivin, Gdaly S.

    2017-04-01

    The forests have a significant effect on the climatic system. They capture CO2 from the atmosphere, regulate the surface evaporation and runoff, and influence the radiation and thermal conditions of the land surface. It is obvious, that their influence depends on many different factors including regional climate conditions, land use and vegetation structure, surface topography, etc. The main goal of the study is to assess the possible influence of forest cover changes (under deforestation and/or afforestation) on regional weather conditions in the central part of European Russia using the results of modeling experiments provided by the meso-scale COSMO-CLM model. The need of the study lies in a lack of the experimental and modeling data characterizing the influence of the forest and land-use changes on regional weather conditions in European part of Russia. The forest ecosystems in the study region play a very important biosphere role that is significantly increased in the last decades due to considerable strengthening of anthropogenic activity in the area of European Russia. The area selected for the study is located in the central part of European Russia between 55 and 59N and 28 and 37E. It comprises several geographical zones including dark-coniferous forests of the South-European taiga in the north, the mixed forests in the central part and the broad-leaved forests in the south. The forests within the study area are very heterogeneous. The total area covered by forests according to recent remote sensing data is about 50%. The numerical experiments were provided using the COSMO-CLM model with the spatial resolution 13.2 km. As initial and boundary conditions for the numerical experiments the global reanalysis ERA Interim (with the 6-hour resolution in time and 0.75° × 0.75° in space) were used. The weather conditions were simulated in a continuous cycle for several months for the entire area of European Russia using the results of global reanalysis on

  11. Hydrological Responses of Weather Conditions and Crop Change of Agricultural Area in the Rincon Valley, New Mexico

    Science.gov (United States)

    Ahn, S.; Sheng, Z.; Abudu, S.

    2017-12-01

    Hydrologic cycle of agricultural area has been changing due to the impacts of climate and land use changes (crop coverage changes) in an arid region of Rincon Valley, New Mexico. This study is to evaluate the impacts of weather condition and crop coverage change on hydrologic behavior of agricultural area in Rincon Valley (2,466km2) for agricultural watershed management using a watershed-scale hydrologic model, SWAT (Soil and Water Assessment Tool). The SWAT model was developed to incorporate irrigation of different crops using auto irrigation function. For the weather condition and crop coverage change evaluation, three spatial crop coverages including a normal (2008), wet (2009), and dry (2011) years were prepared using USDA crop data layer (CDL) for fourteen different crops. The SWAT model was calibrated for the period of 2001-2003 and validated for the period of 2004-2006 using daily-observed streamflow data. Scenario analysis was performed for wet and dry years based on the unique combinations of crop coverages and releases from Caballo Reservoir. The SWAT model simulated the present vertical water budget and horizontal water transfer considering irrigation practices in the Rincon Valley. Simulation results indicated the temporal and spatial variability for irrigation and non-irrigation seasons of hydrologic cycle in agricultural area in terms of surface runoff, evapotranspiration, infiltration, percolation, baseflow, soil moisture, and groundwater recharge. The water supply of the dry year could not fully cover whole irrigation period due to dry weather conditions, resulting in reduction of crop acreage. For extreme weather conditions, the temporal variation of water budget became robust, which requires careful irrigation management of the agricultural area. The results could provide guidelines for farmers to decide crop patterns in response to different weather conditions and water availability.

  12. Droplet spectrum of a spray nozzle under different weather conditions

    Directory of Open Access Journals (Sweden)

    Christiam Felipe Silva Maciel

    Full Text Available ABSTRACT The application of pesticides is always susceptible to losses through evaporation and drift of the spray droplets. With these losses, a smaller amount of pesticide reaches the target, possibly impairing the efficiency of phytosanitary control. Due to these concerns, the aim of this study was to evaluate the interference of weather conditions in the droplet spectrum produced by hydraulic spraying. To carry out the work, it was necessary to build an experimental system. This consisted of a laser particle-size analyser, hydraulic nozzle (Jacto JSF 11002, stationary sprayer, gas heater, wind tunnel, climate chamber (with the aim of maintaining the internal psychrometry similar to that of the air exiting the wind tunnel, collector, and temperature and RH sensors. The weather conditions for the study included vapour pressure deficits (VPD of 5, 9.4, 20, 30.6 and 35 hPa, and air velocities of 2, 3.6, 7.4, 11.2 and 12.8 km h-1. A Rotatable Central Composite Design was used, and the data related using Response Surface Methodology. The wind caused such a sharp drift in the fine droplets, that it greatly affected the behaviour of the entire droplet spectrum, as well as hiding the effect of the VPD. However, the conclusion is that drift and evaporation both act on the coarser droplets.

  13. Synoptic weather conditions during BOBMEX

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    sions when the strong wind field appeared spread over the peninsula and central India. This was also seen both in OLR and in vertical velocity fields prepared by National Centre for Medium. Range Weather Forecasting (NCMRWF). A band of low OLR (150–160watts/sqm) could be seen in the south and adjoining central ...

  14. Post-harvest quality model of pineapple guava fruit according to storage and weather conditions of cultivation

    Directory of Open Access Journals (Sweden)

    Alfonso Parra-Coronado

    Full Text Available ABSTRACT The post-harvest quality of pineapple guava fruit is determined by the storage and prevailing weather conditions during growth and development. This study proposes a model for post-harvest fruit quality according to the storage and weather conditions in the pineapple guava growing region. Physiologically ripe fruit were collected during two harvests from two locations within the Department of Cundinamarca (Colombia: Tenjo and San Francisco de Sales. The fruits were stored at 18 ± 1 °C (76 ± 5% relative humidity (RH, over 11 days and at 5 ± 1 °C (87 ± 5% RH, over 31 days, and the quality attributes were evaluated every two days. Models of the most significant physio-chemical quality characteristics of the post-harvest fruit were developed by using the Excel® Solver tool for all data obtained in the two crop periods. The results showed that storage and prevailing weather conditions, which differed according to the altitude of the growing site, had considerable impacts on the physio-chemical characteristics of the fruit throughout the post-harvest ripening process.

  15. Evaluation of cloud prediction and determination of critical relative humidity for a mesoscale numerical weather prediction model

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, N.L.; Guo, Z.; Ackerman, T.P. [Pennsylvania State Univ., University Park, PA (United States)

    1996-04-01

    Predictions of cloud occurrence and vertical location from the Pennsylvannia State University/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) were evaluated statistically using cloud observations obtained at Coffeyville, Kansas, as part of the Second International satellite Cloud Climatology Project Regional Experiment campaign. Seventeen cases were selected for simulation during a November-December 1991 field study. MM5 was used to produce two sets of 36-km simulations, one with and one without four-dimensional data assimilation (FDDA), and a set of 12-km simulations without FDDA, but nested within the 36-km FDDA runs.

  16. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    Science.gov (United States)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022

  17. Simulation and analysis of the mesoscale circulation in the northwestern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    V. Echevin

    Full Text Available The large-scale and mesoscale circulation of the northwestern Mediterranean Sea are simulated with an eddy-resolving primitive-equation regional model (RM of 1/16° resolution embedded in a general circulation model (GM of the Mediterranean Sea of 1/8° resolution. The RM is forced by a monthly climatology of heat fluxes, precipitation and wind stress. The GM, which uses the same atmospheric forcing, provides initial and boundary conditions for the RM. Analysis of the RM results shows that several realistic features of the large-scale and mesoscale circulation are evident in this region. The mean cyclonic circulation is in good agreement with observations. Mesoscale variability is intense along the coasts of Sardinia and Corsica, in the Gulf of Lions and in the Catalan Sea. The length scales of the Northern Current meanders along the Provence coast and in the Gulf of Lions’ shelf are in good agreement with observations. Winter Intermediate Water is formed along most of the north-coast shelves, between the Gulf of Genoa and Cape Creus. Advection of this water by the mean cyclonic circulation generates a complex eddy field in the Catalan Sea. Intense anticyclonic eddies are generated northeast of the Balearic Islands. These results are in good agreement with mesoscale activity inferred from satellite altimetric data. This work demonstrates the feasibility of a down-scaling system composed of a general-circulation, a regional and a coastal model, which is one of the goals of the Mediterranean Forecasting System Pilot Project.

    Key words. Oceanography: physical (currents; eddies and mesoscale processes; general circulation

  18. Weather Augmented Risk Determination (WARD) System

    Science.gov (United States)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  19. Model Development for Risk Assessment of Driving on Freeway under Rainy Weather Conditions.

    Directory of Open Access Journals (Sweden)

    Xiaonan Cai

    Full Text Available Rainy weather conditions could result in significantly negative impacts on driving on freeways. However, due to lack of enough historical data and monitoring facilities, many regions are not able to establish reliable risk assessment models to identify such impacts. Given the situation, this paper provides an alternative solution where the procedure of risk assessment is developed based on drivers' subjective questionnaire and its performance is validated by using actual crash data. First, an ordered logit model was developed, based on questionnaire data collected from Freeway G15 in China, to estimate the relationship between drivers' perceived risk and factors, including vehicle type, rain intensity, traffic volume, and location. Then, weighted driving risk for different conditions was obtained by the model, and further divided into four levels of early warning (specified by colors using a rank order cluster analysis. After that, a risk matrix was established to determine which warning color should be disseminated to drivers, given a specific condition. Finally, to validate the proposed procedure, actual crash data from Freeway G15 were compared with the safety prediction based on the risk matrix. The results show that the risk matrix obtained in the study is able to predict driving risk consistent with actual safety implications, under rainy weather conditions.

  20. Role of different weather conditions on the incidence and development of american bollworm

    International Nuclear Information System (INIS)

    Khaliq, A.; Subhani, M.N.; Hassan, S.W.; Murtaza, M.A.

    2008-01-01

    Studies were conducted at Nuclear Institute for Agriculture and biology (NIAB). Faisalabad on ten advance genotypes of cotton Viz,. BH-121, NIAB KRISHMA, DNH-137, VH-142, BH-125. MNH-635, SLH-267, FNH-245, CRIS-467 and CRIS-82, to see the role of different weather condition on the incidence and development of American bollworm (Heliothis armigera) infestation and coefficient of correlation among these factors and American bollworm infestation. Trial were laid out using Randomized Complete Block Design (RCBD) with four replications. Finally data were subject to the statistical analysis and for correlation studies between weather factors and percent American boll temperature infestation. Temperature and relative humidity were correlated positively and rainfall effected negatively to the infestation of American bollworm on squares and for green bolls temperature was positively correlated while relative humidity and rainfall negatively with the percent American bollworm infestation in advance -genotypes of cotton under unsprayed condition. (author)

  1. A 17-year Record of Meteorological Observations Across the Gran Campo Nevado Ice Cap in Southern Patagonia, Chile, Related to Synoptic Weather Types and Climate Modes

    Directory of Open Access Journals (Sweden)

    Stephanie S. Weidemann

    2018-05-01

    Full Text Available The network of long-term meteorological observations in Southernmost Patagonia is still sparse but crucial to improve our understanding of climatic variability, in particular in the more elevated and partially glaciated Southernmost Andes. Here we present a unique 17-year meteorological record (2000–2016 of four automatic weather stations (AWS across the Gran Campo Nevado Ice Cap (53°S in the Southernmost Andes (Chile and the conventional weather station Jorge Schythe of the Instituto de la Patagonia in Punta Arenas for comparison. We revisit the relationship between in situ observations and large-scale climate models as well as mesoscale weather patterns. For this purpose, a 37-year record of ERA Interim Reanalysis data has been used to compute a weather type classification based on a hierarchical correlation-based leader algorithm. The orographic perturbation on the predominantly westerly airflow determines the hydroclimatic response across the mountain range, leading to significant west-east gradients of precipitation, air temperature and humidity. Annual precipitation sums heavily drop within only tens of kilometers from ~7,500 mm a−1 to less than 800 mm a−1. The occurrence of high precipitation events of up to 620 mm in 5 days and wet spells of up to 61 consecutive days underscore the year-around wet conditions in the Southernmost Andes. Given the strong link between large-scale circulation and orographically controlled precipitation, the synoptic-scale weather conditions largely determine the precipitation and temperature variability on all time scales. Major synoptic weather types with distinct low-pressure cells in the Weddell Sea or Bellingshausen Sea, causing a prevailing southwesterly, northwesterly or westerly airflow, determine the weather conditions in Southernmost Patagonia during 68% of the year. At Gran Campo Nevado, more than 80% of extreme precipitation events occur during the persistence of these weather types. The

  2. Transmitter Spatial Diversity for FSO Uplink in Presence of Atmospheric Turbulence and Weather Conditions for Different IM Schemes

    Science.gov (United States)

    Viswanath, Anjitha; Kumar Jain, Virander; Kar, Subrat

    2017-12-01

    We investigate the error performance of an earth-to-satellite free space optical uplink using transmitter spatial diversity in presence of turbulence and weather conditions, using gamma-gamma distribution and Beer-Lambert law, respectively, for on-off keying (OOK), M-ary pulse position modulation (M-PPM) and M-ary differential PPM (M-DPPM) schemes. Weather conditions such as moderate, light and thin fog cause additional degradation, while dense or thick fog and clouds may lead to link failure. The bit error rate reduces with increase in the number of transmitters for all the schemes. However, beyond a certain number of transmitters, the reduction becomes marginal. Diversity gain remains almost constant for various weather conditions but increases with increase in ground-level turbulence or zenith angle. Further, the number of transmitters required to improve the performance to a desired level is less for M-PPM scheme than M-DPPM and OOK schemes.

  3. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: From laboratory studies to large-scale field experiments

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-01-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF’s laboratories in Trondheim, field research station on Svalbard and in broken ice (70–90% ice cover......) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering...... process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool...

  4. Parameterization of Mixed Layer and Deep-Ocean Mesoscales Including Nonlinearity

    Science.gov (United States)

    Canuto, V. M.; Cheng, Y.; Dubovikov, M. S.; Howard, A. M.; Leboissetier, A.

    2018-01-01

    In 2011, Chelton et al. carried out a comprehensive census of mesoscales using altimetry data and reached the following conclusions: "essentially all of the observed mesoscale features are nonlinear" and "mesoscales do not move with the mean velocity but with their own drift velocity," which is "the most germane of all the nonlinear metrics."� Accounting for these results in a mesoscale parameterization presents conceptual and practical challenges since linear analysis is no longer usable and one needs a model of nonlinearity. A mesoscale parameterization is presented that has the following features: 1) it is based on the solutions of the nonlinear mesoscale dynamical equations, 2) it describes arbitrary tracers, 3) it includes adiabatic (A) and diabatic (D) regimes, 4) the eddy-induced velocity is the sum of a Gent and McWilliams (GM) term plus a new term representing the difference between drift and mean velocities, 5) the new term lowers the transfer of mean potential energy to mesoscales, 6) the isopycnal slopes are not as flat as in the GM case, 7) deep-ocean stratification is enhanced compared to previous parameterizations where being more weakly stratified allowed a large heat uptake that is not observed, 8) the strength of the Deacon cell is reduced. The numerical results are from a stand-alone ocean code with Coordinated Ocean-Ice Reference Experiment I (CORE-I) normal-year forcing.

  5. Development of extended WRF variational data assimilation system (WRFDA) for WRF non-hydrostatic mesoscale model

    Science.gov (United States)

    Pattanayak, Sujata; Mohanty, U. C.

    2018-06-01

    The paper intends to present the development of the extended weather research forecasting data assimilation (WRFDA) system in the framework of the non-hydrostatic mesoscale model core of weather research forecasting system (WRF-NMM), as an imperative aspect of numerical modeling studies. Though originally the WRFDA provides improved initial conditions for advanced research WRF, we have successfully developed a unified WRFDA utility that can be used by the WRF-NMM core, as well. After critical evaluation, it has been strategized to develop a code to merge WRFDA framework and WRF-NMM output. In this paper, we have provided a few selected implementations and initial results through single observation test, and background error statistics like eigenvalues, eigenvector and length scale among others, which showcase the successful development of extended WRFDA code for WRF-NMM model. Furthermore, the extended WRFDA system is applied for the forecast of three severe cyclonic storms: Nargis (27 April-3 May 2008), Aila (23-26 May 2009) and Jal (4-8 November 2010) formed over the Bay of Bengal. Model results are compared and contrasted within the analysis fields and later on with high-resolution model forecasts. The mean initial position error is reduced by 33% with WRFDA as compared to GFS analysis. The vector displacement errors in track forecast are reduced by 33, 31, 30 and 20% to 24, 48, 72 and 96 hr forecasts respectively, in data assimilation experiments as compared to control run. The model diagnostics indicates successful implementation of WRFDA within the WRF-NMM system.

  6. Delayed shear enhancement in mesoscale atmospheric dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Moran, M.D. [Atmospheric Environment Service, Ontario (Canada); Pielke, R.A. [Colorado State Univ., Fort Collins, CO (United States)

    1994-12-31

    Mesoscale atmospheric dispersion (MAD) is more complicated than smaller-scale dispersion because the mean wind field can no longer be considered steady or horizontally homogeneous over mesoscale time and space scales. Wind shear also plays a much more important role on the mesoscale: horizontal dispersion can be enhanced and often dominated by vertical wind shear on these scales through the interaction of horizontal differential advection and vertical mixing. Just over 30 years ago, Pasquill suggested that this interaction need not be simultaneous and that the combination of differential horizontal advection with delayed or subsequent vertical mixing could maintain effective horizontal diffusion in spite of temporal or spatial reductions in boundary-layer turbulence intensity. This two-step mechanism has not received much attention since then, but a recent analysis of observations from and numerical simulations of two mesoscale tracer experiments suggests that delayed shear enhancement can play an important role in MAD. This paper presents an overview of this analysis, with particular emphasis on the influence of resolvable vertical shear on MAD in these two case studies and the contributions made by delayed shear enhancement.

  7. Modeling Daily Rainfall Conditional on Atmospheric Predictors: An application to Western Greece

    Science.gov (United States)

    Langousis, Andreas; Kaleris, Vassilios

    2013-04-01

    Due to its intermittent and highly variable character, daily precipitation is the least well reproduced hydrologic variable by both General Circulation Models (GCMs) and Limited Area Models (LAMs). To that extent, several statistical procedures (usually referred to as downscaling schemes) have been suggested to generate synthetic rainfall time series conditional on predictor variables that are descriptive of the atmospheric circulation at the mesoscale. In addition to be more accurately simulated by GCMs and LAMs, large-scale atmospheric predictors are important indicators of the local weather. Currently used downscaling methods simulate rainfall series using either stable statistical relationships (usually referred to as transfer functions) between certain characteristics of the rainfall process and mesoscale atmospheric predictor variables, or simple stochastic schemes (e.g. properly transformed autoregressive models) with parameters that depend on the large-scale atmospheric conditions. The latter are determined by classifying large-scale circulation patterns into broad categories of weather states, using empirical or theoretically based classification schemes, and modeled by resampling from those categories; a process usually referred to as weather generation. In this work we propose a statistical framework to generate synthetic rainfall timeseries at a daily level, conditional on large scale atmospheric predictors. The latter include the mean sea level pressure (MSLP), the magnitude and direction of upper level geostrophic winds, and the 500 hPa geopotential height, relative vorticity and divergence. The suggested framework operates in continuous time, avoiding the use of transfer functions, and weather classification schemes. The suggested downscaling approach is validated using atmospheric data from the ERA-Interim archive (see http://www.ecmwf.int/research/era/do/get/index), and daily rainfall data from Western Greece, for the 14-year period from 01 October

  8. Mesoscale influence on long-range transport — evidence from ETEX modelling and observations

    Science.gov (United States)

    Sørensen, Jens Havskov; Rasmussen, Alix; Ellermann, Thomas; Lyck, Erik

    During the first European Tracer Experiment (ETEX) tracer gas was released from a site in Brittany, France, and subsequently observed over a range of 2000 km. Hourly measurements were taken at the National Environmental Research Institute (NERI) located at Risø, Denmark, using two measurement techniques. At this location, the observed concentration time series shows a double-peak structure occurring between two and three days after the release. By using the Danish Emergency Response Model of the Atmosphere (DERMA), which is developed at the Danish Meteorological Institute (DMI), simulations of the dispersion of the tracer gas have been performed. Using numerical weather-prediction data from the European Centre for Medium-Range Weather Forecast (ECMWF) by DERMA, the arrival time of the tracer is quite well predicted, so also is the duration of the passage of the plume, but the double-peak structure is not reproduced. However, using higher-resolution data from the DMI version of the HIgh Resolution Limited Area Model (DMI-HIRLAM), DERMA reproduces the observed structure very well. The double-peak structure is caused by the influence of a mesoscale anti-cyclonic eddy on the tracer gas plume about one day earlier.

  9. Preliminary results of an attempt to provide soil moisture datasets in order to verify numerical weather prediction models

    International Nuclear Information System (INIS)

    Cassardo, C.; Loglisci, N.

    2005-01-01

    In the recent years, there has been a significant growth in the recognition of the soil moisture importance in large-scale hydrology and climate modelling. Soil moisture is a lower boundary condition, which rules the partitioning of energy in terms of sensible and latent heat flux. Wrong estimations of soil moisture lead to wrong simulation of the surface layer evolution and hence precipitations and cloud cover forecasts could be consequently affected. This is true for large scale medium-range weather forecasts as well as for local-scale short range weather forecasts, particularly in those situations in which local convection is well developed. Unfortunately; despite the importance of this physical parameter there are only few soil moisture data sets sparse in time and in space around in the world. Due to this scarcity of soil moisture observations, we developed an alternative method to provide soil moisture datasets in order to verify numerical weather prediction models. In this paper are presented the preliminary results of an attempt to verify soil moisture fields predicted by a mesoscale model. The data for the comparison were provided by the simulations of the diagnostic land surface scheme LSPM (Land Surface Process Model), widely used at the Piedmont Regional Weather Service for agro-meteorological purposes. To this end, LSPM was initialized and driven by Synop observations, while the surface (vegetation and soil) parameter values were initialized by ECOCLIMAP global dataset at 1km 2 resolution

  10. Atmospheric dispersion characteristics of radioactive materials according to the local weather and emission conditions

    Energy Technology Data Exchange (ETDEWEB)

    An, Hye Yeon; Kang, Yoon Hee; Kim, Yoo Keun [Pusan National University, Busan (Korea, Republic of); Song, Sang Keun [Jeju National University, Jeju (Korea, Republic of)

    2016-12-15

    This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the {sup 137}Cs, using the WRF/HYSPLIT modeling system. The highest mean concentration of {sup 137}Cs occurred at 0900 LST under the ME4{sub 1} (main wind direction: SSW, daily average wind speed: 2.8 ms{sup -1}), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, 4.1 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4{sub 4} (S, 2.7 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 0300 LST because {sup 137}Cs stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1{sub 3} and EM2{sub 3} that had the maximum total number of particles showed the widest dispersion of {sup 137}Cs, while its highest mean concentration was estimated under the EM1{sub 1} considering the relatively narrow dispersion and high emission rate. This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of {sup 137}Cs concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where {sup 137}Cs is dispersed, the emission rate of {sup 137}Cs, and the number of emitted particles.

  11. From Quanta to the Continuum: Opportunities for Mesoscale Science

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Sarrao, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alivisatos, Paul [Univ. of California, Berkeley, CA (United States); Barletta, William [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Bates, Frank [Univ. of Minnesota, Minneapolis, MN (United States); Brown, Gordon [Stanford Univ., CA (United States); French, Roger [Case Western Reserve Univ., Cleveland, OH (United States); Greene, Laura [Univ. of Illinois, Urbana, IL (United States); Hemminger, John [Univ. of California, Irvine, CA (United States); Kastner, Marc [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Kay, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, Jennifer [Univ. of Illinois, Urbana, IL (United States); Ratner, Mark [Northwestern Univ., Evanston, IL (United States); Anthony, Rollett [Carnegie Mellon Univ., Pittsburgh, PA (United States); Rubloff, Gary [University of Maryland, College Park, MD (United States); Spence, John [Arizona State Univ., Mesa, AZ (United States); Tobias, Douglas [Univ. of California, Irvine, CA (United States); Tranquada, John [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-09-01

    This report explores the opportunity and defines the research agenda for mesoscale science—discovering, understanding, and controlling interactions among disparate systems and phenomena to reach the full potential of materials complexity and functionality. The ability to predict and control mesoscale phenomena and architectures is essential if atomic and molecular knowledge is to blossom into a next generation of technology opportunities, societal benefits, and scientific advances.. The body of this report outlines the need, the opportunities, the challenges, and the benefits of mastering mesoscale science.

  12. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2013-01-01

    of the variability for the 2020 Danish power system, one can see that in the worst case, up to 1500 MW of power can be lost in 30 minutes. We present results showing how this issue is partially solved by the new High Wind Storm Controller presented by Siemens in the TWENTIES project.......Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context......, the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact...

  13. Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: insight on mesoscale circulation and energy conversion

    Directory of Open Access Journals (Sweden)

    R. Sorgente

    2011-08-01

    Full Text Available The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products.

    The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre.

    The classical kinetic energy decomposition (eddy and mean allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and

  14. SAP FLOW RESPONSE OF CHERRY TREES TO WEATHER CONDITION

    Directory of Open Access Journals (Sweden)

    Á. JUHÁSZ

    2011-03-01

    Full Text Available Sap flow response of cherry trees to weather condition. Themain goal of our study is to measure water-demand of cherry trees budded ontodifferent rootstocks by sapflow equipment and to study the sap flow response to themeteorological factors. The investigations are carried out in Soroksár in Hungary at‘Rita’ sweet cherry orchard. The pattern of sapflow was analyzed in relation ofsolar radiation, vapour pressure deficit and air temperature. Between solar radiationand sap flow was found a parabolic relation, daily pattern of sapflow is in closerelation (cubic also to vapour pressure deficit. No significant relationship existedbetween sapflow and air temperature. The sapflow performance of sweet cherrytrees on different rootstocks showed typical daily characters.

  15. Predicting favorable conditions for early leaf spot of peanut using output from the Weather Research and Forecasting (WRF) model

    Science.gov (United States)

    Olatinwo, Rabiu O.; Prabha, Thara V.; Paz, Joel O.; Hoogenboom, Gerrit

    2012-03-01

    Early leaf spot of peanut ( Arachis hypogaea L.), a disease caused by Cercospora arachidicola S. Hori, is responsible for an annual crop loss of several million dollars in the southeastern United States alone. The development of early leaf spot on peanut and subsequent spread of the spores of C. arachidicola relies on favorable weather conditions. Accurate spatio-temporal weather information is crucial for monitoring the progression of favorable conditions and determining the potential threat of the disease. Therefore, the development of a prediction model for mitigating the risk of early leaf spot in peanut production is important. The specific objective of this study was to demonstrate the application of the high-resolution Weather Research and Forecasting (WRF) model for management of early leaf spot in peanut. We coupled high-resolution weather output of the WRF, i.e. relative humidity and temperature, with the Oklahoma peanut leaf spot advisory model in predicting favorable conditions for early leaf spot infection over Georgia in 2007. Results showed a more favorable infection condition in the southeastern coastline of Georgia where the infection threshold were met sooner compared to the southwestern and central part of Georgia where the disease risk was lower. A newly introduced infection threat index indicates that the leaf spot threat threshold was met sooner at Alma, GA, compared to Tifton and Cordele, GA. The short-term prediction of weather parameters and their use in the management of peanut diseases is a viable and promising technique, which could help growers make accurate management decisions, and lower disease impact through optimum timing of fungicide applications.

  16. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  17. Reference Evapotranspiration Retrievals from a Mesoscale Model Based Weather Variables for Soil Moisture Deficit Estimation

    Directory of Open Access Journals (Sweden)

    Prashant K. Srivastava

    2017-10-01

    Full Text Available Reference Evapotranspiration (ETo and soil moisture deficit (SMD are vital for understanding the hydrological processes, particularly in the context of sustainable water use efficiency in the globe. Precise estimation of ETo and SMD are required for developing appropriate forecasting systems, in hydrological modeling and also in precision agriculture. In this study, the surface temperature downscaled from Weather Research and Forecasting (WRF model is used to estimate ETo using the boundary conditions that are provided by the European Center for Medium Range Weather Forecast (ECMWF. In order to understand the performance, the Hamon’s method is employed to estimate the ETo using the temperature from meteorological station and WRF derived variables. After estimating the ETo, a range of linear and non-linear models is utilized to retrieve SMD. The performance statistics such as RMSE, %Bias, and Nash Sutcliffe Efficiency (NSE indicates that the exponential model (RMSE = 0.226; %Bias = −0.077; NSE = 0.616 is efficient for SMD estimation by using the Observed ETo in comparison to the other linear and non-linear models (RMSE range = 0.019–0.667; %Bias range = 2.821–6.894; NSE = 0.013–0.419 used in this study. On the other hand, in the scenario where SMD is estimated using WRF downscaled meteorological variables based ETo, the linear model is found promising (RMSE = 0.017; %Bias = 5.280; NSE = 0.448 as compared to the non-linear models (RMSE range = 0.022–0.707; %Bias range = −0.207–−6.088; NSE range = 0.013–0.149. Our findings also suggest that all the models are performing better during the growing season (RMSE range = 0.024–0.025; %Bias range = −4.982–−3.431; r = 0.245–0.281 than the non−growing season (RMSE range = 0.011–0.12; %Bias range = 33.073–32.701; r = 0.161–0.244 for SMD estimation.

  18. How Satellites Have Contributed to Building a Weather Ready Nation

    Science.gov (United States)

    Lapenta, W.

    2017-12-01

    NOAA's primary mission since its inception has been to reduce the loss of life and property, as well as disruptions from, high impact weather and water-related events. In recent years, significant societal losses resulting even from well forecast extreme events have shifted attention from the forecast alone toward ensuring societal response is equal to the risks that exist for communities, businesses and the public. The responses relate to decisions ranging from coastal communities planning years in advance to mitigate impacts from rising sea level, to immediate lifesaving decisions such as a family seeking adequate shelter during a tornado warning. NOAA is committed to building a "Weather-Ready Nation" where communities are prepared for and respond appropriately to these events. The Weather-Ready Nation (WRN) strategic priority is building community resilience in the face of increasing vulnerability to extreme weather, water, climate and environmental threats. To build a Weather-Ready Nation, NOAA is enhancing Impact-Based Decision Support Services (IDSS), transitioning science and technology advances into forecast operations, applying social science research to improve the communication and usefulness of information, and expanding its dissemination efforts to achieve far-reaching readiness, responsiveness and resilience. These four components of Weather-Ready Nation are helping ensure NOAA data, products and services are fully utilized to minimize societal impacts from extreme events. Satellite data and satellite products have been important elements of the national Weather Service (NWS) operations for more than 40 years. When one examines the uses of satellite data specific to the internal forecast and warning operations of NWS, two main applications are evident. The first is the use of satellite data in numerical weather prediction models; the second is the use of satellite imagery and derived products for mesoscale and short-range weather warning and

  19. Analysis of mesoscale factors at the onset of deep convection on hailstorm days in Southern France and their relation to the synoptic patterns

    Science.gov (United States)

    Sanchez, Jose Luis; Wu, Xueke; Gascón, Estibaliz; López, Laura; Melcón, Pablo; García-Ortega, Eduardo; Berthet, Claude; Dessens, Jean; Merino, Andrés

    2013-04-01

    Storms and the weather phenomena associated to intense precipitation, lightning, strong winds or hail, are among the most common and dangerous weather risks in many European countries. To get a reliable forecast of their occurrence is remaining an open problem. The question is: how is possible to improve the reliability of forecast? Southwestern France is frequently affected by hailstorms, producing severe damages on crops and properties. Considerable efforts were made to improve the forecast of hailfall in this area. First of all, if we want to improve this type of forecast, it is necessary to have a good "ground truth" of the hail days and zones affected by hailfall. Fortunately, ANELFA has deployed thousands of hailpad stations in Southern France. The ANELFA processed the point hailfall data recorded during each hail season at these stations. The focus of this paper presents a methodology to improve the forecast of the occurrence of hailfall according to the synoptic environment and mesoscale factors in the study area. One hundred of hail days were selected, following spatial and severity criteria, occurred in the period 2000-2010. The mesoscale model WRF was applied for all cases to study the synoptic environment of mean geopotential and temperature fields at 500 hPa. Three nested domains have been defined following a two-way nesting strategy, with a horizontal spatial resolution of 36, 12 and 4 km, and 30 vertical terrains— following σ-levels. Then, using the Principal Component Analysis in T-Mode, 4 mesoscale configurations were defined for the fields of convective instability (CI), water vapor flux divergence and wind flow and humidity at low layer (850hPa), and several clusters were classified followed by using the K-means Clustering. Finally, we calculated several characteristic values of four hail forecast parameters: Convective Available Potential Energy (CAPE), Storm Relative Helicity between 0 and 3 km (SRH0-3), Energy-Helicity Index (EHI) and

  20. Synoptic weather types associated with critical fire weather

    Science.gov (United States)

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  1. Final Report, University of California Merced: Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport (DE-SC0007095)

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy Anne [University of California Merced; Chorover, Jon [University of Arizona; Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mueller, Karl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from the same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.

  2. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  3. Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast

    Science.gov (United States)

    Masselink, Thomas; Schluessel, P.

    1995-12-01

    Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.

  4. Experimental Study on Meso-Scale Milling Process Using Nanofluid Minimum Quantity Lubrication

    International Nuclear Information System (INIS)

    Lee, P. H.; Nam, T. S.; Li, Cheng Jun; Lee, S. W.

    2010-01-01

    This paper present the characteristics of micro- and meso-scale milling processes in which compressed cold air, minimum quantity lubrication (MQL) and MoS 2 nanofluid MQL are used. For process characterization, the micro and meso-scale milling experiments are conducted using desktop meso-scale machine tool system and the surface roughness is measured. The experimental results show that the use of compressed chilly air and nanofluid MQL in the micro- and meso-scale milling processes is effective in improving the surface finish

  5. Sustainable resilience in property maintenance: encountering changing weather conditions

    DEFF Research Database (Denmark)

    Cox, Rimante Andrasiunaite; Nielsen, Susanne Balslev

    2014-01-01

    Purpose: The purpose of the study is to develop a methodological approach for project management to integrate sustainability and resilience planning in property maintenance as an incremental strategy for upgrading existing properties to meet new standards for sustainable and climate resilient...... buildings. Background: Current maintenance practice is focused on the technical standard of buildings, with little consideration of sustainability and resilience. There is a need to develop tools for incorporating sustainable resilience into maintenance planning. Approach: The study is primarily theoretical......, developing the concept of sustainable resilience for changing weather conditions Results: The paper suggests a decision support methodology that quantifies sustainable resilience for the analytical stages of property maintenance planning. Practical Implications: The methodology is generic and expected users...

  6. Mesoscale modeling of solute precipitation and radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ke, Huibin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.

  7. Analysis of Surface Heterogeneity Effects with Mesoscale Terrestrial Modeling Platforms

    Science.gov (United States)

    Simmer, C.

    2015-12-01

    An improved understanding of the full variability in the weather and climate system is crucial for reducing the uncertainty in weather forecasting and climate prediction, and to aid policy makers to develop adaptation and mitigation strategies. A yet unknown part of uncertainty in the predictions from the numerical models is caused by the negligence of non-resolved land surface heterogeneity and the sub-surface dynamics and their potential impact on the state of the atmosphere. At the same time, mesoscale numerical models using finer horizontal grid resolution [O(1)km] can suffer from inconsistencies and neglected scale-dependencies in ABL parameterizations and non-resolved effects of integrated surface-subsurface lateral flow at this scale. Our present knowledge suggests large-eddy-simulation (LES) as an eventual solution to overcome the inadequacy of the physical parameterizations in the atmosphere in this transition scale, yet we are constrained by the computational resources, memory management, big-data, when using LES for regional domains. For the present, there is a need for scale-aware parameterizations not only in the atmosphere but also in the land surface and subsurface model components. In this study, we use the recently developed Terrestrial Systems Modeling Platform (TerrSysMP) as a numerical tool to analyze the uncertainty in the simulation of surface exchange fluxes and boundary layer circulations at grid resolutions of the order of 1km, and explore the sensitivity of the atmospheric boundary layer evolution and convective rainfall processes on land surface heterogeneity.

  8. How accurate are the weather forecasts for Bierun (southern Poland)?

    Science.gov (United States)

    Gawor, J.

    2012-04-01

    Weather forecast accuracy has increased in recent times mainly thanks to significant development of numerical weather prediction models. Despite the improvements, the forecasts should be verified to control their quality. The evaluation of forecast accuracy can also be an interesting learning activity for students. It joins natural curiosity about everyday weather and scientific process skills: problem solving, database technologies, graph construction and graphical analysis. The examination of the weather forecasts has been taken by a group of 14-year-old students from Bierun (southern Poland). They participate in the GLOBE program to develop inquiry-based investigations of the local environment. For the atmospheric research the automatic weather station is used. The observed data were compared with corresponding forecasts produced by two numerical weather prediction models, i.e. COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System) developed by Naval Research Laboratory Monterey, USA; it runs operationally at the Interdisciplinary Centre for Mathematical and Computational Modelling in Warsaw, Poland and COSMO (The Consortium for Small-scale Modelling) used by the Polish Institute of Meteorology and Water Management. The analysed data included air temperature, precipitation, wind speed, wind chill and sea level pressure. The prediction periods from 0 to 24 hours (Day 1) and from 24 to 48 hours (Day 2) were considered. The verification statistics that are commonly used in meteorology have been applied: mean error, also known as bias, for continuous data and a 2x2 contingency table to get the hit rate and false alarm ratio for a few precipitation thresholds. The results of the aforementioned activity became an interesting basis for discussion. The most important topics are: 1) to what extent can we rely on the weather forecasts? 2) How accurate are the forecasts for two considered time ranges? 3) Which precipitation threshold is the most predictable? 4) Why

  9. An Objective Verification of the North American Mesoscale Model for Kennedy Space Center and Cape Canaveral Air Force Station

    Science.gov (United States)

    Bauman, William H., III

    2010-01-01

    The 45th Weather Squadron (45 WS) Launch Weather Officers (LWO's) use the 12-km resolution North American Mesoscale (NAM) model (MesoNAM) text and graphical product forecasts extensively to support launch weather operations. However, the actual performance of the model at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) has not been measured objectively. In order to have tangible evidence of model performance, the 45 WS tasked the Applied Meteorology Unit (AMU; Bauman et ai, 2004) to conduct a detailed statistical analysis of model output compared to observed values. The model products are provided to the 45 WS by ACTA, Inc. and include hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The objective analysis compared the MesoNAM forecast winds, temperature (T) and dew pOint (T d), as well as the changes in these parameters over time, to the observed values from the sensors in the KSC/CCAFS wind tower network shown in Table 1. These objective statistics give the forecasters knowledge of the model's strengths and weaknesses, which will result in improved forecasts for operations.

  10. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  11. Study on weathering index for improving the reliability of terrace correlation and chronology. Part 2. Understanding weathering condition of terrace gravel and induction of application requirement for correlation index

    International Nuclear Information System (INIS)

    Hamada, Takaomi

    2012-01-01

    Geomorphographic survey of fluvial terraces, geological exploration, borehole drilling and investigation, and analysis of weathering condition of terrace gravels were carried out in Chuetsu area, Niigata prefecture, where a great deal of geomorphostratigraphic and tephrostratigraphic data are available. The results of these surveys and investigations indicate that weathering degree of terrace gravels can be considered as an index of the terrace age, and also provide points to remember for sampling and method of sampling and observation. The effective porosity and the thickness of weathering rind of gravels, which are indexes for weathering degree evaluation, in boring core, increase above the depth of about 5m from the top of the hole. Weathering doesn't reach the deep portion, therefore, investigation and evaluation for the weathering degree of terrace gravels must be carried out on the upper portion. Weathering rind thickness and effective porosity of the gravels are dispersive. Dispersion of the weathering rind thickness can be reduced by confining to andesite, and dispersion of the effective porosity can be reduced by limiting range of gravel size. Reducing dispersion, increase trend with age becomes clear in change of the weathering rind thickness and the effective porosity in many of the studied area. It shows that weathering rind thickness and effective porosity are effective for terrace correlation. Dispersion of data in an outcrop isn't small, but data from neighboring terraces with the same age are not different each other. It indicates that weathering rind thickness and effective porosity can be quantitative indexes for terrace age evaluation. In area where weathering rind is effective for terrace correlation, the rate of the weathering rind formation of andesite gravels is about 0.04mm/1000 years. Therefore, MIS6 terraces and MIS8 terraces can be distinguished each other by means of thickness of the weathering rind. This formation rate falls inside the

  12. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.

  13. Simulation of mesoscale circulation in the Tatar Strait of the Japan Sea

    Science.gov (United States)

    Ponomarev, V. I.; Fayman, P. A.; Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2018-06-01

    The eddy-resolved ocean circulation model RIAMOM (Lee et al., 2003) is used to analyze seasonal variability of mesoscale circulation in the Tatar Strait of the Japan Sea. The model domain is a vast area including the northern Japan Sea, Okhotsk Sea and adjacent region in the Pacific Ocean. A numerical experiment with a horizontal 1/18° resolution has been carried out under realistic meteorological conditions from the ECMWF ERA-40 reanalysis with restoring of surface temperature and salinity. The simulated seasonal variability of both the current system and mesoscale eddy dynamics in the Tatar Strait is in a good agreement with temperature and salinity distributions of oceanographic observation data collected during various seasons and years. Two general circulation regimes in the Strait have been found. The circulation regime changes from summer to winter due to seasonal change of the North Asian Monsoon. On a synoptic time scale, the similar change of the circulation regime occurs due to change of the southeastern wind to the northwestern one when the meteorological situation with an anticyclone over the Okhotsk Sea changes to that with a strong cyclone. The Lagrangian maps illustrate seasonal changes in direction of the main currents and in polarity and location of mesoscale eddies in the Strait.

  14. Development and Implementation of Dynamic Scripts to Support Local Model Verification at National Weather Service Weather Forecast Offices

    Science.gov (United States)

    Zavodsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave

    2014-01-01

    Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use

  15. Weather Prediction Center (WPC) Home Page

    Science.gov (United States)

    Products Heat Index Mesoscale Precip Discussion National Forecast Charts National High & Low PQPF QPF Valid Mon May 28, 2018 Valid Tue May 29, 2018 Day 1 Day 2 Day 3 options Image Format: English (PDF) (PDF Mesoscale Precipitation Discussion #0209 is currently in effect headline3 Mesoscale Precipitation Discussion

  16. Assessment and prevention of acute health effects of weather conditions in Europe, the PHEWE project: background, objectives, design

    Directory of Open Access Journals (Sweden)

    Anderson Hugh

    2007-04-01

    Full Text Available Abstract Background The project "Assessment and prevention of acute health effects of weather conditions in Europe" (PHEWE had the aim of assessing the association between weather conditions and acute health effects, during both warm and cold seasons in 16 European cities with widely differing climatic conditions and to provide information for public health policies. Methods The PHEWE project was a three-year pan-European collaboration between epidemiologists, meteorologists and experts in public health. Meteorological, air pollution and mortality data from 16 cities and hospital admission data from 12 cities were available from 1990 to 2000. The short-term effect on mortality/morbidity was evaluated through city-specific and pooled time series analysis. The interaction between weather and air pollutants was evaluated and health impact assessments were performed to quantify the effect on the different populations. A heat/health watch warning system to predict oppressive weather conditions and alert the population was developed in a subgroup of cities and information on existing prevention policies and of adaptive strategies was gathered. Results Main results were presented in a symposium at the conference of the International Society of Environmental Epidemiology in Paris on September 6th 2006 and will be published as scientific articles. The present article introduces the project and includes a description of the database and the framework of the applied methodology. Conclusion The PHEWE project offers the opportunity to investigate the relationship between temperature and mortality in 16 European cities, representing a wide range of climatic, socio-demographic and cultural characteristics; the use of a standardized methodology allows for direct comparison between cities.

  17. Future weather types and their influence on mean and extreme climate indices for precipitation and temperature in Central Europe

    Directory of Open Access Journals (Sweden)

    Ulf Riediger

    2014-09-01

    Full Text Available In Central Europe, the spatial and temporal distributions of precipitation and temperature are determined by the occurrence of major weather types. In this paper, we examine climate indices (i.e. mean values or hot, cold, wet and dry days for different weather types in a recent (1971–2000 and future climate (2070–2099. The weather types are classified objectively for the control run and for the A1B scenario with an ensemble of eight global climate simulations (GCM to be compared with different reanalyses. To derive climate indices, the high-resolution, regionalized reference dataset HYRAS and an ensemble of nine regional climate simulations (RCM are used. Firstly, the reliability of simulated weather patterns and their climate indices are tested in the control period. The reanalyses circulation climatology can be reproduced well by the GCM ensemble mean. For temperature and precipitation, each climate index is characterized and evaluated in terms of defined weather patterns. The comparison of HYRAS and RCM data show reliable mean temperature values with differences between weather classes by +2$+2$ to -6$-6$ °C during winter (13 to 19 °C in summer. The analysis of observed and simulated precipitation reveal that mean winter precipitation is significantly influenced by the direction of air flow, while in summer, mesoscale atmospheric patterns of cyclonic rotation play a larger role. Secondly, the analysis of potential future changes simulated by the RCM ensemble were able to demonstrate that weather type changes, superior climate trends (such as mean warming and their interaction lead to major changes for precipitation and temperature in Central Europe. While temperature differences between cold and warm weather types are nearly stable over time, the ensemble temperature changes (with a range of +2$+2$ to +4$+4$ °C reinforce warm/hot conditions in the future winter and summer. Milder, wetter winters can be explained by an increased

  18. Air-sea heat fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions

    Science.gov (United States)

    Leyba, Inés M.; Saraceno, Martín; Solman, Silvina A.

    2017-10-01

    Heat fluxes between the ocean and the atmosphere largely represent the link between the two media. A possible mechanism of interaction is generated by mesoscale ocean eddies. In this work we evaluate if eddies in Southwestern Atlantic (SWA) Ocean may significantly affect flows between the ocean and the atmosphere. Atmospherics conditions associated with eddies were examined using data of sea surface temperature (SST), sensible (SHF) and latent heat flux (LHF) from NCEP-CFSR reanalysis. On average, we found that NCEP-CFSR reanalysis adequately reflects the variability expected from eddies in the SWA, considering the classical eddy-pumping theory: anticyclonic (cyclonic) eddies cause maximum positive (negative) anomalies with maximum mean anomalies of 0.5 °C (-0.5 °C) in SST, 6 W/m2 (-4 W/m2) in SHF and 12 W/m2 (-9 W/m2) in LHF. However, a regional dependence of heat fluxes associated to mesoscale cyclonic eddies was found: in the turbulent Brazil-Malvinas Confluence (BMC) region they are related with positive heat flux anomaly (ocean heat loss), while in the rest of the SWA they behave as expected (ocean heat gain). We argue that eddy-pumping do not cool enough the center of the cyclonic eddies in the BMC region simply because most of them trapped very warm waters when they originate in the subtropics. The article therefore concludes that in the SWA: (1) a robust link exists between the SST anomalies generated by eddies and the local anomalous heat flow between the ocean and the atmosphere; (2) in the BMC region cyclonic eddies are related with positive heat anomalies, contrary to what is expected.

  19. Wireless sensor network for monitoring soil moisture and weather conditions

    Science.gov (United States)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  20. Mesoscale surface equivalent temperature (T E) for East Central USA

    Science.gov (United States)

    Younger, Keri; Mahmood, Rezaul; Goodrich, Gregory; Pielke, Roger A.; Durkee, Joshua

    2018-04-01

    The purpose of this research is to investigate near surface mesoscale equivalent temperatures (T E) in Kentucky (located in east central USA) and potential land cover influences. T E is a measure of the moist enthalpy composed of the dry bulb temperature, T, and absolute humidity. Kentucky presents a unique opportunity to perform a study of this kind because of the observational infrastructure provided by the Kentucky Mesonet (www.kymesonet.org). This network maintains 69 research-grade, in-situ weather and climate observing stations across the Commonwealth. Equivalent temperatures were calculated utilizing high-quality observations from 33 of these stations. In addition, the Kentucky Mesonet offers higher spatial and temporal resolution than previous research on this topic. As expected, the differences (T E - T) were greatest in the summer (smallest in the winter), with an average of 35 °C (5 °C). In general, the differences were found to be the largest in the western climate division. This is attributed to agricultural land use and poorly drained land. These differences are smaller during periods of drought, signifying less influence of moisture.

  1. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  2. A Weather Analysis and Forecasting System for Baja California, Mexico

    Science.gov (United States)

    Farfan, L. M.

    2006-05-01

    The weather of the Baja California Peninsula, part of northwestern Mexico, is mild and dry most of the year. However, during the summer, humid air masses associated with tropical cyclones move northward in the eastern Pacific Ocean. Added features that create a unique meteorological situation include mountain ranges along the spine of the peninsula, warm water in the Gulf of California, and the cold California Current in the Pacific. These features interact with the environmental flow to induce conditions that play a role in the occurrence of localized, convective systems during the approach of tropical cyclones. Most of these events occur late in the summer, generating heavy precipitation, strong winds, lightning, and are associated with significant property damage to the local populations. Our goal is to provide information on the characteristics of these weather systems by performing an analysis of observations derived from a regional network. This includes imagery from radar and geostationary satellite, and data from surface stations. A set of real-time products are generated in our research center and are made available to a broad audience (researchers, students, and business employees) by using an internet site. Graphical products are updated anywhere from one to 24 hours and includes predictions from numerical models. Forecasts are derived from an operational model (GFS) and locally generated simulations based on a mesoscale model (MM5). Our analysis and forecasting system has been in operation since the summer of 2005 and was used as a reference for a set of discussions during the development of eastern Pacific tropical cyclones. This basin had 15 named storms and none of them made landfall on the west coast of Mexico; however, four systems were within 800 km from the area of interest, resulting in some convective activity. During the whole season, a group of 30 users from our institution, government offices, and local businesses received daily information

  3. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  4. Periodic variations of atmospheric electric field on fair weather conditions at YBJ, Tibet

    Science.gov (United States)

    Xu, Bin; Zou, Dan; Chen, Ben Yuan; Zhang, Jin Ye; Xu, Guo Wang

    2013-05-01

    Observations of atmospheric electric field on fair weather conditions from the plateau station, YBJ, Tibet (90°31‧50″ E, 30°06‧38″ N), over the period from 2006 to 2011, are presented in this work. Its periodic modulations are analyzed in frequency-domain by Lomb-Scargle Periodogram method and in time-domain by folding method. The results show that the fair weather atmospheric electric field intensity is modulated weakly by annual cycle, solar diurnal cycle and its several harmonic components. The modulating amplitude of annual cycle is bigger than that of solar diurnal cycle. The annual minimum/maximum nearly coincides with spring/autumn equinox. The detailed spectrum analysis show that the secondary peaks (i.e. sidereal diurnal cycle and semi-sidereal diurnal cycle) nearly disappear along with their primary peaks when the primary signals are subtracted from electric field data sequence. The average daily variation curve exhibits dual-fluctuations, and has obviously seasonal dependence. The mean value is bigger in summer and autumn, but smaller in spring and winter. The daytime fluctuation is affected by the sunrise and sunset effect, the occurring time of which have a little shift with seasons. However, the nightly one has a great dependence on season conditions.

  5. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models

    Science.gov (United States)

    Pan, Yang; Archer, Cristina L.

    2018-04-01

    To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.

  6. Modelling the perception of weather conditions by users of outdoor public spaces

    Science.gov (United States)

    Andrade, H.; Oliveira, S.; Alcoforado, M.-J.

    2009-09-01

    Outdoor public spaces play an important role for the quality of life in urban areas. Their usage depends, among other factors, on the bioclimatic comfort of the users. Climate change can modify the uses of outdoor spaces, by changing temperature and rainfall patterns. Understanding the way people perceive the microclimatic conditions is an important tool to the design of more comfortable outdoor spaces and in anticipating future needs to cope with climate change impacts. The perception of bioclimatic comfort by users of two different outdoor spaces was studied in Lisbon. A survey of about one thousand inquires was carried out simultaneously with weather measurements (air temperature, wind speed, relative humidity and solar and long wave radiation), during the years 2006 and 2007. The aim was to assess the relationships between weather variables, the individual characteristics of people (such as age and gender, among others) and their bioclimatic comfort. The perception of comfort was evaluated through the preference votes of the interviewees, which consisted on their answers concerning the desire to decrease, maintain or increase the values of the different weather parameters, in order to improve their comfort at the moment of the interview. The perception of the atmospheric conditions and of the bioclimatic comfort are highly influenced by subjective factors, which are difficult to integrate in a model. Nonetheless, the use of the multiple logistic regression allows the definition of patterns in the quantitative relation between preference votes and environmental and personal parameters. The thermal preference depends largely on the season and is associated with wind speed. Comfort in relation to wind depends not only on the speed but also on turbulence: a high variability in wind speed is generally perceived as uncomfortable. It was also found that the acceptability of warmer conditions is higher than for cooler conditions and the majority of people declared

  7. Mesoscale storm and dry period parameters from hourly precipitation data: program documentation

    Energy Technology Data Exchange (ETDEWEB)

    Thorp, J.M.

    1984-09-01

    Wet deposition of airborne chemical pollutants occurs primarily from precipitation. Precipitation rate, amount, duration, and location are important meteorological factors to be considered when attempting to understand the relationship of precipitation to pollutant deposition. The Pacific Northwest Laboratory (PNL) has conducted studies and experiments in numerous locations to collect data that can be incorporated into theories and models that attempt to describe the complex relationship between precipitation occurrence and chemical wet desposition. Model development often requires the use of average rather than random condition as input. To provide mean values of storm parameters, the task, Climatological Analysis of Mesoscale Storms, was created as a facet of the Environmental Protection Agency's related-service project, Precipitation Scavenging Module Development. Within this task computer programs have been developed at PNL which incorporate hourly precipitation data from National Weather Service stations to calculate mean values and frequency distributions of precipitation periods and of the interspersed dry periods. These programs have been written with a degree of flexibiity that will allow user modification for applications to different, but similar, analyses. This report describes in detail the rationale and operation of the two computer programs which produce the tables of average and frequency distributions of storm and dry period parameters from the precipitation data. A listing of the programs and examples of the generated output are included in the appendices. 3 references, 3 figures, 6 tables.

  8. Adjustment of corn nitrogen in-season fertilization based on soil texture and weather conditions: a Meta-analysis of North American trials

    Science.gov (United States)

    Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series o...

  9. Can the Weather Affect My Child's Asthma?

    Science.gov (United States)

    ... English Español Can the Weather Affect My Child's Asthma? KidsHealth / For Parents / Can the Weather Affect My ... Asthma? Print Can the Weather Affect My Child's Asthma? Yes. Weather conditions can bring on asthma symptoms. ...

  10. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    Science.gov (United States)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  11. Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology

    Science.gov (United States)

    Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.

    2013-12-01

    work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.

  12. Insurance against weather risk : use of heating degree-days from non-local stations for weather derivatives

    NARCIS (Netherlands)

    Asseldonk, van M.A.P.M.

    2003-01-01

    Weather derivatives enable policy-holders to safeguard themselves against extreme weather conditions. The effectiveness and the efficiency of the risk transfer is determined by the spatial risk basis, which is the stochastic dependency of the local weather outcome being insured and the outcome of

  13. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada)

    Science.gov (United States)

    Hewer, Micah J.; Scott, Daniel J.; Gough, William A.

    2017-10-01

    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  14. A Mesoscale Model-Based Climatography of Nocturnal Boundary-Layer Characteristics over the Complex Terrain of North-Western Utah.

    Science.gov (United States)

    Serafin, Stefano; De Wekker, Stephan F J; Knievel, Jason C

    Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012-2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface.

  15. Environments of Long-Lived Mesoscale Convective Systems Over the Central United States in Convection Permitting Climate Simulations: Long-Lived Mesoscale Convective Systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Houze, Robert A. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Leung, L. Ruby [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Feng, Zhe [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-12-27

    Continental-scale convection-permitting simulations of the warm seasons of 2011 and 2012 reproduce realistic structure and frequency distribution of lifetime and event mean precipitation of mesoscale convective systems (MCSs) over the central United States. Analysis is performed to determine the environmental conditions conducive to generating the longest-lived MCSs and their subsequent interactions. The simulations show that MCSs systematically form over the Great Plains ahead of a trough in the westerlies in combination with an enhanced low-level jet from the Gulf of Mexico. These environmental properties at the time of storm initiation are most prominent for the MCSs that persist for the longest times. Systems reaching 9 h or more in lifetime exhibit feedback to the environment conditions through diabatic heating in the MCS stratiform regions. As a result, the parent synoptic-scale wave is strengthened as a divergent perturbation develops over the MCS at high levels, while a cyclonic circulation perturbation develops in the midlevels of the trough, where the vertical gradient of heating in the MCS region is maximized. The quasi-balanced mesoscale vortex helps to maintain the MCS over a long period of time by feeding dry, cool air into the environment at the rear of the MCS region, so that the MCS can draw in air that increases the evaporative cooling that helps maintain the MCS. At lower levels the south-southeasterly jet of warm moist air from the Gulf is enhanced in the presence of the synoptic-scale wave. That moisture supply is essential to the continued redevelopment of the MCS.

  16. Evaluation of operational numerical weather predictions in relation to the prevailing synoptic conditions

    Science.gov (United States)

    Pytharoulis, Ioannis; Tegoulias, Ioannis; Karacostas, Theodore; Kotsopoulos, Stylianos; Kartsios, Stergios; Bampzelis, Dimitrios

    2015-04-01

    The Thessaly plain, which is located in central Greece, has a vital role in the financial life of the country, because of its significant agricultural production. The aim of DAPHNE project (http://www.daphne-meteo.gr) is to tackle the problem of drought in this area by means of Weather Modification in convective clouds. This problem is reinforced by the increase of population and the water demand for irrigation, especially during the warm period of the year. The nonhydrostatic Weather Research and Forecasting model (WRF), is utilized for research and operational purposes of DAPHNE project. The WRF output fields are employed by the partners in order to provide high-resolution meteorological guidance and plan the project's operations. The model domains cover: i) Europe, the Mediterranean sea and northern Africa, ii) Greece and iii) the wider region of Thessaly (at selected periods), at horizontal grid-spacings of 15km, 5km and 1km, respectively, using 2-way telescoping nesting. The aim of this research work is to investigate the model performance in relation to the prevailing upper-air synoptic circulation. The statistical evaluation of the high-resolution operational forecasts of near-surface and upper air fields is performed at a selected period of the operational phase of the project using surface observations, gridded fields and weather radar data. The verification is based on gridded, point and object oriented techniques. The 10 upper-air circulation types, which describe the prevailing conditions over Greece, are employed in the synoptic classification. This methodology allows the identification of model errors that occur and/or are maximized at specific synoptic conditions and may otherwise be obscured in aggregate statistics. Preliminary analysis indicates that the largest errors are associated with cyclonic conditions. Acknowledgments This research work of Daphne project (11SYN_8_1088) is co-funded by the European Union (European Regional Development Fund

  17. Geography and Weather: Mountain Meterology.

    Science.gov (United States)

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  18. Weather conditions influence the number of psychiatric emergency room patients

    Science.gov (United States)

    Brandl, Eva Janina; Lett, Tristram A.; Bakanidze, George; Heinz, Andreas; Bermpohl, Felix; Schouler-Ocak, Meryam

    2017-12-01

    The specific impact of weather factors on psychiatric disorders has been investigated only in few studies with inconsistent results. We hypothesized that meteorological conditions influence the number of cases presenting in a psychiatric emergency room as a measure of mental health conditions. We analyzed the number of patients consulting the emergency room (ER) of a psychiatric hospital in Berlin, Germany, between January 1, 2008, and December 31, 2014. A total of N = 22,672 cases were treated in the ER over the study period. Meteorological data were obtained from a publicly available data base. Due to collinearity among the meteorological variables, we performed a principal component (PC) analysis. Association of PCs with the daily number of patients was analyzed with autoregressive integrated moving average model. Delayed effects were investigated using Granger causal modeling. Daily number of patients in the ER was significantly higher in spring and summer compared to fall and winter (p psychiatric patients consulting the emergency room. In particular, our data indicate lower patient numbers during very cold temperatures.

  19. An Analytical Approach for Performance Enhancement of FSO Communication System Using Array of Receivers in Adverse Weather Conditions

    Science.gov (United States)

    Nagpal, Shaina; Gupta, Amit

    2017-08-01

    Free Space Optics (FSO) link exploits the tremendous network capacity and is capable of offering wireless communications similar to communications through optical fibres. However, FSO link is extremely weather dependent and the major effect on FSO links is due to adverse weather conditions like fog and snow. In this paper, an FSO link is designed using an array of receivers. The disparity of the link for very high attenuation conditions due to fog and snow is analysed using aperture averaging technique. Further effect of aperture averaging technique is investigated by comparing the systems using aperture averaging technique with systems not using aperture averaging technique. The performance of proposed model of FSO link has been evaluated in terms of Q factor, bit error rate (BER) and eye diagram.

  20. Triticale in the years with extreme weather conditions

    Directory of Open Access Journals (Sweden)

    Nožinić Miloš

    2009-01-01

    Full Text Available Unlike other grain crops, the area under triticale in the Republic of Srpska has been expanding every year. Since the introduction of this plant species in the broad production began a few years ago, the finding of the optimal variety agrotechnique in different environmental conditions has great importance. This paper deals with the results of the trials from seven locations in two very extreme vegetation seasons (2002/03, 2006/07. High yield of triticale on the location Banja Luka (150 m alt. with five triticale varieties in four sowing rates in the replication trial in very unfavorable weather conditions in 2003, points to emphasized triticale tolerance to high temperatures and drought. High grain yield of triticale in the trials on the locations Banja Luka, Butmir (460 m alt. and Živince (230 m alt. was obtained in 2007 too, when all vegetation months had higher mean temperature than long term average, what is a unique appearance in the entire 'meteorological history'. In the paper the appearance of the earliest triticale heading is described and explained. It happened at one production trial on Manjača (250 m alt. in the first decade of March in 2007. On the another location on Manjača (450 m alt., in the macrotrial, rye showed much higher tolerance to extreme soil acidity, than triticale. Obtained results and unusual appearances on triticale are helpful for the further research of the stability and adaptability of more important triticale traits. .

  1. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  2. Mesoscale characterization of local property distributions in heterogeneous electrodes

    Science.gov (United States)

    Hsu, Tim; Epting, William K.; Mahbub, Rubayyat; Nuhfer, Noel T.; Bhattacharya, Sudip; Lei, Yinkai; Miller, Herbert M.; Ohodnicki, Paul R.; Gerdes, Kirk R.; Abernathy, Harry W.; Hackett, Gregory A.; Rollett, Anthony D.; De Graef, Marc; Litster, Shawn; Salvador, Paul A.

    2018-05-01

    The performance of electrochemical devices depends on the three-dimensional (3D) distributions of microstructural features in their electrodes. Several mature methods exist to characterize 3D microstructures over the microscale (tens of microns), which are useful in understanding homogeneous electrodes. However, methods that capture mesoscale (hundreds of microns) volumes at appropriate resolution (tens of nm) are lacking, though they are needed to understand more common, less ideal electrodes. Using serial sectioning with a Xe plasma focused ion beam combined with scanning electron microscopy (Xe PFIB-SEM), two commercial solid oxide fuel cell (SOFC) electrodes are reconstructed over volumes of 126 × 73 × 12.5 and 124 × 110 × 8 μm3 with a resolution on the order of ≈ 503 nm3. The mesoscale distributions of microscale structural features are quantified and both microscale and mesoscale inhomogeneities are found. We analyze the origin of inhomogeneity over different length scales by comparing experimental and synthetic microstructures, generated with different particle size distributions, with such synthetic microstructures capturing well the high-frequency heterogeneity. Effective medium theory models indicate that significant mesoscale variations in local electrochemical activity are expected throughout such electrodes. These methods offer improved understanding of the performance of complex electrodes in energy conversion devices.

  3. Some effects of adverse weather conditions on performance of airplane antiskid braking systems

    Science.gov (United States)

    Horne, W. B.; Mccarty, J. L.; Tanner, J. A.

    1976-01-01

    The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions.

  4. Weather conditions drive dynamic habitat selection in a generalist predator

    DEFF Research Database (Denmark)

    Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B.

    2014-01-01

    Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year...... and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly...... with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types...

  5. Air Pollutant Distribution and Mesoscale Circulation Systems During Escompte

    Science.gov (United States)

    Kottmeier, Ch.; Kalthoff, N.; Corsmeier, U.; Robin, D.; Thürauf, J.; Hofherr, T.; Hasel, M.

    The distribution of pollutants observed with an Dornier 128 instrumented aircraft and from AIRMARAIX ground stations during one day of the Escompte experiment (June 25, 2001) is analysed in relation to the mesoscale wind systems and vertical mixing from aircraft and radiosonde data. The ESCOMPTE-experiment (http://medias.obs- mip.fr/escompte) was carried out in June and July 2001 in the urban area of Marseille and its rural surroundings to investigate periods with photosmog conditions. The over- all aim is to produce an appropriate high quality 3-D data set which includes emission, meteorological, and chemical data. The data is used for the validation of mesoscale models and for chemical and meteorological process studies. The evolution of pho- tosmog episodes with high ozone concentrations depends on both chemical transfor- mation processes and meteorological conditions. As Marseille is situated between the Mediterranean Sea in the south and mountainous sites in the north, under weak large- scale flow the meteorological conditions are dominated by thermally driven circula- tion systems which strongly influence the horizontal transport of air pollutants. Ad- ditionally, vertically exchange processes like mountain venting and slope winds may contribute in the temporal evolution of the trace gas concentration of the city plume in the atmospheric boundary layer and are particularly studied by the Dornier flight measurements. Therefore the experiment was designed to measure both, the chemi- cal species and meteorological parameters with high resolution in space and time by surface stations, aircraft and vertical profiling systems like radiosondes, sodars and lidars. Results are shown (a) on the evolution of the wind field and the ozone concen- trations during June 25, when an ozone maximum develops about 60 km in the lee site of Marseille and (b) the vertical transport of air pollutants between the boundary layer and the free troposphere.

  6. Multi-sensor in situ observations to resolve the sub-mesoscale features in the stratified Gulf of Finland, Baltic Sea

    Science.gov (United States)

    Lips, Urmas; Kikas, Villu; Liblik, Taavi; Lips, Inga

    2016-05-01

    High-resolution numerical modeling, remote sensing, and in situ data have revealed significant role of sub-mesoscale features in shaping the distribution pattern of tracers in the ocean's upper layer. However, in situ measurements are difficult to conduct with the required resolution and coverage in time and space to resolve the sub-mesoscale, especially in such relatively shallow basins as the Gulf of Finland, where the typical baroclinic Rossby radius is 2-5 km. To map the multi-scale spatiotemporal variability in the gulf, we initiated continuous measurements with autonomous devices, including a moored profiler and Ferrybox system, which were complemented by dedicated research-vessel-based surveys. The analysis of collected high-resolution data in the summers of 2009-2012 revealed pronounced variability at the sub-mesoscale in the presence of mesoscale upwelling/downwelling, fronts, and eddies. The horizontal wavenumber spectra of temperature variance in the surface layer had slopes close to -2 between the lateral scales from 10 to 0.5 km. Similar tendency towards the -2 slopes of horizontal wavenumber spectra of temperature variance was found in the seasonal thermocline between the lateral scales from 10 to 1 km. It suggests that the ageostrophic sub-mesoscale processes could contribute considerably to the energy cascade in such a stratified sea basin. We showed that the intrusions of water with different salinity, which indicate the occurrence of a layered flow structure, could appear in the process of upwelling/downwelling development and relaxation in response to variable wind forcing. We suggest that the sub-mesoscale processes play a major role in feeding surface blooms in the conditions of coupled coastal upwelling and downwelling events in the Gulf of Finland.

  7. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    DEFF Research Database (Denmark)

    Eitzinger, J; Thaler, S; Schmid, E

    2013-01-01

    the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing...

  8. MPAS Atmospheric Boundary Layer Simulation under Selected Stability Conditions: Evaluation Using the SWIFT Datasen

    Energy Technology Data Exchange (ETDEWEB)

    Kotamarthi, V. Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Feng, Yan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-12

    Modeling the transition from mesoscale to microscale is necessary in order to model different processes that affect a wind farm and to develop forecasting tools that operate at the farm scale. The mesoscale-to-microscale coupling (MMC) project is an A2e (Atmosphere-toelectrons) coordinated activity for developing modeling capabilities at the wind farm scale. By moving the focus of the research from a single wind turbine to the collection of turbines that comprise a wind farm, A2e extends the range of spatial and timescales that need representation in a model from tens of meters to hundreds of kilometers and timescales from a few seconds to days (Bokharaie et al. 2016). In the atmosphere, these scales are represented by mesoscale-tomicroscale models. The modeling available at these scales has differed in its representation of various physical processes. The MMC group is responsible for evaluating existing models at these scales and recommending a set of options for coupling the mesoscale and microscale with the best-performing models. The group was organized in 2015 and will explore options for coupling strategies with real-world test problems in fiscal year (FY) 2017. The model of choice for this exercise is WRF (Weather Research Forecasting) for mesoscale and WRF-LES (Large Eddy Simulation) for microscale simulations. The MPAS (Model Prediction Across Scales) variable mesh model that can be continuously refined; it has dynamic core and physics options adopted from WRF, which offer an alternative platform for modeling the mesoscale.

  9. The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, Argentine

    International Nuclear Information System (INIS)

    Amarillo, Ana C.; Carreras, Hebe A.

    2012-01-01

    We studied the effect of estimated PM 10 on respiratory infections in children from Cordoba, Argentine as well as the influence of weather factors, socio-economic conditions and education. We analyzed upper and lower respiratory infections and applied a time-series analysis with a quasi-Poisson distribution link function. To control for seasonally varying factors we fitted cubic smoothing splines of date. We also examined community-specific parameters and differences in susceptibility by sex. We found a significant association between particles and respiratory infections. This relationship was affected by mean temperature, atmospheric pressure and wind speed. These effects were stronger in fall, winter and spring for upper respiratory infections while for lower respiratory infections the association was significant only during spring. Low socio-economic conditions and low education levels increased the risk of respiratory infections. These findings add useful information to understand the influence of airborne particles on children health in developing countries. - Highlights: ► Few information is available on children respiratory health from developing countries. ► We modeled the association between PM 10 and children's respiratory infections. ► We checked the influence of weather factors, socio-economic conditions, education and sex. ► Temperature, pressure and wind speed modified the effect of particles. ► Low socio-economic conditions and low education levels increased the risk of infections. - The concentration of airborne particles as well as low socio-economic conditions and low education levels are significant risk factors for upper and lower respiratory infections in children from Cordoba, Argentine.

  10. Ensemble cloud-resolving modelling of a historic back-building mesoscale convective system over Liguria: the San Fruttuoso case of 1915

    Science.gov (United States)

    Parodi, Antonio; Ferraris, Luca; Gallus, William; Maugeri, Maurizio; Molini, Luca; Siccardi, Franco; Boni, Giorgio

    2017-05-01

    Highly localized and persistent back-building mesoscale convective systems represent one of the most dangerous flash-flood-producing storms in the north-western Mediterranean area. Substantial warming of the Mediterranean Sea in recent decades raises concerns over possible increases in frequency or intensity of these types of events as increased atmospheric temperatures generally support increases in water vapour content. However, analyses of the historical record do not provide a univocal answer, but these are likely affected by a lack of detailed observations for older events. In the present study, 20th Century Reanalysis Project initial and boundary condition data in ensemble mode are used to address the feasibility of performing cloud-resolving simulations with 1 km horizontal grid spacing of a historic extreme event that occurred over Liguria: the San Fruttuoso case of 1915. The proposed approach focuses on the ensemble Weather Research and Forecasting (WRF) model runs that show strong convergence over the Ligurian Sea (17 out of 56 members) as these runs are the ones most likely to best simulate the event. It is found that these WRF runs generally do show wind and precipitation fields that are consistent with the occurrence of highly localized and persistent back-building mesoscale convective systems, although precipitation peak amounts are underestimated. Systematic small north-westward position errors with regard to the heaviest rain and strongest convergence areas imply that the reanalysis members may not be adequately representing the amount of cool air over the Po Plain outflowing into the Ligurian Sea through the Apennines gap. Regarding the role of historical data sources, this study shows that in addition to reanalysis products, unconventional data, such as historical meteorological bulletins, newspapers, and even photographs, can be very valuable sources of knowledge in the reconstruction of past extreme events.

  11. Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin

    Science.gov (United States)

    Raymond, Florian; Ullmann, Albin; Camberlin, Pierre; Oueslati, Boutheina; Drobinski, Philippe

    2018-06-01

    Very long dry spell events occurring during winter are natural hazards to which the Mediterranean region is extremely vulnerable, because they can lead numerous impacts for environment and society. Four dry spell patterns have been identified in a previous work. Identifying the main associated atmospheric conditions controlling the dry spell patterns is key to better understand their dynamics and their evolution in a changing climate. Except for the Levant region, the dry spells are generally associated with anticyclonic blocking conditions located about 1000 km to the Northwest of the affected area. These anticyclonic conditions are favourable to dry spell occurrence as they are associated with subsidence of cold and dry air coming from boreal latitudes which bring low amount of water vapour and non saturated air masses, leading to clear sky and absence of precipitation. These extreme dry spells are also partly related to the classical four Euro-Atlantic weather regimes are: the two phases of the North Atlantic Oscillation, the Scandinavian "blocking" or "East-Atlantic", and the "Atlantic ridge". Only the The "East-Atlantic", "Atlantic ridge" and the positive phase of the North Atlantic Oscillation are frequently associated with extremes dry spells over the Mediterranean basin but they do not impact the four dry spell patterns equally. Finally long sequences of those weather regimes are more favourable to extreme dry spells than short sequences. These long sequences are associated with the favourable prolonged and reinforced anticyclonic conditions

  12. Charts for Guiding Adjustments of Irrigation Interval to Actual Weather Conditions

    International Nuclear Information System (INIS)

    Kipkorir, E.C.

    2002-01-01

    Major problems in irrigation management at short time-step during the season are unreliability of rainfall and absence of guidance. By considering the climate of region, crop and soil characteristics, the irrigation method and local irrigation practices, this paper presents the concept of irrigation charts. The charts are based on soil water technique. As an example irrigation chart for a typical irrigation system located in the semi-arid area in Naivasha, Kenya is presented. The chart guides the user in adjustment of irrigation interval to the actual weather conditions throughout the growing season. It is believed that the simplicity of the chart makes it a useful tool for a better utilisation of the limited irrigation water

  13. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen

    2014-01-01

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D...... of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets...

  14. Laser guidance of mesoscale particles

    Science.gov (United States)

    Underdown, Frank Hartman, Jr.

    Mesoscale particles are guided and trapped in hollow optical fibers using radiation pressure forces. Laser light from a 0.4W, 780nm diode laser is guided in a low- loss fiber mode and used to generate the guidance forces. Laser scattering and absorption forces propels particles along the fiber and polarization gradient forces attract them to the fiber's axial center. Using two counter propagating laser beams, inside the fiber, particles can be trapped in three dimensions. Measuring the spring constant of the trap gives the gradient force. This dissertation describes Rayleigh and Mie scattering models for calculating guidance forces. Calculated forces as a function of particle size and composition (i.e. dielectric, semiconductor, and metals) will be presented. For example, under typical experimental conditions 100nm Au particles are guided by a 2 × 10-14 N propulsive force in a water filled fiber. In comparison, the measured force, obtained from the particle's velocity and Stokes' law, is 7.98 × 10-14 N.

  15. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  16. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.

    Science.gov (United States)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-10-15

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Subregional characterization of mesoscale eddies across the Brazil-Malvinas Confluence

    Science.gov (United States)

    Mason, Evan; Pascual, Ananda; Gaube, Peter; Ruiz, Simón; Pelegrí, Josep L.; Delepoulle, Antoine

    2017-04-01

    Horizontal and vertical motions associated with coherent mesoscale structures, including eddies and meanders, are responsible for significant global transports of many properties, including heat and mass. Mesoscale vertical fluxes also influence upper ocean biological productivity by mediating the supply of nutrients into the euphotic layer, with potential impacts on the global carbon cycle. The Brazil-Malvinas Confluence (BMC) is a western boundary current region in the South Atlantic with intense mesoscale activity. This region has an active role in the genesis and transformation of water masses and thus is a critical component of the Atlantic meridional overturning circulation. The collision between the Malvinas and Brazil Currents over the Patagonian shelf/slope creates an energetic front that translates offshore to form a vigorous eddy field. Recent improvements in gridded altimetric sea level anomaly fields allow us to track BMC mesoscale eddies with high spatial and temporal resolutions using an automated eddy tracker. We characterize the eddies across fourteen 5° × 5° subregions. Eddy-centric composites of tracers and geostrophic currents diagnosed from a global reanalysis of surface and in situ data reveal substantial subregional heterogeneity. The in situ data are also used to compute the evolving quasi-geostrophic vertical velocity (QG-ω) associated with each instantaneous eddy instance. The QG-ω eddy composites have the expected dipole patterns of alternating upwelling/downwelling, however, the magnitude and sign of azimuthally averaged vertical velocity varies among subregions. Maximum eddy values are found near fronts and sharp topographic gradients. In comparison with regional eddy composites, subregional composites provide refined information about mesoscale eddy heterogeneity.

  18. Weather Risk Management in Agriculture

    Directory of Open Access Journals (Sweden)

    Martina Bobriková

    2016-01-01

    Full Text Available The paper focuses on valuation of a weather derivative with payoffs depending on temperature. We use historical data from the weather station in the Slovak town Košice to obtain unique prices of option contracts in an incomplete market. Numerical examples of prices of some contracts are presented, using the Burn analysis. We provide an example of how a weather contract can be designed to hedge the financial risk of a suboptimal temperature condition. The comparative comparison of the selected option hedging strategies has shown the best results for the producers in agricultural industries who hedges against an unfavourable weather conditions. The results of analysis proved that by buying put option or call option, the farmer establishes the highest payoff in the case of temperature decrease or increase. The Long Straddle Strategy is the most expensive but is available to the farmer who hedges against a high volatility in temperature movement. We conclude with the findings that weather derivatives could be useful tools to diminish the financial losses for agricultural industries highly dependent for temperature.

  19. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

    NARCIS (Netherlands)

    Zhao, Gang; Hoffmann, Holger; Bussel, Van L.G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, Michaela; Kersebaum, Kurt Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel; Cammarano, Davide; Asseng, Senthold; Krauss, Gunther; Siebert, Stefan

    2015-01-01

    We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 processbased crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and

  20. Combating bad weather part I rain removal from video

    CERN Document Server

    Mukhopadhyay, Sudipta

    2015-01-01

    Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the

  1. Fire Danger and Fire Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (formerly Weather Bureau) and Forest Service developed a program to track meteorological conditions conducive to forest fires, resulting...

  2. Weather conditions and voter turnout in Dutch national parliament elections, 1971-2010.

    Science.gov (United States)

    Eisinga, Rob; Te Grotenhuis, Manfred; Pelzer, Ben

    2012-07-01

    While conventional wisdom assumes that inclement weather on election day reduces voter turnout, there is remarkably little evidence available to support truth to such belief. This paper examines the effects of temperature, sunshine duration and rainfall on voter turnout in 13 Dutch national parliament elections held from 1971 to 2010. It merges the election results from over 400 municipalities with election-day weather data drawn from the nearest weather station. We find that the weather parameters indeed affect voter turnout. Election-day rainfall of roughly 25 mm (1 inch) reduces turnout by a rate of one percent, whereas a 10-degree-Celsius increase in temperature correlates with an increase of almost one percent in overall turnout. One hundred percent sunshine corresponds to a one and a half percent greater voter turnout compared to zero sunshine.

  3. Mesoscale brain explorer, a flexible python-based image analysis and visualization tool.

    Science.gov (United States)

    Haupt, Dirk; Vanni, Matthieu P; Bolanos, Federico; Mitelut, Catalin; LeDue, Jeffrey M; Murphy, Tim H

    2017-07-01

    Imaging of mesoscale brain activity is used to map interactions between brain regions. This work has benefited from the pioneering studies of Grinvald et al., who employed optical methods to image brain function by exploiting the properties of intrinsic optical signals and small molecule voltage-sensitive dyes. Mesoscale interareal brain imaging techniques have been advanced by cell targeted and selective recombinant indicators of neuronal activity. Spontaneous resting state activity is often collected during mesoscale imaging to provide the basis for mapping of connectivity relationships using correlation. However, the information content of mesoscale datasets is vast and is only superficially presented in manuscripts given the need to constrain measurements to a fixed set of frequencies, regions of interest, and other parameters. We describe a new open source tool written in python, termed mesoscale brain explorer (MBE), which provides an interface to process and explore these large datasets. The platform supports automated image processing pipelines with the ability to assess multiple trials and combine data from different animals. The tool provides functions for temporal filtering, averaging, and visualization of functional connectivity relations using time-dependent correlation. Here, we describe the tool and show applications, where previously published datasets were reanalyzed using MBE.

  4. Error Covariance Estimation of Mesoscale Data Assimilation

    National Research Council Canada - National Science Library

    Xu, Qin

    2005-01-01

    The goal of this project is to explore and develop new methods of error covariance estimation that will provide necessary statistical descriptions of prediction and observation errors for mesoscale data assimilation...

  5. Contribution of mesoscale eddies to Black Sea ventilation

    Science.gov (United States)

    Capet, Arthur; Mason, Evan; Pascual, Ananda; Grégoire, Marilaure

    2017-04-01

    The shoaling of the Black Sea oxycline is one of the most urgent environmental issues in the Black Sea. The permanent oxycline derives directly from the Black Sea permanent stratification and has shoaled alarmingly in the last decades, due to a shifting balance between oxygen consumption and ventilation processes (Capet et al. 2016). The understanding of this balance is thus of the utmost importance and requires to quantify 1) the export of nutrients and organic materials from the shelf regions to the open sea and 2) the ventilation processes. These two processes being influenced by mesoscale features, it is critical to understand the role of the semi-permanent mesoscale structures in horizontal (center/periphery) and vertical (diapycnal and isopycnal) exchanges. A useful insight can be obtained by merging observations from satellite altimeter and in situ profilers (ARGO). In such composite analyses, eddies are first automatically identified and tracked from altimeter data (Mason et al. 2014, py-eddy-tracker). Vertical ARGO profiles are then expressed in terms of their position relative to eddy centers and radii. Derived statistics indicate how consistently mesoscale eddies alter the vertical structure, and provide a deeper understanding of the associated horizontal and vertical fluxes. However, this data-based approach is limited in the Black Sea due to the lower quality of gridded altimetric products in the vicinity of the coast, where semi-permanent mesoscale structures prevail. To complement the difficult analysis of this sparse dataset, a compositing methodology. is also applied to model outputs from the 5km GHER-BHAMBI Black Sea implementation (CMEMS BS-MFC). Characteristic biogeochemical anomalies associated with eddies in the model are analyzed per se, and compared to the observation-based analysis. Capet, A., Stanev, E. V., Beckers, J.-M., Murray, J. W., and Grégoire, M.: Decline of the Black Sea oxygen inventory, Biogeosciences, 13, 1287-1297, doi:10

  6. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  7. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim

    2017-12-01

    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  8. New Mesoscale Fluvial Landscapes - Seismic Geomorphology and Exploration

    Science.gov (United States)

    Wilkinson, M. J.

    2013-01-01

    Megafans (100-600 km radius) are very large alluvial fans that cover significant areas on most continents, the surprising finding of recent global surveys. The number of such fans and patterns of sedimentation on them provides new mesoscale architectures that can now be applied on continental fluvial depositional systems, and therefore on. Megafan-scale reconstructions underground as yet have not been attempted. Seismic surveys offer new possibilities in identifying the following prospective situations at potentially unsuspected locations: (i) sand concentrations points, (ii) sand-mud continuums at the mesoscale, (iii) paleo-valley forms in these generally unvalleyed landscapes, (iv) stratigraphic traps, and (v) structural traps.

  9. 49 CFR 192.231 - Protection from weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality of...

  10. Wind-Farm Parametrisations in Mesoscale Models

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2013-01-01

    In this paper we compare three wind-farm parametrisations for mesoscale models against measurement data from the Horns Rev I offshore wind-farm. The parametrisations vary from a simple rotor drag method, to more sophisticated models. Additional to (4) we investigated the horizontal resolution dep...

  11. Forest ecosystem as a source of CO2 during growing season: relation to weather conditions

    Czech Academy of Sciences Publication Activity Database

    Taufarová, Klára; Havránková, Kateřina; Dvorská, Alice; Pavelka, Marian; Urbaniak, M.; Janouš, Dalibor

    2014-01-01

    Roč. 28, č. 2 (2014), s. 239-249 ISSN 0236-8722 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.4.31.0056; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : net ecosystem production * CO2 source days * eddy covariance * weather conditions * Norway spruce Subject RIV: EH - Ecology, Behaviour Impact factor: 1.117, year: 2014

  12. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  13. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions

    Science.gov (United States)

    Gupta, Amit; Shaina, Nagpal

    2017-08-01

    Intersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.

  14. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    Science.gov (United States)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  15. Mesoscale simulation of concrete spall failure

    Science.gov (United States)

    Knell, S.; Sauer, M.; Millon, O.; Riedel, W.

    2012-05-01

    Although intensively studied, it is still being debated which physical mechanisms are responsible for the increase of dynamic strength and fracture energy of concrete observed at high loading rates, and to what extent structural inertia forces on different scales contribute to the observation. We present a new approach for the three dimensional mesoscale modelling of dynamic damage and cracking in concrete. Concrete is approximated as a composite of spherical elastic aggregates of mm to cm size embedded in an elastic cement stone matrix. Cracking within the matrix and at aggregate interfaces in the μm range are modelled with adaptively inserted—initially rigid—cohesive interface elements. The model is applied to analyse the dynamic tensile failure observed in Hopkinson-Bar spallation experiments with strain rates up to 100/s. The influence of the key mesoscale failure parameters of strength, fracture energy and relative weakening of the ITZ on macromechanic strength, momentum and energy conservation is numerically investigated.

  16. Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: The goyang case

    Science.gov (United States)

    Choi, Hyun-Young; Ha, Ji-Hyun; Lee, Dong-Kyou; Kuo, Ying-Hwa

    2011-05-01

    We investigated a torrential rainfall case with a daily rainfall amount of 379 mm and a maximum hourly rain rate of 77.5 mm that took place on 12 July 2006 at Goyang in the middlewestern part of the Korean Peninsula. The heavy rainfall was responsible for flash flooding and was highly localized. High-resolution Doppler radar data from 5 radar sites located over central Korea were analyzed. Numerical simulations using the Weather Research and Forecasting (WRF) model were also performed to complement the high-resolution observations and to further investigate the thermodynamic structure and development of the convective system. The grid nudging method using the Global Final (FNL) Analyses data was applied to the coarse model domain (30 km) in order to provide a more realistic and desirable initial and boundary conditions for the nested model domains (10 km, 3.3 km). The mesoscale convective system (MCS) which caused flash flooding was initiated by the strong low level jet (LLJ) at the frontal region of high equivalent potential temperature (θe) near the west coast over the Yellow Sea. The ascending of the warm and moist air was induced dynamically by the LLJ. The convective cells were triggered by small thermal perturbations and abruptly developed by the warm θe inflow. Within the MCS, several convective cells responsible for the rainfall peak at Goyang simultaneously developed with neighboring cells and interacted with each other. Moist absolutely unstable layers (MAULs) were seen at the lower troposphere with the very moist environment adding the instability for the development of the MCS.

  17. Influence of Special Weather on Output of PV System

    Science.gov (United States)

    Zhang, Zele

    2018-01-01

    The output of PV system is affected by different environmental factors, therefore, it is important to study the output of PV system under different environmental conditions. Through collecting data on the spot, collecting the output of photovoltaic panels under special weather conditions, and comparing the collected data, the output characteristics of the photovoltaic panels under different weather conditions are obtained. The influence of weather factors such as temperature, humidity and irradiance on the output of photovoltaic panels was investigated.

  18. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  19. Thermally forced mesoscale atmospheric flow over complex terrain in Southern Italy

    International Nuclear Information System (INIS)

    Baldi, M.; Colacino, M.; Dalu, G. A.; Piervitali, E.; Ye, Z.

    1998-01-01

    In this paper the Authors discuss some results concerning the analysis of the local atmospheric flow over the southern part of Italy, the peninsula of Calabria, using a mesoscale numerical model. Our study is focused on two different but related topics: a detailed analysis of the meteorology and climate of the region based on a data collection, reported in Colacino et al., 'Elementi di Climatologia della Calabria', edited by A. Guerrini, in the series P. S., 'Clima, Ambiente e Territorio nel Mezzogiorno' (CNR, Rome) 1997, pp. 218, and an analysis of the results based on the simulated flow produced using a mesoscale numerical model. The Colorado State University mesoscale numerical model has been applied to study several different climatic situations of particular interest for the region, as discussed in this paper

  20. Thermally forced mesoscale atmospheric flow over complex terrain in Southern Italy

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, M.; Colacino, M.; Dalu, G. A.; Piervitali, E.; Ye, Z. [CNR, Rome (Italy). Ist. di Fisica dell`Atmosfera

    1998-07-01

    In this paper the Authors discuss some results concerning the analysis of the local atmospheric flow over the southern part of Italy, the peninsula of Calabria, using a mesoscale numerical model. Our study is focused on two different but related topics: a detailed analysis of the meteorology and climate of the region based on a data collection, reported in Colacino et al., `Elementi di Climatologia della Calabria`, edited by A. Guerrini, in the series P. S., `Clima, Ambiente e Territorio nel Mezzogiorno` (CNR, Rome) 1997, pp. 218, and an analysis of the results based on the simulated flow produced using a mesoscale numerical model. The Colorado State University mesoscale numerical model has been applied to study several different climatic situations of particular interest for the region, as discussed in this paper.

  1. Investigating Mesoscale Convective Systems and their Predictability Using Machine Learning

    Science.gov (United States)

    Daher, H.; Duffy, D.; Bowen, M. K.

    2016-12-01

    A mesoscale convective system (MCS) is a thunderstorm region that lasts several hours long and forms near weather fronts and can often develop into tornadoes. Here we seek to answer the question of whether these tornadoes are "predictable" by looking for a defining characteristic(s) separating MCSs that evolve into tornadoes versus those that do not. Using NASA's Modern Era Retrospective-analysis for Research and Applications 2 reanalysis data (M2R12K), we apply several state of the art machine learning techniques to investigate this question. The spatial region examined in this experiment is Tornado Alley in the United States over the peak tornado months. A database containing select variables from M2R12K is created using PostgreSQL. This database is then analyzed using machine learning methods such as Symbolic Aggregate approXimation (SAX) and DBSCAN (an unsupervised density-based data clustering algorithm). The incentive behind using these methods is to mathematically define a MCS so that association rule mining techniques can be used to uncover some sort of signal or teleconnection that will help us forecast which MCSs will result in tornadoes and therefore give society more time to prepare and in turn reduce casualties and destruction.

  2. Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios

    Science.gov (United States)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.

  3. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    Science.gov (United States)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  4. Accelerated laboratory weathering of acrylic lens materials

    Science.gov (United States)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  5. Travel in adverse winter weather conditions by blind pedestrians.

    Science.gov (United States)

    2015-08-31

    Winter weather creates many orientation and mobility (O&M) challenges for people who are visually impaired. Getting the cane tip stuck is one of the noticeable challenges when traveling in snow, particularly when the walking surface is covered in dee...

  6. New Technologies for Weather Accident Prevention

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.

    2005-01-01

    Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.

  7. Technology-derived storage solutions for stabilizing insulin in extreme weather conditions I: the ViViCap-1 device.

    Science.gov (United States)

    Pfützner, Andreas; Pesach, Gidi; Nagar, Ron

    2017-06-01

    Injectable life-saving drugs should not be exposed to temperatures 30°C/86°F. Frequently, weather conditions exceed these temperature thresholds in many countries. Insulin is to be kept at 4-8°C/~ 39-47°F until use and once opened, is supposed to be stable for up to 31 days at room temperature (exception: 42 days for insulin levemir). Extremely hot or cold external temperature can lead to insulin degradation in a very short time with loss of its glucose-lowering efficacy. Combined chemical and engineering solutions for heat protection are employed in ViViCap-1 for disposable insulin pens. The device works based on vacuum insulation and heat consumption by phase-change material. Laboratory studies with exposure of ViViCap-1 to hot outside conditions were performed to evaluate the device performance. ViViCap-1 keeps insulin at an internal temperature phase-change process and 'recharges' the device for further use. ViViCap-1 performed within its specifications. The small and convenient device maintains the efficacy and safety of using insulin even when carried under hot weather conditions.

  8. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    Science.gov (United States)

    Parham, Walter E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.

  9. On-site ocean horizontal aerosol extinction coefficient inversion under different weather conditions on the Bo-hai and Huang-hai Seas

    Science.gov (United States)

    Zeng, Xianjiang; Xia, Min; Ge, Yinghui; Guo, Wenping; Yang, Kecheng

    2018-03-01

    In this paper, we explore the horizontal extinction characteristics under different weather conditions on the ocean surface with on-site experiments on the Bo-hai and Huang-hai Seas in the summer of 2016. An experimental lidar system is designed to collect the on-site experimental data. By aiming at the inhomogeneity and uncertainty of the horizontal aerosol in practice, a joint retrieval method is proposed to retrieve the aerosol extinction coefficients (AEC) from the raw data along the optical path. The retrieval results of both the simulated and the real signals demonstrate that the joint retrieval method is practical. Finally, the sequence observation results of the on-site experiments under different weather conditions are reported and analyzed. These results can provide the attenuation information to analyze the atmospheric aerosol characteristics on the ocean surface.

  10. Microbiological composition of untreated water during different weather conditions

    Directory of Open Access Journals (Sweden)

    Adna Bešić

    2011-09-01

    Full Text Available Introduction: Water can support the growth of different microorganisms which may result in contamination. Therefore, the microbiological examination is required for testing the hygienic probity of water. In the study of microbial composition of untreated, natural spring and mineral water differences in the presence and number of bacteria during the two periods, winter and summer, are detectable.Methods: In our study, we analyzed and compared the following parameters, specified in the Rulebook: total bacteria and total aerobic bacteria (ml/22 and 37°C, total Coliform bacteria and Coliforms of fecalorigin (MPN/100ml, fecal streptococci as Streptococcus faecalis  (MPN/100ml, Proteus spp (MPN/100ml, and Pseudomonas aeruginosa (MPN/100 ml Sulphoreducing Clostridia (cfu / ml. The paper is a retrospective study in which we processed data related to the period of 2005-2009 year. While working, we used the descriptive-analytical comparative statistical treatment.Results: The obtained results show statistically significant differences in the microbial composition of untreated water in the two observed periods,Conclusions: Findings were consequence of different weather conditions in these periods, which imply a number of other variable factors.

  11. [Effect of weather on odontogenic abscesses].

    Science.gov (United States)

    Nissen, G; Schmidseder, R

    1978-11-01

    An increased frequency of odontogenous abcesses was observed on certain days in the course of routine clinical practice. We therefore investigated the possibility of a statistically significant weather-related odontogenous soft-tissue purulence originating from chronic apical periodontitis. Medical reports of patients treated between 1970 and 1977 were used. Our study indicated that the frequency of odontogenous abcesses was significantly higher with cyclonic weather conditions, i.e., weather with low barometric pressure.

  12. Oil spill cleanup in severe weather and open ocean conditions

    International Nuclear Information System (INIS)

    Kowalski, T.

    1993-01-01

    Most serious oil spills occur in open water under severe weather conditions. At first the oil stays on the surface, where it is spread by winds and water currents. The action of the waves then mixes the oil into the water column. With time the light elements of crude oil evaporate. The remaining residue is of very low commercial value, but of significant environmental impact. The oil spill can move either out to sea or inshore, where it ends up on the beaches. Normal procedures are to let outbound oil disperse by evaporation and mixing into the water column, and to let the inbound oil collect on the beaches, where the cleanup operations are concentrated. The reason for this is that there is no capability to clean the surface of the water in wave conditions-present-day oil skimmers are ineffective in waves approaching 4 ft in height. It would be simpler, more effective and environmentally more beneficial to skim the oil right at the spill location. This paper describes a method to do this. In the case of an oil spill in open water and high wave conditions, it is proposed to reduce the height of the ocean waves by the use of floating breakwaters to provide a relatively calm area. In such protected areas existing oil skimmers can be used to recover valuable oil and clean up the spill long before it hits the beaches. A floating breakwater developed at the University of Rhode Island by the author can be of great benefit in oil spill cleanup for open ocean conditions. This breakwater is constructed from scrap automobile tires. It is built in units of 20 tires each, which are easily transportable and can be connected together at the spill site to form any desired configuration

  13. Longing for Clouds - Does Beautiful Weather have to be Fine?

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2016-01-01

    Full Text Available Any attempt to outline a meteorological aesthetics centered on so-called beautiful weather has to overcome several difficulties: In everyday life, the appreciation of the weather is mostly related to practical interests or reduced to the ideal of stereotypical fine weather that is conceived according to blue-sky thinking irrespective of climate diversity. Also, an aesthetics of fine weather seems, strictly speaking, to be impossible given that such weather conditions usually allow humans to focus on aspects other than weather, which contradicts the autotelic character of beauty. The unreflective equation of beautiful weather with moderately sunny weather and a cloudless sky also collides with the psychological need for variation: even living in a “paradisal” climate would be condemned to end in monotony. Finally, whereas fine weather is related in modern realistic literature to cosmic harmony and a universal natural order, contemporary literary examples show that in the age of the climate change, fine weather may be deceitful and its passive contemplation, irresponsible. This implies the necessity of a reflective aesthetic attitude on weather, as influenced by art, literature, and science, which discovers the poetics of bad weather and the wonder that underlies average weather conditions.

  14. Weather impacts on leisure activities in Halifax, Nova Scotia

    Science.gov (United States)

    Spinney, Jamie E. L.; Millward, Hugh

    2011-03-01

    The aim of this study was to investigate the impact of daily atmospheric weather conditions on daily leisure activity engagement, with a focus on physically active leisure. The methods capitalize on time diary data that were collected in Halifax, Nova Scotia to calculate objective measures of leisure activity engagement. Daily meteorological data from Environment Canada and daily sunrise and sunset times from the National Research Council of Canada are used to develop objective measures of the natural atmospheric environment. The time diary data were merged with the meteorological data in order to quantify the statistical association between daily weather conditions and the type, participation rate, frequency, and duration of leisure activity engagement. The results indicate that inclement and uncomfortable weather conditions, especially relating to thermal comfort and mechanical comfort, pose barriers to physically active leisure engagement, while promoting sedentary and home-based leisure activities. Overall, daily weather conditions exhibit modest, but significant, effects on leisure activity engagement; the strongest associations being for outdoor active sports and outdoor active leisure time budgets. In conclusion, weather conditions influence the type, participation rate, frequency, and duration of leisure activity engagement, which is an important consideration for health-promotion programming.

  15. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    Science.gov (United States)

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.

  16. A Quality-Control-Oriented Database for a Mesoscale Meteorological Observation Network

    Science.gov (United States)

    Lussana, C.; Ranci, M.; Uboldi, F.

    2012-04-01

    In the operational context of a local weather service, data accessibility and quality related issues must be managed by taking into account a wide set of user needs. This work describes the structure and the operational choices made for the operational implementation of a database system storing data from highly automated observing stations, metadata and information on data quality. Lombardy's environmental protection agency, ARPA Lombardia, manages a highly automated mesoscale meteorological network. A Quality Assurance System (QAS) ensures that reliable observational information is collected and disseminated to the users. The weather unit in ARPA Lombardia, at the same time an important QAS component and an intensive data user, has developed a database specifically aimed to: 1) providing quick access to data for operational activities and 2) ensuring data quality for real-time applications, by means of an Automatic Data Quality Control (ADQC) procedure. Quantities stored in the archive include hourly aggregated observations of: precipitation amount, temperature, wind, relative humidity, pressure, global and net solar radiation. The ADQC performs several independent tests on raw data and compares their results in a decision-making procedure. An important ADQC component is the Spatial Consistency Test based on Optimal Interpolation. Interpolated and Cross-Validation analysis values are also stored in the database, providing further information to human operators and useful estimates in case of missing data. The technical solution adopted is based on a LAMP (Linux, Apache, MySQL and Php) system, constituting an open source environment suitable for both development and operational practice. The ADQC procedure itself is performed by R scripts directly interacting with the MySQL database. Users and network managers can access the database by using a set of web-based Php applications.

  17. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung

    2015-07-01

    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  18. Winter Weather Checklists

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  19. Winter Weather: Frostbite

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  20. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    Science.gov (United States)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence

  1. Effects of Weather on Tourism and its Moderation

    Science.gov (United States)

    Park, J. H.; Kim, S.; Lee, D. K.

    2016-12-01

    Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists

  2. Explicit simulation of a midlatitude Mesoscale Convective System

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, G.D.; Cotton, W.R. [Colorado State Univ., Fort Collins, CO (United States)

    1996-04-01

    We have explicitly simulated the mesoscale convective system (MCS) observed on 23-24 June 1985 during PRE-STORM, the Preliminary Regional Experiment for the Stormscale Operational and Research and Meterology Program. Stensrud and Maddox (1988), Johnson and Bartels (1992), and Bernstein and Johnson (1994) are among the researchers who have investigated various aspects of this MCS event. We have performed this MCS simulation (and a similar one of a tropical MCS; Alexander and Cotton 1994) in the spirit of the Global Energy and Water Cycle Experiment Cloud Systems Study (GCSS), in which cloud-resolving models are used to assist in the formulation and testing of cloud parameterization schemes for larger-scale models. In this paper, we describe (1) the nature of our 23-24 June MCS dimulation and (2) our efforts to date in using our explicit MCS simulations to assist in the development of a GCM parameterization for mesoscale flow branches. The paper is organized as follows. First, we discuss the synoptic situation surrounding the 23-24 June PRE-STORM MCS followed by a discussion of the model setup and results of our simulation. We then discuss the use of our MCS simulation. We then discuss the use of our MCS simulations in developing a GCM parameterization for mesoscale flow branches and summarize our results.

  3. Relationship between weather conditions and admissions for ischemic stroke and subarachnoid hemorrhage.

    Science.gov (United States)

    Tarnoki, Adam D; Turker, Acar; Tarnoki, David L; Iyisoy, Mehmet S; Szilagyi, Blanka K; Duong, Hoang; Miskolczi, Laszlo

    2017-02-28

    To assess impacts of different weather conditions on hospitalizations of patients with ischemic strokes and subarachnoid hemorrhages (SAH) in South Florida. Diagnostic data of patients with spontaneous SAH and strokes were recorded between June 2010 and July 2013. Daily synchronous forecast charts were collected from the National Weather Service and the whole data were matched prospectively. The incidence rate ratio (IRR) was calculated. Increased incidence rate of ischemic stroke was consistent with the daily lowest and highest air pressure (IRR 1.03, P=0.128 and IRR 0.98, P=0.380, respectively), highest air temperature (IRR 0.99, P=0.375), and presence of hurricanes or storms (IRR 0.65, P=0.054). Increased incidence of SAH cases was consistent with daily lowest and highest air pressure (IRR 0.87, P<0.001 and IRR 1.08, P=0.019, respectively) and highest air temperature (IRR 0.98, P<0.001). Presence of hurricanes and/or tropical storms did not influence the frequency of SAH. We found no relationship between the presence of fronts and the admissions for ischemic stroke or SAH. Higher number of ischemic stroke and SAH cases can be expected with the daily lowest and highest air pressure, highest air temperature. Presence of hurricanes or tropical storms increased the risk of ischemic stroke but not the SAH. These findings can help to develop preventive health plans for cerebrovascular diseases.

  4. Down-scaling wind energy resource from mesoscale to local scale by nesting and data assimilation with a CFD model

    International Nuclear Information System (INIS)

    Duraisamy Jothiprakasam, Venkatesh

    2014-01-01

    The development of wind energy generation requires precise and well-established methods for wind resource assessment, which is the initial step in every wind farm project. During the last two decades linear flow models were widely used in the wind industry for wind resource assessment and micro-siting. But the linear models inaccuracies in predicting the wind speeds in very complex terrain are well known and led to use of CFD, capable of modeling the complex flow in details around specific geographic features. Mesoscale models (NWP) are able to predict the wind regime at resolutions of several kilometers, but are not well suited to resolve the wind speed and turbulence induced by the topography features on the scale of a few hundred meters. CFD has proven successful in capturing flow details at smaller scales, but needs an accurate specification of the inlet conditions. Thus coupling NWP and CFD models is a better modeling approach for wind energy applications. A one-year field measurement campaign carried out in a complex terrain in southern France during 2007-2008 provides a well-documented data set both for input and validation data. The proposed new methodology aims to address two problems: the high spatial variation of the topography on the domain lateral boundaries, and the prediction errors of the mesoscale model. It is applied in this work using the open source CFD code Code-Saturne, coupled with the mesoscale forecast model of Meteo-France (ALADIN). The improvement is obtained by combining the mesoscale data as inlet condition and field measurement data assimilation into the CFD model. Newtonian relaxation (nudging) data assimilation technique is used to incorporate the measurement data into the CFD simulations. The methodology to reconstruct long term averages uses a clustering process to group the similar meteorological conditions and to reduce the number of CFD simulations needed to reproduce 1 year of atmospheric flow over the site. The assimilation

  5. Examining the effects of microstructure and loading on the shock initiation of HMX with mesoscale simulations

    Science.gov (United States)

    Springer, H. Keo; Tarver, Craig; Bastea, Sorin

    2015-06-01

    We perform reactive mesoscale simulations to study shock initiation in HMX over a range of pore morphologies and sizes, porosities, and loading conditions in order to improve our understanding of structure-performance relationships. These relationships are important because they guide the development of advanced macroscale models incorporating hot spot mechanisms and the optimization of novel energetic material microstructures. Mesoscale simulations are performed using the multiphysics hydrocode, ALE3D. Spherical, elliptical, polygonal, and crack-like pore geometries 0.1, 1, 10, and 100 microns in size and 2, 5, 10, and 14% porosity are explored. Loading conditions are realized with shock pressures of 6, 10, 20, 38, and 50 GPa. A Cheetah-based tabular model, including temperature-dependent heat capacity, is used for the unreacted and the product equation-of-state. Also, in-line Cheetah is used to probe chemical species evolution. The influence of microstructure and shock loading on shock-to-detonation-transition run distance, reaction rate and product gas species evolution are discussed. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work is funded by the Joint DoD-DOE Munitions Program.

  6. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  7. Adverse weather impact on aviation safety, investigation and oversight

    Science.gov (United States)

    Smith, M. J.

    1985-01-01

    A brief review of the weather factors that effect aviation safety with respect to U.S. Coast Guard operations is presented. Precise meteorological information is an absolute necessity to the Coast Guard which must conduct life saving and rescue operations under the worst of weather conditions. Many times the weather conditions in which they operate are the cause of or a contributing factor to the predicament from which they must execute a rescue operation.

  8. Weather effects on the success of longleaf pine cone crops

    Science.gov (United States)

    Daniel J. Leduc; Shi-Jean Susana Sung; Dale G. Brockway; Mary Anne Sword Sayer

    2016-01-01

    We used National Oceanic and Atmospheric Administration weather data and historical records of cone crops from across the South to relate weather conditions to the yield of cones in 10 longleaf pine (Pinus palustris Mill.) stands. Seed development in this species occurs over a three-year time period and weather conditions during any part of this...

  9. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    Science.gov (United States)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  10. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization

    Science.gov (United States)

    Parnell, William J; Grimal, Quentin

    2008-01-01

    Recently, the mesoscale of cortical bone has been given particular attention in association with novel experimental techniques such as nanoindentation, micro-computed X-ray tomography and quantitative scanning acoustic microscopy (SAM). A need has emerged for reliable mathematical models to interpret the related microscopic and mesoscopic data in terms of effective elastic properties. In this work, a new model of cortical bone elasticity is developed and used to assess the influence of mesoscale porosity on the induced anisotropy of the material. Only the largest pores (Haversian canals and resorption cavities), characteristic of the mesoscale, are considered. The input parameters of the model are derived from typical mesoscale experimental data (e.g. SAM data). We use the method of asymptotic homogenization to determine the local effective elastic properties by modelling the propagation of low-frequency elastic waves through an idealized material that models the local mesostructure. We use a novel solution of the cell problem developed by Parnell & Abrahams. This solution is stable for the physiological range of variation of mesoscopic porosity and elasticity found in bone. Results are computed efficiently (in seconds) and the solutions can be implemented easily by other workers. Parametric studies are performed in order to assess the influence of mesoscopic porosity, the assumptions regarding the material inside the mesoscale pores (drained or undrained bone) and the shape of pores. Results are shown to be in good qualitative agreement with existing schemes and we describe the potential of the scheme for future use in modelling more complex microstructures for cortical bone. In particular, the scheme is shown to be a useful tool with which to predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. PMID:18628200

  11. Weathering processes under various moisture conditions in a lignite mine spoil from As Pontes (N.W. Spain)

    International Nuclear Information System (INIS)

    Seoane, S.; Leiros, M.C.

    1997-01-01

    Processes contributing to acid release/consumption during weathering of a lignite mine spoil (2.3% w/w S as sulfides) from As Pontes (N.W. Spain) were studied under three moisture conditions (at field capacity or under alternate wetting-drying or forced percolation), which were simulated in laboratory experiments. Oxidation of sulfides to sulfates was favoured under all three moisture conditions, releasing most acid in spoil kept at field capacity. Hydroxysulfates formed in spoil kept at field capacity or under alternate wetting-drying conditions, thereby contributing to acid release. Acid consumption by dissolution of clay minerals, especially micas, was favoured under all three moisture conditions, but was particularly intense in spoil at field capacity. Dissolution of aluminium oxides was also favoured under all the moisture conditions studied. 27 refs., 8 figs., 6 tabs

  12. Advanced Corrections for InSAR Using GPS and Numerical Weather Models

    Science.gov (United States)

    Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.

    2017-12-01

    We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale

  13. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to

  14. Cold Weather and Cardiovascular Disease

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Cold Weather and Cardiovascular Disease Updated:Sep 16,2015 Th is winter ... and procedures related to heart disease and stroke. Cardiovascular ConditionsConditions Home • Arrhythmia and Atrial Fibrillation • Cardiac ...

  15. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    Science.gov (United States)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  16. Thermal performance evaluation of a massive brick wall under real weather conditions via the Conduction Transfer function method

    Directory of Open Access Journals (Sweden)

    Emilio Sassine

    2017-12-01

    Full Text Available The reliable estimation of buildings energy needs for cooling and heating is essential for any eventual thermal improvement of the envelope or the HVAC equipment. This paper presents an interesting method to evaluate the thermal performance of a massive wall by using the frequency-domain regression (FDR method to calculate CTF coefficients by means of the Fourier transform. The method is based on the EN ISO 13786 (2007 procedure by using the Taylor expansion for the elements of the heat matrix. Numerical results were validated through an experimental heating box with stochastic boundary conditions on one side of the wall representing real weather conditions and constant temperature profile on the other side representing the inside ambiance in real cases. Finally, a frequency analysis was performed in order to assess the validity and accuracy of the method used. The results show that development to the second order is sufficient to predict the thermal behavior of the studied massive wall in the range of frequencies encountered in the building applications (one hour time step. This method is useful for thermal transfer analysis in real weather conditions where the outside temperature is stochastic; it also allows the evaluation of the thermal performance of a wall through a frequency analysis.

  17. Mesoscale atmospheric modelling technology as a tool for the long-term meteorological dataset development

    Science.gov (United States)

    Platonov, Vladimir; Kislov, Alexander; Rivin, Gdaly; Varentsov, Mikhail; Rozinkina, Inna; Nikitin, Mikhail; Chumakov, Mikhail

    2017-04-01

    The detailed hydrodynamic modelling of meteorological parameters during the last 30 years (1985 - 2014) was performed for the Okhotsk Sea and the Sakhalin island regions. The regional non-hydrostatic atmospheric model COSMO-CLM used for this long-term simulation with 13.2, 6.6 and 2.2 km horizontal resolutions. The main objective of creation this dataset was the outlook of the investigation of statistical characteristics and the physical mechanisms of extreme weather events (primarily, wind speed extremes) on the small spatio-temporal scales. COSMO-CLM is the climate version of the well-known mesoscale COSMO model, including some modifications and extensions adapting to the long-term numerical experiments. The downscaling technique was realized and developed for the long-term simulations with three consequent nesting domains. ERA-Interim reanalysis ( 0.75 degrees resolution) used as global forcing data for the starting domain ( 13.2 km horizontal resolution), then these simulation data used as initial and boundary conditions for the next model runs over the domain with 6.6 km resolution, and similarly, for the next step to 2.2 km domain. Besides, the COSMO-CLM model configuration for 13.2 km run included the spectral nudging technique, i.e. an additional assimilation of reanalysis data not only at boundaries, but also inside the whole domain. Practically, this computational scheme realized on the SGI Altix 4700 supercomputer system in the Main Computer Center of Roshydromet and used 2,400 hours of CPU time total. According to modelling results, the verification of the obtained dataset was performed on the observation data. Estimations showed the mean error -0.5 0C, up to 2 - 3 0C RMSE in temperature, and overestimation in wind speed (RMSE is up to 2 m/s). Overall, analysis showed that the used downscaling technique with applying the COSMO-CLM model reproduced the meteorological conditions, spatial distribution, seasonal and synoptic variability of temperature and

  18. Poor weather conditions and flight operations: Implications for air ...

    African Journals Online (AJOL)

    This paper examined various weather hazards which include thunderstorm, fog, dust haze and line squall that affect flight operation such as flight delays, diversion and cancellation. The study revealed that fog accounted for 13.2% of flight cancellation at the airport and line squall similarly accounted for 10.1% of delays, ...

  19. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    Czech Academy of Sciences Publication Activity Database

    Eitzinger, Josef; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rötter, R.; Kersebaum, K. C.; Olesen, J. E.; Patil, R. H.; Saylan, L.; Çaldag, B.; Caylak, O.

    2013-01-01

    Roč. 151, č. 6 (2013), s. 813-835 ISSN 0021-8596 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : crop models * weather conditions * winter wheat * Austria Subject RIV: EH - Ecology, Behaviour Impact factor: 2.891, year: 2013

  20. The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)

    National Research Council Canada - National Science Library

    Hodur, Richard M; Hong, Xiaodong; Doyle, James D; Pullen, Julie; Cummings, James; Martin, Paul; Rennick, Mary Alice

    2002-01-01

    ... of the Couple Ocean/Atmosphere Mesoscale Prediction System (COAMPS). The goal of this modeling project is to gain predictive skill in simulating the ocean and atmosphere at high resolution on time-scales of hours to several days...

  1. Forecasting challenges during the severe weather outbreak in Central Europe on 25 June 2008

    Science.gov (United States)

    Púčik, Tomáš; Francová, Martina; Rýva, David; Kolář, Miroslav; Ronge, Lukáš

    2011-06-01

    On 25 June 2008, severe thunderstorms caused widespread damage and two fatalities in the Czech Republic. Significant features of the storms included numerous downbursts on a squall line that exhibited a bow echo reflectivity pattern, with sustained wind gusts over 32 m/s at several reporting stations. Moreover, a tornado and several downbursts of F2 intensity occurred within the convective system, collocated with the development of mesovortices within the larger scale bow echo. The extent of the event was sufficient to call it a derecho, as the windstorm had affected Eastern Germany, Southern Poland, Slovakia, Austria and Northern Hungary as well. Ahead of the squall line, several well-organized isolated cells occurred, exhibiting supercellular characteristics, both from a radar and visual perspective. These storms produced large hail and also isolated severe wind gusts. This paper deals mostly with the forecasting challenges that were experienced by the meteorologist on duty during the evolution of this convective scenario. The main challenge of the day was to identify the region that would be most affected by severe convection, especially as the numerical weather prediction failed to anticipate the extent and the progress of the derecho-producing mesoscale convective systems (MCSs). Convective storms developed in an environment conducive to severe thunderstorms, with strong wind shear confined mostly to the lower half of the troposphere. These developments also were strongly influenced by mesoscale factors, especially a mesolow centered over Austria and its trough stretching to Eastern Bohemia. The paper demonstrates how careful mesoscale analysis could prove useful in dealing with such convective situations. Remote-sensing methods are also shown to be useful in such situations, especially when they can offer sufficient lead time to issue a warning, which is not always the case.

  2. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    1999-08-01

    Full Text Available As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions · Meterology and atmospheric dynamics (mesoscale meterology

  3. Meso-scale effects of tropical deforestation in Amazonia: preparatory LBA modelling studies

    Directory of Open Access Journals (Sweden)

    A. J. Dolman

    Full Text Available As part of the preparation for the Large-Scale Biosphere Atmosphere Experiment in Amazonia, a meso-scale modelling study was executed to highlight deficiencies in the current understanding of land surface atmosphere interaction at local to sub-continental scales in the dry season. Meso-scale models were run in 1-D and 3-D mode for the area of Rondonia State, Brazil. The important conclusions are that without calibration it is difficult to model the energy partitioning of pasture; modelling that of forest is easier due to the absence of a strong moisture deficit signal. The simulation of the boundary layer above forest is good, above deforested areas (pasture poor. The models' underestimate of the temperature of the boundary layer is likely to be caused by the neglect of the radiative effects of aerosols caused by biomass burning, but other factors such as lack of sufficient entrainment in the model at the mixed layer top may also contribute. The Andes generate patterns of subsidence and gravity waves, the effects of which are felt far into the Rondonian area The results show that the picture presented by GCM modelling studies may need to be balanced by an increased understanding of what happens at the meso-scale. The results are used to identify key measurements for the LBA atmospheric meso-scale campaign needed to improve the model simulations. Similar modelling studies are proposed for the wet season in Rondonia, when convection plays a major role.

    Key words. Atmospheric composition and structure (aerosols and particles; biosphere-atmosphere interactions · Meterology and atmospheric dynamics (mesoscale meterology

  4. The Prevailing Weather and Traffic Conditions in the Evaluation of a Future ECA in the Mediterranean Sea. A view into the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    Marcella Castells i Sanabra

    2014-03-01

    Full Text Available Appendix III of MARPOL's Annex VI sets out the criteria and procedures for designating an emission control area (ECA.These criteria includes: a clear delineation of the proposed ECA; types of emissions proposed for control, land and sea areas at risk; emission quantification and impact assessment; prevailing weather conditions; data and quality on marine traffic; land based measures concurrent with the ECA adoption and the relative costs of reducing emissions from ships. This paper analyses the climate parameter together with traffic conditions: prevailing weather conditions as a parameter to be kept in mind for the adoption of a future ECA in the Mediterranean Sea. Preliminary results would show how marine emissions coming from existing traffic will impact the sea and land ecology in the Mediterranean area.

  5. Meso-scale modeling of irradiated concrete in test reactor

    International Nuclear Information System (INIS)

    Giorla, A.; Vaitová, M.; Le Pape, Y.; Štemberk, P.

    2015-01-01

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  6. Meso-scale modeling of irradiated concrete in test reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giorla, A. [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Vaitová, M. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic); Le Pape, Y., E-mail: lepapeym@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831 (United States); Štemberk, P. [Czech Technical University, Thakurova 7, 166 29 Praha 6 (Czech Republic)

    2015-12-15

    Highlights: • A meso-scale finite element model for irradiated concrete is developed. • Neutron radiation-induced volumetric expansion is a predominant degradation mode. • Confrontation with expansion and damage obtained from experiments is successful. • Effects of paste shrinkage, creep and ductility are discussed. - Abstract: A numerical model accounting for the effects of neutron irradiation on concrete at the mesoscale is detailed in this paper. Irradiation experiments in test reactor (Elleuch et al., 1972), i.e., in accelerated conditions, are simulated. Concrete is considered as a two-phase material made of elastic inclusions (aggregate) subjected to thermal and irradiation-induced swelling and embedded in a cementitious matrix subjected to shrinkage and thermal expansion. The role of the hardened cement paste in the post-peak regime (brittle-ductile transition with decreasing loading rate), and creep effects are investigated. Radiation-induced volumetric expansion (RIVE) of the aggregate cause the development and propagation of damage around the aggregate which further develops in bridging cracks across the hardened cement paste between the individual aggregate particles. The development of damage is aggravated when shrinkage occurs simultaneously with RIVE during the irradiation experiment. The post-irradiation expansion derived from the simulation is well correlated with the experimental data and, the obtained damage levels are fully consistent with previous estimations based on a micromechanical interpretation of the experimental post-irradiation elastic properties (Le Pape et al., 2015). The proposed modeling opens new perspectives for the interpretation of test reactor experiments in regards to the actual operation of light water reactors.

  7. Land surface sensitivity of mesoscale convective systems

    Science.gov (United States)

    Tournay, Robert C.

    Mesoscale convective systems (MCSs) are important contributors to the hydrologic cycle in many regions of the world as well as major sources of severe weather. MCSs continue to challenge forecasters and researchers alike, arising from difficulties in understanding system initiation, propagation, and demise. One distinct type of MCS is that formed from individual convective cells initiated primarily by daytime heating over high terrain. This work is aimed at improving our understanding of the land surface sensitivity of this class of MCS in the contiguous United States. First, a climatology of mesoscale convective systems originating in the Rocky Mountains and adjacent high plains from Wyoming southward to New Mexico is developed through a combination of objective and subjective methods. This class of MCS is most important, in terms of total warm season precipitation, in the 500 to 1300m elevations of the Great Plains (GP) to the east in eastern Colorado to central Nebraska and northwest Kansas. Examining MCSs by longevity, short lasting MCSs (15 hrs) reveals that longer lasting systems tend to form further south and have a longer track with a more southerly track. The environment into which the MCS is moving showed differences across commonly used variables in convection forecasting, with some variables showing more favorable conditions throughout (convective inhibition, 0-6 km shear and 250 hPa wind speed) ahead of longer lasting MCSs. Other variables, such as convective available potential energy, showed improving conditions through time for longer lasting MCSs. Some variables showed no difference across longevity of MCS (precipitable water and large-scale vertical motion). From subsets of this MCS climatology, three regions of origin were chosen based on the presence of ridgelines extending eastward from the Rocky Mountains known to be foci for convection initiation and subsequent MCS formation: Southern Wyoming (Cheyenne Ridge), Colorado (Palmer divide) and

  8. THE INFLUENCE OF WEATHER CONDITIONS OF EASTERN POLAND ON SWEET CORN YIELDS AND LENGTH OF GROWING SEASON

    Directory of Open Access Journals (Sweden)

    Robert Rosa

    2016-09-01

    Full Text Available The aim of the study was to determine the effect of weather components (air temperature, precipitation on the growth, yield and the length of the growing season of sweet corn cultivated in eastern Poland. The results come from a field experiment conducted in 2006–2011. Weather conditions in the successive years of the study significantly modified the yield of ears, weight and number of formatted ears, high of plants and the length of the growing season of sweet corn. Good yielding of sweet corn favoured years with moderate air temperatures in July and uniform distribution of precipitation during the growing season. The highest yield of ears was found in 2011, the lowest in the very difficult in terms of weather 2006. The shortest growing season was characterized corn grown in the years 2006 and 2010 with the high air temperatures in July and August, the longest in the years 2009 and 2011, in which the temperatures in the period June-August were the lowest of all the years of research. Irrespective of the year of study, cv ‘Sheba F1’ was formatted eras with higher weight than cv ‘Sweet Nugget F1’.

  9. Effects of weather conditions on emergency ambulance calls for acute coronary syndromes

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta; Dobozinskas, Paulius; Siurkaite, Viktorija

    2015-08-01

    The aim of this study was to evaluate the relationship between weather conditions and daily emergency ambulance calls for acute coronary syndromes (ACS). The study included data on 3631 patients who called the ambulance for chest pain and were admitted to the department of cardiology as patients with ACS. We investigated the effect of daily air temperature ( T), barometric pressure (BP), relative humidity, and wind speed (WS) to detect the risk areas for low and high daily volume (DV) of emergency calls. We used the classification and regression tree method as well as cluster analysis. The clusters were created by applying the k-means cluster algorithm using the standardized daily weather variables. The analysis was performed separately during cold (October-April) and warm (May-September) seasons. During the cold period, the greatest DV was observed on days of low T during the 3-day sequence, on cold and windy days, and on days of low BP and high WS during the 3-day sequence; low DV was associated with high BP and decreased WS on the previous day. During June-September, a lower DV was associated with low BP, windless days, and high BP and low WS during the 3-day sequence. During the warm period, the greatest DV was associated with increased BP and changing WS during the 3-day sequence. These results suggest that daily T, BP, and WS on the day of the ambulance call and on the two previous days may be prognostic variables for the risk of ACS.

  10. Using SST and land cover data from EO Missions for improved mesoscale modelling of the coastal zone

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Floors, Rogier Ralph; Lea, Guillaume

    was to evaluate the uncertainty of the modelled wind in the coastal zone and further improve it. Moreover LIDAR measurements were used to evaluate the wind speed retrieval from high resolution SAR systems (Sentinel-1 and TerraSAR-X). The WRF model used a high-resolution satellite SST reanalysis product from...... be implemented in the meso-scale model to better represent the actual conditions in the study area. Such improvements are expected to strengthen the model’s ability to represent land- sea and air-sea interactions, the atmospheric stability and the local topographic features that partly affect the coastal zone......Existing wind measurements in near-shore and offshore areas are sparse and scarce, therefore simulations from state-of-the-art meso-scale models are used for wind resource predictions. In coastal and near-shore areas, models are inaccurate and uncertain, mainly because of numerical approximations...

  11. Recipes for correcting the impact of effective mesoscale resolution on the estimation of extreme winds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Ott, Søren; Badger, Jake

    2012-01-01

    Extreme winds derived from simulations using mesoscale models are underestimated due to the effective spatial and temporal resolutions. This is reflected in the spectral domain as an energy deficit in the mesoscale range. The energy deficit implies smaller spectral moments and thus underestimatio...

  12. Onset of meso-scale turbulence in active nematics

    NARCIS (Netherlands)

    Doostmohammadi, A.; Shendruk, T.N.; Thijssen, K.; Yeomans, J.M.

    2017-01-01

    Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that spontaneously occurs at low Reynolds number in fluidized biological systems. This spatiotemporal disordered flow radically changes nutrient and molecular transport in living fluids and can strongly affect the

  13. Mesoscale cyclogenesis over the western north Pacific Ocean during TPARC

    Directory of Open Access Journals (Sweden)

    Christopher A. Davis

    2013-01-01

    Full Text Available Three cases of mesoscale marine cyclogenesis over the subtropics of the Western Pacific Ocean are investigated. Each case occurred during the THORPEX Pacific Asia Regional Campaign and Tropical Cyclone Structure (TCS-08 field phases in 2008. Each cyclone developed from remnants of disturbances that earlier showed potential for tropical cyclogenesis within the tropics. Two of the cyclones produced gale-force surface winds, and one, designated as a tropical cyclone, resulted in a significant coastal storm over eastern Japan. Development was initiated by a burst of organized mesoscale convection that consolidated and intensified the surface cyclonic circulation over a period of 12–24 h. Upper-tropospheric potential vorticity anomalies modulated the vertical wind shear that, in turn, influenced the periods of cyclone intensification and weakening. Weak baroclinicity associated with vertical shear was also deemed important in organizing mesoscale ascent and the convection outbreaks. The remnant tropical disturbances contributed exceptional water vapour content to higher latitudes that led to strong diabatic heating, and the tropical remnants contributed vorticity that was the seed of the development in the subtropics. Predictability of these events more than three days in advance appears to be minimal.

  14. Effects of intraday weather changes on asset returns and volatilities

    Directory of Open Access Journals (Sweden)

    Hyein Shim

    2017-12-01

    Full Text Available Analyzing the intraday dataset on weather and market information with the use of the extended GJR-GARCH framework, this study explores in depth the weather effects on the asset returns and volatilities of the Korean stock and derivatives markets. Our intraday analyses contribute to the existing literature by going beyond the attempt of prior studies to capture the weather effects using the average daily observations alone. The empirical results document a modest presence of the weather effect on the returns and volatilities, though the significance of its impact is found to vary across different market conditions and indices. We also find that the return and volatility respond asymmetrically to extremely good and bad weather conditions. The intraday analyses show that the weather effect on the returns and volatilities is more statistically significant at the beginning of the working day or the lunch break, indicating the intraday weather effects on the financial market.

  15. Identification of Mesoscale Convective Complex (MCC) phenomenon with image of Himawari 8 Satellite and WRF ARW Model on Bangka Island (Case Study: 7-8 February 2016)

    Science.gov (United States)

    Rinaldy, Nanda; Saragih, Immanuel J. A.; Wandala Putra, Agie; Redha Nugraheni, Imma; Wijaya Yonas, Banu

    2017-12-01

    Based on monitoring on 7th and 8th February 2016 there has been a flood that occurred due to heavy rainfall in a long time in some areas of Bangka Island. Mesoscale Convective Complex (MCC) is one type of Mesoscale Convective System (MCS). Previous research on MCC mentions that MCC can cause heavy rain for a long time. This study aims to identify the phenomenon of MCC in Bangka Island both in the satellite imagery and the output of the model. In addition, this study was also conducted to determine the effect of MCC on the weather conditions in Bangka Island. The study area in this research is Bangka Island with Pangkalpinang Meteorological Station as the centre of research. The data used in this research are FNL (Final Analysis) data from http://rda.ucar.edu/, Satellite Image of Himawari-8 IR1 Channel from BMKG, and meteorological observation data (synoptic and radiosonde) from Pangkalpinang Meteorological Station. The FNL data is simulated using the WRF-ARW model, verified using observation data and then visualized using GrADS. The results of the analysis of Himawari-8 satellite image data showed that two MCCs occurred on 7th and 8th February 2016 on Bangka Island and the MCC was nocturnal, which appeared at night which then continued until extinction in the morning the next day. In a peak cloud temperature review with the coordinates of Pangkalpinang Meteorological Station (-2,163 N 106,137 E) when 1st MCC and 2nd MCC events ranged from -60°C to -80°C. The result of WRF-ARW model output analysis shows that MCC area has high humidity value and positive vertical velocity value which indicates the potential of heavy rain for a long time.

  16. THE APPLICABILITY OF EXISTING COMPUTER TECHNOLOGY TO AUTOMATE FUZZY SYNTHESIS OF TRAFFIC LIGHT UAV IN ADVERSE WEATHER CONDITIONS

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2014-01-01

    Full Text Available The results of the analysis of the applicability of known application software systems for automated synthesis of fuzzy control traffic light UAV during its flight in adverse weather conditions. The solution is based on a previously formulated and put into consideration the principle of permissible limited a priori estimation of the uncertainty of aerodynamic characteristics of UAVs.

  17. Weather derivatives: Business hedge instrument from weather risks

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan S.

    2014-01-01

    Full Text Available In the late 1990s, a new financial market was developed - a market for weather derivatives, so that the risk managers could hedge their exposure to weather risk. After a rather slow start, the weather derivatives market had started to grow rapidly. Risk managers could no longer blame poor financial results on the weather. Weather risk could now be removed by hedging procedure. This paper will explain briefly what the weather derivatives are and will point out at some of the motives for use of derivatives. Thereafter we will look at the history of the weather risk market, how the weather derivatives market has developed in recent years and also who are the current and potential players in the weather derivatives market.

  18. Three-dimensional Mesoscale Simulations of Detonation Initiation in Energetic Materials with Density-based Kinetics

    Science.gov (United States)

    Jackson, Thomas; Jost, A. M.; Zhang, Ju; Sridharan, P.; Amadio, G.

    2017-06-01

    In this work we present three-dimensional mesoscale simulations of detonation initiation in energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The reaction rate at the mesoscale is modelled using a density-based kinetics scheme, adapted from standard Ignition and Growth models. The deposition term is based on previous results of simulations of pore collapse at the microscale, modelled at the mesoscale as hot-spots. We carry out three-dimensional mesoscale simulations of random packs of HMX crystals in a binder, and show that the transition between no-detonation and detonation depends on the number density of the hot-spots, the initial radius of the hot-spot, the post-shock pressure of an imposed shock, and the amplitude of the power deposition term. The trends of transition at lower pressure of the imposed shock for larger number density of pore observed in experiments is reproduced. Initial attempts to improve the agreement between the simulation and experiments through calibration of various parameters will also be made.

  19. The effect of stability on the coastal gradients at the Anholt wind farm

    DEFF Research Database (Denmark)

    Volker, Patrick; Hasager, Charlotte Bay; Badger, Merete

    We use Synthetic Aperture Radar (SAR) and SCADA measurements and mesoscale model simulations from the Weather Research and Forecast (WRF) model[3] to analyse the flow conditions at the Danish offshore wind farm at Anholt. The first Danish oshore wind farms have been installed in the North Sea of ...

  20. Prevalence of weather sensitivity in Germany and Canada

    Science.gov (United States)

    Mackensen, Sylvia; Hoeppe, Peter; Maarouf, Abdel; Tourigny, Pierre; Nowak, Dennis

    2005-01-01

    Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health “to a strong degree,” 35.3% that weather had “some influence on their health” (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32

  1. Intense mesoscale variability in the Sardinia Sea

    Science.gov (United States)

    Russo, Aniello; Borrione, Ines; Falchetti, Silvia; Knoll, Michaela; Fiekas, Heinz-Volker; Heywood, Karen; Oddo, Paolo; Onken, Reiner

    2015-04-01

    From the 6 to 25 June 2014, the REP14-MED sea trial was conducted by CMRE, supported by 20 partners from six different nations. The at-sea activities were carried out onboard the research vessels Alliance (NATO) and Planet (German Ministry of Defense), comprising a marine area of about 110 x 110 km2 to the west of the Sardinian coast. More than 300 CTD casts typically spaced at 10 km were collected; both ships continuously recorded vertical profiles of currents by means of their ADCPs, and a ScanFish® and a CTD chain were towed for almost three days by Alliance and Planet, respectively, following parallel routes. Twelve gliders from different manufacturers (Slocum, SeaGliderTM and SeaExplorer) were continuously sampling the study area following zonal tracks spaced at 10 km. In addition, six moorings, 17 surface drifters and one ARVOR float were deployed. From a first analysis of the observations, several mesoscale features were identified in the survey area, in particular: (i) a warm-core anticyclonic eddy in the southern part of the domain, about 50 km in diameter and with the strongest signal at about 50-m depth (ii) another warm-core anticyclonic eddy of comparable dimensions in the central part of the domain, but extending to greater depth than the former one, and (iii) a small (less than 15 km in diameter) cold-core cyclonic eddy of Winter Intermediate Water in the depth range between 170 m and 370 m. All three eddies showed intensified currents, up to 50 cm s-1. The huge high-resolution observational data set and the variety of observation techniques enabled the mesoscale features and their variability to be tracked for almost three weeks. In order to obtain a deeper understanding of the mesoscale dynamic behaviour and their interactions, assimilation studies with an ocean circulation model are underway.

  2. Comparison of Four Mixed Layer Mesoscale Parameterizations and the Equation for an Arbitrary Tracer

    Science.gov (United States)

    Canuto, V. M.; Dubovikov, M. S.

    2011-01-01

    In this paper we discuss two issues, the inter-comparison of four mixed layer mesoscale parameterizations and the search for the eddy induced velocity for an arbitrary tracer. It must be stressed that our analysis is limited to mixed layer mesoscales since we do not treat sub-mesoscales and small turbulent mixing. As for the first item, since three of the four parameterizations are expressed in terms of a stream function and a residual flux of the RMT formalism (residual mean theory), while the fourth is expressed in terms of vertical and horizontal fluxes, we needed a formalism to connect the two formulations. The standard RMT representation developed for the deep ocean cannot be extended to the mixed layer since its stream function does not vanish at the ocean's surface. We develop a new RMT representation that satisfies the surface boundary condition. As for the general form of the eddy induced velocity for an arbitrary tracer, thus far, it has been assumed that there is only the one that originates from the curl of the stream function. This is because it was assumed that the tracer residual flux is purely diffusive. On the other hand, we show that in the case of an arbitrary tracer, the residual flux has also a skew component that gives rise to an additional bolus velocity. Therefore, instead of only one bolus velocity, there are now two, one coming from the curl of the stream function and other from the skew part of the residual flux. In the buoyancy case, only one bolus velocity contributes to the mean buoyancy equation since the residual flux is indeed only diffusive.

  3. Data assimilation of a ten-day period during June 1993 over the Southern Great Plains Site using a nested mesoscale model

    Energy Technology Data Exchange (ETDEWEB)

    Dudhia, J.; Guo, Y.R. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    A goal of the Atmospheric Radiation Measurement (ARM) Program has been to obtain a complete representation of physical processes on the scale of a general circulation model (GCM) grid box in order to better parameterize radiative processes in these models. Since an observational network of practical size cannot be used alone to characterize the Cloud and Radiation Testbed (CART) site`s 3D structure and time development, data assimilation using the enhanced observations together with a mesoscale model is used to give a full 4D analysis at high resolution. The National Center for Atmospheric Research (NCAR)/Penn State Mesoscale Model (MM5) has been applied over a ten-day continuous period in a triple-nested mode with grid sizes of 60, 20 and 6.67 in. The outer domain covers the United States` 48 contiguous states; the innermost is a 480-km square centered on Lamont, Oklahoma. A simulation has been run with data assimilation using the Mesoscale Analysis and Prediction System (MAPS) 60-km analyses from the Forecast Systems Laboratory (FSL) of the National Ocean and Atmospheric Administration (NOAA). The nested domains take boundary conditions from and feed back continually to their parent meshes (i.e., they are two-way interactive). As reported last year, this provided a simulation of the basic features of mesoscale events over the CART site during the period 16-26 June 1993 when an Intensive Observation Period (IOP) was under way.

  4. Sensitivity analysis of numerical weather prediction radiative schemes to forecast direct solar radiation over Australia

    Science.gov (United States)

    Mukkavilli, S. K.; Kay, M. J.; Taylor, R.; Prasad, A. A.; Troccoli, A.

    2014-12-01

    The Australian Solar Energy Forecasting System (ASEFS) project requires forecasting timeframes which range from nowcasting to long-term forecasts (minutes to two years). As concentrating solar power (CSP) plant operators are one of the key stakeholders in the national energy market, research and development enhancements for direct normal irradiance (DNI) forecasts is a major subtask. This project involves comparing different radiative scheme codes to improve day ahead DNI forecasts on the national supercomputing infrastructure running mesoscale simulations on NOAA's Weather Research & Forecast (WRF) model. ASEFS also requires aerosol data fusion for improving accurate representation of spatio-temporally variable atmospheric aerosols to reduce DNI bias error in clear sky conditions over southern Queensland & New South Wales where solar power is vulnerable to uncertainities from frequent aerosol radiative events such as bush fires and desert dust. Initial results from thirteen years of Bureau of Meteorology's (BOM) deseasonalised DNI and MODIS NASA-Terra aerosol optical depth (AOD) anomalies demonstrated strong negative correlations in north and southeast Australia along with strong variability in AOD (~0.03-0.05). Radiative transfer schemes, DNI and AOD anomaly correlations will be discussed for the population and transmission grid centric regions where current and planned CSP plants dispatch electricity to capture peak prices in the market. Aerosol and solar irradiance datasets include satellite and ground based assimilations from the national BOM, regional aerosol researchers and agencies. The presentation will provide an overview of this ASEFS project task on WRF and results to date. The overall goal of this ASEFS subtask is to develop a hybrid numerical weather prediction (NWP) and statistical/machine learning multi-model ensemble strategy that meets future operational requirements of CSP plant operators.

  5. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Science.gov (United States)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  6. Winter Weather: Indoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  7. Winter Weather: Outdoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  8. Effect of mixed vs single brine composition on salt weathering in porous carbonate building stones for different environmental conditions

    Czech Academy of Sciences Publication Activity Database

    Menéndez, B.; Petráňová, Veronika

    2016-01-01

    Roč. 210, August (2016), s. 124-139 ISSN 0013-7952 R&D Projects: GA MŠk(CZ) LO1219 Keywords : salt weathering * limestone * environmental conditions * sodium chloride * sodium sulphate * calcium sulphate * salt mixture Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.569, year: 2016 http://www.sciencedirect.com/science/article/pii/S0013795216301879

  9. Mesoscale modeling: solving complex flows in biology and biotechnology.

    Science.gov (United States)

    Mills, Zachary Grant; Mao, Wenbin; Alexeev, Alexander

    2013-07-01

    Fluids are involved in practically all physiological activities of living organisms. However, biological and biorelated flows are hard to analyze due to the inherent combination of interdependent effects and processes that occur on a multitude of spatial and temporal scales. Recent advances in mesoscale simulations enable researchers to tackle problems that are central for the understanding of such flows. Furthermore, computational modeling effectively facilitates the development of novel therapeutic approaches. Among other methods, dissipative particle dynamics and the lattice Boltzmann method have become increasingly popular during recent years due to their ability to solve a large variety of problems. In this review, we discuss recent applications of these mesoscale methods to several fluid-related problems in medicine, bioengineering, and biotechnology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Weather and children's physical activity; how and why do relationships vary between countries?

    Science.gov (United States)

    Harrison, Flo; Goodman, Anna; van Sluijs, Esther M F; Andersen, Lars Bo; Cardon, Greet; Davey, Rachel; Janz, Kathleen F; Kriemler, Susi; Molloy, Lynn; Page, Angie S; Pate, Russ; Puder, Jardena J; Sardinha, Luis B; Timperio, Anna; Wedderkopp, Niels; Jones, Andy P

    2017-05-30

    Globally most children do not engage in enough physical activity. Day length and weather conditions have been identified as determinants of physical activity, although how they may be overcome as barriers is not clear. We aim to examine if and how relationships between children's physical activity and weather and day length vary between countries and identify settings in which children were better able to maintain activity levels given the weather conditions they experienced. In this repeated measures study, we used data from 23,451 participants in the International Children's Accelerometry Database (ICAD). Daily accelerometer-measured physical activity (counts per minute; cpm) was matched to local weather conditions and the relationships assessed using multilevel regression models. Multilevel models accounted for clustering of days within occasions within children within study-cities, and allowed us to explore if and how the relationships between weather variables and physical activity differ by setting. Increased precipitation and wind speed were associated with decreased cpm while better visibility and more hours of daylight were associated with increased cpm. Models indicated that increases in these variables resulted in average changes in mean cpm of 7.6/h of day length, -13.2/cm precipitation, 10.3/10 km visibility and -10.3/10kph wind speed (all p European countries and Melbourne, Australia were the most active, and also better maintained their activity levels given the weather conditions they experienced compared to those in the US and Western Europe. We found variation in the relationship between weather conditions and physical activity between ICAD studies and settings. Children in Northern Europe and Melbourne, Australia were not only more active on average, but also more active given the weather conditions they experienced. Future work should consider strategies to mitigate the impacts of weather conditions, especially among young children, and

  11. Chromium isotope fractionation during oxidative weathering of a modern basaltic weathering profile

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Døssing, Lasse Nørbye; Frei, Robert

    Chromium can be used as a tracer of redox sensitive environmental processes. In soils Cr (III) is inert, immobile and resides predominantly in minerals, clays and oxides. Cr (VI) is toxic, soluble and mobile and is usually lost from the soil to local run off. Chromium isotopes have been shown...... to fractionate under both reducing and oxidizing conditions [1, 2]. Recent studies on d53Cr isotopes in laterite soils show that oxidative weathering of Cr-bearing rocks is accompanied by an isotopic fractionation, where by the lighter isotopes are retained in the residual soil and the heavier isotope...... is enriched in local runoff [1]. This study aims to quantify the stable Cr isotope composition of two modern basaltic weathering profiles, to help better understand the processes that oxidize inert Cr (III) to toxic Cr (VI). We sampled basaltic weathering profiles and associated river waters from areas of two...

  12. Lost mold-rapid infiltration forming: Strength control in mesoscale 3Y-TZP ceramics

    Science.gov (United States)

    Antolino, Nicholas E.

    by a substrate. Numerous challenges were overcome that relate to the application of photoresist on a refractory substrate capable of withstanding the high temperatures needed to sinter the ceramic parts. Strength of approximately 1 GPa was achieved for the first parts produced, which demonstrated the feasibility of the LM-RIF process. Although respectable, a 1GPa strength is not as strong as would be predicted based on the small size (332 x 26 x 17 microm) of the parts. An effort to identify and eliminate the largest flaws in the specimen produced by the LM-RIF process was undertaken, which ultimately increased the average strength to 2.35 GPa. Geometric defects, previously unreported in ceramic microfabrication techniques, were degrading the strength of the early parts. An in-depth characterization of these defects by optical profilometry and then eliminating the underlying cause was the key to obtaining this high strength. One interesting phenomena discovered in this work was the role that the substrate plays in the sintering of the ceramic part through the enhanced diffusion pathways created by the more intimate contact of the mesoscale parts compared to macroscale analogs. Impurities of alumina and silica were found to adversely affect the sintering kinetics of mesoscale parts causing localized grain growth or exaggerated grain growth depending on the sintering conditions. The role that the microstructure, specifically the grain size, plays in determining the strength versus the role that the surface flaw population plays, as characterized by the surface roughness, was determined through isothermal sintering experiments. It was found that the strength of mesoscale ceramics lies in the transition region between the flaw-dominated stress intensity effect and the Hall-Petch microstructural effect. This proves that processing science and microstructural refinement about equally determine the strength of particulate based mesoscale materials. The hierarchical approach

  13. Study of local winds over Tehran using WRF in ideal conditions

    Directory of Open Access Journals (Sweden)

    I Soltanzadeh

    2011-09-01

    Full Text Available   Wind is the carrier of pollutants and any other gaseous or particle matters in the atmosphere. Stable atmosphere with low wind provides favourable conditions for high contamination of pollutants in urban areas. The importance of mesoscale atmospheric flows in air pollution dispersion has been recognized in the past three decades and has been the focus of intensive research; both observational and numerical. Mesoscale or local scale circulations are more prominent when the synoptic pressure gradients are weak, allowing horizontal temperature contrasts to develop, which in turn lead to mesoscale pressure perturbations. Tehran, a city which is situated at the southern foothills of the Alborz Mountain chain has an average elevation of 1500m, and covers an area of 864 km2. Alborz Mountains have a significant influence on the dynamics and thermodynamic modification of wind regime over the city. At the same time, the Urban Heat Island effect (UHI can cause its own mesoscale flow, complicating an already complex local scale flow. The topography and the urban fabric can cause slope flows, mountain flows, and valley flows amongst many other factors. Th is paper focuses on the use of state-of-the-art atmospheric numerical model – The Weather Research and Forecasting (WRF – in an ideal situation to study the characteristics of the mesoscale flow systems that prevail over Tehran when air quality is unfavourable. So average sound of Radiosonde at Mehrabad station, for almost all the fair days of cold seasons from 2005 to 2008 was selected as an ideal initial condition and boundary condition with 10 × 10 km spatial and 12-hour temporal resolution. The simulations were carried out for a 3-day period in December 2005 when an aircraft , due to low visibility caused by high concentration of air pollution, crashed 2 miles away from the end of runway into an inhabited area. Three simulations were prepared. For the first experiment, called control run, we

  14. Assessment of MARMOT. A Mesoscale Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, M. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, X. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fromm, B. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Yu, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Teague, M. C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear Energy Advanced Modeling and Simulation Program. In this report, we provide a high level summary of MARMOT, its capabilities, and its current state of validation. The purpose of MARMOT is to predict the coevolution of microstructure and material properties of nuclear fuel and cladding. It accomplished this using the phase field method coupled to solid mechanics and heat conduction. MARMOT is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE), and much of its basic capability in the areas of the phase field method, mechanics, and heat conduction come directly from MOOSE modules. However, additional capability specific to fuel and cladding is available in MARMOT. While some validation of MARMOT has been completed in the areas of fission gas behavior and grain growth, much more validation needs to be conducted. However, new mesoscale data needs to be obtained in order to complete this validation.

  15. Utilization of Live Localized Weather Information for Sustainable Agriculture

    Science.gov (United States)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a

  16. Insight into American tourists’ experiences with weather in South Africa

    Directory of Open Access Journals (Sweden)

    Giddy Julia K.

    2017-12-01

    Full Text Available Weather and climate are often important factors determining the success of a tourism destination and resultant satisfaction among tourists. This is particularly true for South Africa due the predominance of outdoor tourist attractions. Increasing numbers of international tourists have visited South Africa since the fall of apartheid, particularly those from the United States (U.S., which is an important market for South African tourism. Therefore, this paper seeks to examine a sample of American tourists’ experience with day-to-day weather and climatic conditions in South Africa. The results show that although respondents did not feel that climatic conditions were an important factor in motivations to visit the country, the day-to-day weather did often impact the enjoyment of their visit. Most notably, weather controlled their ability to participate in outdoor activities. In correlating accounts of unpleasant weather conditions with the meteorological records, a close association emerged, particularly for excessively high temperatures. This indicates that the experiences of American tourists are an accurate indication of climatic unsuitability for tourism, which poses threats to the South African outdoor tourism sector.

  17. Evaluation of high-resolution forecasts with the non-hydrostaticnumerical weather prediction model Lokalmodell for urban air pollutionepisodes in Helsinki, Oslo and Valencia

    Directory of Open Access Journals (Sweden)

    B. Fay

    2006-01-01

    Full Text Available The operational numerical weather prediction model Lokalmodell LM with 7,km horizontal resolution was evaluated for forecasting meteorological conditions during observed urban air pollution episodes. The resolution was increased to experimental 2.8 km and 1.1 km resolution by one-way interactive nesting without introducing urbanisation of physiographic parameters or parameterisations. The episodes examined are two severe winter inversion-induced episodes in Helsinki in December 1995 and Oslo in January 2003, three suspended dust episodes in spring and autumn in Helsinki and Oslo, and a late-summer photochemical episode in the Valencia area. The evaluation was basically performed against observations and radiosoundings and focused on the LM skill at forecasting the key meteorological parameters characteristic for the specific episodes. These included temperature inversions, atmospheric stability and low wind speeds for the Scandinavian episodes and the development of mesoscale recirculations in the Valencia area. LM forecasts often improved due to higher model resolution especially in mountainous areas like Oslo and Valencia where features depending on topography like temperature, wind fields and mesoscale valley circulations were better described. At coastal stations especially in Helsinki, forecast gains were due to the improved physiographic parameters (land fraction, soil type, or roughness length. The Helsinki and Oslo winter inversions with extreme nocturnal inversion strengths of 18°C were not sufficiently predicted with all LM resolutions. In Helsinki, overprediction of surface temperatures and low-level wind speeds basically led to underpredicted inversion strength. In the Oslo episode, the situation was more complex involving erroneous temperature advection and mountain-induced effects for the higher resolutions. Possible explanations include the influence of the LM treatment of snow cover, sea ice and stability-dependence of transfer

  18. Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications

    Science.gov (United States)

    Dreher, Joseph G.

    2009-01-01

    For expedience in delivering dispersion guidance in the diversity of operational situations, National Weather Service Melbourne (MLB) and Spaceflight Meteorology Group (SMG) are becoming increasingly reliant on the PC-based version of the HYSPLIT model run through a graphical user interface (GUI). While the GUI offers unique advantages when compared to traditional methods, it is difficult for forecasters to run and manage in an operational environment. To alleviate the difficulty in providing scheduled real-time trajectory and concentration guidance, the Applied Meteorology Unit (AMU) configured a Linux version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (HYSPLIT) model that ingests the National Centers for Environmental Prediction (NCEP) guidance, such as the North American Mesoscale (NAM) and the Rapid Update Cycle (RUC) models. The AMU configured the HYSPLIT system to automatically download the NCEP model products, convert the meteorological grids into HYSPLIT binary format, run the model from several pre-selected latitude/longitude sites, and post-process the data to create output graphics. In addition, the AMU configured several software programs to convert local Weather Research and Forecast (WRF) model output into HYSPLIT format.

  19. Mesoscale simulations of shockwave energy dissipation via chemical reactions.

    Science.gov (United States)

    Antillon, Edwin; Strachan, Alejandro

    2015-02-28

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock.

  20. Skywatch: The Western Weather Guide.

    Science.gov (United States)

    Keen, Richard A.

    The western United States is a region of mountains and valleys with the world's largest ocean next door. Its weather is unique. This book discusses how water, wind, and environmental conditions combine to create the climatic conditions of the region. Included are sections describing: fronts; cyclones; precipitation; storms; tornadoes; hurricanes;…

  1. Numerical Modeling of the Severe Cold Weather Event over Central Europe (January 2006

    Directory of Open Access Journals (Sweden)

    D. Hari Prasad

    2010-01-01

    Full Text Available Cold waves commonly occur in higher latitudes under prevailing high pressure systems especially during winter season which cause serious economical loss and cold related death. Accurate prediction of such severe weather events is important for decision making by administrators and for mitigation planning. An Advanced high resolution Weather Research and Forecasting mesoscale model is used to simulate a severe cold wave event occurred during January 2006 over Europe. The model is integrated for 31 days starting from 00UTC of 1 January 2006 with 30 km horizontal resolution. Comparison of the model derived area averaged daily mean temperatures at 2m height from different zones over the central Europe with observations indicates that the model is able to simulate the occurrence of the cold wave with the observed time lag of 1 to 3days but with lesser intensity. The temperature, winds, surface pressure and the geopential heights at 500 hPa reveal that the cold wave development associates with the southward progression of a high pressure system and cold air advection. The results have good agreement with the analysis fields indicates that the model has the ability to reproduce the time evolution of the cold wave event.

  2. CAUSALITY OF WEATHER CONDITIONS IN AUSTRALIAN STOCK EQUITY RETURNS

    OpenAIRE

    Svetlana Vlady; Ekrem Tufan; Bahattin Hamarat

    2011-01-01

    This study investigates causality of weather and its impact on the The S&P/ASX All Australian 200 Index has been selected as a proxy for the Australian capital market. The index consists exclusively of Australian domiciled companies. Following previous research in behaviour finance in the area of environmental psychology, the data set covers temperature, quality temperature, wet bulb temperature, quality wet bulb temperature, humidity, pressure and vapour pressure variables. The data set is a...

  3. A Distributed Hydrological model Forced by DIMP2 Data and the WRF Mesoscale model

    Science.gov (United States)

    Wayand, N. E.

    2010-12-01

    Forecasted warming over the next century will drastically reduce seasonal snowpack that provides 40% of the world’s drinking water. With increased climate warming, droughts may occur more frequently, which will increase society’s reliance on this same summer snowpack as a water supply. This study aims to reduce driving data errors that lead to poor simulations of snow ablation and accumulation, and streamflow. Results from the Distributed Hydrological Model Intercomparison Project Phase 2 (DMIP2) project using the Distributed Hydrology Soil and Vegetation Model (DHSVM) highlighted the critical need for accurate driving data that distributed models require. Currently, the meteorological driving data for distributed hydrological models commonly rely on interpolation techniques between a network of observational stations, as well as historical monthly means. This method is limited by two significant issues: snowpack is stored at high elevations, where interpolation techniques perform poorly due to sparse observations, and historic climatological means may be unsuitable in a changing climate. Mesoscale models may provide a physically-based approach to supplement surface observations over high-elevation terrain. Initial results have shown that while temperature lapse rates are well represented by multiple mesoscale models, significant precipitation biases are dependent on the particular model microphysics. We evaluate multiple methods of downscaling surface variables from the Weather and Research Forecasting (WRF) model that are then used to drive DHSVM over the North Fork American River basin in California. A comparison between each downscaled driving data set and paired DHSVM results to observations will determine how much improvement in simulated streamflow and snowpack are gained at the expense of each additional degree of downscaling. Our results from DMIP2 will be used as a benchmark for the best available DHSVM run using all available observational data. The

  4. Field comparison of solar water disinfection (SODIS) efficacy between glass and polyethylene terephalate (PET) plastic bottles under sub-Saharan weather conditions.

    Science.gov (United States)

    Asiimwe, J K; Quilty, B; Muyanja, C K; McGuigan, K G

    2013-12-01

    Concerns about photodegradation products leaching from plastic bottle material into water during solar water disinfection (SODIS) are a major psychological barrier to increased uptake of SODIS. In this study, a comparison of SODIS efficacy using glass and plastic polyethylene terephalate (PET) bottles was carried out under strong real sunlight and overcast weather conditions at Makerere University in central Uganda. Both clear and turbid natural water samples from shallow wells and open dug wells, respectively, were used. Efficacy was determined from the inactivation of a wild strain of Escherichia coli in solar-exposed contaminated water in both glass and PET bottles. The studies reveal no significant difference in SODIS inactivation between glass and PET bottles (95% CI, p > 0.05), for all water samples under the different weather conditions except for clear water under overcast conditions where there was a small but significant difference (95% CI, p = 0.047) with less viable bacterial counts in PET bottles at two intermediate time points but not at the end of the exposure. The results demonstrate that SODIS efficacy in glass under tropical field conditions is comparable to PET plastic. SODIS users in these regions can choose either of reactors depending on availability and preference of the user.

  5. The South China Sea Mesoscale Eddy Experiment (S-MEE) and Its Primary Findings

    Science.gov (United States)

    Zhang, Z.; Tian, J.; Zhao, W.; Qiu, B.

    2016-02-01

    South China Sea (SCS), the largest marginal sea in the northwestern Pacific, have strong eddy activities as revealed by both satellite and in situ observations. The 3D structures of the SCS mesoscale eddies and their lifecycles, including the generation and dissipation processes, are, however, still not well understood at present because of the lack of well-designed field observations. In order to address the above two scientific issues (3D structure and lifecycle of SCS mesoscale eddies), the SCS Mesoscale Eddy Experiment (S-MEE for short) was designed and conducted in the period from October 2013 to June 2014. As part of S-MEE, two bottom-anchored subsurface mooring arrays with one consisting of 10 moorings and the other 7 moorings, were deployed along the historical pathway of the mesoscale eddies in the northern SCS. All the moorings were equipped with ADCPs, RCMs, CTDs and temperature chains to make continues measurements of horizontal current velocity and temperature/salinity in the whole water column. During the S-MEE, a total of 5 distinct mesoscale eddies were observed to cross the mooring arrays, among which one anticyclonic and cyclonic eddy pair was fully captured by the mooring arrays. In addition to moored observations, we also conducted two transects across the center of the anticyclonic eddy and made high-resolution hydrographic and turbulent mixing measurements. Based on the data collected by the S-MEE and concurrent satellite-derived observations, we constructed the full-depth 3D structure of the eddy pair and analyzed its generation and dissipation mechanisms. We found that the eddies extend from the surface to the sea bottom and display prominent tilted structures in the vertical. By conducting an eddy energy budget analysis, we further identified that generation of submesoscale motions constitutes the dominant mechanism for the oceanic eddy dissipation.

  6. Predicting Space Weather: Challenges for Research and Operations

    Science.gov (United States)

    Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.

    2013-12-01

    Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.

  7. Capability of LOFT vital batteries to supply emergency power demands during severe cold weather conditions

    International Nuclear Information System (INIS)

    Yeates, J.A.

    1978-01-01

    This study evaluates the capability of the vital batteries (PPS) to provide electrical power via the vital DC-AC motor generator sets to the LOFT PPS loads during severe cold weather conditions. It is concluded that these batteries while at a temperature of 5 0 F will supply the necessary PPS electrical loads for a time in excess of the one hour permitted to start the diesel generators and are, therefore, adequate at this temperature. This Revision B of the LTR includes revised, more recent, and complete technical data relating to MG set efficiency, battery operating procedures and cold temperature derating. Revision B supersedes and replaces all previous issues

  8. The diffusion of radioactive gases in the meso-scale (20 km-400 km)

    International Nuclear Information System (INIS)

    Wippermann, F.

    1974-01-01

    The term ''Mesoscale'' refers to distances between 20 km and 400 km from the source; in defining this range, the structure of atmospheric turbulence is taken into account. To arrive at an evaluation of diffusion in the mesoscale, quantitative methods from the microscale (source distance 400 km) are extrapolated into the mesoscale. In the first case a table is given to read off the minimum factor by which the concentration is reduced in the mesoscale as the source distance increases to obtain the diffusion for the worst possible case, the existence of a mixing-layer topped by a temperature inversion, was assumed. For this it was essential, first of all, to determine the source distance xsub(D) beyond which the diffusing gases are completely mixed within the mixing-layer of thickness D. To make allowance for all possible thicknesses of this mixing-layer, a measurement carried out at ground level at only 10 km from the source can be used to calculate the correct concentrations in the mixing-layer; the dilution factors will then be related to this value. Possible ways of an improved incorporation of certain factors in the diffusion estimate, such as the topography of the earth's surface, the roughness of terrain, the vertical profiles of wind and exchange coefficients and the effects of non-stability are given in the last section

  9. Design of a mesoscale continuous flow route towards lithiated methoxyallene.

    Science.gov (United States)

    Seghers, Sofie; Heugebaert, Thomas S A; Moens, Matthias; Sonck, Jolien; Thybaut, Joris; Stevens, Chris Victor

    2018-05-11

    The unique nucleophilic properties of lithiated methoxyallene allow for C-C bond formation with a wide variety of electrophiles, thus introducing an allenic group for further functionalization. This approach has yielded a tremendously broad range of (hetero)cyclic scaffolds, including API precursors. To date, however, its valorization at scale is hampered by the batch synthesis protocol which suffers from serious safety issues. Hence, the attractive heat and mass transfer properties of flow technology were exploited to establish a mesoscale continuous flow route towards lithiated methoxyallene. An excellent conversion of 94% was obtained, corresponding to a methoxyallene throughput of 8.2 g/h. The process is characterized by short reaction times, mild reaction conditions and a stoichiometric use of reagents. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multiple Weather Factors Affect Apparent Survival of European Passerine Birds

    Science.gov (United States)

    Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  11. WEATHER INDEX- THE BASIS OF WEATHER DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Botos Horia Mircea

    2011-07-01

    Full Text Available This paper approaches the subject of Weather Derivatives, more exactly their basic element the weather index. The weather index has two forms, the Heating Degree Day (HDD and the Cooling Degree Day (CDD. We will try to explain their origin, use and the relationship between the two forms of the index. In our research we started from the analysis of the weather derivatives and what they are based on. After finding out about weather index, we were interested in understanding exactly how they work and how they influence the value of the contract. On the national level the research in the field is scares, but foreign materials available. The study for this paper was based firstly on reading about Weather Derivative, and then going in the meteorogical field and determining the way by which the indices were determined. After this, we went to the field with interest in the indices, such as the energy and gas industries, and figured out how they determined the weather index. For the examples we obtained data from the weather index database, and calculated the value for the period. The study is made on a period of five years, in 8 cities of the European Union. The result of this research is that we can now understand better the importance of the way the indices work and how they influence the value of the Weather Derivatives. This research has an implication on the field of insurance, because of the fact that weather derivative are at the convergence point of the stock markets and the insurance market. The originality of the paper comes from the personal touch given to the theoretical aspect and through the analysis of the HDD and CDD index in order to show their general behaviour and relationship.

  12. Evaluation of Driver Visibility from Mobile LIDAR Data and Weather Conditions

    Science.gov (United States)

    González-Jorge, H.; Díaz-Vilariño, L.; Lorenzo, H.; Arias, P.

    2016-06-01

    Visibility of drivers is crucial to ensure road safety. Visibility is influenced by two main factors, the geometry of the road and the weather present therein. The present work depicts an approach for automatic visibility evaluation using mobile LiDAR data and climate information provided from weather stations located in the neighbourhood of the road. The methodology is based on a ray-tracing algorithm to detect occlusions from point clouds with the purpose of identifying the visibility area from each driver position. The resulting data are normalized with the climate information to provide a polyline with an accurate area of visibility. Visibility ranges from 25 m (heavy fog) to more than 10,000 m (clean atmosphere). Values over 250 m are not taken into account for road safety purposes, since this value corresponds to the maximum braking distance of a vehicle. Two case studies are evaluated an urban road in the city of Vigo (Spain) and an inter-urban road between the city of Ourense and the village of Castro Caldelas (Spain). In both cases, data from the Galician Weather Agency (Meteogalicia) are used. The algorithm shows promising results allowing the detection of particularly dangerous areas from the viewpoint of driver visibility. The mountain road between Ourense and Castro Caldelas, with great presence of slopes and sharp curves, shows special interest for this type of application. In this case, poor visibility can especially contribute to the run over of pedestrians or cyclists traveling on the road shoulders.

  13. Wind lidar profile measurements in the coastal boundary layer: comparison with WRF modelling

    DEFF Research Database (Denmark)

    Floors, Rogier; Pena Diaz, Alfredo; Vincent, Claire Louise

    2012-01-01

    the sensitivity of PBL schemes of mesoscale models to both lower and upper boundary conditions. We therefore run the mesoscale weather research and forecasting (WRF) model using two different roughness descriptions, two different synoptic forcings and two different PBL schemes at two vertical resolutions. When...... in the amount of observed low level jet. The wind speed predicted by WRF does not improve when a higher resolution is used. Therefore, both the inhomogeneous (westerly) and homogeneous (easterly) flow contribute to a large negative bias in the mean wind speed profile at heights between 100 and 200 m....

  14. KZHU Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  15. KZOA Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  16. KZJX Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  17. KZBW Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  18. KZFW Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  19. KZSE Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  20. KZME Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  1. KZDV Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  2. KZNY Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  3. KZDC Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  4. KZAU Center Weather Advisory (CWA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CWA is an aviation weather warning for conditions meeting or approaching national in-flight advisory (AIRMET, SIGMET or SIGMET for convection) criteria. CWAs are...

  5. New Technologies for Reducing Aviation Weather-Related Accidents

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., III; Jarrell, Michael A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) has developed technologies to reduce aviation weather-related accidents. New technologies are presented for data-link and display of weather information to aircraft in flight, for detection of turbulence ahead of aircraft in flight, and for automated insitu reporting of atmospheric conditions from aircraft.

  6. Weather or Not To Teach Junior High Meteorology.

    Science.gov (United States)

    Knorr, Thomas P.

    1984-01-01

    Presents a technique for teaching meteorology allowing students to observe and analyze consecutive weather maps and relate local conditions; a model illustrating the three-dimensional nature of the atmosphere is employed. Instructional methods based on studies of daily weather maps to trace systems sweeping across the United States are discussed.…

  7. Modulation of precipitation by conditional symmetric instability release

    Science.gov (United States)

    Glinton, Michael R.; Gray, Suzanne L.; Chagnon, Jeffrey M.; Morcrette, Cyril J.

    2017-03-01

    Although many theoretical and observational studies have investigated the mechanism of conditional symmetric instability (CSI) release and associated it with mesoscale atmospheric phenomena such as frontal precipitation bands, cloud heads in rapidly developing extratropical cyclones and sting jets, its climatology and contribution to precipitation have not been extensively documented. The aim of this paper is to quantify the contribution of CSI release, yielding slantwise convection, to climatological precipitation accumulations for the North Atlantic and western Europe. Case studies reveal that CSI release could be common along cold fronts of mature extratropical cyclones and the North Atlantic storm track is found to be a region with large CSI according to two independent CSI metrics. Correlations of CSI with accumulated precipitation are also large in this region and CSI release is inferred to be occurring about 20% of the total time over depths of over 1 km. We conclude that the inability of current global weather forecast and climate prediction models to represent CSI release (due to insufficient resolution yet lack of subgrid parametrization schemes) may lead to errors in precipitation distributions, particularly in the region of the North Atlantic storm track.

  8. A three-dimensional meso-scale modeling for helium bubble growth in metals

    International Nuclear Information System (INIS)

    Suzudo, T.; Kaburaki, H.; Wakai, E.

    2007-01-01

    A three-dimensional meso-scale computer model using a Monte-Carlo simulation method has been proposed to simulate the helium bubble growth in metals. The primary merit of this model is that it enables the visual comparison between the microstructure observed by the TEM imaging and those by calculations. The modeling is so simple that one can control easily the calculation by tuning parameters. The simulation results are confirmed by the ideal gas law and the capillary relation. helium bubble growth, meso-scale modeling, Monte-Carlo simulation, the ideal gas law and the capillary relation. (authors)

  9. Operational mesoscale atmospheric dispersion prediction using high performance parallel computing cluster for emergency response

    International Nuclear Information System (INIS)

    Srinivas, C.V.; Venkatesan, R.; Muralidharan, N.V.; Das, Someshwar; Dass, Hari; Eswara Kumar, P.

    2005-08-01

    An operational atmospheric dispersion prediction system is implemented on a cluster super computer for 'Online Emergency Response' for Kalpakkam nuclear site. The numerical system constitutes a parallel version of a nested grid meso-scale meteorological model MM5 coupled to a random walk particle dispersion model FLEXPART. The system provides 48 hour forecast of the local weather and radioactive plume dispersion due to hypothetical air borne releases in a range of 100 km around the site. The parallel code was implemented on different cluster configurations like distributed and shared memory systems. Results of MM5 run time performance for 1-day prediction are reported on all the machines available for testing. A reduction of 5 times in runtime is achieved using 9 dual Xeon nodes (18 physical/36 logical processors) compared to a single node sequential run. Based on the above run time results a cluster computer facility with 9-node Dual Xeon is commissioned at IGCAR for model operation. The run time of a triple nested domain MM5 is about 4 h for 24 h forecast. The system has been operated continuously for a few months and results were ported on the IMSc home page. Initial and periodic boundary condition data for MM5 are provided by NCMRWF, New Delhi. An alternative source is found to be NCEP, USA. These two sources provide the input data to the operational models at different spatial and temporal resolutions and using different assimilation methods. A comparative study on the results of forecast is presented using these two data sources for present operational use. Slight improvement is noticed in rainfall, winds, geopotential heights and the vertical atmospheric structure while using NCEP data probably because of its high spatial and temporal resolution. (author)

  10. Computer system for the assessment of radiation situation in the cases of radiological accidents and extreme weather conditions in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Talerko, M.; Garger, E.; Kuzmenko, A. [Institute for Safety Problems of Nuclear Power Plants (Ukraine)

    2014-07-01

    Radiation situation within the Chernobyl Exclusion Zone (ChEZ) is determined by high radionuclides contamination of the land surface formed after the 1986 accident, as well as the presence of a number of potentially hazardous objects (the 'Shelter' object, the Interim Spent Nuclear Fuel Dry Storage Facility ISF-1, radioactive waste disposal sites, radioactive waste temporary localization sites etc.). The air concentration of radionuclides over the ChEZ territory and radiation exposure of personnel are influenced by natural and anthropogenic factors: variable weather conditions, forest fires, construction and excavation activity etc. The comprehensive radiation monitoring and early warning system in the ChEZ was established under financial support of European Commission in 2011. It involves the computer system developed for assessment and prediction of radiological emergencies consequences in the ChEZ ensuring the protection of personnel and the population living near its borders. The system assesses radiation situation under both normal conditions in the ChEZ and radiological emergencies which result in considerable radionuclides emission into the air (accidents at radiation hazardous objects, extreme weather conditions). Three different types of radionuclides release sources can be considered in the software package. So it is based on a set of different models of emission, atmospheric transport and deposition of radionuclides: 1) mesoscale model of radionuclide atmospheric transport LEDI for calculations of the radionuclides emission from stacks and buildings; 2) model of atmospheric transport and deposition of radionuclides due to anthropogenic resuspension from contaminated area (area surface source model) as a result of construction and excavation activity, heavy traffic etc.; 3) model of resuspension, atmospheric transport and deposition of radionuclides during grassland and forest fires in the ChEZ. The system calculates the volume and surface

  11. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    Science.gov (United States)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  12. Mesoscale eddies in the Subantarctic Front-Southwest Atlantic

    Directory of Open Access Journals (Sweden)

    Pablo D. Glorioso

    2005-12-01

    Full Text Available Satellite and ship observations in the southern southwest Atlantic (SSWA reveal an intense eddy field and highlight the potential for using continuous real-time satellite altimetry to detect and monitor mesoscale phenomena with a view to understanding the regional circulation. The examples presented suggest that mesoscale eddies are a dominant feature of the circulation and play a fundamental role in the transport of properties along and across the Antarctic Circumpolar Current (ACC. The main ocean current in the SSWA, the Falkland-Malvinas Current (FMC, exhibits numerous embedded eddies south of 50°S which may contribute to the patchiness, transport and mixing of passive scalars by this strong, turbulent current. Large eddies associated with meanders are observed in the ACC fronts, some of them remaining stationary for long periods. Two particular cases are examined using a satellite altimeter in combination with in situ observations, suggesting that cross-frontal eddy transport and strong meandering occur where the ACC flow intensifies along the sub-Antarctic Front (SAF and the Southern ACC Front (SACCF.

  13. Geostatistical Analysis of Mesoscale Spatial Variability and Error in SeaWiFS and MODIS/Aqua Global Ocean Color Data

    Science.gov (United States)

    Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.

    2018-01-01

    Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.

  14. Winter Weather Frequently Asked Questions

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  15. Evaluation of a Mesoscale Convective System in Variable-Resolution CESM

    Science.gov (United States)

    Payne, A. E.; Jablonowski, C.

    2017-12-01

    Warm season precipitation over the Southern Great Plains (SGP) follows a well observed diurnal pattern of variability, peaking at night-time, due to the eastward propagation of mesoscale convection systems that develop over the eastern slopes of the Rockies in the late afternoon. While most climate models are unable to adequately capture the organization of convection and characteristic pattern of precipitation over this region, models with high enough resolution to explicitly resolve convection show improvement. However, high resolution simulations are computationally expensive and, in the case of regional climate models, are subject to boundary conditions. Newly developed variable resolution global climate models strike a balance between the benefits of high-resolution regional climate models and the large-scale dynamics of global climate models and low computational cost. Recently developed parameterizations that are insensitive to the model grid scale provide a way to improve model performance. Here, we present an evaluation of the newly available Cloud Layers Unified by Binormals (CLUBB) parameterization scheme in a suite of variable-resolution CESM simulations with resolutions ranging from 110 km to 7 km within a regionally refined region centered over the SGP Atmospheric Radiation Measurement (ARM) site. Simulations utilize the hindcast approach developed by the Department of Energy's Cloud-Associated Parameterizations Testbed (CAPT) for the assessment of climate models. We limit our evaluation to a single mesoscale convective system that passed over the region on May 24, 2008. The effects of grid-resolution on the timing and intensity of precipitation, as well as, on the transition from shallow to deep convection are assessed against ground-based observations from the SGP ARM site, satellite observations and ERA-Interim reanalysis.

  16. Mesoscale mixing of the Denmark Strait Overflow in the Irminger Basin

    Science.gov (United States)

    Koszalka, Inga M.; Haine, Thomas W. N.; Magaldi, Marcello G.

    2017-04-01

    The Denmark Strait Overflow (DSO) is a major export route for dense waters from the Nordic Seas forming the lower limb of the Atlantic Meridional Overturning Circulation, an important element of the climate system. Mixing processes along the DSO pathway influence its volume transport and properties contributing to the variability of the deep overturning circulation. They are poorly sampled by observations, however, which hinders development of a proper DSO representation in global circulation models. We employ a high resolution regional ocean model of the Irminger Basin to quantify impact of the mesoscale flows on DSO mixing focusing on geographical localization and the time-modulation of water property changes. The model reproduces the observed bulk warming of the DSO plume 100-200 km downstream of the Denmark Strait sill. It also reveals that mesoscale variability of the overflow ('DSO-eddies', of 20-30 km extent and a time scale of 2-5 day) modulates water property changes and turbulent mixing, diagnosed with the vertical shear of horizontal velocity and the eddy heat flux divergence. The space-time localization of the DSO mixing and warming and the role of coherent mesoscale structures should be explored by turbulence measurements and factored into the coarse circulation models.

  17. Web-based Weather Expert System (WES) for Space Shuttle Launch

    Science.gov (United States)

    Bardina, Jorge E.; Rajkumar, T.

    2003-01-01

    The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.

  18. Laboratory weathering of combusted oil shale

    International Nuclear Information System (INIS)

    Essington, M.E.

    1991-01-01

    The objective of this study was to examine the mineralogy and leachate chemistry of three combusted oil shales (two Green River Formation and one New Albany) in a laboratory weathering environment using the humidity cell technique. The mineralogy of the combusted western oil shales (Green River Formation) is process dependent. In general, processing resulted in the formation of anhydrite, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and hematite. During the initial stages of weathering, lime, periclase, and anhydrite dissolve and ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite precipitates. The initial leachates are highly alkaline, saline, and dominated by Na, hydroxide, and SO 4 . As weathering continues, ettringite dissolves, gypsum and calcite precipitate, and the leachates are dominated by Mg, SO 4 , and CO 3 . Leachate pH is rapidly reduced to between 8.5 and 9 with leaching. The combusted eastern oil shale (New Albany) is composed of quartz, illite, hematite, and orthoclase. Weathering results in the precipitation of gypsum. The combusted eastern oil shale did not display a potential to produce acid drainage. Leachate chemistry was dominated by Ca and SO 4 . Element concentrations continually decreased with weathering. IN a western disposal environment receiving minimal atmospheric precipitation, spent oil shale will remain in the initial stages of weathering, and highly alkaline and saline conditions will dominate leachate chemistry. In an eastern disposal environment, soluble salts will be rapidly removed from the spent oil shale to potentially affect the surrounding environment

  19. Validation and deployment of the first Lidar based weather observation network in New York State: The NYS MesoNet Project

    Science.gov (United States)

    Thobois, L.; Freedman, J.; Royer, P.; Brotzge, J.; Joseph, E.

    2018-04-01

    The number and quality of atmospheric observations used by meteorologists and operational forecasters are increasing year after year, and yet, consistent improvements in forecast skill remains a challenge. While contributing factors involving these challenges have been identified, including the difficulty in accurately establishing initial conditions, improving the observations at regional and local scales is necessary for accurate depiction of the atmospheric boundary layer (below 2km), particularly the wind profile, in high resolution numerical models. Above the uncertainty of weather forecasts, the goal is also to improve the detection of severe and extreme weather events (severe thunderstorms, tornadoes and other mesoscale phenomena) that can adversely affect life, property and commerce, primarily in densely populated urban centers. This paper will describe the New York State Mesonet that is being deployed in the state of New York, USA. It is composed of 126 stations including 17 profiler sites. These sites will acquire continuous upper air observations through the combination of WINDCUBE Lidars and microwave radiometers. These stations will provide temperature, relative humidity & "3D" wind profile measurements through and above the planetary boundary layer (PBL) and will retrieve derived atmospheric quantities such as the PBL height, cloud base, momentum fluxes, and aerosol & cloud optical properties. The different modes and configurations that will be used for the Lidars are discussed. The performances in terms of data availability and wind accuracy and precision are evaluated. Several profiles with specific wind and aerosol features are presented to illustrate the benefits of the use of Coherent Doppler Lidars to monitor accurately the PBL.

  20. EVALUATION OF DRIVER VISIBILITY FROM MOBILE LIDAR DATA AND WEATHER CONDITIONS

    Directory of Open Access Journals (Sweden)

    H. González-Jorge

    2016-06-01

    Full Text Available Visibility of drivers is crucial to ensure road safety. Visibility is influenced by two main factors, the geometry of the road and the weather present therein. The present work depicts an approach for automatic visibility evaluation using mobile LiDAR data and climate information provided from weather stations located in the neighbourhood of the road. The methodology is based on a ray-tracing algorithm to detect occlusions from point clouds with the purpose of identifying the visibility area from each driver position. The resulting data are normalized with the climate information to provide a polyline with an accurate area of visibility. Visibility ranges from 25 m (heavy fog to more than 10,000 m (clean atmosphere. Values over 250 m are not taken into account for road safety purposes, since this value corresponds to the maximum braking distance of a vehicle. Two case studies are evaluated an urban road in the city of Vigo (Spain and an inter-urban road between the city of Ourense and the village of Castro Caldelas (Spain. In both cases, data from the Galician Weather Agency (Meteogalicia are used. The algorithm shows promising results allowing the detection of particularly dangerous areas from the viewpoint of driver visibility. The mountain road between Ourense and Castro Caldelas, with great presence of slopes and sharp curves, shows special interest for this type of application. In this case, poor visibility can especially contribute to the run over of pedestrians or cyclists traveling on the road shoulders.

  1. Portable Weather Applications for General Aviation Pilots.

    Science.gov (United States)

    Ahlstrom, Ulf; Ohneiser, Oliver; Caddigan, Eamon

    2016-09-01

    The objective of this study was to examine the potential benefits and impact on pilot behavior from the use of portable weather applications. Seventy general aviation (GA) pilots participated in the study. Each pilot was randomly assigned to an experimental or a control group and flew a simulated single-engine GA aircraft, initially under visual meteorological conditions (VMC). The experimental group was equipped with a portable weather application during flight. We recorded measures for weather situation awareness (WSA), decision making, cognitive engagement, and distance from the aircraft to hazardous weather. We found positive effects from the use of the portable weather application, with an increased WSA for the experimental group, which resulted in credibly larger route deviations and credibly greater distances to hazardous weather (≥30 dBZ cells) compared with the control group. Nevertheless, both groups flew less than 20 statute miles from hazardous weather cells, thus failing to follow current weather-avoidance guidelines. We also found a credibly higher cognitive engagement (prefrontal oxygenation levels) for the experimental group, possibly reflecting increased flight planning and decision making on the part of the pilots. Overall, the study outcome supports our hypothesis that portable weather displays can be used without degrading pilot performance on safety-related flight tasks, actions, and decisions as measured within the constraints of the present study. However, it also shows that an increased WSA does not automatically translate to enhanced flight behavior. The study outcome contributes to our knowledge of the effect of portable weather applications on pilot behavior and decision making. © 2016, Human Factors and Ergonomics Society.

  2. A Climatology of Derecho-Producing Mesoscale Convective Systems in the Central and Eastern United States, 1986-95. Part I: Temporal and Spatial Distribution.

    Science.gov (United States)

    Bentley, Mace L.; Mote, Thomas L.

    1998-11-01

    In 1888, Iowa weather researcher Gustavus Hinrichs gave widespread convectively induced windstorms the name "derecho". Refinements to this definition have evolved after numerous investigations of these systems; however, to date, a derecho climatology has not been conducted.This investigation examines spatial and temporal aspects of derechos and their associated mesoscale convective systems that occurred from 1986 to 1995. The spatial distribution of derechos revealed four activity corridors during the summer, five during the spring, and two during the cool season. Evidence suggests that the primary warm season derecho corridor is located in the southern Great Plains. During the cool season, derecho activity was found to occur in the southeast states and along the Atlantic seaboard. Temporally, derechos are primarily late evening or overnight events during the warm season and are more evenly distributed throughout the day during the cool season.

  3. Automated Tracking of Tornado-Producing Mesoscale Convective Systems in the United States

    Science.gov (United States)

    Kuo, K.; Hong, Y.; Clune, T. L.

    2011-12-01

    The great majority of Earth Science events are studied using "snap-shot" observations in time, mainly due to the scarcity of observations with dense temporal coverage and the lack of robust methods amenable to connecting the "snap shots". To enable the studies of these events in the four-dimensional (4D) spatiotemporal space and to demonstrate the utility of this capability, we have applied the neighbor enclosed area tracking (NEAT) method of Inatsu (2009) to three years of high-resolution (in both time and space) NEXRAD-derived and rain-gauge-corrected QE2 precipitation observations and GOES satellite Rapid Scan Operation imagery to track tornado-producing mesoscale convective systems (MCS's). We combine information from the databases of the Tornado History Project (which provides tornado occurrence and trajectory) and the NWS Watch/Warning Archive (which provides severe weather watch/warning locations) to obtain initial estimate of the time and location of a tornado-producing MCS. The NEAT algorithm is then applied to QE2 and GOES data, both forward and backward in time, to identify the entire system as one integral entity from its inception to its eventual dissipation in the 4D spatiotemporal space. For each system so identified, we extract its morphological/structural parameters, such as perimeter length, area, and orientation, from each of the snap shots in time. We also record physical parameters such as minimum and maximum precipitation rates. In addition, we perform areal integral on the precipitation rate field, which in turn enables time integral for the entire MCS throughout its lifecycle to obtain an estimate of the system's precipitation production. We can extend this proof-of-concept prototype to other precipitation producing severe weather events, such as blizzards. Furthermore, the spatiotemporal data collected may be used to discover other data, such as satellite remote sensing observations and model analyses/simulations, which can then be combined

  4. Effects of shelter type, early environmental enrichment and weather conditions on free-range behaviour of slow-growing broiler chickens.

    Science.gov (United States)

    Stadig, L M; Rodenburg, T B; Ampe, B; Reubens, B; Tuyttens, F A M

    2017-06-01

    Free-range use by broiler chickens is often limited, whereas better use of the free-range area could benefit animal welfare. Use of free-range areas could be stimulated by more appropriate shelter or environmental enrichment (by decreasing birds' fearfulness). This study aimed to assess the effects of shelter type, early environmental enrichment and weather conditions on free-range use. Three production rounds with 440 slow-growing broiler chickens (Sasso T451) were carried out. Birds were housed indoors in four groups (two with males, two with females) from days 0 to 25, during which two of the groups received environmental enrichment. At day 23 birds' fearfulness was assessed with a tonic immobility (TI) test (n=100). At day 25 all birds were moved (in mixed-sex groups) to mobile houses, and provided with free-range access from day 28 onwards. Each group could access a range consisting for 50% of grassland with 21 artificial shelters (ASs, wooden A-frames) and for 50% of short rotation coppice (SRC) with willow (dense vegetation). Free-range use was recorded by live observations at 0900, 1300 and 1700 h for 15 to 21 days between days 28 and 63. For each bird observed outside the shelter type (AS or SRC), distance from the house (0 to 2, 2 to 5, >5 m) and its behaviour (only rounds 2 and 3) were recorded. Weather conditions were recorded by four weather stations. On average, 27.1% of the birds were observed outside at any given moment of observation. Early environmental enrichment did not decrease fearfulness as measured by the TI test. It only had a minor effect on the percentage of birds outside (0.4% more birds outside). At all distances from the house, SRC was preferred over AS. In AS, areas closer to the house were preferred over farther ones, in SRC this was less pronounced. Free-range use increased with age and temperature and decreased with wind speed. In AS, rainfall and decreasing solar radiation were related to finding more birds outside, whereas the

  5. Artificial weathering of oils by rotary evaporator

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Hollebone, B.P.; Singh, N.R.; Tong, T.S.; Mullin, J.

    2009-01-01

    Oil weathering has a considerable affect on the behaviour, impact and ultimate fate of an oil spill. As such, efforts have been made to study weathering as a whole using bench-scale procedures. The studies are generally divided into individual processes where the effect of other major processes are introduce as an amended sample input rather than a concurrent process. The weathering process that has the greatest effect immediately following an oil spill is evaporation, particularly for lighter oils. The rotary evaporator apparatus offers a convenient means of producing artificially weathered oil for laboratory studies. This paper reported on a study that examined the representativeness of samples obtained by this method compared to pan evaporation and the impact of changes to the apparatus or method parameters on sample chemistry. Experiments were performed on Alberta Sweet Mixed Blend no. 5 in a rotary evaporator under varying conditions of temperature and air flow at ambient pressure using 2 apparatus. The rate of mass loss increased with temperature and air flow rate as expected, but the quantitative relationships could not be defined from the data due to contributions by other uncontrolled factors. It was concluded that the rotary evaporator is not suited for evaporation rate studies, but rather for producing samples suitable for use in other studies. Chemical analysis showed that the relative abundance distributions of target n-alkane hydrocarbons varied with the degree of weathering of an oil in a consistent manner at ambient pressure, regardless of the temperature, rate of air exchange or other factors related to the apparatus and procedure. The composition of the artificially weathered oil was also consistent with that from an open pan simulation of a weathered oil slick. Loss of water content varied with the conditions of evaporation because of the differential rates of evaporation due to relative humidity considerations. It was concluded that weathering

  6. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Hongxing; Wang, Jinggang

    2010-01-01

    The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building.

  7. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Yi; Yang, Hongxing [Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Jinggang [Hebei University of Engineering, Handan (China)

    2010-09-15

    The ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions due to its high energy efficiency and reliable operation capability. However, when the technology is used in buildings where there is only cooling load in hot-weather areas like Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE). This heat accumulation will result in degradation of system performance and increment of system operating costs. This problem can be resolved by using the hybrid ground-coupled heat pump (HGCHP) system, which uses supplemental heat rejecters to reject the accumulated heat. This paper presents a practical hourly simulation model of the HGCHP system by modeling the heat transfer process of the system's main components. The computer program based on this hourly simulation model can be used to calculate the hour-by-hour operation data of the HGCHP system. As a case study, both a HGCHP system and a traditional GCHP system are designed for a hypothetic private residential building located in Hong Kong, and the economic comparisons are conducted between these two types of systems. The simulation results show that the HGCHP system can effectively solve the heat accumulation problem and reduce both the initial costs and operating costs of the air-conditioning system in the building. (author)

  8. Improving growth performance in calves under hot weather conditions

    International Nuclear Information System (INIS)

    Emara, S.S.M.

    2009-01-01

    The main objectives of the present study were to evaluate the effect of some supplement such as dried live yeast DLY (Saccharomyces cerevisiae), DLY + vitamin E and / or dried whey milk (DWM) on blood constituents and thyroid activity in relation to some immune indices and growth performance of calves under hot weather conditions. The ambient temperature and relative humidity averaged 36.9±4 degree C and 43-58 % during day and 29±4 degree C and 60-68 % during night, respectively, which were equivalent to temperature humidity index of 86-89 during day and 78-80 during night . The present study included three experiments as follows. Experiment 1 : Six female bovine Baladi calves of 8-10 months old and 100 kg initial body weight (IBW) were used during two periods. In the first period, the calves were offered the basal diet for one month and considered as a control period. In the second period, the same calves were fed the same basal diet which supplemented with 15 g / calf/ day DLY for one month and considered as treated period. The obtained results indicated that supplementation of DLY reduced significantly the respiration rate (RR) and rectal temperature (RT) as well as serum lipids profile including total cholesterol, low density lipoprotein (LDL- cholesterol) very low density lipoprotein (VLDL-cholesterol) triglycerides and phospholipids.The second and third experiments were carried out for improving growth performance of heat-stressed bovine baladi calves by adding DLY and vitamine E (alpha-tocopherol) to their diet in experiment 2 and dried whey milk (DWM) in experiment 3.

  9. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Science.gov (United States)

    Al Disi, Zulfa; Jaoua, Samir; Al-Thani, Dhabia; Al-Meer, Saeed

    2017-01-01

    Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16) to longer chain n-alkanes (n-C21–n-C25) and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time. PMID:28243605

  10. Considering the Specific Impact of Harsh Conditions and Oil Weathering on Diversity, Adaptation, and Activity of Hydrocarbon-Degrading Bacteria in Strategies of Bioremediation of Harsh Oily-Polluted Soils

    Directory of Open Access Journals (Sweden)

    Zulfa Al Disi

    2017-01-01

    Full Text Available Weathering processes change properties and composition of spilled oil, representing the main reason of failure of bioaugmentation strategies. Our purpose was to investigate the metabolic adaptation of hydrocarbon-degrading bacteria at harsh conditions to be considered to overcome the limitations of bioaugmentation strategies at harsh conditions. Polluted soils, exposed for prolonged periods to weathered oil in harsh soils and weather conditions, were used. Two types of enrichment cultures were employed using 5% and 10% oil or diesel as sole carbon sources with varying the mineral nitrogen sources and C/N ratios. The most effective isolates were obtained based on growth, tolerance to toxicity, and removal efficiency of diesel hydrocarbons. Activities of the newly isolated bacteria, in relation to the microenvironment from where they were isoalted and their interaction with the weathered oil, showed individual specific ability to adapt when exposed to such factors, to acquire metabolic potentialities. Among 39 isolates, ten identified ones by 16S rDNA genes similarities, including special two Pseudomonas isolates and one Citrobacter isolate, showed particularity of shifting hydrocarbon-degrading ability from short chain n-alkanes (n-C12–n-C16 to longer chain n-alkanes (n-C21–n-C25 and vice versa by alternating nitrogen source compositions and C/N ratios. This is shown for the first time.

  11. Activities of NICT space weather project

    Science.gov (United States)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  12. Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China

    Science.gov (United States)

    Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang

    2018-06-01

    The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.

  13. Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary layer heat budget

    Science.gov (United States)

    Steeneveld, G. J.; Tolk, L. F.; Moene, A. F.; Hartogensis, O. K.; Peters, W.; Holtslag, A. A. M.

    2011-12-01

    The Weather Research and Forecasting Model (WRF) and the Regional Atmospheric Mesoscale Model System (RAMS) are frequently used for (regional) weather, climate and air quality studies. This paper covers an evaluation of these models for a windy and calm episode against Cabauw tower observations (Netherlands), with a special focus on the representation of the physical processes in the atmospheric boundary layer (ABL). In addition, area averaged sensible heat flux observations by scintillometry are utilized which enables evaluation of grid scale model fluxes and flux observations at the same horizontal scale. Also, novel ABL height observations by ceilometry and of the near surface longwave radiation divergence are utilized. It appears that WRF in its basic set-up shows satisfactory model results for nearly all atmospheric near surface variables compared to field observations, while RAMS needed refining of its ABL scheme. An important inconsistency was found regarding the ABL daytime heat budget: Both model versions are only able to correctly forecast the ABL thermodynamic structure when the modeled surface sensible heat flux is much larger than both the eddy-covariance and scintillometer observations indicate. In order to clarify this discrepancy, model results for each term of the heat budget equation is evaluated against field observations. Sensitivity studies and evaluation of radiative tendencies and entrainment reveal that possible errors in these variables cannot explain the overestimation of the sensible heat flux within the current model infrastructure.

  14. Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment

    Directory of Open Access Journals (Sweden)

    L. Eymard

    1996-09-01

    momentum flux bulk parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.

  15. Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment

    Science.gov (United States)

    Eymard, L.; Planton, S.; Durand, P.; Le Visage, C.; Le Traon, P. Y.; Prieur, L.; Weill, A.; Hauser, D.; Rolland, J.; Pelon, J.; Baudin, F.; Bénech, B.; Brenguier, J. L.; Caniaux, G.; de Mey, P.; Dombrowski, E.; Druilhet, A.; Dupuis, H.; Ferret, B.; Flamant, C.; Flamant, P.; Hernandez, F.; Jourdan, D.; Katsaros, K.; Lambert, D.; Lefèvre, J. M.; Le Borgne, P.; Le Squere, B.; Marsoin, A.; Roquet, H.; Tournadre, J.; Trouillet, V.; Tychensky, A.; Zakardjian, B.

    1996-09-01

    parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.

  16. Study of the air-sea interactions at the mesoscale: the SEMAPHORE experiment

    Directory of Open Access Journals (Sweden)

    L. Eymard

    classical momentum flux bulk parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.

  17. Mesoscale Eddies in the Solomon Sea

    Science.gov (United States)

    Hristova, H. G.; Kessler, W. S.; McWilliams, J. C.; Molemaker, M. J.

    2011-12-01

    Water mass transformation in the strong equatorward flows through the Solomon Sea influences the properties of the Equatorial Undercurrent and subsequent cold tongue upwelling. High eddy activity in the interior Solomon Sea seen in altimetric sea surface height (SSH) and in several models may provide a mechanism for these transformations. We investigate these effects using a mesoscale (4-km resolution) sigma-coordinate (ROMS) model of the Solomon Sea nested in a basin solution, forced by a repeating seasonal cycle, and evaluated against observational data. The model generates a vigorous upper layer eddy field; some of these are apparently shed as the New Guinea Coastal Undercurrent threads through the complex topography of the region, others are independent of the strong western boundary current. We diagnose the scales and vertical structure of the eddies in different parts of the Solomon Sea to illuminate their generation processes and propagation characteristics, and compare these to observed eddy statistics. Hypotheses tested are that the Solomon Sea mesoscale eddies are generated locally by baroclinic instability, that the eddies are shed as the South Equatorial Current passes around and through the Solomon Island chain, that eddies are generated by the New Guinea Coastal Undercurrent, or that eddies occurring outside of the Solomon Sea propagate into the Solomon Sea. These different mechanisms have different implications for the resulting mixing and property fluxes. They also provide different interpretations for SSH signals observed from satellites (e.g., that will be observed by the upcoming SWOT satellite).

  18. Effect of phase change materials on indoor thermal environment under different weather conditions and over a long time

    International Nuclear Information System (INIS)

    Ling, Haoshu; Chen, Chao; Wei, Shen; Guan, Yong; Ma, Caiwen; Xie, Guangya; Li, Na; Chen, Ziguang

    2015-01-01

    Highlights: • Indicators evaluating the performance of PCMs in greenhouses are introduced. • Real equivalent specific heat capacity of PCMs is embedded in a numerical model. • Real behaviour of PCMs has been monitored over a long time. • Efficiency of PCMs walls are compared for sunny and cloudy days. • Heat storage and release amounts of PCMs walls have been calculated. - Abstract: To evaluate the effect of phase change materials (PCMs) on the indoor thermal environment of greenhouses under different weather conditions and over a long time in the heating season, a study was carried out using both experimental method and numerical method. The study was conducted in a typical greenhouse located in Beijing, China, and important parameters have been monitored continuously for 61 days, including indoor air temperature, outdoor air temperature, solar radiation, surface temperature of greenhouse envelopes and soil temperature. Based on these parameters, a number of indicators, namely, operative temperature, daily effective accumulative temperature, irradiated surface temperature of the north wall, average temperature of PCMs, and daily heat storage and release, have been used to evaluate the performance of PCMs in greenhouses. All indicators have provided consistent results that confirm the positive effect of PCMs on improving the indoor thermal environment of greenhouses over a long time. Additionally, the paper has demonstrated that a sunny weather could help to promote the efficiency of PCMs, comparing to a cloudy weather

  19. Acidic weathering of carbonate building stones: experimental assessment

    Directory of Open Access Journals (Sweden)

    Ryszard Kryza

    2009-06-01

    Full Text Available Three types of carbonate rocks, travertine, limestone and marble have been studied to determine their selected technical parameters (water absorption, resistance to salt crystallization damage and reaction to experimentally modelled acid rain weathering imitating the polluted urban atmospheric conditions. The acidic agents present in natural acid rain precipitation, H2SO4, HCl, HNO3, CH3COOH and mixture of all the acids, “Acid mix”, were tested. The initial stages of acid weathering involve, apart from chemical dissolution, particularly intense physical detachment of rock particles (granular disintegration significantly contributing to the total mass loss. Travertine was found to be most prone to salt crystallization damage and to acid weathering, and these features should be taken into account especially in external architectural usage of this stone in cold climate conditions and polluted urban atmosphere.

  20. Weather Webcam System for the Safety of Helicopter Emergency Medical Services in Miyazaki, Japan.

    Science.gov (United States)

    Kanemaru, Katsuhiro; Katzer, Robert; Hanato, Syu; Nakamura, Koji; Matsuoka, Hiroshi; Ochiai, Hidenobu

    In Japan, the helicopter emergency medical services (HEMS) system was initiated in 2001 and introduced to Miyazaki Prefecture in 2012. Mountainous areas occupy 88% of Miyazaki's land area, and HEMS flights can be subject to the effects of weather. Therefore, ensuring safety in changing weather conditions is a necessity for HEMS. The weather webcam system (WWS) was established to observe the meteorological conditions in 29 locations. Assessments of the probability of a flight based on conventional data including a weather chart provided by the Japan Meteorological Agency and meteorological reports provided by the Miyazaki Airport were compared with the assessment based on the combination of the information obtained from the WWS and the conventional data. The results showed that the probability of a flight by HEMS increased when using the WSS, leading to an increased transportation opportunity for patients in the mountains who rely on HEMS. In addition, the results indicate that the WWS may prevent flights in unfavorable weather conditions. The WWS used in conjunction with conventional weather data within Miyazaki HEMS increased the pilot's awareness of current weather conditions throughout the Prefecture, increasing the probability of accepting a flight. Copyright © 2017 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  1. Introducing uncertainty of radar-rainfall estimates to the verification of mesoscale model precipitation forecasts

    Directory of Open Access Journals (Sweden)

    M. P. Mittermaier

    2008-05-01

    Full Text Available A simple measure of the uncertainty associated with using radar-derived rainfall estimates as "truth" has been introduced to the Numerical Weather Prediction (NWP verification process to assess the effect on forecast skill and errors. Deterministic precipitation forecasts from the mesoscale version of the UK Met Office Unified Model for a two-day high-impact event and for a month were verified at the daily and six-hourly time scale using a spatially-based intensity-scale method and various traditional skill scores such as the Equitable Threat Score (ETS and log-odds ratio. Radar-rainfall accumulations from the UK Nimrod radar-composite were used.

    The results show that the inclusion of uncertainty has some effect, shifting the forecast errors and skill. The study also allowed for the comparison of results from the intensity-scale method and traditional skill scores. It showed that the two methods complement each other, one detailing the scale and rainfall accumulation thresholds where the errors occur, the other showing how skillful the forecast is. It was also found that for the six-hourly forecasts the error distributions remain similar with forecast lead time but skill decreases. This highlights the difference between forecast error and forecast skill, and that they are not necessarily the same.

  2. Mesoscale Modeling of Smoke Particles Distribution and Their Radiative Feedback over Northern Sub-Saharan African Region

    Science.gov (United States)

    Yue, Y.; Wang, J.; Ichoku, C. M.; Ellison, L.

    2015-12-01

    Stretching from southern boundary of Sahara to the equator and expanding west to east from Atlantic Ocean coasts to the India Ocean coasts, the northern sub-Saharan African (NSSA) region has been subject to intense biomass burning. Comprised of savanna, shrub, tropical forest and a number of agricultural crops, the extensive fires burn belt covers central and south of NSSA during dry season (from October to March) contributes to one of the highest biomass burning rate per km2 in the world. Due to smoke particles' absorption effects of solar radiation, they can modify the surface and atmosphere temperature and thus change atmospheric stability, height of the boundary layer, regional atmospheric circulation, evaporation rate, cloud formation, and precipitation. Hence, smoke particles emitted from biomass burning over NSSA region has a significant influence to the air quality, weather and climate variability. In this study, the first version of this Fire Energetics and Emissions Research (FEER.v1) emissions of several smoke constituents including light-absorbing organic carbon (OC) and black carbon (BC) are applied to a state-of-science meteorology-chemistry model as NOAA Weather Research and Forecasting Model with Chemistry (WRF-Chem). We analyzed WRF-Chem simulations of surface and vertical distribution of various pollutants and their direct radiative effects in conjunction with satellite observation data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIPSO) to strengthen the importance of combining space measured emission products like FEER.v1 emission inventory with mesoscale model over intense biomass burning region, especially in area where ground-based air-quality and radiation-related observations are limited or absent.

  3. The effect of weather on morphometric traits of juvenile cliff swallows

    Science.gov (United States)

    Roche, Erin A.; Brown, Mary Bomberger; Brown, Charles R.

    2015-01-01

    Episodes of food deprivation may change how nestling birds allocate energy to the growth of skeletal and feather morphological traits during development. Cliff swallows (Petrochelidon pyrrhonota) are colonial, insectivorous birds that regularly experience brief periods of severe weather-induced food deprivation during the nesting season which may affect offspring development. We investigated how annual variation in timing of rearing and weather were associated with length of wing and tail, skeletal traits, and body mass in juvenile cliff swallows reared in southwestern Nebraska during 2001–2006. As predicted under conditions of food deprivation, nestling skeletal and feather measurements were generally smaller in cooler years. However, variability explained by weather was small, suggesting that morphometric traits of juvenile cliff swallows were not highly sensitive to weather conditions experienced during this study. Measurements of juvenile morphological traits were positively correlated with measurements taken as adults, meaning that any variation among juveniles in response to rearing conditions showed evidence of persisting into a bird’s first breeding season. Our results show that body size in this species is phenotypically plastic and influenced, in part, by weather variables.

  4. Weather and children's physical activity; how and why do relationships vary between countries?

    DEFF Research Database (Denmark)

    Harrison, Flo; Goodman, Anna; van Sluijs, Esther M F

    2017-01-01

    more active on average, but also more active given the weather conditions they experienced. Future work should consider strategies to mitigate the impacts of weather conditions, especially among young children, and interventions involving changes to the physical environment should consider how...

  5. Space Weather, Environment and Societies

    CERN Document Server

    Lilensten, Jean

    2006-01-01

    Our planet exists within a space environment affected by constantly changing solar atmosphere producing cosmic particles and electromagnetic waves. This "space weather" profoundly influences the performance of our technology because we primarily use two means for transmitting information and energy; namely, electromagnetic waves and electricity. On an everyday basis, we have developed methods to cope with the normal conditions. However, the sun remains a fiery star whose 'angry' outbursts can potentially destroy spacecrafts, kill astronauts, melt electricity transformers, stop trains, and generally wreak havoc with human activities. Space Weather is the developing field within astronomy that aims at predicting the sun’s violent activity and minimizing the impacts on our daily lives. Space Weather, Environment, and Societies explains why our technological societies are so dependent on solar activity and how the Sun disturbs the transmission of information and energy. Footnotes expand specific points and the ...

  6. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J; Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1998-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  7. EMMA model: an advanced operational mesoscale air quality model for urban and regional environments

    International Nuclear Information System (INIS)

    Jose, R.S.; Rodriguez, M.A.; Cortes, E.; Gonzalez, R.M.

    1999-01-01

    Mesoscale air quality models are an important tool to forecast and analyse the air quality in regional and urban areas. In recent years an increased interest has been shown by decision makers in these types of software tools. The complexity of such a model has grown exponentially with the increase of computer power. Nowadays, medium workstations can run operational versions of these modelling systems successfully. Presents a complex mesoscale air quality model which has been installed in the Environmental Office of the Madrid community (Spain) in order to forecast accurately the ozone, nitrogen dioxide and sulphur dioxide air concentrations in a 3D domain centred on Madrid city. Describes the challenging scientific matters to be solved in order to develop an operational version of the atmospheric mesoscale numerical pollution model for urban and regional areas (ANA). Some encouraging results have been achieved in the attempts to improve the accuracy of the predictions made by the version already installed. (Author)

  8. A mesoscale chemical transport model (MEDIUM) nested in a global chemical transport model (MEDIANTE)

    Energy Technology Data Exchange (ETDEWEB)

    Claveau, J.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    1997-12-31

    The lower stratosphere and upper troposphere (UT-LS) are frequently subject to mesoscale or local scale exchange of air masses occurring along discontinuities. This exchange (e.g. downward) can constitute one of the most important source of ozone from the stratosphere down to the middle troposphere where strong mixing dilutes the air mass and competing the non-linear chemistry. The distribution of the chemical species in the troposphere and the lower stratosphere depends upon various source emissions, e.g. from polluted boundary layer or from aircraft emissions. Global models, as well as chemical transport models describe the climatological state of the atmosphere and are not able to describe correctly the stratosphere and troposphere exchange. Mesoscale models go further in the description of smaller scales and can reasonably include a rather detailed chemistry. They can be used to assess the budget of NO{sub x} from aircraft emissions in a mesoscale domain. (author) 4 refs.

  9. New weather depiction technology for night vision goggle (NVG) training: 3D virtual/augmented reality scene-weather-atmosphere-target simulation

    Science.gov (United States)

    Folaron, Michelle; Deacutis, Martin; Hegarty, Jennifer; Vollmerhausen, Richard; Schroeder, John; Colby, Frank P.

    2007-04-01

    US Navy and Marine Corps pilots receive Night Vision Goggle (NVG) training as part of their overall training to maintain the superiority of our forces. This training must incorporate realistic targets; backgrounds; and representative atmospheric and weather effects they may encounter under operational conditions. An approach for pilot NVG training is to use the Night Imaging and Threat Evaluation Laboratory (NITE Lab) concept. The NITE Labs utilize a 10' by 10' static terrain model equipped with both natural and cultural lighting that are used to demonstrate various illumination conditions, and visual phenomena which might be experienced when utilizing night vision goggles. With this technology, the military can safely, systematically, and reliably expose pilots to the large number of potentially dangerous environmental conditions that will be experienced in their NVG training flights. A previous SPIE presentation described our work for NAVAIR to add realistic atmospheric and weather effects to the NVG NITE Lab training facility using the NVG - WDT(Weather Depiction Technology) system (Colby, et al.). NVG -WDT consist of a high end multiprocessor server with weather simulation software, and several fixed and goggle mounted Heads Up Displays (HUDs). Atmospheric and weather effects are simulated using state-of-the-art computer codes such as the WRF (Weather Research μ Forecasting) model; and the US Air Force Research Laboratory MODTRAN radiative transport model. Imagery for a variety of natural and man-made obscurations (e.g. rain, clouds, snow, dust, smoke, chemical releases) are being calculated and injected into the scene observed through the NVG via the fixed and goggle mounted HUDs. This paper expands on the work described in the previous presentation and will describe the 3D Virtual/Augmented Reality Scene - Weather - Atmosphere - Target Simulation part of the NVG - WDT. The 3D virtual reality software is a complete simulation system to generate realistic

  10. Winter Weather Tips: Understanding Alerts and Staying Safe this Season | Poster

    Science.gov (United States)

    By Jenna Seiss and Kylie Tomlin, Guest Writers, and Ashley DeVine, Staff Writer Maryland residents face the possibility of dangerous winter weather each year—from icy conditions to frigid temperatures. You may be familiar with the different types of winter weather alerts issued by the National Weather Service (NWS), but do you know what each alert means?  

  11. Modeling Air-Quality in Complex Terrain Using Mesoscale and ...

    African Journals Online (AJOL)

    Air-quality in a complex terrain (Colorado-River-Valley/Grand-Canyon Area, Southwest U.S.) is modeled using a higher-order closure mesoscale model and a higher-order closure dispersion model. Non-reactive tracers have been released in the Colorado-River valley, during winter and summer 1992, to study the ...

  12. ... AND HERE COMES THE WEATHER - Austrian TV and radio weather news in the eye of the public

    Science.gov (United States)

    Keul, A.; Holzer, A. M.; Wostal, T.

    2010-09-01

    Media weather reports as the main avenue of meteorological and climatological information to the general public have always been in the focus of critical investigation. Former research found that although weather reports are high-interest topics, the amount of information recalled by non-experts is rather low, and criticized this. A pilot study (Keul et al., 2009) by the Salzburg University in cooperation with ORF, the Austrian Broadcasting Corporation, used historic radio files on a fair-weather and a storm situation. It identified the importance of intelligible wording of the weather forecast messages for lay people. Without quality control, weather information can stimulate rumours, false comfort or false alarms. More qualitative and experimental research, also on TV weather, seems justified. This need for further research was addressed by a second and larger field experiment in the spring of 2010. The survey took place in Salzburg City, Austria, with a quota sample of about 90 lay persons. This time TV and radio weather reports were used and a more realistic listening and viewing situation was created by presenting the latest weather forecasts of the given day to the test persons in the very next hours after originally broadcasting them. It asked lay people what they find important in the weather reports and what they remember for their actual next-day use. Reports of a fairweather prognosis were compared with a warning condition. The weather media mix of the users was explored. A second part of the study was a questionnaire which tested the understanding of typical figures of speech used in weather forecasts or even meteorological terms, which might also be important for fully understanding the severe weather warnings. This leads to quantitative and qualitative analysis from which the most important and unexpected results are presented. Short presentation times (1.5 to 2 minutes) make Austrian radio and TV weather reports a narrow compromise between general

  13. Initiation of soil formation in weathered sulfidic Cu-Pb-Zn tailings under subtropical and semi-arid climatic conditions.

    Science.gov (United States)

    You, Fang; Dalal, Ram; Huang, Longbin

    2018-08-01

    Field evidence has been scarce about soil (or technosol) formation and direct phytostabilization of base metal mine tailings under field conditions. The present study evaluated key attributes of soil formation in weathered and neutral Cu-Pb-Zn tailings subject to organic amendment (WC: woodchips) and colonization of pioneer native plant species (mixed native woody and grass plant species) in a 2.5-year field trial under subtropical and semi-arid climatic conditions. Key soil indicators of engineered soil formation process were characterized, including organic carbon fractions, aggregation, microbial community and key enzymatic activities. The majority (64-87%) of the OC was stabilized in microaggregate or organo-mineral complexes in the amended tailings. The levels of OC and water soluble OC were elevated by 2-3 folds across the treatments, with the highest level in the treatment of WC and plant colonization (WC+P). Specifically, the WC+P treatment increased the proportion of water stable macroaggregates. Plants further contributed to the N rich organic matter in the tailings, favouring organo-mineral interactions and organic stabilization. Besides, the plants played a major role in boosting microbial biomass and activities in the treated tailings. WC and plants enhanced the contents of organic carbon (OC) associated with aggregates (e.g., physically protected OC), formation of water-stable aggregates (e.g., micro and macroaggregates), chemical buffering capacity (e.g., cation exchange capacity). Microbial community and enzymatic activities were also stimulated in the amended tailings. The present results showed that the formation of functional technosol was initiated in the eco-engineered and weathered Cu-Pb-Zn tailings under field conditions for direct phytostabilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Designing and Implementing Weather Generators as Web Services

    Directory of Open Access Journals (Sweden)

    Rassarin Chinnachodteeranun

    2016-12-01

    Full Text Available Climate and weather realizations are essential inputs for simulating crop growth and yields to analyze the risks associated with future conditions. To simplify the procedure of generating weather realizations and make them available over the Internet, we implemented novel mechanisms for providing weather generators as web services, as well as a mechanism for sharing identical weather realizations given a climatological information. A web service for preparing long-term climate data was implemented based on an international standard, Sensor Observation Service (SOS. The weather generator services, which are the core components of the framework, analyze climatological data, and can take seasonal climate forecasts as inputs for generating weather realizations. The generated weather realizations are encoded in a standard format, which are ready for use to crop modeling. All outputs are generated in SOS standard, which broadens the extent of data sharing and interoperability with other sectoral applications, e.g., water resources management. These services facilitate the development of other applications requiring input weather realizations, as these can be obtained easily by just calling the service. The workload of analysts related to data preparation and handling of legacy weather generator programs can be reduced. The architectural design and implementation presented here can be used as a prototype for constructing further services on top of an interoperable sensor network system.

  15. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    Science.gov (United States)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  16. Weatherization Works II - Summary of Findings from the ARRA Period Evaluation of the U.S. Department of Energy's Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, Bruce Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carroll, David [APPRISE, Inc.. Princeton, NJ (United States); Rose, Erin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Beth A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Dalhoff, Greg [Dalhoff & Associates. Verona, WI (United STates); Blasnik, Michael [Blasnik & Associates, Boston, MA (United States); Eisenberg, Joel Fred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cowan, Claire [Energy Center of Wisconsin, Madison, WI (United States); Conlon, Brian [Univ. of Tennessee, Knoxville, TN (United States)

    2015-10-01

    This report presents a summary of the American Recovery and Reinvestment Act of 2009 (ARRA) evaluation of the U.S. Department of Energy s low-income Weatherization Program. This evaluation focused on the WAP Program Year 2010. The ARRA evaluation produced fourteen separate reports, including this summary. Three separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, and large multifamily. Other reports address the environmental emissions benefits attributable to WAP, and characterize the program. Special studies were conducted to: estimate the impacts of weatherization and healthy homes interventions on asthma-related Medicaid claims in a small cohort in Washington State; assess how weatherization recipients communicate their weatherization experiences to those in their social network, and assess processes implemented to defer homes for weatherization. Small studies addressed energy use in refrigerators, WAP as implemented in the U.S. territories for the first time, and weatherization s impacts on air conditioning energy savings. The national occupant survey was mined for additional insights on the impacts of weatherization on household budgets and energy behaviors post-weatherization. Lastly, the results of a survey of weatherization training centers are summarized.

  17. Towards a National Space Weather Predictive Capability

    Science.gov (United States)

    Fox, N. J.; Ryschkewitsch, M. G.; Merkin, V. G.; Stephens, G. K.; Gjerloev, J. W.; Barnes, R. J.; Anderson, B. J.; Paxton, L. J.; Ukhorskiy, A. Y.; Kelly, M. A.; Berger, T. E.; Bonadonna, L. C. M. F.; Hesse, M.; Sharma, S.

    2015-12-01

    National needs in the area of space weather informational and predictive tools are growing rapidly. Adverse conditions in the space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socio-economic losses and impacts on our security. Future space exploration and most modern human endeavors will require major advances in physical understanding and improved transition of space research to operations. At present, only a small fraction of the latest research and development results from NASA, NOAA, NSF and DoD investments are being used to improve space weather forecasting and to develop operational tools. The power of modern research and space weather model development needs to be better utilized to enable comprehensive, timely, and accurate operational space weather tools. The mere production of space weather information is not sufficient to address the needs of those who are affected by space weather. A coordinated effort is required to support research-to-applications transition efforts and to develop the tools required those who rely on this information. In this presentation we will review the space weather system developed for the Van Allen Probes mission, together with other datasets, tools and models that have resulted from research by scientists at JHU/APL. We will look at how these, and results from future missions such as Solar Probe Plus, could be applied to support space weather applications in coordination with other community assets and capabilities.

  18. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Science.gov (United States)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  19. Weather and place-based human behavior: recreational preferences and sensitivity

    Science.gov (United States)

    de Freitas, C. R.

    2015-01-01

    This study examines the links between biometeorological variables and the behavior of beach recreationists along with their rating of overall weather conditions. To identify and describe significance of on-site atmospheric conditions, two separate forms of response are examined. The first is sensory perception of the immediate atmospheric surround expressed verbally, which was the subject of earlier work. In the research reported here, on-site observations of behavior that reflect the effects of weather and climate are examined. By employing, independently, separate indicators of on-site experience, the reliability of each is examined and interpreted and apparent threshold conditions verified. The study site is King's Beach located on the coast of Queensland, Australia. On-site observations of atmospheric variables and beach user behavior are made for the daylight hours of 45 days spread over a 12-month period. The results show that behavioral data provide reliable and meaningful indications of the significance of the atmospheric environment for leisure. Atmospheric conditions within the zone of acceptability are those that the beach users can readily cope with or modify by a range of minor behavioral adjustments. Optimal weather conditions appear to be those requiring no specific behavioral adjustment. Attendance levels reflect only the outer limits of acceptability of the meteorological environment, while duration of visit enables calibration of levels of approval in so far as it reflects rating of on-site weather within a broad zone of tolerance. In a broad theoretical sense, the results add to an understanding of the relationship between weather and human behavior. This information is potentially useful in effective tourism management and planning.

  20. Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles

    Science.gov (United States)

    Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.

    2009-01-01

    Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.

  1. Evaluation of a variable speed limit system for wet and extreme weather conditions : phase 1 report.

    Science.gov (United States)

    2012-06-01

    Weather presents considerable challenges to the highway system, both in terms of safety and operations. From a safety standpoint, weather (i.e. precipitation in the form of rain, snow or ice) reduces pavement friction, thus increasing the potential f...

  2. Role of land state in a high resolution mesoscale model

    Indian Academy of Sciences (India)

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science ... Land surface characteristics; high resolution mesoscale model; Uttarakhand ... to predict realistic location, timing, amount,intensity and distribution of rainfall ... region embedded within two low pressure centers over Arabian Seaand Bay of Bengal.

  3. Mesoscale modeling of metal-loaded high explosives

    Energy Technology Data Exchange (ETDEWEB)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  4. Performance of WRF for Simulation of Mesoscale Meteorological Characteristics for Air Quality Assessment over Tropical Coastal City, Chennai

    Science.gov (United States)

    Madala, Srikanth; Srinivas, C. V.; Satyanarayana, A. N. V.

    2018-01-01

    The land-sea breezes (LSBs) play an important role in transporting air pollution from urban areas on the coast. In this study, the Advanced Research WRF (ARW) mesoscale model is used for predicting boundary layer features to understand the transport of pollution in different seasons over the coastal region of Chennai in Southern India. Sensitivity experiments are conducted with two non-local [Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2)] and three turbulence kinetic energy (TKE) closure [Mellor-Yamada-Nakanishi and Niino Level 2.5 (MYNN2) and Mellor-Yamada-Janjic (MYJ) and quasi-normal scale elimination (QNSE)], planetary boundary layer (PBL) parameterization schemes for simulating the thermodynamic structure, and low-level atmospheric flow in different seasons. Comparison of simulations with observations from a global positioning system (GPS) radiosonde, meteorological tower, automated weather stations, and Doppler weather radar (DWR)-derived wind data reveals that the characteristics of LSBs vary widely in different seasons and are more prominent during the pre-monsoon and monsoon seasons (March-September) with large horizontal and vertical extents compared to the post-monsoon and winter seasons. The qualitative and quantitative results indicate that simulations with ACM2 followed by MYNN2 and YSU produced various features of the LSBs, boundary layer parameters and the thermo-dynamical structure in better agreement with observations than other tested physical parameterization schemes. Simulations revealed seasonal variation of onset time, vertical extent of LSBs, and mixed layer depth, which would influence the air pollution dispersion in different seasons over the study region.

  5. Geospace monitoring for space weather research and operation

    Directory of Open Access Journals (Sweden)

    Nagatsuma Tsutomu

    2017-01-01

    Full Text Available Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  6. Geospace monitoring for space weather research and operation

    Science.gov (United States)

    Nagatsuma, Tsutomu

    2017-10-01

    Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.

  7. A three-dimensional ocean mesoscale simulation using data from the SEMAPHORE experiment: Mixed layer heat budget

    Science.gov (United States)

    Caniaux, Guy; Planton, Serge

    1998-10-01

    A primitive equation model is used to simulate the mesoscale circulation associated with a portion of the Azores Front investigated during the intensive observation period (IOP) of the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in fall 1993. The model is a mesoscale version of the ocean general circulation model (OGCM) developed at the Laboratoire d'Océanographie Dynamique et de Climatologie (LODYC) in Paris and includes open lateral boundaries, a 1.5-level-order turbulence closure scheme, and fine mesh resolution (0.11° for latitude and 0.09° for longitude). The atmospheric forcing is provided by satellite data for the solar and infrared fluxes and by analyzed (or reanalyzed for the wind) atmospheric data from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model. The extended data set collected during the IOP of SEMAPHORE enables a detailed initialization of the model, a coupling with the rest of the basin through time dependent open boundaries, and a model/data comparison for validation. The analysis of model outputs indicates that most features are in good agreement with independent available observations. The surface front evolution is subject to an intense deformation different from that of the deep front system, which evolves only weakly. An estimate of the upper layer heat budget is performed during the 22 days of the integration of the model. Each term of this budget is analyzed according to various atmospheric events that occurred during the experiment, such as the passage of a strong storm. This facilitates extended estimates of mixed layer or relevant surface processes beyond those which are obtainable directly from observations. Surface fluxes represent 54% of the heat loss in the mixed layer and 70% in the top 100-m layer, while vertical transport at the mixed layer bottom accounts for 31% and three-dimensional processes account for 14%.

  8. The effort to increase the space weather forecasting accuracy in KSWC

    Science.gov (United States)

    Choi, J. S.

    2017-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition as the Regional Warning Center of the International Space Environment Service (ISES). KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. Recently, KSWC are focusing on increasing the accuracy of space weather forecasting results and verifying the model generated results. The forecasting accuracy will be calculated based on the probability statistical estimation so that the results can be compared numerically. Regarding the cosmic radiation does, we are gathering the actual measured data of radiation does using the instrument by cooperation with the domestic airlines. Based on the measurement, we are going to verify the reliability of SAFE system which was developed by KSWC to provide the cosmic radiation does information with the airplane cabin crew and public users.

  9. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    Science.gov (United States)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  10. National Weather Service

    Science.gov (United States)

    ... GIS International Weather Cooperative Observers Storm Spotters Tsunami Facts and Figures National Water Center WEATHER SAFETY NOAA Weather Radio StormReady Heat Lightning Hurricanes Thunderstorms Tornadoes Rip Currents Floods Winter Weather ...

  11. Study on hybrid ground-coupled heat pump system for air-conditioning in hot-weather areas like Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Man, Y.; Yang, H.X. [Hong Kong Polytechnic Univ., Renewable Energy Research Group, Hung Hom, Kowloon, (Hong Kong). Dept. of Building Services Engineering

    2008-07-01

    Due to its high energy efficiency and reliable operation capability, the ground-coupled heat pump (GCHP) system is becoming attractive for air-conditioning in some moderate-weather regions. However, when the technology is used in buildings where there is only cooling load in hot-weather areas such as Hong Kong, the heat rejected into the ground by the GCHP systems will accumulate around the ground heat exchangers (GHE), resulting in degradation of system performance and increased system operating costs. This problem can be resolved by using a hybrid ground-coupled heat pump (HGCHP) system, as it uses supplemental heat rejecters to reject the accumulated heat. By modeling the heat transfer process of the system's main components, this paper presented a practical hourly simulation model of the HGCHP system. Based on this hourly simulation model, the computer program could be used to calculate the hour-by-hour operation data of the HGCHP system according to the cooling and hot water heating loads of a building. The paper discussed a case study that involved a design of both a HGCHP system and a traditional GCHP system for a hypothetical private residential building located in Hong Kong. The economic comparisons were performed between these two types of systems. It was concluded through the simulations that the HGCHP system could effectively solve the heat accumulation problem and reduce both the initial cost and operating cost of the air-conditioning system in the building. 19 refs., 1 tab., 13 figs.

  12. Probabilistic Harmonic Analysis on Distributed Photovoltaic Integration Considering Typical Weather Scenarios

    Science.gov (United States)

    Bin, Che; Ruoying, Yu; Dongsheng, Dang; Xiangyan, Wang

    2017-05-01

    Distributed Generation (DG) integrating to the network would cause the harmonic pollution which would cause damages on electrical devices and affect the normal operation of power system. On the other hand, due to the randomness of the wind and solar irradiation, the output of DG is random, too, which leads to an uncertainty of the harmonic generated by the DG. Thus, probabilistic methods are needed to analyse the impacts of the DG integration. In this work we studied the harmonic voltage probabilistic distribution and the harmonic distortion in distributed network after the distributed photovoltaic (DPV) system integrating in different weather conditions, mainly the sunny day, cloudy day, rainy day and the snowy day. The probabilistic distribution function of the DPV output power in different typical weather conditions could be acquired via the parameter identification method of maximum likelihood estimation. The Monte-Carlo simulation method was adopted to calculate the probabilistic distribution of harmonic voltage content at different frequency orders as well as the harmonic distortion (THD) in typical weather conditions. The case study was based on the IEEE33 system and the results of harmonic voltage content probabilistic distribution as well as THD in typical weather conditions were compared.

  13. Developing Mesoscale Model of Fibrin-Platelet Network Representing Blood Clotting =

    Science.gov (United States)

    Sun, Yueyi; Nikolov, Svetoslav; Bowie, Sam; Alexeev, Alexander; Lam, Wilbur; Myers, David

    Blood clotting disorders which prevent the body's natural ability to achieve hemostasis can lead to a variety of life threatening conditions such as, excessive bleeding, stroke, or heart attack. Treatment of these disorders is highly dependent on understanding the underlying physics behind the clotting process. Since clotting is a highly complex multi scale mechanism developing a fully atomistic model is currently not possible. We develop a mesoscale model based on dissipative particle dynamics (DPD) to gain fundamental understanding of the underlying principles controlling the clotting process. In our study, we examine experimental data on clot contraction using stacks of confocal microscopy images to estimate the crosslink density in the fibrin networks and platelet location. Using this data we reconstruct the platelet rich fibrin network and study how platelet-fibrin interactions affect clotting. Furthermore, we probe how different system parameters affect clot contraction. ANSF CAREER Award DMR-1255288.

  14. Investigation of porous concrete through macro and meso-scale testing

    NARCIS (Netherlands)

    Agar Ozbek, A.S.; Weerheijm, J.; Schlangen, H.E.J.G.

    2010-01-01

    In designing a porous concrete, containing a high volume of air pores, the effects of its mesoscale phases on its macro level properties have to be known. For this purpose, porous concretes having different aggregate gradings and cement paste compositions were investigated through macro-scale

  15. Optogenetic stimulation of a meso-scale human cortical model

    Science.gov (United States)

    Selvaraj, Prashanth; Szeri, Andrew; Sleigh, Jamie; Kirsch, Heidi

    2015-03-01

    Neurological phenomena like sleep and seizures depend not only on the activity of individual neurons, but on the dynamics of neuron populations as well. Meso-scale models of cortical activity provide a means to study neural dynamics at the level of neuron populations. Additionally, they offer a safe and economical way to test the effects and efficacy of stimulation techniques on the dynamics of the cortex. Here, we use a physiologically relevant meso-scale model of the cortex to study the hypersynchronous activity of neuron populations during epileptic seizures. The model consists of a set of stochastic, highly non-linear partial differential equations. Next, we use optogenetic stimulation to control seizures in a hyperexcited cortex, and to induce seizures in a normally functioning cortex. The high spatial and temporal resolution this method offers makes a strong case for the use of optogenetics in treating meso scale cortical disorders such as epileptic seizures. We use bifurcation analysis to investigate the effect of optogenetic stimulation in the meso scale model, and its efficacy in suppressing the non-linear dynamics of seizures.

  16. Mesoscale Model Data Preparation and Execution: A New Method Utilizing the Internet

    National Research Council Canada - National Science Library

    Kirby, Stephen

    2002-01-01

    In order to streamline and simplify the methodologies required to obtain and process the requisite meteorological data for mesoscale meteorological models such as the Battlescale Forecast Model (BFM...

  17. Weather-centric rangeland revegetation planning

    Science.gov (United States)

    Hardegree, Stuart P.; Abatzoglou, John T.; Brunson, Mark W.; Germino, Matthew; Hegewisch, Katherine C.; Moffet, Corey A.; Pilliod, David S.; Roundy, Bruce A.; Boehm, Alex R.; Meredith, Gwendwr R.

    2018-01-01

    Invasive annual weeds negatively impact ecosystem services and pose a major conservation threat on semiarid rangelands throughout the western United States. Rehabilitation of these rangelands is challenging due to interannual climate and subseasonal weather variability that impacts seed germination, seedling survival and establishment, annual weed dynamics, wildfire frequency, and soil stability. Rehabilitation and restoration outcomes could be improved by adopting a weather-centric approach that uses the full spectrum of available site-specific weather information from historical observations, seasonal climate forecasts, and climate-change projections. Climate data can be used retrospectively to interpret success or failure of past seedings by describing seasonal and longer-term patterns of environmental variability subsequent to planting. A more detailed evaluation of weather impacts on site conditions may yield more flexible adaptive-management strategies for rangeland restoration and rehabilitation, as well as provide estimates of transition probabilities between desirable and undesirable vegetation states. Skillful seasonal climate forecasts could greatly improve the cost efficiency of management treatments by limiting revegetation activities to time periods where forecasts suggest higher probabilities of successful seedling establishment. Climate-change projections are key to the application of current environmental models for development of mitigation and adaptation strategies and for management practices that require a multidecadal planning horizon. Adoption of new weather technology will require collaboration between land managers and revegetation specialists and modifications to the way we currently plan and conduct rangeland rehabilitation and restoration in the Intermountain West.

  18. Broadcast media and the dissemination of weather information

    Science.gov (United States)

    Byrnes, J.

    1973-01-01

    Although television is the public's most preferred source of weather information, it fails to provide weather reports to those groups who seek the information early in the day and during the day. The result is that many people most often use radio as a source of information, yet preferring the medium of television. The public actively seeks weather information from both radio and TV stations, usually seeking information on current conditions and short range forecasts. forecasts. Nearly all broadcast stations surveyed were eager to air severe weather bulletins quickly and often. Interest in Nowcasting was high among radio and TV broadcasters, with a significant portion indicating a willingness to pay something for the service. However, interest among TV stations in increasing the number of daily reports was small.

  19. Developing a Traffic Management Framework for Coastal Expressway Bridges under Adverse Weather Conditions: Case Study of Rain Day in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Chenming Jiang

    2015-01-01

    Full Text Available Adverse weather can reduce visibility and road surface friction, lower vehicle maneuverability, and increase crash frequency and injury severity. The impacts of adverse weather and its interactions with drivers and roadway on the operation and management of expressway or expressway bridges have drawn the researchers’ and managers’ attention to develop traffic management frameworks to mitigate the negative influence. Considering the peculiar geographical location and meteorological conditions, the Guangshen Coast Expressway-Shenzhen Segment (GSCE-SS was selected as a case in this study to illustrate the proposed traffic management framework on rain days. Conditions categorized by rainfall intensity and traffic flow were the main precondition to make the management decisions. CORSIM simulator was used to develop the alternate routes choice schemes, providing reference for other systems in the proposed traffic management framework. Maps of (a entrance ramp control (ERC strategies; (b mainline control strategies; (c alternate routes choice; (d information release schemes, under scenarios of different volume and rainstorm warning grades (BLUE to RED, were drawn to present a reference or demonstration for managers of long-span expressway bridges not only in China, but even in the world.

  20. Estimating the surface layer refractive index structure constant over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale atmospheric model.

    Science.gov (United States)

    Qing, Chun; Wu, Xiaoqing; Huang, Honghua; Tian, Qiguo; Zhu, Wenyue; Rao, Ruizhong; Li, Xuebin

    2016-09-05

    Since systematic direct measurements of refractive index structure constant ( Cn2) for many climates and seasons are not available, an indirect approach is developed in which Cn2 is estimated from the mesoscale atmospheric model outputs. In previous work, we have presented an approach that a state-of-the-art mesoscale atmospheric model called Weather Research and Forecasting (WRF) model coupled with Monin-Obukhov Similarity (MOS) theory which can be used to estimate surface layer Cn2 over the ocean. Here this paper is focused on surface layer Cn2 over snow and sea ice, which is the extending of estimating surface layer Cn2 utilizing WRF model for ground-based optical application requirements. This powerful approach is validated against the corresponding 9-day Cn2 data from a field campaign of the 30th Chinese National Antarctic Research Expedition (CHINARE). We employ several statistical operators to assess how this approach performs. Besides, we present an independent analysis of this approach performance using the contingency tables. Such a method permits us to provide supplementary key information with respect to statistical operators. These methods make our analysis more robust and permit us to confirm the excellent performances of this approach. The reasonably good agreement in trend and magnitude is found between estimated values and measurements overall, and the estimated Cn2 values are even better than the ones obtained by this approach over the ocean surface layer. The encouraging performance of this approach has a concrete practical implementation of ground-based optical applications over snow and sea ice.

  1. Phosphates of crandallite type (plumibogummite, goyazite, gorceixcite) results of amblygonite under weathering conditions from Coronel Murta's pegmatites (northeastern Miras Gerais) and your paleoecological meaning

    International Nuclear Information System (INIS)

    Neves, J.M.C.; Marciano, V.R.P.R.O.; Lena, J.C. de; Soares, A.C.P.

    1987-01-01

    This paper deals with crandallite type phosphates (plumbogummite, go yazite gorceixcite) originating from amblygonite under weathering conditions active in very recent times in the Coronel Murta are (northeastern Minas Gerais). Amblygonite, the crystallization of which too place about 500 Ma ago within the replacement bodies of pegmatites emplaced in mia-bearing quartzites from the Proterozoic Salinas Group, was the start ing material for the above mentione supergene minerals. The pegmatitic veins, emplaced in the quartzites according to wo perpendicular joint systems, underwent a strong weathering which produced the total kaolinization of the pegmatitic primary feldspars observed at the present time. During the supergene processes, the amblygonite, after acting as a geochemical fence for Ca, Sr, Ba, Pb etc., which provided conditions for the formation of the crandallitic minerals, was transformed into kaolinite. The stability fields these crandallitic minerals, comparared to those of kaolinite and amblygonite, show that they are easily formed under rather high pH values. As the environment becomes more acid and keeping in mind the very low cationic activities in groundwaters, al these phosphates become unstable and, under SiO 2 metasomatism, envolve to kaolinite. This is thermodynamically sound as revealed not only by the calculated stability diagrams but by the identified mineral assemblages as well. These mineral assemblages and their widespread regional scaterring seem to be induced not only by climatic and relief conditions but also by their position within the weathering profile. In the Coronel Murta area the most effective factors seem to have the very recent climatic and relief changes. (author) [pt

  2. Method to characterize local meteorology at nuclear facilities for application to emergency response needs

    International Nuclear Information System (INIS)

    Lindsey, C.G.; Glantz, C.S.

    1986-04-01

    Effluent dispersion is evaluated using computer codes that require various meteorological parameters such as wind and stability data. These data will be based on current conditions at the site in question, and on forecasts of the expected local meteorology for the time period to be simulated. To assist NRC personnel in preparing these forecasts, a weather-typing model was implemented to analyze the characteristic behavior of local meteorology as it responds to various synoptic-scale weather features (e.g., warm fronts, cold fronts, high pressure systems). Historical observations acquired by instrumented towers at several nuclear power plants were analyzed as a function of the prevailing synoptic weather feature, synoptic-scale pressure gradient, and time of year. This study focused on sites located in shoreline and complex terrain environments because of the occurrence of mesoscale circulations, which are the sea/lake-land breeze and valley wind systems. Such circulations produce diurnally changing wind and stability conditions that cannot be readily identified by synoptic-scale weather forecasts. The advantage in analyzing the climatological behavior of local meteorology as it responds to various synoptic weather systems is that certain weather systems will control the local meteorology and produce persistent conditions

  3. Winter circulation weather types and hospital admissions for respiratory diseases in Galicia, Spain.

    Science.gov (United States)

    Royé, D; Taboada, J J; Martí, A; Lorenzo, M N

    2016-04-01

    The link between various pathologies and atmospheric conditions has been a constant topic of study over recent decades in many places across the world; knowing more about it enables us to pre-empt the worsening of certain diseases, thereby optimizing medical resources. This study looked specifically at the connections in winter between respiratory diseases and types of atmospheric weather conditions (Circulation Weather Types, CWT) in Galicia, a region in the north-western corner of the Iberian Peninsula. To do this, the study used hospital admission data associated with these pathologies as well as an automatic classification of weather types. The main result obtained was that weather types giving rise to an increase in admissions due to these diseases are those associated with cold, dry weather, such as those in the east and south-east, or anticyclonic types. A second peak was associated with humid, hotter weather, generally linked to south-west weather types. In the future, this result may help to forecast the increase in respiratory pathologies in the region some days in advance.

  4. Winter circulation weather types and hospital admissions for respiratory diseases in Galicia, Spain

    Science.gov (United States)

    Royé, D.; Taboada, J. J.; Martí, A.; Lorenzo, M. N.

    2016-04-01

    The link between various pathologies and atmospheric conditions has been a constant topic of study over recent decades in many places across the world; knowing more about it enables us to pre-empt the worsening of certain diseases, thereby optimizing medical resources. This study looked specifically at the connections in winter between respiratory diseases and types of atmospheric weather conditions (Circulation Weather Types, CWT) in Galicia, a region in the north-western corner of the Iberian Peninsula. To do this, the study used hospital admission data associated with these pathologies as well as an automatic classification of weather types. The main result obtained was that weather types giving rise to an increase in admissions due to these diseases are those associated with cold, dry weather, such as those in the east and south-east, or anticyclonic types. A second peak was associated with humid, hotter weather, generally linked to south-west weather types. In the future, this result may help to forecast the increase in respiratory pathologies in the region some days in advance.

  5. Bioavailability and biodegradation of weathered diesel fuel in aquifer material under denitrifying conditions

    International Nuclear Information System (INIS)

    Bregnard, T.P.A.; Hoehener, P.; Zeyer, J.

    1998-01-01

    During the in situ bioremediation of a diesel fuel-contaminated aquifer in Menziken, Switzerland, aquifer material containing weathered diesel fuel (WDF) and indigenous microorganisms was excavated. This material was used to identify factors limiting WDF biodegradation under denitrifying conditions. Incubations of this material for 360 to 390 d under denitrifying conditions resulted in degradation of 23% of the WDF with concomitant consumption of NO 3 - and production of inorganic carbon. The biodegradation of WDF and the rate of NO 3 - consumption was stimulated by agitation of the microcosms. Biodegradation was not stimulated by the addition of a biosurfactant (rhamnolipids) or a synthetic surfactant (Triton X-100) at concentrations above their critical micelle concentrations. The rhamnolipids were biodegraded preferentially to WDF, whereas Triton X-100 was not degraded. Both surfactants reduced the surface tension of the growth medium from 72 to <35 dynes/cm and enhanced the apparent aqueous solubility of the model hydrocarbon n-hexadecane by four orders of magnitude. Solvent-extracted WDF, added at a concentration equal to that already present in the aquifer material, was also biodegraded by the microcosms, but not at a higher rate than the WDF already present in the material. The results show that the denitrifying biodegradation of WDF is not necessarily limited by bioavailability but rather by the inherent recalcitrance of WDF

  6. Calculation of extreme wind atlases using mesoscale modeling. Final report

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Badger, Jake

    This is the final report of the project PSO-10240 "Calculation of extreme wind atlases using mesoscale modeling". The overall objective is to improve the estimation of extreme winds by developing and applying new methodologies to confront the many weaknesses in the current methodologies as explai...

  7. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    Science.gov (United States)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  8. Weather during bloom affects pollination and yield of highbush blueberry.

    Science.gov (United States)

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Weather plays an important role in spring-blooming fruit crops due to the combined effects on bee activity, flower opening, pollen germination, and fertilization. To determine the effects of weather on highbush blueberry, Vaccinium corymbosum L., productivity, we monitored bee activity and compared fruit set, weight, and seed number in a field stocked with honey bees, Apis mellifera L., and common eastern bumble bees, Bombus impatiens (Cresson). Flowers were subjected to one of five treatments during bloom: enclosed, open, open during poor weather only, open during good weather only, or open during poor and good weather. Fewer bees of all types were observed foraging and fewer pollen foragers returned to colonies during poor weather than during good weather. There were also changes in foraging community composition: honey bees dominated during good weather, whereas bumble bees dominated during poor weather. Berries from flowers exposed only during poor weather had higher fruit set in 1 yr and higher berry weight in the other year compared with enclosed clusters. In both years, clusters exposed only during good weather had > 5 times as many mature seeds, weighed twice as much, and had double the fruit set of those not exposed. No significant increase over flowers exposed during good weather was observed when clusters were exposed during good and poor weather. Our results are discussed in terms of the role of weather during bloom on the contribution of bees adapted to foraging during cool conditions.

  9. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara

    Directory of Open Access Journals (Sweden)

    J. H. Marsham

    2008-12-01

    Full Text Available Observations of the Saharan boundary layer, made during the GERBILS field campaign, show that mesoscale land surface temperature variations (which were related to albedo variations induced mesoscale circulations. With weak winds along the aircraft track, land surface temperature anomalies with scales of greater than 10 km are shown to significantly affect boundary-layer temperatures and winds. Such anomalies are expected to affect the vertical mixing of the dusty and weakly stratified Saharan Residual Layer (SRL. Mesoscale variations in winds are also shown to affect dust loadings in the boundary layer.

    Using the aircraft observations and data from the COSMO model, a region of local dust uplift, with strong along-track winds, was identified in one low-level flight. Large eddy model (LEM simulations based on this location showed linearly organised boundary-layer convection. Calculating dust uplift rates from the LEM wind field showed that the boundary-layer convection increased uplift by approximately 30%, compared with the uplift rate calculated neglecting the convection. The modelled effects of boundary-layer convection on uplift are shown to be larger when the boundary-layer wind is decreased, and most significant when the mean wind is below the threshold for dust uplift and the boundary-layer convection leads to uplift which would not otherwise occur.

    Both the coupling of albedo features to the atmosphere on the mesoscale, and the enhancement of dust uplift by boundary-layer convection are unrepresented in many climate models, but may have significant impacts on the vertical transport and uplift of desert dust. Mesoscale effects in particular tend to be difficult to parametrise.

  10. Surface Weather, Signal Service and Weather Bureau

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Surface Weather, Signal Service and Weather Bureau (SWSSWB) Records primarily created by the United States Army Signal Service from 1819 until the paid and voluntary...

  11. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Michael B.; Ku, Jessie C.; Vaccarezza, Victoria M.; Schatz, George C.; Mirkin , Chad A. (NWU)

    2016-06-15

    The nanoscale manipulation of matter allows properties to be created in a material that would be difficult or even impossible to achieve in the bulk state. Progress towards such functional nanoscale architectures requires the development of methods to precisely locate nanoscale objects in three dimensions and for the formation of rigorous structure–function relationships across multiple size regimes (beginning from the nanoscale). Here, we use DNA as a programmable ligand to show that two- and three-dimensional mesoscale superlattice crystals with precisely engineered optical properties can be assembled from the bottom up. The superlattices can transition from exhibiting the properties of the constituent plasmonic nanoparticles to adopting the photonic properties defined by the mesoscale crystal (here a rhombic dodecahedron) by controlling the spacing between the gold nanoparticle building blocks. Furthermore, we develop a generally applicable theoretical framework that illustrates how crystal habit can be a design consideration for controlling far-field extinction and light confinement in plasmonic metamaterial superlattices.

  12. The influence of weather on health-related help-seeking behavior of senior citizens in Hong Kong

    Science.gov (United States)

    Wong, Ho Ting; Chiu, Marcus Yu Lung; Wu, Cynthia Sau Ting; Lee, Tsz Cheung

    2015-03-01

    It is believed that extreme hot and cold weather has a negative impact on general health conditions. Much research focuses on mortality, but there is relatively little community health research. This study is aimed at identifying high-risk groups who are sensitive to extreme weather conditions, in particular, very hot and cold days, through an analysis of the health-related help-seeking patterns of over 60,000 Personal Emergency Link (PE-link) users in Hong Kong relative to weather conditions. In the study, 1,659,716 PE-link calls to the help center were analyzed. Results showed that females, older elderly, people who did not live alone, non-subsidized (relatively high-income) users, and those without medical histories of heart disease, hypertension, stroke, and diabetes were more sensitive to extreme weather condition. The results suggest that using official government weather forecast reports to predict health-related help-seeking behavior is feasible. An evidence-based strategic plan could be formulated by using a method similar to that used in this study to identify high-risk groups. Preventive measures could be established for protecting the target groups when extreme weather conditions are forecasted.

  13. Modelling NOX concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model

    Science.gov (United States)

    Sanchez, Beatriz; Santiago, Jose Luis; Martilli, Alberto; Martin, Fernando; Borge, Rafael; Quaassdorff, Christina; de la Paz, David

    2017-08-01

    Air quality management requires more detailed studies about air pollution at urban and local scale over long periods of time. This work focuses on obtaining the spatial distribution of NOx concentration averaged over several days in a heavily trafficked urban area in Madrid (Spain) using a computational fluid dynamics (CFD) model. A methodology based on weighted average of CFD simulations is applied computing the time evolution of NOx dispersion as a sequence of steady-state scenarios taking into account the actual atmospheric conditions. The inputs of emissions are estimated from the traffic emission model and the meteorological information used is derived from a mesoscale model. Finally, the computed concentration map correlates well with 72 passive samplers deployed in the research area. This work reveals the potential of using urban mesoscale simulations together with detailed traffic emissions so as to provide accurate maps of pollutant concentration at microscale using CFD simulations.

  14. Mesoscale model parameterizations for radiation and turbulent fluxes at the lower boundary

    International Nuclear Information System (INIS)

    Somieski, F.

    1988-11-01

    A radiation parameterization scheme for use in mesoscale models with orography and clouds has been developed. Broadband parameterizations are presented for the solar and the terrestrial spectral ranges. They account for clear, turbid or cloudy atmospheres. The scheme is one-dimensional in the atmosphere, but the effects of mountains (inclination, shading, elevated horizon) are taken into account at the surface. In the terrestrial band, grey and black clouds are considered. Furthermore, the calculation of turbulent fluxes of sensible and latent heat and momentum at an inclined lower model boundary is described. Surface-layer similarity and the surface energy budget are used to evaluate the ground surface temperature. The total scheme is part of the mesoscale model MESOSCOP. (orig.) With 3 figs., 25 refs [de

  15. Evaluation of a mesoscale dispersion modelling tool during the CAPITOUL experiment

    Science.gov (United States)

    Lac, C.; Bonnardot, F.; Connan, O.; Camail, C.; Maro, D.; Hebert, D.; Rozet, M.; Pergaud, J.

    2008-12-01

    Atmospheric transport and dispersion were investigated during the CAPITOUL campaign using measurements of sulphur hexafluoride (SF6) tracer. Six releases of SF6 tracer were performed (March 9-11 and July 1-3, 2004) in the same suburban area of Toulouse conurbation, during the Intensive Observing Periods (IOP) of CAPITOUL. Concentration data were collected both at ground-level along axes perpendicular to the wind direction (at distances ranging between 280 m and 5000 m from the release point), and above the ground at 100 m and 200 m height using aircraft flights. Meteorological conditions were all associated with daytime anticyclonic conditions with weak winds and convective clear and cloudy boundary layers. A meso-scale dispersion modelling system, PERLE, developed at Meteo-France for environmental emergencies in case of atmospheric accidental release, was evaluated in terms of meteorology and dispersion, for the different tracer experiments, in its operational configuration. PERLE is based on the combination of the non-hydrostatic meso-scale MESO-NH model, running at 2 km horizontal resolution, and the Lagrangian particle model SPRAY. The statistical meteorological evaluation includes two sets of simulations with initialisation from ECMWF or ALADIN. The meteorological day-to-day error statistics show fairly good Meso-NH predictions, in terms of wind speed, wind direction and near-surface temperature. A strong sensitivity to initial fields concerns the surface fluxes, crucial for dispersion, with an excessive drying of the convective boundary layer with ALADIN initial fields, leading to an overprediction of surface sensible heat fluxes. A parameterization of dry and shallow convection according to the Eddy-Diffusivity-Mass-Flux (EDMF) approach (Pergaud et al. 2008) allows an efficient mixing in the Convective Boundary Layer (CBL) and improves significantly the wind fields. A statistical evaluation of the dispersion prediction was then performed and shows a

  16. Cold weather oil spill response training

    International Nuclear Information System (INIS)

    Solsberg, L.B.; Owens, E.H.

    2001-01-01

    In April 2000, a three-day oil spill response training program was conducted on Alaska's North Slope. The unique hands-on program was specifically developed for Chevron Corporation's world-wide response team. It featured a combination of classroom and outdoor sessions that helped participants to learn and apply emergency measures in a series of field exercises performed in very cold weather conditions. Temperatures remained below minus 20 degrees C and sometimes reached minus 40 degrees C throughout the training. The classroom instructions introduced participants to the Emergency Prevention Preparedness and Response (EPPR) Working Group's Field Guide for Spill Response in Arctic Waters. This guide provides response strategies specific to the Arctic, including open water, ice and snow conditions. The sessions also reviewed the Alaska Clean Seas Tactics Manual which addresses spill containment and recovery, storage, tracking, burning and disposal. The issues that were emphasized throughout the training program were cold weather safety and survival. During the training sessions, participants were required to set up weather ports and drive snowmobiles and all terrain vehicles. Their mission was to detect oil with infra-red and hand-held devices. They were required to contain the oil by piling snow into snow banks, and by augering, trenching and slotting ice. Oil was removed by trimming operations on solid ice, snow melting, snow blowing, skimming and pumping. In-situ burning was also performed. Other sessions were also conducted develop skills in site characterization and treating oiled shorelines. The successfully conducted field sessions spanned all phases of a cleanup operation in cold weather. 5 refs., 7 figs

  17. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange: Influence of mesoscale topography

    Science.gov (United States)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.; Ju, W.; Govind, A.

    2008-06-01

    Carbon dynamics in peatlands are controlled, in large part, by their wetness as defined by water table depth and volumetric liquid soil moisture content. A common type of peatland is raised bogs that typically have a multiple-layer canopy of vascular plants over a Sphagnum moss ground cover. Their convex form restricts water supply to precipitation and water is shed toward the margins, usually by lateral subsurface flow. The hydraulic gradient for lateral subsurface flow is governed by the peat surface topography at the mesoscale (˜200 m to 5 km). To investigate the influence of mesoscale topography on wetness, evapotranspiration (ET), and gross primary productivity (GPP) in a bog during the snow-free period, we compare the outputs of a further developed version of the daily Boreal Ecosystem Productivity Simulator (BEPS) with observations made at the Mer Bleue peatland, located near Ottawa, Canada. Explicitly considering mesoscale topography, simulated total ET and GPP correlate well with measured ET (r = 0.91) and derived gross ecosystem productivity (GEP; r = 0.92). Both measured ET and derived GEP are simulated similarly well when mesoscale topography is neglected, but daily simulated values are systematically underestimated by about 10% and 12% on average, respectively, due to greater wetness resulting from the lack of lateral subsurface flow. Owing to the differences in moss surface conductances of water vapor and carbon dioxide with increasing moss water content, the differences in the spatial patterns of simulated total ET and GPP are controlled by the mesotopographic position of the moss ground cover.

  18. Analyzing Personal Happiness from Global Survey and Weather Data: A Geospatial Approach.

    Science.gov (United States)

    Peng, Yi-Fan; Tang, Jia-Hong; Fu, Yang-chih; Fan, I-chun; Hor, Maw-Kae; Chan, Ta-Chien

    2016-01-01

    Past studies have shown that personal subjective happiness is associated with various macro- and micro-level background factors, including environmental conditions, such as weather and the economic situation, and personal health behaviors, such as smoking and exercise. We contribute to this literature of happiness studies by using a geospatial approach to examine both macro and micro links to personal happiness. Our geospatial approach incorporates two major global datasets: representative national survey data from the International Social Survey Program (ISSP) and corresponding world weather data from the National Oceanic and Atmospheric Administration (NOAA). After processing and filtering 55,081 records of ISSP 2011 survey data from 32 countries, we extracted 5,420 records from China and 25,441 records from 28 other countries. Sensitivity analyses of different intervals for average weather variables showed that macro-level conditions, including temperature, wind speed, elevation, and GDP, are positively correlated with happiness. To distinguish the effects of weather conditions on happiness in different seasons, we also adopted climate zone and seasonal variables. The micro-level analysis indicated that better health status and eating more vegetables or fruits are highly associated with happiness. Never engaging in physical activity appears to make people less happy. The findings suggest that weather conditions, economic situations, and personal health behaviors are all correlated with levels of happiness.

  19. Space Weather Forecasting and Research at the Community Coordinated Modeling Center

    Science.gov (United States)

    Aronne, M.

    2015-12-01

    The Space Weather Research Center (SWRC), within the Community Coordinated Modeling Center (CCMC), provides experimental research forecasts and analysis for NASA's robotic mission operators. Space weather conditions are monitored to provide advance warning and forecasts based on observations and modeling using the integrated Space Weather Analysis Network (iSWA). Space weather forecasters come from a variety of backgrounds, ranging from modelers to astrophysicists to undergraduate students. This presentation will discuss space weather operations and research from an undergraduate perspective. The Space Weather Research, Education, and Development Initiative (SW REDI) is the starting point for many undergraduate opportunities in space weather forecasting and research. Space weather analyst interns play an active role year-round as entry-level space weather analysts. Students develop the technical and professional skills to forecast space weather through a summer internship that includes a two week long space weather boot camp, mentorship, poster session, and research opportunities. My unique development of research projects includes studying high speed stream events as well as a study of 20 historic, high-impact solar energetic particle events. This unique opportunity to combine daily real-time analysis with related research prepares students for future careers in Heliophysics.

  20. EVALUATION OF YEAR WEATHER CONDITIONS AND HYBRIDS IMPACT ON THE SUNFLOWER (HELIANTHUS ANNUUS L. ACHENE YIELD AND FAT CONTENT

    Directory of Open Access Journals (Sweden)

    Ivan Černý

    2013-02-01

    Full Text Available The field polyfactorial trials were carried out on experimental fields of the Plant Biology and Ecology Centre, the Faculty of Agrobiology and Food Resources of the Slovak University of Agriculture (SUA in Nitra Dolná Malanta in two experimental years 2010 and 2011. Experimental locality is situated in the corn production area (climatic region: warm; climatic sub-region dry; climatic zone: warm, dry with mild winter and long sunshine, in altitude 250 m above sea level, with brown soil. On the trials was observed the influence of both temperature and moisture conditions of experimental area on sunflower yield of achenes and fat content. Fore crop of sunflower was spring barley (Hordeum vulgare L. Technological system of sunflower cultivation was realized in accordance with conventional technology of cultivation. The basic fertilization was made by balance method on the base of agrochemical analysis of soil for expected yield 3 t ha-1. The meteorological data were got out from agro-meteorological station the Faculty of Horticulture and Land Engineering SUA in Nitra. The results show statistically high significant impact of the year weather conditions on the both achenes yield and fat content. In the range of weather conditions, year 2011 have better impact on the values of both indicators than year 2010. The effect of hybrids on monitored production parameters was statistically high significant. In the year 2010 and 2011, in terms of yield quantity but also fat content had hybrid NK Kondi the most stable production. In 2010 and 2011 were reported negative correlations of fat content from achenes yield except of hybrid NK Tristan, which reach positive addiction in 2010.

  1. Short-Range prediction of a Mediterranean Severe weather event using EnKF: Configuration tests

    Science.gov (United States)

    Carrio Carrio, Diego Saul; Homar Santaner, Víctor

    2014-05-01

    The afternoon of 4th October 2007, severe damaging winds and torrential rainfall affected the Island of Mallorca. This storm produced F2-F3 tornadoes in the vicinity of Palma, with one person killed and estimated damages to property exceeding 10 M€. Several studies have analysed the meteorological context in which this episode unfolded, describing the formation of a train of multiple thunderstorms along a warm front and the evolution of a squall line organized from convective activity initiated offshore Murcia during that morning. Couhet et al. (2011) attributed the correct simulation of the convective system and particularly its organization as a squall line to the correct representation of a convergence line at low-levels over the Alboran Sea during the first hours of the day. The numerical prediction of mesoscale phenomena which initiates, organizes and evolves over the sea is an extremely demanding challenge of great importance for coastal regions. In this study, we investigate the skill of a mesoscale ensemble data assimilation system to predict the severe phenomena occurred on 4th October 2007. We use an Ensemble Kalman Filter which assimilates conventional (surface, radiosonde and AMDAR) data using the DART implementation from (NCAR). On the one hand, we analyse the potential of the assimilation cycle to advect critical observational data towards decisive data-void areas over the sea. Furthermore, we assess the sensitivity of the ensemble products to the ensemble size, grid resolution, assimilation period and physics diversity in the mesoscale model. In particular, we focus on the effect of these numerical configurations on the representation of the convective activity and the precipitation field, as valuable predictands of high impact weather. Results show that the 6-h EnKF assimilation period produces initial fields that successfully represent the environment in which initiation occurred and thus the derived numerical predictions render improved

  2. Mesoscale meteorological model based on radioactive explosion cloud simulation

    International Nuclear Information System (INIS)

    Zheng Yi; Zhang Yan; Ying Chuntong

    2008-01-01

    In order to simulate nuclear explosion and dirty bomb radioactive cloud movement and concentration distribution, mesoscale meteorological model RAMS was used. Particles-size, size-active distribution and gravitational fallout in the cloud were considered. The results show that the model can simulate the 'mushroom' clouds of explosion. Three-dimension fluid field and radioactive concentration field were received. (authors)

  3. Concept of Operations for Road Weather Connected Vehicle and Automated Vehicle Applications

    Science.gov (United States)

    2017-05-21

    Weather has a significant impact on the operations of the nation's roadway system year round. These weather events translate into changes in traffic conditions, roadway safety, travel reliability, operational effectiveness and productivity. It is, th...

  4. Weather swap as an instrument for weather risk management in wheat production

    Directory of Open Access Journals (Sweden)

    Marković Todor

    2012-01-01

    Full Text Available A special type of weather derivatives are weather forwards and they exists mostly in the form of weather swaps. Hedging effectiveness in wheat production with and without weather swap was analyzed in this paper using stochastic dominance. The results show that the effect of risk reduction is significant using weather swap, but geographical- basis risk and production-related basis risk are important factor that reduce the utility of weather derivatives.

  5. WRF Mesoscale Pre-Run for the Wind Atlas of Mexico

    DEFF Research Database (Denmark)

    Hahmann, Andrea N.; Pena Diaz, Alfredo; Hansen, Jens Carsten

    This report documents the work performed by DTU Wind Energy for the project “Atlas Eólico Mexicano” or the Wind Atlas of Mexico. This document reports on the methods used in “Pre-run” of the windmapping project for Mexico. The interim mesoscale modeling results were calculated from the output...

  6. Climate and weather impact timing of emergence of bats.

    Directory of Open Access Journals (Sweden)

    Winifred F Frick

    Full Text Available Interest in forecasting impacts of climate change have heightened attention in recent decades to how animals respond to variation in climate and weather patterns. One difficulty in determining animal response to climate variation is lack of long-term datasets that record animal behaviors over decadal scales. We used radar observations from the national NEXRAD network of Doppler weather radars to measure how group behavior in a colonially-roosting bat species responded to annual variation in climate and daily variation in weather over the past 11 years. Brazilian free-tailed bats (Tadarida brasiliensis form dense aggregations in cave roosts in Texas. These bats emerge from caves daily to forage at high altitudes, which makes them detectable with Doppler weather radars. Timing of emergence in bats is often viewed as an adaptive trade-off between emerging early and risking predation or increased competition and emerging late which restricts foraging opportunities. We used timing of emergence from five maternity colonies of Brazilian free-tailed bats in south-central Texas during the peak lactation period (15 June-15 July to determine whether emergence behavior was associated with summer drought conditions and daily temperatures. Bats emerged significantly earlier during years with extreme drought conditions than during moist years. Bats emerged later on days with high surface temperatures in both dry and moist years, but there was no relationship between surface temperatures and timing of emergence in summers with normal moisture levels. We conclude that emergence behavior is a flexible animal response to climate and weather conditions and may be a useful indicator for monitoring animal response to long-term shifts in climate.

  7. Verification of an ENSO-Based Long-Range Prediction of Anomalous Weather Conditions During the Vancouver 2010 Olympics and Paralympics

    Science.gov (United States)

    Mo, Ruping; Joe, Paul I.; Doyle, Chris; Whitfield, Paul H.

    2014-01-01

    A brief review of the anomalous weather conditions during the Vancouver 2010 Winter Olympic and Paralympic Games and the efforts to predict these anomalies based on some preceding El Niño-Southern Oscillation (ENSO) signals are presented. It is shown that the Olympic Games were held under extraordinarily warm conditions in February 2010, with monthly mean temperature anomalies of +2.2 °C in Vancouver and +2.8 °C in Whistler, ranking respectively as the highest and the second highest in the past 30 years (1981-2010). The warm conditions continued, but became less anomalous, in March 2010 for the Paralympic Games. While the precipitation amounts in the area remained near normal through this winter, the lack of snow due to warm conditions created numerous media headlines and practical problems for the alpine competitions. A statistical model was developed on the premise that February and March temperatures in the Vancouver area could be predicted using an ENSO signal with considerable lead time. This model successfully predicted the warmer-than-normal, lower-snowfall conditions for the Vancouver 2010 Winter Olympics and Paralympics.

  8. A reactive transport model for Marcellus shale weathering

    Science.gov (United States)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore

  9. An analytical coarse-graining method which preserves the free energy, structural correlations, and thermodynamic state of polymer melts from the atomistic to the mesoscale.

    Science.gov (United States)

    McCarty, J; Clark, A J; Copperman, J; Guenza, M G

    2014-05-28

    Structural and thermodynamic consistency of coarse-graining models across multiple length scales is essential for the predictive role of multi-scale modeling and molecular dynamic simulations that use mesoscale descriptions. Our approach is a coarse-grained model based on integral equation theory, which can represent polymer chains at variable levels of chemical details. The model is analytical and depends on molecular and thermodynamic parameters of the system under study, as well as on the direct correlation function in the k → 0 limit, c0. A numerical solution to the PRISM integral equations is used to determine c0, by adjusting the value of the effective hard sphere diameter, dHS, to agree with the predicted equation of state. This single quantity parameterizes the coarse-grained potential, which is used to perform mesoscale simulations that are directly compared with atomistic-level simulations of the same system. We test our coarse-graining formalism by comparing structural correlations, isothermal compressibility, equation of state, Helmholtz and Gibbs free energies, and potential energy and entropy using both united atom and coarse-grained descriptions. We find quantitative agreement between the analytical formalism for the thermodynamic properties, and the results of Molecular Dynamics simulations, independent of the chosen level of representation. In the mesoscale description, the potential energy of the soft-particle interaction becomes a free energy in the coarse-grained coordinates which preserves the excess free energy from an ideal gas across all levels of description. The structural consistency between the united-atom and mesoscale descriptions means the relative entropy between descriptions has been minimized without any variational optimization parameters. The approach is general and applicable to any polymeric system in different thermodynamic conditions.

  10. Artificial Weathering of Biotite and Uranium Sorption Characteristics

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon; Lee, Jae Kwang

    2009-01-01

    An experiment for uranium sorption onto fresh and weathered biotites was performed. After centrifugation, concentrations of uranium in the supernatants were analyzed using ICP-MS, and biotite samples were investigated using XRD and SEM. With powdered biotites (<3 mm in size), we have conducted uranium sorption experiments about fresh and weathered biotites to obtain uranium sorption amounts in various pH conditions. The uranium sorption was not high at a low pH (e.g., pH 3), but increased with increasing pH. There were lower uranium sorption by the weathered biotites than by the fresh ones, and the difference was much larger at higher pH (e.g., pH 11). The lower sorption values of uranium by the weathered biotites may be caused by a change of mineral surfaces and a chemical behavior of surrounding dissolved elements. It seems that the uranium-mineral interaction has been diminished, especially, in the weathered biotite by a destruction and dissolution of preferential sorption sites on the mineral surfaces and by the colloidal formation from dissolved elements.

  11. Weathering and landscape evolution

    Science.gov (United States)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  12. Mesoscale Iron Enrichment Experiments 1993–2005 : Synthesis and Future Directions

    NARCIS (Netherlands)

    Boyd, P.W.; Jickells, T.; Law, C.S.; Blain, S.; Boyle, E.A.; Buesseler, K.O.; Coale, K.H.; Cullen, J.J.; Baar, H.J.W. de; Follows, M.; Harvey, M.; Lancelot, C.; Levasseur, M.; Owens, N.P.J.; Pollard, R.; Rivkin, R.B.; Sarmiento, J.; Schoemann, V.; Smetacek, V.; Takeda, S.; Tsuda, A.; Turner, S.; Watson, A.J.; Jickells, S.

    2007-01-01

    Since the mid-1980s, our understanding of nutrient limitation of oceanic primary production has radically changed. Mesoscale iron addition experiments (FeAXs) have unequivocally shown that iron supply limits production in one-third of the world ocean, where surface macronutrient concentrations are

  13. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    Science.gov (United States)

    Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-12-04

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.

  14. Examples of mesoscale structures and short-term wind variations detected by VHF Doppler radar

    Science.gov (United States)

    Forbes, G. S.

    1986-01-01

    The first of three wind profilers planned for operation in central and western Pennsylvania began full-time, high-quality operation during July 1985. It is located about 20 km south-southeast of University Park and operates at 50 MHz. Another 50-MHz radar and a 400-MHz radar are to be installed over the next few months, to complete a mesoscale triangle with sides of 120 to 160 km. During the period since early July, a number of weather systems have passed over the wind profiler. Those accompanied by thunderstorms caused data losses either because the Department computer system lost power or because power went out at the profiler site. A backup power supply and an automatic re-start program will be added to the profiler system to minimize such future losses. Data have normally been averaged over a one-hour period, although there have been some investigations of shorter-period averaging. In each case, preliminary examinations reveal that the profiler winds are indicative of meteorological phenomena. The only occasions of bad or missing data are obtained when airplane noise is occasionally experienced and when the returned power is nearly at the noise level, at the upper few gates, where a consensus wind cannot be determined. Jets streams, clouds, and diurnal variations of winds are discussed.

  15. Towards high resolution mapping of 3-D mesoscale dynamics from observations

    Directory of Open Access Journals (Sweden)

    B. Buongiorno Nardelli

    2012-10-01

    Full Text Available The MyOcean R&D project MESCLA (MEsoSCaLe dynamical Analysis through combined model, satellite and in situ data was devoted to the high resolution 3-D retrieval of tracer and velocity fields in the oceans, based on the combination of in situ and satellite observations and quasi-geostrophic dynamical models. The retrieval techniques were also tested and compared with the output of a primitive equation model, with particular attention to the accuracy of the vertical velocity field as estimated through the Q vector formulation of the omega equation. The project focused on a test case, covering the region where the Gulf Stream separates from the US East Coast. This work demonstrated that innovative methods for the high resolution mapping of 3-D mesoscale dynamics from observations can be used to build the next generations of operational observation-based products.

  16. Vulnerability of Bread-Baskets to Weather Shocks

    Science.gov (United States)

    Gerber, J. S.; Ray, D. K.; West, P. C.; Foley, J. A.

    2013-12-01

    Many analyses of food security consider broad trends in food supply (crop production, crop use) and demand (changing diets, population growth.) However, if past shocks to the food system due to weather events (i.e. droughts) were to repeat themselves today, the resulting famines could be far more serious due to increased concentration of grain production in vulnerable bread-baskets, and decreased resilience of global and regional food systems (i.e. lower stocks, dependence on fewer crops). The present research project takes advantage of high-resolution historical weather datasets to assess probabilities of historically observed droughts repeating themselves in one or more of today's bread-basket regions. Using recently developed relationships between weather and crop yield, we consider the likelihood of region-wide crop failures under current conditions, and also under various climate scenarios.

  17. What is the benefit of driving a hydrological model with data from a multi-site weather generator compared to data from a simple delta change approach?"

    Science.gov (United States)

    Rössler, Ole; Keller, Denise; Fischer, Andreas

    2016-04-01

    . Recently, a multi-site weather generator was developed and tested for downscaling purposes over Switzerland. The weather generator is of type Richardson, that is run with spatially correlated random number streams to ensure spatial consistency. As a downside, multi-site weather generators are much more complex to develop, but they are a very promising alternative downscaling technique. A new multi-site-weather generator was developed for Switzerland in a previous study (Keller et al. 2014). In this study, we tested this new multi-site-weather generator against the "standard" delta change derived data in a hydrological impact assessment study that focused on runoff in the meso-scale catchment of the river Thur catchment. Two hydrological models of different complexity were run with the data sets under present (1980-2009) and under future conditions (2070-2099), assuming the SRES A1B emission2070-2100 scenario conditions. Eight meteorological stations were used to interpolate a meteorological field that served as input to calibrate and validate the two hydrological models against runoff. The downscaling intercomparison was done for We applied 10 GCM-RCM combinations simulations of the ENSEMBLES. In case of the weather generator, that allows for multiple synthetic realizations, we generated for which change factors for each station (delta change approach) were available and generated 25 realizations of multi-site weather. with each climate model projection. Results show that the delta change driven data constitutes only one appropriate representation compared to theof a bandwidth of runoff projections yielded by the multi-site weather generator data. Especially oOn average, differences between both the two approaches are small. Low and high runoff Runoff values to both extremes are however better reproduced with the weather generator driven data set. The stochastic representation of multiday rainfall events are considered as the main reason. Hence, tThere is a clear yet small

  18. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    Science.gov (United States)

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  19. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø , Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjø llo, Solfrid Sæ tre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  20. Mesoscale eddies are oases for higher trophic marine life

    KAUST Repository

    Godø, Olav R.

    2012-01-17

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. 2012 God et al.

  1. Mesoscale eddies are oases for higher trophic marine life.

    Directory of Open Access Journals (Sweden)

    Olav R Godø

    Full Text Available Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.

  2. Impact of SLA assimilation in the Sicily Channel Regional Model: model skills and mesoscale features

    Directory of Open Access Journals (Sweden)

    A. Olita

    2012-07-01

    Full Text Available The impact of the assimilation of MyOcean sea level anomalies along-track data on the analyses of the Sicily Channel Regional Model was studied. The numerical model has a resolution of 1/32° degrees and is capable to reproduce mesoscale and sub-mesoscale features. The impact of the SLA assimilation is studied by comparing a simulation (SIM, which does not assimilate data with an analysis (AN assimilating SLA along-track multi-mission data produced in the framework of MyOcean project. The quality of the analysis was evaluated by computing RMSE of the misfits between analysis background and observations (sea level before assimilation. A qualitative evaluation of the ability of the analyses to reproduce mesoscale structures is accomplished by comparing model results with ocean colour and SST satellite data, able to detect such features on the ocean surface. CTD profiles allowed to evaluate the impact of the SLA assimilation along the water column. We found a significant improvement for AN solution in terms of SLA RMSE with respect to SIM (the averaged RMSE of AN SLA misfits over 2 years is about 0.5 cm smaller than SIM. Comparison with CTD data shows a questionable improvement produced by the assimilation process in terms of vertical features: AN is better in temperature while for salinity it gets worse than SIM at the surface. This suggests that a better a-priori description of the vertical error covariances would be desirable. The qualitative comparison of simulation and analyses with synoptic satellite independent data proves that SLA assimilation allows to correctly reproduce some dynamical features (above all the circulation in the Ionian portion of the domain and mesoscale structures otherwise misplaced or neglected by SIM. Such mesoscale changes also infer that the eddy momentum fluxes (i.e. Reynolds stresses show major changes in the Ionian area. Changes in Reynolds stresses reflect a different pumping of eastward momentum from the eddy to

  3. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions.

    Science.gov (United States)

    Xu, Xiao-Qing; Liu, Bin; Zhu, Bao-Qing; Lan, Yi-Bin; Gao, Yuan; Wang, Dong; Reeves, Malcolm J; Duan, Chang-Qing

    2015-04-01

    Volatile compounds are considered important for plants to communicate with each other and interact with their environments. Most wine-producing regions in China feature a continental monsoon climate with hot-wet summers and dry-cold winters, giving grapes markedly different growing environments compared to the Mediterranean or oceanic climates described in previous reports. This study focused on comparing the volatile profiles of Vitis vinifera L. cv. Cabernet Sauvignon berries from two regions with distinct climate characteristics: Changli has a warm and semi-humid summer, and Gaotai has a cool-arid summer and a cold winter. The relationship between meteorological metrics and the concentrations of grape volatiles were also examined. In harvested grapes, benzyl alcohol, phenylethyl alcohol, 1-hexanol and 1-octen-3-ol were more abundant in the Changli berries, while hexanal, heptanal, 2-methoxy-3-isobutylpyrazine, and (E)-β-damascenone presented higher levels in the Gaotai berries. The fluctuation in the accumulation of volatile compounds observed during berry development was closely correlated with variations in short-term weather (weather in a week), especially rainfall. The concentration of some volatiles, notably aliphatic aldehydes, was significantly related to diurnal temperature differences. The variability during berry development of concentrations for compounds such as C6 volatile compounds, 2-methoxy-3-isobutylpyrazine and (E)-β-damascenone strongly depended upon weather conditions. This work expands our knowledge about the influence of continental monsoon climates on volatile compounds in developing grape berries. It will also improve the comprehension of the plant response to their surrounding environments through the accumulation of volatiles. The results will help growers to alter viticultural practices according to local conditions to improve the aromatic quality of grapes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Dynamics of bluff-body-stabilized lean premixed syngas flames in a meso-scale channel

    KAUST Repository

    Lee, Bok Jik

    2016-07-15

    Direct numerical simulations are conducted to investigate the dynamics of lean premixed syngas flames stabilized by a bluff-body in a meso-scale channel at near blow-off conditions, in order to provide fundamental insights into the physical mechanisms responsible for the critical phenomena. Flames in a two-dimensional meso-scale channel with a square flame holder are adopted as the model configuration, and a syngas mixture at an equivalence ratio of 0.5 with the CO:H ratio of 1 is considered. As the inlet velocity is increased, the initially stable steady flames undergo a transition to an unsteady mode of regular asymmetric fluctuation. When the inlet velocity is further increased, the flame is eventually blown off. Between the regular fluctuation mode and blow-off limit, there exists a narrow range of the inlet velocity where the flames exhibit periodic local extinction and recovery. Approaching further to the blow-off limit, the recovery mode fails to occur but the flame survives as a short kernel attached to the base of the bluff-body, until it is completely extinguished as the attached flames are gradually shrunk towards the bluff-body. The results are systematically compared with the hydrogen flame results reported in our earlier study. Examination of the characteristic time scales of relevant processes provided understanding of key mechanisms responsible for the observed differences, thereby allowing improved description of the local extinction and re-ignition dynamics that are critical to flame stabilization.

  5. A Meteorological Supersite for Aviation and Cold Weather Applications

    Science.gov (United States)

    Gultepe, Ismail; Agelin-Chaab, M.; Komar, J.; Elfstrom, G.; Boudala, F.; Zhou, B.

    2018-05-01

    The goal of this study is to better understand atmospheric boundary layer processes and parameters, and to evaluate physical processes for aviation applications using data from a supersite observing site. Various meteorological sensors, including a weather and environmental unmanned aerial vehicle (WE-UAV), and a fog and snow tower (FSOS) observations are part of the project. The PanAm University of Ontario Institute of Technology (UOIT) Meteorological Supersite (PUMS) observations are being collected from April 2015 to date. The FSOS tower gathers observations related to rain, snow, fog, and visibility, aerosols, solar radiation, and wind and turbulence, as well as surface and sky temperature. The FSOSs are located at three locations at about 450-800 m away from the PUMS supersite. The WE-UAV measurements representing aerosol, wind speed and direction, as well as temperature (T) and relative humidity (RH) are provided during clear weather conditions. Other measurements at the PUMS site include cloud backscattering profiles from CL51 ceilometer, MWR observations of liquid water content (LWC), T, and RH, and Microwave Rain Radar (MRR) reflectivity profile, as well as the present weather type, snow water depth, icing rate, 3D-ultrasonic wind and turbulence, and conventional meteorological observations from compact weather stations, e.g., WXTs. The results based on important weather event studies, representing fog, snow, rain, blowing snow, wind gust, planetary boundary layer (PBL) wind research for UAV, and icing conditions are given. The microphysical parameterizations and analysis processes for each event are provided, but the results should not be generalized for all weather events and be used cautiously. Results suggested that integrated observing systems based on data from a supersite as well as satellite sites can provide better information applicable to aviation meteorology, including PBL weather research, validation of numerical weather model predictions, and

  6. Reconstruction of Historical Weather by Assimilating Old Weather Diary Data

    Science.gov (United States)

    Neluwala, P.; Yoshimura, K.; Toride, K.; Hirano, J.; Ichino, M.; Okazaki, A.

    2017-12-01

    Climate can control not only human life style but also other living beings. It is important to investigate historical climate to understand the current and future climates. Information about daily weather can give a better understanding of past life on earth. Long-term weather influences crop calendar as well as the development of civilizations. Unfortunately, existing reconstructed daily weather data are limited to 1850s due to the availability of instrumental data. The climate data prior to that are derived from proxy materials (e.g., tree-ring width, ice core isotopes, etc.) which are either in annual or decadal scale. However, there are many historical documents which contain information about weather such as personal diaries. In Japan, around 20 diaries in average during the 16th - 19th centuries have been collected and converted into a digitized form. As such, diary data exist in many other countries. This study aims to reconstruct historical daily weather during the 18th and 19th centuries using personal daily diaries which have analogue weather descriptions such as `cloudy' or `sunny'. A recent study has shown the possibility of assimilating coarse weather data using idealized experiments. We further extend this study by assimilating modern weather descriptions similar to diary data in recent periods. The Global Spectral model (GSM) of National Centers for Environmental Prediction (NCEP) is used to reconstruct weather with the Local Ensemble Kalman filter (LETKF). Descriptive data are first converted to model variables such as total cloud cover (TCC), solar radiation and precipitation using empirical relationships. Those variables are then assimilated on a daily basis after adding random errors to consider the uncertainty of actual diary data. The assimilation of downward short wave solar radiation using weather descriptions improves RMSE from 64.3 w/m2 to 33.0 w/m2 and correlation coefficient (R) from 0.5 to 0.8 compared with the case without any

  7. Acute Illness Among Surfers After Exposure to Seawater in Dry- and Wet-Weather Conditions.

    Science.gov (United States)

    Arnold, Benjamin F; Schiff, Kenneth C; Ercumen, Ayse; Benjamin-Chung, Jade; Steele, Joshua A; Griffith, John F; Steinberg, Steven J; Smith, Paul; McGee, Charles D; Wilson, Richard; Nelsen, Chad; Weisberg, Stephen B; Colford, John M

    2017-10-01

    Rainstorms increase levels of fecal indicator bacteria in urban coastal waters, but it is unknown whether exposure to seawater after rainstorms increases rates of acute illness. Our objective was to provide the first estimates of rates of acute illness after seawater exposure during both dry- and wet-weather periods and to determine the relationship between levels of indicator bacteria and illness among surfers, a population with a high potential for exposure after rain. We enrolled 654 surfers in San Diego, California, and followed them longitudinally during the 2013-2014 and 2014-2015 winters (33,377 days of observation, 10,081 surf sessions). We measured daily surf activities and illness symptoms (gastrointestinal illness, sinus infections, ear infections, infected wounds). Compared with no exposure, exposure to seawater during dry weather increased incidence rates of all outcomes (e.g., for earache or infection, adjusted incidence rate ratio (IRR) = 1.86, 95% confidence interval (CI): 1.27, 2.71; for infected wounds, IRR = 3.04, 95% CI: 1.54, 5.98); exposure during wet weather further increased rates (e.g., for earache or infection, IRR = 3.28, 95% CI: 1.95, 5.51; for infected wounds, IRR = 4.96, 95% CI: 2.18, 11.29). Fecal indicator bacteria measured in seawater (Enterococcus species, fecal coliforms, total coliforms) were strongly associated with incident illness only during wet weather. Urban coastal seawater exposure increases the incidence rates of many acute illnesses among surfers, with higher incidence rates after rainstorms. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  8. Composition of in situ burn residue as a function of weathering conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Ascanius, Birgit Elkjær; Brandvik, Per Johan

    2013-01-01

    removed the light compounds eluting before C13. No effect from the prior weathering time or the different ice coverage was seen in the burn residue composition. The content of selected Poly Aromatic Hydrocarbons (PAHs) was determined and it was noted that the concentration of PAHs with more than 4 rings...

  9. THE INFLUENCE OF INTERCROPS AND FARMYARD MANURE FERTILIZATION IN CHANGEABLE WEATHER CONDITIONS ON CONSUMPTION VALUE OF POTATO TUBERS

    Directory of Open Access Journals (Sweden)

    ANNA PŁAZA

    2010-10-01

    Full Text Available The paper presents the results of research carried out over 1999-2002 with the aims to determine the influence of intercrops and farmyard manure fertilization on consumption value of potato tubers in changeable weather conditions. The following combinations of intercrops fertilization were taken into account: the control plot (without intercrop fertilization, farmyard manure, undersown crop (birdsfoot trefoil, birdsfoot trefoil + Italian ryegrass, Italian ryegrass, stubble crop (oleiferous radish, oleiferous radish – mulch. The results pointed that, the conditions of vegetation period, significantly modified the consumption values of potato tubers. The consumption value of potato tubers which were fertilized with intercrops was formed on approximated level, as the potato which was fertilized with farmyard manure. The best consumption features, especially taste, had potatoes which were fertilized with birdsfoot trefoil and with the mixture of birdsfoot trefoil and Italian ryegrass.

  10. Mesoscale simulation of tropical cyclones in the South Pacific: Climatology and interannual variability

    Digital Repository Service at National Institute of Oceanography (India)

    Jourdain, N.C.; Marchesiello, P.; Menkes, C.E.; Lefevre, J.; Vincent, E.M.; Lengaigne, M.; Chauvin, F.

    The Weather Research and Forecast model at 1/3 degree resolution is used to simulate the statistics of tropical cyclone (TC) activity in the present climate of the South Pacific. In addition to the large-scale conditions, the model is shown...

  11. Monthly Weather Review

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Supplements to the Monthly Weather Review publication. The Weather Bureau published the Monthly weather review Supplement irregularly from 1914 to 1949. The...

  12. Adverse weather conditions for European wheat production will become more frequent with climate change

    DEFF Research Database (Denmark)

    Trnka, Miroslav; Rötter, Reimund P.; Ruiz-Ramos, Margarita

    2014-01-01

    events that might significantly affect wheat yield in Europe. For this purpose we analysed changes in the frequency of the occurrence of 11 adverse weather events. Using climate scenarios based on the most recent ensemble of climate models and greenhouse gases emission estimates, we assessed...... crop failure across Europe. This study provides essential information for developing adaptation strategies.......Europe is the largest producer of wheat, the second most widely grown cereal crop after rice. The increased occurrence and magnitude of adverse and extreme agroclimatic events are considered a major threat for wheat production. We present an analysis that accounts for a range of adverse weather...

  13. Modeling of mesoscale dispersion effect on the piezoresistivity of carbon nanotube-polymer nanocomposites via 3D computational multiscale micromechanics methods

    International Nuclear Information System (INIS)

    Ren, Xiang; Seidel, Gary D; Chaurasia, Adarsh K; Oliva-Avilés, Andrés I; Ku-Herrera, José J; Avilés, Francis

    2015-01-01

    In uniaxial tension and compression experiments, carbon nanotube (CNT)-polymer nanocomposites have demonstrated exceptional mechanical and coupled electrostatic properties in the form of piezoresistivity. In order to better understand the correlation of the piezoresistive response with the CNT dispersion at the mesoscale, a 3D computational multiscale micromechanics model based on finite element analysis is constructed to predict the effective macroscale piezoresistive response of CNT/polymer nanocomposites. The key factors that may contribute to the overall piezoresistive response, i.e. the nanoscale electrical tunneling effect, the inherent CNT piezoresistivity and the CNT mesoscale network effect are incorporated in the model based on a 3D multiscale mechanical–electrostatic coupled code. The results not only explain how different nanoscale mechanisms influence the overall macroscale piezoresistive response through the mesoscale CNT network, but also give reason and provide bounds for the wide range of gauge factors found in the literature offering insight regarding how control of the mesoscale CNT networks can be used to tailor nanocomposite piezoresistive response. (paper)

  14. Active Discriminative Dictionary Learning for Weather Recognition

    Directory of Open Access Journals (Sweden)

    Caixia Zheng

    2016-01-01

    Full Text Available Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM and K-NN, we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

  15. Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Oishik, E-mail: oishik-sen@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Gaul, Nicholas J., E-mail: nicholas-gaul@ramdosolutions.com [RAMDO Solutions, LLC, Iowa City, IA 52240 (United States); Choi, K.K., E-mail: kyung-choi@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States); Jacobs, Gustaaf, E-mail: gjacobs@sdsu.edu [Aerospace Engineering, San Diego State University, San Diego, CA 92115 (United States); Udaykumar, H.S., E-mail: hs-kumar@uiowa.edu [Mechanical and Industrial Engineering, The University of Iowa, Iowa City, IA 52242 (United States)

    2017-05-01

    Macro-scale computations of shocked particulate flows require closure laws that model the exchange of momentum/energy between the fluid and particle phases. Closure laws are constructed in this work in the form of surrogate models derived from highly resolved mesoscale computations of shock-particle interactions. The mesoscale computations are performed to calculate the drag force on a cluster of particles for different values of Mach Number and particle volume fraction. Two Kriging-based methods, viz. the Dynamic Kriging Method (DKG) and the Modified Bayesian Kriging Method (MBKG) are evaluated for their ability to construct surrogate models with sparse data; i.e. using the least number of mesoscale simulations. It is shown that if the input data is noise-free, the DKG method converges monotonically; convergence is less robust in the presence of noise. The MBKG method converges monotonically even with noisy input data and is therefore more suitable for surrogate model construction from numerical experiments. This work is the first step towards a full multiscale modeling of interaction of shocked particle laden flows.

  16. Energy- and humidity-budget of the non-hydrostatic mesoscale model GESIMA by nesting into the regional climate model REMO; Energie- und Feuchtehaushalt im nichthydrostatischen Mesoskalamodell GESIMA bei Nestung in das Regionalklimamodell REMO

    Energy Technology Data Exchange (ETDEWEB)

    Horneffer, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik]|[Hamburg Univ. (Germany). Fachbereich 15 - Geowissenschaften

    1997-12-31

    The `Geesthacht Simulationsmodel of the Atmosphere` (GESIMA) was nested into the `Regional Climate Model` (REMO). Exemplary studies prove that the presented nesting scheme is suitable to resolve subscale phenomena in the regional climate model. Some results of simulations above the island Gotland in the Baltic Sea were presented. The mesoscale model GESIMA could now be used to analyze real synoptic weather situations. (orig.) [Deutsch] Das Geesthachter Simulationsmodell der Atmosphaere (GESIMA) wird in das Regionalklimamodell (REMO) genestet. Beispielhafte Untersuchungen zeigen, dass mit der genesteten Modellversion subskalige Effekte, die durch das grobe Raster des Regionalklimamodells fallen, aufgeloest werden. Dies wird anhand von Simulationen ueberprueft. Hauptuntersuchungsgegenstand ist die Insel Gotland in der Ostsee. Duch die Nestung kann das Mesoskalamodell fuer tatsaechliche synoptische Situationen eingesetzt werden. (orig.)

  17. Climate Change and Crop Exposure to Adverse Weather: Changes to Frost Risk and Grapevine Flowering Conditions.

    Science.gov (United States)

    Mosedale, Jonathan R; Wilson, Robert J; Maclean, Ilya M D

    2015-01-01

    The cultivation of grapevines in the UK and many other cool climate regions is expected to benefit from the higher growing season temperatures predicted under future climate scenarios. Yet the effects of climate change on the risk of adverse weather conditions or events at key stages of crop development are not always captured by aggregated measures of seasonal or yearly climates, or by downscaling techniques that assume climate variability will remain unchanged under future scenarios. Using fine resolution projections of future climate scenarios for south-west England and grapevine phenology models we explore how risks to cool-climate vineyard harvests vary under future climate conditions. Results indicate that the risk of adverse conditions during flowering declines under all future climate scenarios. In contrast, the risk of late spring frosts increases under many future climate projections due to advancement in the timing of budbreak. Estimates of frost risk, however, were highly sensitive to the choice of phenology model, and future frost exposure declined when budbreak was calculated using models that included a winter chill requirement for dormancy break. The lack of robust phenological models is a major source of uncertainty concerning the impacts of future climate change on the development of cool-climate viticulture in historically marginal climatic regions.

  18. [Advance in the study of the powdered weathering profile of sandstone on China Yungang Grottoes based on VIS/NIR hyperspectral imaging].

    Science.gov (United States)

    Zhou, Xiao; Gao, Feng; Zhang, Ai-wu; Zhou, Ke-chao

    2012-03-01

    Yungang Grottoes were built in the mid-5th century A. D., and named as a UNESCO World Heritage site in 2001. Most of the grottoes were built on the feldspathic quartz sandstones. They were seriously damaged due to the environmental impact. The main form of the weathering is the powdered weathering. The weathering conditions are generally characterized by electrical sounding, penetration resistance, molecular spectroscopy, etc. However, although these methods can give good results about the weathering conditions for a specified sample or site, they are not suitable for providing a global profile of the weathering conditions. The present paper provides a method for effectively and roundly assessing the overall powdered weathering conditions of the Yungang Grottoes based on hyperspectral imaging. Powdered weathering could change the structure and granularity of the sandstone, and thus change the spectral reflectance of the sandstone surface. Based on the hyperspectral data collected from 400 nm to 1 000 nm and normalized by log residuals method, the powdered weathering conditions of the sandstones were classified into strong weathering and weak weathering. The weathering profile was also mapped in the Envi platform. The mapping images were verified using the measured hyperspectal data of the columns in front of the 9th and 10th grottoes as the examples. The mapping images were substantially fitted to the real observations, showing that hyperspectral imaging can be used to estimate the overall powdered weathering of the sandstones.

  19. Aviation Model: A Fine-Scale Numerical Weather Prediction System for Aviation Applications at the Hong Kong International Airport

    Directory of Open Access Journals (Sweden)

    Wai-Kin Wong

    2013-01-01

    Full Text Available The Hong Kong Observatory (HKO is planning to implement a fine-resolution Numerical Weather Prediction (NWP model for supporting the aviation weather applications at the Hong Kong International Airport (HKIA. This new NWP model system, called Aviation Model (AVM, is configured at a horizontal grid spacing of 600 m and 200 m. It is based on the WRF-ARW (Advance Research WRF model that can have sufficient computation efficiency in order to produce hourly updated forecasts up to 9 hours ahead on a future high performance computer system with theoretical peak performance of around 10 TFLOPS. AVM will be nested inside the operational mesoscale NWP model of HKO with horizontal resolution of 2 km. In this paper, initial numerical experiment results in forecast of windshear events due to seabreeze and terrain effect are discussed. The simulation of sea-breeze-related windshear is quite successful, and the headwind change observed from flight data could be reproduced in the model forecast. Some impacts of physical processes on generating the fine-scale wind circulation and development of significant convection are illustrated. The paper also discusses the limitations in the current model setup and proposes methods for the future development of AVM.

  20. Shadowing effects of offshore wind farms - an idealised mesoscale model study

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    The study of wind farm (WF) interaction is expected to gain importance, since the offshore wind farm density will increase especially in the North Sea in the near future. We present preliminary results of wind farm interaction simulated by mesoscale models. We use the Explicit Wake Parametrisatio...

  1. Relationships between Long-Term Demography and Weather in a Sub-Arctic Population of Common Eider.

    Directory of Open Access Journals (Sweden)

    Jón Einar Jónsson

    Full Text Available Effects of local weather on individuals and populations are key drivers of wildlife responses to climatic changes. However, studies often do not last long enough to identify weather conditions that influence demographic processes, or to capture rare but extreme weather events at appropriate scales. In Iceland, farmers collect nest down of wild common eider Somateria mollissima and many farmers count nests within colonies annually, which reflects annual variation in the number of breeding females. We collated these data for 17 colonies. Synchrony in breeding numbers was generally low between colonies. We evaluated 1 demographic relationships with weather in nesting colonies of common eider across Iceland during 1900-2007; and 2 impacts of episodic weather events (aberrantly cold seasons or years on subsequent breeding numbers. Except for episodic events, breeding numbers within a colony generally had no relationship to local weather conditions in the preceding year. However, common eider are sexually mature at 2-3 years of age and we found a 3-year time lag between summer weather and breeding numbers for three colonies, indicating a positive effect of higher pressure, drier summers for one colony, and a negative effect of warmer, calmer summers for two colonies. These findings may represent weather effects on duckling production and subsequent recruitment. Weather effects were mostly limited to a few aberrant years causing reductions in breeding numbers, i.e. declines in several colonies followed severe winters (1918 and some years with high NAO (1992, 1995. In terms of life history, adult survival generally is high and stable and probably only markedly affected by inclement weather or aberrantly bad years. Conversely, breeding propensity of adults and duckling production probably do respond more to annual weather variations; i.e. unfavorable winter conditions for adults increase probability of death or skipped breeding, whereas favorable summers

  2. Biogeochemistry of Recently Discovered Oxygen-Depleted Mesoscale Eddies in the Open Eastern Tropical North Atlantic

    Science.gov (United States)

    Fiedler, B.; Grundle, D.; Löscher, C. R.; Schütte, F.; Hauss, H.; Karstensen, J.; Silva, P.; Koertzinger, A.

    2016-02-01

    Severely oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered only recently. So far, few remote surveys conducted with autonomous platforms such as moorings, underwater gliders and profiling floats have provided a very first insight into these mesoscale eddies. Due to their hydrographic properties such water bodies are well isolated from ambient waters and therefore can develop severe near-surface oxygen deficits. In this presentation we show results from the first-ever biogeochemical survey of one of these anticyclonic mode-water eddies conducted in spring 2014 at the Cape Verde Ocean Observatory (CVOO) off West Africa. Very low oxygen concentrations of 4.5 µmol kg-1 associated with a CO2 partial pressure of 1164 µatm were found close to the core of the eddy (at 100 m depth). Measurements for nitrate and phosphate also show exceptional high values. Findings point to rapid oxygen consumption through remineralization of organic matter along with depressed lateral mixing of this water body. Indeed, rates for oxygen utilization (OUR) were found to be enhanced when compared to known values in the Atlantic. A closer look into the carbonate system inside the eddýs core revealed disadvantageous conditions for calcifying organisms with the pH dropping down to 7.6 and the Aragonite saturation level reaching 1 at the lower boundary of the euphotic zone. Finally, strong indications for a shift in nitrogen cycling in the core of the eddy from nitrification towards denitrification were found based on gene abundance and N2O-isotope analyses. To our knowledge such severe hypoxic and even suboxic near-surface conditions along with active denitrification have never been reported before in the open Atlantic Ocean.

  3. Probabilistic, meso-scale flood loss modelling

    Science.gov (United States)

    Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno

    2016-04-01

    Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.

  4. Numerical simulation of heavy precipitation events using mesoscale weather forecast models. Validation with radar data and diagnosis of the atmospheric moisture budget; Numerische Simulation von Starkniederschlagsereignissen mit mesoskaligen Wettervorhersagemodellen. Ueberpruefung mit Radar-Daten und Diagnose der atmosphaerischen Wasserbilanz

    Energy Technology Data Exchange (ETDEWEB)

    Keil, C.

    2000-07-01

    Convective precipitation systems contribute substantially to the summertime rainfall maximum in the northern Alpine region. The capability of mesoscale weather forecast models in capturing such heavy precipitation events is investigated. The complementary application of so far hardly used areal radar data and conventional rain gauge observations enables a case-study-type evaluation of summertime precipitation episodes. Different rainfall episodes are simulated with the former operational model (DM, meshsize 14 km) of Deutscher Wetterdienst (DWD). The influence of the horizontal resolution and the parameterization of moist convection is subsequently studied with a higher resolution atmospheric model (MC2, meshsize 2 km). Diagnostic studies on the atmospheric water budget regarding the rainfall episode, which instigated the Oder-flood in summer 1997, allow an examination of the origin of the moisture and the genesis of the copious precipitation. (orig.) [German] Konvektive Niederschlagssysterne tragen im Nordalpenraum wesentlich zum sommerlichen Niederschlagsmaximum bei. Die Faehigkeit mesoskaliger Wettervorhersagemodelle, solche Starkniederschlagsereignisse zu erfassen, wird in dieser Arbeit untersucht. Durch den komplementaeren Gebrauch von, bisher kaum genutzten, flaechendeckenden Radardaten und konventionellen Niederschlagsmessungen des Bodenmessnetzes werden Modellergebnisse sommerlicher Niederschlagssysteme fallstudienhaft detailliert ueberprueft. Fuer verschiedene Starkniederschlagsereignisse werden dazu Modellsimulationen mit dem in den 90er Jahren operationellen Modell (DM, Maschenweite 14 km) des Deutschen Wetterdienstes (DWD) durchgefuehrt. Zur Untersuchung des Einflusses der horizontalen Maschenweite und der Niederschlagsparametrisierung werden ferner numerische Simulationen mit einem hoeher aufloesdenden Atmosphaerenmodell (MC2, Maschenweite 2 km) behandelt. Anhand diagnostischer Untersuchungen der atmosphaerischen Wasserbilanz laesst sich ausserdem die

  5. Weather effects on the returns and volatility of the Shanghai stock market

    Science.gov (United States)

    Kang, Sang Hoon; Jiang, Zhuhua; Lee, Yeonjeong; Yoon, Seong-Min

    2010-01-01

    This study investigates the weather effects on returns as well as volatility in the Shanghai stock market. In order to analyze the influence of the opening of B-share market to domestic investors, it is assumed that domestic investors are more sensitive to the Shanghai local weather than foreign investors. In doing so, extreme weather condition dummies are generated by using the 21-day and 31-day moving average and its standard deviation. Empirical analysis provides two key results regarding weather effects. First, the weather effect exists in the A-share returns, but does not exist in the B-share returns over the whole period. In addition, the post-opening period shows the strong weather effect on B-share returns only, indicating that the market openness to domestic investors results in the weather effect. Second, the weather effect has a strong influence on the volatility of both A- and B-share returns. Similar to the case of returns, the weather effect on volatility is explained by the openness of B-share market.

  6. CO2 driven weathering vs plume driven weathering as inferred from the groundwater of a persistently degassing basaltic volcano: Mt. Etna

    Science.gov (United States)

    Liotta, Marcello; D'Alessandro, Walter

    2016-04-01

    At Mt. Etna the presence of a persistent volcanic plume provides large amounts of volcanogenic elements to the bulk deposition along its flanks. The volcanic plume consists of solid particles, acidic droplets and gaseous species. After H2O and CO2, S, Cl and F represent the most abundant volatile elements emitted as gaseous species from the craters. During rain events acidic gases interact rapidly with droplets lowering the pH of rain. This process favors the dissolution and dissociation of the most acidic gases. Under these conditions, the chemical weathering of volcanic rocks and ashes is promoted by the acid rain during its infiltration. Subsequently during groundwater circulation, chemical weathering of volcanic rocks is also driven by the huge amount of deep magmatic carbon dioxide (CO2) coming up through the volcanic edifice and dissolving in the water. These two different weathering steps occur under very different conditions. The former occurs in a highly acidic environment (pH rates depend strongly on the pH, while the latter usually occurs under slightly acidic conditions since the pH has been already neutralized by the interaction with volcanics rocks. The high content of chlorine is mainly derived from interactions between the plume and rainwater, while the total alkalinity can be completely ascribed to the dissociation of carbonic acid (H2CO3) after the hydration of CO2. The relative contributions of plume-derived elements/weathering and CO2-driven weathering has been computed for each element. In addition, the comparison between the chemical compositions of the bulk deposition and of groundwater provides a new understanding about the mobility of volatile elements. Other processes such as ion exchange, iddingsite formation, and carbonate precipitation can also play roles, but only to minor extents. The proposed approach has revealed that the persistent plume strongly affects the chemical composition of groundwater at Mt. Etna and probably also at other

  7. Atmospheric conditions during high ragweed pollen concentrations in Zagreb, Croatia

    Science.gov (United States)

    Prtenjak, Maja Telišman; Srnec, Lidija; Peternel, Renata; Madžarević, Valentina; Hrga, Ivana; Stjepanović, Barbara

    2012-11-01

    We examined the atmospheric conditions favourable to the occurrence of maximum concentrations of ragweed pollen with an extremely high risk of producing allergy. Over the 2002-2009 period, daily pollen data collected in Zagreb were used to identify two periods of high pollen concentration (> 600 grains/m3) for our analysis: period A (3-4 September 2002) and period B (6-7 September 2003). Synoptic conditions in both periods were very similar: Croatia was under the influence of a lower sector high pressure system moving slowly eastward over Eastern Europe. During the 2002-2009 period, this type of weather pattern (on ~ 70% of days), in conjunction with almost non-gradient surface pressure conditions in the area (on ~ 30% of days) characterised days when the daily pollen concentrations were higher than 400 grains/m3. Numerical experiments using a mesoscale model at fine resolution showed successful multi-day simulations reproducing the local topographic influence on wind flow and in reasonable agreement with available observations. According to the model, the relatively weak synoptic flow (predominantly from the eastern direction) allowed local thermal circulations to develop over Zagreb during both high pollen episodes. Two-hour pollen concentrations and 48-h back-trajectories indicated that regional-range transport of pollen grains from the central Pannonian Plain was the cause of the high pollen concentrations during period A. During period B, the north-westward regional-range transport in Zagreb was supplemented significantly by pronounced horizontal recirculation of pollen grains. This recirculation happened within the diurnal local circulation over the city, causing a late-evening increase in pollen concentration.

  8. Oxyradical accumulation and rapid deterioration of soybean seeds due to field weathering.

    Science.gov (United States)

    Yadav, Sanjeev; Bhatia, V S; Guruprasad, K N

    2006-02-01

    The effect of field weathering on oxyradical accumulation and subsequent changes were studied in the seeds of soybean [Glycine max (L.) Merr.] cv. JS 71-05. Electron spin resonance (ESR) quantification of oxyradical revealed that field weathering plays an important role in acceleration of their accumulation. One week of weathering increased the accumulation of oxyradicals to almost 2-fold and triggered the deteriorative cascade, by enhancing the lipid peroxidation and membrane perturbation, leading to cell death in seed tissues and poor germinability and vigour of soybean seeds. Thus, the weather conditions at the time of physiological maturity to harvesting of crop are very crucial and the field weathering plays a critical role for the maintenance of seed quality.

  9. [The influence of weather conditions on the epidemiology of vector-borne diseases by the example of West Nile fever in Russia].

    Science.gov (United States)

    Platonov, A E

    2006-01-01

    Climate changes must influence the incidence of vector-borne infections, but their effects cannot be revealed due to lack of long-term observations. The impact of short-term weather changes may be used as a model. In Russia the biggest numbers of clinical cases of mosquito-borne West Nile infection were registered in 1999 in Volgograd and Astrakhan regions. The analysis of climatic dataset since 1900 shows that 1999 was the hottest year in Volgograd in the 20th century due to a very mild winter (December-March) and a rather hot summer (June-September). The author of the article puts forward a hypothesis that high winter temperatures favored the survival of over-wintering mosquito vectors, and high summer temperature facilitated the growth of the virus in the mosquitoes, as well as propagation of the mosquitoes themselves. The author assumes that conventional threshold temperatures for "beneficial for WNF conditions" in Russia are > or = 3 degrees C in winter, and > or = 22 degrees C in summer. These conditions coincided only in 1948 and 1999. In Astrakhan the "beneficial for WNF conditions" were registered in 30 out of 147 years of observation, and in 12 years between 1964 and 2003. This is not surprising that Astrakhan region is endemic for WNF in accordance with clinical and epidemiological data collected since the sixties. These findings give some hints on the WNF predisposing factors, as well as possibility of weather surveillance and prediction of WNF outbreaks in temperate climatic zones such as Southern Russia.

  10. Cold-Weather Sports

    Science.gov (United States)

    ... Videos for Educators Search English Español Cold-Weather Sports KidsHealth / For Teens / Cold-Weather Sports What's in this article? What to Do? Classes ... weather. What better time to be outdoors? Winter sports can help you burn calories, increase your cardiovascular ...

  11. Image-based correlation between the meso-scale structure and deformation of closed-cell foam

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yongle, E-mail: yongle.sun@manchester.ac.uk [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Zhang, Xun [Henry Moseley X-ray Imaging Facility, School of Materials, The University of Manchester, Upper Brook Street, Manchester M13 9PL (United Kingdom); Shao, Zhushan [School of Civil Engineering, Xi' an University of Architecture & Technology, Xi' an 710055 (China); Li, Q.M. [School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2017-03-14

    In the correlation between structural parameters and compressive behaviour of cellular materials, previous studies have mostly focused on averaged structural parameters and bulk material properties for different samples. This study focuses on the meso-scale correlation between structure and deformation in a 2D foam sample generated from a computed tomography slice of Alporas™ foam, for which quasi-static compression was simulated using 2D image-based finite element modelling. First, a comprehensive meso-scale structural characterisation of the 2D foam was carried out to determine the size, aspect ratio, orientation and anisotropy of individual cells, as well as the length, straightness, inclination and thickness of individual cell walls. Measurements were then conducted to obtain the axial distributions of local structural parameters averaged laterally to compression axis. Second, the meso-scale deformation was characterised by cell-wall strain, cell area ratio, digital image correlation strain and local compressive engineering strain. According to the results, the through-width sub-regions over an axial length between the average (lower bound) and the maximum (upper bound) of cell size should be used to characterise the meso-scale heterogeneity of the cell structure and deformation. It was found that the first crush band forms in a sub-region where the ratio of cell-wall thickness to cell-wall length is a minimum, in which the collapse deformation is dominated by the plastic bending and buckling of cell walls. Other morphological parameters have secondary effect on the initiation of crush band in the 2D foam. The finding of this study suggests that the measurement of local structural properties is crucial for the identification of the “weakest” region which determines the initiation of collapse and hence the corresponding collapse load of a heterogeneous cellular material.

  12. Image-based correlation between the meso-scale structure and deformation of closed-cell foam

    International Nuclear Information System (INIS)

    Sun, Yongle; Zhang, Xun; Shao, Zhushan; Li, Q.M.

    2017-01-01

    In the correlation between structural parameters and compressive behaviour of cellular materials, previous studies have mostly focused on averaged structural parameters and bulk material properties for different samples. This study focuses on the meso-scale correlation between structure and deformation in a 2D foam sample generated from a computed tomography slice of Alporas™ foam, for which quasi-static compression was simulated using 2D image-based finite element modelling. First, a comprehensive meso-scale structural characterisation of the 2D foam was carried out to determine the size, aspect ratio, orientation and anisotropy of individual cells, as well as the length, straightness, inclination and thickness of individual cell walls. Measurements were then conducted to obtain the axial distributions of local structural parameters averaged laterally to compression axis. Second, the meso-scale deformation was characterised by cell-wall strain, cell area ratio, digital image correlation strain and local compressive engineering strain. According to the results, the through-width sub-regions over an axial length between the average (lower bound) and the maximum (upper bound) of cell size should be used to characterise the meso-scale heterogeneity of the cell structure and deformation. It was found that the first crush band forms in a sub-region where the ratio of cell-wall thickness to cell-wall length is a minimum, in which the collapse deformation is dominated by the plastic bending and buckling of cell walls. Other morphological parameters have secondary effect on the initiation of crush band in the 2D foam. The finding of this study suggests that the measurement of local structural properties is crucial for the identification of the “weakest” region which determines the initiation of collapse and hence the corresponding collapse load of a heterogeneous cellular material.

  13. Effect of multiple-feedstock strategy on the economic and environmental performance of thermochemical ethanol production under extreme weather conditions

    International Nuclear Information System (INIS)

    Kou, Nannan; Zhao, Fu

    2011-01-01

    Current US transportation sector mainly relies on liquid hydrocarbons derived from petroleum and about 60% of the petroleum consumed is from areas where supply may be disturbed by regional instability. This has led to serious concerns on energy security and global warming. To address these issues, numerous alternative energy carriers have been proposed. Among them, second generation biofuel is one of the most promising technologies. Gasification-based thermochemical conversion will bring flexibility to both feedstock and production sides of a plant, thus presents an attractive technical route to address both the energy security and global warming concerns. In this paper, thermochemical ethanol production using multiple-feedstock (corn stover, municipal solid waste, and wood chips) is simulated using Aspen Plus and compared with the single-feedstock scenario, in terms of economic performances, life cycle greenhouse gas (GHG) emissions and survivability under extreme weather conditions. For a hypothetical facility in southwest Indiana it is found that multiple-feedstock strategy improves the net present value by 18% compared to single-feedstock strategy. This margin is increased to 57% when effects of extreme weather conditions on feedstock supply are considered. Moreover, multiple-feedstock fuel plant has no potential risk of bankruptcy during the payback period, while single-feedstock fuel plant has a 75% chance of bankruptcy. Although the multiple-feedstock strategy has 26% more GHG emission per liter of ethanol produced than the single-feedstock strategy, the trend is reversed if feedstock supply disruption is taken into account. Thus the idea of multiple-feedstock strategy is proposed to the future thermo chemical biofuel plants.

  14. A framework for standardized calculation of weather indices in Germany

    Science.gov (United States)

    Möller, Markus; Doms, Juliane; Gerstmann, Henning; Feike, Til

    2018-05-01

    Climate change has been recognized as a main driver in the increasing occurrence of extreme weather. Weather indices (WIs) are used to assess extreme weather conditions regarding its impact on crop yields. Designing WIs is challenging, since complex and dynamic crop-climate relationships have to be considered. As a consequence, geodata for WI calculations have to represent both the spatio-temporal dynamic of crop development and corresponding weather conditions. In this study, we introduce a WI design framework for Germany, which is based on public and open raster data of long-term spatio-temporal availability. The operational process chain enables the dynamic and automatic definition of relevant phenological phases for the main cultivated crops in Germany. Within the temporal bounds, WIs can be calculated for any year and test site in Germany in a reproducible and transparent manner. The workflow is demonstrated on the example of a simple cumulative rainfall index for the phenological phase shooting of winter wheat using 16 test sites and the period between 1994 and 2014. Compared to station-based approaches, the major advantage of our approach is the possibility to design spatial WIs based on raster data characterized by accuracy metrics. Raster data and WIs, which fulfill data quality standards, can contribute to an increased acceptance and farmers' trust in WI products for crop yield modeling or weather index-based insurances (WIIs).

  15. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments

    International Nuclear Information System (INIS)

    Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton A.; Serne, R. Jeffrey; Thompson, Aaron; Perdrial, Nicolas; Steefel, Carl I.; Chorover, Jon

    2011-01-01

    Leaching behavior of Sr and Cs in the vadose zone of Hanford site (WA, USA) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10-5 and 10-3 molal representative of LO- and HI-sediment, respectively) as surrogates for 90Sr and 137Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.

  16. Cockpit weather information needs

    Science.gov (United States)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  17. Near Real Time MISR Wind Observations for Numerical Weather Prediction

    Science.gov (United States)

    Mueller, K. J.; Protack, S.; Rheingans, B. E.; Hansen, E. G.; Jovanovic, V. M.; Baker, N.; Liu, J.; Val, S.

    2014-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) project, in association with the NASA Langley Atmospheric Science Data Center (ASDC), has this year adapted its original production software to generate near-real time (NRT) cloud-motion winds as well as radiance imagery from all nine MISR cameras. These products are made publicly available at the ASDC with a latency of less than 3 hours. Launched aboard the sun-synchronous Terra platform in 1999, the MISR instrument continues to acquire near-global, 275 m resolution, multi-angle imagery. During a single 7 minute overpass of any given area, MISR retrieves the stereoscopic height and horizontal motion of clouds from the multi-angle data, yielding meso-scale near-instantaneous wind vectors. The ongoing 15-year record of MISR height-resolved winds at 17.6 km resolution has been validated against independent data sources. Low-level winds dominate the sampling, and agree to within ±3 ms-1 of collocated GOES and other observations. Low-level wind observations are of particular interest to weather forecasting, where there is a dearth of observations suitable for assimilation, in part due to reliability concerns associated with winds whose heights are assigned by the infrared brightness temperature technique. MISR cloud heights, on the other hand, are generated from stereophotogrammetric pattern matching of visible radiances. MISR winds also address data gaps in the latitude bands between geostationary satellite coverage and polar orbiting instruments that obtain winds from multiple overpasses (e.g. MODIS). Observational impact studies conducted by the Naval Research Laboratory (NRL) and by the German Weather Service (Deutscher Wetterdienst) have both demonstrated forecast improvements when assimilating MISR winds. An impact assessment using the GEOS-5 system is currently in progress. To benefit air quality forecasts, the MISR project is currently investigating the feasibility of generating near-real time aerosol products.

  18. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    Science.gov (United States)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  19. Mesoscale Convective Complexes (MCCs) over the Indonesian Maritime Continent during the ENSO events

    Science.gov (United States)

    Trismidianto; Satyawardhana, H.

    2018-05-01

    This study analyzed the mesoscale convective complexes (MCCs) over the Indonesian Maritime Continent (IMC) during the El Niño/Southern Oscillation (ENSO) events for the the15-year period from 2001 to 2015. The MCCs identified by infrared satellite imagery that obtained from the Himawari generation satellite data. This study has reported that the frequencies of the MCC occurrences at the El Niño and La Niña were higher than that of neutral conditions during DJF. Peak of MCC occurrences during DJF at La Niña and neutral condition is in February, while El Niño is in January. ENSO strongly affects the occurrence of MCC during the DJF season. The existences of the MCC were also accompanied by increased rainfall intensity at the locations of the MCC occurrences for all ENSO events. During JJA seasons, the MCC occurrences are always found during neutral conditions, El Niño and La Niña in Indian Ocean. MCC occurring during the JJA season on El Niño and neutral conditions averaged much longer than during the DJF season. In contrast, MCCs occurring in La Niña conditions during the JJA season are more rapidly extinct than during the DJF. It indicates that the influence of MCC during La Niña during the DJF season is stronger than during the JJA season.

  20. Skid resistance determination for pavement management and wet-weather road safety

    Directory of Open Access Journals (Sweden)

    T.F. Fwa

    2017-09-01

    Full Text Available Road accidents during wet weather have been a topic of major concern of road engineers in regions of wet-tropical climate and in other parts of the world during the wet season of the year. Road safety studies indicate that approximately 20% of all road accidents occurred during wet weather, and that the skid resistance of wet pavements have a major influence on the occurrences of wet-weather accidents. Monitoring of wet pavement skid resistance has been an integral part of a typical pavement management system. However, because of the lack of prediction capability of pavement skid resistance under various rainfall intensities, the minimum skid resistance threshold for safe wet-weather driving has been specified by highway agencies based on either engineering judgement or past experience. It is shown in this paper that the single-point minimum skid resistance threshold is inadequate to offer a complete description of the skid resistance performance of the pavement sections in question for effective management of a road network. It is unable to assess the risk involved in an actual wet-weather condition where the pavement surface water-film thickness and vehicle speed are different from standard test conditions. This limitation of the current system of specifying a minimum skid resistance threshold can be overcome by adopting a theoretically sound approach to represent pavement skid resistance under different conditions of water-film thickness and vehicle speed. This paper describes the theoretical basis of the approach and the development of a mechanistically derived three-dimensional finite-element skid resistance simulation model to predict skid resistance. The application of the proposed approach and the skid resistance prediction procedure in pavement management system and wet-weather driving safety assessment is presented.